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Abstract 

Accelerating anthropogenic environmental change poses numerous threats to mammalian 

wildlife. Island endemics are among the most vulnerable species to rapid environmental change, 

and account for a disproportionate amount of all documented extinctions. The current 

vulnerability of island species to global change is a result of their unique evolutionary ecology. 

The evolutionary forces of natural selection, genetic drift, and reduced or non-existent gene flow 

lead to the high levels of endemism on islands, but can also leave these species vulnerable to 

change. It is therefore vital for island biodiversity conservation that we understand how past 

environmental change has influenced evolutionary dynamics. Islands in the Bering Sea represent 

a classic system of land-bridge insular evolution. Through Quaternary climate cycling, 

oscillating sea levels have alternately connected Alaska and Siberia through the Bering Isthmus, 

and today the Arctic is experiencing climate change at a more rapid pace than lower latitudes. St. 

Paul Island, home of the endemic Pribilof Island Shrew (Sorex pribilofensis), is located in the 

southern Bering Sea and has been isolated from the mainland for ~14,000 years. This shrew is 

part of a diverse sibling species-complex, which has a wide-ranging Holarctic distribution. The 

goals of my thesis are to (1) resolve the evolutionary relationship of S. pribilofensis to other 

related shrews, and (2) clarify the evolutionary processes leading to speciation among these 

enigmatic mammals. 

Using a tiered genomic dataset of microsatellites, a maternally inherited mtDNA gene, 

and ~11,000 nuclear SNPs, I tested predictions related to the evolutionary and demographic 

history of S. pribilofensis. Given small island size and extended isolation, my overarching 

prediction was that genetic drift has led to rapid speciation and loss of genetic diversity within 

this shrew. In my first chapter, I show that S. pribilofensis is highly differentiated from sibling 



  

taxa using Discriminate Analysis of Principle Components and Structure clustering analyses. 

With phylogenetic analysis I then show that S. pribilofensis is the first to have diverged from 

closely related sibling taxa, and use Bayes Factor Species Delimitation to support species-level 

differentiation. In my second chapter, I give evidence for substantially reduced genetic diversity 

and a smaller effective population size of S. pribilofensis compared to mainland species. 

Through multiple linear regressions, I then show that genetic differentiation is closely tied to 

reduced genetic diversity in this system of shrews. Finally, compared to mainland sibling shrews, 

S. pribilofensis is most strongly differentiated at its least variable loci and least differentiated at 

its most variable loci. These combined results are indicative of strong genetic drift driving the 

differentiation of S. pribilofensis. Put together, my findings indicate a scenario whereby S. 

pribilofensis speciated rapidly after island isolation through neutral divergence, but in the 

process has lost much of its genomic diversity. These results highlight the potential for genetic 

drift, as a consequence of dramatic environmental change, to rapidly reshape island biodiversity 

while as a result potentially leaving island species less able to respond to multiple additional 

environmental stressors in an anthropogenic world.  
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Chapter 1 - Introduction 

The Bering Sea region has a history of dramatic environmental change through the 

Quaternary (the last three million years), and this continues today as the region experiences 

environmental change at a more rapid pace than lower latitudes (Bintanja et al., 2005; Stocker et 

al., 2013). These cyclical climate changes have been integral for shaping species’ distributions, 

their history of diversification, and inter-specific interactions (Cook et al., 2016). In light of this, 

it is vital for the conservation of biodiversity in the region, particularly concerning species now 

associated with its isolated island systems, that we understand how past environmental change 

has influenced evolutionary dynamics (Colella et al., 2020).  Environmental changes in the 

region surrounding the Bering Sea (Beringia) include oscillations in temperature and sea level, 

which have heavily influenced the landscape of Beringia as islands have alternately been 

connected and disconnected from the mainland (Bintanja et al., 2005). Populations historically 

isolated on these land-bridge islands face many natural stressors inherent to island isolation, 

including reduced range size, unique island climates, faunal relaxation and rapid community 

turnover, and extreme population cycling (Stuart et al., 2012; Weigelt et al., 2013). By 

interpreting genetic signatures, we can study how environmental trends have influenced species 

divergences, effective population sizes, and intra-specific genetic diversity, and infer continuing 

trends in response to modern environmental trajectories (Hope et al., 2015). From a functional 

evolutionary perspective, land-bridge island stressors often promote rapid evolutionary 

divergence from mainland populations by local adaptation through natural selection and/or by 

the random evolutionary process of genetic drift (Combe et al., 2021; Weigelt et al., 2016; 

Whittaker et al., 2008; Woolfit & Bromham, 2005). As anthropogenic environmental change 

intensifies, relict populations on these islands face the additional stressors of human 
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development, invasive species including potentially novel pathogens, and climate warming at an 

unprecedented rate (Leclerc et al., 2018; Russell & Kueffer, 2019; Stocker et al., 2013).  

The Pribilof Island shrew (Sorex pribilofensis) represents a classic example of land-

bridge island evolution. Endemic to St. Paul Island in the Bering Sea and last isolated from 

mainland Alaska ~14 kya, this shrew faces many of the natural and anthropogenic stressors 

associated with environmental change in the region. It has experienced a rapid reduction in range 

size as St. Paul Island shrunk to ~71 km2 since initial isolation, faunal relaxation and loss of 

multiple community interactions, recent human development and introduction of non-native 

species, possible novel pathogen interactions, and a rapidly warming island climate (Combe et 

al., 2021; Graham et al., 2016; Hope et al., 2016; Mason 2018). Currently listed as an 

endangered species, it is part of a species complex of closely related shrews that occur 

throughout Beringia. The phylogeographic history of these shrews is closely linked to the 

glacial-interglacial cycles of the Quaternary; most recently, since the last glacial maximum 

(LGM) ~20 kya, inundation of the Bering Isthmus has resulted in range fragmentation of an 

ancestral shrew taxon followed by allopatric divergence through geographic isolation on islands 

and on separate continents, resulting in the current distribution of multiple sister taxa (Hope et 

al., 2012). As such, S. pribilofensis in the context of this system provides an excellent 

opportunity for which to investigate the evolutionary consequences of insular endemism and 

what appears to be a case of remarkably rapid speciation among mammals.  

My thesis takes advantage of the opportunity that these focal shrews provide for 

investigating multiple aspects of the evolution of Beringian wildlife, and I present two 

overarching research goals. In my first research chapter, I aim to estimate the degree of genetic 

differentiation within this system, clarify phylogenetic systematic relationships among sibling 
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shrew taxa, and explicitly test the species designation of S. pribilofensis. Given that S. 

pribilofensis is federally listed as endangered, a detailed understanding of taxonomic 

relationships and levels of genetic divergence is crucial for ongoing management. I predict that 

S. pribilofensis will exhibit high genetic differentiation, be phylogenetically distinct, and that its 

designation as a distinct species will be supported. In my second research chapter, I aim to 

increase our understanding of the evolutionary forces that lead to the unique biodiversity of land-

bridge islands. Considering that all land-bridge island endemics in the Bering Sea must respond 

to accelerating environmental change, knowledge of the evolutionary forces driving the 

differentiation of this shrew can be used to inform predictions for both species-specific and 

general evolutionary trajectories of biodiversity in Beringia. Due to rapid geographic isolation on 

a shrinking island, I predict that genetic drift has been the predominant driving force in the 

evolution of S. pribilofensis. 

To address these goals, I make use of three independent genetic datasets, including 

maternally inherited mitochondrial cytochrome b sequences (1,140 bp), 20 microsatellite loci, 

and ~11,000 single nucleotide polymorphisms (SNPs). I test predictions related to the 

evolutionary and demographic history of S. pribilofensis under a coupled phylogenetic and 

population genetic framework. My findings support the recognition of S. pribilofensis as a 

distinct species and provide evidence for genetic drift driving speciation in this system. Put 

together, these results indicate a scenario whereby S. pribilofensis diverged rapidly after island 

isolation through neutral processes, but this was accompanied by a substantial loss of genomic 

diversity. Given the evolutionarily recent geographic isolation of S. pribilofensis, these combined 

results indicate the potential for strong genetic drift to rapidly reshape the biodiversity of land-

bridge islands. My results further our understanding of how species on Arctic islands respond to 
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dramatic environmental change, and show that this response can leave them vulnerable to 

continued and accelerating anthropogenic changes. This highlights S. pribilofensis as a species of 

high conservation concern with little remaining genetic variability through which to adapt to new 

environments, in a rapidly changing world. 
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Chapter 2 - Rapid allopatric divergence and speciation of an 

endangered insular shrew (Sorex pribilofensis) 

 Introduction 

 Earth’s biodiversity is currently facing a sixth mass extinction (Ceballos et al., 2015). 

Central to conservation of biodiversity in the face of this global phenomenon is building an 

underlying understanding of systematic relationships and nomenclature that effectively describes 

significant evolutionary lineages (Soltis & Gitzendanner, 1999; Ely et al., 2017). Inaccurate 

species designations can lead to management practices that focus on the wrong level of diversity, 

to the detriment of the focal taxa (Ely et al., 2017). Conservation efforts for an under-split 

species (i.e. a taxon comprised of multiple unrecognized species) may not have the resolution to 

account for the true biological units that warrant conservation (Soltis & Gitzendanner, 1999). 

Successful identification of cryptic but significant evolutionary lineages has become increasingly 

more common with the advent of molecular genetics and next-generation sequencing (Fišer et 

al., 2018; Graham et al., 2017). These methods in combination with the unified species concept, 

which describes all independently evolving lineages as species, and uses tenets of other species 

concepts as lines of evidence for identifying such lineages, allows for accurate classification and 

conservation of the world’s biodiversity (de Queiroz, 2005; Soltis & Gitzendanner, 1999). In 

addition to informing classification at the species level, phylogenetic and population genetic 

analyses provide further insight into lineage and population dynamics, which can be integral 

focal units for maintaining species diversity and which may warrant targeted conservation efforts 

of their own (Soltis & Gitzendanner, 1999).  

Islands account for a disproportionately large amount of the world’s biodiversity, and 

island species are disproportionally threatened by anthropogenic environmental change (Tershy 
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et al., 2015). Through founder effects, population bottlenecks, and subsequent adaptation to 

novel environments, island species may experience rapid evolution, which can lead to often rapid 

divergence, endemism, and speciation (MacArthur & Wilson, 1967). Stochastic environmental 

events, particularly on small islands, can increase the likelihood of sudden and dramatic 

population fluctuations. Relatively small baseline population sizes in addition to these 

fluctuations can lead to the progressive loss of genetic diversity through strong genetic drift (Nei 

et al., 1975). A continued reduction in genetic diversity eventually leads to limited variability for 

selection to act upon, resulting in a decrease in adaptive potential (Agashe et al., 2011; Reed & 

Frankham, 2003). Neutral evolutionary processes are often accompanied to varying degrees by 

natural selection, leading to endemicity through time in response to the local environments of the 

islands on which they occur. The persistence and conservation of island species in the face of 

modern environmental change will therefore depend on their unique evolutionary histories and 

on accurate species designation of rapidly evolving lineages. 

No matter whether forces of drift or selection predominate, island biodiversity that has 

evolved under a specific range of environmental conditions is often highly susceptible to rapid, 

sudden, or extreme changes to island environments. Thus, the same forces that lead to the 

evolution of distinct island species also lead to their susceptibility to rapid environmental change, 

variably reflecting reduced genetic diversity and/or adaptation to specific conditions (Reed & 

Frankham, 2003; Weigelt et al., 2013). The accelerating pace of global anthropogenic 

environmental changes may alter local conditions beyond the limitations of island species. It is 

therefore vital to investigate island endemics through development of integrated research and 

management that works to recognize distinct island biodiversity and accounts for the unique 

evolutionary forces that shape it (Graham et al., 2017; Kueffer et al., 2014). 
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The Pribilof Island shrew (Sorex pribilofensis) is an endangered species endemic to St. 

Paul Island, located in the Bering Sea. This region has a history of dramatic environmental 

change since the Quaternary; sea level oscillations due to glacial-interglacial cycling have 

alternately connected Alaska and Siberia through the Bering Isthmus during extended cold 

phases and lowered sea levels, and then disconnected the continents during more brief warm 

phases with higher sea levels leaving only island remnants (Bintanja et al., 2005; Elias & 

Brigham-Grette, 2013; Jakobsson et al., 2017). St. Paul Island, part of the Pribilof Islands group, 

is one such land-bridge island. As sea levels began to rise following the last glacial maximum 

(LGM) ~20 kya, it was one of the first land masses to be isolated from the Bering Isthmus, 

disconnecting ~14 kya (Graham et al., 2016). At this time, St. Paul likely supported a broad 

subset of Beringian species. Following isolation the island initially decreased in size rapidly, 

until about 9 kya. The island then continued to shrink at a slower pace until about 6 kya at which 

point it reached its present size of only 71 km2 (Byrd & Norvell, 1993; Graham et al., 2016). 

Through this period, diversity on the island would have relaxed through progressive extinction of 

species as space, resources, and vital species connections were reduced or lost (Combe et al., 

2021). It is possible that the relaxation phase of St. Paul biodiversity continues, with further 

species extinctions a logical theoretical expectation within this system. In addition to its small 

size, St. Paul Island is highly remote, being isolated from mainland Alaska by ~450 km and from 

the Aleutian Islands by >400 km. Today, the environment on St. Paul is characterized by sub-

Arctic climate, maritime tundra vegetation, the absence of trees and shrubs, no permafrost, a few 

freshwater lakes, no springs or streams, and low relief (max elevation 203 meters above sea 

level) (Byrd & Norvell, 1993; Colinvaux, 1981).  
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Initial scientific knowledge of S. pribilofensis came from three expeditions to St. Paul 

island in the 1900s, which all found it to be abundant on the island (Byrd & Norvell, 1993; Fay 

& Sease, 1985; Jackson, 1928). Byrd & Norvell (1993) found the shrew to be most abundant in 

tall-plant vegetation, specifically in dune and grass-umbel habitats, and did not capture any 

shrews in wet sedge or short-plant habitats. They calculated that the preferred habitat of the 

shrew covers 54.9% of the island, or 39.0 km2. Morphological divergence from related mainland 

shrews earned S. pribilofensis its specific status (Yudin, 1969; Merriam, 1895; van Zyll de Jong, 

1982), and subsequent preliminary analysis of one mitochondrial and a few nuclear genes have 

shown it to be monophyletic, though its relationship to other Beringian shrews remains poorly 

resolved (Demboski & Cook, 2003; Hope et al., 2012). Sorex pribilofensis is a part of the Sorex 

cinereus species complex (hereafter cinereus complex), which currently consists of 13 species of 

the subgenus Otisorex (Hutterer, 2005), broken up into two reciprocally monophyletic clades 

(Beringian and Southern; van Zyll de Jong, 1991; Demboski & Cook, 2003). The Beringian 

clade (the focus of my research) currently contains 9 species, though these species exhibit very 

shallow divergence based on mitochondrial and nuclear genetic markers, making their specific 

status questionable (Hope et al., 2012). Of these 9 species, 6 occur in the Beringian region: Sorex 

ugyunak in northernmost Alaska and Canada; Sorex jacksoni, restricted to St. Lawrence Island; 

Sorex pribilofensis, restricted to St. Paul Island; Sorex portenkoi and Sorex camtschatica in 

easternmost Russia; and Sorex leucogaster, restricted to Paramushir Island, south of the 

Kamchatka Peninsula. The three remaining species, Sorex haydeni, Sorex preblei, and Sorex 

lyelli occur outside of Beringia (northern/central North American prairies, the Columbia basin, 

and Sierra Nevada, respectively) but are still considered within the Beringian clade based on 

their evolutionary relationship to northern taxa. The phylogeography of the six northern species 
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distributed through Beringia is consistent with a history of fragmentation of a single ancestral 

taxon into multiple isolated areas, dating to the break-up of the Bering Isthmus, followed by 

allopatric divergence (Hope et al., 2012). As fragmentation of this ancestral taxon occurred very 

recently from an evolutionary perspective (only 5-14 kya), it is surprising that these taxa are 

afforded status as distinct species, because rates of speciation for mammals are normally orders 

of magnitude slower (Barnosky, 2005).  

Today, the Bering region is experiencing climate change at a more rapid pace than lower 

latitudes (Stocker et al., 2013). These changes include a rapid increase of mean temperature, 

reduction of sea-ice extent, rising sea levels, and the advance of boreal-associated temperate 

biodiversity encroaching on sub-Arctic and Arctic tundra habitats (Callaghan et al., 2004; 

Stocker et al., 2013). This climate-driven community turnover presents a threat to the endemic 

biodiversity of Beringia, as species must either adapt to changing environments, shift their range 

to track suitable environmental conditions (not a viable option for most insular terrestrial 

species), or face extinction (Colella et al., 2020). Conservation efforts that take into account the 

current evolutionary trajectories of these species can contribute to their persistence. However, in 

order for conservation to be effective, we must have a detailed understanding of the taxonomy 

and species relationships of the focal taxa. 

In this chapter I test the specific status of S. pribilofensis under a population genetic and 

phylogenetic framework, in order to better inform current conservation status for this data-

deficient species (IUCN, 2016). To this end, I make use of three independent genetic datasets 

consisting of nuclear microsatellites, mitochondrial cytochrome b sequences, and ~11,000 

nuclear single nucleotide polymorphisms (SNPs), to investigate species relationships within the 

cinereus complex at higher resolution than previous studies. First, I test the level of genetic 
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differentiation between these taxa, characterize species relationships through analysis of genetic 

structure through this system, and use multiple methods to infer phylogenetic relationships in the 

cinereus complex. Based on island biogeographic theory, I predict (1) strong genetic 

differentiation of S. pribilofensis from sister taxa, reflecting longer and more extreme (small-

island) isolation, (2) independent clustering of each Beringian shrew taxon based on structure 

analyses, indicating independent evolutionary trajectories through allopatry, and (3) clear 

monophyly and specific status of Sorex pribilofensis relative to the rest of the Beringian clade. I 

then use Bayes Factor species Delimitation (BFD) to compare multiple alternate species 

delimitation models in order to explicitly test the species designation of Sorex pribilofensis. 

 

 Methods 

Sample collection and DNA extraction 

Shrews were collected from throughout Beringia between the years 1952-2019, using 

both pitfall and “museum special” snap traps, and all specimens were fully processed and 

archived in publicly accessible museum collections according to published guidelines (Galbreath 

et al., 2019). For the purposes of this study, a total of five species of the Beringian clade of the 

cinereus complex were included: Sorex pribilofensis, Sorex ugyunak, Sorex portenkoi, Sorex 

camtschatica, and Sorex jacksoni. No samples of S. leucogaster were available for genetic 

analyses. Additionally, Sorex cinereus (sensu stricto) was included to serve as an outgroup. 

Sample sizes of each species used to generate three genetic datasets are similar and mostly 

overlapping (Table 2.1). Specimen museum numbers and localities are provided in a 

Supplementary Table (Table A1). The distributions of these shrews collectively occupy most of 

Beringia, although their ranges are allopatric except for a zone of sympatry in northern Alaska 

between S. cinereus and S. ugyunak (Fig. 2.1). Shrew tissue samples were preserved frozen at -
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80°C or in 95% ethanol. DNA was extracted from liver or muscle samples using slightly 

modified standard salt extraction methods (Miller et al., 1988).  

