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Abstract 

While hexagonal boron nitride (hBN) in polycrystalline form has met demand for 

its mechanical, chemical, and thermal applications, its new electronic, optoelectronic, and 

nanophotonic applications required single crystals with low residual impurity 

concentrations.  Grain boundaries and impurities need to be minimized, as they degrade 

the properties of hBN that are important for these new applications. The present study was 

undertaken to develop large area, high quality hBN single crystals at low cost, and with 

control over its boron isotope concentrations. Furthermore, a preliminary study was 

undertaken to determine if the properties of hBN could be advantageously altered by 

irradiation.   

In this study, four processes to grow and manipulate the properties of hBN single 

crystals were developed. First, high-quality hBN crystals were grown from an iron metal 

flux. The quality of crystals produced by this novel, low cost and high purity solvent was 

equivalent to the best reported in the literature, as verified by Raman spectroscopy, 

photoluminescence, defect density assessment, and current-voltage measurements. 

Second, hBN crystals were grown via temperature gradient method with iron-chromium 

flux.  This method has the potential to produce larger, higher quality crystals than the slow 

cooling method. The maximum crystal domain size was up to 4 mm. Both in- and out-

plane thermal conductivity was significantly higher than the hBN grown by slow cooling, 

indicating improved crystallinity. Third, monoisotopic boron hBN (h10BN and h11BN) was 

grown from both Fe and Fe-Cr fluxes. Raman and photoluminescence spectra show the 

quality of crystal grown from Fe and Fe-Cr fluxes was comparable.  Fourth, neutron 

transmutation doping was studied as a possible method of altering the electrical and optical 



properties of hBN single crystals. Raman spectroscopy, photoluminescence, and electron 

paramagnetic resonance spectroscopies established that the effects of neutron irradiation 

were more pronounced on h10BN than h11BN. Together, these studies demonstrate the 

versatility of methods available to produce high quality hBN single crystal with specific 

properties. 
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Abstract 

While hexagonal boron nitride (hBN) in polycrystalline form has met demand for 

its mechanical, chemical, and thermal applications, its new electronic, optoelectronic, and 

nanophotonic applications required single crystals with low residual impurity 

concentrations.  Grain boundaries and impurities need to be minimized, as they degrade 

the properties of hBN that are important for these new applications. The present study was 

undertaken to develop large area, high quality hBN single crystals at low cost, and with 

control over its boron isotope concentrations. Furthermore, a preliminary study was 

undertaken to determine if the properties of hBN could be advantageously altered by 

irradiation.   

In this study, four processes to grow and manipulate the properties of hBN single 

crystals were developed. First, high-quality hBN crystals were grown from an iron metal 

flux. The quality of crystals produced by this novel, low cost and high purity solvent was 

equivalent to the best reported in the literature, as verified by Raman spectroscopy, 

photoluminescence, defect density assessment, and current-voltage measurements. 

Second, hBN crystals were grown via temperature gradient method with iron-chromium 

flux.  This method has the potential to produce larger, higher quality crystals than the slow 

cooling method. The maximum crystal domain size was up to 4 mm. Both in- and out-

plane thermal conductivity was significantly higher than the hBN grown by slow cooling, 

indicating improved crystallinity. Third, monoisotopic boron hBN (h10BN and h11BN) was 

grown from both Fe and Fe-Cr fluxes. Raman and photoluminescence spectra show the 

quality of crystal grown from Fe and Fe-Cr fluxes was comparable.  Fourth, neutron 

transmutation doping was studied as a possible method of altering the electrical and optical 



properties of hBN single crystals. Raman spectroscopy, photoluminescence, and electron 

paramagnetic resonance spectroscopies established that the effects of neutron irradiation 

were more pronounced on h10BN than h11BN.   Together, these studies demonstrate the 

versatility of methods available to produce high quality hBN single crystal with specific 

properties. 
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Chapter 1 - Motivation 

As an graphene-analogue, hexagonal boron nitride (hBN) has may applications, 

including a substrate for nanoelectronic devices,1 an encapsulant for other 2D materials,2 

and a platform for nanophotonic hyperbolic devices,3 deep ultraviolet light emitters4 and 

single photo emitters.5-7 Monoisotopic hBN with a single boron isotope instead of  the two 

as found in natural boron has enhanced properties and additional applications including 

heat management,8 nanophotonics,9-12 and thermal neutron detection.13 To realize the best 

device performance, hBN single crystals with few structural imperfections are required. 

This study not only produced hBN crystals for optoelectronics and nanophotonics that 

requires the best quality materials, but also provided a source material for defect 

engineering to achieve desired properties. 

This dissertation investigates the growth of high quality hBN crystals using metal 

flux method. It is organized into seven standalone chapters that each focus on a specific 

topic. Chapter 2 introduces the properties, applications, and characterization method of 

hBN. This provides the background for understating the subsequent chapters. 

Chapter 3 describes hBN single crystal growth using pure iron. Iron is a novel, 

simple, single component solvent that hasn't been used previously for hBN crystal growth. 

Iron is also inexpensive and available in higher purities (lower carbon concentrations) than 

nickel. Raman spectroscopy and photoluminescence spectra revealed that the resulting 

hBN were equal to the highest quality crystals reported in the literature. The hBN has a 

low defect density. The hBN crystals were up to 3 cm2 in area. 

Chapter 4 demonstrates the growth of hBN using a temperature gradient along the 

length of the solvent. The goal was to dissolve source material in the hot zone and 
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precipitate crystals in the cool zone. Prior studies used uniform cooling of the solvent which 

leads to crystals forming over a wide range of temperatures. The temperature gradient 

method has the potential to grow larger, higher quality crystals than the slow cooling 

method previously used. Raman spectroscopy and photoluminescence spectra showed that 

the hBN was highly crystalline. The high thermal conductivity of crystals produced in this 

manner higher than crystals grown by uniform cooling, suggesting revealed that they had 

few defects. 

Chapter 5 discusses the growth of monoisotopic hBN from both Fe and Fe-Cr fluxes. 

These were both new solvents that had not previously been used with pure boron source of 

10B and 11B. Iron solvent is inexpensive and available in higher purities (lower carbon 

concentrations) than chromium. The goal of chapter 5 was to investigate the solvent effects 

on hBN quality. Raman spectroscopy and photoluminescence spectra showed that the 

crystal quality grown from both Fe and Fe-Cr fluxes was comparable. 

Chapter 6 achieved the defect engineering of hBN single crystal using neutron 

transmutation doping. The goal was to alter the electronic and optical properties of hBN 

by introducing point defects and impurities into highly crystalline hBN single crystals.  

hBN is a wide-bandgap semiconductor with fixed optical and electrical properties, which 

limits its applications in some electronic and optoelectronic devices.  Neutron 

transmutation doping has the potential to produce boron vacancies and lithium doping. As 

expected due to 10B stronger neutron absorption than 11B, The neutrons damage the h10BN 

much more strongly than h11BN. Electron paramagnetic resonance spectra suggests that 

neutron-irradiation produces boron vacancies. Annealing helped to recover the properties 

of hBN. 
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Chapter 2 - Properties, applications, and characterization of 

hexagonal boron nitride 

Hexagonal boron nitride (hBN) is a structural analogue of graphite, but with vastly 

different properties.  Traditionally, hBN has been widely used in applications exploiting 

its excellent thermal and chemical stability,14 high thermal conductivity,15 lubricity16 and 

corrosion resistance17 in high temperature and oxidative environments.18 For those 

established applications, polycrystalline hBN is sufficient. Recently, hBN single crystals 

have gained attention for their potential applications, including solid state semiconductor 

devices, such as deep ultraviolet emitters19, substrates and dielectrics for graphene 

transistors20-23 and high-efficiency solid state neutron detectors.24 These new applications 

demand high quality crystals that are large in area and thickness.  

This chapter provides an overview of the properties and applications of hBN. 

Common techniques to characterize the quality of hBN such as Raman and 

photoluminescence spectra are introduced. Prior studies on the growth of hBN single 

crystal from metal fluxes are also reviewed. 

Boron nitride compound 

Boron nitride bond forms multiple structures that have various atom arrangements: 

amorphous form (a-BN), wurtzite form (wBN), cubic form (cBN) and hexagonal form 

(hBN). Among them, aBN is non-crystalline. The crystal structure of cBN, with sp3 

bonding, is similar to diamond (Figure 2.1). In the cBN all rings are in the chair 

configuration. However, the rings with boat configuration in wBN (Figure 2.2). Besides 

these, boron nitride bonds can form nano-structures such as single-wall BN-nanotubes 

(Figure 2.3)25 and multiply-wall BN-nanotubes.26-28 
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Figure 2.1 Structure of cBN. 

 

 

Figure 2.2 wBN structure 

 

   

 

Figure 2.3 Single-wall boron nitride nanotube structure 
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Properties of hexagonal boron nitride 

Hexagonal boron nitride (hBN) is a two-dimensional material with the honeycomb 

crystal structure (as illustrated in Figure 2.4). Each plane of hBN is composed of boron and 

nitrogen atoms with strong sp2 hybridization bonds. Bonding between layers is weaker Van 

der Waals interactions. The intralayer interaction between B and N is a polar covalent bond; 

this leads to Coulomb interactions between atoms located in neighboring layers. Therefore, 

the energetically favorable structure of hBN is AA’ stacking:  the nitrogen atom (green 

color) in the upper layer is above the boron atom (gray color) in the lower layer.29 The 

atomic weight of boron is 10.811 g/mol, and nitrogen is 14.007 g/mol, thus hBN is a light, 

low density 2.1 g/cm3 (Table 2.1) material. The strong sp2 hybridization bond of B-N atoms 

imparts it with a high melting temperature.  Because of the different chemical bond types, 

high strength sp2 bonds in-plane and the weaker Van der Waals interaction between planes, 

single crystal hBN has highly anisotropic properties. For example, its thermal conductivity 

in the c-direction is approximately 1/133 times that in the a-direction. 

 

Figure 2.4 hBN crystal structure.  The structure file is downloaded from 

Crystallography Open Database.  Boron and nitrogen atoms are represented by 

green and gray spheres, respectively. (a) top view, (b) side view. The honeycomb 

crystal structure and AA’ stacking can be seen clearly from Figure (a) and (b), 

respectively. 

 

hBN is electrically insulating. Thin hBN layers show a tunneling behavior. Figure 

2.5 illustrates a three layers metal-insulator-metal junction diode with hBN.30 At direct 
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current bias voltage (Vdc) < ±100 mV, the current-voltage curves show a linear ohmic 

dependence. At higher bias voltage, the I−V characteristics demonstrates nonlinearity. The 

breakdown electric field for crystalline hBN 8-15 nm thick was between 2 and 4 MV         

cm-1.31 

 

Table 2.1 Physical properties of hBN. 

Property Value 

Melting point (°C) 3000 

Thermal conductivity 

(W/mK) at 300K 

ab axis: 408. 

c axis:3.3.32 

Energy bandgap(eV) 5.9(indirect) 

Young’s modulus (TPa) 1.16 31 

Density(g/cm3) 2.1 29 

Resistance temperature to 

oxidation (°C) 
100033 

Optical color colorless 

Resistivity(Ω) 108~1013 29 

 

 

Figure 2.5 (a) Schematic for an exfoliated hBN tunnel devices with Cr/Au 

electrodes. (b) Tunnel current (I) as a function of dc bias (Vdc) for a typical thin hBN device 

with 3 layers.  Reprinted with permission from reference30. Copyright (2015) American 

Chemical Society. 

In addition to nanoelectronics, thin hBN layers also possess interesting properties 

that are useful for nanophotonics. As a natural hyperbolic material, hBN can produce 
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phonon polaritons. 34 Quasiparticles are generated in polar medium because of the coupling 

of photons with lattice vibrations. Through this coupling, the wavelength of light can be 

compressed by more than a factor of one hundred. This offers the promise of a broad range 

of applications, including photodetection, color filters and optomechanics.35 Hyperbolic 

phonon polaritons can be observed in hBN with a scattering-type scanning near-field 

optical microscope image because of propagating electromagnetic waves. Figure 2.6 

illustrates this method.36 In this technique, an atomic force microscopy tip conveys the 

energy of the incident photons and launches polaritons in the hBN. The polaritons 

propagate in the hBN and are observed as periodic oscillations (fringes). 

 

 

Figure 2.6 Schematic of how hyperbolic phonon polaritons are imaged in hexagonal 

boron nitride.  A hBN flake was transferred onto the Si/SiO2 substrate with an air 

trench such that part of the hBN was suspended. The polaritons were launched by 

indent laser beam (red solid arrow). The backscattered IR signal was (red dashed 

arrow) collected.  Reprinted with permission from reference36. Copyright (2018) 

American Chemical Society. 
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Applications of hexagonal boron nitride 

Polycrystalline hBN has been widely used for diverse applications, such as heat 

resistant crucibles because of its high thermal and chemical stability and insulators or 

thermocouple protectors because of its high electrical resistivity. hBN is also an excellent 

oxidation-resistant coating. Zheng et al.37 demonstrated that an ultrathin hBN layer coating 

resists oxidation up to 1,100 °C in oxygen. 

In addition to tunnel layer in nanoelectronics and polariton-generation in 

nanophotonics, highly crystalline hBN has other potential applications.  

Deep ultraviolet emission.   The bandgap of hBN is about 5.9 eV, which 

corresponds to the wavelength of 210 nm. Therefore, hBN is of interest for deep ultraviolet 

emission (wavelengths from 280 to 198 nm) devices.38 Despite having an indirect bandgap, 

hBN’s luminescence efficiency is quite high. Watanabe et al. 39 fabricated a battery-driven 

far-ultraviolet plane-emission device based on hBN, with output power of 0.2mW at 225 

nm. 

