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Abstract

One of the major focuses in the PER community has been on understanding student

learning in order to improve how we teach undergraduate physics courses. Problem-solving

receives significant emphasis across the undergraduate physics curriculum, and students’

ability to solve physics problems has been researched extensively. Studying student problem-

solving processes in upper-division physics courses is a growing area of research. The research

presented in this dissertation is done in an effort to understand student problem-solving pro-

cesses at the upper-division level. In particular, we investigate students’ use of mathematical

tools across the undergraduate physics curriculum, in particular, at intermediate mechan-

ics students’ written homework solutions in order to better understand how students use

these tools as they solve traditional mechanics problems. We use a modified version of the

ACER (Activation-Construction-Execution-Reflection) framework to analyze students’ solu-

tions and to identify patterns of mathematical skill use on traditional problems. We apply

techniques borrowed from network analysis and the Resources Framework to build a “fin-

gerprint” of students’ mathematical tool use. In this study, we present preliminary findings

on patterns that we have identified in students’ problem solving.

Then we shift our focus to investigate how students use multiple representations as they

solve problems. First, we study how students translate among different representations.

Data for this study is drawn from an upper-division Electromagnetism I course, where stu-

dents engaged in individual oral exams. We do a moment-by-moment analysis of students’

problem solving to see how they translate among durable representations (diagrams, written

mathematical equations) with the help of evanescent representations (gestures, words), and

how students build up durable representations where they can “stand fast” later. In this

study, we present the case of Larry as an exemplary case for problem solving. Larry starts

from a durable representation (a diagram). He then builds from there, using evanescent



representations (gestures and words) and standing fast on the diagram. He later translates

to a different kind of durable representation (mathematics), where he reasons and answers

the original problem.

In our investigation to understand how students use multiple representations while solving

problems, we further investigate how students construct spontaneous representations and

also make connections among these representations. We use a social semiotic perspective to

sketch a theoretical framework that accounts for how semiotic resources might be combined

to solve problems. We identify the semiotic and conceptual resources that Larry uses, and we

use a resource-graph representation to show Larry’s coordination of resources in his problem-

solving activity. Larry’s case exemplifies coordination between multiple semiotic resources

with different disciplinary affordances to build up compound representations. Our analysis

of this case illustrates a novel way to think about how students use semiotic resources as

they solve physics problems.

After that, we revise our theoretical framework to better describe students connecting

multimodal representations. The revised framework focuses on the semiotic modes and it

describes how students coordinate among different semiotic resources with different modes.

In this study, we use multiple cases of students solving oral-exam problems to generalize the

approach.
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Chapter 1

Introduction

Most prior studies in Physics Education Research (PER) have focused on understanding

student learning in order to improve how we teach undergraduate physics courses. Most

of that prior work has been done on introductory level physics courses, but studying stu-

dent learning and problem-solving processes in upper-division physics courses is a growing

area of research in the field of physics education. In order to improve student learning in

upper-division physics courses, it is necessary to study and understand more about stu-

dents’ learning practices at this level. This thesis has two main sections: (1) Study how

students use mathematical tools during physics problem-solving. (2) Characterize students’

use of representations (including construction and making connections) while solving physics

problems.

Problem-solving receives a significant emphasis across the undergraduate physics curricu-

lum, and students’ ability to solve physics problems has been researched extensively. Among

various approaches, one way that researchers have studied students’ learning practices has

been to identify student difficulties in physics. We first describe the development and theo-

retical grounding of a new analytical framework designed to characterize how students use

mathematical tools during physics problem solving. Then we apply this framework along

with social network analysis to investigate student written homework solutions.

After that, we describe students’ use of representations while solving problems; specif-
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ically, we describe the development of a novel way for describing students’ construction of

representations. This study seeks to understand how students construct representations to

solve problems and what factors may influence whether they succeed or fail to connect among

representations as they solve problems at the upper-division level.

This dissertation is organized as follows. Chapter 2 starts by describing previous studies

that have been done on undergraduate students to understand their problem solving behav-

iors and use of mathematics in physics courses. Then we introduce an analytical tool (the

ACER framework) for investigating upper-division students’ use of mathematical tools in

their physics homework solutions. After that, we redirect our focus toward students’ use of

representations and social networks in physics.

Chapter 3 explores how the modified ACER framework might be used to analyze the

written evidence of typical problem solving in a traditional course. In this study, we use the

modified ACER framework to identify three kinds of differences in student homework solu-

tions: differences in solution paths within one problem; differences among multiple problems

of the same type, and differences in students’ initial problem-solving steps as a function of

the type of problem.

Chapter 4 shifts focus to how students coordinate among multiple representations while

solving problems. In this analysis, we present the case of Larry as an exemplary case. We

suggest problem solving as a process that involves translations between durable representa-

tions (diagrams, written mathematical equations) with the help of evanescent representations

(gestures, words). In addition, we maintain close attention to student reasoning.

Having established students’ use of representations while solving physics problems, Chap-

ter 5 describes a novel way to describe students’ construction of representations while solving

problems. We present an initial framework, which we suggest shows how students coordi-

nate among different semiotic resources to construct representations that they use to solve

problems.

Chapter 6 describes how can we better describe students’ problem-solving processes when

they connect multimodal representations while solving problems. We use multiple cases of

students solving oral-exam problems to generalize the approach we proposed in our previous
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study. We explain the underlying mechanism behind students’ construction of spontaneous

representations as they coordinate among different semiotic resources with different modes.

Finally, in chapter 7, we summarize the findings from the studies described in this thesis and

suggest a potential avenue for further research. Chapter 8 summarizes the research questions

and the answers.
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Chapter 2

Literature Review Overview

2.1 Problem Solving in the Physics Curriculum

Before we discuss problem solving, it is necessary to have a definition of the word “problem”.

In common language, a problem can be a situation that causes difficulties, something that

must be solved, or a condition that must be corrected. Researchers in Physics Education

Research (PER) define a problem as “a task which requires one to devise a sequence of

actions leading from some initial situation to some specified goal” (1). Then the process of

solving problems is a behavioral process, and problem solving is a strategy to select the most

effective response from all the available responses (2).

One major focus of the PER community has been understanding student learning in or-

der to improve the ways we teach undergraduate physics courses. Solving problems receives

a significant emphasis across the undergraduate physics curriculum, and students’ ability to

solve physics problems has been studied intently in research. In early work at the undergrad-

uate introductory physics level, researchers compared the problem-solving behaviors between

expert and novice problem solvers (3;4;5;6). This work led to identifying differences between

expert and novice problem solving approaches. In particular, novices tend to pay attention

only to the surface features of a problem while experts focus on deep structural features. In

addition to that, experts seem to employ efficient problem solving approaches as a reason

4



of their knowledge organization. These studies imply that instructional strategies should be

developed that encourage students to develop the techniques used by expert problem solvers

by influencing students to consider physics concepts and efficient procedures while solving

problems.

2.2 Students’ use of Mathematics in Problem Solving

Even though most prior work in physics problem-solving was done on introductory level

physics courses, studying student-learning and problem-solving processes in upper-division

physics courses is a growing area of research in the field of Physics Education. Students

in upper-division physics courses are required to manipulate mathematical tools that have

a higher degree of complexity (e.g. choosing an appropriate coordinate system, computing

derivatives, evaluating integrals, using differential equations and approximations, etc.) when

compared with students at the introductory level.

Also, students in advanced courses are often required to connect their mathematical ideas

and expressions to physics concepts. It is well noticed that physicists use mathematics in

a slightly different way from mathematicians (7;8;9;10;11). Even though these required math-

ematical tools and the techniques associated with these tools are covered in mathematics

classes, where students learn how to successfully solve mathematical problems, many stu-

dents still struggle to apply mathematical tools appropriately in their physics courses to

solve problems (12;13;14;15;16).

2.2.1 Prescriptive Problem-Solving Strategies

As an approach to finding ways to help students overcome these issues and to improve

students’ learning in upper-division physics courses, researchers investigated how students

integrate their mathematical ideas with their available conceptual knowledge while solving

problems. Investigating and comparing between the problem-solving behaviors of experts

and novices is a well-established traditions in PER. As a starting point to compare how well
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algebra-based introductory physics students would use mathematics in their physics courses,

Redish (9) developed a cyclic model to describe how experts use mathematics in physics (and

in other sciences as well) to describe physical systems. This cyclic model consists of four

steps that guide the process (Figure 2.1 (9)). In this diagram, the boxes represent goal points,

and the arrows represent the process. First, the physical system is described and modeled.

Second, a translation into a mathematical representation follows, and are mathematical

manipulations are performed. Third, obtained mathematical results are interpreted within

the physical model. Finally, the physical results are evaluated against the problem statement

and the physical system.

Figure 2.1: The model proposed by Redish for the use of mathematics in physics

Redish’s modeling cycle can be useful for describing students’ mathematical reasoning

in physics; this cycle differentiates between students’ abilities to mathematize the problem,

perform mathematical manipulations, and interpret findings in terms of the physical system.

These activities require a deeper understanding of physics concepts and also a familiarity

with mathematical techniques. A majority of the students try to memorize and apply physi-

cal principles without fully understanding the underlying concepts however. Ultimately, this

makes students unable to relate their understanding of concepts to their existing knowledge,

and they do not know how to choose methods most suited to solve a given problem. These

reasons affect students’ problem-solving approaches; researchers have found that novice stu-

dents’ problem solving approaches do not align with Redish’s model (17;18).

Novice students’ problem-solving approaches seem inefficient to experts. In addition, ed-
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ucators believe that, if they do not teach students a problem-solving method, those students

will not be able to fully understand what a given question means or what approaches are

required to solve problems (19;20;21). Researchers have sought ways to lead students toward

more efficient problem-solving approaches. For example, as an attempt to teach their intro-

ductory physics students a problem-solving strategy, Wright and Williams (22) came up with

a strategy (WISE). The WISE strategy has a consistent sequence of four problem-solving

steps, which are more aligned with the expert approach. Each letter of WISE stands for a

part of the problem-solving approach to be used in each problem.

1. What’s Happening - Identify the physical principle; make a sketch or a diagram.

2. Isolate the unknown - Select an equation and solve symbolically; if one equation is not

enough look for others to solve simultaneously.

3. Substitute - Solve equations with both numbers and units.

4. Evaluate - Check for correctness of signs, units, and magnitude; does the answer make

sense within the context of the physical system?

Most of the time, WISE seemed to help students solve traditional textbook problems.

This approach gave both students and instructors a common framework to discuss physics

concepts as well as how these concepts are applied in solving physics problems.

Similarly, Heller (19) developed another problem-solving strategy to help introductory stu-

dents to associate their conceptual understandings with the procedural aspects of problem

solving that go beyond just solving the end-of-chapter problems in textbooks. This particular

strategy included five steps:

1. Visualize the problem - Visualize the events described in the problem statement.

2. Physics description - Convert the qualitative understanding of the problem into the

language of physics.

3. Plan the solution - Create an outline of equations to be solved algebraically to produce

an answer.
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4. Execute the plan - Substitute the known quantities from the problem statement into

the final algebraic expression constructed in the third step.

5. Check and evaluate - Check if the answer is properly stated. Check units, and whether

the answer is reasonable.

We classify all the above-mentioned problem-solving strategies as prescriptive strategies,

that are well aligned with expert-like approaches. These strategies seem to match well

with the kinds of problems students are asked to solve at the introductory level. Also,

these strategies were found to help students improve their attitudes toward solving physics

problems as well as to improve their problem-solving skills. In contrast to these prescriptive

strategies, there also exist descriptive problem-solving strategies. Working from the resources

framework, Tuminaro (23) developed a framework for the introductory level, and Bing (24) took

this idea to develop the existing framework to apply it at the upper-division level.

2.2.2 Resources Framework

Studies on expert vs. novice problem solving have revealed that experts approach problems

differently. The knowledge structure of the experts organized information in a different and

better way from the novices. In order to understand and describe this difference between

novices and experts, researchers have looked for a fine-grained model that would allow them

to describe observed student behaviors and the underlying mechanisms that are responsi-

ble for those behaviors. In previous research on modeling student ideas, DiSessa described

small chunks of student ideas as phenomenological primitives (p-prims) (25) that are used in

students’ intuitive reasoning. DiSessa argued that these p-prims are primitive reasonings

that are abstracted from everyday phenomena (phenomenological) and are irreducible and

undetectable (primitive) to the students using them. On the other hand, the resource-based

model provides a fine-grained structure that can be used to describe student behaviors, de-

spite diSessa’s p-prims. Resources are reusable thoughts that can be broad and even have an

internal structure. The resource-based model of cognition, introduced by Hammer, (26;27;28)
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is a framework that describes individual cognition as an in-the-moment, contextually de-

pendent utilization and combination of fine grained bits of information, named “resources.”

Hammer’s work is based on the previous work of diSessa; Hammer’s defined resources could

range in grain size from small, basic elements like diSessa’s phenomenological primitives, or

p-prims (e.g.,“closer means stronger”), to more complex conceptual structures such as coher-

ent theories about physical phenomena. In the resources framework, resources (student idea

pieces) are conceptual in nature, independent, and productive (neither correct or incorrect)

and are used for solving a problem. Resources are highly context dependent (determined by

the students’ view of the context), so activating a particular resource may activate a network

of resources. Usually many resources are applied to solve a single problem. Resources can

have different types, and the existence of conceptual, epistemological, procedural, metacog-

nitive, mathematical, and other resources (such as semiotic resources) has been proposed

and empirically validated (26;29;30;31;32;33).

Educators are developing the resource-based model of cognition into a tool and they have

used the developed tool to better understand ways they can improve instruction and encour-

age student learning of physics (34;35;26;36;37). In order to answer the question, “How can we

describe students’ behavior and why it is different from the way experts behave?”, researchers

using the resources framework have investigated how students construct their knowledge by

combining the idea pieces and reasoning while solving problems (38;39;40;41). Further broad

research work has investigated the organizational structure of students’ resources including

framing (31;42) and epistemological games (30;29).

2.2.3 Descriptive Problem-Solving Strategies

We categorize the frameworks developed by Tuminaro (23) and Bing (24) as descriptive problem-

solving strategies because both these frameworks focus on explaining why students solve

physics problems the way that they do. To understand the underlying mechanism, re-

searchers looked at students’ in-the-moment reasoning. First, Tuminaro (23) developed his

theoretical framework to describe students’ use of mathematics in introductory level physics
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courses. Tuminaro’s framework consists of three aspects,

1. Mathematical resources - Abstract student ideas/ elements involved in mathematical

thinking including students’ understanding of mathematical symbols and strategies

students use to extract information from mathematical expressions.

2. Epistemic games - Patterns of students’ activities observed during problem solving.

Epistemic games combine and structure resources to solve a problem. There exist

several epistemic games. Each game is characterized by a different sequence of moves

and different types of resources used by the students.

3. Epistemic frames - The epistemic game that students play is governed by the frame in

which they are operating. Epistemic frames are associated with deciding what tools

and skills are needed in a particular context or situation.

In order to analyze students’ use of mathematics at the upper-division level, Bing (24) built

on Tuminaro’s theoretical construct. Bing argued that student framing can be identified by

examining their solution for mathematical claims other than the moves that they make.

Bing (24) used Tuminaro’s theoretical construct only with mathematical resources and epis-

temic frames. Within Bing’s study, he identified four epistemic frames that upper-division

students engaged in while solving physics problems: invoking authority, physical mapping,

calculation, and math consistency.

2.2.4 ACER Framework

Students’ actual problem-solving processes are found to deviate from the expert-like ap-

proaches. Among those available strategies, prescriptive problem-solving strategies focused

on explicitly teaching students to solve problems in a way that is well-aligned with expert-like

approaches. Then descriptive problem-solving strategies focused on explaining why students

solve physics problems in a particular way.

When we consider available data streams, homework is a key element in every undergraduate-

level physics course for practicing problem solving, and student homework solutions provide
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a rich source of data for studying how students use mathematics in their physics courses.

But descriptive strategies, however, use student in-time reasoning to understand and explain

student problem-solving behaviors and this prevents the use of students’ written work for

further exploration. Both these approaches (prescriptive and descriptive) are found to have

limitations and the researchers looked for ways to overcome those limitations. The ACER

theoretical framework (Figure 2.2 (14;43)) bridges the gap between the descriptive and the

prescriptive approaches.

Figure 2.2: Visual representation of the ACER framework developed by researchers at CU
Boulder

Researchers developed the ACER framework to identify a coherent set of student diffi-

culties with mathematics in upper-division physics courses that the researchers could not

learn from other sources such as informal observations and discussions with students and

instructors. The ACER framework consists of four components: activation, construction,

execution and reflection. A convenient visualization of this framework is given in Figure

2.2 (43). The ACER framework provides a logical flow and a way of organizing the problem

solving process so that students might solve problems step by step (44).

The first component of the ACER framework is activation of the tool. In order to start

solving a given problem, students have to decide on and choose appropriate mathematical

tools too. Students start by reading the given problem statement and identifying the explicit

and/or implicit cues integrated in the problem statement. These cues may include symbols

11



that are used to represent physical quantities or language that directs the solution process

(such as “Find the initial and final velocities”, “Find the angle of projection” etc.). Reading

the problem statement may activate resources or mathematical ideas (26;27;28) that are related

to the problems’ context and to students’ prior knowledge. Then students must pick the

proper mathematical tool from among the available mathematical ideas.

Often in physics problem solving, students are required and encouraged to build models

using different representations. These representations include diagrams and mathematical

models that can be used to represent the actual physical situation presented in the problem.

In the second component of the ACER framework, construction of the model, students

construct a mathematical model that uses the previously chosen mathematical tools to de-

scribe the given physical system. Students develop their model to perform mathematical

steps during the next component.

The third component of the ACER framework, execution of the mathematics, in-

volves students performing mathematical steps to get to the final solution. Within this

step, students execute procedural mathematical steps that were originally planned during

the previous component of construction.

Self-reflection could be an excellent opportunity for students to think about their meta-

thinking on how they solved problems. The fourth component of the ACER framework,

reflection on the results, involves students comparing their solution with known or ex-

pected results. This component includes everything from basic checking such as ‘check the

units of the final answer’ to very important activities that students could perform to develop

and extend their understanding of the underlying physics concepts. As an example, after

developing a final equation that expresses electric potential as a function of radius, a student

could input values to see how the electric potential varies at the boundaries.
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2.2.5 Previous Applications of the ACER Framework to Identify

Student Difficulties

Researchers have applied the ACER framework to understand and characterize student dif-

ficulties related to specific mathematical tools such as Taylor series, Multivariable inte-

gration, and Dirac delta functions in upper- division classical mechanics and electrostatics

courses (45;14;16;43). Data for studies involving Multivariable integration and Dirac delta func-

tions, were collected from the two-semester Electricity and Magnetism (EM 1) course at the

University of Colorado Boulder (CU) that covers the first six chapters of Griffiths (46). The

course employed research-based teaching practices such as clickers (47) as well as problem-

solving worksheets (48) both in and out of class.

Data for these studies were collected from three main sources: student solutions to tra-

ditional midterm exams, responses to specific questions on the multiple-choice Colorado

Upper-division Electrostatics (CUE) Diagnostic (49), and think-aloud student interviews. Im-

portantly, the think-aloud interviews were designed to target the student difficulties observed

on student solutions to midterm exams. Data for the Taylor series study was collected from

a second year classical mechanics (CM 1) course that uses the textbooks Boas (50) along with

Taylor (51) and covers up to but does not include the calculus of variations. Data for the

study were collected from midterm exam solutions and think-aloud interviews. The student

population for both courses was composed of physics, engineering physics, and astrophysics

majors.

These studies consisted of analyzing students’ written solutions and interviews. Both

the written solutions for exams and the written work embedded with the audio from the

interviews were coded separately using the components of ACER. Each data type had two

stages of analysis. First, students’ solutions were coded by identifying key elements under

the four main components (Activation, Construction, Execution, and Reflection) in the

framework. The second stage involved further detailed coding of those identified key elements

to further develop sub-codes under each component. The coding process was continued until

the emergent codes covered important and unanticipated aspects of student solutions.
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First, the study focused on student difficulties associated with multivariable integration

in the context of the integral form of Coulomb’s law (14). Specifically, students were asked to

use the integral form of Coulomb’s law to find the electric field or electric potential from a

continuous charge distribution. The exam problem asked students to calculate the electric

potential from a disk with a given charge density along an axis of symmetry. The interview

data was collected from a different student group (from the exam students) who were asked

to calculate the potential from two parallel disks of charge by direct integration.

The researchers were able to identify common student difficulties with Coulomb’s law

integrals under each component of ACER. Under activation, nearly 75% of the students

were able to successfully identify the appropriate tool to solve the problem, namely the

Coulomb’s law integral. However, researchers also found evidence of misapplications of

Gauss’s law to solve the problem, in both exam solutions and interviews, that is consistent

with previous research at the junior-level (15). Researchers found that students had many

difficulties when attempting to generate appropriate mathematical expressions to represent

the physical scenarios.

Common difficulties under the Construction component of ACER were related to artic-

ulating the differential charge element and to vector quantities in the mathematical model

(mathematical equation). Some students in the interview section appropriately used dia-

grams to label vectors that they then successfully used to articulate vector quantities in

their mathematical equations. Also, despite other difficulties, most of the students in this

study were found to be comfortable selecting an appropriate coordinate system to solve the

given problem, a skill valued at the upper-division level.