 

Microsatellite PCR, genotyping, and data filtering 

For representatives of all 6 species, 20 microsatellite loci (developed and characterized 

by Sonsthagen et al., 2013) were amplified through polymerase chain reaction (PCR) following 

the amplification and thermocycler conditions of Toussaint et al. (2012). Scoring errors and 

potential null alleles were identified with Micro-checker (Van Oosterhout et al., 2004). Prior to 

analyses, individuals with a high proportion (>50%) of missing data were removed from the 

dataset. Then, loci for which all individuals of any given species had missing data, as well as loci 

with >20% missing data across all species, were removed. The remaining loci were then 

independently tested for deviation from Hardy-Weinberg equilibrium, separately in each species, 

using the exact test and 10,000 Monte Carlo permutations implemented in the R package pegas 

(Guol & Thompson, 1992; Paradis, 2010). Any loci that deviated significantly (p<0.05) in >3 

species were removed. The final dataset included 17 loci for 79 individuals across 6 species 

(Table A1).  

 

Cytochrome b PCR, sequencing, and data filtering 

The mitochondrial cytochrome b (Cytb) gene was amplified through PCR using 

previously optimized primers (MSB05, MSB14) and thermocycling conditions (Hope et al., 

2010). Sanger sequencing was performed on an ABI 3730 by Genewiz LLC (South Plainfield, 

NJ). Raw reads were cleaned and aligned using Geneious (Kearse et al., 2012). All previously 

sequenced and publicly available Cytb sequences for S. camtschatica and S. jacksoni were 

downloaded from GenBank and included in this dataset. For standardizing analyses across 
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genetic datasets, publicly available Cytb sequences for S. cinereus, S. pribilofensis, S. portenkoi, 

and S. ugyunak individuals were only included in the Cytb dataset if that individual was 

represented in one or both of the microsatellite and SNP datasets. Prior to analyses, individuals 

with >25% missing data (i.e. >285 missing base pairs out of the full 1140 bp sequence) were 

removed. The final Cytb dataset included sequences for 104 individuals across 6 species (Table 

A1).  

 

ddRADseq library prep and sequencing 

Genomic DNA was quantified using Quant-iT Picogreen dsDNA Assay (Invitrogen) and 

gel electrophoresis (2% agarose) to identify 91 samples with sufficient yields (>100ng) of high 

molecular weight DNA, which were then submitted to the University of Minnesota Genomics 

Center (UMGC), Minneapolis for double digest restriction site associated DNA sequencing 

(ddRADseq; Peterson et al., 2012). UMGC prepared ddRADseq libraries and sequenced samples 

using the following protocols. For each sample, 100 ng of DNA was digested with 10 units each 

of SbfI and TaqI restriction enzymes from New England Biolabs (NEB) and incubated at 37 ⁰C 

for 2 hours before heat inactivating at 80 ⁰C for 20 minutes. Samples were then ligated with 200 

units of T4 ligase (NEB) and phased adaptors with CRYG and CG overhangs at 22 ⁰C for 1 hour 

before heat killing. The ligated samples were purified with SPRI beads and then amplified for 18 

cycles with 2x NEB Taq Master Mix to add unique barcodes to each sample. Libraries were 

purified, quantified, pooled, and size selected for the 300 – 744 bp library region and diluted to 2 

nM prior to sequencing. UMGC sequenced 150-bp single-end reads across 0.25 lanes of a 

NextSeq 550 High-Output FlowCell (Illumina, USA). The resulting fastq files were 

demultiplexed using Illumina bcl2fastq software and Trimmomatic (Bolger et al., 2014) and 

Cutadapt (Martin, 2011) were used to remove the padding sequence at the beginning of the read, 
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trim the Illumina adapter of the 3’ end, and discard reads shorter than 93bp. The trimmed reads 

were then filtered for quality using the process_radtags module in Stacks v2.54 (Rochette et al., 

2019). Reads with uncalled bases were removed, and a sliding window approach was used to 

drop reads with low quality scores (phred score <10). Following these steps, 37,442,922 total 

reads were retained. 

 

Denovo RAD locus and SNP identification 

Loci were discovered de novo using the denovo_map.pl pipeline in Stacks v2.54. First, 

the parameters controlling loci formation and polymorphism were optimized for the dataset 

following the recommendations provided by the software developers (Rochette & Catchen, 

2017), and a locus catalog was built using the optimal parameters (Fig. 2.2). Single nucleotide 

polymorphisms (SNPs) were then called for each locus. A total of 89,179 polymorphic SNPs 

were identified from 59,328 loci, with an average read depth of 14.0. These loci and SNPs 

subsequently went through several quality filters. Loci had to be present in >80% of individuals 

within a species to be processed for that species. Loci then had to be present in at least 3 species 

to be processed for the entire dataset. For loci with multiple SNPs, only the first was retained to 

minimize the potential for linkage. SNPs with a minor allele count <2 were removed, as these 

may reflect PCR error. SNPs with an observed heterozygosity >70% were also removed as they 

may represent paralogous loci. The read depth and proportion of missing data per individual was 

then assessed in the R packages vcfR (Knaus & Grünwald, 2017) and SambaR (Jong et al., 2021) 

(Fig. 2.3; Table 2.2). Individuals with >25% missing data were removed from the dataset. For 

each species, each SNP was then tested separately for deviation from Hardy-Weinberg 

equilibrium using the exact test and 100 Monte Carlo permutations implemented in the R 

package pegas (Guol & Thompson, 1992; Paradis, 2010). SNPs that were out of Hardy-
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Weinberg equilibrium in >2 species were removed. These filters retained a total of 11,989 

polymorphic SNPs for 90 individuals across 4 species (Table A1). 

 

Genetic differentiation statistics 

Genetic differentiation of Beringian shrew taxa was assessed using multiple statistics for 

each of the microsatellite, Cytb, and SNP datasets. For each taxon pair in the microsatellite and 

SNP datasets, I calculated pairwise FST, GST, and Jost’s D values using the R packages hierfstat 

(Goudet, 2005) and mmod (Winter, 2012). Specifically, FST was calculated in hierfstat following 

Nei (1987). For the Cytb dataset I estimated pairwise FST values and percent haplotype 

divergences between each taxon pair in DnaSP v6.12 (Rozas et al., 2017). 

 

Assignment of independent evolutionary clusters 

 Both the microsatellite and SNP datasets were used to analyze species structure through 

two clustering methods. First, Discriminate Analysis of Principle Components (DAPC) was 

implemented in the R package adegenet (Jombart, 2008). Groups were assigned a priori based 

on recognized current taxonomy. For both datasets, an initial DAPC was run retaining the 

number of principle components (PCs) that explained ~90% of the cumulative variance and 

retaining all of the discriminant functions. Using this initial DAPC, the optimal number of PCs to 

retain was then determined using the a.optim.score function with 10,000 simulations for each 

possible number of retained PCs. A final DAPC was then run for both datasets with the optimal 

number of PCs retained and all discriminant functions retained. 

Species structure was also analyzed through a model-based clustering method 

implemented in Structure v2.3.4 (Pritchard et al., 2000). For the microsatellite dataset, I tested 

scenarios for a range of numbers of genetic clusters (K = 2-8) and ran 10 repetitions for each 
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value of K. I used a burn-in length of 500,000 Markov chain Monte Carlo (MCMC) iterations, 

followed by a run length of 1,000,000 iterations. I used the correlated allele frequency model and 

the admixture model, and performed these runs both with and without current species 

designations as a set prior to compare the results. For the SNP dataset, I tested scenarios for 

K=2-5 and ran 10 repetitions for each value of K. The structure runs were multithreaded using 

the software EasyParallel (Zhao et al., 2020). I used a burn-in length of 100,000 MCMC 

iterations followed by a run length of 500,000 iterations, and again performed these runs both 

with and without current species designations as a set prior. For all runs, the most likely number 

of genetic clusters was selected using the Evanno method (Evanno et al., 2005) implemented in 

the software Structure Harvester (Earl & vonHoldt, 2012). All structure plots were visualized 

using the software Structure Plot (Ramasamy et al., 2014). 

 

Phylogenetic analyses: mtDNA Cytb gene 

Phylogenetic trees were inferred for the full Cytb dataset using two separate methods. I 

first used a maximum likelihood (ML) method to estimate the phylogeny using RAxML v8.2.12 

(Stamatakis, 2014), implementing the GTR+CAT nucleotide substitution model with 1,000 

bootstrap replicates. The resulting tree was rooted at the midpoint and visualized in FigTree 

v1.4.4 (Rambaut & Drummond, 2012). In the second method, I inferred the Bayesian 

multispecies coalescent tree using BEAST v2.6.3 (Bouckaert et al., 2019). I inferred the 

nucleotide substitution model, range of rate heterogeneity, and proportion of invariant sites 

simultaneously during the MCMC analysis with the bModelTest package (Bouckaert & 

Drummond, 2017), with the transition-transversion split option and empirical frequencies. I used 

a lognormal relaxed molecular clock with a mutation rate of 5.5% per million years (Hope et al., 

2010) and the Coalescent Constant Population tree prior. I ran the MCMC chain for 10,000,000 
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generations sampling every 5,000 generations and used Tracer v1.7.1 (Rambaut, 2018) to 

confirm the convergence of the chain (i.e. ESS values for parameters >300). I used 

TreeAnnotator v2.6.2 (Rambaut & Drummond, 2020) to drop the first 10% of trees as burn-in 

and to annotate the consensus tree, then visualized the tree topology in FigTree v1.4.4. 

 

Phylogenetic analyses: SNPs 

Phylogenetic trees were inferred for the SNP dataset using three separate methods. The 

first considered all individuals independently but analyzed all SNPs as a single concatenated 

dataset; the second generated a species tree considering all individuals and all SNPs 

independently; the third estimated a species tree considering individuals assigned to a priori 

“species” designations, but considering independent genealogies for each SNP.  

For the first method I estimated the ML phylogeny using RAxML v8.2.12. To estimate 

the ML tree, the SNPs were first converted to a phylip format, using ambiguity codes for 

heterozygous sites and Ns for uncalled sites following standard IUPAC notation. An 

ascertainment bias correction was applied to the likelihood calculation, as is recommended when 

constructing phylogenies with SNPs, due to the lack of invariant sites (Leaché et al., 

2015). However, RAxML considers sites to be invariant if phasing the IUPAC characters could 

lead to invariant sites; therefore I filtered out these potentially invariant sites using the python 

script (https://github.com/btmartin721/raxml_ascbias), yielding 9,144 variant sites. I then 

estimated the ML phylogeny with 100 bootstrap replicates, implementing the GTR+G nucleotide 

substitution model and the Lewis method for ascertainment bias correction. The resulting tree 

was rooted at the midpoint and visualized in FigTree v1.4.4. 

In the second method, I inferred a species tree in SVDquartets (Chifman & Kubatko, 

2014) implemented in PAUP v4.0 (Swofford, 2017). This method infers the relationships among 

https://github.com/btmartin721/raxml_ascbias
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quartets of taxa under the coalescent model before assembling the quartets into a species tree. I 

randomly sampled 1,000,000 quartets (representing 39.14% of the total possible quartets) and 

measured the uncertainty with 200 non-parametric bootstrap replicates. The tree was rooted at 

the midpoint and tree branch lengths were optimized using maximum likelihood under the 

GTR+I+G model. The tree topology was visualized in FigTree v1.4.4. 

In the third method, I inferred the Bayesian coalescent species tree with SNAPP v1.5 

(Bryant et al., 2012) implemented in Beast v2.6.3. Due to computational restraints, only 8 

individuals per species were selected for analysis, and SNPs were filtered to exclude invariant 

sites based on a reduced sample size. This resulted in 11,387 polymorphic sites retained across 

32 individuals. Due to ascertainment bias, it is difficult to determine absolute mutation rates for a 

SNP dataset, so mutation rates U (forward mutation rate) and V (backward mutation rate) were 

fixed at 1.0. The coalescence rate was initially set at 1.0 but was sampled throughout the analysis 

and the rate prior distribution was uniform. I ran the MCMC chain for 10,000,000 generations 

sampling every 1,000 generations and used Tracer 1.7.1 to confirm the convergence of the chain 

(i.e. ESS values for parameters >300). I used TreeAnnotator 2.6.2 to drop the first 50% of trees 

as a burn-in and to annotate the consensus tree, then visualized the tree topology in FigTree 

v1.4.4. 

 

Species delimitation 

To test support for the species designation of S. pribilofensis, I statistically compared 

three alternate species delimitation models using the Bayes Factor species Delimitation (BFD) 

method (Leaché et al., 2014), implemented by SNAPP v1.5 in BEAST v2.6.3. This method 

allows for comparisons of alternate species delimitation models under an explicit multispecies 

coalescent framework, making use of genome-wide SNP data. Based on the observed species 
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structure from DAPC and Structure analyses, as well as the observed phylogenetic relationships 

based on the Cytb and SNP datasets, I tested three species delimitation models using the SNP 

dataset (Table 2.3). In the first model four species were assigned, with each currently recognized 

taxon treated as independent species. In the second model, reflecting the results of structure 

clustering analyses, three species were assigned, with S. ugyunak and S. portenkoi treated as one 

species, and S. pribilofensis and S. cinereus each treated as distinct. In the third model only two 

species were assigned, with S. cinereus recognized as one species and the remaining three treated 

as one species.  

 Due to computational restraints, I only used 16 (4 per taxon) of the 32 individuals 

included in the estimation of the initial SNAPP phylogeny, and SNPs were again filtered to 

exclude invariant sites based on a reduced sample size. This resulted in 10,368 polymorphic sites 

retained across 16 individuals. In order to provide proper priors on the speciation rate (λ) and 

theta (θ) for the BFD analyses, I first estimated a time-calibrated species tree following the 

divergence-time estimation method outlined by Stange et al. (2018). This model employs a strict 

molecular clock, links all ancestral and contemporary populations sizes, and assumes a Jukes-

Cantor model of nucleotide substitution. To time-calibrate the molecular clock, I interpreted the 

formation of St. Paul Island (~14 kya; Graham et al., 2016) and the formation of the Bering Strait 

(~11 kya; Jakobsson et al., 2017) as the vicariance events causing first the divergence of S. 

pribilofensis (St. Paul Island), followed by the divergence of S. ugyunak (Alaska) from S. 

portenkoi (Siberia). Accordingly, I set a uniform prior distribution of 13-15 kya on the node age 

of the S. pribilofensis/S. ugyunak/S. portenkoi clade and a uniform prior distribution of 10-12 kya 

on the node age of the S. ugyunak/S. portenkoi clade. The topology of the original, undated 

SNAPP species tree was used to create a starting tree with node ages of the two calibration nodes 



19 

set at 14 kya and 11 kya. Input files for SNAPP were prepared with the script snapp_prep.rb 

(https://github.com/mmatschiner/snapp_prep). This script removed sites for which there was 

only missing data in one or more species, which left a total of 7,801 sites for analysis. I ran the 

MCMC chain for 15,000,000 generations sampling every 5,000 generations and removing a 10% 

burn-in. The population size estimates were added to the log file with the script 

add_theta_to_log.rb (https://github.com/mmatschiner/snapp_prep) and then I used Tracer 1.7.1 

to confirm the convergence of the chain and the convergence of the λ and θ parameters (i.e. 

ESS>300).  

After initial estimation of λ and θ, I then calculated the marginal likelihood estimates 

(MLE) of each species delimitation model, with the individuals grouped into species accordingly 

for each species model (Table 2.3). The mutation rates U and V were fixed at 1.0 and the 

coalescence rate was initially set at 1.0 but was sampled throughout the analysis. I used gamma 

prior distributions for both λ and θ with the mean values for each set at the estimated means 

calibrated during the divergence-time estimation analysis. I ran the MCMC chain for 100,000 

generations sampling every 1,000 generations. I conducted 48 path sampling steps, each with 

50,000 MCMC steps, a pre-burnin of 5,000, and alpha set at 0.3, using the Model_Selection 

v1.5.3 package in BEAST v2.6.3, then confirmed the convergence of the chain (i.e. ESS>300) 

for each path sampling step. I ranked the alternative species delimitation models according to 

their MLE and calculated Bayes factors (BF = 2 × (MLE1 – MLE2)) to compare the models 

(Leaché & Bouckaert, 2018).  

 

 Results 

Genetic differentiation 

https://github.com/mmatschiner/snapp_prep
https://github.com/mmatschiner/snapp_prep
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I found varying levels of genetic divergence among taxa, although relative levels of 

differentiation were generally consistent across all four measures (FST, GST, Jost’s D, and percent 

haplotype divergence; Tables 2.4-2.6). For all three genetic datasets, S. cinereus was consistently 

most divergent from other taxa, closely followed by S. pribilofensis. Based on all measures, S. 

ugyunak and S. portenkoi were least genetically differentiated of any taxon pair. For S. 

pribilofensis, pairwise genetic differentiation values were highest in relation to S. cinereus, 

except for FST and GST values based on the microsatellite dataset, which were highest in relation 

to S. jacksoni. Based on all genetic datasets and measures of genetic differentiation, S. 

pribilofensis was most genetically similar to S. ugyunak. 

 

Independent evolutionary clusters 

For Discriminate Analysis of Principle Components (DAPC), the optimal number of 

principle components (PCs) to retain for the microsatellite and SNP datasets were 7 and 3, 

respectively (Figs. 2.4, 2.5). When plotting all taxa using the first two PCs, both S. pribilofensis 

and S. cinereus were independently isolated from other taxa, and S. cinereus was the most distant 

group relative to the other taxa, followed by S. pribilofensis. However, based on the 

microsatellites, S. cinereus was only slightly more distant than S. pribilofensis. For both datasets, 

S. portenkoi and S. ugyunak group very closely to each other, and based on microsatellite data 

are also closely aligned with S. jacksoni and S. camtschatica. While S. portenkoi and S. ugyunak 

group closely for both genetic markers, there is more distinction between the two using the SNP 

dataset. However, while there is not much distinction between S. portenkoi, S. ugyunak, S. 

camtschatica, and S. jacksoni when using the first two PCs, the following PCs (3 and 4 for the 

microsatellite dataset, 3 for the SNP dataset) better distinguish these taxa from each other, while 

losing power to distinguish between S. cinereus and S. pribilofensis. 
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 The relationships based on DAPC analyses are also evident from clustering analyses 

using Structure (Figs. 2.6, 2.7). For both microsatellite and SNP datasets, using a priori species 

designations did not impact how individuals clustered or the total number of clusters, so here I 

report results for Structure analyses without a priori species designations. Based on the Evanno 

method, the best supported value of K for both the microsatellite and SNP data was K=3, 

although for both datasets K=5 also had a high likelihood (Figs. A1, A2). However, under K=5 

for the SNP dataset, no measurable portion of any individual was assigned to the fifth cluster, so 

K=5 essentially reflected 4 clusters. For both datasets, when K=3 S. pribilofensis and S. cinereus 

form distinct clusters while the other taxa group to form one cluster. For the microsatellite 

dataset, when K=5 S. portenkoi and S. jacksoni form their own distinct clusters, while S. ugyunak 

and S. camtschatica are still assigned as a single group, although two S. camtschatica individuals 

group very closely with S. jacksoni. For the SNP dataset, when K=5 S. portenkoi and S. ugyunak 

form more distinct clusters, although both still share some genetic similarity. 