Substrate for graphene-based devices.  hBN and graphene have a similar crystal 

structure and a small lattice constant mismatch. The a-lattice constants for hBN and 

graphene are very similar (2.5 Ȧ and 2.46 Ȧ, respectively). Hence, hBN is a good substrate 

for sp2 hybridization graphene-based devices.40-42 Compared to SiO2, the most common 

substrate used with graphene, the charge concentration fluctuations were reduced by two 

orders of magnitude on hBN.43 Traditional graphene devices use SiO2 as the insulating 

substrate but it has some disadvantages, such as a rough substrate surface, dangling bonds, 

and it contains impurities that adversely affect the properties of graphene, so the graphene 

devices exhibit poor performance. In contrast, hBN is a much better substrate: it is 
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smoother and has lower interface trap densities. Wang et al.44 fabricated graphene devices 

on hBN substrates exhibiting mobility up to 140,000 cm2/Vs at room temperature.  For 

comparison, for graphene on SiO2, the value was 4500 cm2/Vs.45 

Single photon emitter. Single photon emitter emits one photon at a time. This is 

useful to control the photon’s quantum properties for information storage and 

transmission.46 Single photon emitters have been produced by atomic defects in hBN at 

room temperature.47, 48 The are extremely robust, stable and spectral tunable, which makes 

hBN a promising platform for quantum information processing devices. 

Neutron detector. hBN is also potentially useful as a high-efficiency neutron 

detector material, due to the 10B isotope’s large thermal neutron absorption cross section.49 

Natural boron has two isotopes: the 10B content is around 20% and the remainder is 11B.   

If a neutron is captured by 10B atom, the nuclear reactions are: 49 

10B   +    
1 

0 n   →       7Li (1.015 MeV)  +  α (1.777 MeV)      6% 

10B   +  
1 

0 n      →       7Li* (0.840MeV)  +  α (1.470MeV)   94% 

The energetic α particles and 7Li ions produce electron-hole pairs by inelastic 

scattering. Thermal neutron detectors based on hBN can capture neutrons, generate charge, 

and produce an electrical signal in one single layer. Therefore, hBN neutron detectors are 

expected to possess many advantages: low leakage currents, low gamma sensitivity and 

fast response, and the ability to be fabricated in large areas.50 

To capture neutrons and generate a signal requires high quality, large area, thick 

hBN single crystals. For example, the thermal neutron absorption length in natural hBN 

layer is around 230 µm. With 10B enriched hBN, the thickness needed to capture all 

neutrons is less, approximately 90 µm.24  
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Substrate for 2D materials growth. hBN is an ideal substrate for 2D material 

growth because of its excellent physical and chemical stability and atomically smooth 

surface, which is free of dangling bonds. hBN has been used as a substrate for a wide 

variety of thin films including graphene,51 MoS2,
52 MoSe2,

53 and black phosphorus as 

examples.   On hBN, the quality of 2D materials is consistently better than other materials: 

they have higher electron mobilities and more intense, narrower photoluminescence 

peaks.54 Zhang et al.54 reported that a hBN single crystal substrate orientates the growth of 

WSe2. Single-atom vacancies on the hBN surface trap W atoms, leading to a reduced 

formation energy for WSe2 domains. Compared to traditional sapphire substrate, the 

nucleation density of WSe2 on hBN substrate is much lower (Figure 2.7). 

Heat management layer in nano-electronics. With the rapid development of 

nano-scale integrated circuits, high power becomes confined to smaller and smaller 

volumes. Hot spots can develop which can degrade the devices performance until it 

ultimately fails. To avoid this, efficient heat removal is highly desired. The in-plane 

thermal conductivity of bulk hBN is 408 ± 60 W m−1 K−1 at room temperature. This value 

is several hundred times higher than SiO2 (1.1 W m−1 K−1).55 In contrast, the cross-plane 

thermal conductivity (TC) of bulk hBN is around 3.3 ± 0.8 W m−1 K−1. The thermal 

conductivity of hBN with a single boron isotope is even higher. For boron-monoisotopic 

hBN, due to reduced phonon scattering, the room-temperature in-plane thermal 

conductivity of h10BN and h11BN are 585 ± 80 and 550 ± 75 W m−1 K−1.32 In contrast, the 

cross-plane thermal conductivity of h10BN and h11BN are 3.5 ± 0.8 and 4.5 ± 0.8 W m−1 

K−1, respectively. This anisotropic thermal conductivity makes hBN a great candidate for 

heat management layer in nano electronics. Figure 2.8 is a schematic showing how hBN 
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works as a heat dissipation layer. Figure 2.8a shows that heat flow (black arrow) can 

dissipate both laterally (along the surface of the SiO2 substrate) and vertically (into the 

SiO2 substrate). However, if hBN film coated on the SiO2 substrate (Figure 2.8b), the heat 

flow mainly dissipates between source and drain due to high in-plane TC. The heat 

spreading in the vertical direction is decreased due to low cross-plane TC.  

 

 

Figure 2.7 SEM images of WSe2 grown on different substrates: hBN (left) and 

sapphire (right). Nucleation time were 30 s, 1 min, and 2 min.  Scalebar is 1μm. 

Reprinted with permission from reference56. Copyright (2019) American Chemical 

Society. 
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Figure 2.8 Schematic of hBN film as a thermal management material.  (a) Heat 

generated on a SiO2 substrate. (b) Heat generated on a hBN thin film coated SiO2 

substrate. (c) hBN thin film comprised of layer-by-layer laminated h-BN nanosheets. 

Reproduced with permission from reference57, the Royal Society of Chemistry. 

 

 

 

Characterization of hBN 

The goal of characterization is to assess the quality of the material and to measure 

its properties (electrical, optical, thermal, mechanical, etc.), often when it is combined with 

other materials.  This is necessary to determine if the material has the properties needed for 

a specific device function. Scientific studies of hBN properties and the development of 

technological application require excellent characterization of the material to understand 

its properties. In this regards, Raman and photoluminescence spectra are especially 

important tools for characterizing hBN. 

Raman spectroscopy 

Raman spectroscopy is widely used to characterize semiconductor materials and 

their crystal quality. In a Raman measurement, the inelastically scattered light is analyzed. 

Suppose ℏ is the Planck constant, and 𝜐i  , 𝜐s, and  𝜐p  are the frequencies of incoming 
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photons, scattered photons, and phonons, respectively.  A photon of energy ℏ  𝜐i   is 

scattered by a phonon of energy 𝜐pℏ , resulting in the energy of the scattered photon being 

ℏ𝜐s = ℏ 𝜐i ± ℏ 𝜐p. 

Phonon absorption corresponds to the positive sign, while the phonon excitation 

corresponds to the negative sign. The Raman shift is the energy difference between the 

incoming and scattered energy. Numerically, it is defined as the reciprocal difference of 

the wavelength between of the incident and scattered light. From the above equation, we 

derive that the Raman shift is proportional to the energy of the excited (or absorbed) 

phonons.   

Three parameters (the peak intensity, peak position and full width at half maxima 

(FWHM)) can be used to evaluate the properties of hBN. The peak intensity increases with 

the number of hBN layers. Figure 2.9 shows an example of this. 

 

 

Figure 2.9 Raman spectra of hBN as a function of the atomic layer number.  Reprinted 

with permission from reference58. Copyright (2017) American Chemical Society. 
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The peak position is the most straightforward way to determine if hBN is present.  

hBN exhibits two primary vibrational modes: an in-plane mode at high frequency and an 

interlayer mode at low frequency (Figure 2.10). The E2g lattice vibration peak corresponds 

the B and N atom in-plane stretching vibrations.59 Two factors influence this peak position: 

(a) the number of layers and (b) strain (a built-in stretching of bonds). For bulk hBN, the 

E2g peak position is at 1366 cm-1.59 For low-quality hBN films constrained by substrate, 

the peak position shifts due to strain. For monolayer hBN, the peak is at 1369 cm-1.60 There 

was a red shift of bilayer peak position to monolayer (Figure 2.9) because monolayer hBN 

has a slightly shorter bond between boron and nitrogen, inducing a hardening of the E2g 

vibration.  

 

Figure 2.10 Two vibration modes of hBN crystal. (a) Shear mode. For bulk natural 

hBN, the peak position is at 52.5 cm-1. (b) In-plane mode (E2g). For bulk natural hBN, 

the peak position is at 1366 cm-1.61 

 

The full width at half maximum (FWHM) of the Raman peak can indicate the 

quality of the hBN crystal: the width increases with the defect density. For hBN synthesized 

by chemical vapor deposition, the FWHM of the E2g peak is typically more than 20 cm-1.62 
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The best value for CVD-hBN was 14 cm-1 (Figure 2.11).60 For high quality bulk natural 

hBN crystals, the smallest Raman FWHM was 7.8 cm-1 (Figure 2.12).59 

 

 

Figure 2.11 Raman spectra of a high-quality monolayer hBN grown by CVD method.  

Reprinted with permission from reference60. Copyright (2015) American Chemical 

Society. 

 

Isotopically pure hBN has different Raman peak positions. Since the B-N 

vibrational frequency in plane is proportional to√
1

𝑚B
+

1

𝑚N
 , then the smaller atomic mass 

of h10BN has a larger phonon energy than h11BN.  As shown in Figure 2.12, the E2g peak 

of h10BN and h11BN single crystal are at 1393.3 and 1357.4 cm−1, respectively.59 The 

FWHM in h10BN and h11BN are 3.1 and 3.3 cm−1 ; both values are much smaller than 

natural abundance hBN (7.8 cm−1) because there is no isotopic mass fluctuation to  interrupt 

the translational symmetry significantly and elastically scatter the phonons.63  
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Figure 2.12 Raman spectra of the (a) shear mode and (b) intralayer mode from h10BN, 

h11BN and hBN crystals grown with a Ni-Cr metal flux.  Reprinted with permission 

from reference59 . Copyright (2018) American Chemical Society. 

 

Photoluminescence spectroscopy 

Photoluminescence (PL) spectroscopy is a non-destructive optical method to 

characterize the opto-electronic property of a semiconductor, including its energy bandgap 

and energy states introduced by impurities or defects. In a PL process, a semiconductor is 

excited by a photon to produce electron-hole pairs. As the electrons and holes undergo 

relaxation, they recombine by emitting a photon. Because the relaxation favors low energy 

states, a low concentration of impurities can produce a significant PL characteristic signal.  

PL spectra is most informative when taken at cryogenic temperature, because high 

temperatures tend to broaden the peaks thermally, making the details of the energy level 

unobservable.64 Defects and impurities can be detected, because they create new energy 

levels within the forbidden gap.65-67 Like Raman spectroscopy, as an optical method, no 

complicated sample preparation is required for collecting PL spectra. 
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Figure 2.13 Schematic figure of electronic transitions in photoluminescence. 

 

As shown in Figure 2.13, the photon energy emitted depends on the radiative 

recombination mechanism: (1) conduction band to valence band recombination. (2)  Free 

exciton recombination. Electron-hole pairs are bound to each other due to Coulombic 

interaction. The energy is smaller than the energy band gap. (3) A hole combines with a 

neutral donor. (4) An electron combines with a neutral acceptor. (5) A donor interacts with 

an acceptor.  

Direct and indirect semiconductors have different PL features. A direct bandgap 

semiconductor such as WS2 has efficient direct radiative recombination. Therefore, 

photoluminescence spectra of high-quality WS2 crystal show a strong intrinsic peak, as 

seen in Figure 2.14.68 A strong and sharp peak at 2.0 eV indicates the good crystallinity. 
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Figure 2.14 A PL spectrum of WS2. Reprinted with permission from reference68. 

Copyright (2014) American Chemical Society. 

 

Bulk hBN is an indirect bandgap semiconductor. 69 Radiative recombination 

requires assistance by phonon scattering because both energy and momentum must be 

conserved. Considering the interaction between the intrinsic phonon-assisted 

recombination and the extrinsic defect-related emission processes, the presence of phonon-

assistant peaks indicates highly crystalline hBN.70 As shown in Figure 2.15, hBN has four 

radiative recombination peaks assisted by the emission oschsf phonons at 5.76, 5.79, 5.86 

and 5.89 eV, indicating the high quality of hBN crystal.70  
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Figure 2.15  PL spectra of bulk hBN.  Reproduced from 71, with the permission of 

AIP Publishing. 

 

The defect-related emission peak centered at 5.5 eV corresponds to the transverse 

optical phonon-assisted inter-K valley scattering. The presence of stacking faults in bulk 

hBN provide a density of final electronic states to make this peak observable.70 The broad 

peak at 4 eV is attributed to a donor-acceptor transition, due to the presence of vacancies 

or impurities such as carbon or oxygen.72 

 

hBN film synthesis 

While the compound hBN can be produced by many techniques, there are only a 

few methods capable of producing hBN single crystals. Chemical vapor deposition, 

molecular beam epitaxy and sputter deposition were used to synthesize hBN films, while 

the metal flux method was used to grow hBN bulk crystals. These methods will be reviewed 

briefly. 



20 

 

 

Chemical vapor deposition. 

In chemical vapor deposition (CVD) boron and nitrogen precursors reacts at the 

surface of a heated substrate to form hBN.73 As a scalable method, CVD has the ability to 

produce large area films, to control the thickness of film, and to create van der Waals 

heterostructures. Various transition metals such as Ni,74, 75 Ru,76 Cu,77, 78 and Ag,79 as well 

as single crystal sapphire80, 81 have been used as substrate to produce large-area monolayers 

hBN. Besides pure metals, alloys have also been investigated as substrates.  In general, 

CVD produces the hBN with relatively small size (100 µm) grain.82 Recently, two 

significant results on large-area hBN monolayer were reported Lee et al. synthesized wafer-

scale single-crystal hBN film via self-collimated grain formation. 83 Boron and nitrogen 

atoms in liquid gold at high temperature form the circular hBN grains. These grains evolve 

single-crystalline film on a wafer scale by self-collimation of B and N edges due to 

electrostatic interaction between grains. Wang et al.84 achieved CVD epitaxial growth of a 

100-square-centimetre single crystal hBN monolayer on copper. 