Under the Execution component, students were found not to make mathematical errors

either with integrals or algebraic manipulations that are specific to solving Coulomb’s law

problems. There were a few significant mathematical errors, however, which are expected to

be obvious to students at this level, such as pulling integration variables outside of integrals.

In addition to, there were some cases of common minor mathematical errors such as plugging

in limits incorrectly. Under the Reflection component, researchers found that only a small

number of students spontaneously reflected on their final results. During the interviews,
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researchers encouraged students to reflect on their results. These students then reflected on

their answers by checking units or by checking the behavior of the electric potential at the

boundaries. When students engaged in reflection, they found inconsistencies that were due

to mistakes that occurred during the construction and/or execution components.

The researchers then moved their attention in their next study to another mathematical

tool commonly used in undergraduate physics curricula - the Dirac delta function (16). In

order to identify the kinds of challenges that students face when manipulating δ-functions,

researchers in this study, presented problems that use δ-functions to express volume charge

(or mass) densities of charge distributions such as the volume-charge density of a line charge

running parallel to the z-axis. Once again, exam solutions, student responses to the multiple-

response CUE (49), and interview data were collected using different groups of students. Under

the Activation overall, the researchers found that many students had difficulty recognizing

when the δ-function is an appropriate mathematical tool even immediately after completing

an upper-division electrostatics course. During the interview, however, when students were

asked for a mathematical expression for the potential of a finite square well in the limit that

the well became very narrow and very deep, students used the words ‘very narrow and very

deep’ as cues to choose the δ-function as the appropriate mathematical tool.

Under the Construction component, researchers found students had more difficulty when

asked to translate a verbal description of a charge distribution into a mathematical formula

for volume charge density than when doing the reverse process. In addition, most of the

students misidentified the 1-D or 2-D volume charge densities as point charges when setting

up the mathematical equation. About one fourth of the students made significant mathe-

matical errors related to the δ-function while executing this integral in their exam solutions.

In response to the CUE question, approximately one third of students made mistakes by

selecting an incorrect value for the integral of a point mass density. During the interviews,

two out of five students were found to have difficulties integrating the δ-function when asked

to calculate the total charge on a uniformly charged spherical shell. Results show that most

of the students did reflect at least somewhat on their final answer because around two-thirds

of the students provided the correct units. One reason for this reflection may be that the
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prompts used in the exam explicitly asked students to comment on the units.

Like the Dirac delta function, Partial Differential Equations (PDEs) are also a common

mathematical tool used in undergraduate physics curricula. Often students employ sepa-

ration of variables (SoV) to solve PDEs. The next study used the ACER framework to

identify and categorize common student difficulties associated with SoV in the context of

Laplace’s Equation (52). Researchers used problems that require SoV in both Cartesian and

spherical coordinates in exam questions. As an example, in Cartesian coordinates, a prob-

lem described a rectangular pipe with given values for the voltage on each side; students

were asked to find an expression for the voltage inside the pipe. In spherical coordinates,

a problem was presented with an azimuthally symmetric expression for the voltage on the

surface of a spherical shell and asked for an expression for the voltage valid both inside and

outside the shell.

Almost all the students were able to correctly operationalize under the activation compo-

nent in both the Cartesian and the spherical SoV problems and they were able to recognize

SoV as the correct approach. Researchers reasoned, however, that this high achievement may

have occurred because of the distinctive nature of Cartesian SoV questions and the different

types of prompts contained in the problems. In the Cartesian SoV problems, students did

not demonstrate much difficulty within the construction component; they were successfully

able to identify boundary conditions and to build a general expression for the voltage to

satisfy those boundary conditions. In the spherical SoV problems, however, some students

had difficulty with setting up the equations to solve for the unknown constants as they made

mistakes when matching the boundary condition at the surface.

In contrast, students in the interviews showed fluency in moving quickly back and forth

between identifying boundary conditions and setting up equations. Under Execution, for

both Cartesian and spherical SoV problems, more than half of the students were able to

successfully separate Laplace’s equation into ODEs. Under the Reflection component, there

were very few students in exams who tried to reflect on their final answer to check for units;

this trend was same for the interviews.

The next study was conducted to identify student difficulties with Taylor series applica-
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tions in physics problems (43). Two of the exam problems used in this study were from the

topics of motion and energy. One asked students to perform a Taylor series expansion on an

expression for the 1-D position of a particle moving against linear drag; the other one asked

students to find an approximate expression for the gravitational potential energy for a bead

sliding inside a frictionless cylinder. During the interviews, students were asked to solve a

number of Taylor series problems that included formal math and physics questions.

Researchers were able to identify few challenges when students were asked to solve Taylor

approximation problems. With explicit cues, most of the students in both exam problems

and interviews successfully identified the Taylor expansions under the Activation component.

They had difficulty when the prompts were less explicit, however. Under the Construction

and Execution components, students often demonstrated their identification of the variable

and showed relatively good skills with expansions around zero; most of the difficulties came

when they were asked to perform Taylor expansions around nonzero expansion points. Under

the reflection component, many students struggled to make meaningful statements about the

physics of their solutions.

The components of the ACER framework are designed to address and capture the critical

aspects of the process that students use to develop solutions to physics problems; the above

studies summarize the successful use of it. In addition, as discussed above, the studies

show the flexibility of the ACER framework as it can be operationalized to identify student

difficulties around a wide range of mathematical tools.

Researchers developed the ACER framework to identify student difficulties on mathemat-

ical applications in upper-division physics courses. They used a combination of conceptually

rich research-based problems in think-aloud interviews and other data from classroom ob-

servations. In most undergraduate physics courses, however, there exists a ubiquitous data

source for education research, which is student homework. In fact, student-written homework

solutions are common at the upper-division level. Often instructors incorporate back-of-the-

chapter style problems in their homework assignments to give their students practice on

problem-solving techniques and to give an engaging opportunity for students to understand

underlying physics concepts by solving problems.
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2.3 Social Network Analysis

2.3.1 Social Networks

We can describe a network as a group or a system of interconnected objects. As an example,

a computer network is composed of different devices and computer systems connected by

physical and/or wireless connections. We can also observe networks within the teaching-

learning environment that we could observe the teacher and the student are connected as

a group. As an example let’s consider a network-based classroom(a computer lab). In this

setting each computer is connected through a local area network to the server. Then the

teacher and each student sitting in front of a computer comprise a network that allows the

teacher to engage with the whole class at the same time. In comparison, a social network is

a group of connected people in a particular club, small town or, as in our case, a connected

group of students inside and outside of classes. There exist online versions of social networks

such as Facebook, Twitter, LinkedIn, Google+, YouTube, Pinterest, and Instagram etc.,

that allow people to build social relations, real-life connections with other people who share

similar personal interests and backgrounds.

Networking is important to daily human activities. If we go back to the previous example

about computer networks, the networking of devices and computer systems helps the network

users to share data files and devices like printers or scanners. Then within the networked

classroom, the network can facilitate communication for both students and the teacher.

The teacher can communicate with the classroom by sharing the screen, monitoring student

activities, and by participating in written conversations to give instructions by composing

messages in real-time for the students in need. The students can share ideas and resources

as well as help each other.

In a broader sense, global social networks allow network members to share ideas, opinions,

and photos/ videos as well as to inform others about real-world activities and events with

people in their network. In addition, businesses use social networks as a major tool for

reaching consumers and promoting their brands.
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There are many interesting things we can learn about networks. Social network analysis

can provide information about the structure of a network (behavioral patterns), the position

of members within a network (identify change agents, identify key players, direct resources),

and visual representations of data to gain insights (to identify hidden patterns). Analysis

of social networks can lead to new realizations about culture, politics, history, and lots of

other interesting topics by overlaying different networks that connect and transfer people,

friendships, information, money, and power. In that sense, businesses can target a specific

audience based on business related information like personal interests and demographical

backgrounds within the networks and their statistics.

2.3.2 What is social network analysis?

Social network analysis (SNA) is the study of social relations among a set of members within

a social group using quantitative and qualitative methods; it has been developed under the

theoretical constructs of network theory and graph theory (53;54;55;56;57;58). Social network

analysis gives us the tools to quantify the connections between individuals within a network.

As an example, we can find out how one person is connected or disconnected with people,

groups, or trends in a population.

Research in a number of academic and non-academic fields has shown that social net-

works operate at many levels; SNA, as an analytical tool, has been used in research studies in

education (59;60), economics (61;62;63), computer science (64;65;66), health care and medicine (67;68),

social and behavioral sciences (69;70;71), work and organizations (72;73), and crime and terror-

ism (74;75;76) studies.

SNA can be used to generate graphical representations of networks (network graphs)

that we can use to find patterns in the interactions that connect individuals together as a

society. Networks are often visualized using network graphs (Figure 2.3) in which networks

are represented as a collection of points, called nodes, and lines connecting these points,

called edges (ties). When the direction of a connection matters, we have a directed graph.

In such cases, an edge from node A to B (A→ B) means something different than an edge
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from B to A (B → A). If the direction of a connection does not contain any information

about the relation between nodes (i.e, A − B has the same meaning as B − A), a graph is

called undirected.

Figure 2.3: Undirected network graph: nodes and edges.

For simple networks, we can realize some network information just by looking at the

network graph. But when more actors or nodes are involved in a network there can be many

kinds of ties between the nodes. As a result, the related network graphs often get very

complex and we cannot get the network information just by inspecting those graphs. In that

sense, SNA measures are a vital tool for understanding the properties of networks.

2.3.3 Network Measurements

Each actor has a specific role to play within a network and the functions of each player

coincide with the position or location of that player within the network. In terms of network

graphs, nodes coincide to the structural positions of the actor relative to each other. In

order to understand a network’s participants and properties, SNA measurements assess the

location and grouping of the nodes in the network. These measures give us information

about the roles, functions, and groupings in a network such as who are the key players, who

is in the core of the network; who are the connectors, mavens, leaders, bridges, and isolates;

where are the clusters and who is in them?
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A network graph can be characterized using various measures. Centrality measures the

importance of a node’s position in a network and plays an important role in the field of

network analysis. Many different centrality measures that have been proposed over the

years, including Degree, Betweenness, Closeness, and Eigenvector (77;78). Degree centrality

is the simplest measure of node connectivity; it describes how well connected an actor is in

a network. Degree centrality indicates the importance of a node by the number of nodes

connected to it. For the simplest form of networks, within un-directed graphs, the degree

centrality is merely a count of the number of ties for every node. For directed networks,

a given node can have both in-degree and out-degree centrality measures. The in-degree

centrality is the count of inward ties (inbound ties) to the node, and the out-degree centrality

is the count of outward ties (outbound ties). Degree centrality indicates the power and access

to resources and information within the network. This measurement is used to identify those

actors with the most direct contacts and with the least dependence on other actors while

holding the most information in the network.

Betweenness centrality shows the nodes that act as ‘bridges’ between nodes in a net-

work by calculating the number of times a node lies on the shortest path between other

nodes. When calculating the betweenness centrality, the mathematical function first iden-

tifies all the shortest paths and then counts how many times each node falls on one. This

measurement considers the relative importance of nodes by measuring the degree to which

information (or relationships) have to flow through a particular node in the network. Be-

tweenness centrality is useful for analyzing communication dynamics within networks to find

actors who influence flow around the network. In that sense, actors who have higher be-

tweenness centrality operate as key players by acting as the ‘quickest’ bridge for the flow of

resources or information between other actors.

We can use the Closeness centrality measurement to identify actors who are very

closely connected to other actors. Actors with high closeness have the best ability or position

with the network to influence the whole network with minimum effort. Closeness centrality

measures how many steps (ties) are required for a particular node (actor) to access every

other node (actor) in the network. When calculating closeness centrality, the mathematical
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function first calculates the shortest paths between all nodes, and then assigns each node

a value based on its sum of shortest paths. Nodes with higher closeness centrality are in

a great position to monitor the information flow in the network, and they can easily and

quickly transfer resources and coordinate tasks within the network.

Eigenvector centrality is similar to degree centrality as it measures the importance

of a given node by its number of ties. Eigenvector centrality, however, specifically measures

the degree to which a given node is connected to other well-connected nodes in the network.

Eigenvector centrality can be more useful centrality measure than degree centrality because

it does not only consider the nodes that are directly connected to a given node, but also

takes into account the extended connections of a node. This improvement reveals how well

connected an actor is to other well-connected actors in the network and therefore, how much

influence the actor has over the whole network.

Centrality measurements are popular and well-accepted network measurements when it

comes to identifying the most important nodes within a graph which corresponds to the key

players (actors) within a network. There are other useful network measurements, however,

aside from centrality measurements, including network density and network diameter. Net-

work density is a measure of the connectedness, relatedness, and effectiveness in a network.

Network density is defined as the proportion of ties that are connected out of all ties that

could possibly be connected. In that sense, higher network density means that we have a

more connected network. Network density ranges from 0 to a maximum of 1.0. A network

with a density close to 1.0 is said to be dense; a network with a density closer to 0 other-

wise is scattered. Network diameter gives us an idea about the linear size of a network.

Network diameter is defined as the longest graph distance between any two nodes in the

network. The network measurements network diameter and closeness centrality have oppo-

site meanings and significances. Network diameter is interested in the maximum distance

between any pair of nodes in the network; the closeness centrality measures how many steps

(ties) are required to reach other nodes (actors) in the network. In that sense, when two

nodes have a larger value for network diameter they have a smaller value for the closeness

centrality.
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Recently, the use of SNA in physics education research has sought to advance under-

standing of how students’ collaborative approaches influence student learning trends within

physics classrooms. SNA has been used to investigate student peer networks (79;80;81), as well

as patterns of student interactions in computer supported collaborative learning environ-

ments (82;83;84;85). With our interest in investigating student use of mathematical tools in

undergraduate physics courses, in the study described in chapter 3, we look at the complex

system of interconnected mathematical steps and tools in student problem solving, through

the lens of SNA. In our analysis, each mathematical tool used by students represents a

node in a network, and the order of the mathematical tool represents the tie in our network

graphs. We use SNA as an analytical tool to identify patterns in students’ use of mathe-

matical tools and the relations/ interactions between those mathematical tools as they solve

undergraduate physics homework problems.

Among other available data streams, I had access to videos of students solving problems

in group and individual oral exams in both upper-division Electromagnetic Field 1 and

Mechanics courses. When I analyzed those videos, I found that students coordinate among

multiple representations as they solve problems. As a result, I decided to make an additional

analysis. In seeking such an additional analysis, I reviewed the existing work on students’

use of representation in PER.

2.4 Representations

Among the extensive research done in PER on student problem-solving processes in PER,

researchers have studied student understanding of representations, which has been an inte-

gral part of the PER that aims to enhance student-learning outcomes (86;87). In PER, the

term Representations refers to the many ways in which students can express ideas, concepts,

processes, and relationships. Sketches, diagrams, pictures, graphs, tables, and mathemat-

ical equations are some of the commonly used representations in undergraduate physics

courses (88;89;90;91;92;93;94;95;96). Diagrammatic representations can play a particularly impor-

tant role in the initial stages of conceptual analysis and planning of the problem solution.
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Diagrammatic representations have been shown to be superior to exclusively employing ver-

bal representations when solving problems (97;98;99). Students’ use of gestures in physics has

also received attention (95). In that sense, gestures are a productive medium for understand-

ing, constructing, representing, visualizing and communicating scientific concepts (100;101),

particularly in chemistry problem solving. For example, students’ use of gestures to describe

molecular geometry in their own style can develop into a technical language (96). Physics uses

mathematical modeling to describe phenomena and mathematical symbols to explain rela-

tions between variables that represent the properties of a system. Further, some researchers

have investigated how students work with mathematical representations and how students

coordinate between different mathematical representations such as graphs, equations, vector

manipulations and algebra (102;103;104;105;106;107). In upper-division electricity and magnetism

courses, students find that vector-field manipulation is easier when they use an algebraic rep-

resentational approach (89), though students need to use graphical representations to interpret

the difference between components and coordinates.

2.4.1 Classification of Representations

At their most basic, representations are either external or internal objects that stand for

something else. Internal representations refer to mental models that problem solvers need

to construct within the problem-solving process (94). External representations exist in the

physical world and include, but are not limited to, sketches, diagrams, graphs, mathematical

equations, and words (108). A descriptive representation consists of symbols that describe

an object. Spoken and written texts as well as mathematical equations are all examples of

descriptive representations.

Alternately, we can categorize representations as to whether they are durable or evanes-

cent. A durable representation “leaves a trace of its production in the medium in which

it was produced” (109). Durable representations stay in place and can be easily returned to.

They include diagrams, graphs, written text, and written mathematical equations. In con-

trast, evanescent representations are temporary and disappear when not in use, and include
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verbal and facial expressions, as well as physical gestures.

2.4.2 Different Stages of Student Reasoning

In the context of problem solving, we observe students switching back and forth between ex-

planations that they build using p-prims, conceptual and/or mathematical resources (26;27;25),

and the arguments built using the developed representations until they find it is insufficient

for a complete answer. As students progress and develop their solution and the reasoning

behind it, there is a point that students no longer hesitate and the instructor or other peers

can accept their solution or the explanation without any further discussion. Fredlund uses

this concept of agreement between the peers involved in a discussion/ reasoning situation to

define ‘stand fast’ and relate this idea of standing fast to the process of students’ reasoning

while solving problems. While solving problems, students stand fast on “something that

a person or group of people can call upon and use without hesitation or further question-

ing” (109). This is when, in a conversation, all the participants agree on a presented idea or

an explanation (110).

Study presented in chapter 4 explores how students coordinate among multiple represen-

tations while solving problems. In this analysis we present the case of Larry as an exemplary

case. We suggest problem solving as a process that involves translations between durable

representations (diagrams, written mathematical equations) with the help of evanescent rep-

resentations (gestures, words). In addition, we keep a closer attention to student reasoning

to identify the agreeing or ‘standing fast’ moments.

2.4.3 Multiple Representations in Problem Solving

Results from previous research (4;5;111;112) show that experts’ knowledge structure consists of

many representations that are directly connected to physics concepts as experts tend to

understand abstract physics concepts in some form of representation. In the context of

physics education, instructional strategies focus on improving students’ physics knowledge

structure and aligning it with the way physics is represented in the minds of experts. In that
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sense, representations play a major role in effective problem solving at the undergraduate

level, and they help students focus on the conceptual aspects of physics problems. This

implies that being able to represent physical phenomena using several representations and

the ability to coordinate among representations one features of expertise in physics problem

solving. Based on this idea, in order to improve students’ knowledge structure, we must

have them learn and practice how to use multiple representations in their physics courses.

The purpose of this study was to understand student use of multiple representations in

undergraduate upper-division level courses. In order to ground this study within the existing

literature, this literature review will next describe what has been learned through research

on learning with multiple representations, including theoretical explanations for the observed

challenges and benefits.

2.4.4 Student Challenges in Using Multiple Representations

Physics often involves the modeling of real world physical phenomena using different repre-

sentations, but learning physics with the multiple representations is found to be challenging

for students (113;114;115;116;117;118). One important challenge that students have with multiple

representations is revealed by the studies that have investigated the difference between ex-

pert and novice use of representations. These studies reveal that, students tend to focus on

representations differently compared to experts (119;120;121;122).

In particular, students’ prior knowledge seemed to influence which features they paid

attention to. Students with higher prior knowledge paid attention to the deeper, conceptual

meanings embedded in representations, while students with lower prior knowledge focused

on surface features of those representations. This allowed researchers to observe a variation

between the students as they moved between representations. The students with higher

prior knowledge transitioned more frequently between the molecular representations, but

the other group made transitions between the macroscopic representations (123). Studies

found that there is a strong tendency among students to view graphs as pictures rather

than as symbolic representations. One of the studies investigated the connection between
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the symbolic representations of functions and their graphs. They found that middle school

students found it challenging to interpret the negative slope of a graph as the value on the

y-axis is decreasing, instead they viewed it as a hill (115). In this example, students viewed

the graph as a picture (hill) instead of a useful symbolic representations that shows how the

object is moving with time. Investigations of the effect of a problem statement on student

performances found that novices tend to focus on surface features of the problem statement,

whereas experts tend to focus on deep relational features (124).

The ability to make translations among representations is a major advantages in physics

problem solving (125). The process of making connections between representations requires

students to know how to negotiate each separate representation, and student challenges can

occur due to many reasons. Students often struggle to identify meaningful differences be-

tween representations or to identify shared meaning between representations. Instead, they

view each representation as separate and distinct in meaning (113;121;126). For example, Figure

2.4 shows the graphical (energy-level diagram) and pictorial (spectral-line diagram) repre-

sentations of the spectroscopy problem of the Balmer series (127). As the initial step to build

connections between representations, students should first be able to negotiate each separate

representation. For the spectroscopy problem in Figure 2.4, a student needs to understand

what is represented in the energy-level diagram. Energy level diagrams are a means of an-

alyzing the energies electrons can accept and release as they transition from one orbital to

another. A student also must know what is being represented by the lines (wavelengths) of

a spectral line diagram. The correspondence of the wavelengths in the spectral line diagram

to the energy differences in the energy level diagram is related to the transition of electrons

between orbitals in the atom. In order for students to identify the shared meaning between

the representations, they must connect the features from each representation. In the energy

level diagram, the value of E, or energy, represents the difference between the energies of

two energy levels when an electron goes through de-excitation. Then in the spectral line

diagram, the value of wavelength corresponds to the wavelength of the emitted photon.