 

Phylogenetic analysis: mtDNA Cytb gene 

The two methods implemented to infer phylogenies based on the Cytb dataset showed 

similar general relationships, but the Bayesian multispecies coalescent method allowed for 

higher resolution and stronger cladal support than the maximum likelihood method (Figs. 2.8, 

2.9). The best nucleotide substitution model was TN93 with rate heterogeneity and invariant 

sites. Both Bayesian and ML methods confirm S. cinereus as an outgroup in relation to the 

remaining Beringian shrews, and both provide strong support for the monophyly of S. 

pribilofensis. The ML tree supports monophyly of S. portenkoi, but renders S. ugyunak, S. 

camtschatica, and S. jacksoni as polyphyletic (Fig. 2.8). These relationships are consistent and 

clearer based on the Bayesian tree (Fig. 2.9). Among Beringian taxa, S. pribilofensis is the first 
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taxon to diverge and forms a well-supported and reciprocally monophyletic group with respect to 

other Beringian shrews, although it exhibits little intra-specific divergence. The monophylly of S. 

portenkoi is also supported, but again, S. jacksoni, S. camtschatica, and S. ugyunak remain 

polyphyletic. Following initial differentiation of S. pribilofensis, divergence of the remaining 

Beringian shrews is shallow and remains unresolved.  

 

Phylogenetic analysis: SNPs 

Phylogenetic analysis of the SNP dataset provided increased support of taxon 

relationships observed based on Cytb data. The ML tree produced in RAxML and the coalescent 

species tree inferred with SVDquartets support S. cinereus as the sister taxon in relation to the 

other Beringian shrews (Figs. 2.10, 2.11). Again, S. pribilofensis diverged from the other two 

members of the Beringian clade (S. ugyunak and S. portenkoi) earliest, and is strongly supported 

as a monophyletic clade. Both of these methods resolve S. ugyunak and S. portenkoi as 

reciprocally monophyletic, although there is higher support for the monophyly of S. ugyunak in 

the SVDquartets coalescent species tree than from the ML tree. The ML tree indicates extremely 

low intra-specific differentiation within S. pribilofensis after initial divergence from S. ugyunak 

and S. portenkoi. The Bayesian coalescent species tree inferred with SNAPP supports these 

taxon relationships with maximum posterior probability (Fig. 2.12).  

 

Species delimitation 

Bayes Factor species Delimitation strongly supported the four-species model, in which S. 

cinereus, S. pribilofensis, S. portenkoi, and S. ugyunak are each recognized as a distinct species 

(Table 2.7). Using the marginal likelihood estimation (MLE) of each model, I compared the 

four-species model with each of the two alternate models (three-species and two-species; Table 
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2.3) using Bayes factors (BF = 2 × (MLE1 – MLE2)). A positive BF value indicates support for 

model 1 while a negative BF value indicates support for model 2. The strength of support of 

Bayes factor comparison of competing models can be interpreted as: 0 < BF < 2 is undecisive, 2 

< BF < 6 is mild support, 6 < BF < 10 is strong support, and BF > 10 is decisive (Kass & 

Raftery, 1995; Leaché & Bouckaert, 2018). The strength of support for the four-species model in 

comparison to both of the alternate models is very decisive, with Bayes factors much greater than 

10 for both comparisons. 

 

 Discussion 

My analysis of ~11,000 SNPs, in combination with 17 microsatellites and the mtDNA 

cytochrome b gene, has provided higher resolution of species relationships within the Beringian 

clade of the Sorex cinereus species complex. The inclusion of three genetic datasets that are 

complimentary through their unique strengths constitutes a rigorous modern genomics approach 

to phylogenetic investigations. Microsatellites evolve very quickly, allowing for analysis of 

population-level differentiation over short time-scales. Cytb sequences provide a matrilineal 

history of diversification and can be resolvable over recent to deeper (>100kyr) timeframes. By 

genotyping thousands of SNP loci, it is possible to assess fine-scale evolutionary divergence and 

more accurately estimate phylogenies. Given that my study species are all closely related, and 

my primary question is if we can designate distinct species after comparatively brief divergence, 

incorporating loci with different levels of resolution is critical. As such, this study represents the 

most comprehensive assessment to-date of previously ambiguous species relationships within the 

Beringian clade of the Sorex cinereus species complex.  
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Despite the current taxonomic recognition of five shrews of the Beringian clade included 

in my thesis (S. camtschatica, S. portenkoi, S. pribilofensis, S. jacksoni, S. ugyunak), species-

level status was questionable based on the existing literature (Hope et al., 2012). The observed 

divergence between these taxa was estimated to have occurred within the last 50 ky, through 

allopatry as a result of climate cycling through the late Quaternary. My findings provide insight 

that reflects strong evolutionary responses of these species to past environmental changes. First, 

there is clear differentiation between S. pribilofensis and its sister taxa across all locus-sets. The 

level of divergence is surprising given that differentiation has proceeded only since the most 

recent inundation of the Bering Isthmus, an incredibly short evolutionary timescale. In 

accordance with the likely order of geographic isolation, S. pribilofensis was the first to diverge 

from the rest of the high-latitude Beringian shrews, but also appears to have retained little to no 

intra-specific diversity. Based on Cytb sequences, relationships remain polyphyletic within the 

remaining shrews of the Beringian clade. However, phylogenetic analysis of the SNP dataset 

does resolve reciprocal monophyly of S. ugyunak and S. portenkoi, pointing again to allopatric 

divergence since inundation of the Bering Isthmus. While divergence has been recent, and 

ambiguous even through rapidly evolving microsatellite loci, my phylogenomic analysis and 

species delimitation methods using SNP data indicate multiple distinct evolutionary trajectories 

and rapid speciation within this species complex, lending support for current systematic 

relationships and providing an example of rapid mammalian evolution in response to late 

Quaternary climate change. 

 

High genetic differentiation 

Multiple genetic differentiation statistics (FST, GST, Jost’s D, percent haplotype 

divergence), implemented for three types of genetic marker (microsatellites, mitochondrial gene, 
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nuclear SNPs), generally showed the same trends in species differentiation. Consistent with 

phylogenetic position as an outgroup to the members of the Beringian clade, S. cinereus showed 

highest differentiation from the other shrews based on the Cytb and SNP datasets. Sorex 

pribilofensis was the next most differentiated given these datasets, again consistent with 

phylogenetic results showing it to be the first to divergence from the rest of the Beringian clade. 

Of interest, genetic differentiation statistics for the microsatellite dataset were higher for S. 

pribilofensis than S. cinereus. This likely reflects the rapid rate of evolution of microsatellites 

from two perspectives. For S. pribilofensis, small populations in comparison to the mainland 

species, as a result of small island size, has allowed for rapid evolution coupled with loss of most 

diversity across microsatellites; this has led to very few alleles in common with other taxa. 

Simultaneously, S. cinereus has been isolated from other Beringian shrews for a full glacial cycle 

(~100 kyr), and given very high population size, likely has retained microsatellite diversity while 

also experiencing homoplasy due to reverse mutational steps (indels) of tandem repeats. If true, 

this phenomenon may give the impression of less differentiation even though shared 

microsatellite alleles are not derived from a common ancestor, and is one reason why 

microsatellites are generally not reliable for distinguishing between species. Regardless of the 

relative degree of genetic divergence, the values of genetic differentiation statistics for both S. 

pribilofensis and S. cinereus are generally high and on par with other estimates of species-level 

differentiation within mammals (Funk et al., 2016; Roy et al., 1994).  

The other members of the Beringian clade (S. camtschatica, S. portenkoi, S. jacksoni, S. 

ugyunak) showed much less genetic differentiation, on par with estimates of mammalian 

differentiation between sub-species (Funk et al., 2016), and even isolated populations of the 

same species (Giglio et al., 2020; White & Searle, 2007). However, these estimates from the 
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literature came between sub-species and populations with extreme geographic isolation on 

multiple islands, or across heavily fragmented (patchy) landscapes. While these Beringian 

shrews have diverged in allopatry, it is likely that large ranges on the continents (and the 

relatively large Saint Lawrence Island for S. jacksoni) in combination with more recent 

geographic isolation have contributed to a slower accumulation of genetic differences in 

comparison to S. pribilofensis and S. cinereus. When taken in tandem with knowledge of recent 

allopatry, these levels of genetic differentiation, while not as high as noted for other species, 

point to independently evolving species on separate evolutionary trajectories. 

The observed genetic differentiation statistics are corroborated and clearly visualized by 

the results of DAPC and Structure analyses. The most highly differentiated species for both 

clustering analyses and from both microsatellite and SNP datasets are S. cinereus and S. 

pribilofensis. In fact, for DAPC analysis of both genetic markers, the first two principle 

components relate almost entirely to the distinction of S. cinereus and S. pribilofensis, leaving 

little apparent differentiation between the remaining shrews. However, the third (and fourth, for 

the microsatellites) principle components show differentiation between S. portenkoi, S. ugyunak, 

S. jacksoni, and S. camtschatica, although divergence is minimal compared with S. cinereus and 

S. pribilofensis. 

This is mirrored by Structure results, which find K=3 to be the most likely number of 

genetic clusters for both the microsatellite and SNP datasets, although K=5 also describes 

relevant differentiation. This again likely reflects relatively little genetic differentiation between 

S. portenkoi, S. ugyunak, S. jacksoni, and S. camtschatica in comparison to S. cinereus and S. 

pribilofensis. While K=3 best describes the levels of genetic differentiation within this complex, 

there still appears to be relevant structure beyond only three genetic clusters. Based on raw 
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likelihood scores, K=5 has the highest likelihood for both the microsatellite and SNP datasets, 

and allows identification of S. portenkoi and S. jacksoni as distinct clusters. Interestingly, S. 

ugyunak and S. camtschatica remain grouped together based on the microsatellite dataset, 

although this similarity may reflect a low sample size for S. camtschatica; additional sampling 

and/or genomic sequencing of S. camtschatica could better capture relevant genetic 

differentiation between these species. Overall, my findings indicate unambiguous genetic 

differentiation of S. pribilofensis from other taxa in comparison to less, but still relevant, genetic 

differentiation between the remaining shrews of the Beringian clade. 

 

Rapid speciation 

Phylogenetic analysis of the SNP dataset corroborates and provides increased resolution 

for the species relationships observed using the Cytb gene in this thesis and in previous studies 

(Demboski & Cook, 2003; Hope et al., 2012). When comparing the two methods used in my 

thesis to estimate phylogenies based on the Cytb gene, I consider the Bayesian phylogeny 

inferred with BEAST2 to be more accurate, given its use of coalescent theory coupled with 

biologically meaningful priors (e.g. mutation rate). The Cytb coalescent gene tree largely aligns 

with the phylogenies inferred from SNP data, providing insight for the matrilineal relationships 

of these shrew species that cannot be inferred from the SNP dataset. Based on all three 

phylogenies inferred with the SNP dataset, there is strong evidence for the initial split of S. 

pribilofensis from the other shrews of the Beringian clade. Given estimated divergence times by 

Hope et al., (2012), this split is congruent with the most recent formation of Saint Paul Island, 

~14 kya. There appears to be no intra-specific differentiation across the island, as sub-specific 

clade structure within S. pribilofensis is virtually non-existent in any phylogeny. This points to a 
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history of rapid allopatric divergence coupled with severe loss of diversity across a very short 

evolutionary timescale. 

 Time calibrated phylogenetic inference shows diversification between the remaining 

members of the Beringian clade (S. portenkoi, S. ugyunak, S. jacksoni, S. camtschatica) occurred 

after the initial split of S. pribilofensis, lining up with the expectation that allopatric divergence 

in response to inundation of the Bering Isthmus led to differentiation. The formation of Saint 

Lawrence Island and the formation of the Bering Strait occurred more recently (~11 kya) than 

the formation of Saint Paul Island; in combination with larger available ranges (even on Saint 

Lawrence, which is ~65 times larger than Saint Paul), a lesser degree of divergence is expected. 

This is reflected by the coalescent Cytb gene tree, which suggests S. ugyunak, S. camtschatica, S. 

jacksoni, and to a certain extent S. portenkoi remain polyphyletic. Because mitochondrial DNA 

is haploid and maternally inherited, this likely reflects incomplete lineage sorting, as a few 

ancestral haplotypes remain shared between these species. However, the monophylly of both S. 

portenkoi and S. ugyunak is recovered by the SNP phylogenies. As the SNP dataset reflects a 

fairly random sample of the entire nuclear genome, the monophylly of these taxa suggests 

substantial realized divergence despite recent allopatry and shared Cytb haplotypes. Furthermore, 

I explicitly tested alternative hypotheses of species limits through Bayes Factor species 

Delimitation, the results of which strongly supported the species designations of S. pribilofensis, 

S. ugyunak, and S. portenkoi over alternate species delimitation models. As the coalescent Cytb 

gene tree largely reflects the SNP phylogenies, just at lower resolution, it is likely that the shared 

haplotypes between S. jacksoni and S. camtschatica also reflect incomplete lineage sorting and 

that the monophyly of these taxa would be recovered based on nuclear SNPs. However, without 

this data their monophyly cannot be recovered conclusively.  
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Distinct evolutionary trajectories 

Analysis of multiple independent genetic datasets, under phylogenetic and population 

genetic frameworks, points towards distinct evolutionary trajectories for each currently 

recognized species of the Beringian clade included in this thesis, despite varying levels of 

genetic differentiation and phylogenetic divergence. Under the phylogenetic species concept, S. 

pribilofensis, S. ugyunak, and S. portenkoi represent distinct species, as the SNP data shows they 

are reciprocally monophyletic and independently evolving. Given the near monophyly of S. 

camtschatica and S. jacksoni based on the coalescent Cytb gene tree, and similar, if not higher, 

levels of differentiation in comparison to S. ugyunak and S. portenkoi, I suggest that these taxa 

continue to be recognized as distinct species as well. There remains the argument that were any 

of these five species to come in contact with each other they would be able to interbreed, as is 

often the case when species evolve in allopatry (Coyne & Orr, 1989; Matute & Cooper, 2021). If 

this were to be the case, then under the biological species concept it could be argued that these 

taxa don’t represent distinct species, but only subspecies or independent populations of a single 

species. However, given the degree of geographic isolation (across continents and highly isolated 

islands), these terrestrial species are not naturally able to come in contact with each other unless 

sea levels are again lowered during a glacial phase (increasingly unlikely given anthropogenic 

global warming and associated rising sea levels; Stocker et al., 2013), or individuals are 

introduced across barriers either intentionally or otherwise. The exception to this is S. portenkoi 

and S. camtschatica, which are both distributed in Far East Asia. In the case of these two species, 

however, their distinctness remains clear despite the potential for sympatry and interbreeding; S. 

portenkoi remains monophyletic across both Cytb and SNP phylogenies, and S. camtschatica 

appears to be more closely related to S. ugyunak (from Alaska) based on both population genetic 

and phylogenetic analyses. Because of such strict geographic isolation between the majority of 
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the species in the Beringian clade, any potential ability of these species to interbreed is largely 

irrelevant, as each species continues on its unique and independent evolutionary trajectory. 

Given all the evidence, I recognize Beringian shrews of the cinereus complex as 

independent species. Reciprocal monophyly was recovered based on thousands of SNPs for the 

species analyzed, in accordance with the phylogenetic species concept, which describes species 

as monophyletic groups derived from a common ancestor and which possess a set of diagnosable 

synapomorphies (Baum & Donoghue, 1995). More importantly, even considering polyphyly of 

some taxa based on a mtDNA gene, these shrews are experiencing independent evolutionary 

trajectories. This satisfies the basic tenet of the unified species concept (deQuieros, 2005), which 

allows for situations, such as this, where the rigidity of more traditional species concepts falls 

short of accounting for complex biological realities.  

 

Conclusions 

There is increasing evidence that periodic climate cycling of the Quaternary has had a 

heavy influence on species distributions throughout the northern hemisphere (Avise et al., 1998; 

Hewitt, 2000; Hewitt, 2004). While early phylogeographic studies have shown divergence 

through refugia during glacial periods (Comes & Kadereit, 1998; Taberlet et al., 1998), this study 

provides an example of exceptionally rapid speciation in a mammalian system during the present 

interglacial (Holocene), and at maximum within the timeframe of the last glacial maximum (<20 

kyr). In particular, I provide evidence for the rapid speciation and subsequent loss of most intra-

specific variation within S. pribilofensis following recent island isolation. As a federally 

recognized endangered species, the findings of this study warrant its continued population 

monitoring and federal protection. In addition to allowing for timely identification of possible 

population declines, continued research on S. pribilofensis will provide further insight into not 
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only the dynamics of its own evolutionary trajectory, which will inform conservation practices, 

but on the evolutionary response of small-island endemics to past and current environmental 

change. A promising future line of research is whole genome sequencing, which is becoming 

increasingly tractable for non-model organisms (Ellegren, 2014; Jones & Good, 2016), and could 

shed further light on the evolutionary trajectory of S. pribilofensis in addition to providing 

insight into species’ response to island isolation at functional regions of the genome. As 

biodiversity worldwide responds to accelerating anthropogenic climate change, knowledge of 

evolutionary responses to past dramatic environmental change will become increasingly 

imperative for effective conservation strategies (Colella et al., 2020; Hoffmann & Sgrò, 2011). 

This study provides evidence for rapid evolutionary change within a mammalian system in 

response to climate cycling of the late Quaternary and highlights the unique evolutionary 

trajectory of an endangered island endemic in the face of continued environmental change.  
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 Figures 

 

Figure 2.1 Distribution of shrews included in this study 
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Figure 2.2 ddRADseq parameter selection 

Selection of parameters for denovo assembly in Stacks v2.54. (a) Increasing the value of the M 

and n parameters, while holding the m parameter constant at 3, increases the number of 

identified loci until M=n=4. (b) The percentage of loci assembled, categorized by the number of 

SNPs per locus, plateaus around M=n=4. Before M=n=4, a high percentage of loci with 0-2 

SNPs are assembled, but a low percentage of loci with 3-9+ are assembled. M=n=4 optimizes the 

number of loci assembled. 
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Figure 2.3 Read depth per SNP locus 

Distribution of read depth per locus after initial quality filters for shrews included in SNP 

dataset. Average read depth=15.75. First three letters indicate species (SCI=S. cinereus; SPB=S. 

pribilofensis; SPO=S. portenkoi; SUG=S. ugyunak), and following specimen numbers are 

coincident with Table A1. 
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Figure 2.4 Microsatellite DAPC 

DAPC scatter plots based on the microsatellite dataset. The cumulative variance explained by the 

7 principle components retained for this analysis is shown in the top right of each plot. (a) DAPC 

using the first and second principle components; (b) DAPC using the third and fourth principle 

components. 

(a) 

(b) 
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Figure 2.5 SNP DAPC 

DAPC scatter plots based on the SNP dataset. The cumulative variance explained by the 3 

principle components retained for this analysis is shown in the top left of each plot. (a) DAPC 

using the first and second principle components; (b) DAPC using the first and third principle 

components. 

 (a) 

(b) 
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Figure 2.6 Microsatellite Structure plots 

Structure plots based on the microsatellite dataset. Each color corresponds to a distinct genetic 

cluster, and each bar represents the proportion of each individual’s genotype to each cluster. 