           Even though CVD can produce large-area thin films, their quality does not match 

that of bulk hBN crystals. Raman characterization shows that the quality of CVD 

produced hBN decrease with the layer thickness: typically, the Raman peak widths are 13 

to 24 cm-1,58, 73, 85, 86 which is significantly wider than metal-flux grown bulk hBN (8 cm-

1). The hBN structure changes when the hBN layer thickness increases: Henry et al. 87 

reported that BN films changed from hBN to rhombohedral BN when film thicknesses 

reach 4 nm. Thus, the challenge remains to improve control of thick- film structural 

quality. 
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Molecular beam epitaxy 

In MBE, elemental boron is evaporated using evaporation source such as e-beam, 

and a nitrogen flux is introduced by a plasma source.88 The boron and nitride elements 

deposited and combined together to form hBN on the substrate. High purity of hBN can be 

achieved because of the absence of carrier gases or precursors. 

MBE can produce hBN layers of high quality, indicating by the presence of 

phonon-assisted peaks89 and narrow Raman peak (FWHM of 13 cm-1).90 While better than 

CVD films, MBE has not achieved the quality of comparable to bulk hBN.   

Sputter deposition 

           Compare to hBN CVD, less research has been reported on sputter deposition 

because it is generally difficult to produce high structural quality material with this 

technique. In sputter deposition, boron and nitrogen were ejected from a target that is a 

source onto a substrate. Large single-crystal hBN monolayers with a lateral size up to 100 

µm on Ni substrate was produced.91-93 Future research should focus on multiply-layers 

hBN films growth by sputter deposition.  

 

 

Bulk hBN single crystal growth 

The hBN crystal growth process studied in this dissertation was the metal flux 

method. A flux (a molten metal) is used as the solvent to dissolve the hBN components. 

There are two significant advantages for the metal flux method: (1) it can grow bulk 

crystals (hundreds of micrometers thick), compared to chemical vapor deposition, which 

is better for producing thin layers, generally less than 50 µm thick. (2) The crystal is grown 
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below the compound’s melting temperature.  For example, hBN has a melting temperature 

of 3000 °C, making it hard to grow crystal from the melt. hBN crystals can be grown from 

a Cr-Ni flux at 1500 °C. Due to the lower temperature, the thermal stress is decreased, 

making it possible to grow crystals with fewer defects. It also decreases the incorporation 

of impurities coming from the crucible or the ambient into the crystals, so lowering the 

growth temperatures remarkably improves the quality of the crystals. (3) Typically, the 

segregation coefficient k (the ratio of an impurity concentration in the solid phase to the 

liquid phase) is less than one, so impurities enter the metal solution and not the crystal. 

Thus crystallization is a purification process. (4) The crystal can be grown under low 

pressure, providing a way to grow the crystal whose decomposition vapor pressure is high.  

A proposed flow chart to select the semiconductor single crystal growth method is shown 

in Figure 2.16. 

 

Figure 2.16 Flow chart to determine the bulk-crystal growth method. 
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In the metal flux crystal growth, the source components are dissolved into a molten 

metal flux at a temperature sufficiently high to form a solution. Then the solution is cooled, 

causing the component’s solubility to decrease and creating a supersaturated metal solution. 

Crystal growth involves two separate processes: nucleation and growth. The nucleation is 

mainly a function of temperature, which controls the solubility and supersaturation. There 

is a critical size for the nucleus to grow, instead of dissolving into the metal melt again. 

The growth process begins after the nuclei have exceeded a critical size which is a function 

of supersaturation. For high supersaturation, the growth process begins from smaller nuclei.  

Conversely, for low supersaturation, the growth needs to reach a larger critical size. To 

grow larger crystals, the nuclei density must be decreased to obtain a few large crystals, 

rather than many small crystals. Ideally, the crystal growth rate in specific crystallographic 

direction should be controlled, to produce crystal with specific morphologies. The ambient 

pressure should be high enough to suppress significant metal evaporation.  

The important properties for metal flux include: a high solubility of boron and 

nitrogen under the growth temperature and pressure, no metal incorporation into the hBN 

crystal.94 For example, B is highly soluble in Ni and N has good solubility in Cr. Therefore, 

Ni-Cr is a good metal flux to grow hBN. Alumina is a good crucible material, as it is stable 

against Ni-Cr solutions. 

A typical process using a Ni-Cr metal flux is shown in Figure 2.17. In this process, 

nickel and chromium powders were placed in a hot-pressed BN crucible then loaded into 

a furnace under N2 flowing at 850 Torr. The furnace was heated and held at a high 

temperature such as 1500 °C for several hours, to melt and mix the Ni-Cr flux with BN 

dissolved from the crucible. N2 gas works as both a protective and reactive gas. Then the 



24 

 

crucible was slowly cooled at a rate of 1°C/h. During the cooling process, the solubility 

decreases with the temperature, causing hBN crystal precipitation. Finally, furnace is 

quenched to room temperature.  

 

 

Figure 2.17 A schematic diagram of the hBN crystal growth process.  (a) hBN is 

dissolved in a metal flux at high temperature. (b) hBN single crystals precipitated on 

the metal flux surface during the cooling process.  

 

Several metal fluxes have been tested for hBN crystal growth and reported in the 

literature, including Ni-Cr,95 Fe-Cr,96 Ni-Mo,19 Mg,97 and Ba.   

Table 2.2 Summary of hBN bulk single crystal grown from metal flux. 

Solvent 

Peak position 

of Raman 

(cm-1) 

FWHM of 

Raman 

(cm-1) 

Growth 

Temperature 

(°C) 

Growth 

Pressure 

(atm) 

Crystal 

Size 

(µm) 

Ni-Mo19 1365 9.3 1500-1350 1 500 

Ni-Cr 1366 8 1550-1450 1 1000 

Fe-Cr96 1366 7.8 1550-1500 1 1000 

Mg 1367 8 1900 - 2100 24317 1000 

Ba98 Not reported Not reported 1650-1500 44412 500 

Na Not reported Not reported 700 25  1 
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Table 2.2 shows the reported bulk hBN crystals grown from several metal fluxes. 

From these data, bulk hBN grown from different metal fluxes has similar Raman peak 

FWHM (8-9.3 cm-1), indicating these hBN single crystals were highly crystalline. To 

compare the crystal quality, further characterizations such as the electronic property and 

thermal conductivity are needed. The hBN-based device performance is also helpful to 

demonstrate a slightly difference of hBN quality. The maximum crystal size is also similar. 

But the crystal size grown from Na is the smallest. We could presume that the 

supersaturation of nitrogen in Na is small. Some solvents (Na, Ba and Mg) need a high 

pressure, this increases the experimental cost. To grow high quality of hBN with a large 

size in an economic way, a new flux or an improved method is needed. 
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Chapter 3 - High-quality, three-square-centimeter hexagonal 

boron nitride crystals growth from Fe flux  

Introduction 

Two-dimensional (2D) materials have received immense interest for their 

properties and their proposed applications in optics, electronics, nanophotonics, 

optoelectronics, and photovoltaics. Of these, hexagonal boron nitride (hBN) has attracted 

much attention due to its exciting applications as an excellent substrate for  graphene 

devices99, an excellent protective encapsulant for other 2D materials,100, 101 a heat 

management layer in flexible nanoelectronic devices,32, 102 a single photon emitter, and a 

platform for nanophotonic hyperbolic devices.103 In addition, due to its chemical and 

thermal stability, atomic flatness, large energy band gap (5.9 eV) and absence of dangling 

bonds and surface charge traps, hBN is an ideal ultrathin insulator and gate dielectric.104In 

these applications, crystal defects can drastically degrade the performance of devices. 

Therefore, largescale hBN single crystals with low residual impurity concentrations are 

highly desirable. Considering its high melting temperature (3400K),105 it is impractical to 

grow hBN single crystals from a pure melt of hBN. So far, research on hBN synthesis has 

focused on chemical vapor deposition (CVD)31, 106-108 , molecular beam epitaxy89, 90 and 

sputter deposition synthesis.109 Although CVD is scalable and has the potential to produce 

large area films with a controlled thickness, those hBN films do not have high structural 

quality due to the presence of vacancies, grain boundaries,110 and line defects.111 Typically, 

the full-width at half-maximum (FWHM) value of the E2g Raman spectrum for hBN films 

is between 20 and 30 cm-1. The phonon-assistant peaks greater than 5.5 eV are absent in 



27 

 

their photoluminescence spectrum due to their low crystal quality.112, 113 The break down 

electric field for a deposited film, 8-15 nm thick, was reported as 24 MV cm-1.31 

The solution growth method can produce hBN bulk single crystals with much 

higher quality than deposition methods. The crystals grown from molten metal fluxes have 

fewer defects, less thermal strain and fewer impurities, because the impurities in the metal 

flux do not incorporate into the crystals.114 The hBN crystal flakes form in a liquid without 

constraint, unlike deposited films which are strained by mismatches with a solid substrate 

in symmetries, lattice constants, and coefficients of thermal expansion. So far, hBN crystals 

have been grown with Na,115 Ba,98 Ni,116 Ni-Cr 95 and Fe-Cr96 metal fluxes. However, these 

solvents generally produce small crystals, typically less than 1 mm2. Furthermore, after 

mechanical exfoliation, the domain size becomes even smaller, 0.01 mm2. For the metal-

solution crystal growth process, if the supersaturation is too high, highly defective crystals 

are produced due to dendritic growth and some impurities can be trapped in the crystal as 

inclusions. In contrast, a low supersaturation takes a very long, impractical amount of time 

to grow crystals. A very low degree of supersaturation will lead to small size crystals.94The 

challenge remains to identify an optimal metal flux that produces hBN single crystals with 

fewer impurities and defects for good device performance.   

Herein, we report on high-quality, bulk hBN single crystal growth from an iron 

solution at atmospheric pressure. The quality of the hBN crystals was determined by the 

Raman and photoluminescence spectra. WSe2 was deposited on the surface of a resulting 

hBN crystal flake to assess the its defect density. A graphene/hBN/graphene device was 

fabricated to evaluate the tunneling characteristic of the hBN. 
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Results and discussion 

 

Figure 3.1 Bulk hBN growth from Fe flux. (a) Macro image of hBN on the Fe ingot 

surface in the alumina boat.  (b)  Macro image of an enlarged region of the hBN single 

crystal on the top surface of ingot. (c)  An optical micrograph of the hBN single crystal 

on the top surface of the ingot. The scale bar is 500 micrometers. (d)  Macro image 

of the peeled hBN flake in a wafer carrier. (a)  and (d) are from the same crystal. 

 

Crystal growth. The hBN crystals were grown by precipitation from a liquid iron 

flux. Figure 3.1a shows a macro image of hBN on the Fe ingot surface. A large triangular 

domain of hBN and several small domains covered the Fe ingot surface. Figure 3.1b 

displays an enlarged region of the hBN single crystal on the top surface of ingot. The main 

crystal shapes on the metal surface is triangular. Figure 3.1c shows an optical micrograph 

of the hBN crystal on the top surface of ingot. The large triangular domain consists of 

several small triangular domains. Free-standing hBN flakes were peeled from the Fe ingot 
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with thermal release tape. Subsequently, to release the hBN flakes, the tape was heated the 

tape to 130°C for 5 s. For hBN grown on Ni-Cr or Fe-Cr ingots, this process breaks the 

hBN crystals, making them smaller. Typically, the flake area of hBN grown on Ni-Cr or 

Fe-Cr were up to 1 mm2.   However, the flake area was up to 3-4 cm2, which is 300 - 400 

times larger than our previously reported results.59, 96 This indicates that hBN grown from 

Fe has few cracks. Figure 3.1d shows a macrograph of free standing hBN flake peeled from 

the Fe surface. The resulting hBN flake was highly transparent and colorless.  

 

 

Figure 3.2 Optical characterization of bulk hBN crystal flake.  (a) Intralayer mode of 

Raman spectra of hBN bulk flake. (b) Shear mode of Raman spectra of hBN bulk 

flake. (c) Photoluminescence (PL) spectra of bulk hBN flake on a linear scale at 8 K. 

(d) PL spectra of bulk hBN flake on a log scale at 8 K. between 5.0 and 6.0 eV. LO, 

TO, LA and TA are the longitudinal and transverse optical, and acoustic phonons, 

respectively70.   



30 

 

Optical characterization of hBN. The Raman spectra of hBN exhibited both the 

intralayer mode at high frequency and the interlayer shear mode at ultra-low frequency. 

The intralayer Raman mode corresponds to the E2g vibration between boron and nitrogen 

atoms in the layer plane at 1367.0 cm-1 (Figure 3.2a). The full width at half maximum 

(FWHM) of E2g peak is 7.6 cm-1, which is comparable to our published result of hBN 

grown from Ni-Cr or Fe-Cr flux (7.8 cm-1).61, 95 For typical CVD-grown hBN layers, the 

peak position appears at 1370.5 cm-1 for thin (300 nm) layers 117 to 1369 cm-1 for thicker 

(0.5 µm) films113, and the peaks widths are between 25 and 30 cm-1. 117 The smaller FWHM 

indicates that the hBN crystal is higher-quality crystal with few defects. The ultra-low 

frequency corresponds the rigid shearing vibration mode between adjacent layers (Figure 

3.2b),118 with a peak at 52.7 cm-1, and with a FWHM of 1.0 cm-1. This indicates the crystals 

have fewer stacking defects. 