Different types of representations may be useful for different purposes (128). If the context

of a problem has to be represented, the best representations to use are text or pictures.
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Figure 2.4: Graphical and pictorial representations of the spectroscopy problem

Other representations, such as graphs or tables, are less useful for representing this type of

information. If qualitative information has to be shown, diagrams are the best represen-

tations. For showing quantitative information diagrams are less useful; graphs or formulas

are better representations for this type of content. Lastly, students also struggle when using

multiple representations because they do not understand the affordances and constraints of

the representations being used (120;129;130). For example, the energy level diagram has the

affordance of being very specific about certain features of transitions (e.g., energies of energy

levels) while it has the limitation of not specifying the features (wavelength, frequency) of

the emitted spectrum. The spectral line diagram, on the other hand, affords one the ability

to represent the wavelengths corresponding to the possible transitions while limiting the

information about the energies related to each transition. I will talk about the affordances

of the representations in detail later in this chapter within the sections on social semiotics.

The challenges I discussed above limits students’ ability to learn physics content with the use

of multiple representations and to understand the basic concepts and principles of physics

which in turn, limits students’ ability to apply the understanding of concepts and principles

through a broad range of applications that involve problem-solving.
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2.4.5 Benefits of using Multiple Representations

Though there are clearly challenges associated with learning with multiple representations,

studies have also found there to be benefits connected to learning with multiple represen-

tations (113;131;132;126). The studies investigating the connection between students’ use of rep-

resentations and physics problem solving revealed that students who are consistent across

different representations perform better on problem-solving tasks (133;92;88;134;135;136;137;138;139).

For example, if a student is having trouble understanding the concepts behind a given prob-

lem just by using a single representation, the other representations can be used to help the

student get a firmer grasp on the concept with which he or she is struggling (113). Teach-

ing students to represent problems in different ways has a significant influence in moving

novice-like formula-centered problem-solving approaches towards effective inquiry-based ap-

proaches.

When students are taught problem-solving strategies that emphasize use of different rep-

resentations of knowledge, they construct higher quality and more complete representations

and exhibit better performance than students who are taught traditional problem-solving

approaches (108;140;97). Outside of physics, the use of multiple representations is shown to in-

crease students’ conceptual understanding in courses including calculus (141) as well as other

science courses where their use has also been investigated (142), such as chemistry (117). In

addition to improving students’ performance in problem-solving activities, using multiple

representations plays a critical role in the effectiveness of the interactive engagement be-

tween students and instructors in learning environments (88;109). Translating between different

representations may enhance students’ sense-making abilities (89).

There are three primary explanations for the benefits of learning from multiple repre-

sentations. First consider the argument about students’ cognitive load when working with

multiple representations. The amount of information that must be processed at any given

time while engaged in problem solving in order to move forward with a solution is known

as ‘cognitive load’. Sweller (143) developed cognitive load theory in an effort to explain how

people learn and extend their knowledge. Problem solving is a cognitive process which takes
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place in Short-Term Memory. Short-Term memory (STM) is one of two broad components

of memory, the other being Long Term Memory (LTM). The term working memory is often

used interchangeably with STM and working memory acts as a kind of notepad for temporary

recall of the information which is being processed at any point in time. Working memory has

a finite capacity to store information through ‘slots’. During the problem-solving process,

the working memory receives inputs from sensory buffers (eyes, ears, hands) and information

from the LTM, which needs to be distinguished from the vast amount of other information

that is stored in LTM. Since the amount of information that can be processed at any given

time in working memory is finite, one must carefully process the particular information that

makes the end goal easier to reach.

Studies by Rosengrant, Van Heuvelen, Etkina (144;88) found that when university physics

students created multiple representations, their test scores increased. The first study (144)

found that more students who correctly drew free-body diagrams (a diagram which rep-

resents an object as a point and the forces acting on the object as arrows) answered test

questions correctly than those who did not draw correct free-body diagrams. As a result,

these researchers indicated that it is critical for physics students to be able to use, create,

and understand words, diagrams, sketches, equations, and graphs. In the second study,

Rosengrant and colleagues (88) found that using multiple representations appeared important

to students’ ability to solve physics problems correctly. The most successful students in

this study drew a picture and then drew a free-body diagram. They were able to use this

free-body diagram to set up their mathematical equations and evaluate their answers.

The hypothesis of Rosengrant, Van Heuvelen and Etkina (88) is that students are probably

aware intuitively that they do not have the mental capacity to remember all the information

in the problem statement, and thus use the representations to visualize an abstract problem

situation. in effect, they used the picture to help lessen the burden on their working memory.

In another study (145), students were given a problem which required an addition of two

vectors in two dimensions. Students who explicitly drew the components of the vectors

performed better than students who did not. The researchers generated a hypothesis: the

students who did not draw the components had to keep more information in their working
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memory while engaged in problem solving. This may have increased the students’ cognitive

load and ultimately led them to be unsuccessful.

When engaged in problem solving, physics experts often group several pieces of informa-

tion together into a single chunk, which would take up one slot in working memory; but,

for a novice student, those pieces of information could seem disparate and require different

slots in order to be processed. Then due to their reduced information processing capabili-

ties, students can experience cognitive overload when solving problems. For example, while

engaged in problem solving and processing information in working memory, an expert could

group together information about a vector such as its magnitude, direction, and components

into one single memory slot because of the relationships that connect them. In contrast, a

novice could perceive these pieces of information as distinct and require one slot of working

memory for processing each. Thus, the amount of information that a novice can process at

any given time while engaged in problem solving is reduced compared to an expert.

Second, Ainsworth’s Functional Taxonomy framework (146) can be used to help students

understand how multiple external representations function with each other and help them

translate among multiple external representations. Several studies have indicated that using

multiple external representations has the potential to generate deeper conceptual understand-

ing than a single representation (146;113;120;147;148). For example, Ainsworth (146;113) proposed

a Functional Taxonomy of multiple external representations, which posits that different ex-

ternal representations have different functions in facilitating student learning. Ainsworth

has categorized the multiple purposes of representations into three classes: representations

that serve complementary roles, representations that constrain interpretation, and represen-

tations that help construct deeper understanding. As an example of representations being

used in a complementary role, students can often find several pathways to a solution by using

multiple representations, like using a graph rather than an equation or table. Using different

representations can be especially productive if there are multiple tasks or if students pre-

fer one representation over another since each representation (i.e., graph, table, equations)

highlights different salient features of the situation that may not be obvious to the student

from the other representations.
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Third, some researchers argue that the increase in student learning from multiple rep-

resentations is because learning is the product of creating representations (149;150;151;152;153).

Thus, as students are engaged in creating representations (sign-making) their learning is

increased because they are constructing and clarifying knowledge (154;151;155).

2.5 Broadening the Scope of PER

Within a teaching/ learning environment, both the students and the teacher bring in and use

a variety of resources to learn and understand physics concepts and scenarios that include,

words (orally or in written form), extra-linguistic modes of expression (gestures, gazes ...),

different types of inscriptions (sketches, graphs, formulas ...) and different instruments (from

pen and pencil to the most sophisticated computers and electronics) that go beyond just the

external representations used by students as counted in the representational approach. In

order to overcome this limitation in understanding student meaning-making and to broaden

the boundaries in physics as a discipline, Airey & Linder (156) use a social semiotic perspec-

tive and describe student meaning-making as the use of semiotic resources to realize and

communicate physics knowledge.

2.5.1 Social Semiotics

As an approach to understanding how people communicate a variety of means in par-

ticular social settings, the central concern of social semiotic is how meanings are gener-

ated (32;157;158;159;153;152). As the term suggests, social semiotics focuses on how people use

social interaction to construct meaning.

From a linguistic point of view, social semiotics is a synthesis of contemporary approaches

to the social production of meaning, and is based on formal, or mainstream semiotics, a

theoretical approach to the study of signs and sign systems. Signs are the smallest unit in

meaning making and anything that can be used to communicate is called a sign. A sign is

some physical thing (such as written letters or a spoken sound) that stands for, or refers
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to, something else. As examples: a painting or photograph is an iconic sign; colors and

gestures can also be signs. Words are linguistic signs. The physical form of the sign is

termed the signifier, and the concept that it refers to, the signified (160). The main focus of

social semiotics is about how meaning is made through signs. One can articulate signifying

practices as the nature of the relation between signified and signifier as the processes of

meaning-making. Signification, or meaning making, is the process of creating and refining

“the relationship of a sign or sign system to its referential reality” (161).

In reality, the relation of signified to signifier is not purely linguistic. Rather, this relation

also manifests as a social relation; social semiotics is concerned with the social “act of

meaning making” (162). The particular social setting or social group that we are interested

in consists of those involved in the discipline of physics. Clearly, physics as a discipline

comprises many systems of signs with which people (both students and instructors) make

sense of the world.

2.5.2 Semiotic Resources

Semiotic resources is a term used in social semiotics to refer to a means for meaning making.

From a social semiotic perspective, all meaning is realized, constructed, and developed using

social conventions through the production of semiotic resources. Van Leeuwen (32) defines

previously recognized signs as semiotic resources such resources are “the actions and arti-

facts we use to communicate, whether they are produced physiologically - with our vocal

apparatus; with the muscles we use to create facial expressions and gestures, etc. - or by

means of technologies; with pen, ink and paper; with computer hardware and software; with

fabrics, scissors and sewing machines, etc.” According to this definition, the words, gestures,

sketches, graphs, formulas and different instruments that are used in physics classrooms can

be labeled as semiotic resources. These resources are then the material result of the students’

meaning-making process (153). Both students and teachers bring in and use a variety of semi-

otic resources to learn and teach physical concepts and scenarios. These resources include,

words, extra-linguistic modes of expression, different types of inscriptions, and different in-
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struments. This is what makes the social semiotics approach an appropriate perspective for

my aim to explore students’ use of semiotic resources for meaning-making in undergraduate

physics courses.

From a cognitive perspective, David Hammer (26) uses the term ‘resources’ to describe an

individual’s cognition as an in-the-moment. According to Hammer’s resource-based model

of cognition, resources are fine-grained bits of information that are highly context dependent

(determined by the student’s view of context). These conceptual resources are isolated,

independent, productive student ideas that can be used for solving a problem.

Conceptual resources look very similar to semiotic resources, but they are not the same.

Semiotic resources also could be seen as resources that students bring in to solve a prob-

lem, but the semiotic resources are not independent (like conceptual resources). Each is

tightly affiliated to a certain representation. Conceptual resources, on the other hand can

be named using descriptive names for the thing resources represent (163). “Ampere’s law”

as an example, in the semiotic resource model, we have a resource that is Ampere’s law

written algebraically in integral form (semiotic resource: Integral form of Ampere’s law).

Here “written algebraically” is necessarily a part of the semiotic resource accounting and

it shows us the affiliated representation (inscription- fromula/ mathematics). But in the

conceptual resource model, the resource Ampere’s law could just be an idea or it could be

(not required) that specific algebraically written integral form. Similarly, the “semiotic re-

source: arrow as vector” (164) says that students are drawing arrows to represent vectors and,

in this case, includes the affiliated representation (inscription- diagram). This suggests that

even though both conceptual resources and semiotic resources look similar, in the case of

semiotic resources, we necessarily have to go through the affiliated representation to solve

the problems.

2.5.3 Modality and Multimodality

As described in the previous section, semiotic resources are people’s ideas that are made

up of small re-useable idea pieces that are tightly linked to a given representation. These
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representations are created within modes; a representation is made utilizing a mode or a

combination of modes. According to Kress, all communication is understood to employ a

variety of ways of representing messages (152) and these different ways are usually referred as

modes. In most cases, a representation is multimodal in nature.

In social semiotics, a modality is a particular way in which information is to be encoded

for presentation to humans. Lemke’s (165) categorization of modes of representation is more

specific: (a.) natural language (words, whether written or spoken), (b.) mathematical modes

(including all the symbols of math), (c.) visual modes (such as images, graphs, tables), and

(d.) actional modes (such as gesture). Others (166) have used just three groups: (a.) linguistic

(including words), (b.) visual (images and pictures), and (c.) actional (such as gestures).

Van Leeuwen (32) points out that “multimodality means the combination of different semiotic

modes; for example, language and music in a communicative artifact or event”.

A more specific definition is that “multimodal discourse involves the interaction of mul-

tiple semiotic resources such as language, gesture, dress, architecture, proximity lighting,

movement, gaze, camera angle, and so on” (167). Multimodality and social semiotics, to-

gether, make it possible to ask questions around meaning and meaning-making, the agency

of meaning-makers, the constitution of identity in sign- and meaning-making, the (social)

constraints faced in making meaning, social semiosis and knowledge, how knowledge is pro-

duced, shaped and constituted distinctly in different modes, and by whom. Multimodality

includes questions around the capabilities/ potentials of the affordances of the resources that

are available in any one society for the making of meaning; and how, therefore, knowledge

appears differently in different modes.

2.5.4 Idea of Affordance

Each mode has affordances (strengths) and limitations (weaknesses), which dictate when a

mode of representation is most apt to communicate messages (152;153). Affordances are the

characteristics of a mode that give it a specific advantage over another mode of representa-

tion; limitations are those characteristics that make using that mode of representation less
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beneficial than others. For example, when sending a message of warning to a person nearby,

one would be inclined to use verbal speech rather than handwritten words because of the

affordance of being able to quickly transmit the message across a distance.

According to the literature, the concept of ”affordance” represents the relationship be-

tween human perceivers and their environment. In seeking to move beyond a focus only on

an individual’s mental processes to explain perception, Gibson (168) theorized that individu-

als interact with the physical environment in terms of ’affordances’ that support their goals

or intentions. Individuals recognize a required potential action that the environment both

prompts as well as supports. This account of affordances has been generative across various

domains, especially in computer program design, and problem solving. Seeking to clarify

this construct further, Norman (169) claimed that all affordances are perceived affordances,

in that the enabling feature in the environment needs to be noticed to be enabling. He con-

sidered that affordances are best understood as physical enablers and constraints, such as

the design of computer programs where it is impossible to move a cursor outside the visible

computer screen. Both Gibson and Norman were more concerned with explaining purposeful

perception rather than accounting for exploratory or learned behavior with cultural tools,

whether material or symbolic.

However, we argue that this idea of affordances as enabling constraints can be applied

productively to understanding how and why generating representations supports learning in

physics as a discipline. This entails an extension of the idea of affordances as perceptual

interactions with the environment to include learned behaviors and strategies in physics

classrooms and in problem solving. We suggest that use of ideas as semiotic resources offers

specific affordances as students construct representations to make a claim about physics

concepts, principles, or processes.

2.5.5 Affordances of Semiotic Resources

The social semiotic approach focuses on all types of meaning-making practices that are

accomplished through different semiotic resources in different semiotic modes that include
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visual, verbal (or oral), written, and gestural modes. Semiotic resources have a meaning

potential, based on their past uses, and a set of affordances based on their possible uses;

these will be actualized in concrete social contexts where their use is subject to some form

of semiotic regime (32). Each semiotic resource offers a unique capability to create meaning.

Researchers interpret this as meaning potential (32) and affordances of semiotic resources.

Meaning potential refers to different ways that meaning is constructed and communicated

using a semiotic resources. It is based on the way the person has used this resource in

the past. Affordances constrain what ideas are possible to express using each semiotic

resource (168;32), as perceived by the person (169) using the resource. Kress (153) expanded the

idea of semiotic resources to include modal affordances, which constrain different modes of

semiotic resources (e.g. verbal resources, gestural resources, etc), noting that there may be

two or more communication modes within each artifact (e.g. a diagram may be married to

a verbal description).

Recently, Fredlund (130) expanded the idea of affordances further. The disciplinary affor-

dance of a given semiotic resource is “the inherent potential of that (semiotic resource) to

provide access to disciplinary knowledge.” This expansion allows researchers to investigate

how semiotic resources’ affordances connect to disciplinary ideas. Taking up disciplinary

affordances allows us to focus on knowledge production and communication within the dis-

cipline (here, physics) more than focusing on the view or the experience of an individual

student.

Studies indicated that multiple external representations have the potential to allow stu-

dents to generate deeper conceptual understanding (146;113;119) of the physics concepts and

principles. Previously, Fredlund (130) used two versions of basic RC-circuit (resistor-capacitor

circuit) diagrams to show the importance of unpacking the disciplinary affordance of semiotic

resources for effective learning in student laboratories. Researchers used the data collected

in an introductory university course on electromagnetism in which students worked with

electric circuits in the laboratory. In order to assemble the circuit appropriately in the labo-

ratory, students needed to take into consideration a number of aspects that are not directly

discernible in the circuit diagram. As an example, students could connect the coaxial cable
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to the function generator or the oscilloscope, but it’s important to understand the functions

of the two split wires at the two ends of the coaxial cable. By convention, red is connected to

the inner conductor of the coaxial cable, which carries the signal, while black is connected to

the common ground potential carried by the outer shield. Thus, the signal is measured with

reference to this common ground. The first version of the diagram, the standard RC circuit,

does not have any information in the diagram to indicate how students could connect the

red and black probes correctly. In contrast the second version of the diagram (modified RC

circuit diagram) contains the colored dots to indicate where to connect the components in

the circuit.

As the author indicates in that article, the additional information included in the second

diagram used to unpack the important aspects of the RC circuit representation helped stu-

dents to understand the given representation better and to engage in the activity skillfully.

Inclusion of the extra information in the RC circuit diagram or unpacking of representation

helps students to come to ‘see’ the parts of intended meaning that are not directly dis-

cernible in the (initial) representation. According to Fredlund, instructors need to “unpack”

the representations in order to help students access the intended meanings associated with

the representations that are not directly noticeable.

In another attempt to build on the idea of disciplinary affordances, Fredlund (109) used a

refraction of light experiment to explain student problem-solving behaviors. One aspect of

this research was to identify the semiotic resources students use to explain the refraction of

light. As students discuss about the refraction of light, the ray diagram is the most frequent

semiotic resource that they find in their textbooks. With wavefront diagrams appearing less

frequently, surprisingly, however, Fredlund found that the group of students used a wavefront

diagram. In fact, students used both semiotic resources - a wavefront diagram and a ray

diagram - to explain the scenario of refraction of light. Student reasoning showed that the

disciplinary affordances of these two semiotic resources helped them access different aspects

of physics knowledge when explaining the refraction of light. The ray diagram could help

students to reason about the refraction angles at the boundary and also about the direction

of propagation, but it could not help students reason about speed changes in the two media.
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In contrast, the wavefront diagram promoted reasoning about speed changes but obscured

reasoning about angles and directionality.

In both of these studies Fredlund (130;135) provided students with two different semiotic

resources in the same semiotic mode, showing that different semiotic resources have different

disciplinary affordances. But researchers did not consider how students might spontaneously

construct representations to solve a given problem. In our approach to describe student

problem-solving process at the upper-division level, we focus on spontaneous construction of

representations. The study we put forward in chapter 5 presents the initial framework, which

we suggest shows how students coordinate among different semiotic resources to construct

representations that they use to solve problems.

In our previous study (170), we described how students’ construction of spontaneous rep-

resentations is achieved by coordinating among different semiotic resources with different

disciplinary affordances. Even though we paid attention to the disciplinary affordances of

the semiotic resources that students connect to construct representations, we did not pay

attention to the modes of those semiotic resources. In particular, we did not consider how

representations in different modes get connected to each other, or what factors may influence

how students succeed or fail to connect among the representations that they spontaneously

construct (that are in multiple modes).

Within these previous studies (130;135) researchers did not consider how students first spon-

taneously construct representations, or how students connect among representations that

they use to solve a given problem. In chapter 6, we use multiple cases of students solving

oral exam problems to generalize the approach we proposed in our previous study to ex-

plain the underlying mechanism behind students’ constructing spontaneous representations

by coordinating among different semiotic resources with different modes. I suggest a new

way of explaining how students connect among representations (representational spaces) and

reasons why students might get stuck or unstuck while solving problems due to the features

of the representations they generate spontaneously.
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Chapter 3

Varied reasoning schema in students’

written solutions

3.1 Introduction

1 Homework is a key element in every undergraduate-level physics course for practicing

problem solving. Students often have difficulties combining physics ideas with mathematical

calculations and selecting among known mathematical tools. Therefore, it is important to

explore how students employ mathematics when approaching physics homework problems.

In this study, we focus on the mathematical tools required in upper-division physics

courses, such as evaluating integrals, using differential equations and approximations, or

choosing an appropriate coordinate system. Although these techniques are covered in math-

ematics classes, where students can successfully solve problems, many students still struggle

to apply these mathematical tools to problems in physics. This is true especially at the upper-

division when problems are more complicated and mathematics more tightly entwined with

problem solving (13;15). In our study, we use the ACER (Activation-Construction-Execution-

Reflection) framework (14;43) combined with network analytic methods (78) to investigate how

upper-division students’ written work shows their mathematical tool use on typical home-

1This analysis was submitted to arXiv repository of electronic preprints (171)
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work problems.

The ACER framework was developed using think-aloud interview data on conceptually-

rich research-based problems. These problems are different in character from the more

traditional problems in our study. Our data are wholly written accounts with sparse reason-

ing evidence. However, because students’ written homework solutions are common at the

upper-division level, they may represent a ubiquitous and easy-to-acquire data source for

education research. Within these constraints, this analysis explores how, if at all, the modi-

fied ACER framework can be used to analyze written evidence of typical problem solving in

a traditional course. We investigate three kinds of differences: differences in solution paths

within one problem; differences among multiple problems of the same type; and differences

in students’ initial problem solving steps as a function of kind of problem.