(top) Structure plot for most likely number of genetic clusters, K=3; (bottom) Structure plot for 

second most likely number of genetic clusters, K=5.  
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Figure 2.7 SNP Structure plots 

Structure plots based on the SNP dataset. Each color corresponds to a distinct genetic cluster, 

and each bar represents the proportion of each individual’s genotype to each cluster. (top) 

Structure plot for most likely number of genetic clusters, K=3; (bottom) Structure plot for 

second most likely number of genetic clusters, K=5. Note that for K=5, no measurable portion of 

any individual was assigned to the fifth cluster, so K=5 essentially reflected 4 clusters. 
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Figure 2.8 Cytb RAxML phylogeny 

Maximum likelihood phylogeny produced with RAxML for the Cytb gene. Specimen numbers 

are coincident with Table A1. Branch labels indicate the percentage of bootstraps that support 

the subsequent clade. Bootstrap percentages <80 for minor clades are not shown and major 

unlabeled nodes are only weakly supported. 

S. pribilofensis 

S. ugyunak 

S. portenkoi 

S. jacksoni 

S. cinereus 

S. camtschatica 
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Figure 2.9 Cytb BEAST2 phylogeny 

Bayesian coalescent phylogeny produced with BEAST 2 for the Cytb gene. Specimen numbers 

are coincident with Table A1. Branch labels indicate posterior probability support. Posterior 

probabilities <0.80 for minor clades are not shown and major unlabeled nodes are only weakly 

supported. 

S. ugyunak 

S. portenkoi 

S. jacksoni 

S. cinereus 

S. camtschatica 

S. pribilofensis 
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Figure 2.10 SNP RAxML phylogeny 

Maximum likelihood phylogeny produced with RAxML for the SNP dataset. Specimen numbers 

are coincident with Table A1. Branch labels indicate the percentage of bootstraps that support 

the subsequent clade. Bootstrap percentages <80 for minor clades are not shown and major 

unlabeled nodes are only weakly supported. 

S. pribilofensis 

S. ugyunak 

S. portenkoi 

S. cinereus 
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Figure 2.11 SNP SVDquartets phylogeny 

Coalescent phylogeny produced with SVDquartets for the SNP dataset. Specimen numbers are 

coincident with Table A1. Branch labels indicate the percentage of bootstraps that support the 

subsequent clade. Bootstrap percentages <80 for minor clades are not shown and major 

unlabeled nodes are only weakly supported. Branch lengths correspond to bootstrap support. 

S. pribilofensis 

S. ugyunak 

S. portenkoi 

S. cinereus 
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Figure 2.12 SNP Bayesian phylogeny 

Bayesian coalescent species-tree phylogeny produced with SNAPP for the SNP dataset. Each 

node represents eight randomly selected individuals for that taxon. Branch labels indicate 

posterior probability support. 
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 Tables 

Table 2.1 Shrew sample sizes 

Number of individuals of each species included in the three genetic datasets. 

 

 

 

 

 

 

 

 

 

 

Table 2.2 ddRADseq missing data 

Average proportion of missing data per species for the SNP dataset after all quality filters. 

 

 

 

 

 

  

Species Microsatellite Cytochrome b SNP 

Sorex camtschatica 5 7 0 

Sorex cinereus 14 14 15 

Sorex jacksoni 6 7 0 

Sorex portenkoi 13 13 10 

Sorex pribilofensis 22 43 44 

Sorex ugyunak 19 20 21 

Total 79 104 90 

Species Average proportion of missing data per individual 

Sorex cinereus 20.9987% 

Sorex pribilofensis 5.3320% 

Sorex portenkoi 5.4734% 

Sorex ugyunak 5.4832% 
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Table 2.3 Species delimitation models 

Species delimitation models tested through Bayes Factor species Delimitation. 

 

  

Species model Species 1 Species 2 Species 3 Species 4 Rational 

Four-species S. cinereus S. pribilofensis S. portenkoi S. ugyunak 
current 

taxonomy 

Three-species S. cinereus S. pribilofensis 
S. portenkoi 

+ S. ugyunak 
 

structure 

clustering 

results 

Two-species S. cinereus 

S. pribilofensis 

+S. portenkoi 

+S. ugyunak 

  

shallow 

divergence 

within 

Beringian clade 
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Table 2.4 Microsatellite genetic differentiation 

Genetic differentiation measures based on the microsatellite dataset. (a) Pairwise FST values; (b) 

pairwise GST values; (c) pairwise Jost’s D values. Species codes: SOCT= S. camtschatica SOCI= 

S. cinereus SOJA= S. jacksoni SOPO= S. portenkoi SOPB= S. pribilofensis SOUG= S. ugyunak 

 

(a) SOCT SOCI SOJA SOPO SOPB SOUG 

SOCT -      

SOCI 0.256 -     

SOJA 0.110 0.352 -    

SOPO 0.091 0.259 0.151 -   

SOPB 0.538 0.593 0.659 0.557 -  

SOUG 0.028 0.239 0.154 0.099 0.487 - 

 

(b) SOCT SOCI SOJA SOPO SOPB SOUG 

SOCT -      

SOCI 0.153 -     

SOJA 0.061 0.218 -    

SOPO 0.051 0.150 0.083 -   

SOPB 0.373 0.423 0.483 0.386 -  

SOUG 0.019 0.137 0.087 0.053 0.323 - 

 

(c) SOCT SOCI SOJA SOPO SOPB SOUG 

SOCT -      

SOCI 0.814 -     

SOJA 0.188 0.872 -    

SOPO 0.232 0.808 0.270 -   

SOPB 0.673 0.928 0.695 0.759 -  

SOUG 0.092 0.809 0.314 0.269 0.639 - 
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Table 2.5 Cytb genetic differentiation 

Genetic differentiation measures based on the Cytb dataset. (a) Pairwise FST values; (b) percent 

haplotype divergence values. See Table 2.4 for species codes. 

 

(a) SOCT SOCI SOJA SOPO SOPB SOUG 

SOCT -      

SOCI 0.802 -     

SOJA 0.465 0.852 -    

SOPO 0.507 0.889 0.551 -   

SOPB 0.668 0.889 0.715 0.801 -  

SOUG 0.401 0.847 0.438 0.061 0.538 - 

 

(b) SOCT SOCI SOJA SOPO SOPB SOUG 

SOCT -      

SOCI 5.57 -     

SOJA 0.44 5.74 -    

SOPO 0.37 5.82 0.41 -   

SOPB 0.89 5.82 1.01 0.69 -  

SOUG 0.34 5.67 0.31 0.23 0.67 - 
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Table 2.6 SNP genetic differentiation 

Genetic differentiation measures based on the SNP dataset. (a) Pairwise FST values; (b) pairwise 

GST values; (c) pairwise Jost’s D values. See Table 2.4 for species codes. 

 

(a) SOCI SOPO SOPB SOUG 
 

(b) SOCI SOPO SOPB SOUG 

SOCI -    
 

SOCI -    

SOPO 0.737 -   
 

SOPO 0.586 -   

SOPB 0.817 0.684 -  
 

SOPB 0.692 0.52 -  

SOUG 0.721 0.223 0.59 - 
 

SOUG 0.565 0.127 0.419 - 

 

(c) SOCI SOPO SOPB SOUG 

SOCI -    

SOPO 0.402 -   

SOPB 0.428 0.107 -  

SOUG 0.395 0.034 0.090 - 

 

 

Table 2.7 Species delimitation 

Comparison of alternate species models using Bayes Factor species Delimitation. 

MLE=marginal likelihood estimate, BF=Bayes factor, calculated as BF = 2 × (MLE1 – MLE2). 

Positive BF values greater than 10 indicate strong support for Model 1. 

 

Model 1 Model 2 MLE1 MLE2 BF 

Four-species Three-species -55,331.93 -59,614.98 8,566.10 

Four-species Two-species -55,331.93 -70,686.30 30,708.74 
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Chapter 3 - Genetic drift drives differentiation of an endangered 

insular shrew (Sorex pribilofensis) 

 Introduction 

Islands are hotspots of biodiversity and endemism. Marine islands make up only 5.3% of 

the world’s total land area, but harbor a disproportionately large amount of the world’s species 

(Tershy et al., 2015). However, island species are also vulnerable to anthropogenic 

environmental changes, which present multiple stressors, including invasive species, habitat loss, 

climate change, industrial and urban development, disease, and overexploitation (Leclerc et al., 

2018; Russell & Kueffer, 2019). This has led to the disproportionate extinction of island species, 

accounting for 61% of all documented extinctions (Tershy et al., 2015). For those island species 

that persist today, half are recognized as at some risk of extinction, and island species account for 

37% of all critically endangered species (Leclerc et al., 2018; Tershy et al., 2015). The 

biodiversity of land-bridge islands are particularly vulnerable to current global change, as a result 

of their unique evolutionary ecology stemming from fragmentation followed by long-term 

isolation (Stuart et al., 2012). Because land-bridge island populations were once part of a more 

broadly distributed community across some mainland areas prior to island isolation, their natural 

history is distinct from that of populations occurring on oceanic islands, which were never 

connected to a mainland. While the evolutionary history of oceanic island biodiversity is one of 

colonization and new community interactions, land-bridge island biodiversity instead has a 

history of ongoing faunal and floral relaxation (species loss) as communities adjust to new 

biogeographic equilibria following initial isolation (Lomolino, 2000).  

The same evolutionary processes that lead to high levels of endemism and unique 

biodiversity connections on land-bridge islands also leave these species vulnerable. From an 
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evolutionary standpoint, these dynamics include divergent selection, genetic drift, and potential 

gene flow among isolated land-masses. For non-volant island species, both divergent selection 

and genetic drift may often act unimpeded by gene flow with mainland populations, due to a lack 

of immigration. In the absence of gene flow, both divergent selection and genetic drift can be 

expected to contribute to rapid divergence and eventual speciation of land-bridge island 

populations following initial isolation (Fisher, 1958). Therefore, an understanding of how these 

very different evolutionary mechanisms have shaped insular faunal assemblages in the past will 

be critical for predicting their responses to ongoing environmental change. 

Divergent selection facilitates genetic differentiation between populations through 

adaptation to local conditions (Fisher, 1958). This allows for adaptive evolution of land-bridge 

island populations in response to distinct island environments. Adaptive evolution of isolated 

taxa is evident through many striking examples (e.g. finches, Grant, 2002; anole lizards, Losos, 

1998; cichlid fishes, Terai et al., 2006). Genetic divergence due to local adaption to island 

environments is generally expected, as marine islands in general are environmentally distinct 

from the mainland (Weigelt et al., 2013). A common driver of this distinctness is climate, as 

island climates can be strongly influenced by their position to ocean currents, as well as by 

elevation and topography (Spalding et al., 2007). While adaptation to island climates promotes 

divergence and leads to the unique biodiversity of islands, it also leaves island species at risk if 

the climate were to rapidly change from specific historic conditions, because island species 

cannot respond by range-shifting, and must instead quickly adapt or persist through plasticity if 

they are to survive. Island environments are also distinctive in that the biotic community is 

typically less diverse than on mainland areas through the process of faunal (or floral) relaxation 

(Brown, 1978; Lomolino et al., 1989; Patterson, 1987). Species adapt to a lifestyle of interactions 
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with often only a small subset of more diverse mainland communities, and these interactions are 

often generalized and mutualistic (Kaiser-Bunbury et al., 2010). However, evolution in the 

presence of only few predators, competitors, and pathogens leaves island endemics vulnerable to 

invasive species, which can quickly lead to extinction of native species upon introduction to 

island systems. The process of divergent selection thereby facilitates rapid speciation on land-

bridge islands, but can leave species vulnerable to rapid environmental changes. 

Genetic drift can be just as powerful as divergent selection in the evolution of land-bridge 

island taxa (Funk et al., 2016; Jordan & Snell, 2008; Prentice et al., 2017; Toczydlowski & 

Waller, 2019). This is because the strength of genetic drift is inversely related to effective 

population size (Ne), which for a number of reasons is often small for land-bridge island taxa 

(Charlesworth, 2009; Frankham, 1997a). First, founder effects of the initial isolated population, 

as a subset of the mainland population, can lead to a small Ne through low genetic variation in 

the initial gene pool. Additionally, the relatively small size of islands compared to the mainland 

often results in declines in census size following isolation, which can reduce genetic variability 

through repeated and potentially large fluctuations in census size and subsequent genetic 

bottlenecks (Nei et al., 1975). So, due to small effective population sizes through founder effects, 

bottlenecks, and/or large fluctuation in census size, genetic drift can act strongly in island 

populations (Woolfit & Bromham, 2005). This can result in the rapid fixation of existing alleles 

and an overall reduction in genetic variability, and possibly lead to non-adaptive divergence and 

even speciation from mainland populations (Frankham, 1997a; Funk et al., 2016). However, this 

can put island endemics at risk in the face of rapid environmental change, as genetic variability is 

the raw material through which adaptive change can occur. Genetic drift can thereby contribute 

to rapid divergence of land-bridge island populations, while also leaving them with reduced 
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genetic variability and limited ability to adapt to new environmental conditions (Agashe et al., 

2011; Reed & Frankham, 2003).  

The influences of genetic drift and divergent selection on the differentiation of island taxa 

are not independent of each other (Funk et al., 2016; Ohta, 1992). Given strong enough selective 

pressure, adaptive change can occur even when effective population sizes are relatively low 

(Clegg et al., 2002). Alternatively, when effective population sizes are exceedingly low, it is 

difficult for adaptive change to take place in the face strong genetic drift (Charlesworth, 2009). 

This means that divergent selection and genetic drift can simultaneously shape the differentiation 

of island taxa, and we can make predictions about which evolutionary force will predominate 

given island conditions. For taxa isolated on small islands, which experience no gene flow, have 

gone through bottlenecks, and/or experience large fluctuations in census size, we can predict that 

the contribution of genetic drift to observed differentiation is large relative to that of divergent 

selection. Due to low Ne in this scenario, selection only overcomes the effects of genetic drift for 

loci under extreme selective pressure (Ohta & Tachida, 1990). Alternatively, for taxa isolated on 

large islands, which may experience gene flow, have not gone through severe bottlenecks, and/or 

have steady census sizes, we can predict that divergent selection has been the predominant 

contributor to any observed differentiation  (Heaney, 2000). Due to high Ne in this scenario, 

selection is effective even when selective pressure is small, and it is unlikely for alleles to drift 

far from their starting frequencies (Ohta & Tachida, 1990). So under this framework, knowledge 

of island conditions and species demographics can inform predictions about the predominant 

evolutionary force leading to the differentiation of land-bridge island taxa. 

Islands in the Bering Sea represent a classic system of land-bridge island evolution. 

Through the Quaternary there has been a cycle of sea level oscillations which have alternately 
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connected Alaska and Siberia through the Bering Isthmus and then disconnected the continents 

leaving only island remnants of the land bridge (Bintanja et al., 2005). Glacial-interglacial 

cycling in the Beringian region has thereby greatly influenced species distributions through 

changes in sea level and the creation of isolated refugia. Throughout the Quaternary, glaciers and 

continent-wide ice sheets extended from polar regions as far south as the conterminous United 

States in North America, but Beringia remained largely ice-free during both glacial and 

interglacial phases. As such, Beringia acted as a single large refugium for terrestrial fauna and as 

a route for interchange between Alaska and Siberia during glacial periods (Brigham-Grette et al., 

2003). During interglacial phases, multiple smaller insular refugia formed throughout the Bering 

Sea, such as at present. From an evolutionary perspective, these isolation-reconnection dynamics 

had dramatic impacts on the phylogeography and population genetics of terrestrial fauna (Sher, 

1999). 

 Beringian climate cycling has heavily influenced the phylogeographic history of the 

Sorex cinereus complex of shrews (hereafter cinereus complex; Hope et al., 2012). Members of 

the cinereus complex are wide-ranging, occurring throughout most of North America and into 

Siberia (western Beringia). This species complex currently consists of 13 species of the subgenus 

Otisorex (Hutterer, R., 2005), broken up into Beringian (the focus of my thesis) and Southern 

clades (Table 3.1; van Zyll de Jong, 1991; Demboski & Cook, 2003). The phylogeography of the 

Beringian clade is best characterized by allopatric divergence, followed by range expansion 

and/or reduction, as a result of geographic isolation. Initial divergence within the Beringian clade 

occurred between the mid-latitude taxa and high-latitude taxa, when the ancestral form of the 

high-latitude taxa expanded northward into Beringia during the Sangamon interglacial (~130 

kya), following glacial retreat. The ancestral form of the high-latitude taxa tracked the recession 
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of tundra habitat as boreal forests expanded north, which ultimately form a forest barrier between 

the high-latitude and mid-latitude taxa. The onset of the Wisconsinan glacial (~74 kya) would 

have further isolated the ancestral form of the high-latitude taxa in the large Beringian refugium, 

and allowed expansion of shrews across the land bridge into Siberia. Since the last glacial 

maximum (LGM; ~20 kya), a warming climate and rising sea levels led to the isolation of 

populations of this ancestral form on St. Paul Island (~14 kya), St. Lawrence Island (~8 kya), 

Paramushir Island (~8-20 kya), and on either side of the Bering Strait (~11 kya) (Guthrie, 2004; 

Graham et al., 2016; Jakobsson et al., 2017). Concurrently, the warming climate and glacial 

recession restricted tundra habitat to higher latitudes as boreal forests expanded northward. Sorex 

ugyunak, isolated on the eastern side of the Bering strait, tracked the northern recession of tundra 

habitat, while western populations of Sorex cinereus (sensu stricto) expanded northward into 

Alaska with the advance of forest habitat. 

 In this chapter I make use of a multilocus genomic dataset of microsatellites, 

mitochondrial cytochrome b sequences, and ~11,000 single nucleotide polymorphisms (SNPs), 

to investigate the contributions of genetic drift and divergent selection to species differentiation 

in this system. I predict that as a result of the repeated and rapid geographic isolation of ancestral 

shrews in Beringia (on islands and separate continents), genetic drift has had a strong role in 

overall species differentiation. I also predict that due to small island size and complete isolation 

with no gene flow, Sorex pribilofensis in particular has experienced strong genetic drift, and that 

this has been the driving force in its genetic differentiation from mainland shrews. If true, this 

would have severe implications for future persistence of this species, given that significant 

fixation through the genome as a result of drift would limit its ability to exhibit an adaptive 

response to ongoing change. To test these predictions, I first analyze genome-wide SNP data to 
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detect loci under selection and investigate the contribution of selectively neutral versus non-

neutral loci to species differentiation within this system (as opposed to explicitly investigating 

speciation based on all available loci, as reported in Chapter 2). I then compare the levels of 

genetic diversity of Sorex pribilofensis to sister taxa, estimate contemporary effective population 

sizes, and infer demographic changes over time across all included species. I then conduct linear 

regression analyses to test the prediction that genetic drift has led to the observed genetic 

differentiation in this system overall. Finally, I further test the prediction that Sorex pribilofensis 

has differentiated primarily through genetic drift by comparing its genetic differentiation from 

mainland shrews at the loci most impacted by drift to its differentiation at the loci least impacted 

by drift. 

 

 Methods 

Sample collection and preparation of genetic markers 

The individual shrews analyzed in this chapter are the same as those used in Chapter 2 

(Table 2.1; Fig. 2.1; Table A1). The microsatellite, Cytb, and SNP datasets generated through 

methods detailed in Chapter 2 are further analyzed in this chapter to test predictions about the 

contributions of divergent selection and genetic drift in this species complex. After filtering each 

dataset for quality, the final microsatellite dataset included 17 loci for 79 individuals across 6 

species, the Cytb dataset included 855-1140 bp sequences for 104 individuals across 6 species, 

and the SNP dataset included 11,989 polymorphic SNPs for 90 individuals across 4 species. 