The photoluminescence (PL) spectra were characteristic of high quality hBN. It did 

not have the sharp peaks that frequently appear around 4 eV that are associated with point 

defects.72 The region above 5.7 eV corresponds to the intrinsic phonon-assisted emission 

with five phonon replicas: LO, TO, LA, TA and ZO/ZA at 5.76, 5.79, 5.86, 5.89, and 5.93 

eV, respectively. Because of the interaction between the intrinsic phonon-assisted 

recombination and the extrinsic defect mediated emission processes, the presence of 

phonon-assisted peaks is a signature of high-quality crystal. 89 Bourrellier et al.119 used 

cathodoluminescence to identify peaks in the energy region between 5.3 and 5.7 eV as 

related to hBN defects by cathodoluminescence. In PL spectra, the spot size of probe is in 

the order of 100 µm, so PL detects hBN’s grain boundaries as well as stacking defects. 

Therefore, the emission peak in PL spectra from stacking faults is always at a higher energy 
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than the one of the intrinsic lines above 5.7 eV. In contrast to these bulk crystals, many 

CVD-grown hBN layers do not have these intrinsic FX transitions peaks due to defects and 

impurities.112, 113 Only for the highest quality bulk crystals, are these peaks present,69, 70, 89, 

120 indicating that the hBN crystals prepared in this study are high-quality crystals with few 

defects. Their peak intensities of LO and TO is comparable to the peak intensity of 

LO/TO+3TO (Figure 3.2d). This demonstrates that the sample quality at least matches the 

best results reported previously.69 

 

 

 

Figure 3.3 (a) Field emission scanning electron microscopy images of WSe2/hBN 

showing aligned WSe2 domains with one edge marked in red. (b) Raman characteristic 

peaks of WSe2 confirming the existence of monolayer WSe2 on hBN. (c) The 

deconvoluted PL spectra of WSe2/hBN at room temperature. The deconvoluted 

spectra were acquired by performing multipeak Lorentzian fitting using exciton and 

trion peak positions.  

  

Growth of WSe2 on hBN. Single crystal hBN is a good substrate for the epitaxial 

growth and encapsulation of 2D transition metal dichalcogenides due to its high dielectric 

constant and chemically inert surface.121, 122 When hBN is used as a substrate to deposit 

WSe2, the nucleation density of WSe2 can be estimated by counting the number of 

triangular domains in different regions and averaging the density.123, 124 Previous studies 

indicate that the nucleation density of monolayer WSe2 on hBN is directly related to the 
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surface defect density of the hBN.123, 124 To demonstrate the potential to grow 2D 

semiconducting materials as a substrate and investigate the defects density of our hBN, we 

carried out the growth of monolayer WSe2 domains on our hBN flakes by a gas source 

chemical vapor deposition. The field emission scanning electron microscopy (FESEM) 

image of hBN surface after the growth in Figure 3.3a shows a group of well-aligned 

triangular WSe2 domains (one edge marked in red), indicating their epitaxial growth and 

the high crystallinity of the hBN flakes. The additional patterns in the FESEM image come 

from the charging effect due to the insulating nature of hBN. Although the nucleation 

density of WSe2 varied across the surface of the hBN, it has a discernibly lower nucleation 

density, an average of 0.56±0.24 μm-2 , than other monolayer WSe2 growth using exfoliated 

bulk hBN flakes as subsrates.68, 123-125 Although additional surface defects can be created 

during the transfer process, the significant reduction of WSe2 nucleation density implies 

the low intrinsic point defect density from the hBN flakes. The Raman spectrum from the 

WSe2 (Figure 3.3b) further confirms the triangular domains are monolayer WSe2 with a 

characteristic peak at 250 cm-1 and no breathing mode at ~310 cm-1. The optical properties 

of WSe2 are also strongly affected by their growth conditions, especially the growth 

substrates.31 Due to the high crystal quality of our hBN substrate, the PL peak of the 

monolayer WSe2 was sharp as shown in Figure 3.3c. The asymmetric peak can be 

deconvoluted into an exciton peak at 1.66 eV and a trion peak at 1.62 eV. Both the exciton 

and trion peaks have narrow FWHM, considering the measurement was carried out at room 

temperature.  
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Figure 3.4 Characterization of a hBN sheet.  (a) Bright and dark field optical images 

of an exfoliated hBN film with the thickness of 25 nm. The scale bar  is 10 µm. 

(b)AFM image of the hBN film. (c) The height profile of the hBN film. (d) Raman 

maps of intensity of the hBN film. (e) Raman map of peak position of the hBN film. 
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hBN nanosheet. For many device applications, the surface flatness and uniformity 

of the hBN is very important. To test the thickness from our crystals, an exfoliated hBN 

nanolayer was characterized by atomic force microscopy (AFM). In Figure 3.4a, bright and 

dark field optical images, no cracks are visible. The AFM image in Figure 3.4b shows the 

film has a flat and uniform surface. The thickness is 25 nm (Figure 3.4c). Raman mapping 

reveals a highly uniform intensity (Figure 3.4d) and peak position (Figure 3.4e), indicating 

a highly uniform flatness and thickness and a highly crystalline surface, respectively. These 

results imply that our hBN is a great candidate as a substrate in various nanodevices. 

 

 

 

Figure 3.5 Vertical hBN tunneling devices based on van der Waals heterostacks 

consisting of few-layer graphene (FLG)–hBN– FLG.  (a) Schematic view of a typical 

tunneling device.  (b) Bright-field optical image of the device. (c) Id−Vd characteristic 

at Vg = 0 V. (d) Fowler-Norheim (F-N) plot of the Id−Vd at a high bias voltage.  
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Dielectric properties. To evaluate the dielectric properties of our hBN, a metal-

insulator-metal vertical device was built based on a van der Waals heterostack. The device 

consists of a hBN on top of a few-layer graphene (FLG) layer, capped with another FLG 

(see the experimental methods section for details). Figure 3.5a is a schematic of our device. 

To measure the breakdown electric field of the hBN, a voltage bias was applied to the two 

(top and bottom) FLG. The thickness of hBN is 4 nm, as measured by AFM. Figure 3.5c 

shows a representative current versus applied electric voltage plot. In the tunneling regime 

of a thick insulator (here 4 nm) and high bias condition (here > 6V), suppose α, ℏ, ϕB, e, m, 

m*and d are the effective contact area, Planck’s constant, barrier height, electron charge, 

free electron mass effective electron mass and barrier width, respectively the I-V 

characteristic follows the Fowler-Norheim tunneling equation,  

Id(Vd) =
αe3

8πℏ𝜙B

m

m∗ (
Vd

𝑑
)

2

exp(−
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3 2⁄
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Fowler-Norheim tunneling mechanism indicates an ideal insulator behavior.126, 127 

Figure 3.5d shows that the plot of ln (Id/Vd
2) versus 1/Vd. A strong linear dependence in the 

F-N plot indicates that the tunneling is dominated by the F-N mechanism. 

The device shows tunneling characteristic with a turn-on voltage of 5.5 V by the 

voltage at which the current reaches 10-11A (Figure 3.5c). This value is comparable to  the 

b hBN crystalline film with thickness of 8-15 nm previously reported by Kim et al.31, 

exfoliated hBN reported by Lee et al. 100 and that of SiO2 
128, suggesting our hBN has good 

insulating characteristics. This high turn-on voltage and ideal field emission tunneling 

suggests that the hBN is an excellent material as a 2D dielectric and tunneling layer. 
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Conclusion 

In summary, large-area and high-quality hBN single crystal flakes were grown via 

a new metal flux, pure iron. Iron was selected to grow hBN as metal flux due to the optimal 

nitrogen solubility. The hBN crystals were up to 3 cm2 in area, which is 300 times larger 

than what has been previously reported. The narrow E2g vibration peak (7.6 cm-1) in Raman 

spectra and the presence of phonon-assist peaks in photoluminescence spectra indicate the 

hBN produced with this flux are high crystal quality. WSe2 deposited on its surface with a 

low nucleation density, further demonstrating that the hBN has a low defect density. A 

graphene/hBN/graphene tunneling device shows tunneling characteristic with a turn-on 

voltage Vth > 5.5 V. In the tunneling regime, the I-V characteristic follows the Fowler-

Norheim tunneling behavior, as shown in the linear character of the F-N plot. This high 

turn on voltage and ideal field emission tunneling suggests that the hBN works perfect as 

a 2D dielectric and tunneling layer. The crystals are ideal materials for high performance 

devices and investigation of thermal, optical and electrical properties of hBN. This study 

not only paves a way for the production of high-quality, large-area hBN but also provides 

a new strategy to advance growth research. 

 

Experimental methods 

hBN single crystal growth.  Fe powder and a hot-pressed boron nitride crucible 

were loaded into an alumina crucible in an alumina tube furnace. The crucible was heated 

at 1550 ℃, then hBN crystals were precipitated on the surface of the Fe flux during the 

cooling process. Before the experiment, the alumina tube was purged three times by 

nitrogen and forming gas (5% hydrogen in balance argon). The hydrogen in the forming 
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gas reacts with any remaining oxygen in the tube to minimize oxygen contaminants in hBN 

crystals. During the experiment, nitrogen and forming gas flowed through the tube 

continuously at a pressure of 820 Torr. The flow rates were 140 and 20 sccm, respectively. 

Fig. 1(b) shows the temperature profile during the crystal growth. The Fe powder was 

heated to, and held at 1550℃ for 24h, enabling the boron and nitrogen to dissolve in the 

Fe metal flux to form a liquid solution. After dwelling at this temperature for 24 hours, the 

crucible was cooled down from 1550℃ to 1450℃ at a rate of 4℃/h. Finally, the system 

was quickly quenched to room temperature. 

Raman spectra. Raman spectra were taken at room temperature using a Horiba 

Labram HR Raman microscope system. A 532 nm laser was used. The laser spot was 

focused by a 100x lens to a spot diameter of ~1 µm. By using an 1800 groove/mm grating, 

we achieved an instrument resolution of ~0.5 cm-1. Lorentz equation was used to normalize 

the result.  

Photoluminescence spectra. The optical properties of our samples were 

characterized by PL spectroscopy. The hBN crystals were held on the cold finger of a 

closed-cycle cryostat at a temperature of 10K. The excitation beam is the fourth harmonic 

of a cw mode-locked Ti-Sa oscillator (194 nm) with a repetition frequency of 82 MHz. The 

beam was focused on the sample with a spot diameter of ~50µm and a power of ~35 µW. 

An achromatic optical system couples the emitted signal to our detection system using 

parabolic mirrors with a special coating for deep UV. The detection system was composed 

of a f = 300 mm Czerny-Turner monochromator, equipped with a 1800 grooves/mm grating 

blazed at 250 nm, and a back-illuminated CCD camera (Andor Newton 920), with a 

quantum efficiency of 50% at 210 nm, operated over integration times of 1 min. 
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Monolayer WSe2 growth and characterization. Monolayer WSe2 domain were 

synthesized through a multi-step gas source CVD process using tungsten hexacarbonyl 

(W(CO)6, Sigma-Aldrich, 99.99% purity and hydrogen selenide (H2Se, Matheson, 99.998% 

purity) in a cold-wall vertical reactor with an inductively heated SiC-coated graphite 

susceptor.56  Ultra-high purity hydrogen was used as the carrier gas through the bubblers 

and reactor to maintain a total flow rate at 450 sccm and a reactor pressure at 700 Torr. 

Single crystals of hBN flakes were exfoliated onto a c-plane (001) double-side polished 

sapphire as a handle substrates. The W(CO)6 powder was contained inside a stainless steel 

bubbler held at 30℃ and 730 Torr. A short duration of nucleation and lateral growth time 

was adapted in the growth of WSe2 in order to separate and clearly distinguish each WSe2 

domains. When the substrate reached 800℃, hydrogen carrier gas started passing through 

the bubbler at a flow rate of 20 sccm which resulted in a W(CO)6 flow rate of 1.8×10-3 

sccm out of the bubbler for 1 minutes. Subsequently, hydrogen carrier gas was switched to 

a lower flow rate of 2 sccm through the bubbler which resulted in a W(CO)6 flow rate of 

1.9×10-4 sccm out of the bubbler for 20 min. The H2Se flow rate and substrate temperature 

were held constantly at 7 sccm and 800℃ respectively during the entire growth. 

The surface morphology of the WSe2 on hBN was measured by field emission 

scanning electron microscopy (FESEM) using a Zeiss Merlin instrument. The Raman and 

PL spectra of WSe2 were acquired in a HORIBA LabRAM HR Evolution high spectral 

resolution analytical Raman microscope at room temperature with a laser wavelength of 

532 nm and a 1800 lines/mm grating.  
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Tunneling devices. The devices were prepared on a SiO2/Si substrate using 

PDMS dry transfer technique129. FLG (<2 nm) and hBN (~ 4 nm) were exfoliated from a 

bulk crystal onto PDMS surface and then transferred on SiO2/Si substrate. The sample 

thicknesses were measured by AFM. The heterostacks were annealed in vacuum for 2h in 

200 ̊ C. Standard electron beam lithography was used to pattern electrodes onto the top and 

bottom FLG layers. Cr/Au (2 nm/50 nm) electrodes were deposited by thermal evaporation. 

Diode bias was applied on FLG induces tunneling of carriers across the hBN layer. 