3.2 Context

Our data are drawn from an undergraduate course in Classical Mechanics taught at a large

land-grant university in the central United States. As at many similar institutions, our

Classical Mechanics course is a textbook-centric 4 credit-hour course with a solid foundation

in the basics of theoretical physics taught in a predominately lecture format. It is usually

taken as the fourth physics course for physics majors and minors in the spring of their second

year. Typically, the students are concurrently enrolled in a differential equations course. Our

course uses Classical Mechanics by J. R. Taylor (51); the lectures cover the first 10 chapters,

including topics such as Newton’s laws of motion, momentum, angular momentum, energy,

oscillations, Lagrange’s equations, two-body central-force problems and rotational motion of

rigid bodies.

All homework problems were selected from the textbook and were chosen to encourage

students to practice solving problems. In return, students could earn extra points towards

their final grade. Students were encouraged to work on problems in groups but, for peda-

gogical reasons, they were to write solutions independently. Students in this class were not

taught an explicit procedure to solve problems. Rather, they were free to solve them any
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way that they could, which gave us the opportunity to gain insight into their reasoning when

left to their own devices.

In spring 2015, 12 students were enrolled in the class. They had 13 weekly homework as-

signments (each including 10-15 problems). A complete solution to each homework problem

was expected to be about half a page long and include diagrams, mathematics, and verbal

statements. We scanned students’ submitted homework for analysis before passing them to

the grader. All students in the course consented to participate in our research study.

3.3 Analytic Framework

Several attempts to model physics problem solving break it into discrete steps to be fol-

lowed in a linear order (19;9). However, unless students are explicitly taught to follow these

algorithms, their approaches to problem solving rarely fit these linear models. In contrast,

studies using knowledge-in-pieces frameworks to understand students’ non-linear problem

solving “in the wild” (e.g., Ref. (38)) rely on the richness of interview or video data to make

inferences about student reasoning.

Figure 3.1: A visual representation of the ACER framework

The ACER framework bridges the gap between prescriptive problem solving and knowledge-

in-pieces (14;43). It was developed to analyze the use of mathematics in upper-division physics

courses. The ACER framework (Figure 3.1) is organized around four components: Activation
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(determining the proper mathematical tool); Construction (making a mathematical model);

Execution (performing mathematical steps); and Reflection (checking the final solution).

3.3.1 Sub-Codes Under ACER Components

Within the codebook, each component of the ACER framework may include a series of

sub-codes that helps to describe student work. Under the activation, previous research

on student difficulties included codes such as CA1 - The problem asks for the potential or

electric field, and CA2 - The problem gives a charge distribution (43). Ideas behind all these

sub-codes explicitly exist in the problem statement.

As an example, previous research generated sub-codes under construction such as CC1

- Use the geometry of the charge distribution to select a coordinate system. CC2 - Express

the differential charge element (dq) in the selected coordinates (43).

Then under execution, previous research included sub-codes under this component such

as CE2 - Execute integrals in the selected coordinate system, CE3 - Manipulate the resulting

algebraic expressions into a form that can be readily interpreted (43). These sub-codes or steps

are generated from the procedural mathematical steps that are required to solve mechanics

problems.

Finally, previous research generated sub-codes under reflection such as CR1 - Verify

that the units are correct, CR2 - Check the limiting behavior to ensure it is consistent with

the total charge and geometry of the charge distribution (43).

3.3.2 Operationalizing the modified ACER Framework

Prior work using ACER framework has focused mostly on topics in electricity and mag-

netism to uncover student difficulties related to specific mathematical tools like Taylor series,

Coulomb’s law, Dirac delta functions in upper-division classical mechanics and electrostatics

courses (45;14;16;43). In this study, our focus is on the traditional Classical Mechanics course.

As we coded students’ problem solutions we came across the need of extending the standard

sub-codes set to include codes appropriate for themechanicscourse. That way we developed
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a modified version of the ACER framework to analyze written evidence. As an example,

the codebook contains sub-codes like A2 - Student uses a general form of an equation, A3

- Student uses a less-general form of an equation etc. under the activation component. It is

obvious that the idea behind all these sub-codes is typically existing in the problem state-

ment. Then, C1 - Pick a coordinate system, C2 - Visualize the problem, C5 - Set the limits

of the integration etc. are the examples of sub-codes for construction that we came up in

our study. Under the execution component, Sub-codes like E1 - Do the integration, E2 -

Take the derivatives, E3 - Make the substitutions etc. were generated and these sub-codes

or the steps are generated from the procedural mathematical steps that are required to solve

mechanics problems. Finally, under reflection we generated sub-codes like R1- Check the

units, R2 - Check the limits of the final answer, R3 - Does this answer make sense? etc.

In addition to the modification we did to match the sub-codes to fit with the application in

mechanics course, we extended the extent set of sub-codes to cover student errors and mis-

takes (e.g., C5X - mistakes did whensetting the limits of the integration,E2X - mistakes did

when taking derivatives, etc.). A detailed version of the codebook is provided in Appendix

A.

We coded students’ problem solutions, iteratively seeking new content codes and com-

bining proposed codes until our code book covered > 95% of student work. As the codebook

approached stability, eight people participated in inter-rater reliability testing to assure the

codebook was a valid representation of student problem solving. When the codebook was

stable, multiple graders looked at different problems to confirm the reliability of coding.

Once two graders coded individual problems and achieved > 90% agreement on student

work, the codebook was established.

In this study, we investigate the research question: what, if anything, could be learned

about students’ problem solving from their homework solutions? Then, we report on three

problems selected from homework assignments across all students. We compare both across

students and across problems to find patterns of mathematical tools used within each prob-

lem.
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3.3.3 Application of Social Network Analysis

To compare patterns in students’ solutions, we used techniques borrowed from network

analysis (78). A network graph is a collection of points called nodes, and lines connecting

these points, called edges. When the direction of a connection matters, we have a directed

graph. In such cases, an edge from node A to B (A→ B) means something different than an

edge from B to A (B → A). If the direction of a connection does not contain any information

about the relationship between nodes (i.e, A−B has the same meaning as B −A), a graph

is called undirected. A graph can be characterized using various measures, such as node and

edge count, diameter or density. Node and edge count correspond to the number of nodes

and edges, respectively. Diameter is the longest graph distance between any two nodes in the

network and it represents the linear size of a network. Density, on the other hand, is the ratio

of the number of existing edges to the number of all possible edges and can be thought of as

a measure of network effectiveness. To determine the most important nodes in a network,

one can perform centrality analysis. Depending on the nature of a network, as well as on

the category of the “importance of a node” one is interested in, there are multiple centrality

measures that can be used. (78) Degree centrality indicates the importance of a node by the

number of nodes connected to it, where the larger the degree, the more important the node

is.

Within this framework, nodes represent ACER sub-codes and the directed edges represent

the order of steps students took to solve a given problem. When looking at the network

created from all solutions to a given problem, we weight the edges of the graph by how many

times students connected a given two nodes to emphasize which connections between nodes

are important. Edges with higher weights represent common connections within a network.

3.4 Variation in solutions within one problem

Problem 1: A particle of mass m is moving on a frictionless horizontal table and is attached

to a massless string, whose other end passes through a hole in the table, where I’m holding
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it. Initially, the particle is moving in a circle of radius r0 with angular velocity ω0, but I

now pull the string down through the hole until a length r remains between the hole and

the particle. (a.) What is the particle’s angular velocity now? (b.) Assuming that I pull the

string so slowly that we can approximate the particle’s path by a circle of slowly shrinking

radius, calculate the work I did pulling the string. (c.) Compare your answer to part (b.)

with the particle’s gain in kinetic energy.

Figure 3.2: A solution to Problem 1 with a response coded according to the modified ACER
framework.
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3.4.1 What was expected

A solution for the sample problem is presented in Figure 3.2. This particular problem was

not presented with a diagram. We expected that in order to visualize the physical system, the

students would start with drawing one. In our ACER framework, that would be represented

by codes pick a coordinate system (C1) and visualize the problem (C2). This problem has

three parts and for all of them, we expected students to begin with a general form of an

equation, which would be coded as use a general form of an equation (A2). In part (b.),

as they have to do integration, we expected codes set the limits of the integration (C5), do

the integration (E1) and evaluate the integration (E10) to occur. Both (b.) and (c.) require

substitutions from the answer obtained in part (a.); therefore, we also expected codes does

this answer fit in the next part (R4) and make substitutions (E3) to be used.

As students perform mathematical operations in their solutions, we expect to see Execu-

tion codes E3 and E5 (make substitutions and do algebra). When we consider the problem

as a whole, we expect Activation code A2 (use a general form of an equation), Construction

codes C1, C2 and C5 (pick a coordinate system, visualize the problem and set the limits of the

integration), Execution codes E1, E3, E5 and E10 (do the integration, make substitutions, do

algebra and evaluate the integration, respectively) and Reflection code R4 (does this answer

fit in the next part) to be dominating codes.

3.4.2 What was found

When we used the ACER framework alone, we saw Activation code A2, Construction codes

C1, C3 (use an equation specific to the particular problem) and C5, Execution codes E1,

E3, E5 and E10 and Reflection code R4 as the most commonly used, dominant codes.

Surprisingly, despite the lack of a figure in the problem statement, not all of the students

started with visualizing the problem. They used both the general form of the equation and

the problem related non-general form.

When we applied network analysis (NA) along with centrality measures to the ACER

codes, we found that some of the nodes in the network, identified as important by the
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ACER framework (by the number of appearance for particular node), were not significant

when looked at using the NA approach. On the other hand, network analysis identified

nodes as more central which a frequency analysis using ACER alone would have overlooked.

Figure 3.3: (a.) Network graph representation of the solution presented in Figure 3.2.,(b.),
(c.) network graphs representing two other students’ solutions to Problem 1 (students B,
C),(d.) all students’ responses to this problem merged into a single network

Figure 3.2 shows a single student’s solution coded according to the ACER framework. In

Figure 3.3, the network graph for that student (Fig. 3.3a), two other students (Fig. 3.3b,

3.3c), all students’ responses combined into a single graph (Fig. 3.3d).

Even though this problem was a well-structured problem, different students had different

approaches, as seen in the differences in their starting codes. As students in Figure 3.3a.)

and 3.3c.) took a diagram approach while the student in Figure 3.3b.) used equations at

the start. The graph for all students (Figure 3.3d) is denser than for any one student, and

the specific patterns of each student are lost in the concatenation.

Table 3.1 presents a summary of the basic network descriptives for all networks presented
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in Figure 3.3. When we look at sizes as measured by the diameter, we see the average

diameter for the students was 5.82 (SD = 1.59). The average density of students’ solutions

was 0.16 (SD = 0.05) with values for individual student’s ranging from 0.09 to 0.23.

When we look at centrality indices for this problem, the node E3 (making substitutions)

has the highest degree, indicating that it most frequently connects other steps in the prob-

lem solution. This is evidence that the mathematical operation of substitution is a crucial

element in the solving process for this particular problem. Moreover, almost all the home-

work problems had multiple parts within the problem and often subsequent parts required a

substitution found in a previous section. When we look at the network created by combining

solutions to this problem from all students, we found that the top three nodes for all students

are the same as the top nodes for both sample students (though their order is different).

These network graphs show that students use two different approaches to solve this

problem: they may start with visualizing the problem (such as with a diagram) before using

equations in either a general or specific form, or they may omit the visualization and move

directly to using equations. While this particular problem does not explicitly ask for a

graphical representation of the physical situation, drawing appropriate diagrams is a useful

problem solving strategy (128;172), with the possibility that specific instruction on this topic

may increase students’ use of diagrams.

Table 3.1: Problem 1: Network characteristics for solutions from three students, for a
network created by combining all students’ solutions to this problem.

Student A Student B Student C All Students
Diameter 6 5 10 7
Density 0.155 0.167 0.115 0.632

Nodes w/max. degree C3 and E3 R4 and E3 R4 E3
E5 and R4 C3 E3 R4

A2 E5 E5 E5

49



3.5 The effects of problem statement type on students’

solution graph

After comparing students’ network graphs (different problems by same student and same

problem by different student), we found that there is a dependence on the original problem

statement reflected on the network graphs. The first few problem solving steps that students

use – the first few nodes in the network – depend on the kind of prompt that the problem

uses. In particular, we identified three different types of prompts that suggest to students

how they should start the problem:

1. The problem statement is straightforward and asks students to perform specific math-

ematical operations, including trivial math procedures. An example statement looks

like “take the derivative/solve the above position equation for acceleration”.

2. The prompt directs students towards the physical system or a diagram as the problem

statement asks for an explanation of the physical system. An example prompt may

include “start with a diagram/free body diagram”.

3. The problem statement directs students to think about what equations or conceptual

resources (173) they should bring together to get an equivalent expression along with the

physical system. To do so requires physics knowledge along with the correct mathe-

matical steps. An example statement looks like “show that/prove that. . . with the help

of physical system”.

In order to determine whether students take the same approach when working on prob-

lems that are structured similarly, we identified three problems that belong to the same

category (the second kind mentioned above) and we studied networks created by combining

solutions to these three problems for each individual student as well as across all students.
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3.5.1 What was expected

Since we compare problems structured similarly, we expect the crucial components of stu-

dents’ solutions to be similar across all students. Allowing for some slight variations, the

core of the solutions should remain unchanged. The problems that we chose for our analysis

include the one discussed in the previous section and thus we expected Activation code: A2

(use a general form of an equation), Construction codes: C1 (pick a coordinate system), C2

(visualize the problem), C3 (use an equation specific to the particular problem) and C5 (set

the limits of the integration), Execution codes: E1 (do the integration), E3 (make substitu-

tions), E5 (do algebra), E10 (evaluate the integration) and Reflection code: R4 (does this

answer fit in the next part) to be the dominating codes.

3.5.2 What was found

Table 3.2 shows characteristics of networks created by combining three structurally similar

problems for three individual students, as well as of a network representing solutions from all

students in the class combined. Nodes A2 (use a general form of an equation), C3 (use an

equation specific to the particular problem), C5 (set the limits of the integration), E3 (make

substitutions) and E5 (do algebra) are most central for these networks.

Table 3.2: Network characteristics for solutions from three students and for a network cre-
ated by combining all students’ solutions to three problems that were classified as structurally
similar.

Student C Student D Student E All Students
Diameter 13 11 10 11
Density 0.133 0.277 0.211 0.309

Nodes w/max. degree E5 E3 E3 E5
A2 E5 C5 E3
C3 C5 and A2 E5 C5 and C3

As we expected based on the structure similarity, students used the general (A2) or non-

general (C3) form of an equation to start the problem. Nodes E3 (make substitutions) and

E5 (do algebra) again are key players in the network; however, since the problems include
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integrals, the node C5 (set the limits of the integration) becomes more prominent. By

comparing networks across different problems, we can see whether students are consistent

in their approaches to solving problems with a similar structure. In all cases, node E5 (do

algebra) was the most central node. Also, the four most prominent nodes (A2, C3, E3, E5)

are the same for all students and for the merged network, although their order differs slightly.

This alone could suggest that students take similar approaches to solve all three problems

and that these approaches are quite similar among students.

Figure 3.4: Network graphs created by combining solutions to three problems from three
individual students (a. – c.) and from all students’ responses merged into a single network
(d.).

However, when we look at the network representing students’ solutions in Figure 3.4 we

can see that the network presented in Fig. 3.4a is significantly different from the other two

networks (Fig. 3.4b and 3.4c). Also, the network characteristics in Table 3.2 reveal that the

network for student C has a greater diameter and lower density (a less connected graph with

more nodes), indicating that this student got sidetracked in his solution. This could not be
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seen by the ACER framework alone, as the significant codes for this student were the same

as for students who took a more direct approach.

3.6 Problem statements and network complexity

Further analysis suggests that problems consisting of more subsections lead to relatively

more complex networks. Here we compare three problems that fall into different categories.

Problem 2 belongs to the first type where students are required to perform trivial math

procedures. Problem 3, on the other hand, falls into the second type and requires students

to start with a diagram.

Problem 2: The shortest path between two points on a curved surface, such as the

surface of a sphere, is called a geodesic. To find a geodesic, one has to first set up an integral

that gives the length of a path on the surface in question. This will always be similar to the

integral

L =

∫ 2

1

ds =

∫
x

x2

1

√
1 + y′2(x)ds (3.1)

but may be more complicated (depending on the nature of the surface) and may involve

different coordinates than x and y. To illustrate this, use spherical polar coordinates (r, θ,

φ) to show that the length of a path joining two points on a sphere of radius R is

L = R

∫ x2

x1

√
1 + y′2(x)ds (3.2)

Problem 3: Consider the pendulum of Figure 3.5, suspended inside a railroad car that

is being forced to accelerate with a constant acceleration a. (a.) Write down the Lagrangian

for the system and the equation of motion for the angle φ. Use a trick similar to the one

used in x(t) = A cos(ωt−δ) to write the combination of sin(φ) and cos(φ) as a multiple of

sin(φ+β) (b.) Find the equilibrium angle φ at which the pendulum can remain fixed (relative

to the car) as the car accelerates. Use the equation of motion to show that this equilibrium

is stable. What is the frequency of small oscillation about this equilibrium position?
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Figure 3.5: Diagram for Problem 3.

3.6.1 The comparison

In order to find the relation between the problem statement and the shape of the network

here, we compare networks for three problems by all students. First, we compare the size of

the networks and then we compare the most central nodes of each network.

The size of a network is a measure of the number of nodes within a network. The network

graph discussed in Section 3.4 (Problem 1) has 16 nodes and 40 edges with eight strongly

connected nodes. The network graph for Problem 2 has 14 nodes and 32 edges along with

five strongly connected nodes and Problem 3 has a network graph with 11 nodes and 31

edges with two strongly connected nodes. The network graph of Problem 1 has a relatively

large network size compared to the other two problems. This may be because Problem 1 has

three subsections and the other two problems have fewer subsections.

Network analysis shows that the most central nodes for the network graph for Problem 1

(Figure 3.3c – all student responses) are E3 (make substitutions), R4 (does this answer fit in

the next part), E5 (do algebra) and A2 (use a general form of an equation) with a network

diameter of 5. According to the problem statement, students first have to understand the

physical system and then use relevant equations to solve the problem. The network graph

clearly shows that the students start with Construction codes, where they build a visual

representation and then use the Activation codes, where they use appropriate equations.

Because the problem has three subsections, students might recall an answer from a previous

part and substitute it in the next part. Thus, R4 (does this answer fit in the next part) and
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Figure 3.6: Network graph for all responses to Problem 2. (b.): Network graph for all
responses to Problem 3.

E3 (make substitutions) are the most central nodes.

E5 (do algebra), E3 (make substitutions), C5 (set the limits of the integration) and E2

(take the derivatives) are the most central nodes in the network graph for Problem 2 (Figure

3.6a – all students’ responses). The network has a diameter of 5. The phrasing of Problem 2

also requires a visual representation. The students start with Construction codes and with

a diagram. Because the problem does not have subsections, R4 (does this answer fit in the

next part) is not a central node.

In contrast, E3 (make substitutions), E5 (do algebra), E2 (take the derivatives) and A2

(use a general form of an equation) are the central nodes in Problem 3 (Figure 3.6b – all

students’ responses), with a network diameter of 4. Some different nodes appear in this

network graph compared to the previous two problems. E2 (take the derivatives) becomes

a central node because students were asked to find the equation of motion and students

take derivatives. Within their solutions, students use boundary conditions to show that

this equilibrium is stable; this behavior shows up with two Construction codes: C10 (state

boundary conditions) and C11 (apply boundary conditions).

Comparison between problem statements and the network graphs shows that there is a
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dependence of problem statement on the shape of the network. The problems which consist

of more subsections also lead to relatively complex networks.

3.7 Limitations and Future work

Our research question in this study was to see what, if anything, could be learned about

students’ problem solving given their homework solutions, as they represent a ubiquitous

data source. The information about students’ performance revealed by the network graphs

could be used to enhance the quality and consistency of the homework or quiz problems.

However, coding homework solutions is a laborious process that is impractical for ordinary

classroom use; instead, these recommendations suggest that instructors compare students’

solutions for elements in common (or unique to each student) as a pedagogical tool to gauge

problem difficulty and divergent thinking. The NA approach is still more practical than

interviewing and videotaping every single student, as it was done in the original studies (14;43).

Another limitation of this data source is that we can’t know if students go back and add

more information later because the only thing we have is the written solution. We coded

students’ solutions by assuming they wrote this strictly linearly; this is reasonable, as we

have observational data of different students writing problems in mostly the order that they

solve them in. In future work, we could more carefully test this assumption.

Our data are drawn from one highly typical course at a single university. This approach

could be used to compare active-learning classrooms to traditional ones, or real-world prob-

lem sets to ones drawn from a textbook. Though our data cover 23 questions overall, they

are limited to classical mechanics. To expand our study more broadly across the upper

division, we are currently collecting data on an Electricity and Magnetism (EM) course,

and augmenting students’ written work with video recordings of them solving homework

problems.