 

Detection of loci under selection 

To conduct population genetic analyses and to investigate the roles of genetic drift and 

natural selection in this system, datasets of putatively neutral loci (hereafter: neutral dataset) and 
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loci presumably under selection (hereafter: non-neutral dataset) were required. To this end, I 

identified candidate loci under selection within the SNP dataset using two methods, Bayescan 

(Foll & Gaggiotti, 2008) and the R package PCadapt (Luu et al., 2017). Both Bayescan and 

PCadapt rely on population differentiation to identify candidate loci under selection. However, 

exploratory analyses showed virtually no population differentiation within S. pribilofensis. 

Additionally, I was unable to identify any loci under divergent selection in pairwise comparisons 

between S. pribilofensis and the other three species, possibly due to high background pairwise 

FST rates that could conceal even high differences in allele frequencies between species, the 

indicator of positive selection via this analysis. So in order to identify candidate loci within the 

three members of the Beringian clade, I treated S. pribilofensis, S. portenkoi, and S. ugyunak as 

three subunits of one larger evolutionary unit, considering that they are sister taxa and share a 

common ancestor based on genetic evidence from both mitochondrial and nuclear data. To 

identify candidate loci under selection between only these three species, S. cinereus (the 

outgroup taxon) was first removed from the dataset and SNPs that were monomorphic within the 

other three species were excluded, leaving 5,831 polymorphic SNPs for analysis of potential 

selection. Conservatively, only loci detected by both Bayescan and PCadapt were retained for 

the non-neutral dataset and only loci identified by neither method were retained for the neutral 

dataset.  

Bayescan v2.1 was run with 20 pilot runs of 5,000 generations, followed by 100,000 

generations and an additional burn-in of 50,000 iterations (for a total of 150,000 generations). 

The prior odds for the neutral model were set at 10 and candidate loci were identified using a 

false discover rate (FDR) of 0.1. Given I was primarily concerned with creating the neutral 

dataset, I set these values to err on the side of including false positives in the non-neutral dataset, 
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as opposed to setting conservative values which might leave true loci under selection in the 

neutral dataset. False positives in the non-neutral dataset were then mitigated by only including 

loci identified by both Bayescan and PCadapt. 

PCadapt v4.3.3 detects outlier loci based on principal component analysis (PCA) by 

assuming that loci excessively related with population structure are candidates for local 

adaptation. After examining the scree plot and PCA plots, I kept only the first 2 principal 

components, as they were sufficient to describe the relevant structure between the three species 

(Fig. 3.1). Candidate loci under selection were identified after first transforming p-values to q-

values and using a FDR of 0.05.          

 

Contributions of selection and genetic drift to species structure 

To investigate the relative roles of divergent selection and genetic drift in the evolution of 

these shrews, I characterized species structure separately for both the non-neutral and neutral 

SNP datasets. I had two predictions regarding the contribution of these evolutionary processes to 

the observed species structure in this system. If the main process leading to the observed species 

structure is divergent selection (adaptation of each species to their local environments), I 

expected to find distinct species structure in the non-neutral dataset and less distinct species 

structure in the neutral dataset. Alternatively, if genetic drift has played a major role in leading to 

the observed species structure, I expected to see distinct species structure in both the neutral and 

non-neutral datasets. Due to the inherent nature of the non-neutral dataset (comprised of the 

SNPs most significantly associated with species structure) I expected to observe structure 

between species based on these loci regardless of the evolutionary contribution of adaptive 

selection in this system. The main difference between these scenarios is the expected species 

structure within the neutral dataset. However, I acknowledge that distinct structure from both 
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datasets may indicate that both selection and drift have played significant roles. For both 

datasets, the species structure was characterized with DAPC and Structure, in all cases following 

the same steps as outlined previously (in Chapter 2) for the total SNP dataset. 

 

Testing the role of genetic drift within this system of shrews 

Genetic drift is strongest in populations with small effective population sizes, that have 

gone through bottlenecks, and/or exhibit founder effects (Charlesworth, 2009; Dobzhansky & 

Pavlovsky, 1957). One of the major consequences of strong genetic drift is the reduction of 

genetic variability at any given locus due to random fluctuations of allele frequencies (Wright, 

1931). In the most extreme case these random fluctuations lead to the random fixation of one 

allele and the loss of all other alleles. Therefore, two main predictions stem from the hypothesis 

that strong genetic drift has led to the observed species differentiation in this system; (1) we 

would expect island shrew species to exhibit smaller effective population sizes and have less 

genetic variability than mainland shrew species, and (2) we would expect a negative relationship 

between estimates of intraspecific genetic variability (indices of genetic drift) and the degree of 

interspecific genetic differentiation (Chakraborty & Nei, 1977; Funk et al., 2016; Jordan & Snell, 

2008).  

To test the first prediction, I compared the contemporary effective population sizes and 

demographic histories of each shrew species represented in the SNP dataset. Contemporary 

effective population sizes (Ne) were estimated in NeEstimator v2.1 using the linkage 

disequilibrium method and assuming random mating (Do et al., 2014). As this method assumes 

that markers are selectively neutral, I estimated Ne using only the microsatellite and neutral SNP 

datasets. I estimated Ne separately for each species and quantified the uncertainty with 

jackknifed 95% confidence intervals. 
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 Demographic histories for each species were inferred in Stairway Plot v2.0 (Liu & Fu, 

2020). This method is based on the SNP frequency spectrum (SFS) and does not assume 

selectively neutral markers. Additionally, this method allows for folded SFS, thereby not 

requiring the ancestral alleles of SNPs and making it ideal for non-model organisms. To create 

the SFS for each species, the cleaned and trimmed reads generated by the process_radtags 

module in Stacks v2.54 were aligned to the Sorex araneus reference genome with the software 

package BWA (Li & Durbin, 2009). Maximum likelihood (ML) estimation of the folded SFS for 

each species was then computed in ANGSD v0.933 (Korneliussen et al., 2014) under a 

SAMtools model. To be processed all reads had to have a mapping quality (MapQ) score of 25 

or higher. From there, all sites had to be present in at least 80% of individuals of the given 

species and have a base quality score of 13 or higher. These filters retained 835,377 sites for S. 

pribilofensis, 795,092 sites for S. cinereus, 837,805 sites for S. ugyunak, and 855,837 sites for S. 

portenkoi. The folded SFS for each species was used to infer changes in effective population 

sizes over time. For each species I assumed an average generation time of 1 year (Hope et al., 

2010). In the absence of direct estimates of Sorex mutation rates for the nuclear genome I used 

the default setting of 1.2x10-8 per site per generation, a value similar to those estimated for other 

mammals (Campbell et al., 2012; Kumar & Subramanian, 2002; Liu et al., 2014; Roach et al., 

2010; The 1000 Genomes Project Consortium, 2010) and used in other demographic history 

analyses of mammals with unknown mutation rates (Benazzo et al., 2017; Beynon et al., 2015; 

Hansen et al., 2018; MacLeod et al., 2013). Median effective population sizes and 95% 

confidence intervals were estimated based on 200 bootstrap replicate analyses.  

To finish testing the first prediction, I compared measures of genetic variability for the 

microsatellite, Cytb, and total SNP datasets. For the microsatellite dataset, observed 
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heterozygosity (Ho), expected heterozygosity (He), allelic richness (Ar), and FIS were estimated 

using the R packages adegenet (Jombart, 2008), hierfstat (Goudet, 2005), and PopGenReport 

(Adamack & Gruber, 2014). For the Cytb dataset, nucleotide diversity (π) and haplotype 

diversity (Hd) were estimated in DnaSP v6.12 (Rozas et al., 2017). For the SNP datasets, π and 

FIS were estimated in Stacks v2.54 (Rochette et al., 2019), and Ho, He, and Ar were estimated 

with the R packages adegenet (Jombart, 2008), hierfstat (Goudet, 2005), and dartR (Gruber et 

al., 2018). While genetic drift may impact any locus, it is capable of acting strongest on loci 

evolving in the absence of or under weak selection (i.e. putatively neutral loci) (Ohta & Tachida, 

1990; Ohta, 1992). I therefore also estimated the same measures of genetic variability (excluding 

FIS) for the neutral SNP dataset as I did for the total SNP dataset. 

 To test my second prediction, that drift has resulted in differentiation through the loss of 

genetic variability, I analyzed the neutral SNP dataset and microsatellite dataset. For the neutral 

SNP dataset, I used three measures of genetic variability (Ho, He, Ar), estimated as described 

above. Similarly, I used three measures of genetic differentiation (Nei’s FST, Nei’s GST, Jost’s 

D), which were estimated using the neutral dataset in the R packages mmod (Winter, 2012) and 

hierfstat (Goudet, 2005). This method of comparing differentiation and diversity assumes that 

intraspecific genetic variability is a reasonable index of the magnitude of historical drift, which 

should be true given that geographical isolation has restricted gene flow in this system. 

Therefore, gene flow is not expected to contribute to intraspecific genetic variability. To remove 

the possibility of time since divergence contributing to the observed genetic differentiation 

between species, only pairwise estimates of genetic differentiation between each of the three 

Beringian shrews (S. pribilofensis, S. ugyunak, and S. portenkoi) and S. cinereus were used, as 

current and previous (Demboski & Cook, 2003; Hope et al., 2012) phylogenetic analyses have 
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shown S. cinereus to be an outgroup to the Beringian clade. Additionally, I have minimized 

potential influence of selection on observed genetic differentiation by using the neutral dataset. I 

then performed linear regression analyses in RStudio v1.3.1093 (RStudio Team, 2020), with 

each measure of interspecific genetic differentiation (FST, GST, Jost’s D) as a response variable 

and each measure of intraspecific genetic variability (Ho, He, Ar) as an explanatory variable, for 

a total of nine separate regression analyses. To account for the multiple hypothesis testing 

inherent to this approach, I adjusted the p-values to control for false discovery using the BH 

method (Benjamini & Hochberg, 1995).  

 I repeated these analyses using the microsatellite dataset for the same three measures of 

genetic variability (Ho, He, Ar) and the same three measures of genetic differentiation (FST, GST, 

Jost’s D), which were estimated using the R packages hierfstat (Goudet, 2005) and mmod 

(Winter, 2012). I again used only the pairwise estimates of genetic differentiation between each 

Beringian species and S. cinereus to control for time since divergence, and again adjusted the p-

values as described above. 

 

Testing the role of genetic drift in the speciation of Sorex pribilofensis 

The two predictions described above relate to the role of genetic drift in this system of 

shrews overall. A third prediction stems from the hypothesis that genetic drift due to insular 

isolation was the primary driver of rapid divergence for S. pribilofensis. Namely, if genetic drift 

was the primary factor in its speciation, then I expect to see higher differentiation at loci most 

impacted by drift, and lower differentiation at loci least impacted drift. This would indicate that 

without the effects of drift, S. pribilofensis would be less differentiated. Based on current and 

previous (Demboski & Cook, 2003; Hope et al., 2012) phylogenetic analyses, S. pribilofensis, S. 

ugyunak, and S. portenkoi are known to have differentiated from a common ancestral form, with 
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S. pribilofensis being the first to diverge. Given that any potentially non-neutrally evolving SNP 

was removed to create the neutral SNP dataset, it is a fair assumption that allele frequencies of 

the neutral SNPs have mostly been influenced by drift in the absence of selection. In the absence 

of strong selection and gene flow, these neutral SNPs should all experience genetic drift at a 

relatively equal rate (Ohta & Tachida, 1990; Wright, 1931). However while this rate should be 

equal within each species, it will vary between species, because the strength of genetic drift is 

related to the effective population size (Charlesworth, 2009). Given enough time and the absence 

of other evolutionary forces, the result of drift is the fixation of alleles. However, at any given 

timepoint, some alleles will remain unfixed through random chance. So, at a given timepoint, the 

most extreme result of drift is the random fixation of one allele and the loss of all other alleles.  

However, due to the random nature of genetic drift, allele frequencies for each SNP should be 

largely independent, meaning that while some alleles may have drifted to fixation, some, through 

chance, will have retained variability. Therefore, the differentiation of S. pribilofensis should 

primarily reflect the loss of alleles due to the random effects of genetic drift acting on shared 

genetic variation across the three species. Specifically, we would expect higher interspecific 

genetic differentiation at loci that are fixed for one allele (monomorphic) within S. pribilofensis 

than at loci that are still variable (polymorphic) within S. pribilofensis.  

To test this third prediction, I first filtered the neutral SNP dataset to include only SNPs 

monomorphic within S. pribilofensis, and estimated two measures (GST, Jost’s D) of interspecific 

(S. pribilofensis vs S. portenkoi; S. pribilofensis vs S. ugyunak) genetic differentiation at these 

SNPs. I then filtered the neutral SNP dataset to include only SNPs polymorphic within S. 

pribilofensis, and estimated the same measures of interspecific pairwise genetic differentiation at 

those SNPs. In order to ensure that monomorphic SNPs within S. pribilofensis reflected fixation 
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since island isolation and not fixation within an ancestral taxon prior to island isolation, I verified 

that all monomorphic SNPs within S. pribilofensis were still polymorphic across S. portenkoi and 

S. ugyunak. Similarly, I measured genetic variability within each species for both kinds of SNP 

to verify that genetic variability was not lower within S. portenkoi and S. ugyunak at SNPs 

monomorphic within S. pribilofensis than at SNPs polymorphic within S. pribilofensis.  

To measure the uncertainty around these point estimates of genetic differentiation, I 

created 200 bootstrap samples of the neutral monomorphic SNP dataset and 200 bootstrap 

samples of the neutral polymorphic SNP dataset using the chao_bootstap function in the R 

package mmod (Winter, 2012). This function creates bootstrap samples by resampling each 

defined group according to its population size. I then measured pairwise interspecific genetic 

differentiation for each bootstrap sample and tested the distribution of each set of interspecific 

genetic differentiation values for normality. The bootstrapping function tends to have a slight 

upward bias, so I centered the distributions around the point estimate by subtracting the 

difference between the mean of each sample and the point estimate from each interspecific 

genetic differentiation estimate (as suggested by the author of mmod). As all samples had normal 

distributions, I then conducted t-tests to test whether pairwise interspecific genetic differentiation 

was different between SNPs monomorphic within S. pribilofensis and SNPs polymorphic within 

S. pribilofensis. 

 

 Results 

Detection of loci under selection 

Using the 5,831 polymorphic SNPs between S. pribilofensis, S. portenkoi, and S. 

ugyunak, Bayescan detected 15 outlier loci while PCadapt detected 568 outlier loci (Figs. 3.1, 

3.2). All 15 outlier loci detected by Bayescan were also detected by PCadapt. The 15 outlier loci 
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detected by both methods were used to create the non-neutral dataset, while the 5,263 loci that 

were not detected as outliers by either method were used to create the neutral dataset. 

 

Contributions of selection and genetic drift to species structure 

The optimal number of PCs to retain for the Discriminate Analysis of Principle 

Components (DAPC) was 3 for both the neutral and non-neutral datasets. The neutral dataset 

DAPC (Fig. 3.3) showed similar species relationships to those found using the total SNP dataset 

(Fig. 2.5). When projecting into the first and second PCs, S. portenkoi and S. ugyunak are closely 

aligned, while S. cinereus and S. pribilofensis are both independently isolated. The third PC 

provides more distinction between S. portenkoi and S. ugyunak. For the non-neutral dataset, all 

four species are spatially differentiated using only the first two principle components (Fig. 3.4). 

The most distant species based on the non-neutral dataset is S. portenkoi, as opposed to S. 

cinereus based on the neutral dataset.  

 Relationships similar to those observed in the DAPC analyses were evident in clustering 

analysis using Structure (Figs. 3.5, 3.6). For both the neutral and non-neutral SNP datasets, a 

priori species designations did not impact how individuals clustered or the most likely number of 

clusters, so here I report results for analyses without a priori species designations. The most 

likely number of genetic clusters was K=3 for both the neutral and non-neutral SNPs, but K=4 

also had a high likelihood for the neutral dataset. Similar to Structure analysis for the total SNP 

dataset (Fig. 2.7), for the neutral SNP dataset when K=3 S. cinereus and S. pribilofensis form 

distinct genetic clusters while S. portenkoi and S. ugyunak group together. However, for the 

neutral SNP dataset S. portenkoi and S. ugyunak share some genetic similarity with S. 

pribilofensis, unlike for the total SNP dataset. This pattern is also seen for K=4 for the neutral 

SNPs, as the four species group independently while S. ugyunak and some S. portenkoi 
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individuals share genetic similarity with S. pribilofensis. Different clusters are observed in 

Structure analysis of the non-neutral SNP dataset, as S. portenkoi and S. ugyunak form distinct 

clusters while S. cinereus and S. pribilofensis group together for K=3. Neither K=4 or K=5 had 

high likelihood, and neither was able to recover the four species clusters for the non-neutral SNP 

dataset.  

 

Testing the role of genetic drift in this system of shrews 

Demographic analyses – Using the linkage disequilibrium method in NeEstimator v.21, 

estimates of effective population size (Ne) for both the microsatellite and neutral SNP datasets 

were projected to infinity for most species, likely due to small sample sizes (Tables 3.2, 3.3). 

Estimates of Ne=∞ can be interpreted as the sample size being too small relative to the true 

effective population size for accurate estimation (Marandel et al., 2019; Nunziata & Weisrock, 

2018). As many shrew species have very large census sizes (Dokuchaev, 1989; Whitaker, 2004), 

the sample sizes used for Ne estimation with the linkage disequilibrium method are likely too 

small in relation to provide reliable estimates. Given a higher sample size for S. pribilofensis, 

mean Ne estimates are potentially more accurate than for the other species (microsatellite 

estimate: 18.4; neutral SNP estimate: 2106.5), however the upper bound on the 95% confidence 

interval for both estimates is infinity.  

 Demographic histories inferred in Stairway Plot v2.0 with the neutral SNP dataset 

provided higher resolution for contemporary effective population sizes and for change in Ne 

through time (Figs. 3.7-3.11). The estimated contemporary Ne for S. pribilofensis was 43.33 

(95%CI: 17.66, 928.26), the smallest of the four species represented in the neutral SNP dataset. 

Additionally, the effective population size of S. pribilofensis has been steadily shrinking since ~2 

kya, which was the inferential limit for this species given the applied mutation rate and 
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generation time. The demographic histories of S. cinereus, S. portenkoi, and S. ugyunak could be 

inferred back to ~20 kya, around the time of the last glacial maximum (LGM). S. ugyunak had 

the largest estimated contemporary effective population size (Ne=67,325; 95% CI: 10,418, 

203,365), with a demographic history of slow population decline followed by rapid growth 

around 5 kya. The relatively small population sample of S. cinereus from one general region of 

Alaska also had a large estimated contemporary effective population size (Ne=21,661; 95%CI: 

407.87, 112,217), but with a demographic history of steady population decline followed by 

possible recent growth. Aside from S. pribilofensis, S. portenkoi had the smallest estimated 

contemporary effective population size (Ne=2,879; 95%CI: 836.23, 40,706), with a demographic 

history of steady population decline since ~8 kya. Recent estimates of Ne for all species except S. 

pribilofensis were associated with broad 95% confidence intervals.  