Electrical measurements of the device were conducted using a parameter analyzer 

(B1500A) in a nitrogen glove box atmosphere. 
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Chapter 4 - Hexagonal boron nitride single crystal growth 

from solution with a temperature gradient  

Introduction 

Hexagonal boron nitride (hBN) has emerged as a useful material in a broad range 

of applications, including heat management of flexible nanoelectronics,102, 130 substrates 

for other 2D materials,131 hole-transport and electron-blocking layer on van der Waals 

heterostack  LED,132 infrared nanophotonics,133, 134 single photon emitter,135 flexible 

neutron detectors,86, 136 deep UV emitters,89 and membranes for  hydrogen isotope 

separations.137 To achieve the highest device performance possible, high-quality, large-

area single crystal hBN is required for these applications. Structural defects such as grain 

boundaries, points defects and dislocations can alter hBN’s electronic and optical 

properties, thus degrading the performance of hBN-containing devices.110 

We have previously demonstrated high quality hBN crystal growth by the metal 

flux solution method with slow cooling. In this method, boron and nitrogen are dissolved 

at high temperature in a molten metal flux, then hBN crystals precipitated as the solution 

is cooled. This crystal growth is performed at atmospheric pressure. High-quality bulk hBN 

crystals were produced by both nickel/chromium95 and iron/chromium fluxes.61 The hBN 

grown from both solvents were high quality, as indicated by the narrow E2g peak (a full 

width at half maximum (FWHM) of 8 cm-1)95 in the Raman spectra and the presence of 

high energy peaks around 5.75 eV in the photoluminescence (PL) spectra.138 In contrast, 

typically, the FWHM of the E2g peak in the Raman spectra taken from chemical vapor 
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deposition grown hBN is about 20-30 cm-1 ,62 and the high energy emission peaks in PL or 

cathodoluminescence spectra are absent.112, 113  

However, the slow cooling solution growth method has its limitations. Most 

significantly, the crystals precipitate over a wide range of temperatures, from the maximum 

temperature (1550 °C in our prior studies) until the flux completely solidifies (1350 °C or 

less). This is a problem because the crystal quality and size tends to decrease as the 

temperature decreases.94 To overcome these problems, in this work, we induced the large 

area bulk hBN single crystal growth by applying a temperature gradient across the molten 

metal flux. The source material dissolves in the high temperature region, and hBN crystals 

precipitate at the lower temperature, so both heat and mass transfer work together, to 

provide a suitable supersaturation for crystal growth. The crystal quality was characterized 

by Raman spectroscopy, photoluminescence spectroscopy and X-ray diffraction. The in-

plane and out-of-plane thermal conductivities were measured by the nanosecond transient 

thermoreflectance technology. Nanometer thick hBN layers were exfoliated from the bulk 

hBN flake and characterized by atomic force microscope and Raman mapping method. 

Results and discussion 
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Figure 4.1 hBN bulk single crystal growth from metal flux using temperature gradient. 

(a) Schematic diagram of the temperature gradient approach used for hBN crystal 

growth. (b) Temperature profile for crystal growth. Heat zone 1 was kept at 1600 ℃ 

during crystal growth process (yellow line), heat zone 2 was cooled from 1600 ℃ to 

1400 ℃ at a cooling rate of 4 ℃/h (red line). (c) Macro image of the entire Fe-Cr ingot 

covered with hBN single crystals. (d) Micro images of hBN flake peeled from the 

ingot. Scale bar is 500 µm. 
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Crystal growth using temperature gradient technology. hBN single crystals 

were grown from a Cr-Fe flux using temperature gradient technology (see the experimental 

section for details). A two heating zones furnace system produced the temperature gradient, 

as shown in Figure 4.1a. Figure 4.1b illustrates the temperature profile for the two heating 

zones. During the hBN crystal precipitation process, the HPBN source dissolved 

continually in the high temperature region (left side) and hBN crystals precipitated in the 

cooler region (right side). There exists a concentration gradient in the boat, both heat and 

mass transfer can work as driving force to provide supersaturation for the crystal growth. 

After Fe-Cr solidification, hBN crystals covered the surface of Fe-Cr ingot. Figure 4.1c 

displays the macro images of hBN on the Cr-Fe ingot. In the area which was far away from 

boron nitride source, there were many hexagonal domains with sizes up to 4-5 mm. In the 

area closed to boron nitride source, because both BN concentration and temperature is 

higher than the far boron nitride source area, the higher supersaturation and nucleation rate 

produced small crystals.94 Large-area hBN flakes were peeled from the ingot (Figure 4.1d).  
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Figure 4.2 Characterization of hBN. (a) Raman spectra of the in-plane modes. (b) 

Raman spectra of shear mode. (c) Photoluminescence spectra of bulk hBN on a log 

scale at 8K ranging from 5 to 6 eV. (d) X-ray diffraction pattern.  

 

Characterization of hBN. Raman spectra, photoluminescence, XRD and XPS 

were used to characterize the hBN flake. Figure 4.2a shows the in-plane mode of the Raman 

spectra of hBN.  The E2g peak appears at 1367.1 cm-1, which originates from the in-plane 

vibration between boron and nitrogen. The full width at half maximum (FWHM) was 7.6 

cm-1, which is similar to previous high-quality bulk hBN grown by slowing cooling Fe-Cr 

flux (7.8 cm-1), indicating that our hBN is highly crystalline in-plane. The low-frequency 

peak was at 52.8 cm-1 with a FWHM of 1.0 cm-1 corresponding to the rigid shearing motion 

between adjacent layers, as shown in Figure 4.2b, which is also comparable to reported 

previously bulk hBN grown,59 indicating our hBN is highly crystalline in the c-direction.  

Figure 4.2c displays the PL spectrum of the hBN flake on a log scale at 8 K. As an 

indirect bandgap semiconductor, during photon emission or absorption process, phonon 
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scattering is necessary   to conserve both energy and momentum.69 Therefore, the presence 

of phonon-assisted emission peaks between 5.7 and 6.0 eV in the spectra are indicative of 

high quality hBN single crystals.70, 139 As show in Figure 4.2c, four phonon replicas (LO, 

TO, LA and TA) between 5.7 and 6.0 eV can be seen clearly. Their presence indicates that 

the crystal are highly crystalline, with a low defect density, which is comparable to bulk 

hBN grown by slowing cooling solution method. Moreover, the broad emission band below 

5.7 eV (at 5.62, 5.56, 5.47 and 5.3 eV) have been identified as stacking defects-related 

emission in bulk hBN.120  The peaks come from phonon-assist inter-K valley scattering, 

which becomes observable because stacking defects in bulk hBN provide a density of final 

electronic states.69  

Figure 4.2 d shows the XRD pattern of the hBN. The peak centered at two theta 

equal to 26.7° corresponds (002) crystal plane.117 The FWHM is 0.14°, which is 

significantly better than CVD films (0.6°)62 or bulk hBN produced by slow cooling (0.6-

0.3°)95. Both the small XRD peak and the presence of the shear mode in the Raman spectra 

indicate that highly crystalline hBN in the c-direction. X-ray photoelectron spectroscopy 

shows that the binding energies for B 1s and N 1s are at 190.3 eV and 397.8 eV, 

respectively, which are comparable with previously reported values.140 
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Figure 4.3 Temperature-dependent thermal conductivity of a hBN flake grown by the 

temperature gradient method. (a) in-plane (kr) and  (b) out-of-plane (kz) of hBN flake 

(blue triangular), along with measurements on a hBN flake grown by slow cooling 

(green circle) and  theoretical results (red line) from the Boltzmann transport equation 

/density functional theory calculations.32 

 

Temperature-dependent thermal conductivity of hBN flake. In hBN, heat is 

mainly conducted by phonons, so thermal resistance is produced by intrinsic isotopic 

disorder, phonon-phonon, and extrinsic crystal defects scattering.141 The in-pane (kr) and 

out-of-plane (kz)  thermal conductivities of  the hBN were measured by nanosecond 

transient thermoreflectance technology.32 Figure 4.3 compares the temperature dependent 

thermal conductivity of kr and kz for a hBN flake produced by the temperature gradient 

method from the current study, with a hBN flake produced by slow cooling and theoretical 

calculation results32. These hBN crystals have the exact same intrinsic isotopic and phonon-

phonon scattering, so the higher kr of the hBN flake produced by the temperature gradient 

in the temperature ranging from 125 K to 200 K (as shown in Figure 4.3a) originates from 

a lower extrinsic defect density than the hBN grown by slow cooling. At room temperature, 

kr was 420 ± 65 W m-1 K-1, among the highest previously reported values for natural hBN.32, 

142, 143 
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We also performed a defect-controlled epitaxial growth of WSe2 on our hBN, the 

nucleation density is determined by hBN point defects. A low nucleation density of WSe2 

on hBN also confirms that the hBN has low defect density.123 

 As shown in Figure 4.3b, the kz of our hBN was significantly higher than the slow 

cooled grown hBN at low temperature ranging between 100K and 200K. The high kz results 

at low temperature, along with Raman and XRD results (the small FWHM of shear mode 

Raman vibration and 2θ peak at XRD) confirms that our hBN has higher crystallinity than 

the hBN grown by slow cooling. At room temperature, the kz was 4.3 ± 0.6 W m-1 K-1, 

which is also in good agreement with the literature values.32 

 

Figure 4.4 Characterization of an exfoliated hBN sheet.  (a) AFM image of an 

exfoliated hBN sheet on a substrate. (b) The height profile of the exfoliated hBN sheet 

along the line in (a). (c) Raman intensity map of the E2g peak. (d) Raman position 

map of the E2g peak. 
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For device fabrication, thin, nanometer thick hBN layers are needed, and these must 

be exfoliated from the bulk hBN flake. To demonstrate the potential of our hBN for nano 

device applications, hBN layers were produced by exfoliating hBN flake mechanically. 

Figure 4.4a shows AFM image of an exfoliated hBN film. Figure 4.4b displays that the 

thickness is 20 nm. Figure 4.4c and d show Raman mapping image of the E2g peak.  As 

shown in c, the Raman intensity was uniform over the entire film at different locations, 

suggesting that the hBN film is continuous with a uniform thickness. The Raman peak 

position was consistent everywhere, indicating that the hBN film is highly crystalline on 

all surface. High-quality of hBN film implies that our hBN is good candidate for device 

applications such as a substrate, tunnel barrier or encapsulating layer. 

 

Conclusion 

Large-area and few-defect hBN single crystals were grown using metal flux method 

with a temperature gradient, which allows both heat and mass transfer to produce driving 

force for crystal growth. Using this method, the maximum crystal domain size was up to 4 

mm. The narrow E2g peak of Raman (a FWHM of 7.6 cm-1) and the presence of the intrinsic 

phonon-assisted emission peaks in the photoluminescence spectra indicate that our hBN is 

highly crystalline. The shear mode of the Raman spectra and the XRD results demonstrate 

that our hBN has few stacking defects. In addition, high in-plane and out-of-plane thermal 

conductivity confirms that our hBN flake has few defects in plane.  High out-plane thermal 

conductivity is another evidence to prove our hBN is highly ordered in c-direction. 

Moreover, highly crystalline hBN film was prepared by mechanical exfoliation. AFM and 
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Raman map characterization show our hBN has uniform and an atomically smooth surface, 

which suggest that the hBN flake has potential for nanodevice application. The work not 

only inspires a new strategy for large single crystal growth but also provides a high-quality 

hBN flake and film for nano device applications.  

 

Experimental methods 

Crystal growth and hBN flake preparation. A horizontal alumina tube furnace 

system was used to grow hBN crystals. Fe-Cr metal flux was used to dissolve boron and 

nitrogen.96 As shown in Figure 4.1c, an alumina boat was filled with 50wt%Fe-50wt%Cr 

powder mixture. A hot-pressed boron nitride source was put in the left side of the boat. The 

boron nitride source located in the left side of in the alumina boat filled. Before heating the 

furnace, the tube was purged three time with nitrogen and forming gas (H2 5% and Ar 95%). 

During heating process, nitrogen and forming gas flowed through the furnace system at a 

flow rate of 5 sclm and 20 sccm, respectively. Two heating zones were applied to produce 

the temperature gradient. The boat was located at in the center line of two heating zones. 

Figure 4.1b showed the temperature profile of two heating zones.  At beginning of 

experiment, both zone 1 and 2 were heated at 1,600 °C for 24h to dissolve boron and 

nitrogen. During crystal growth process, zone 1 was dwelled at 1,600 °C. Then zone 2 was 

cooled down to 1,400°C at a cooling rate of 4 °C /h, thus temperature gradient was formed 

between heating zone 1 and 2. Crystal formed during zone 2 cooling process. Finally, the 

two zones were quenched to room temperature to form Fe-Cr ingot. hBN crystals covered 

Fe-Cr ingot surface. hBN flakes were peeled from Fe-Cr ingot using thermal release tape. 

The tape was heated at 130 °C, then washed by acetone, adhered hBN flake was released. 
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Photoluminescence spectroscopy. The hBN sample were mounted on a cold 

finger of a closed-cycle cryostat at a temperature of 10K. The excitation beam is the fourth 

harmonic of a cw mode-locked Ti-Sa oscillator (194 nm) with a repetition frequency of 82 

MHz. The beam is focused on the sample with a spot diameter of ~50µm and a power of 

~35µW. An achromatic optical system couples the emitted signal to our detection system 

using parabolic mirrors with a special coating for deep UV. The detection system is 

composed of a f = 300mm Czerny-Turner monochromator, equipped with a 1800 

grooves/mm grating blazed at 250 nm, and a back-illuminated CCD camera (Andor 

Newton 920), with a quantum efficiency of 50% at 210 nm, operated over integration times 

of 1 min. 

Raman spectra. Raman spectroscopy was performed at room temperature using a 

Horiba Labram HR Raman microscope system. A 532 nm laser power was used. The laser 

spot was focused by a 100x lens with a spot diameter of ~1 µm. Using an 1800 groove/mm 

grating, a resolution of ~0.5 cm-1 was achieved. 

X-ray diffraction.  hBN flakes were stacked and covered the entire Si/SiO2 

substrate. A Cu K-alpha source was used. 

Thermal conductivity measurement. A transient thermoreflectance technique 

was applied to measure both the out-of-plane and in-plane thermal conductivity of hBN32 . 