We could use a fine-grained ACER framework to focus on different parts of student

solutions. For instance, we could use the fine-grained activation and construction to answer

a research question like, what is the effect of different problem statements to students’
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approach to solving problems. To do this we may have to carefully design the problem

statements. In our study, we did not see large differences in students’ approaches, perhaps

because the textbook problems were not designed with that goal.

3.8 Implications for instruction

3.8.1 Help/guide the students

The network graphs by all students and by each individual student can be directly used to

estimate the students understanding of the subject material. More importantly the individ-

ual network graphs could be used to help or guide the students who might have stuck at a

certain step with in the problem solving process.

3.8.2 Choosing problems

Also, network graphs from both individual and all students together can be used to under-

stand the difficulty level of the problems. If the students are taking more steps to reach the

final answer than expected, there might be a issue with the way the problem statement was

written.

Thus, the information about students performance revealed by the network graphs could

be used to enhance the quality of the homework or quiz problems.

3.9 Conclusion

Network analysis has common applications in analyzing social interactions in groups of peo-

ple, complex ecosystems and biological systems, and information transfer systems. In this

study, we use network analytic tools to represent the relationships between the knowledge

elements and steps of problem solving. We use the ACER framework to identify and code

these elements and steps. Together, network analysis and the ACER framework can model

how students connect ideas to solve problems and allow for quantitative comparisons among
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students and problems. Network analysis identifies the most important mathematical oper-

ations in the solving process, as interpreted through the ACER codes.

Network analysis indicates that in most of the analyzed cases, the most important nodes

are E3 (make substitutions), E5 (do algebra), A2 (use a general form of an equation), R4

(does this answer fit in the next part). Substitution and algebra, in general, are crucial tools

for solving these problems.

Most of the homework problems had few parts within the problem and in these cases,

students may have to go back and check the previous solution and then substitute it in the

next part. While many problems have similar central nodes, the exact nodes and their order

are different across students and across problems. The shape of the network graphs varies

with different problem statements. As a set, the homework problems are well designed home-

work problem, different student have different approach to start the problem and different

step patterns in the construction section but in most of the cases the math execution steps

are the same.

Further research is needed to see exactly what properties of problem statements prompt

students to use specific mathematical tools. Nonetheless, network analysis of students’ prob-

lem solutions reveals patterns in their tool use on typical problems.

58



Chapter 4

Standing fast: Translation among

durable representations using

evanescent representations in

upper-division problem solving

4.1 Introduction

1 In the course of problem solving, students use a series of representations to make sense of

the problem, build a solution, and communicate it. In this study, we are concerned with

how students build up and use representations in problem solving, focusing on a single case

at the upper-division level.

At their most basic, representations are either external or internal objects that stand for

something else. A descriptive representation consists of symbols describing an object. Spo-

ken or written texts and mathematical equations are examples of descriptive representations.

On the other hand, a depictive representation consists of iconic signs. Pictures or physical

models are examples of depictive representations. Most of the prior research in student un-

1This analysis was published in the Proceedings of the 2017 Physics Education Research Conference (174)
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derstanding and use of multiple representations (e.g. (88;96;89)) takes up this categorization

scheme, either implicitly or explicitly. Using multiple representations plays a critical role in

the effectiveness of the interactive engagement between students and instructors in learning

environments (88;109). Gestures can be a productive medium for representation, visualiza-

tion, and interaction in chemistry problem solving, particularly in how students use gestures

to describe molecular geometry in their own style to develop a technical language (96). In

upper-division electricity and magnetism classes, students find vector field manipulation is

easier with algebraic representational approach (89), though students need to use graphical

representations to interpret the difference between components and coordinates. In ad-

dition, translating between different representations may enhance students’ sense-making

abilities (89).

4.1.1 Classification of representations and stages of student rea-

soning

Alternately, we can categorize representations as to whether they are durable or evanescent.

A persistent (durable) representation “leaves a trace of its production in the medium in which

it was produced” (109). Durable representations stay in place and can be easily returned to,

such as diagrams, graphs, written text, and written mathematical equations. In contrast,

evanescent representations are temporary and disappear when not in use, such as verbal and

facial expressions, as well as physical gestures. Herein, the terms durable and evanescent are

used with argument, does the used representation is persist within a given problem solving

process.

We take up the language of “standing fast” to describe how students use durable and

evanescent representations in their problem solving. The term “stand fast” refers to remain-

ing firmly in the same position or keeping the same opinion. In the context of problem

solving, people stand fast on “something that a person or group of people can call upon and

use without hesitation or further questioning” (109). This is when in a conversation all the

participants agree on a presented idea or an explanation (110). We relate this idea of standing
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fast to the process of students’ reasoning while solving problems. As students progress and

develop their solution and the reasoning behind it, there is a point that students no longer

hesitate and the instructor or other peers can accept his/her solution or the explanation

without any further discussion. We see students switch back and forth between explanations

to stand fast to a representation until they find it is insufficient for a complete answer.

Fredlund (109) claims that durable representations can help students to stand fast, as

students keep returning to them for sense-making while they build evanescent representations

on top of these durable representations.

4.1.2 Research questions

In this study, we explore two research questions: how can problem solving be described as

a process of transitioning between durable representations to make new meanings? How do

students build meanings onto durable representations using the evanescent representations?

To explore these questions, we present the case study of a student solving a problem during

an oral exam in an upper-division Electromagnetism I course.

4.2 Context and Method

This research was carried out at Kansas State University and the data for this study were

collected from an upper-division Electromagnetism I course, which had about twenty stu-

dents enrolled. As at many similar institutions, our course is a textbook-centric 4 credit-hour

course with a solid foundation in the basics of theoretical physics. This course covers the first

seven chapters of Introduction to Electrodynamics (3rd Edition) by David J. Griffiths (46).

The class meets four hours per week and students work on tutorials and small group problem

solving. In this course, students are highly encouraged to work in groups and think aloud

while solving problems; class time is divided about equally among small group problem solv-

ing, interactive lecture, and problem-solving worksheets (42). This class has a strong focus

on problem-solving and sense-making, and we observe that the instructor engages and gives
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hints in a way that aligns with the sense-making goals.

As a part of the course assessments, students are required to complete two 20 to 30-minute

individual oral exams with the instructor. These oral exams are used to assess students’

conceptual understanding, problem-solving and scientific communication skills (175). In this

study, we analyze the case of “Larry” (a pseudonym), who works on an oral exam problem

that takes place in the later part of the course. We select Larry as an exemplary case because

he is unusually verbal in oral exams. Larry is a strong student whose marks are near the

top of his class, and his group discussions are robust and far-ranging. Larry’s approach and

reasoning in the oral exam are typical to a student at this level. We select Larry as an

exemplary case because he is unusually verbal in oral exams compared to his peers; we get

a lot of information on his problem solving activity as a result. This then gives us lots of

insight into how students at this level might solve the problem more generally.

In order to answer our research questions, we do a moment-by-moment analysis of stu-

dents’ videos to see how Larry builds up and translate between representations and how he

stand fast.

4.3 Larry’s representations

Larry is working on a problem for his oral exam in his Electromagnetism I course. During

this episode, Larry starts by developing a diagram (durable representation) and spends time

building meaning through gestures and words (evanescent representations). After recording

the developed meaning on the diagram, Larry moves to mathematics (durable representa-

tion) in the later parts of his solution to calculate the magnitude. The episode starts with

instructor posing the problem, Suppose you had an infinite sheet which carries current k

equal to some constant (k = αx̂ ). What’s that look like? What kind of a physical scenario

is that?

To solve this problem, one can use the right-hand rule to find the direction of the magnetic

field created by the sheet and to find the magnitude we could use the Ampere’s law (equation

4.1).
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Figure 4.1: Larry works to figure out the magnetic field direction (in this figure: words in
green color show Larry’s purpose of each representational type and each column represents a
segment of Larry’s problem solving activity, that column number increases with time)

∮
B · dl = µ0Ienc (4.1)

However, Larry starts by drawing the sheet of current along with a Cartesian coordinate

system to represent the given current with direction, noting that “so if the current is in x hat

(x̂). . . ” Larry picks the mathematical information (direction of the current: x̂ ) and uses it

to develop a diagram (durable representation) to start with (Figure 4.1: column 1). After

recording the sheet of current, Larry employs the right-hand rule (Figure 4.1: column 2)

with the current on the diagram to come to a conclusion and records the direction of the

magnetic field direction on the board (Figure 4.1: column 2).

Larry: Above the sheet it would be pointing out of the board. So I think it would be true

for the rest of the sheet as well.

Larry is not provided with a diagram, so he has to come up his own to progress. He uses

evanescent representation gestures to improve his diagram and to build new meaning and

then records the developed meaning on his diagram. At this point, we see Larry uses the

developed diagram to reason with no hesitation or further questions. He uses the improved
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durable representation as his first place to stand fast.

Up to this point, Larry has worked on the problem using the diagram on board, but for

further clarification, the instructor brings in a different representation: a sheet of paper. The

physical paper is durable; the hand gestures showing the direction of the current and verbal

accompaniment are evanescent. Throughout the solution we see Larry keep referring to the

same sheet of paper as a sheet of current, so we interpret the representation as a combination

of the physical paper and the meanings associated with it as a sheet of current. This whole

representation persists throughout the problem. According to our definition mentioned in

section one, within the context of this problem we assign the sheet of paper to be a durable

representation.

Instructor: Ok, So if this is the sheet, if the current is this way (uses the hand to show the

direction)

Larry: Okay, so if it is the sheet, the current is going this way and looking at a point above

it, then from one wire, magnetic field will point in that way.

Larry starts using the new durable representation, the sheet of paper, to figure out

the direction of the magnetic field created by a single wire (Figure 4.1: column 3).

Where Larry builds new meaning on the top of durable representation, using evanescent

representations, gestures, and words.

After determining the magnetic field created by a single wire, Larry moves to consider

a different reference point for a current carrying wire. To do so he goes back to his own

on-board problem (his original durable representation) and draws (Figure 4.1: column 4)

a line right in the middle of the sheet (to represent a current carrying wire).

Larry then stretches his arm on the board to show a point in the y direction, then

applies the right-hand rule again (Figure 4.1: column 5). Here, Larry goes back to his

original durable representation and improves his diagram. Then he builds the evanescent

representation, gestures on top of it to determine the magnetic field created by a different

current wire.

The instructor introduces the idea of a mirror current,
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Instructor: What’s about the one, that mirror, so that wire way far back, the mirror wire

way far forwards?

Larry replies quickly that “[his] finger is pointing up”, concluding that the direction of

magnetic field is “out” above and “in” below and records that on the board (Figure 4.1:

column 6).

Figure 4.2: Larry works to figure out the magnitude of magnetic field (in this figure: words
in green color show Larry’s purpose of each representational type and each column represents
a segment of Larry’s problem solving activity, that column number increases with time)

Larry does lots of sense-making using the evanescent representations to develop his orig-

inal durable representation. Though the sheet of paper is durable, Larry does not stand fast

on it; rather he uses it to improve upon and make more sense of his diagram. So far we

do not see Larry translate between different types of durable representations but Larry uses

the newly introduced sheet of paper and builds the evanescent representations (gestures and

words) on top of it to improve the original stand fast durable representation (diagram on

board). Then he uses the developed diagram to stand fast for the second time and answer

the original question about the direction of the magnetic field by the sheet of current.

After figuring out the direction of the magnetic field, the instructor asks Larry to calculate

the magnitude. Because Larry could not remember the equation for the magnetic field from a

single wire, the instructor suggests using Ampere’s law. Larry right away starts by recording
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the formula (Figure 4.2: column 7). So far during the first section of his solution, Larry

built and used his diagram for reasoning, but just the diagram is insufficient to calculate

the magnitude. Larry translates his prior work to mathematics, which is a new durable

representation.

The instructor gives him a hint to pick an Amperian loop, and Larry uses his hand to

describe the loop (Figure 4.2: column 8), but he switches back to the sheet of paper to

do so,

Figure 4.3: Larry gestures on the board and uses the sheet of paper to show how he picks
the Amperian loop

Larry: Uh. . . yes. And I would pick a loop. Uh. . . I guess I would pick a square loop sits

like this (again uses the sheet of paper and use fingers to show a cut at the middle of

the sheet).

Larry gestures to show a loop which is parallel to the edge of the paper. Here we see

Larry is using evanescent representations along with the sheet of paper to progress and build

up mathematics.

The instructor suggests that he draw the Amperian loop on the board, asking “So how big

is your loop? Draw your loop.” Even though Larry gestures to make the size and orientation

of his chosen loop successfully (Figure 4.3), he is not sure how to draw it on his diagram.
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To figure out how to draw it, Larry uses gestures and even comes back to the sheet

of paper to help him with drawing. After a while, Larry records the loop on the diagram

(Figure 4.2: column 9) and labels the sides of the loop with l and w. Here we see Larry is

referring back to the sheet of paper and improves his diagram (durable representation) using

gestures and words (evanescent representations) to finish the mathematical calculation for

the magnitude of the magnetic field.

Once Larry draws the loop, the instructor asks a question about the current piercing the

loop. Larry answers those questions by developing the mathematics on the board (Figure

4.2: column 10) and reasons that for the right hand side of the integral (equation 4.1).

∮
B · dl = µ0

∫
k · da (4.2)

Communication with the instructor leads Larry to picks a direction for his loop and

records it as counter-clockwise. After this step, Larry takes a little time to compute the right

side. With a little help from the instructor, Larry reaches the final answer (Figure 4.2:

column 11). Here Larry stands fast on the mathematics to answer about the magnitude of

the magnetic field.

2B L = µ0 k L (4.3)

B = µ0 α/2 (with α = k) (4.4)

During the second half of this problem, Larry translates from diagram to mathematics.

He uses the durable representation, sheet of paper and evanescent representations, gestures,

and words to amend mathematics. After developing the mathematics representation, he uses

it to stand fast in the later part of his solution.
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4.4 Limitations

The case study approach enables researchers to perform in-depth investigations of the be-

havior of single participants or group of individuals. As a research method case studies are

often used in exploratory research projects. Because of the exploratory and detailed nature

of this approach, case studies help us to generate new ideas about human thinking and be-

havior. The study we conducted in this chapter is a pilot study. We choose the case study

method as it makes it easy to analyze the behavior of a single person than dealing with a

large number of research participants.

One of the main limitations in the case study approach is the influence that may cause

due to the researchers own subjective feeling. The example we picked better suited the theory

and our claim, but within this episode. We select Larry as an exemplary case because he

is unusually verbal in oral exams compared to his peers. But the way Larry engaged in

this problem allows us to get lots of insight into how students at this level might solve the

problem more generally.

In this study, we used interviews data which is an effective method for obtaining infor-

mation about the student thinking. Within the interview, there are some limitations to the

instructor’s approach while engaging with Larry. She provides hints to Larry in a certain way

that aligns with other practices used in the classroom. But we think this interaction does

not importantly change the way Larry translate between durable representations to solve

this problem. In addition to that, We were not paying attention to power dynamics between

the student and the instructor. We only looked at how the student communicates with the

instructor but we were not paying attention to the two-way nature of that communication.

Further research could involve interviews or classroom observations to further explore

how students construct spontaneous representations and also make connections among these

representations.
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4.5 Discussion and Conclusion

The case of Larry shows a good example of how students translate between durable represen-

tations, with the help of evanescent representations. In summary, we see Larry starts using

one kind of durable representation (diagram), then translates to a different kind of durable

representation (mathematics) using the evanescent representations (gestures and words) to

reason better and answer the original problem. Larry stands fast on the first durable repre-

sentation (diagram), which he builds in the beginning. Later in his solution, Larry stands

fast on mathematics.

This particular problem required the student to start from the diagram and move to math-

ematics, so is a great case to investigate how a student may transition between two durable

standing fast representations. There exist other, simpler problems which may only require

one representation to stand fast upon; conversely, there are more complicated, research-like

problems which may require a long series of representations on which to stand fast.

We have evidence for Larry building new meaning on durable representations using

evanescent representations. Larry brings in evanescent representations to amend his first

durable representation: diagram because it was not sufficient for further reasoning. Larry

spends most of his time building his durable representation: the diagram where he stands fast

before translating to other durable representation: mathematics when calculating the mag-

nitude of the magnetic field. Larry uses the sheet of paper along with gestures and words

(evanescent representations) to build up mathematics and also to bridge the two durable

representations.

Translating between different classes of representations might improve student under-

standing and how the combinations of representations could be effective for visualization and

interaction in other disciplines (96). As we think about classifying representations, our choice

of categorization scheme impacts what translating between representations entails. Building

meaning on durable representations using evanescent ones can be fruitful for problem solv-

ing; choosing it as a categorization scheme focuses our efforts on the flow of representations

in problem solving and how students stand fast.
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Chapter 5

Case Study: Coordinating Among

Multiple Semiotic Resources to Solve

Complex Physics Problems

5.1 Introduction

1 In the science education literature, ‘representations’ refer to many ways in which students

can communicate ideas, concepts, processes, and relationships. Sketches, diagrams, pictures,

graphs, tables and mathematical equations are some of the commonly used representations

in undergraduate physics courses (88;89;90;91;92;93;94;95;96). In addition to use of these artifacts,

students engage with peers and instructors using physical objects ranging from pen and

pencil to experimental apparatus and bodily actions, such as taking measurements, peer in-

teractions and class discussions. These objects and actions play an important role in student

meaning-making practices (176;177;178;179) and we interpret them as part of the representational

landscape of physics problem solving.

Work by Airey & Linder (180) brings new insight to student meaning-making and broad-

ens the boundaries in physics as a discipline. They use a social semiotic perspective and

1This analysis was published in European Journal of Physics (170)
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describe student meaning-making as the use of semiotic resources to realize and commu-

nicate physics knowledge. By definition (32), semiotic resources are “the actions, materials,

and artifacts used for communication purposes”. The social semiotic approach focuses on all

types of meaning-making practices that are accomplished through different semiotic modes

that include visual, verbal (or aural), written and gestural modes. In this sense, the sym-

bolic tools such as language, text, algebra, diagrams, sketches, graphs, body movements,

signs, and gestures are semiotic resources. Even though words or the verbal language act as

the key method of conveying ideas while constructing and sharing knowledge (181;182), use of

gestures (183;184;96) is also useful in the process of meaning-making. Extending beyond words

or gestures, semiotic resources such as diagrams, sketches, graphs, written text, and mathe-

matical formulas also serve a critical role in visualizing physical concepts and mathematical

relationships (185;186;187;188).

While researchers highlight the importance of building mental models, schema and or-

ganizing strategies in the development of student problem solving capabilities (26;27;31;30;189),

much remains to be studied about how students can engage in successful problem-solving

practices through the use of all available artifacts, objects, and actions (190). In this study,

we are interested in student meaning-making while solving physics problems using multiple

semiotic resources.

5.2 Background

Even though semiotic resources play important roles while planning, executing and com-

municating solutions, these individual semiotic resources are incomplete just by themselves.

Therefore, using a single semiotic resource to understand or to present a given situation does

not illustrate a robust understanding (154). Each semiotic resource offers a unique capability

to create meaning and researchers interpret this as the meaning potential (32) and the affor-

dances of semiotic resources. The meaning potential refers to different ways that the meaning

is constructed and communicated using semiotic resources and is based on the way the per-

son has used this resource in the past. The affordances constrain what ideas are possible to
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express using each semiotic resource (168;32), as perceived by the person (169) using the resource.

Kress (153) expanded the idea of semiotic resources to include modal affordances, which con-

strain different modes of semiotic resources (e.g. verbal resources, gestural resources, etc),

noting that there may be two or more communication modes within the same artifact (e.g.

a diagram may be married to a verbal description). Recently, Fredlund (130) expanded the

idea of affordances further. The disciplinary affordance of a given semiotic resource is “the

inherent potential of that [semiotic resource] to provide access to disciplinary knowledge.”

This expansion allows researchers to investigate how semiotic resources’ affordances connect

to disciplinary ideas.

Together with modal affordances, disciplinary affordances allow us to connect ideas in

physics with the kinds of representations that best express them. As an example, spoken

language is better for certain tasks and diagrams are better for other tasks; different semiotic

resources access and fabricate different aspects of physics knowledge. Taking up disciplinary

affordances allows us to focus on knowledge production and communication within the dis-

cipline (here, physics) more than focusing on the view or the experience of an individual

student.

Among the research done on the disciplinary affordances of different semiotic resources,

Fredlund (130) uses two versions of basic RC-circuit diagrams to show the importance of

unpacking the disciplinary affordance of semiotic resources for effective learning in student

laboratories. First, the students were given a circuit diagram that can be connected in

eight possible ways, but only one way of connecting correctly. It was difficult for students

to connect the circuit and to get an appropriate output. To help students, researchers

introduced a modified circuit diagram that shows the positions for connecting the signal input

and the ground cable with color-coded dots. The modified circuit diagram was a semiotic

resource with different disciplinary affordances than the original circuit diagram. These new

disciplinary affordances foregrounded disciplinary relevant aspects, helping students make

better connections among different semiotic resources and allowing the students to make

meaning of the circuit.

In another attempt to visualize the effect of disciplinary affordances of semiotic resources,
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Fredlund (135) investigated a group of third-year physics undergraduates who are selecting

among semiotic resources as they describe the refraction of light. During the task, students

produced two semiotic resources: a ray diagram and a wavefront diagram. The diagrams

have different potential to provide access to different aspects of disciplinary knowledge. The

ray diagram could help students to reason about the refraction angles at the boundary and

also about the direction of propagation, but it could not help students reason about speed

changes in the two media. In contrast, the wavefront diagram promoted reasoning about

speed changes but obscured reasoning about angles and directionality.