Genetic variability – I found extremely low genetic variability across all datasets within 

S. pribilofensis; compared to sister taxa, most measurements of genetic variability were at least 

an order of magnitude lower (Tables 3.4-3.6). The highest genetic variability was recovered for 

S. cinereus, except at the microsatellite loci, where it was comparable with S. portenkoi and S. 

ugyunak. Genetic variability within the other island endemic species, S. jacksoni, was 

intermediate between S. pribilofensis and the mainland species. The inbreeding coefficient, FIS, 

was estimated to be low for all taxa based on both the microsatellite and SNP datasets. The 

highest FIS values were observed with the microsatellite dataset for S. pribilofensis (0.195) 

closely followed by S. camtschatica (0.186). Trends in genetic variability were similar for the 

total SNP dataset as for the neutral SNP dataset. Genetic variability estimates based on neutral 

SNPs are only reported for S. pribilofensis, S. portenkoi, and S. ugyunak, as they were the species 
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used to isolate the putatively neutral loci. Genetic variability estimates for these species were 

higher based on the neutral SNP dataset then the total SNP dataset. 

 Linear regressions – All linear regressions, for both the microsatellite and neutral SNP 

datasets, showed a negative relationship between genetic variability and genetic differentiation 

(Figs. 3.12, 3.13). The relationship was significant (p<0.05) for all of the regressions using the 

microsatellite dataset and for three of the regressions using the neutral SNP dataset, although all 

regressions using the neutral SNP dataset had R2 values of 0.96 or higher (Table B1). Generally, 

the relationship between genetic variability and genetic differentiation was most significant for 

the neutral SNP dataset with He as the measure of genetic variability, and for the microsatellite 

dataset with He and Ar as the measures of genetic variability. The least significant relationships 

for both datasets were based on Jost’s D as the measure of genetic differentiation, although these 

relationships were still significant for the microsatellite dataset. In all cases, the species with the 

least genetic variability (S. pribilofensis) was the most differentiated from S. cinereus, while the 

species with the most genetic variability (S. ugyunak or S. portenkoi) were among the least 

differentiated. In comparison to the other species, S. jacksoni, which is endemic to a larger island 

(St. Lawrence) that has been isolated from the mainland for less time than St. Paul Island, 

exhibited intermediate genetic variability and differentiation from S. cinereus. 

 

Testing the role of genetic drift in the speciation of Sorex pribilofensis 

Of the 5,263 SNPs in the neutral dataset, 232 were polymorphic within S. pribilofensis 

and 5,031 were monomorphic (Fig. 3.14). All of the 5,031 monomorphic SNPs within S. 

pribilofensis were still polymorphic across S. portenkoi and S. ugyunak, and genetic variability 

measures were higher for S. portenkoi and S. ugyunak at monomorphic S. pribilofensis SNPs 

than at polymorphic S. pribilofensis SNPs (Fig. 3.14; Table 3.7). At its 232 polymorphic SNPs, 
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genetic variability measures for S. pribilofensis were similar to those of S. portenkoi and S. 

ugyunak. Each pairwise genetic differentiation measure between S. pribilofensis and each of S. 

portenkoi and S. ugyunak was significantly lower (p<0.001) at polymorphic S. pribilofensis 

SNPs than at monomorphic S. pribilofensis SNPs (Fig. 3.15). At both monomorphic and 

polymorphic SNPs, S. pribilofensis was generally less genetically differentiated from S. ugyunak 

then from S. portenkoi. However, the difference in genetic differentiation at polymorphic and 

monomorphic S. pribilofensis SNPs was greatest in comparison to S. portenkoi (difference in GST 

of 0.110; difference in Jost’s D of 0.065).  

 

 Discussion 

My analysis of a tiered genomic dataset, comprised of locus-sets with different levels of 

resolution through mode of inheritance, rate of evolution, and their inferred neutrality (or lack 

thereof), revealed that genetic drift has been a predominant force in speciation within this 

complex of closely related shrews. This result is supported by four independent lines of 

evidence. First, genetic clustering analyses show significant genetic clusters at neutrally evolving 

SNPs. Second, genetic variability and effective population sizes are lower for island species, 

especially for S. pribilofensis, in comparison to mainland species. Third, there is a significant 

negative relationship between genetic variability and genetic differentiation, showing that 

species with less genetic variation are more highly differentiated. Finally, S. pribilofensis is more 

differentiated from its closest mainland relatives (S. portenkoi and S. ugyunak) at the loci that 

have been most impacted by genetic drift within S. pribilofensis (monomorphic loci), and less 

differentiated at the loci least impacted by genetic drift (polymorphic loci). While this doesn’t 

preclude the potential for divergent selection to have caused some degree of differentiation, it is 
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clear that speciation in this system, especially for S. pribilofensis, has been heavily influenced by 

genetic drift. This adds to a growing body of literature showing that genetic drift can play a 

leading role in the divergence of isolated taxa (Funk et al., 2016; Jordan & Snell, 2008; Prentice 

et al., 2017; Toczydlowski & Waller, 2019), and provides evidence that speciation through drift, 

under the right historical biogeographic conditions, can occur on a remarkably short evolutionary 

timescale.  

 

Species structure at neutral vs non-neutral SNPs 

Species clustering analyses for the neutral SNPs showed similar relationships as observed 

using the total SNP dataset (Figs. 2.4-2.7). DAPC using the neutral SNPs and the first two 

principle components shows significant genetic structure, with S. cinereus and S. pribilofensis 

grouping independently, while S. ugyunak and S. portenkoi group closely yet distinctly. While 

these first two principle components mostly describe the genetic differentiation of S. cinereus 

and S. pribilofensis, the third principle component allows for more discrimination between S. 

portenkoi and S. ugyunak, showing that while the genetic differentiation between these species is 

not as great as that observed for S. cinereus and S. pribilofensis, there is still relevant genetic 

structure between them. This trend is also observed in the results of the Structure analysis. As for 

the total SNP dataset, the most likely number of genetic clusters is K=3, while K=4 also shows 

relevant structure and has a high likelihood. Using the neutral SNPs, S. cinereus and S. 

pribilofensis again group distinctly, while S. portenkoi and S. ugyunak are grouped together for 

K=3. Perhaps most interestingly, this genetic structuring mirrors that observed with the total SNP 

dataset. Since the neutral SNP dataset excludes all loci showing signals of potentially being 

under selection, this suggests that neutral evolutionary processes, such as genetic drift, are 

strongly contributing to the observed genetic structure within this system. 
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In contrast to structuring observed with the total SNP dataset, it appears that for neutral 

SNPs, S. ugyunak, and to a certain extent S. portenkoi, share a non-trivial amount of genetic 

similarity with S. pribilofensis. It is possible that the ability to completely distinguish between S. 

ugyunak and S. portenkoi is hindered without the inclusion of the non-neutral SNPs, and that this 

partial grouping with S. pribilofensis mostly reflects increased similarity between S. ugyunak and 

S. portenkoi. This rationale is supported by the results of genetic clustering analyses using the 

non-neutral dataset. Initial attempts were made to identify loci under selection within S. 

pribilofensis only, but a complete lack of intra-specific population structuring precluded 

detection of selection, given the genetic differentiation-based approach of Bayescan and 

PCadapt. Attempts to identify loci under selection in pairwise comparisons of S. pribilofensis 

and each of S. portenkoi and S. ugyunak also returned no results, possibility due to high 

background rates of genetic differentiation between these species. Given that no loci under 

selection were detected specifically for S. pribilofensis, it is likely that the putatively non-neutral 

SNPs detected between S. pribilofensis, S. portenkoi, and S. ugyunak largely reflect non-neutral 

evolutionary processes, such as divergent selection, between the latter two mainland species. 

DAPC and Structure analysis using the 15 non-neutral SNPs indeed show that the largest species 

differentiation at these SNPs is between S. portenkoi and S. ugyunak. In the DAPC plot, these 

two species are the most distant of any pairwise comparison, while S. cinereus and S. 

pribilofensis group closely and near the origin of the plot. This central positioning suggests that 

the principle components describing the genetic variation at these non-neutral SNPs provide little 

information on the differentiation S. cinereus and S. pribilofensis. This makes sense given S. 

cinereus was not included in the identification of non-neutral SNPs, and shows that these non-

neutral SNPs likely are not important for the evolution of S. pribilofensis either. Instead, they 
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may well reflect adaptive divergence between S. portenkoi and S. ugyunak. Given that these 

species have larger effective population sizes than S. pribilofensis, selection would indeed be 

expected to act more effectively. This conclusion is supported by the genetic clusters observed 

through Structure analysis, as K=3 was the most likely number of genetic clusters, with S. 

cinereus and S. pribilofensis grouping together, and no relevant species structure observed 

beyond this number of groups. However, it is worth noting that S. portenkoi and S. ugyunak are 

still differentiated based on neutral SNPs, making it unlikely that their divergence is due entirely 

to non-neutral evolutionary processes. Overall, this analysis suggests that there may be some 

non-neutral differentiation between S. portenkoi and S. ugyunak, but that the observed 

differentiation for all four species is best described by neutrally-evolving SNPs. 

 

Demographic histories 

Estimates of effective population sizes using the linkage disequilibrium method in 

NeEstimator were largely uninformative, as Ne for most species was projected to infinity. This is 

likely due to small sizes in relation to the true effective population size; for example, in one 

estimation of the sample size needed for accurate estimation of Ne, it was determined that the 

sample size should be at least 1% of the census size (Marandel et al., 2019). Even given a low 

estimation of total population sizes of around ~10,000 individuals per shrew species, this would 

require sample sizes of at least 100 for each species. I was able to provide point estimations of Ne 

for S. pribilofensis using both the microsatellite and neutral SNP datasets, although the upper 

limit of the 95% confidence interval for these estimations was still projected to infinity. This 

could simply be a reflection of the larger sample size for S. pribilofensis; with increased 

sampling of the other species, Ne estimation may become more feasible. However, the fact that a 

point estimate was possible for this species lends further support for a truly smaller Ne of S. 
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pribilofensis. The other species for which a non-infinite estimate of Ne was obtained was S. 

portenkoi. Given a limited sample size and only two sampling localities, it’s possible the low 

estimated Ne for this species reflects a local population estimate as opposed to for the entire 

species. Evidently, additional samples would help to refine inference from this analysis. 

 Demographic histories inferred with Stairway Plot 2 provide a glimpse into the relative 

changes in effective population size of each species over time, in addition to an estimation of 

contemporary effective population sizes. With the exception of S. pribilofensis, contemporary 

effective populations sizes for these species are associated with very large 95% confidence 

intervals, making it difficult to accurately infer changes in population size through time for S. 

cinereus, S. ugyunak, and S. portenkoi. However, there is strong evidence that S. pribilofensis 

has a significantly lower effective population in comparison to S. cinereus and S. ugyunak, based 

on the lack of overlap of 95% confidence intervals. While the contemporary difference in Ne is 

not significant between S. pribilofensis and S. portenkoi, the small recent Ne of S. portenkoi 

could again be reflective of limited sampling. The demographic history of S. pribilofensis 

indicates a steady decline in Ne since at least 2 kya, well within the history of island isolation 

beginning ~14 kya. It is likely that the true population size has been declining ever since island 

isolation, as the island continuously shrunk until it reached its current size around 6 kya, but 

given the limited genomic variability of S. pribilofensis the inferential limit for this analysis was 

around 2 kya. In addition to a decline in the true population size, this decline in Ne likely also 

reflects a history of erosion of genomic diversity through repeated and possibly sustained census 

population fluctuations and bottlenecks.  

As for the other species, S. cinereus shows a history of steady population decline since 

the LGM ~20 kya. Given that only Alaskan S. cinereus were included in this analysis, 
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representing individuals from only one region of a species that occurs across much of North 

America, these results shouldn’t be interpreted as representative of range-wide demographic 

trends, but instead viewed in light of the evolutionary history of Alaskan S. cinereus. Previous 

work has shown that S. cinereus likely did not occur in the Beringian refugium formed during 

the last glacial period (~75-11 kya), but instead tracked the northern expansion of boreal forests 

since the LGM (Hope et al., 2012). As such, populations at the leading edge of this range 

expansion would have experienced continuously elevated isolation from populations nearer the 

center of the species’ range, resulting in a slowly shrinking effective population size (Excoffier 

et al., 2009; Nichols & Hewitt, 1994). Meanwhile, S. ugyunak shows a demographic history of 

slight decline since 20 kya followed by rapid expansion ~5 kya. This population growth could be 

reflective of an increase in its preferred mesic tundra habitat as glaciers slowly receded following 

the LGM (Hope & Elias, 2019). 

 

Genetic drift in this system of shrews 

If genetic drift is driving differentiation in this system of shrews, my first prediction was 

that island species would have lower effective population sizes and less genetic variability in 

comparison to mainland species. Despite the difficulties in obtaining accurate estimations of 

effective population size and evaluating their significance across species, there does appear to be 

evidence for a smaller, and declining, effective population size of S. pribilofensis compared to 

mainland species. Additionally, both island species (S. pribilofensis and S. jacksoni) have 

reduced genetic variability in comparison to the mainland species. In the case of S. pribilofensis, 

most estimates of genetic variability were at least an order of magnitude smaller than the 

observed genetic variability of the mainland species. As an endemic to a larger island (St. 

Lawrence) than S. pribilofensis, S. jacksoni exhibits more genetic variability than S. 
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pribilofensis, but still less than the mainland species. It is worth noting that estimations of 

genetic variability were higher for each of S. pribilofensis, S. portenkoi, and S. ugyunak when 

using the neutral SNP dataset in comparison to the total SNP dataset. This is likely a by-product 

of the methods used to create the neutral and non-neutral SNP datasets, because in order to 

identify neutral and non-neutral SNPs between these three species, S. cinereus was removed and 

resulting monomorphic loci filtered out prior to analysis. This removal of invariant sites would 

inherently lead to an increase in observed estimations of genetic variation, so there is likely no 

meaningful biological reason for the difference in these estimations. Taken together, the results 

of effective population size and genetic variability analyses point to genetic drift as a strong 

evolutionary force in the differentiation of island shrew species, evidenced by smaller effective 

population sizes and reduced genetic variability (Charlesworth, 2009; Wright, 1931).  

My second prediction was that interspecific genetic differentiation would be significantly 

associated with reduced intraspecific genetic variation. Results from linear regressions based on 

both microsatellite and neutral SNPs indicate a strong negative relationship between all measures 

of genetic variability and all measures of genetic differentiation, and all relationships were 

statistically significant for the microsatellites and three out of nine relationships were for the 

neutral SNPs. The six non-significant relationships for the neutral SNPs still show a strong 

negative relationship, indicated by high R2 values, but with only three data points is difficult for 

these regressions to reach statistical significance. By using S. cinereus as the outgroup species 

for each pairwise measure of genetic differentiation, these measures are essentially standardized 

for time since divergence. Therefore, any observed difference in pairwise differentiation must be 

due to an evolutionary process, not a longer period of isolation. Additionally, both the 

microsatellites and neutral SNPs represent neutrally evolving genetic markers, minimizing the 
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likelihood that non-neutral evolutionary processes like divergent selection have influenced these 

results. Reduced genetic diversity is a known consequence of genetic drift, so the negative 

relationship between genetic variability and genetic differentiation strongly indicates that drift 

has been a driving force of differentiation in this system. This kind of analysis has proven 

effective in tying genetic drift to differentiation in other systems (Funk et al., 2016; Jordan & 

Snell, 2008; Prentice et al., 2017; Whiteley et al., 2010).  

 

Genetic drift and speciation in Sorex pribilofensis 

My third prediction related specifically to the speciation of S. pribilofensis. Due to a 

smaller effective population size, genetic drift should have had a stronger influence on allele 

frequencies for S. pribilofensis than for S. portenkoi and S. ugyunak (Charlesworth, 2009). In 

order to show that this higher rate of genetic drift was a primary factor in the speciation of S. 

pribilofensis, I tested its differentiation from S. portenkoi and S. ugyunak at the loci most 

impacted by drift versus at those least impacted. To do this, I divided the neutral SNP dataset as 

such, using SNPs monomorphic within S. pribilofensis (fixed for one allele) as the loci most 

impacted by drift, and SNPs polymorphic within S. pribilofensis (retaining two alleles, at any 

frequency) as the loci least impacted by drift. I then showed that S. pribilofensis was 

significantly more differentiated from S. portenkoi and S. ugyunak (two of its most closely 

related sister species) at its monomorphic SNPs than at its polymorphic SNPs.  

Without the influences of selection or gene flow, all the neutral SNPs within S. 

pribilofensis should be experiencing drift at an equal rate, but due to the random nature of drift 

acting on initial allele frequencies, some of these loci became monomorphic while some 

remained polymorphic (Ohta, 1992; Wright, 1931). The finding of less differentiation at neutral 

SNPs that are polymorphic within S. pribilofensis suggests that these loci are reflective of the 
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genetic variability of the most recent common ancestor (MRCA) of S. pribilofensis, S. portenkoi, 

and S. ugyunak. Through random chance, these loci have deviated less from their starting 

frequencies within S. pribilofensis after island isolation, resulting in S. pribilofensis being less 

differentiated from S. portenkoi and S. ugyunak at these loci. The finding of higher 

differentiation at neutral SNPs that are monomorphic within S. pribilofensis suggests that alleles 

at these loci drifted to fixation after island isolation, while they remained variable within S. 

portenkoi and S. ugyunak. It is unlikely that that these alleles were fixed in the MRCA because 

they remain variable across S. portenkoi and S. ugyunak. If these alleles were all fixed prior to 

isolation of S. pribilofensis, then mutations would have had to subsequently arise and persist at 

each locus to account for the variation across S. portenkoi and S. ugyunak. The most 

parsimonious answer is that strong genetic drift, acting on genetic variation initially shared by 

the three species, led to the fixation of these alleles in S. pribilofensis, while genetic drift was not 

strong enough for alleles at these loci to become fixed across S. portenkoi and S. ugyunak. These 

results further support genetic drift driving very rapid speciation of S. pribilofensis. 

 

Conservation implications 

This work has several implications for the conservation and management of S. 

pribilofensis. The findings of limited genetic diversity and a small effective population size in 

relation to mainland species suggest that this species is vulnerable to progressive and stochastic 

environmental change through a reduction in overall fitness and adaptive potential (Hohenlohe et 

al., 2021; Reed & Frankham, 2003). Without the ability to disperse to other suitable 

environments, future responses of S. pribilofensis to ongoing change will have to be through 

plasticity or adaptation (Colella et al., 2020). A such, the management action most likely to be 

successful for the conservation of S. pribilofensis is the maintenance of suitable environmental 
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conditions on Saint Paul Island. This includes preservation of existing habitat, detection and 

eradication of any introduced species (e.g. rats, non-native flora, pathogens, etc.), and 

maintenance of favorable climatic conditions. The preferred habitat of S. pribilofensis has been 

previously described by Byrd & Norvell (1993); in short, they found the species to be most 

abundant in tall-plant vegetation, specifically in dune and grass-umbel habitats, which covers 

54.9% of the island. As for the threat of invasive species, there is already evidence that S. 

pribilofensis is infected by a novel parasite with unknown pathogenicity (Hope et al., 2016) and 

preliminary analysis suggests the recent introduction of non-native slugs on St. Paul Island 

(Wiens, unpublished data). The effects of these introductions on S. pribilofensis are unknown, 

and work is needed to understand the complex host-parasite dynamics at play, including the 

potential role of new intermediate hosts in activating complex parasite life-cycles coupled with 

the process of ecological fitting under novel environments (Combe et al., 2021). Finally, even if 

the strongest possible action is taken to curb anthropogenetic climate change, global climate will 

continue to change for the foreseeable future (Collins et al., 2013). Therefore, the primary 

management priorities should be the preservation of preferred island habitats and the control of 

invasive species.  