Briefly, a 50 nm Au film was deposited on hBN flake surface as transducer, with a 10 nm 

Ti interlayer for good adhesion. A 10 ns, 355 nm pulsed pump laser heated the Au film to 

produce a temperature response. A continuous 32 nm laser was used to monitor the 

temperature response via the change of Au reflectivity. A cryostat was used to control the 
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measuring temperature from 100 K to 300 K. An analytical photothermal pulses-induced 

thermal transport model was used to analyze the measured transients.32 
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Chapter 5 - Monoisotopic boron- hexagonal boron nitride 

crystals： growth and optical characterization 

Introduction 

Hexagonal boron nitride (hBN) has received a lot of attention recently because of 

its excellent properties such as its chemical inertness, wide energy bandgap (5.9 eV), 

atomically smooth surface that is free of dangling bonds,144 and high in-plane thermal 

conductivity.32 These properties make hBN appealing for such applications as deep UV 

emitter and detectors,49 substrates for other two-dimensional materials,54 quantum 

emitters,145 heat management layers in nano devices,57  dielectrics,146 neutron detectors,147  

and so on. For these applications, hBN single crystals are needed. 

Beyond natural hBN, monoisotopic boron hBN single crystals possesses more 

novel properties. Most current research use hBN with the natural distribution of boron 

isotopes: 11B (80.1%) and 10B (19.9%). Due to the different neutron spin number and 

atomic mass between 10B and 11B isotopes, pure boron and boron compounds with a single 

isotope (monoisotopic) possess different phonon effects including electron-photon 

interaction, isotopic disorders and average isotopic masses.138 The different properties of 

10B and 11B isotopes cause monoisotopic boron to have different applications. For example, 

10B-enriched boron nanoparticles can enhance the contrast of magnetic resonance imaging 

of brain tumor.148In addition,10B has a large capture cross-section of thermal neutrons 

(3840 barn at 0.025meV). In contrast, 11B is nearly transparent to neutrons.  Thus, boron 
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compounds enriched in 10B are better suited for neutron detectors than those with the 

natural distribution of boron. 

In the case of hBN,  changing the relative concentrations of the 10B and 11B isotopes 

affect its properties, including the optical excitation spectra and energy gaps.63 

Monoisotopic boron hBN single crystals are of interest for the investigating the boron 

isotopic effects. Monoisotopic hBN provides the novel properties and applications 

including heat management, nanophotonics and thermal neutron detecting. For example, 

because of its anisotropic thermal conductivity (high in-plane and low out-of-plane), 

chemical stability and mechanical flexibility at high operating temperature, monoisotopic 

hBN opened up an opportunity for next generation thermal management materials, such as 

cooling bendable nanoscale microelectronics or thermoelectrics. Compared to natural hBN, 

monoisotopic hBN possesses a high thermal conductivity because of reduced isotopic 

phonons scattering. Moreover, hBN is a low-loss phonon polariton material. First-

principles calculations predict the polariton lifetimes of monoisotopic hBN can be a factor 

of ten times longer than hBN with the natural distribution of boron isotopes because of less 

phonon scattering, so it is a promising materials for high-efficiency, polaritonic devices.149 

A threefold increase in the bulk phonon lifetimes and approximately equal increase in 

propagation length of phonon polariton over the already low-loss natural hBN crystals were 

experimentally demonstrated.149 Furthermore, neuron detectors fabricated with h10BN 

epilayers have achieved an efficiency of 51.4%, which is the highest among all 

semiconductor neutron detectors.86 

Although monoisotopic boron hBN single crystals are promising in more potential 

applications, its growth has not been well studied. Our group has previously reported the 
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single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride by using 

Ni-Cr flux crystal growth technique. Monoisotopic boron powders, i.e.,10B and 11B, and 

nitrogen were used as the precursors. Both h10BN and h11BN single crystals were produced 

from Ni-Cr flux solvent at 850 torr. Their Raman peak width were narrow (~ 3 cm-1) 

indicating their excellent structural quality. There was a clear spectral shift in both the shear 

and intralayer Raman modes in monoisotopic hBN, with the specific boron isotope.  

Here we investigated the solvent effect of Fe-Cr and pure Fe on monoisotopic hBN 

crystal quality. For metal flux techniques, impurities can degrade the hBN quality. Potential 

sources of impurities in the hBN are the metals comprising the flux (i.e., Fe, Ni, and Cr), 

as well as impurities in the metal fluxes (carbon and oxygen for example).  These can 

incorporate as precipitates (inclusions), substitutionally on lattices sites, or intercalated 

between the layers of hBN.94, 150 Iron is a potential alternative to nickel. It is much less 

expensive and commercially available in high purity. Our prior study demonstrated that 

Fe-Cr metal flux can grow hBN with the natural boron distribution from a hot pressed 

boron nitride source.96 Some prior studies also suggest pure iron is a potential metal flux 

to grow hBN: the presence of boron in solid iron can increase nitrogen solubility between 

950 and 1150°C.151 

In this study, photoluminescence (PL) and Raman spectra were used to evaluate the 

quality and purity of the monoisotopic hBN. PL can characterize the optical properties and 

electronic property of a semiconductor, including the energy bandgap in intrinsic materials 

and additional states that arise in doped or defected materials. In a PL process, a system is 

excited by a photon to create an electron-hole pair. The free electron and hole undergo 

relaxation then via radiative recombination, the system returns from an excited state to the 
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ground state by emitting a photon. The presence of defects and impurities introduces new 

energy levels within the forbidden gap. The relaxation favors low energy states, so low 

concentration of impurity can cause a significant PL signal.69  

In the present study, we examined whether iron−chromium and pure iron solvent 

can also produce h10BN and h11BN crystals with comparable quality as the Ni−Cr solvent. 

The crystal quality was characterized by Raman and photoluminescence spectra. The small 

FWHM values of shear mode and intralayer mode in Raman spectra demonstrate the 

crystals are comparable to the h10BN and h11BN grown from Ni-Cr flux. Phonon-assisted 

transitions in photoluminescence (PL) spectra caused by longitudinal optical (LO) and 

transverse optical (TO), longitudinal acoustic (LA), and transverse acoustic (TA) phonons 

confirm that the crystals are the high quality, with low defect densities and impurity 

concentrations. These h10BN and h11BN crystal can be used for researching the isotopic 

effects on the electronic and optical properties.  
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Results and discussion  

 

Figure 5.1 Macro and micro images of h10BN single crystal. (a) h10BN single crystal 

on the top surface of the Fe-Cr ingot. The grid size 5 mm × 5 mm. (b) an enlarged 

region of the h10BN single crystal grown from Fe-Cr on the top surface of ingot. (c) 

micro images of h10BN single crystal grown from Fe-Cr. (d) micro images of h10BN 

single crystal grown from Fe. 

 

After the solution was quenched from 1450 ℃ to room temperature, the metal ingot 

surface was covered by hBN crystals. Figure 5.1a is a macro image, showing an example 

of h10BN crystals on the Fe-Cr ingot. Some individual triangular and imperfect polygonal 

domains formed on the top surface of the Fe-Cr ingot, which is the typical morphology of 

hBN grown from a metal flux.59, 95, 96 There were some opaque areas on the surface of ingot 

(Figure 5.1b), which comes from small size h10BN crystal due to the high supersaturation 

during nucleation process. Actually, the entire surface was not fully covered by h10BN 

crystal: bare metal was exposed in some regions. The domain size was as large as 1mm 

across, indicating low nucleation density in this area during the crystal growth process. To 

better understand the surface morphology, the ingot was examined using optical 
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microscopy. The crystals were highly transparent and colorless. The Fe-Cr alloy under the 

crystal can be seen through the transparent h10BN crystal layer.  Micro images show that 

some domains overlap each other, like fish scale (Figure 5.1c). Considering that nitrogen 

is the only volatile element in the system, this is presumably due to the deficiency of 

nitrogen during h10BN crystal precipitation process.60 The deficiency of nitrogen in some 

areas can change the domain shape on the ingot. The subgrains were relatively flat, with 

equilateral, non-equilateral, truncate triangle or trapezoidal shape. For h10BN grown from 

Fe flux, the main morphology of subgrains were trapezoid (Figure 5.1d). 
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Figure 5.2 (a) Raman spectra of bulk hBN flake grown from Fe-Cr. (b) shear mode 

and (c) intralayer mode.  
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Figure 5.2 shows Raman spectra of h10BN and h11BN crystals grown from Fe and 

Fe-Cr flux. Both h10BN and h11BN exhibit a high frequency peak and a low frequency peak. 

The mode at high frequency originates from the intralayer E2g phonon vibration.152 In 

contrast, the mode at low frequency is attributed to a vibrational interlayer shear mode, 

specific to the relative motion of adjacent atomic layers. The intensity of intralayer mode 

is much higher than shear mode, which corresponds the interaction difference. The in-plane 

interactions are strong chemical bond. However, the interlayer interaction is weak van der 

Waals force. No other peak was detected ranging from 10 to 1800 cm-1.  

The peaks of intralayer mode in Fe grown and Fe-Cr grown h10BN are at 1394.4 

cm −1 and 1394.1 cm-1, respectively. The full width at half-maximum (FWHM) value for 

Fe grown and Fe-Cr grown h10BN are 2.9 and 3.2 cm-1. Both are comparable with our Ni-

Cr grown h10BN (3.1cm-1),59 which suggests the quality of Fe and Fe-Cr grown 

monoisotopic hBN is similar to our   Ni-Cr grown h10B : these monoisotopic hBN are 

highly crystalline. The peaks of both Fe grown and Fe-Cr grown h11BN are at 1357.7 cm 

−1 with a FWHM of 2.8 cm −1 and 3.5 cm −1, respectively. These are also comparable with 

Ni-Cr grown h11BN59. The E2g phonon energy of h10BN is higher than h11BN due to the 

boron atomic mass difference of 10B and 11B. In a harmonic oscillator, the vibration 

frequency of a binary atoms lattice is proportional to√
1

𝑚B
+

1

𝑚N
, where 𝑚B and 𝑚N are 

atom mass of boron and nitrogen.63 Due to the smaller mass of 10B, h10BN has a larger 

phonon energy than h11BN. The FWHM value of both h10BN and h11BN is much smaller 

than natural abundant hBN (7.8 cm−1), which attributed to the isotope disorder effect. 

Isotopic mass fluctuation interrupts the translational symmetry of isotopically pure atoms 

and causes elastic scattering of phonons. Therefore, monoisotopic hBN without isotopic 
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mass fluctuation has less elastic scattering of phonons. Figure 5.2c displays the low-

frequency spectra in shear mode. The low frequency peak of h10BN grown in Fe and Fe-

Cr with appears at 53.7 (FWHM of 0.9 cm-1) and 53.6 (FWHM of 1.1 cm-1) cm-1, 

respectively. The peak positions of h11BN grown from Fe and Fe-Cr are at 52.2 and 52.4 

cm-1, with a FWHM 0.9 cm-1, respectively. This indicates the crystals have few stacking 

defects.  The FWHM values  of both h11BN and h10BN grown from Fe and Fe-Cr flux are 

slightly smaller than monoisotopic hBN grown from Ni-Cr flux (1.3 cm-1),59 suggesting  

both h11BN and h10BN grown from Fe and Fe-Cr flux may have less stacking defects than 

h11BN and h10BN grown  from Ni-Cr. Similar to intralayer mode, for h10BN, a blue shift 

was observed to h11BN. The phonon energy difference is also attributed to mass difference 

of 10B and 11B. 
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Figure 5.3 (a) Photoluminescence spectra of bulk h10BN on a log scale at 8K. Left 

inset: zoom of the PL on a log scale. (b) PL spectra ranging from 5.0 eV to 6.0 eV. 

(c) PL spectra in the deep ultraviolet (ranging from 5.7 eV to 5.95 eV).  
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As Figure 5.3a illustrates, there were no emission peaks around 4 eV, indicating 

low concentration of carbon, and oxygen impurities and other points defects.153, 154 The 

donor-acceptor pair line originates from boron and nitrogen divacancy centered on 5.56 

and 5.3 eV.70 

As an indirect semiconductor, the lowest energy of conduction band is located at 

the M point of the Brillouin zone, whereas the maximum energy of valance band sits at the 

K point.  Due to the energy and momentum conservation, radiative recombination must be 

assisted by the emission of phonons.69, 70, 120 Consequently, the PL spectra of hBN is 

composed of many phonon replica lines, which is attributed to the different paths of phonon 

emission. Figure 5.3b shows the PL spectra of monoisotopic hBN ranging from 5.0 eV to 

6.0 eV. The lines around 5.62, 5.56, 5.47, 5.32 and 5.27 eV are named as D lines, which 

come from inter-K valley scattering assisted by phonons at the K point of the Brillouin 

zone. The stacking defects of bulk crystals provide density of states and make the inter-K 

valley scattering observable.70 Especially, the peak at about 5.46 eV corresponds to the 

longitudinal optical (LO)/ transverse optical (TO) virtual excitonic state plus 2 TO phonons. 

The peaks at about 5.76 and 5.79 eV are caused by longitudinal optical (LO) and transverse 

optical (TO), respectively. The peak intensities of TO and LO at 5.75 eV becomes 

comparable to the peak LO/TO plus 2TO at 5.5 eV, which is a dramatic improvement over 

some reported hBN:  the peaks of TO and LO are not visible due to the lower crystallinity 

than our hBN112, 155. The PL spectrum is globally blue shifted slightly in h11BN, compared 

to h10BN. Figure 5.3c demonstrates PL spectra of bulk h10BN in the deep ultraviolet region. 

Phonon-assisted transition peaks are caused by longitudinal optical (LO, at 5.76 eV) and 

transverse optical (TO, at 5.79 eV), longitudinal acoustic (LA, at 5.86 eV) and transverse 
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acoustic (TA, at 5.89 eV) phonons. The presence of those sharp and intense peaks indicate 

the crystal have better crystallinity and less impurities and defects than many previous 

studies in which these peaks were not observed.112, 139, 155 

 

Conclusion 

In summary, we successfully synthesized monoisotopic boron hBN bulk single 

crystals from both Fe and Fe-Cr flux via metal flux method. Raman shear mode shows the 

crystals are highly ordered in the c direction, whereas the small FWHM of intralayer mode 

indicates highly crystalline in plane. The peak intensities of TO and LO at 5.75 eV in PL 

spectra are comparable to the peak LO/TO plus 2TO at 5.5 eV, demonstrating the high 

quality of these bulk hBN crystal. The presence of intense transition peaks assisted by LO, 

TO, LA and TA phonons is another strong evidence of the high quality of the crystals. 