In both of these studies (130;135), Fredlund, et al. provided students with two different

semiotic resources in the same semiotic mode, showing that different semiotic resources have

different disciplinary affordances. In addition to the use of individual semiotic resources

or selecting among two semiotic resources in student meaning making practices, research in

science classrooms (93;156;130;191;96) highlights the importance of using several semiotic resources

to mediate classroom interactions (192;193). Additionally, getting students to use multiple

semiotic resources helps shift their focus towards understanding the scientific processes and

concepts (132;118).

5.3 The Study

As one of the most frequently utilized procedures in physics problem-solving, multiple semi-

otic resources are very useful in translating the initial, mostly verbal description of a problem

into a representation more suitable for further analysis and mathematical manipulations. On

the other hand, the ability to construct representations plays an important role in helping

students to make physics knowledge and communicate (155). The process of constructing

a representation of a problem makes it easier for the problem solver to make appropriate

decisions about the solution process.

We argue that to better represent an idea or a concept, students should be able to

strategically combine multiple semiotic resources. Expanding on this idea, we adopt a social

semiotic perspective to sketch a theoretical framework (Figure 5.1) that accounts for how
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Figure 5.1: Theoretical framework: Each semiotic resource has a semiotic mode and con-
nects conceptual information that contributes to meaning-making. These semiotic resources
are coordinated to build compound representations. Then the compound representations are
used to solve the problems (in this figure: circles represent elements in each level. As an
example, in lowest level, each circle represents a semiotic resource. Then the lines represent
the coordination between elements in one level to generate another element which is in the
next level. As an example, semiotic resources in the lowest level are coordinated to build a
compound representation, which is in the next level). In this framework, the triangle is the
whole solution of the problem, including reasoning. Solution to the problem is thus “made
up of” all the lower parts of this framework.

semiotic resources should be combined to solve problems. In our work, we take up the

idea of different semiotic resources having different disciplinary affordances. Under this

framing, the process of making meaning is about coordinating different semiotic resources

with different disciplinary affordances across multiple semiotic modes. By coordination,

we mean how the disciplinary affordances of each semiotic resource reinforce each other or

hinder the use of other semiotic resources towards building representations. We introduce

the idea of compound representations, composed of two or more parts or semiotic modes and

linking at least two semiotic resources in the same representation. Then these compound

representations can be used to solve problems.

In this study, we are interested in how students coordinate among multiple semiotic

resources. In particular, we consider how students construct compound representations

74



using semiotic resources, not how they select between researcher-provided representations.

In this sense, our work extends Fredlund et al’s prior work to be closer to authentic classroom

practice and student problem solving.

We explore the research question: How do students coordinate among different semiotic

resources to build up compound representations while solving complex physics problems?

5.4 Context and Method

5.4.1 Context

Data for this study is from an upper- division Electromagnetism I course. In this analysis,

we present the case of Larry1, a white male student, who engages in problem solving for his

course requirements. Larry is the same student that we present in the study in chapter 4.

5.4.2 Physics problem

We selected a problem which is canonical at the upper-division level: Suppose you had an

infinite sheet which carries current k equal to some constant (records on the board, k = αx̂).

What’s the magnetic field look like?. First, Larry determines the direction of the magnetic

field created by the current sheet, then the instructor asks Larry to find the magnitude

of the magnetic field,how big is it?. To solve this problem, one can use the right hand

rule to find the direction of the magnetic field created by the sheet, and use Ampere’s law

(
∮
B · dl = µ0Ienc) to find the magnitude.

5.4.3 Method

This study has three stages of analysis. Our analysis is mainly driven by the discourse analy-

sis. Discourse analysis is defined as the analysis of language that goes beyond the sentences.

Discourse analysis requires to consider the larger discourse context in order to understand

1All student names are pseudonyms
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the whole picture. Dividing the whole activity into segments of events or reframing is the

way of re-interpreting the meaning of sentences. Then the frame analysis is a type of dis-

course analysis that takes into account, what activity does speaker perform when he says

something.

The first stage involves transcribing Larry’s oral exam and dividing the problem-solving

activity into segments of events (frames). From the transcript and the video of the oral exam,

each frame is described without explicitly mentioning the resources (semiotic or conceptual)

to generate a narrative description of the event. Within each event, we identify key elements

using semiotic modes: different types of inscriptions (diagrams, mathematical formulas);

extra-linguistic modes of expression (gestures); words (oral); and objects (used by Larry and

the instructor).

For the second stage of analysis, we classify semiotic and conceptual resources within

each semiotic mode. First, we identify semiotic resources within inscription, verbal, and

gestural modes, naming each resource descriptively. Conceptual resources are identified using

published guidelines (163), as augmented by work in semiotic resources (130) and procedural

resources (194).

Resources are named using descriptive names for the things resources represent (38). For

this study, we used this idea to name resources and link them with their semiotic modes.

For example, in the process of solving the problem, when the student uses a right-hand rule

gesture (connecting the directions of the inputs of the cross product with the fingers on

their right-hand, and making a gripping gesture to perform the cross product), we coded it

as the semiotic resource (gestural) right-hand grip rule. Similarly, we identify mathemati-

cal resources by naming them - e.g. integral form for Ampere’s law - for the formulas or

mathematical actions they describe. Notationally, we denote resource names in italics.

Finally, we make a list of conceptual and semiotic resources. The third stage of analysis

involves comparing the resources’ frequency and connections across episodes and connecting

the semiotic resources to their disciplinary affordances (Tables 5.1, 5.2 and 5.3).

We present Larry’s oral exam using three episodes. We chose each episode with our

research focus to show how the coordination between resources can be used to build different
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stages of the compound representation. We use the resource graph representation to show

Larry’s coordination of resources; and in our resource graphs, each circle represents either a

semiotic or a conceptual resource. Within Larry’s problem solving activity, we also look at

the extent of his confidence using the voice level, choice of words and speed of hand gestures.

We adopt a case study methodology because it allows us to gain an understanding of

the subject (Larry), events and processes that are involved in the data through a detailed

analysis. Three researchers worked together in the process to establish the reliability of

coding and to list the disciplinary affordances of each semiotic resource that Larry uses.

In our previous study, presented in the 4th chapter, we focused on how Larry coordinate

among different types of representations to solve the Amperian loop problem. Then, in this

current study, we investigate how Larry bring different elements (semiotic resources) together

to build up representations.

5.5 Analysis

In this section, we present Larry’s oral exam using three episodes and we use the resource

graph representation to show Larry’s coordination of resources to build different stages of the

compound representations. During the first half of his oral exam, Larry works to determine

the direction of the magnetic field created by the current sheet and then continues to find

the magnitude.

5.5.1 Episode 1

The episode starts with the instructor presenting the problem.

Instructor: Suppose you had an infinite sheet which carries current k equal to some con-

stant (records on the board, k = αx̂). What’s the magnetic field look like?

The problem statement activates the conceptual resources current sheet and magnetic

field direction. This leads Larry to represent the current sheet on the board (Figure 5.2.a)

using the semiotic resource parallelogram as current sheet. After visually representing the
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current sheet, Larry looks at the mathematical equation (k = αx̂) on the board. The

directional information (x̂) embodied in the equation prompts Larry to think of a way to

represent this detail. He uses the visual semiotic resource 3D vector coordinates to add the

directional information on to his diagram and draws three arrows with their tails together,

labeling them x̂, ŷ, and ẑ.

Larry: So the coordinate . . . x hat, y hat, z hat, xyz I mean.

Figure 5.2: a.) Initial compound representation b.) Resource graph for the initial compound
representation

Figure 5.2.a shows the initial compound representation which has 3D vector coordinates

and a parallelogram representing the current sheet. Figure 5.2.b shows the resource graph,

the resources (current sheet and parallelogram as current sheet) that are connected to pro-

duce the initial compound representation. In our representation of resource graphs, each

circle represents either a semiotic or a conceptual resource. After generating the initial com-

pound representation, Larry moves to describe how he imagines the current sheet is built

up from a collection of wires. Larry has the idea of focusing on a single wire to find the

magnetic field that can represent the effect of the whole current sheet (part of a whole).

Larry: Um...m okay, so think of this, a sheet is kind of having a bunch of infinite wires (up

and down movement of hand) one next to each other and the current from a single

wire curls around this (applies right-hand grip rule).
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Larry starts using the gestural semiotic resource hand for wires in free space to show

adjacent current wires. Then he focuses on a single wire and applies the gestural semiotic

resource right-hand grip rule to figure out and then to demonstrate the magnetic field di-

rection from a single current wire. While applying the right-hand grip rule, Larry does not

indicate a specific current direction (whether or not he uses the given current direction).

Soon after, Larry decides to use the diagram on the board (Figure 5.2.a) to continue with

this argument and concentrates on a point above the current sheet by using the semiotic

resource pinpointing gesture.

Larry: So, I think that like if you look at a point above it (pinpoints to a location), then

uh .. from a single wire .... will pointing ...

After pinpointing to a location above the sheet, Larry considers an imaginary wire to

apply the right-hand grip rule. He applies the right-hand grip rule for the second time

without specifying the current direction and on this occasion, we observe Larry gets stuck.

Instead of making a clear conclusion, he ends up repeatedly changing the orientation of his

right-hand gesture.

In order to apply the right-hand grip rule, Larry has to have a certain current direction;

but when he applies the right-hand grip rule in free space, he should not have to specifically

mention the current direction. Because at that point the semiotic resource hand for wires

allowed Larry to show the existence of a current wire in space, the right-hand grip rule helps

him to get the magnetic field direction using an arbitrary current direction. When Larry

moves to build his argument using the diagram on the board, the diagram itself contains

3D vector coordinates that affords to define the direction in space. So, unlike using free

space, Larry has to specify the current direction before applying the right-hand rule. The

missing detail of specific current direction leads Larry to decide between the orientations of

his gesture. Here the semiotic resource 3D vector coordinates hinders the use of gestural

semiotic resource right-hand grip rule without a specific current direction.

Finally, Larry decides to add the current direction information to his diagram and uses

the semiotic resources arrow as vector to represent the current direction.
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Larry: So, if the current is in x hat (records an arrow on diagram)

3D vector coordinates on the compound representation (Figure 5.2.a) allows Larry to

show the direction in space (Table 5.1). That also permits representing the given current

direction along the x-axis (Figure 5.3.a) using the semiotic resource arrow as vector along

with the mathematical symbol (k).

Larry: Then above the sheet it would be pointing out of the board (records on diagram),

from one wire, so above one wire. So, I think it would be true for the rest of the sheet

as well.

Figure 5.3: a.) Compound representation at the end of episode 1 b.) Resource graph for
this compound representation

After recording the current direction, the rest is straightforward for Larry. He repeats

the same procedure and focuses on a single wire above sheet to apply right-hand grip rule

once more. Then he uses the semiotic resource arrow as vector to record the resulting

magnetic field direction on the diagram (Figure 5.3.a). Finally, Larry refers back to his

initial assumption (part of a whole) and concludes “I think it would be true for the rest of

the sheet as well.”

Figure 5.3.a shows the compound representation at the end of first episode, which has

3D vector coordinates, a parallelogram to represent the current sheet, arrows to represent
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current direction and the net magnetic field direction above the current sheet. Figure 5.3.b

shows the resources that are connected to produce the compound representation in Figure

5.3.a. We can see Larry brings in and combines more resources as he progresses with the

problem at hand. At the beginning of this episode, Larry does not have a diagram to start

with; but after few steps, Larry builds up a compound representation that contains 3D

vector coordinates and a parallelogram for the current sheet. Then he adds an arrow to

represent the current direction with the help of 3D vector coordinates. Larry builds up his

compound representation to include more details in it. By the end of this episode, Larry

adds the magnetic field direction onto his diagram by thinking of a single wire and applies

the right-hand grip rule to figure out the direction.

5.5.2 Episode 2

After finding the magnetic field direction above the current sheet, Larry could have continued

with the same argument using the diagram on board to figure out the direction below the

sheet. However, the instructor introduces a sheet of paper to represent the current sheet.

Then Larry switches to the sheet of paper and successfully reconstructs the magnetic field

direction above sheet from a single current wire.

Figure 5.4: The compound representation of the current sheet is built and represented
through the gesture, sheet of paper and a drawing of a parallelogram on the board with a line
to represent the current wire

81



The current sheet (Figure 5.4) is represented using a parallelogram with a line to represent

the current wire, a sheet of paper and some hand gestures. In this compound representation,

the parallelogram and the sheet of paper (Table 5.1) allow Larry to generate visual represen-

tations of the current sheet. The inclusion of hand gestures helps to simplify the structure

of the current sheet and the inclusion of the line to represent current wire further develops

the idea into a visual representation.

Table 5.1: Disciplinary affordances of the semiotic resources coordinated to build the com-
pound representation of the current sheet

Semiotic Resource Disciplinary Affordance

Parallelogram as current sheet

This allows Larry to generate a visual representation of
the current sheet in the space of the board. Larry keeps
referring back to it as he progresses on this task and it
allows Larry to add features (current direction, current
wire, Amperian loop) and findings (magnetic field direc-
tion) on to his compound representation. These record-
ing steps also help Larry to keep track of his problem
solving activities.

Paper as current sheet

The paper allows Larry to generate a visual representa-
tion of the current sheet in the free space. Larry refers
to this while considering multiple current wires in free
space and also while gesturing for the loop in episode 3.

Hands for wire

Larry repeats the up and down movement of his hand
to show the current wires in free space. This gesture
allows Larry to simplify the sheet to a bunch of wires
and focus on a single current wire to apply the right-
hand rule to get the magnetic field from a single current
carrying wire.

Line as wire

This helps Larry to visually represent the current wire in
the space of the sheet in the diagram (on the board) and
allows him to locate the wire on the sheet. It also helps
Larry to keep track of his reference current wires (with
embodied current direction) while applying the right-
hand grip rule, which leads Larry’s effort to a successful
conclusion.

Larry: So, if this is the sheet (refers to the sheet of paper), the current is going this way

(across the surface of sheet- right to left), and looking at a point above it, then from

one wire, magnetic field will be point in that way (away from him).
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Larry first uses the semiotic resource paper as current sheet to represent the current

sheet in free space. Then he uses the gestural semiotic resource finger pointing in direction

to specify the current direction and directs his index finger along the current direction.

Finally, he applies the right-hand grip rule by considering an imaginary current wire that

is located above the sheet. While using the sheet of paper to figure out the magnetic field

direction above the sheet, we can observe Larry’s confidence as he reasons smoothly and his

voice stays around the same level. This may be because this step is all about repeating the

same procedure, even though now he is using a different semiotic resource.

Next, Larry decides to take his argument to the next level and starts to reason for the net

magnetic field direction above the current sheet. Larry moves to consider multiple current

wires and he starts by locating two imaginary current wires using the semiotic resource

pinpointing gesture: one closer to the surface of the sheet and the other little above the

surface of the sheet. Then he applies the right-hand grip rule by considering one wire at a

time and soon we observe Larry gets stuck.

Larry: So like from this wire (above the surface of sheet), the current is gonna ... the

magnetic field points that way (away from him), but from a wire over here (closer to

the surface of sheet), it would be pointing more ..uh .. this way (pointing towards

him), uh .. so it seems like they are gonna superposition, kind of complicated.

After applying the right-hand grip rule for the second wire, Larry realizes that the re-

sulting magnetic field directions are in opposite directions, which contradicts his previous

conclusion (“I think it would be true for the rest of the sheet as well”). Previously he

concluded that above the current sheet, the magnetic field direction from all the individ-

ual current wires should be in the same direction. Larry’s explanation about the net effect

reaches a dead end (“uh ... so it seems like it’s gonna superposition, kind of, complicated.”)

At this point, Larry’s voice level indicates a confusion. We can observe Larry’s strong voice

starts to fade after considering the second wire, his pauses between words increase and the

speed of his hand movements decreases. In addition, his words “it would be pointing more

... uh ... this way ..... kind of complicated” show his uncertainty about the result.
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As a result of this confusion, Larry returns to the diagram on the board to consider

multiple current wires. First, he uses the semiotic resource line as wire (Figure 5.6.a) to add

a current wire on to his diagram.

Figure 5.5: The compound representation of the right-hand grip rule is developed using
gesture and drawing of a line to represent the current wire with an arrow to represent given
current direction and is applied using the right-hand gesture

The compound representation of right-hand grip rule (Figure 5.5) allows him to figure

out the resulting direction of the magnetic field lines from a current carrying wire. In some

occasions, gesture (Table 5.2) allows Larry to specify the current direction before applying

the right-hand grip rule. Later 3D vector coordinates (Table 5.2) allows Larry to represent

the given current direction (using an arrow), and the line to represent current wire allows

Larry to apply right-hand grip rule to find the magnetic field direction.

Larry: If we are looking at a wire right here (draws a line at middle of the sheet), and then,

so the current above the wire (applies right-hand grip rule) my hand curls, points back

in me. Uh ... if we look at a wire, like this is an infinite sheet so way back here in the

y direction, uh then my fingers at that point are more pointing in down than they are

towards me.

Larry considers the current wire he just recorded on diagram to apply the right-hand grip
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Table 5.2: Disciplinary affordances of the semiotic resources coordinated to build the com-
pound representation of the right-hand grip rule

Semiotic Resource Disciplinary Affordance

3D vector coordinates

A coordinate system enables Larry to define the loca-
tion of a point, distance between points, and direction
in space (on a planar surface). This allows Larry to rep-
resent the given current direction (using an arrow) that
he uses to find the magnetic field direction.

Arrow as vector

Arrow as vector permits Larry to visually represent the
vector direction. As 3D vector coordinates permit show-
ing the direction in space, using an arrow to represent
a vector allows Larry to represent the given current
direction along the x-axis. In this situation, visually
representing the current direction helps Larry to apply
the right-hand rule towards determining the magnetic
field direction. Later, the same semiotic resource allows
Larry to visualize the resulting magnetic field directions.

Finger pointing in direction

Larry uses the index finger to the side while gesturing
for direction. This allows him to show the direction of
the current on the surface of paper and also in the space
of the sheet in the diagram (on the board) that helps to
apply right-hand grip rule.

rule and successfully reproduces the same result. Then Larry considers a second current wire

located far back in y direction and applies the right-hand grip rule. Switching to the diagram

on the board and recording a line to represent the current wire allows Larry to consider two

current wires when drawing a conclusion about the net magnetic field direction above sheet.

The semiotic resource line as wire helps Larry to explicitly indicate the location of the current

wire on the diagram. In addition, this inclusion allows Larry to incorporate and specify the

current direction (which is already recorded on diagram) while applying the right-hand grip

rule. When Larry switches to the diagram on the board, the semiotic resources line as wire

and arrow as vector allow Larry to keep track of his reference current wires along with the

current direction. But while using the sheet of paper to consider multiple wires, Larry works

in free space using the gestural semiotic resources pinpointing gesture and finger pointing

in direction to locate imaginary current wires and to show the current direction. While

working in free space, in addition to keep tracking of the wire he is considering, Larry has
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Figure 5.6: a.) Compound representation at the end of episode 2 b.) Resource graph for
this compound representation

to remember more than one direction at a time (current and resulting magnetic fields), this

leads Larry’s effort to a conflict.

The instructor’s follow-up question leads Larry to consider another wire located far for-

ward in y direction (mirror current wire) to make a conclusion about the net effect above

the sheet.

Instructor: What about one, that mirror, so that wire way far back, the mirror wire way

far forwards?

After reapplying the right-hand grip rule, Larry reasons for the net direction above the

current sheet He says “Uh, my finger is pointing up”. This result aligns with his earlier

conclusion. Then the instructor suggests that Larry consider below the sheet as well, asking

“So, it came out above and below it goes?” Larry continues with the same argument and

reapplies the right-hand grip rule. Then he concludes that “so below they go in” and uses

the semiotic resource arrow as vector to record the magnetic field direction below the sheet

on diagram (Figure 5.6.a).

At the beginning of episode 2, the compound representation (Figure 5.3.a) has 3D vector

coordinates, a parallelogram to represent the current sheet, arrows representing the magnetic

field direction above the sheet and the current direction. Now by the end of episode 2, Figure
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5.6.a has all the required information about magnetic field direction above and below the

current sheet. Larry has added a line to represent a current wire and an arrow to represent

net magnetic field direction below the current sheet. Figure 5.6.b shows the resources that

are connected to produce this compound representation and we see Larry continues with the

same combination of resources as he is still looking for the magnetic field direction. As the

only modification, he adds the line as wire to represent the current wire and further builds

up his compound representation to include magnetic field direction below the current sheet.

5.5.3 Episode 3

Larry completes the first task by finding the magnetic field direction and now he has to figure

out the magnitude of the magnetic field. To start the process, Larry records the semiotic

resource of mathematical formula for the integral form of the Ampere’s law (
∮
B·dl = µ0Ienc).

This mathematical formula visualizes the relationships between the integrated magnetic

field around a closed loop and the electric current passing through the loop. In order to

continue with the mathematical manipulations, Larry has to pick an Amperian loop, pick

the dimensions of his loop and then pick a direction for his loop. Instead, Larry does this

as a two-step process. First he gestures for the loop orientation and tries to advance with

mathematical manipulations. Later as he gets stuck, he picks the dimensions and a direction

for his loop.