 While S. pribilofensis exhibits extremely low genomic diversity, it does not display a 

strong signal of inbreeding, as indicated by the inbreeding coefficient, FIS, for either the 

microsatellite (FIS=0.195) or SNP (FIS=-0.0014) datasets. The implication is that while the 

overall genetic diversity of S. pribilofensis remains low, there is enough random mating to to 

allow remaining genomic variability to persist (Hohenlohe et al., 2021; Keller, 2002). In other 

words, there is enough random mating to prevent high genomic linkage, so inheritance of one 

genotype doesn’t strongly predict the inheritance of another. Likewise, while the observed 
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decline in effective population size over time is likely reflective at least in part of decline in 

census population size, it also reflects the degree of genetic similarity (i.e. limited genetic 

variability) within S. pribilofensis. The effective population size is usually smaller than the true 

population size, because it describes “the size of an ideal, panmictic population that would 

experience the same loss of genetic variation, through genetic drift, as the observed population” 

(Hohenlohe et al., 2021). This line of reasoning is supported by observational evidence for the 

census size of this shrew by three expeditions to St. Paul island in the 1900s, which all found it 

to be abundant on the island (Byrd & Norvell, 1993; Fay & Sease, 1985; Jackson, 1928). These 

observations are concurrent with the high success of trapping efforts carried out for this thesis, as 

27 shrews were trapped in 288 trap nights. This anecdotal evidence further suggests that the 

census size of this shrew is capable of vastly exceeding the effective population size. Overall, 

these interpretations suggest that the single population of S. pribilofensis is currently locally 

common despite small total range size and incredibly limited genetic diversity. However, this 

may be subject to change quickly if/when progressive and stochastic environmental changes 

occur on Saint Paul Island. Therefore, the second management priority of S. pribilofensis should 

be regular population monitoring in order to detect any potential decrease in population sizes or 

increase in levels of inbreeding. Importantly, given the very high genetic distinction of this shrew 

from its sibling species as well as high ecological differences between respective habitats, any 

efforts at genetic rescue from other shrew species should be considered only as a last resort and 

after extensive field survey efforts that definitively (through scientific data) indicate a high risk 

of imminent extinction.   

 Finally, sustainable sampling and archival of additional specimens in natural history 

museums will enable continued research on the evolution of S. pribilofensis, which will enhance 
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conservation efforts and promises to increase our understanding of species-specific and general 

evolutionary responses to insular endemism. For example, to my knowledge only relatively small 

areas of the island have been sampled for S. pribilofensis. Determining the extent to which S. 

pribilofensis occupies other localities on Saint Paul Island, as well as any of the neighboring 

islands where it has never been detected (St. George Island 40 mi. south, and Walrus/Otter 

Islands, small satellite islands to St. Paul), and which habitats it prefers will not only be 

beneficial to conservation efforts, but provide a clearer picture of any potential genetic structure 

between populations. Another conservation action might be to establish additional populations of 

shrews on satellite islands where no other native mammal species are present, as this has been 

successful elsewhere for birds (Miskelly & Powlesland, 2013). However, this should only take 

place as a result of careful planning, as each island in this region represents a fragile ecosystem 

coupled with critical bird breeding habitat.  

Importantly, sustainable and holistic sampling, preparation and preservation of specimens 

in museums has minimal negative side effects on natural population densities, and provides for 

spatial and temporal documentation of biodiversity while allowing for additional research 

avenues to be pursued in the future (Hope et al., 2018). Voucher specimens store a wealth of 

information and are critically important for an understanding of broad biological processes, as 

they provide documentation of associated biodiversity (e.g. viruses, bacteria, helminth parasites, 

etc.), the biological/chemical composition of diet, and a genetic and morphological record of 

populations/species (McLean et al., 2016). Sustainable sampling also provides a time series of 

specimens, the utility of which is becoming increasingly realized, as they allow for the direct 

investigation of molecular to community-level responses to environmental change through time 

(Bi et al., 2019; Moritz et al., 2008). Ongoing sampling efforts will also provide for more 
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accurate estimations of the inbreeding coefficient and effective population size change. An 

especially promising line of study is analysis of whole genomes, which is becoming increasingly 

tractable for non-model organisms (Ellegren, 2014; Jones & Good, 2016). This allows for the 

investigation of functional genetic diversity, and could provide insight into the potential ability 

of island species to retain variability at genes that code for important traits, despite virtual 

genomic flat-lining (Robinson et al., 2016). This would also shed light on the role of adaptive 

divergence in this system, and increase our understanding of the interaction between natural 

selection and genetic drift in the divergence of island taxa in general. 

 

Genetic drift in the Arctic 

Biogeographical conditions in this system have predisposed biodiversity, and specifically 

S. pribilofensis, to strong genetic drift. Initial expansion of an ancestral shrew taxon into 

Beringia during the Sangamon and subsequent isolation of this taxon during the Wisconsinan 

likely eroded initial diversity within Beringian species of the cinereus complex through pioneer 

expansion (Hewitt, 2004). Since the LGM (~20 kya), the range of this widespread ancestral 

taxon was fragmented, and populations were isolated on islands in the Bering Sea and on either 

side of the Bering Strait. The relatively simple community and habitat structure of this Arctic 

system is coupled with harsh conditions, especially on the islands, which experience even more 

depauperate community and habitat structure through faunal/floral relaxation. A lack of 

heterogeneity in local environment and a decrease in community interactions likely diminished 

the selective pressures at play in the system (Miller et al., 2019). For S. pribilofensis, small island 

isolation cut off gene flow with sister taxa, and led to a decreased effective population size, 

through some combination of founder effects, bottlenecks, and stochastic fluctuations in 

population size. Of consequence, this island isolation began only ~14 kya when St. Paul island 
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formed, meaning the consequences of strong genetic drift were able to accumulate on a short 

timescale. This rapid observed genetic differentiation was likely magnified by rapid turnover 

through short generation time.  

 By taking account of the biogeographic conditions that have led to speciation through 

genetic drift in this system, a predictive framework can be implemented for the role of drift in 

other high-latitude systems. Importantly, biogeographic histories that result in small effective 

populations sizes increase the potential for strong genetic drift. This may occur within 

populations of leading-edge range expansions responding to extreme environmental gradients, or 

populations which have become highly isolated, both on true islands and through habitat 

fragmentation across a previously connected landscape. Additionally, divergence through drift 

can be expected to happen more rapidly for species with shorter generation times, which as I 

have shown can lead to remarkably rapid speciation. While fluctuations in allele frequencies due 

to genetic drift are random, the outcome of genetic drift – differentiation through loss of diversity 

– is not, and can be expected within other taxa. Given similar biogeographic histories and 

environmental conditions, the contribution of drift to differentiation in other Arctic systems is an 

evolutionary outcome with pertinent implications for the distribution of biodiversity, and which 

is still under-explored. 

 

Conclusions 

This study shows that genetic drift has led to the rapid speciation of an island endemic, 

and adds to a growing body of literature documenting the contribution of genetic drift to the 

differentiation of isolated taxa (Funk et al., 2016; Jordan & Snell, 2008; Prentice et al., 2017; 

Toczydlowski & Waller, 2019). The ability of genetic drift to cause rapid divergence on such a 

short evolutionary timescale has major implications for this species and others as the 
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Anthropocene progresses. As island endemics are continuously forced to react to accelerating 

environmental change, an understanding of the legacy of genetic drift will become increasingly 

relevant for the conservation and persistence of biodiversity.  



83 

 Figures 

 

Figure 3.1 Detection of outliers with PCadapt 

The population structure, identified through principle component analysis, used to identify SNPs 

under selection by PCadapt. (a) The proportion of variance explained by the first 30 principle 

components in the PCA. (b) Only the first two PCs were kept to identify SNPs under selection, 

as they were sufficient to describe the relevant structure between the three species. 

 

 

 

Figure 3.2 Detection of outliers with Bayescan 

Outlier SNPs detected by Bayescan with a FDR of 0.1. Dots to the right of the solid black line 

indicate SNPs significantly associated with population structure, as indicated by higher FST 

values. 

  S. pribilofensis 

  S. portenkoi 

  S. ugyunak  

(b)  (a) 
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Figure 3.3 Neutral SNP DAPC 

DAPC scatter plots based on the neutral SNP dataset. The cumulative variance explained by the 

3 principle components retained for this analysis is shown in the top right of each plot. (a) DAPC 

using the first and second principle components; (b) DAPC using the first and third principle 

components. 

 

  

 (a) 

(b) 
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Figure 3.4 Non-neutral SNP DAPC 

DAPC scatter plot based on the non-neutral SNP dataset. The cumulative variance explained by 

the 3 principle components retained for this analysis is shown in the top right of the plot. The 

individuals are plotted using the first and second principle components. 
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Figure 3.5 Neutral SNP Structure plots 

Structure plots based on the neutral SNP dataset. Each color corresponds to a distinct genetic 

cluster, and each bar represents the proportion of each individual’s genotype to each cluster. 

(top) Structure plot for most likely number of genetic clusters, K=3; (bottom) Structure plot for 

second most likely number of genetic clusters, K=4. 

 

 

 

Figure 3.6 Non-neutral SNP Structure plot 

Structure plot based on the non-neutral SNP dataset for the most likely number of genetic 

clusters, K=3. Each color corresponds to a distinct genetic cluster, and each bar represents the 

proportion of each individual’s genotype to each cluster. 
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Figure 3.7 S. pribilofensis stairway plot 

The effective population size of S. pribilofensis since 2,000 years ago, inferred with Stairway 

Plot v2.0. The grey shaded region indicates the 95% confidence interval. 

 

 

 

 
Figure 3.8 S. cinereus stairway plot 

The effective population size of S. cinereus since 20,000 years ago, inferred with Stairway Plot 

v2.0. The grey shaded region indicates the 95% confidence interval. 
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Figure 3.9 S. portenkoi stairway plot 

The effective population size of S. portenkoi since 20,000 years ago, inferred with Stairway Plot 

v2.0. The grey shaded region indicates the 95% confidence interval. 

 

 

 

 
Figure 3.10 S. ugyunak stairway plot 

The effective population size of S. ugyunak since 20,000 years ago, inferred with Stairway Plot 

v2.0. The grey shaded region indicates the 95% confidence interval. 
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Figure 3.11 Combined stairway plots 

The effective population sizes of the four species represented by the SNP dataset since 20,000 

years ago, inferred with Stairway Plot v2.0. The grey shaded regions indicate the 95% 

confidence interval for each species. To facilitate comparison on the same plot, the upper bound 

for S. ugyunak is the 75% confidence interval. 

 

 

 

 

  

Sorex ugyunak 

Sorex cinereus 

Sorex portenkoi 

Sorex pribilofensis 
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Figure 3.12 Microsatellite linear regressions 

Plots of linear regressions between multiple measures of genetic variability and multiple 

measures of genetic differentiation for the microsatellite dataset.  

*=p<0.05, **=p<0.01 

 

  

Species:     S. camtschatica     S. jacksoni     S. portenkoi     S. pribilofensis     S. ugyunak  

* ** ** 

** ** ** 

** ** ** 
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Figure 3.13 Neutral SNP linear regressions 

Plots of linear regressions between multiple measures of genetic variability and multiple 

measures of genetic differentiation for the neutral SNP dataset.  

*=p<0.05 

 

  

Species:     S. portenkoi     S. pribilofensis     S. ugyunak  

* * 

* 
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Figure 3.14 Polymorphic and monomorphic SNPs within S. pribilofensis 

Allele frequencies within the neutral SNP dataset at the 232 polymorphic loci within S. 

pribilofensis and the 5,031 monomorphic loci within S. pribilofensis. A random subset of SNPs 

for each kind of locus is plotted along the x-axis, and individual shrews, grouped by species, are 

plotted along the y-axis. Colors represent the genotype of each shrew at each SNP; blue= 

homozygosity for the first allele (AA), purple= heterozygosity (Aa), red= homozygosity for the 

second allele (aa). 
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Figure 3.15 Pairwise genetic differentiation boxplots 

Pairwise genetic differentiation between S. pribilofensis and S. portenkoi (orange), and S. 

pribilofensis and S. ugyunak (blue), with loci split by whether they are polymorphic or 

monomorphic within S. pribilofensis. The median of each boxplot is concurrent with the point 

estimate obtained for the neutral SNP dataset and the variance was estimated through 200 

bootstrap samples. ***p <0.001 
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 Tables 

Table 3.1 Species of the Sorex cinereus complex 

Major clades and distribution of shrews of the Sorex cinereus species complex. 

Species Biogeographic Realm Distribution 

Beringian clade   

  S. camtschatica Palearctic 
Magadanskaya and Kamchatka Peninsula 

(Russia) 

  S. leucogaster Palearctic Paramushir Island 

  S. portenkoi Palearctic Chukotka (Russia) 

  S. pribilofensis Bering Strait St. Paul Island 

  S. jacksoni Bering Strait St. Lawrence Island 

  S. ugyunak Nearctic Northernmost Alaska and Canada 

  S. haydeni Nearctic Great Plains of Canada and USA 

  S. preblei Nearctic Columbia Basin/Plateau (USA) 

  S. lyelli Nearctic East Sierra Nevada mountains (California) 

Southern clade   

  S. cinereus Nearctic Widespread across Canada and USA 

  S. emarginatus Nearctic Sierra Madre Occidental (Mexico) 

  S. milleri Nearctic Sierra Madre Oriental (Mexico) 

  S. longirostris Nearctic Southeast USA 
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Table 3.2 Microsatellite effective population sizes 

Effective population size (Ne) estimates for each species based on the microsatellite dataset. 

N=sample size, Harmonic mean N=sample size adjusted for missing genotypes, 95% CI= 95% 

confidence interval. 

 

Species N Harmonic mean N Ne 95% CI 

Sorex camtschatica 5 4.3 ∞ (2.9, ∞) 

Sorex cinereus 14 14.0 ∞ (∞, ∞) 

Sorex jacksoni 6 3.4 ∞ (2.4, ∞) 

Sorex pribilofensis 22 21.3 18.4 (1.9, ∞) 

Sorex portenkoi 13 12.9 69.8 (22.6, ∞) 

Sorex ugyunak 19 19.0 ∞ (983.3, ∞) 

 

 

Table 3.3 Neutral SNP effective population sizes 

Effective population size (Ne) estimates for each species based on the neutral SNP dataset. 

N=sample size, Harmonic mean N=sample size adjusted for missing genotypes, 95%CI= 95% 

confidence interval. 

 

Species N Harmonic mean N Ne 95% CI 

Sorex cinereus 15 13.7 ∞ (236.5, ∞) 

Sorex pribilofensis 44 40.0 2106.5 (166.0, ∞) 

Sorex portenkoi 10 9.2 21.9 (9.0, 131.4) 

Sorex ugyunak 21 19.5 ∞ (∞, ∞) 
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Table 3.4 Genetic variability: microsatellites and cytochrome b 

Measures of genetic variability for the microsatellite and cytochrome b datasets. Ho=observed 

heterozygosity, He=expected heterozygosity, Ar=allelic richness, FIS=inbreeding coefficient, 

π=nucleotide diversity, Hd=haplotype diversity. 

 

 

 

 

 

 

 

 

 

Table 3.5 Genetic variability: SNPs 

Measures of genetic variability for the total SNP dataset. Ho=observed heterozygosity, 

He=expected heterozygosity, Ar=allelic richness, π=nucleotide diversity, FIS=inbreeding 

coefficient. 

 

 

 

 

 

 

 

 

  

  microsatellites cytochrome b 

Species Ho He Ar FIS π Hd 

  S. camtschatica 0.565 0.604 1.639  0.186 0.0023 0.714 

  S. cinereus 0.634 0.681 1.694  0.106 0.0031 0.967 

  S. jacksoni 0.500 0.424 1.459 -0.051 0.0019 0.524 

  S. portenkoi 0.691 0.659 1.672 -0.008 0.0004 0.385 

  S. pribilofensis 0.059 0.071 1.072  0.195 0.0001 0.133 

  S. ugyunak 0.678 0.711 1.720  0.073 0.0017 0.789 

  SNPs 

Species Ho He Ar π FIS 

  S. camtschatica - - - - - 

  S. cinereus 0.1453 0.315 1.496 0.1749  0.0877 

  S. jacksoni - - - - - 

  S. portenkoi 0.0887 0.112 1.264 0.0927  0.0122 

  S. pribilofensis 0.0029 0.033 1.008 0.0021 -0.0014 

  S. ugyunak 0.1071 0.137 1.355 0.1152  0.0293 
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Table 3.6 Genetic variability: neutral SNPs 

Measures of genetic variability for the 5,263 SNPs included in the neutral dataset. Measures for 

S. cinereus were not calculated as the neutral SNPs were identified using only the species 

structure between S. pribilofensis, S. portenkoi, and S. ugyunak. Ho=observed heterozygosity, 

He=expected heterozygosity, Ar=allelic richness, π=nucleotide diversity. 

 

 

 

 

 

 

 

 

Table 3.7 Genetic variability: polymorphic vs monomorphic SNPs 

Measures of genetic variability at the 232 polymorphic SNPs within S. pribilofensis and the 

5,031 monomorphic SNPs within S. pribilofensis. Ho=observed heterozygosity, He=expected 

heterozygosity, Ar=allelic richness, π=nucleotide diversity. 

 

  
Polymorphic within  

S. pribilofensis 

Monomorphic within  

S. pribilofensis 

Species Ho He Ar π Ho He Ar π 

Sorex portenkoi 0.098 0.122 1.291 0.101 0.191 0.207 1.571 0.203 

Sorex pribilofensis 0.106 0.087 1.365 0.088 0 0.023 1 0 

Sorex ugyunak 0.105 0.134 1.333 0.105 0.235 0.257 1.771 0.255 

 

 

 

 

 

 

  

 Neutral SNPs 

Species Ho He Ar π 

S. portenkoi 0.1873 0.203 1.559 0.1985 

S. pribilofensis 0.0048 0.026 1.016 0.0040 

S. ugyunak 0.2290 0.252 1.752 0.2484 
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Appendix A - Rapid allopatric divergence and speciation of an 

endangered insular shrew (Sorex pribilofensis) 

 Supplementary Figures 

 
Figure A1. Selection of K for microsatellite Structure analysis 

Determination of best value of K for the microsatellite Structure clustering analysis. (a) The 

second order rate of change of the likelihood of each tested value of K (ΔK); based on the 

Evanno method, ΔK most likely represents the true value of K; (b) The mean raw likelihood 

scores (+/- standard deviation) for each tested value of K. While K=5 has the highest raw 

likelihood, ΔK is highest for K=3. 

 
Figure A2. Selection of K for SNP Structure analysis 

Determination of best value of K for the SNP Structure clustering analysis. (a) The second order 

rate of change of the likelihood of each tested value of K (ΔK); based on the Evanno method, ΔK 

most likely represents the true value of K; (b) The mean raw likelihood scores (+/- standard 

deviation) for each tested value of K. While K=5 has the highest raw likelihood, ΔK is highest 

for K=3.  