Based on our results, both Fe and Fe-Cr fluxes can be used to grow high quality of bulk 

hBN, which reduces the cost significantly. This study opens a new way to produce high 

quality of monoisotopic boron hBN, which is good candidate material for fundamental 

isotope effect of hBN, the novel 2D material. Our hBN also bring great potential 

applications such as neutron detector, heat management materials in nano flexible devices, 

phonon polariton-based nanophotonic devices. 
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Experimental methods 

 

Figure 5.4 Schematic diagram illustrating the monoisotopic boron hBN crystal growth 

process: (a) alumina tube furnace with a single heating zone, (b) temperature versus 

time profile, (c) boron and nitrogen were dissolved in metal flux at high 

temperature(top), then hBN single crystal precipitated on the metal flux surface 

during cooling process (bottom). 

 

Bulk single crystal growth. Monoisotopic boron hBN (h10BN and h11BN) were 

synthesized in the tube furnace and the crystals were grown by the metal flux method. 

Figure 5.4 illustrates a schematic of the process. For pure Fe grown hBN crystal, 2g 10B 

(or 11B) powders and 60g Fe were used as starting materials. For Fe-Cr metal flux, high-

purity 30g iron shot, 30g chromium granules, and 2g 10B or 11B powders were used. The 

starting materials were loaded into an alumina crucible, then placed into an alumina tube 

furnace with single horizontal heating zone. Before heating the furnace, the alumina tube 

was purged three times by forming gases (95% Ar and H2 5%) and N2, then was filled to a 

pressure of 820 torr. The flow rate of N2 and forming gas were 700 and 30 sccm during the 
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experimental process, respectively. The alumina crucible was heated to 1550 ℃ and held 

for 24h. This allowed the metals to melt and the solution to saturate with boron and nitrogen. 

Then the crucible was cooled to 1450 ℃ at a rate of 4 ℃/h. hBN crystals precipitated during 

the cooling process. Finally, the furnace was quenched to room temperature at 200 ℃ /h, 

so the metal flux was solidified to form a metal ingot. The h10BN (or h11BN) crystal covered 

the ingot surface.  

 

Raman spectra. To do Raman and photoluminescence characterizations, the hBN 

crystals were peeled from metal flux surface using thermal release tape. Raman spectra 

were taken at room temperature using a Horiba Labram HR Raman microscope system. A 

532 nm laser was used. The laser spot was focused by a 100x lens to a spot diameter of ~1 

µm. By using an 1800 groove/mm grating, we achieved an instrument resolution of ~0.5 

cm-1. The Lorentz equation was used to normalize the result.  

 

Photoluminescence spectra The opto-electronic properties of the h10BN and 

h11BN single crystals were characterized by PL spectroscopy. The latter were mounted on 

the cold finger of a closed-cycle cryostat at a temperature of 10K. The excitation beam is 

the fourth harmonic of a cw mode-locked Ti-Sa oscillator (194 nm) with a repetition 

frequency of 82 MHz. The beam was focused on the sample with a spot diameter of ~50µm 

and a power of ~35 µW. An achromatic optical system couples the emitted signal to the 

detection system using parabolic mirrors with a special coating for deep UV. The detection 

system was composed of a f = 300 mm Czerny-Turner monochromator, equipped with a 

1800 grooves/mm grating blazed at 250 nm, and a back-illuminated CCD camera (Andor 
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Newton 920), with a quantum efficiency of 50% at 210 nm, operated over integration times 

of 1 min. 
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Chapter 6 - Defects engineering of monoisotopic hexagonal 

boron nitride single crystals via neutron irradiation 

Introduction 

Two-dimensional (2D) materials are of interest for their fundamental physics and 

potential for novel devices.156, 157 Next to graphene, hBN is the most employed 2D 

material, as it enables a broad range of nanoelectronic, nanophotonic and optoelectronic 

devices, due to its excellent properties, including atomic flatness, and absence of charge 

traps and dangling bonds. The properties of hBN can be further enhanced when it contains 

only one boron isotope, either exclusively 10B or 11B, instead of the natural mixture of 20% 

10B and 80% 11B. Monoisotopic hBN single crystals have reduced phonon scattering from 

isotopic disorder, which leads to a two times higher thermal conductivity32 and three times 

longer phonon-polariton lifetimes.149 However, hBN is invariably an insulator with fixed 

optical and electrical properties, which limits its application in electronic and 

optoelectronic devices.  

Defect engineering of hBN single crystals offers the possibility to control the hBN’s 

properties. By introducing point defects and impurities into highly crystalline hBN single 

crystals, new energy levels and charge scattering centers may be created, to manipulate the 

electronic and optical properties of hBN. For example, hBN is a promising matrix for bright 

and photostable single photon emitters. Potentially, these can be produced with a 

homogeneous spectral distribution by controlling the types and spatial distribution of 

defects.158 

This neutron irradiation study of hBN was undertaken in an attempt to alter its 

properties via a far from thermodynamic equilibrium process.  Neutron transmutation 
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doping (NTD) has the potential to produce boron vacancies and lithium doping in a way 

that could not be produced during crystal growth or by diffusion techniques.  NTD has 

previously been used to produce dopants homogeneously in a controlled way in some 3D 

materials such as GaAs, Ge159, Si160, and Ge-Ga alloy.161 

Boron isotope thermal neutron capture cross-sections are 

σ(10B) = 3,890 barns and σ(11B) = 0.005 barns. 

The nuclear reactions the boron isotopes undergo are: 

10B + n → [11B]* → 4He(1.47 MeV) + 7Li (0.84 MeV) + γ(0.48 MeV)  94% 

10B + n → [11B]* → 4He(1.78 MeV) + 7Li (1.02 MeV)   6% 

Natural nitrogen is mostly isotopes 14N (99.6%) with only a trace of 15N (0.4%).  

The 14N isotope has a thermal neutron capture cross section of σ(14N) = 1.84 barns, and the 

nuclear reaction it undergoes is 

14N + n → 14C (40 keV) + 1H (580 keV) 

Given the high energy imparted to these elementary particles due to the nuclear 

reaction, there is a high probability that the lithium ion does not reside on a substitutional 

position.  Thus, boron vacancies and lithium interstitials are expected to be present in the 

irradiated hBN.  Other crystal lattice damage is expected as well, as the energetic particles 

displace additional boron and nitrogen atoms.  Thus, neutron irradiation is dominated by 

7Li doping and boron vacancies in h10BN, and is a mixture of 7Li doping, boron vacancies, 

and 14C doping in h11BN because of relatively small neutron capture cross-sections. We 

expect that the NTD would introduce new energy states within hBN's energy band gap 

controllably.  
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Prior hBN neutron irradiation studies have employed powder and pyrolytic boron 

nitride (pBN, hBN with a fine grain, partially ordered structure). Kabyshev et al.162 

identified  boron vacancies on neutron-irradiated pyrolytic boron nitride using electron 

paramagnetic resonance spectroscopy (EPR). However, Cataldo et al.163 suggested that 

neutron irradiation converted hBN powder into cubic boron nitride based on results of 

Raman and Fourier-transform infrared spectroscopy. They also identified two 

paramagnetic nitrogen vacancies, based on one-boron centers and three-boron center using 

EPR.   Toledo et al.164 also found two paramagnetic defects in electron paramagnetic 

spectra and attributed them to nitrogen vacancies. 

In the present study, neutron transmutation doping on monoisotopic boron hBN 

single crystals was undertaken in an attempt to separate the effects of radiation due to 10B 

and 11B isotopes. We report on the neutron transmutation doping of monoisotopic boron 

hBN single crystals (h10BN (99.22 at. % 10B) and h11BN (99.41 at. % 11B), and pyrolytic 

BN with the natural distribution of boron isotopes. Subsequently, the irradiated hBN were 

characterized by Raman, photoluminescence and electron paramagnetic resonance 

spectroscopy were used to characterize the defects. This not only allowed us to investigate 

the defects induced by neutron irradiation on single crystals separately but also to study the 

isotopic effects on defect engineering.   
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Result and discussion 

 

 

Figure 6.1. Macro images of hBN single crystal flakes and pyrolytic boron nitride 

(pBN). (a) As-grown h10BN flakes. The grid size is 1 mm. (b) h10BN flakes after low-

dose irradiation. The neutron flux of low-dose irradiation was 2.6*1016 /cm2. (c) 

h11BN flakes after low-dose irradiation. (d) Non-irradiated and low-dose irradiated 

pBN. (e) h10BN and h11BN flakes after high-dose irradiation. The dark red crystals 

are h10BN and the slightly pink crystals are h11BN. The neutron flux of high-dose 

irradiation was 2.6*1017 /cm2. (f) Non-irradiated and high irradiated pBN. 

 

Figure 6.1 shows macro images of hBN single crystal flakes and pBN before and 

after irradiation. The hBN single crystal flakes were colorless and transparent before 

irradiation (Figure 6.1a). The color of h10BN changed to reddish-brown after the low-dose 

irradiation of 2.6*1016 neutron/cm2 (Figure 6.1b).  After high-dose irradiation (2.6*1017 
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neutron/cm2), the reddish-brown color became more intense. This indicates that neutron 

irradiation form color center in h10BN. After irradiation, the h11BN was only slightly brown. 

The color of pBN change from white to brown to black after low and high irradiation, 

respectively.  

 

 

 

Figure 6.2. (a) Raman spectra of h10BN single crystal before and after irradiation. (b) 

Raman spectra of h11BN single crystal before and after irradiation. (c) Raman spectra 

of pBN before and after irradiation. 
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 Table 6.1 Intralayer Raman mode of hBN single crystal and pBN. 

FWHM of intralayer mode (cm-1) 

 Non-irradiated 2.6*1016 

(neutron/cm2) 

2.6*1017 

(neutron/cm2) 

h10BN 2.96 3.34 4.82 

h11BN 3.06 3.02 4.2 

pBN 17.5 19.1 22.4 

Peak position (cm-1) 

h10BN 1394.5 1394.0 1395.0 

h11BN 1358.2 1358.0 1358.2 

pBN 1367.7 1367.2 1367.5 

 

Figure 6.2 shows the Raman spectra of the hBN single crystals and pBN. For h10BN, 

the Raman spectra changed dramatically, with new peaks appearing at 400 cm-1 and 1350 

cm-1. In contrast, these new peaks were barely evident in the h11BN. The Raman spectra of 

pBN more closely resembled that of h10BN. High-quality hBN single crystals exhibits two 

signature peaks: interlayer and intralayer mode. The interlayer mode is at low frequency 

(~53 cm-1), which comes from rigid shear vibration between adjacent layers.118 The 

original peaks of the intralayer vibrational mode in h10BN, pBN and h11BN were at 1394.5, 

1358.2 and 1367.7 cm-1 (Table 6.1), respectively, due to the atomic mass difference 

between 10B and 11B. Compared to pBN, the Raman peak widths for h10BN and h11BN are 

narrower, because they have less isotopic disorder-induced Raman scattering.63 All of 

FWHM increased after neutron irradiation (Table 6.2), which indicates neutron introduced 

more crystal defects. 
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Table 6.2 Interlayer Raman mode of hBN single crystal. 

FWHM of interlayer mode (cm-1) 

 Non-

irradiated 

2.6*1016 

(neutron/cm2) 

2.6*1017 

(neutron/cm2) 

h10BN 1.0 1.1 1.9 

h11BN 1.1 1.0 1.05 

Peak position (cm-1) 

h10BN 53.8 53 52.5 

h11BN 52.6 52.0 52.3 

 

The interlayer mode peak width of the h10BN increased from 1.0 to 1.9 cm-1after 

neutron irradiation, indicating neutron bombardment produced more defects. However, the 

peak position and the FWHM in the h11BN did not change significantly, probably because 

the 11B capture cross section is small. pBN has no shear mode peak due to its low 

crystallinity. 

 

Table 6.3 Two new peaks at Raman spectra of h10BN single crystal and pBN. 

FWHM (cm-1) 

 Peak 1 of 1st 

irradiated 

Peak 1 of 2nd 

irradiated 

Peak 2 of 1st 

irradiated 

Peak 2 of 2nd 

irradiated 

h10BN 247 255 34.5 35 

pBN 190 246 78 77 

Peak position (cm-1) 

h10BN 447 451 1334 1335 

pBN 450 451 1296 1295 

 

Two broad new peaks appeared in the h10BN and pBN after neutron irradiation 

(Table 6.3). Cataldo et al. also reported that the existence of a peak at 1335 cm-1 in neutron 

irradiation hBN powder which he cited as evidence for the formation of cubic boron nitride 

(cBN). However, cBN has two characteristic peaks: TO peak at 1048 cm-1 and LO peak at 

1302 cm-1.165 Our results had no TO peak of cBN, thus we conclude that the formation of 
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cBN is unlikely. Considering Li+ forms by neutron capture reaction, these two new peaks 

may come from interstitial Li+. 

The new peak may arise from the point defects produced by neutron irradiation. A 

point defect can induce a localized phonon mode at or in the vicinity of the point defect. 

The maximum phonon vibrational intensity is located at, and decays exponentially with 

distance from the point defect. The localized phonon mode can produce Raman satellite.166, 

167 The peak of h10BN was blue shifted compared to pBN.  Therefore, the point defect must 

be related to boron atom. 10B atom mass is smaller than the average for natural boron, 

which induces a blue shift.  