After recording the mathematical formula for the Ampere’s law, the instructor suggests

Larry pick a loop,

Instructor: Cool, now you need to pick an Amperian loop.

Larry: I’ll pick a loop. Current is in this way (pointing on the surface of paper). I think

the loop is like this (hand shows the loop perpendicular to the edge of the paper).

Within this step Larry combines several semiotic resources. First, he returns to the

semiotic resource paper as current sheet and uses it along with the gestural semiotic resources

finger pointing in direction and hand for loop to show how he picks the loop. The semiotic
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resource paper as current sheet allows him to represent the existence of the current sheet

in free space, finger pointing in direction helps to indicate the current direction. Then the

semiotic resource hand for loop helps to visualize the orientation of the loop with respect to

the sheet of current. But it does not help Larry figure out the vector orientation between

the magnetic field and the unit length on the Amperian loop that is required to manipulate

the integral in the Ampere’s law equation. Later we observe this limitation of the semiotic

resource hand for loop, leads Larry to get stuck and then Larry uses another semiotic resource

to represent the orientation of loop.

Larry’s intention is to continue with the mathematical manipulation, so after gesturing for

the loop, he moves to figure out the current enclosed (current flowing through the Amperian

loop).

Larry: My current enclosed is gonna be ... said got (records equation) (k = αx̂), so my

current is just, my current enclosed is just gonna be uh ... k dl right (records Ienc = k...).

But it can’t just be k times dl cause that’s a vector and it not be a vector. I mean two

end up is not a vector. But, could it be k dot dl, you like the sound of that?

k = αx̂ (5.1)

Ienc = k... (5.2)

Although he is ultimately unsuccessful, Larry expresses certainty that he could use a

mathematical formula to get the current flowing through the loop. So far, Larry has not

picked dimensions for his Amperian loop, instead he just uses the hand to show the ori-

entation of the loop. This limitation prevents his moving forward with the mathematical

manipulation. As Larry gets stuck, we observe Larry’s voice keeps fading and he pauses be-

tween words more than usual. Finally, he asks for the instructor’s feedback to move forward:

“could it be .... you like the sound of that?”. Instead of answering Larry’s question, the

instructor suggests he add the loop to his diagram, asking him “So how big is your loop?
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Draw your loop.” After the instructor’s suggestion, Larry uses the semiotic resource square

as loop to add a loop on to his diagram (Figure 5.8.a).

Figure 5.7: The compound representation of the Amperian loop is built and represented
through the gesture and a drawing of a square on the board with an arrow to represent the
direction on the loop

In the compound representation of the Amperian loop (Figure 5.7) gesturing and drawing

(square) on the board (Table 5.4) allows Larry to visually represent the existence of the loop

with respect to the orientation of the current sheet. Then the inclusion of the direction on

the loop helps to figure out the relative orientation with the magnetic field direction.

Before moving forward, Larry decides to explicate the orientation of the loop because

he doubts his drawing ability. To gesture the orientation of the loop, he uses the semiotic

resources paper as current sheet, finger pointing in direction and hand for loop. Next, the

instructor reminds Larry to pick the dimensions for his loop.

Instructor: Okay, good. And how wide is your loop? And what is the other dimension?

Larry labels the loop dimensions as “l” and “w” (Figure 5.5.a) and this step allows Larry

to figure out the current flowing through the loop that he could not do earlier. He records

the semiotic resource of mathematical formula for current enclosed, Ienc = kl and substitutes

the given current information (k = αx̂) for current density Ienc = kl = lαx̂. Even though

Larry correctly reasons that “it (Ienc) not be a vector. I mean two end up is not a vector”,
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Table 5.3: Disciplinary affordances of the semiotic resources coordinated to build the com-
pound representation of the Amperian loop

Semiotic Resource Disciplinary Affordance

Hand for loop

Larry uses the hand to represent the location and ori-
entation of the loop with respect to the orientation of
the paper sheet. Even after recording the loop on the
diagram, Larry reuses the hand for loop to best commu-
nicate his idea to the instructor.

Square for loop

This helps to generate a visual representation of the loop
in the space of the board (diagram on the board) and
allows Larry to show the orientation of the loop with
respect to the orientation of the current sheet (paral-
lelogram for sheet). This recording step helps Larry to
continue with the mathematical manipulations as he la-
bels the loop dimensions and to figure out the current
enclosed in the Amperian loop.

Arrow as vector

Arrow as vector permits Larry to visually represent the
given current direction and the resulting magnetic field
directions. While Larry is trying to simplify the left-
hand side of the integral form of the Ampere’s law equa-
tion during the latter part of episode 3, either gesturing
for the loop or just recording the loop does not help
Larry to figure out the relative orientation between the
magnetic field direction and the unit length on the Am-
perian loop. Then the use of an arrow to represent the
direction on the loop helps Larry to build a complete
argument and advance with the mathematical manipu-
lation.

his mathematical formula for current through the loop still has the vector information (x̂).

Later, Larry is going to realize that he does not need to have x̂ anymore because he does

the dot product.

Ienc = kl (5.3)

Ienc = kl = lαx̂ (5.4)

After figuring out the current through the loop (current enclosed), Larry moves towards

simplifying the left-hand side of the Ampere’s law formula. First, he records the semiotic
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resource of mathematical formula
∮
B · dl = µ0

∫
k · da.

Larry: So (records on the board) integral B dot dl equals µ0 integral k dot da. And then ...

for this (left hand side) I can do four separated integrals right? Since its square (show

by hand) and these two (“w” legs on loop) do not end up mattering.

Larry calls out loud the names of the mathematical symbols while recording the formula

and then uses the gestural semiotic resource hand for loop, while talking about the left-hand

side of the Ampere’s law equation. Larry gestures that the loop has four sides and then uses

the semiotic resource pinpointing gesture to indicate the two “w” legs (Figure 5.8.a). Without

providing complete reasoning, Larry talks about how the integral manipulation regarding two

“w” legs cancels out. Then the instructor helps Larry to build up his argument.

Instructor: Because?

Larry: Because they’re perpendicular to the ... Am I ... Is it these ones that I am not

gonna concern about? I am pretty sure it is.

Instructor: Yes. Because the direction of dl and the direction of B are ...

Larry: .. are perpendicular.

The above conversation between the instructor and Larry shows the argument behind

the integral manipulation. Because the orientations of the “w” legs are perpendicular to the

magnetic field direction, when Larry takes the dot product they cancel out. Even though

Larry’s argument is correct, so far he has not picked a direction for his loop. Just the

existence of loop without direction on it could not allow Larry to see the relative vector

orientations and this prevents his making a complete argument. Even though Larry seems

to be building an argument just by completing the missing bit of the instructor’s statement,

we can observe that Larry’s argument is not yet complete as he moves to consider the other

two legs (“l” legs).

Instructor: Okay. What’s about the other two legs?
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Larry: Uh ... So for the other two legs, uh ... all right, so this one is kind of above it in the

z, which means that the field is coming out at me (finger pointing in direction gesture).

... So, I need to pick a direction for my loop, don’t I?

Instead of continuing with the same argument, Larry uses the semiotic resource finger

pointing in direction to reason about the orientation of the loop in three-dimension (3D).

Larry stops without making complete reasoning. Larry then immediately, without prompting

from the instructor, realizes that he needs to pick a direction for his loop (“so I need to pick

a direction for my loop, don’t I?”) and uses the semiotic resource arrow as vector to record

the loop direction (Figure 5.5.a).

Larry: Uh ... Let’s say it all goes this way (counter clockwise). Okay. So, above it B is

coming out and the way I draw my loop is coming out at me so they are parallel and

then below it B is going in and my loop is going that way so they’re parallel again.

Instructor: Cool. OK. So, you get for that integral?

Larry: Uh... so 2Bl (records on board)

2B L = µ0

∫
k · da (5.5)

Either picking the loop using the semiotic resource hand for loop, or recording the loop

using semiotic resource square for loop, does not help Larry to figure out the relative orien-

tation between the magnetic field and the unit length on the Amperian loop. This prevents

Larry from advancing with the mathematical manipulations. But the inclusion of arrow as

vector to represent the direction on the loop helps Larry to continue with a valid argument.

Larry reasons how the unit length (on “l” legs) on the loop is parallel to the magnetic field

direction. Also, we can see Larry’s confidence level as he reasons with a strong voice but

with no pauses between words.

After few communication steps with the instructor, Larry recalls the mathematical for-

mula for the current through the loop and finds the magnitude of the magnetic field to finish

the task.
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Instructor: How much current pierces this loop? You worked this out not two lines ago.

Larry: Right. lαx̂

Instructor: Yup. Though you do not need the x hat anymore because you have done the

dot product.

Larry: All right. (Completes the right side by µ0lα and records on the board: B = µ0α/2).

2B L = µ0 k L (5.6)

B = µ0 α/2 (with α = k) (5.7)

Figure 5.8: a.) Compound representation at the end of episode 3 b.) Larry’s use of mathe-
matical formulas c.) Resource graph for the final compound representation and mathematical
formulas

Finding the magnitude of the magnetic field is a new task for Larry. At the beginning of

episode 3 Larry has a compound representation that contains 3D vector coordinates, arrows

to represent current and the magnetic field directions, a line to represent a current wire and

a parallelogram to represent the current sheet. Larry starts by recording the mathematical

formula for the integral form of the Ampere’s law and combines it with the other mathemat-

ical relations to get the current through loop (current enclosed). In order to manipulate the

integral on left hand side of the integral form of the Ampere’s law formula, Larry starts by
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recording an Amperian loop on his digram and later he adds the details of Amperian loop

dimensions and direction to his compound representation (Figure 5.8.a). This recording

step helps Larry to manipulate the integral and find the magnitude of magnetic field (Figure

5.8.b). In the resource graph (Figure 5.8.c), we see Larry coordinate between conceptual

resource unit length and semiotic resource square as loop along with additional resources re-

lated to mathematical formulas: integral form of the Ampere’s law, current enclosed, current

density and magnitude of the magnetic field.

5.5.4 Connections among the episodes

We see the disciplinary affordances of some semiotic resources that Larry uses to reinforce

the use of forthcoming semiotic resources. Larry starts his oral exam by combining semi-

otic resources 3D vector coordinates and parallelogram as sheet to build up his compound

representation. The 3D vector coordinates allows Larry to represent the current direction

using arrow as vector. This inclusion allows Larry to focus on a single current carrying

wire to apply the right-hand grip rule to get the magnetic field direction. This finding leads

Larry to further develop his compound representation by using arrow as vector to include

the magnetic field direction above the sheet. Moving on to consider multiple current wires

using paper as current sheet results in Larry switching to his diagram on the board to use

line as wire to represent the current wire. The inclusion of line as wire and arrow as vector

(the current direction information which is already available in the diagram) allows Larry to

consider multiple current wires to make a conclusion about magnetic field direction above

and below the sheet. At the end of episode 2, Larry uses arrow as vector to further build up

his compound representation to include the magnetic field direction. After determining the

magnetic field direction, Larry moves to find the magnitude of the magnetic field in episode 3.

Larry starts with the mathematical formula integral form of the Ampere’s law and combines

it with the given information of current density to get the current through the loop (current

enclosed) to simplify the right-hand side of the integral. After manipulating the left-hand

side of the Ampere’s law integral, Larry further adds the details of the Amperian loop to
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his compound representation. He uses square as loop and arrow as vector to represent and

to pick a direction for the loop. This recording step helps Larry to manipulate the left-hand

side of the integral and finally to obtain the magnitude of the magnetic field.

Our study also shows the disciplinary affordances of some semiotic resources hindering

the use of other semiotic resources. In episode 1, Larry first applies the right-hand grip rule in

free space, without specifying the current direction to figure out the magnetic field direction.

Then he continues to apply the right-hand grip rule considering the diagram on the board

again without specifying the current direction. The directional information embodied on the

diagram on the board by 3D vector coordinates obstructs the use of right-hand grip rule and

Larry ends up changing his gestural orientation. Later the inclusion of the current direction

information helps Larry to figure out the magnetic field direction.

During the first two episodes, Larry works to get the magnetic field direction and we

observe him using the semiotic resource right-hand grip rule. Once he gets the magnetic field

direction and builds onto his compound representation, he no longer uses the right-hand grip

rule. As Larry moves to use the mathematical formulas in episode 3 to get the magnitude, the

disciplinary affordance of mathematical formulas integral form of the Ampere’s law, current

enclosed, current density and magnitude of the magnetic field prevents the use of semiotic

resource right-hand grip rule. It was important but no longer useful for Larry to get the

magnitude of the magnetic field in episode 3.

Likewise, Larry uses the semiotic resource hand for loop to gesture how he picks the

Amperian loop in third episode. Using hand for loop helped Larry to show the orientation of

the Amperian loop relative to the orientation of the current sheet. As Larry switches to work

on mathematical formulas to get the magnitude of magnetic field and he ends up associating

mathematical formulas: integral form of the Ampere’s law, current enclosed and current

density. The inclusion of mathematical formulas constrains the use of semiotic resource

hand for loop. We observe Larry switching to the diagram on the board to represent the

loop using a square as loop. Just the hand gesture is not helpful in determining the current

piercing the loop or in determining the left-hand side of the Ampere’s law integral.
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5.6 Discussion

The process of student meaning-making is not a purely cognitive one; and in physics classes,

both students and teachers use a number of semiotic resources in addition to speech and

writing. The approach (180) to consider the involvement of all artifacts, objects, and actions

to describe student meaning-making broadens the boundaries in physics as a discipline.

The idea of disciplinary affordance allows us to connect ideas in physics with the kinds of

representations which best express them.

Fredlund (130;135) used the affordances approach to show that different semiotic resources

have different disciplinary affordances. They interviewed students on particular problems

which had two specialized visual representations, each of which has a strong set of disciplinary

affordances. Previous work on disciplinary affordances did not investigate how students

could combine multiple semiotic resources within classroom problem-solving. In our study,

we have actual classroom data, where the representations were developed, were determined

to be insufficient and were replaced or augmented by new ones brought in by the student.

The problem Larry solves is a canonical problem at the upper-division level. Larry solving

this problem gives us lots of insight into how students at this level might solve this problem.

But, we are not looking for prevalence, and we are not trying to make a normative argument

that all the students should solve this problem in the same way. This particular problem

required Larry to start from a diagram and move to the mathematics at the later part of

his solution; this process required Larry to coordinate between multiple semiotic resources.

We observe Larry combine a series of semiotic resources with other available conceptual

resources, some of which he keeps coming back to and some of which he discards after using.

There are three compound representations feeding in to give the features (direction and

magnitude) of the magnetic field to solve the given problem (Figure 5.9). First, Larry builds

up the compound representation of the current sheet (episodes 1 and 2) that he uses to

buildup the direction and the magnitude of the magnetic field. The iconic parts of the current

sheet are represented using a parallelogram with a line to represent the current wire, a sheet of

paper and some hand gestures. In this compound representation, the parallelogram and the
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Figure 5.9: Three compound representations from Larry’s previous episodes combined to
give the features (direction and magnitude) of the magnetic field

sheet of paper (Table 5.4) allow Larry to visually represent the current sheet. The inclusion

of hand gesture and line to represent wire helps to simplify the structure of the current

sheet. Then he does some different things with the right-hand grip rule to buildup magnetic

field direction. First, the compound representation of the right-hand grip rule (episodes 1

and 2) is developed using gesture, drawing of a line to represent the current wire with an

arrow to represent given current direction. Then the curled right-hand gesture visualizes the

application of the right-hand grip rule. Later, Larry builds up the compound representation

of the Amperian loop (episode 3) using gesture and a drawing of a square on the board with

an arrow to represent the direction on the loop. In this compound representation, gesturing

and drawing (square) on the board (Table 5.4) allow Larry to visually represent the existence

of the loop with respect to the orientation of the current sheet. Then the inclusion of the

direction on the loop helps him figure out the relative orientation with the magnetic field

direction.

The compound representation of right-hand grip rule allows Larry to figure out the re-

sulting direction of the magnetic field lines from a current carrying wire. In order to apply

the right-hand grip rule, Larry has to have a specified current wire with a certain current

direction. Larry’s approach to first, simplify the current sheet into individual wires and then

to focus on a single wire to apply the right-hand grip rule helps to build a valid argument
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Table 5.4: Disciplinary affordances of three representations incorporated to find direction
and magnitude of the magnetic field

Compound Representation Disciplinary Affordance

Current sheet

In this compound representation, the sheet of pa-
per and the drawing of the parallelogram on the
board generate visual representations of the cur-
rent sheet. Larry keeps referring back to the di-
agram on the board as he progresses on this task
and it allows Larry to add different features: cur-
rent direction (episode 1), current wire (episode
2), Amperian loop (episode 3) and findings: mag-
netic field direction (episodes 1 and 2) on to his
compound representation.

Right-hand grip rule

Right-hand rule helps to define the magnetic field.
It reveals the connection between current direction
and the magnetic field lines in the magnetic field
created by a current. Right-hand grip allows Larry
to manipulate this phenomenon by hand and to
visualize the resulting magnetic field direction. In
episode 1, missing detail of current direction pre-
vents Larry from making a conclusion while rea-
soning using the diagram on the board. But the
inclusion of the current direction and the line to
specify the current wire in episode 2 helps Larry
to figure out the magnetic field direction.

Amperian loop

Gesturing and drawing (square) on the board allow
Larry to visually represent the existence of the loop
with respect to the orientation of the current sheet.
The inclusion of loop direction helps Larry to fig-
ure out the relative orientation of the unit length
on the loop with the magnetic field direction. This
leads Larry to find the magnitude of the magnetic
field.

towards finding the net magnetic field direction above and below the sheet. The use of the

parallelogram (episode 1) to visually represent the loop in the space of the diagram (on the

board) helps Larry to include the arrow to represent the direction on the Amperian loop.

This allows Larry to figure out the relative orientation between the magnetic field direction

and the unit length on the Amperian loop. Finally, Larry builds a complete argument and

advances with the mathematical manipulation to simplify the left-hand side of the integral
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form of the Ampere’s law equation. Then he completes the oral exam after recording the

magnitude of the magnetic field.

Research has shown that the use of multiple representations can greatly enhance stu-

dents understanding of mathematical and physical concepts and in physics problem-solving.

Students can connect these multiple representations to build meaning and construct repre-

sentations that help them to make appropriate decisions about the solution process. The

case of Larry exemplifies the coordination between multiple semiotic resources with differ-

ent disciplinary affordances to build up compound representations to solve complex physics

problems. Our analysis of this case illustrates a novel way of thinking about what it means

to solve physics problems and, we hope, contributes to the application of social semiotics

to the teaching and learning of university physics (154;180). Having a single student and an

instructor is the limitation of our study. The instructor involved in this study conducts the

oral exam and provides hints to Larry in a certain way, but we think this interaction does not

materially change our argument about how semiotic resources can come together to build

representations and arguments to solve problems.

5.7 Conclusion

As part of a larger project to investigate problem-solving processes among upper-division

physics students, we investigate how students coordinate among multiple representations

while solving problems. We analyzed the case of Larry solving the Amperian loop problem

for his oral exam using two approaches. In the study presented in chapter 4, we used the

classification of representations into durable (diagrams, written mathematical equations) and

evanescent (gestures, words) in our exploratory research project to suggest how students

might translate among representational types to solve physics problems.

Later, the study presented in this chapter is different from the previous study because

we use a separate theory, a social semiotic approach to perform a fine-grained approach of

developing representations. We investigated how Larry brings in semiotic resources (elements

of the representation) to build up representations. In this study instead of talking about the
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specific representational types (diagrams, mathematical equations, and gestures) that Larry

used we focused how Larry builds up three compound representations (“Current sheet”,

“Right-hand grip rule”, and “Amperian loop”) to solve the problem. Also, we observe Larry

going back and forth between some representations depending on which is more useful at

each time. Further, sometimes Larry coordinates among representations and sometimes he

uses several in series as he looks for one representation which he can use for a given situation.

The aim of this study is to show how the coordination of multiple semiotic resources

give rise to physics meaning-making, especially, how the disciplinary affordances of each

semiotic resource reinforce each other or make up for the constraint of other resources in

the process of meaning-making. Our semiotic approach describes an important phenomenon

about coordinating among different semiotic resources. This analysis highlights how the

disciplinary affordances of different semiotic resources which make up for the constraint of

other resources or reinforce each other to enhance meaning-making possibilities, and most

importantly, it highlights important features of semiotic resources that should be taken into

account by teachers during the meaning-making process.

5.8 Implications

The process of constructing an effective representation of a problem makes it easier for the

problem solver to make appropriate decisions about the solution process. In addition to

that, this process symbolizes the student’s work on that particular problem. If the student

constructs an effective representation then the student is more likely to progress towards

solving the problem (195), but if the student constructs an inappropriate representation then

the process is unlikely to make any progress until the student re-represents the problem

accurately. This is evident in Larry’s case, he could not continue to consider multiple current

wires while using the sheet of paper representation (episode 2) but his decision to switch

to the diagram on board helps to consider multiple wires and this leads Larry to draw a

conclusion about the net magnetic field above and below the sheet.