 (a) (b) 

(b)  (a) 
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 Supplementary Table 

Table A1. Specimens museum numbers and localities 

List of specimen museum numbers and localities of each shrew included in this thesis. Inclusion in a specific genetic dataset is 

indicated by an “X”. For specimens previously sequenced for the Cytb gene, Genbank accession numbers are indicated.  

Microsats CytB SNPs Tissue 

Collection 

Tissue 

Number 

Cytb 

Genbank  

Catalog Number Species Country State/Province Latitude Longitude Year 

X X 
 

AF 32746 JN889397 UAM:Mamm:73465 Sorex camtschatica Russia Kamchatka 
Oblast 

54.66666667 160.25 1987 

X X 
 

IF 5019 JN889399 UAM:Mamm:84134 Sorex camtschatica Russia Magadan Oblast 59.71666667 150.85 2002 

 
X 

 
AF 6569 AY014919 

 
Sorex camtschatica 

     

X 
  

AF 6596 
 

UAM:Mamm:29148 Sorex camtschatica Russia Magadan Oblast 59.73333333 150.8666667 1994 

 
X 

 
AF 6631 AY014917 UAM:Mamm:29149 Sorex camtschatica Russia Magadan Oblast 59.71666667 150.8666667 1994 

X X 
 

AF 6632 AY014918 UAM:Mamm:29150 Sorex camtschatica Russia Magadan Oblast 59.73333333 150.8666667 1994 

X X 
 

AF 41349 JN889398 UAM:Mamm:80338 Sorex camtschatica Russia Magadan Oblast 60.75666667 151.7838889 2000 
 

X 
 

CSW 4664 AY014916 UWBM:Mamm:39234 Sorex camtschatica Russia Kamchatka Krai 53.25 158.183 2011 

 
X X NK 123278 JN889593 MSB:Mamm:143101 Sorex cinereus United 

States 
Alaska 66.35 -150.46 2005 

X 
 

X NK 196372 
 

MSB:Mamm:223704 Sorex cinereus United 

States 

Alaska 67.7039 -156.9665 2010 

X X X NK 196469 
 

MSB:Mamm:223732 Sorex cinereus United 
States 

Alaska 68.2119 -159.8689 2010 

X X X NK 196499 
 

MSB:Mamm:223718 Sorex cinereus United 
States 

Alaska 68.2047 -159.8609 2010 

X X X NK 196562 
 

MSB:Mamm:222039 Sorex cinereus United 
States 

Alaska 65.3784 -163.2283 2010 

X X X NK 213804 JQ778872 MSB:Mamm:248416 Sorex cinereus United 

States 

Alaska 54.85374 -163.41527 2011 

X X X NK 211848 
 

MSB:Mamm:278698 Sorex cinereus United 
States 

Alaska 66.36026 -150.44716 2013 

X X X NK 211849 
 

MSB:Mamm:278699 Sorex cinereus United 
States 

Alaska 66.36026 -150.44716 2013 

X X X NK 211851 
 

MSB:Mamm:278701 Sorex cinereus United 
States 

Alaska 66.36026 -150.44716 2013 

X X X NK 211852 
 

MSB:Mamm:278702 Sorex cinereus United 

States 

Alaska 66.36026 -150.44716 2013 

X X X NK 211862 
 

MSB:Mamm:278712 Sorex cinereus United 
States 

Alaska 66.36026 -150.44716 2013 

X X X NK 211866 
 

MSB:Mamm:278716 Sorex cinereus United 
States 

Alaska 66.36026 -150.44716 2013 

X X X NK 211873 
 

MSB:Mamm:278723 Sorex cinereus United 
States 

Alaska 66.36026 -150.44716 2013 
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X X X NK 211874 
 

MSB:Mamm:278724 Sorex cinereus United 
States 

Alaska 66.36026 -150.44716 2013 

X X X NK 211876 
 

MSB:Mamm:278726 Sorex cinereus United 
States 

Alaska 66.36026 -150.44716 2013 

X 
  

UAM 7777 
 

UAM:Mamm:7777 Sorex jacksoni United 
States 

Alaska 63.295 -168.6922222 1954 

X 
  

UAM 7792 
 

UAM:Mamm:7792 Sorex jacksoni United 
States 

Alaska 63.295 -168.6922222 1959 

X 
  

UAM 7794 
 

UAM:Mamm:7794 Sorex jacksoni United 

States 

Alaska 63.295 -168.6922222 1959 

X X 
 

UAM 21508 JN889520 UAM:Mamm:21508 Sorex jacksoni United 
States 

Alaska 63.43333333 -171.1 1959 

X 
  

UAM 21509 
 

UAM:Mamm:21509 Sorex jacksoni United 
States 

Alaska 63.43333333 -171.1 1959 

 
X 

 
UAM 21510 JN889521 UAM:Mamm:21510 Sorex jacksoni United 

States 
Alaska 63.43333333 -171.1 1959 

 
X 

 
UAM 21518 AY014922 UAM:Mamm:21518 Sorex jacksoni United 

States 

Alaska 63.78333333 -171.75 1960 

 
X 

 
UAM 21520 AY014923 UAM:Mamm:21520 Sorex jacksoni United 

States 
Alaska 63.78333333 -171.75 1960 

 
X 

 
UAM 21521 AY014924 UAM:Mamm:21521 Sorex jacksoni United 

States 
Alaska 63.78333333 -171.75 1961 

 
X 

 
UAM 21522 AY014925 UAM:Mamm:21522 Sorex jacksoni United 

States 
Alaska 63.78333333 -171.75 1961 

X X 
 

UAM 21526 AY014926 UAM:Mamm:21526 Sorex jacksoni United 

States 

Alaska 63.775 -171.6930556 1952 

X 
  

IF 5169 
 

UAM:Mamm:84317 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.80555556 177.5541667 2002 

 
X X IF 5187 JN889541 UAM:Mamm:84327 Sorex portenkoi Russia Chukotka 

Autonomous 
Okrug 

64.80555556 177.5541667 2002 

X X 
 

IF 5222 JN889538 UAM:Mamm:84282 Sorex portenkoi Russia Chukotka 

Autonomous 
Okrug 

64.81638889 177.5455556 2002 

X X 
 

IF 5228 JN889539 UAM:Mamm:84286 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.81638889 177.5455556 2002 

X X X IF 5243 JN889540 UAM:Mamm:84290 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.81638889 177.5455556 2002 

X 
  

IF 7555 
 

UAM:Mamm:83822 Sorex portenkoi Russia Chukotka 

Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

X 
  

IF 7562 
 

UAM:Mamm:83829 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

X X X IF 7570 JN889537 UAM:Mamm:83837 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

X X 
 

IF 7573 JN889652 UAM:Mamm:83840 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.41666667 -172.5333333 2002 
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X 
  

IF 7574 
 

UAM:Mamm:83841 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

 
X X IF 7582 

 
UAM:Mamm:83849 Sorex portenkoi Russia Chukotka 

Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

 
X X IF 7583 

 
UAM:Mamm:83850 Sorex portenkoi Russia Chukotka 

Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

X X X IF 7584 JN889653 UAM:Mamm:83851 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

X X X IF 7585 JN889701 UAM:Mamm:83852 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

X X X IF 7590 
 

UAM:Mamm:83857 Sorex portenkoi Russia Chukotka 
Autonomous 

Okrug 

64.41666667 -172.5333333 2002 

X 
  

IF 7591 
 

UAM:Mamm:83858 Sorex portenkoi Russia Chukotka 
Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

 
X X IF 7597 

 
UAM:Mamm:83864 Sorex portenkoi Russia Chukotka 

Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

 
X X IF 7598 

 
UAM:Mamm:83867 Sorex portenkoi Russia Chukotka 

Autonomous 
Okrug 

64.41666667 -172.5333333 2002 

X 
  

UAM 22591 
 

UAM:Mamm:22591 Sorex pribilofensis United 
States 

Alaska 57.16666667 -170.25 1986 

X X 
 

UAM 22593 AY014931 UAM:Mamm:22593 Sorex pribilofensis United 
States 

Alaska 57.16666667 -170.25 1986 

X X 
 

UAM 22594 AY014932 UAM:Mamm:22594 Sorex pribilofensis United 
States 

Alaska 57.16666667 -170.25 1986 

X 
  

UAM 50348 
 

UAM:Mamm:50348 Sorex pribilofensis United 
States 

Alaska 57.24722222 -170.0972222 1987 

X X X NK 234251 
 

MSB:Mamm:302936 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2014 

X X X NK 234252 
 

MSB:Mamm:305188 Sorex pribilofensis United 
States 

Alaska 57.15 -170.34 2014 

X X X NK 234253 
 

MSB:Mamm:305189 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2014 

X X X NK 234254 
 

MSB:Mamm:302937 Sorex pribilofensis United 

States 

Alaska 57.138 -170.293 2014 

X 
  

NK 234255 
 

MSB:Mamm:305190 Sorex pribilofensis United 
States 

Alaska 57.15 -170.255 2014 

X X X NK 234256 
 

MSB:Mamm:305191 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2014 

X 
 

X NK 234351 
 

MSB:Mamm:302942 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2014 

X 
  

NK 234352 
 

MSB:Mamm:302943 Sorex pribilofensis United 

States 

Alaska 57.12 -170.28 2014 

X X X NK 234353 
 

MSB:Mamm:305195 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2014 
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X X X NK 234354 
 

MSB:Mamm:302944 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2014 

X 
  

NK 234355 
 

MSB:Mamm:305196 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2015 

X 
  

NK 234356 
 

MSB:Mamm:302945 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2014 

X X X NK 234357 
 

MSB:Mamm:305197 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2014 

X X X NK 234395 
 

MSB:Mamm:302947 Sorex pribilofensis United 

States 

Alaska 57.12 -170.28 2015 

X X X NK 234400 
 

MSB:Mamm:302946 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2015 

X 
  

NK 234401 
 

MSB:Mamm:305762 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 Not 
recorded 

X X X NK 234407 
 

MSB:Mamm:305764 Sorex pribilofensis United 
States 

Alaska 57.12 -170.28 2015 

X 
 

X NK 234408 
 

MSB:Mamm:305765 Sorex pribilofensis United 

States 

Alaska 57.12 -170.28 2015 

 
X X NK 305141 

 
MSB:Mamm:331411 Sorex pribilofensis United 

States 
Alaska 57.12415 -170.28328 2019 

 
X X NK 305142 

 
MSB:Mamm:331432 Sorex pribilofensis United 

States 
Alaska 57.11989 -170.27794 2019 

 
X X NK 305143 

 
MSB:Mamm:331475 Sorex pribilofensis United 

States 
Alaska 57.15176 -170.22151 2019 

 
X X NK 305144 

 
MSB:Mamm:331478 Sorex pribilofensis United 

States 

Alaska 57.1516 -170.22205 2019 

 
X X NK 305145 

 
MSB:Mamm:332151 Sorex pribilofensis United 

States 
Alaska 57.21195 -170.15201 2019 

 
X X NK 305146 

 
MSB:Mamm:331496 Sorex pribilofensis United 

States 
Alaska 57.21195 -170.15216 2019 

 
X X NK 305147 

 
MSB:Mamm:331390 Sorex pribilofensis United 

States 
Alaska 57.21202 -170.15222 2019 

 
X X NK 305148 

 
MSB:Mamm:331399 Sorex pribilofensis United 

States 

Alaska 57.21203 -170.15225 2019 

 
X X NK 305149 

 
MSB:Mamm:331416 Sorex pribilofensis United 

States 
Alaska 57.21204 -170.15222 2019 

 
X X NK 305150 

 
MSB:Mamm:331421 Sorex pribilofensis United 

States 
Alaska 57.21179 -170.15166 2019 

 
X X NK 305151 

 
MSB:Mamm:331424 Sorex pribilofensis United 

States 
Alaska 57.21195 -170.15216 2019 

 
X X NK 305152 

 
MSB:Mamm:332412 Sorex pribilofensis United 

States 
Alaska 57.21196 -170.15213 2019 

 
X X NK 305153 

 
MSB:Mamm:331445 Sorex pribilofensis United 

States 
Alaska 57.21195 -170.15202 2019 

 
X X NK 305154 

 
MSB:Mamm:331446 Sorex pribilofensis United 

States 
Alaska 57.15173 -170.22145 2019 

 
X X NK 305155 

 
MSB:Mamm:331447 Sorex pribilofensis United 

States 
Alaska 57.21196 -170.15213 2019 

  
X NK 305156 

 
MSB:Mamm:331448 Sorex pribilofensis United 

States 
Alaska 57.21191 -170.15205 2019 

 
X X NK 305157 

 
MSB:Mamm:331449 Sorex pribilofensis United 

States 
Alaska 57.21182 -170.1517 2019 

 
X X NK 305158 

 
MSB:Mamm:332423 Sorex pribilofensis United 

States 
Alaska 57.21202 -170.15225 2019 
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X X NK 305159 

 
MSB:Mamm:332424 Sorex pribilofensis United 

States 
Alaska 57.21178 -170.15167 2019 

 
X X NK 305160 

 
MSB:Mamm:331450 Sorex pribilofensis United 

States 
Alaska 57.15174 -170.22147 2019 

 
X X NK 305161 

 
MSB:Mamm:331451 Sorex pribilofensis United 

States 
Alaska 57.15171 -170.22157 2019 

 
X X NK 305162 

 
MSB:Mamm:331452 Sorex pribilofensis United 

States 
Alaska 57.21162 -170.15146 2019 

 
X X NK 305163 

 
MSB:Mamm:331453 Sorex pribilofensis United 

States 

Alaska 57.21201 -170.15222 2019 

 
X X NK 305164 

 
MSB:Mamm:331454 Sorex pribilofensis United 

States 
Alaska 57.15157 -170.222 2019 

 
X X NK 305165 

 
MSB:Mamm:331913 Sorex pribilofensis United 

States 
Alaska 57.15157 -170.222 2019 

 
X X NK 305166 

 
MSB:Mamm:331916 Sorex pribilofensis United 

States 
Alaska 57.15157 -170.222 2019 

 
X X NK 305167 

 
MSB:Mamm:331917 Sorex pribilofensis United 

States 

Alaska 57.21202 -170.15225 2019 

 
X X NK 305182 

 
MSB:Mamm:331460 Sorex pribilofensis United 

States 
Alaska 57.12 -170.2781 2018 

 
X X NK 305183 

 
MSB:Mamm:331461 Sorex pribilofensis United 

States 
Alaska 57.12 -170.2781 2018 

 
X X NK 305184 

 
MSB:Mamm:331462 Sorex pribilofensis United 

States 
Alaska 57.12 -170.2781 2018 

 
X X NK 305186 

 
MSB:Mamm:331349 Sorex pribilofensis United 

States 

Alaska 57.12 -170.2781 2018 

X X X NK 196254 
 

MSB:Mamm:221848 Sorex ugyunak United 
States 

Alaska 68.1174 -154.124 2010 

X X X NK 196256 
 

MSB:Mamm:221849 Sorex ugyunak United 
States 

Alaska 68.1174 -154.124 2010 

X X X NK 196262 
 

MSB:Mamm:221845 Sorex ugyunak United 
States 

Alaska 68.1174 -154.124 2010 

X X X NK 196265 
 

MSB:Mamm:221839 Sorex ugyunak United 

States 

Alaska 68.1174 -154.124 2010 

X X X NK 196266 
 

MSB:Mamm:221842 Sorex ugyunak United 
States 

Alaska 68.1174 -154.124 2010 

X X X NK 196267 
 

MSB:Mamm:221843 Sorex ugyunak United 
States 

Alaska 68.1174 -154.124 2010 

X X X NK 196282 
 

MSB:Mamm:221794 Sorex ugyunak United 
States 

Alaska 68.1174 -154.124 2010 

X X X NK 196283 JQ778933 MSB:Mamm:221828 Sorex ugyunak United 
States 

Alaska 68.1174 -154.124 2010 

X X X NK 196285 JQ778935 MSB:Mamm:221819 Sorex ugyunak United 
States 

Alaska 68.1174 -154.124 2010 

X X X NK 196301 
 

MSB:Mamm:223685 Sorex ugyunak United 
States 

Alaska 68.1174 -154.124 2010 

X X X NK 196394 
 

MSB:Mamm:223717 Sorex ugyunak United 
States 

Alaska 67.7188 -156.1409 2010 

X X X NK 196477 
 

MSB:Mamm:223768 Sorex ugyunak United 
States 

Alaska 68.2047 -159.8609 2010 

X X X NK 196486 
 

MSB:Mamm:223706 Sorex ugyunak United 
States 

Alaska 68.2119 -159.8689 2010 

X X X NK 196564 
 

MSB:Mamm:222005 Sorex ugyunak United 
States 

Alaska 65.3784 -163.2283 2010 
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X X X NK 196605 
 

MSB:Mamm:223122 Sorex ugyunak United 
States 

Alaska 65.3784 -163.2283 2010 

X X X NK 196621 
 

MSB:Mamm:223124 Sorex ugyunak United 
States 

Alaska 65.3784 -163.2283 2010 

X X X NK 196637 
 

MSB:Mamm:223120 Sorex ugyunak United 
States 

Alaska 65.3784 -163.2283 2010 

X X X NK 123279 JF430996 MSB:Mamm:143102 Sorex ugyunak United 
States 

Alaska 66.35 -150.46 2005 

X X X NK 213919 JQ778950 MSB:Mamm:247467 Sorex ugyunak United 

States 

Alaska 70.721503 -153.836542 2011 

  
X NK 234248 

 
MSB:Mamm:305187 Sorex ugyunak United 

States 
Alaska 71.25377 -156.61072 Not 

recorded  
X X NK 234250 

 
MSB:Mamm:302935 Sorex ugyunak United 

States 
Alaska 71.25378 -156.61069 2013 

 

 

 

 

 

  



116 

Appendix B - Genetic drift drives differentiation of an endangered 

insular shrew (Sorex pribilofensis) 

 Supplementary Table 

Table B1. Significance and goodness of fit of linear regressions 

Significance and goodness of fit of linear regressions between genetic variability and genetic 

differentiation for the microsatellite and neutral SNP datasets. 

 

Microsatellites 

y x Multiple R-squared F-statistic p-value Adjusted p-value 

Jost's D Ho 0.9055 28.76 0.01269 0.01269 

Nei's FST Ho 0.9648 82.19 0.002835 0.003189 

Nei's GST Ho 0.9719 103.7 0.002019 0.003189 

Jost's D He 0.972 104 0.002008 0.003189 

Nei's FST He 0.9769 127 0.001498 0.003189 

Nei's GST He 0.9697 96.04 0.002258 0.003189 

Jost's D Ar 0.9674 88.9 0.002528 0.003189 

Nei's FST Ar 0.9905 313.5 0.000393 0.003189 

Nei's GST Ar 0.9852 200.2 0.000765 0.003189 

Neutral SNPs 

y x Multiple R-squared F-statistic p-value Adjusted p-value 

Jost's D Ho 0.9619 25.24 0.1251 0.1251 

Nei's FST Ho 0.9994 1558 0.01612 0.04837 

Nei's GST Ho 0.9997 3554 0.01068 0.04805 

Jost's D He 0.9729 35.96 0.1052 0.1184 

Nei's FST He 0.9999 28750 0.003754 0.03379 

Nei's GST He 0.9977 433.4 0.03056 0.06252 

Jost's D Ar 0.9865 72.91 0.07422 0.09542 

Nei's FST Ar 0.997 335.2 0.03474 0.06252 

Nei's GST Ar 0.9907 106.4 0.06154 0.09231 

 