The second Raman peak immerging from the irradiation of both h10BN and pBN 

was at 451 cm-1 with comparable FWHM. It must not be related to boron atoms, because 

both 10B and natural boron atoms have the same peak position, i.e., it is independent of the 

boron atomic mass. Both h10BN and pBN have the same peak, suggesting neutron 

irradiation introduce homogenous points defects. 
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Figure 6.3 Photoluminescence spectra (PL) of hBN single crystal and pBN recorded 

at 8 K for energies ranging between 5 and 6 eV. (a) PL spectra of h10BN crystals on 

a linear scale. (b) PL spectra of h10BN crystals on a semi-logarithmic scale. (c) PL 

spectra of h11BN crystals on a linear scale. (d) PL spectra of h11BN crystals on a semi-

logarithmic scale. (e) PL spectra of pBN crystals on a linear scale. (f) PL spectra of 

pBN crystals on a semi-logarithmic scale.  

 

Figure 6.3 displays the photoluminescence spectra (PL) of the monoisotopic hBN 

single crystals and the pBN. As an indirect semiconductor, radiative recombination induces 

phonon scattering to fulfill both energy and momentum conservation.69 Therefore, instead 

of strong luminescence features, the presence of phonon-assistant peaks ranging between 
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5.7 and 6 eV indicates highly crystalline hBN.89 As demonstrated by the black lines in a-d, 

both non-irradiated h10BN and h11BN have these phonon-assistant peaks, demonstrating 

the high-quality of the h10BN and h11BN single crystals. In contrast, pBN does not have 

these peaks (Figure 6.3e and f) because it is not single crystal. The peaks ranging between 

5.5-5.7 eV are due to transverse optical phonons assist intervalley scattering, which 

becomes observable because stacking fault defects provide a density of final electronic 

states.70  

After neutron irradiation, the PL intensity for all the samples was reduced, 

indicating neutron irradiation can produce defect in h10BN, h11BN and pBN. After the low-

dose irradiation (2.6*1016 neutron/cm2), the phonon-assistant peaks in h10BN above 5.7 eV 

were eliminated.  However, h11BN maintains these peaks even after the high-dose 

irradiation (2.6*1017 neutron/cm2), because h11BN has smaller capture cross section than 

h10BN. For pBN, the broad defect-related PL peak between 5.1 and 5.5 eV was diminished 

but was still visible after low-dose irradiation, but disappeared completely after the high-

dose irradiation. 
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Figure 6.4 Electron paramagnetic resonance (EPR) spectra of neutron-irradiated 

h10BN and pBN.  (a) EPR of neutron-irradiated h10BN flake. Vertical arrows indicate 

the widely split pair of lines originated from the S=1 defect. (b) The five lines 

spectrum of neutron-irradiated h10BN flake centered about 3400 G. (c) EPR of the 

neutron-irradiated pBN. Vertical arrows indicate the S=1 defect. (d) the five lines 

spectrum of neutron-irradiated pBN centered about 3400 G. Both h10BN and pBN 

were irradiated under 2.6 x 1017 neutrons/cm2. 

 

Figure 6.4 shows the EPR spectra of neutron-irradiated h10BN and pBN. The 

spectra consist of two groups: the five lines spectrum centered about 3400 G (Figure 6.4b 

for h10BN and 4d for pBN) and the widely split pair of lines that show a strong angular 

anisotropy (vertical arrows in Figure 6.4a and 4c). They likely originated from two defect 

centers. 
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The five lines spectrum centered about 3400 G has been attributed by many 

researchers to either an one boron center (OBC) or three boron center (TBC) defects in 

natural boron powders.163, 164, 168, 169 They claimed that an unpaired electron localized on 

one or three 11B atom causes the five lines. However, Kabyshev et al.162 attributes this to a 

two-nitrogen center (TNC) defect. The h10BN single crystal had the same spectrum, which 

indicates that the defect is not related to 11B atom.  Considering the large capture cross 

section of 10B, isolated boron vacancies are the most likely dominant defect in the neutron-

irradiated h10BN samples. A boron-vacancy created by the neutron irradiation can trap an 

unpaired electron with wavefunction delocalized on two neighboring 14N atoms.  

The second group of EPR lines (labelled by vertical arrows in Figure 6.4a and 4c) 

consists of the widely split pair of lines. Kabyshev et al.162 assigned these same defect 

(two-nitrogen center) with the five lines spectrum centered about 3400 G. However, our 

Raman results show that there are two types of defects in both the neutron-irradiated h10BN 

and pBN.   Also, the lines show a strong angular anisotropy (Figure 6.4a and 4c) while the 

peaks that make up the 5-line spectrum centered about 3400G (TNC defect) exhibit a weak 

angular anisotropy (Figure 6.4b and 4d). From this we believe that they originate from 

different defects. 
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Figure 6.5 Temperature-dependent thermal conductivity of neutron-irradiated hBN 

flake.  (a) in-plane (kr) and  (b) out-of-plane (kz) of hBN, along with measurements 

on non-irradiated hBN flakes (labeled by 10B and 11B) 32. 

 

Figure 6.5 shows temperature-dependent thermal conductivity of neutron-irradiated 

hBN flake. For neutron-irradiated h10BN (green dots in Figure 6.5), both the in-plane and 

out-of-plane thermal conductivity were significantly lower than the non-irradiated hBN at 

low temperature ranging between 100K and 300K. This indicates that the neutron 

irradiation produced many defects, which decreased the thermal conductivity by increasing 

phonon-phonon scattering. In contrast, for neutron-irradiated h11BN (blue dots in Figure 

6.5), both the in-plane and out-of-plane thermal conductivity were only slightly lower than 

the non-irradiated hBN at low temperature ranging between 100K and 300K, which shows 

the neutron irradiation only damaged the crystal lattice slightly. 
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Figure 6.6 Raman spectra of h10BN single crystal and pBN annealed at 1,000 ℃. 

 

Table 6.4 Raman spectra FWHM of the E2g peaks for h10BN single crystal and pBN 

before and after irradiation, then after annealing at 1,000 ℃. 

 

 
Non-

irradiated 

2nd 

irradiation 

After 

annealing 

h10BN (cm-1) 3.06 4.2 3.6 

pBN (cm-1) 17.0 22.4 19.3 

 

Figure 6.6 shows Raman spectra of h10BN single crystal and pBN after annealing 

at 1,000 °C.  The two peaks present after irradiation disappeared upon annealing, which is 
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another evidence that the two peaks seen in the Raman spectra arose from point defects. 

The intralayer mode peak of h10BN single crystal and pBN narrowed from 4.2, 22.3 cm-1 

to 3.6, 19.3 cm-1, respectively (Table 6.4). This indicates the crystallinity recovered after 

annealing. 

 

 

 

Figure 6.7. PL spectra of annealed h10BN single crystal and pBN. 

 

Figure 6.7 shows the PL spectra of the irradiated h10BN single crystal and pBN 

after annealing at 1,000 ℃.  After annealing, the intervalley scattering peaks of h10BN 

centered at 5.5 eV appear again, indicating the crystallinity was approved. However, the 

phonon-assistant peak ranging between 5.7 and 6 eV were not visible, suggesting the h10BN 

crystal quality is not as good as non-irradiated h10BN. For pBN, the intervalley scattering 

peaks were also observable after annealing.  

Conclusion 

In this study, monoisotopic boron hBN single crystals (h10BN (99.22 at. %) and 

h11BN (99.41 at. %), and pyrolytic BN were irradiated under neutron flux. Raman spectra 
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show that two different types of point defects were produced. PL spectra demonstrate that 

the crystallinity was slightly impacted. EPR spectra of h10BN flake reveal that the lines 

centered originated from boron vacancy, instead of one or three 11B atom center. Our 

results demonstrate that defects engineering of monoisotopic hexagonal boron nitride 

single crystals have been achieved via neutron irradiation. 

Experimental methods 

h10BN and h11BN crystal growth. The monoisotopic hexagonal boron nitride 

crystals were grown from a Ni-Cr flux.59 The starting materials, 2g 10B (or 11B), 24g Ni 

and 24g Cr powders were mixed in an alumina and heated at 1550 ℃ for 24h under flowing 

N2 and H2, then were cooled down to 1525 ℃ at a cooling rate of 0.5℃/h，which allowed 

the crystal precipitation. The flowing rate of the N2 and H2 was 125 and 5 sccm, 

respectively. The system was cooled down to room temperature at a cooling rate 200 ℃/h. 

Free-standing hBN single crystal was peeled from the metal ingot surface using thermal 

release tape to produce free-standing hBN flakes.  

Neutron irradiation.  An irradiating neutron fluence was calculated by 

multiplying neutron flux with time.  The irradiation was at 300 kW of reactor power, at 

which power the thermal neutron flux is 3*1012 n/cm2/s.  Thus, the thermal neutron fluence 

of the first and second irradiation delivered was 2.6*1016 and 2.6*1017 n/cm2, respectively. 

The neutron irradiations of the first and second irradiation included a 57 and 570 Mrad and 

dose gamma ray, respectively.  

The lithium concentration was calculated as the product of the average neutron flux, 

the absorption cross section, and the irradiation time. 
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For the h10BN flakes, using a 1-D, monoenergetic neutrons model, the average flux 

within the sample was estimated by integrating the exponentially decreasing flux over the 

sample thickness and dividing by the total thickness. (1) For a sample thickness of 10 

microns, the average flux over the sample is 90% of the unperturbed flux. After 24.1 hours 

of irradiation, the lithium concentration is 4.8*1019 atoms per cc (fraction of B-10 atoms 

converted = 0.090%). (2) For a sample thickness of 100 microns, the average flux over the 

sample is 43% of the unperturbed flux. After 24.1 hours of irradiation, the lithium 

concentration is 2.3*1019 atoms /cm-3 (fraction of B-10 atoms converted is 0.043%). 

The thickness of pyrolytic BN was 250 microns, which results in an average flux 

of 1.9*1012 neutron/cm2. Therefore, the lithium concentration at the end of the long 

irradiation is 6.5*1018 /cm-3. 

For the h11BN flakes, the very small amount of B-10 does not depress the flux at 

all. The starting concentration of B-10 in the sample is 3.0*1020 /cm-3, and the irradiation 

was designed to convert 0.1% of the B-10 atoms, so the lithium concentration at the end of 

the irradiation is 3.0*1017 /cm-3. 

Raman spectra. Raman spectra were taken at room temperature using a Horiba 

Labram HR Raman microscope system. A 532 nm laser was used. The laser spot was 

focused by a 100x lens to a spot diameter of ~1 µm. By using an 1800 groove/mm grating, 

we achieved an instrument resolution f ~0.5 cm-1. Lorentz equation was used to normalize 

the result.  

Photoluminescence spectra. The optical properties of our samples were 

characterized by PL spectroscopy. The hBN crystals were held on the cold finger of a 

closed-cycle cryostat at a temperature of 10K. The excitation beam is the fourth harmonic 
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of a cw mode-locked Ti-Sa oscillator (194 nm) with a repetition frequency of 82 MHz. The 

beam was focused on the sample with a spot diameter of ~50µm and a power of ~35 µW. 

An achromatic optical system couples the emitted signal to our detection system using 

parabolic mirrors with a special coating for deep UV. The detection system was composed 

of a f = 300 mm Czerny-Turner monochromator, equipped with a 1800 grooves/mm grating 

blazed at 250 nm, and a back-illuminated CCD camera (Andor Newton 920), with a 

quantum efficiency of 50% at 210 nm, operated over integration times of 1 min. 

Annealing. Neutron-irradiated h10BN and pBN were loaded in an alumina crucible. 

The crucible was heat at 1000 ℃ for 1h under flowing N2 and forming gas (5% H2 and 95% 

Ar), then were cooled down to room temperature at a cooling rate of 200℃/h. The flowing 

rate of the N2 and forming gas was 125 and 5 sccm, respectively.  
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Chapter 7 - Conclusion and Recommendations 

Large-area and low-defect bulk hBN single crystal was grown for iron flux. Iron 

solvent is inexpensive and available in higher purities (lower carbon concentrations) than 

chromium or nickel. The hBN size was 300 times larger than the hBN grown from nickel-

chromium or iron-chromium fluxes what has been previously reported. Raman and 

photoluminescence revealed that the crystals were highly crystalline. A 

graphene/hBN/graphene tunneling device shows that the dielectric breakdown strength is 

14 MV/cm, which is 4 times than reported result. The crystals are ideal insulating layer for 

2D devices.  The hBN has potential to fabricate high performance devices and investigate 

thermal, optical and electrical properties of hBN. 

hBN crystals were also grown via temperature gradient method with an iron-

chromium flux. This method produced larger crystals. Raman and photoluminescence 

demonstrated that the crystals were high-quality. High in-plane and out-of-plane thermal 

conductivity confirmed that the hBN flake had few defects.  

Monoisotopic boron hBN single crystals from both Fe and Fe-Cr flux. These were 

both new solvents that had not previously been used with pure boron source of boron-10 

and boron-11. Raman and photoluminescence spectroscopy showed that the crystal quality 

grown from both Fe and Fe-Cr fluxes were comparable. 

Defect engineering of hBN single crystals was achieved by introducing point 

defects and impurities. EPR spectra of h10BN flake reveal that the lines centered originated 

from boron vacancy, instead of one or three boron-11 atom center. Raman and 
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photoluminescence spectroscopy showed that the crystallinity of h11BN was slightly 

impacted. 

Based on these findings, there are a few recommendations on how to further 

improve hBN growth by metal flux. Because the best-quality natural hBN was grown from 

iron flux, iron has potential to grow the best quality monoisotopic boron hBN single 

crystals by reacting nitrogen with pure boron source of boron-10 and boron-11. Growth 

parameters such as dwell temperature, cooling rate and cooling temperature range, nitrogen 

flow rate can be tested to improve the crystal quality. Additionally, quantitative 

characterization for carbon and oxygen (less than few ppm) is needed for the future study. 

Finally, the larger area hBN grown from iron make more potential applications such as 

hydrogen isotope separation, which is impossible for the small-area hBN grown from 

nickel-chromium or iron-chromium. 
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