Further, during episode 3, either gesturing for the loop or recording the loop does not help
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Larry to figure out the relative orientation between the magnetic field direction and the unit

length on the Amperian loop until he adds the direction on the loop. In some cases, students

get stuck and cannot identify the nature of the sticking point. We observe on some occasions,

Larry gets stuck and his voice level, choice of words and the speed of gestures indicates his

confusion. But after adding new features or switching to a different semiotic resource to re-

represent the idea or concept Larry’s reasoning goes back to normal and he moves forward to

solve the problem. As the case of Larry demonstrates, one of the important problem-solving

skills is that of effectively representing and re-representing problems. This skill includes both

students and teachers being aware of the nature of the disciplinary affordances of semiotic

resources that students bring together to construct representations (135).

The research findings presented above suggest that it is important to highlight the com-

plex use of multiple semiotic resourses in student problem solving. An implication is that

instructors need to identify the disciplinary affordances of the different semiotic resources

in different modalities so that instructors could demonstrate and help students to become

better problem solvers. Further research could involve interviews or classroom observations

with a series of typical problems to further explore how the representations are developed,

how those representations are determined to be insufficient and replaced, or how those rep-

resentations are augmented by new ones brought in by the students.
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Chapter 6

Semiotic Resources Approach:

Students Connecting Among

Representational Spaces to Solve

Physics Problems

6.1 Introduction

Learning with multiple representations has often found to be difficult for students and can

even lead to lower learning outcomes than learning with single representations (113). Previous

research on students’ use of multiple representations has revealed two problems. First, it has

been shown that students often do not make spontaneous use of multiple representations.

Second, the translation process (integration between representations) is often shown to be

difficult for students (117;120). Students might not spontaneously use (alternate) multiple

representations on their own because novices have great difficulty connecting representations

to the physical phenomena they stand for. The integration process can be seen as a process

of mapping corresponding elements between different representations. In order to translate

between representations, students must clearly identify the corresponding elements between
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different representations.

We can categorize existing work in PER that examines student use of multiple representa-

tions into two types. The first type of study examines the effects on problem-solving activities

and on the success of problem representations provided by the instructor (128;196;197;127). The

second type of study examines the effects of student generated representations on problem-

solving (198;199;195). In this study, we focus on students’ spontaneous construction of represen-

tations and the connections that they make among those representations while engaged in

physics problem-solving.

6.1.1 Previous approaches: Cognitive Load

Within the previous work on student use of spontaneous representations, researchers used

the Cognitive Load theory (143) to explain the advantage of using spontaneous representa-

tions while solving problems. Rosengrant (144) found most successful students in this study

drew a sketch of the situation and then drew a free-body diagram. They were able to use

this free-body diagram to set up their mathematical equations and evaluate their answers.

Rosengrant’s hypothesis is that students are probably aware intuitively that they do not

have the mental capacity to remember all the information in the problem statement, and

thus use representations to visualize problem situation. In other words, students used the

diagram to help lessen the burden of their working memory. In another study (200), students

were given a problem which required an addition of two vectors in two-dimensions. Students

who explicitly drew components of vectors performed better than students who did not.

The researchers generated a hypothesis - students who did not draw vector components had

to keep more information in their working memory while engaged in problem-solving; this

might have increased their cognitive load and ultimately lead them to become unsuccessful.

The hypotheses used in these studies were able to explain why students’ spontaneous

use of representations helped them to become successful but could not explain how students

connect among representations (such as using the free-body diagram to set up mathematical

equations). Especially, they were not able to explain what factors or features of representa-
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tions influence how students succeed or fail in connecting among representations.

In addition, according to Cognitive Load Theory (CLT) (143), when students try to keep

track of too many things they get stuck. The hypothesis is that students use representations

to keep records of their findings, allowing them to lower their cognitive load, which ultimately

allows them to perform better. Cognitive load theory is a leading learning theory, and it

might be one possible framework that can explain why students use multiple representations.

It is still criticized for a number of reasons, however, and researchers find it difficult to

operationalize (201;202;203). The main problem associated with operationalizing cognitive load

theory is measuring the cognitive load. Because it is difficult to measure the cognitive

load, it is difficult to generate evidence in support of the theory. Difficulties in measuring

cognitive load increase further if we assume that cognitive load can vary during the learning

process (204) and the researchers have to measure cognitive load multiple times and calculate

an average value.

6.1.2 Previous approaches: Social Semiotic

From a social semiotic perspective, all meaning is realized, constructed, and developed us-

ing social conventions through the production of semiotic resources (153) . According to Van

Leeuwen’s definition of semiotic resources, the words, gestures, sketches, graphs, formulas,

and different instruments that are used in physics classrooms can be labeled as semiotic

resources (32). Researchers documented that these semiotic resources have different strengths

and limitations. Fredlund (130) relates this idea to define the disciplinary affordances of semi-

otic resources - “the disciplinary affordances of a given semiotic resource as the inherent

potential of that semiotic resource to provide access to disciplinary knowledge.”

In previous studies that used the idea of disciplinary affordances to explain student

problem-solving behaviors, first, Fredlund with the refraction of light experiment (109), ar-

gued that two semiotic resources (wavefront diagram and ray diagram) allow students to

access different areas of physics knowledge. Then Fredlund with the RC circuit diagram (130),

showed when the representation is unpacked (when the representation is simplified to il-
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lustrate more details), students were able to access knowledge that is highlighted by the

given representation and successfully complete the activity. Within these previous studies,

researchers did not consider spontaneous construction of representations by students and

they did not study how students connect among representations that they use to solve given

problem.

In our attempt to better understand how students use representations while solving prob-

lems, in our first study (174) we looked at how students would translate among representation

types to solve upper-division level physics problems. At the same time, we observed stu-

dents decide whether existing representations are adequate; if not then they bring in ideas

to bring more meaning to those representations. As a result of these observations, we change

our focus to investigate how students go about building those representations. It turned

out that students bring in ideas/ resources to build meaning on to existing representations.

These resources turned out to be explicitly connected to a representation, however different

from conceptual resources. In our previous study (170), we picked a new theoretical approach:

Social semiotics to describe the underlying mechanism behind students’ spontaneous con-

struction of representations. Students coordinate among different semiotic resources with

disciplinary affordances to construct compound representations. Even though we paid at-

tention to the disciplinary affordances of the semiotic resources that students connect to

construct representations in our previous study (170), we did not pay attention to the modes

of those semiotic resources.

In real-world classroom settings or real problem-solving settings we observe students ei-

ther draw a diagram, use gestures or use mathematical equations. Within this study we still

focus on how students construct spontaneous representations but we specifically pay atten-

tion on how representations in different modes get connected to each other and what factors

may influence how students succeed or fail when connecting among the representations that

they spontaneously construct (that are in multiple modes).
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6.2 Theory

6.2.1 Conceptual resources vs. Semiotic resources

From a cognitive perspective, David Hammer (173) uses the term ‘resources’ to describe in-

dividual’s cognition as in-the-moment. According to Hammer’s resource-based model of

cognition, resources are fine grained bits of information that are highly context dependent

(determined by the students’ view of context). Actually, these conceptual resources are

isolated, independent, productive student ideas that are used for solving a problem. Con-

ceptual resources look very similar to semiotic resources, but they are not the same thing.

Semiotic resources also could be seen as resources that students bring in to solve a problem

but semiotic resources are not independent (like conceptual resources); each is tightly affil-

iated to a specific representation. Among the properties of the conceptual resources, they

can be named using descriptive names for the thing the resources represent (205). Let’s take

“Ampere’s law” as an example; in the semiotic resource model, we need a resource that is

actually Ampere’s law written algebraically in integral form (semiotic resource: Integral form

of Ampere’s law). Here written algebraically is necessarily a part of the semiotic resource

accounting and it shows us the affiliated representation (inscription- formula/ mathematics).

But in the resource model, the resource Ampere’s law could just be an idea or it could be

(but may not be) that specific algebraically written integral form. Similarly, the “semiotic

resource: arrow as vector” says that students are drawing arrows to represent vectors and

in this case the affiliated representation (inscription- diagram) (164). This suggests that even

though both conceptual resources and semiotic resources look similar, in the case of semiotic

resources we necessarily have to go through the affiliated representation to solve problems.

These representations are in different modes or modalities. In social semiotics, a modal-

ity (32) is a particular way in which information is to be encoded for presentation to humans.

According to Lemke, different modes can be listed as: (a.) visual modes (such as sketches,

images, graphs, tables), (b.) actional modes (body movements, gestures), (c.) mathemat-

ical modes (mathematical symbols, equations) and (d.) natural language (words, whether
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written or spoken).

Figure 6.1: Theoretical framework: Each semiotic resource (small circles) has a semiotic
mode (visual in red, algebraic in green, and actional in purple). These semiotic resources are
coordinated to build representational spaces. Then students connect representational spaces
to answer problems. In this framework, the triangle is the whole solution of the problem,
including reasoning. Solution to the problem is thus “made up of” all the lower parts of this
framework.

Expanding on our previous idea (170), we modify our theoretical framework (Figure 6.1)

that accounts for how semiotic resources should be combined to solve problems. In this

study we introduce the idea of representational spaces (Diagrammatic, Gestural and Alge-

braic...), composed of two or more semiotic resources in the same semiotic mode. Then these

representational spaces can be used to solve problems.

6.2.2 Research questions

What is a better mechanism to explain how students build and connect together among

different representations to solve physics problems? What are the factors that influence how

students succeed or fail in connecting among representations?
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6.3 Method and Data sources

The research presented in this chapter is part of an ongoing research project examining stu-

dent meaning-making in undergraduate physics problem-solving. We used the case study

methodology from our pilot study (170) presented in a previous chapter (chapter 5) to explain

how students construct representations to solve physics problems. The analysis presented

in this chapter uses multiple videos of individual students solving physics problems (oral

exams) as a part of their upper-division physics courses. We use this study to generalize

and to suggest a better way of explaining the underlying mechanism behind students’ co-

ordinating among different semiotic resources in different modes to construct spontaneous

representations.

6.3.1 Data sources

The primary data set for this analysis was collected from upper-division Electromagnetism

I (2013 fall semester) and Classical Mechanics courses taught by a white female instructor

at two different institutions. The instructor involved in this study is the same instructor

involved in our previous studies presented in chapters 4 and 5. This particular instructor

used a similar approach in both courses and she used oral exams as a method to assess

students’ conceptual understanding, problem-solving, and scientific communication skills in

her courses (175). During the oral exams, students were given problems of similar difficulty

level as the examples discussed in class. Students enrolled in these courses were required

to complete 20- to 30-minute individual oral exams with the instructor. Students enrolled

in Electromagnetism I course completed two oral exams, and Classical Mechanics students

completed just one.

First, the data of students solving electric and magnetic field problems was collected from

the same Electromagnetism I course presented in chapters 4 and 5. This is an upper-division

course covering the first seven chapters of Griffiths’ textbook (46).

Second, the case of Zeke1, the student solving a mechanics oral exam problem, was

1All student names are pseudonyms
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collected from an upper-division Classical Mechanics course was that taught at a different

smaller institution. The class meets three times per week for an hour and had a small

enrollment of about 4-8 students.

In addition to using oral exams in her teaching approach, this particular instructor used

similar practices in both these classrooms. These classes have a strong focus on problem-

solving and sense-making, and we observe that the instructor engages and gives hints in a

way that aligns with the sense-making goals that students exercised in the classroom.

6.3.2 Analysis method

Here in this study we use a similar approach to that presented in chapter 5. For this analysis,

we transcribed students’ problem-solving videos. The videos were then divided into segments

of events where each event is selected based on the semiotic and conceptual resources used

by the students. For this initial round, we also identify key elements within each event using

semiotic modes in general: different types of inscriptions (diagrams, mathematical formulas);

extra-linguistic modes of expression (gestures); words (oral); and objects (used by students

and the instructor).

In a second analysis round, we classify emerging semiotic and conceptual resources within

each semiotic mode. This classification involves naming each resource descriptively (38). We

use a similar approach to our case study (chapter 5) to identify and name semiotic, con-

ceptual resources (163;194;130). Within the analysis section, we denote resource (semiotic and

conceptual) names in italics.

Finally, the third analysis round involves comparing the resources’ frequency and connec-

tions across different students and problems, and connecting the semiotic resources to their

disciplinary affordances. In this analysis, three researchers worked together in the process

to establish the reliability.
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6.4 Analysis

In this section, we choose and present three problems, two of them solved by multiple

students. We use this analysis to show how students coordinate between semiotic resources to

build representational spaces (diagrammatic, gestural and algebraic) and how the identified

disciplinary affordances of the semiotic resources affect the student problem-solving process.

6.4.1 Problem 1: Loosely wound solenoid

The first problem we discuss here is from Electromagnetism I course that asks students to

determine the magnetic field inside and outside of a loosely wound solenoid. The term “loose

winding” suggests that though the wires are next to each other, there is a current component

going around while another current component is going down the solenoid. Two students

Alan and Danny solve this problem individually during the oral exams conducted around the

later part of the semester. All three sessions start with the instructor posting the problem.

Instructor: Suppose you have a solenoid, which is infinitely long and it is loosely wound

so that there is some component of the current goes down the solenoid and some

component of the current goes around the solenoid. We want to consider there to be

a component of the current that travels down and a component of the current that

travels around. What would be the magnetic field inside and outside?

To solve this problem, one can use the right-hand rule to find the direction of the magnetic

field created by each current component, and use Ampere’s law (
∮
B · dl = µ0Ienc) to find

the magnitude.

Student 1: Alan

Alan is the first student to take this problem and he is not provided with diagram so

while the instructor was explaining, Alan starts to draw on the board. First, he uses the

semiotic resource cylinder for solenoid to represent the solenoid on the space of the board

and had a small conversation with the instructor to understand how to represent the loosely

wound nature of the solenoid.

110



Alan: Oh, I see. . . so then. . . where we have previously ignored the fact that current is

got some upward direction. . . okay.

Figure 6.2: Alan further develops his diagrammatic space

With this clarification Alan takes few quick steps without even sharing his thoughts with

the instructor. First, he decides to focus on the current components and he further develops

the diagrammatic space using the semiotic resource arrow as vector to represent the current

components going up and around. Alan labels the current component going up to be Iẑ and

the current going around to be Iφ̂. Then he uses the semiotic resource square for loop to

pick an Amperian loop that is parallel to the axis of his solenoid (Figure 6.2).

Figure 6.3: Initial stage of Alan’s representational spaces

In this analysis, we divided the students’ problem-solving activities into different stages

of developing representational spaces. In our descriptions, we use the resource graph rep-

resentation to show student’s coordination of resources to build different stages of the rep-

resentational spaces. At each stage, we chose semiotic resources students to bring in to
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build representational spaces with our research focus to show how the coordination between

resources can be used to build representational spaces.

Figure 6.3 shows the initial stage of Alan’s representational spaces. Here Alan lays the

initial foundation in the diagrammatic space before moving to the algebraic space to do some

manipulations to find the magnitude of the magnetic field. As a result, we do not see any

of the semiotic resources being used in either gestural or algebraic spaces yet. The semiotic

resource cylinder for solenoid on the diagrammatic space allows Alan to show the presence of

the solenoid in space of the board (table 6.1). That also permits his representing the current

components going up and clockwise using the semiotic resource arrow as vector along with

the mathematical symbols Iẑ and Iφ̂ that he returns to while manipulating mathematics.

With his work to come figuring out the the magnetic field inside and outside the solenoid,

the step Alan has taken to include the Amperian loop using the semiotic resource square for

loop allows him to figure out the amount of current piercing through the loop.

Table 6.1: Disciplinary affordances of the semiotic resource coordinated to build the initial
stage of Alan’s representational spaces

Semiotic Resource Disciplinary Affordance

Cylinder for solenoid

Vertical cylinder allows Alan to generate a visual repre-
sentation of the solenoid in the diagrammatic space of
the board (diagram on the board). Alan refers to this
while specifying the current components before moving
to figure out the magnetic field.

Arrow as vector

This allows Alan to visually represent the vector direc-
tion. Spatial extent used to represent both distances in
coordinate space and magnitudes of electric field vectors.
Here, this visual representation of a straight line with an
arrow head allows Alan to show the current components
going up inside the solenoid and then a curved line with
an arrow head allows him to represent the current com-
ponents going around the solenoid.

Square for loop

This helps to generate a visual representation of the loop
in the diagrammatic space of the board. Further this
allows Alan to show the orientation of the loop with re-
spect to the orientation of the current on his diagram
that will allow him to figure out the mathematical ma-
nipulations while working with Ampere’s law in the al-
gebraic space.
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After all of this work he starts to talk about the magnetic field that he relates to Ampere’s

law and the Amperian loop that he just picked.

Alan: Okay, the only way this differs is that the B dot dl contribution is. . . (while talking

he moves to check his notes) we can’t say it’s a zero for the. . . box of that. . .

The instructor jumps in to get Alan to talk more about what he just mentioned about

the magnetic field manipulation.

Instructor: Why not?

Alan keeps talking while he is off the frame.

Alan: Well, there is a wrote component. . . since we do B dot dl . . . dot product is going

to be the cosine of the two.

He comes back and starts referring to his diagrammatic space while talking more about

manipulating the mathematics that is related to Ampere’s law.

Alan: If we are looking at (pause, keep talking to self). Let’s consider it separately. . . we

might do B dot dl twice. . . (Alan records Ampere’s law) . . . I wanna say. . . we

do Bz and the dot product being the. . . um. . . the cosine component. . . B cosine

dl . . . would be. . . cosine zero is one. . . So, then this is going to determine our

vertical component. . . where µ0Ienclosed (records mathematics) and then. . . current is

constant and then basically. . . B L (Alan picks the direction on his loop and labels

the dimensions) . . . L here. . . µ0I . . . there is a coil density. . . in. . . per length. . .

times that L (continues to record mathematics) so then Bz component is going to be

µ0I over. . . that doesn’t look right. What I’ve done? (talking to self and completes

the mathematics)

Alan has the idea of considering current components separately “we might do B dot

dl twice. . . ”. Alan starts by recording the semiotic resource in the mathematical form

integral form of the Ampere’s law and at the beginning he starts saying he is going to
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figure out the z component of the magnetic field but his mathematical symbol for current

I was representing a more general current until he specifies the current components using

his previous mathematical symbols Iφ̂. While manipulating the left hand side of the integral

form of the Ampere’s law Alan further develops his diagrammatic space using the semiotic

resource arrow as vector to indicate the direction on his Amperian loop and the mathematical

symbol ‘L’ to indicate the side length of his loop. After resolving the left hand side of the

mathematical equation, he moves to consider the right hand side where he brings in the new

idea of “coil density n”.

∮
Bz · dl = µ0Ienc (6.1)

Bz.L = µ0In.L (6.2)

Then moving to specify the z component of the magnetic field, Alan gets confused and

starts to talk slowly to himself “that doesn’t look right. What I’ve done?”. After few

seconds, he continues to complete the mathematics; but he keeps looking at his final mathe-

matical equation. This gives us an idea that Alan does not feel confident about his answer.

One reason for this may be because he has not yet specified the current component in his

mathematical equation, instead he still has I.

Bz =
µ0I

n
φ̂ (6.3)

In addition, Alan makes a mistake while recording his final equation that prompts the

instructor to jump in. Soon Alan realizes the mistake and corrects it.

Instructor: Why is n in the denominator?

Alan: Yeah. . . um. . . because I stopped what I’m doing. . . I think about why it looks

different. . . no. . . no. It’s right the z component is (corrects his mathematics and

further modifies it) that’s from the theta . . . φ− hat component. . . I guess.
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Bz = µ0Inφ̂ (6.4)

Bz = µ0Iφnφ̂ (6.5)

Even though Alan now specifies the current component (“that’s from the φ̂ compo-

nent. . . ) that he is considering his mathematical equation does not show the correct di-

rection of the magnetic field. The magnetic field created by the Iφ should be along the ẑ

direction. The instructor interrupts one more time concerning this issue.

Instructor: Okay, why would you call this Bz . . . ?

Alan replies quickly with the use of a gesture.

Alan: Because the. . . B is in the direction (gestures) cross with the direction of I. So. . .

He uses the semiotic resource finger pointing in direction to indicate the resulting mag-

netic field direction. Still Alan does not realize the φ̂ direction in his answer. So the instructor

goes further to ask,

Instructor: Okay. . . so, why is it in the phi (φ̂) direction?

Alan quickly changes his mathematical equation so that it aligns with what he showed

using the gesture.

Alan: What is in the phi direction? . . . that I or . . . (goes back to mathematical equation

and modifies it). Yeah. I know. . . I’m sorry. . . I’m (modifies the mathematical

equation) . . . there we go. . . that’s what I meant to do.

Bz = µ0Iφnẑ (6.6)

So far Alan specified the current component he is considering and found the resulting

magnetic field direction. But he has not mentioned if this resulting magnetic field is inside
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or outside the solenoid. Instructor asks him to talk about that “So that’s good for inside

and outside?”.

Alan: That’s only inside. Because. . . it’s zero outside. . .

Here Alan talks further about how he disagreed during the class to have the magnetic

field outside the solenoid to be zero. Then the instructor spends a little time explaining how

he could build a really long solenoid and measure the magnetic field outside close to zero.

Figure 6.4: Intermediate stage of Alan’s representational spaces

Figure 6.4 shows the intermediate stage of Alan’s representational spaces. We observe

him using the semiotic resource arrow as vector to further develop his diagrammatic space

and getting started on the algebraic space. Alan just uses the semiotic resource finger

pointing in direction that allows him to represent the resulting magnetic field direction. In

general, students in this course use the semiotic resource right-hand grip rule to figure out

the magnetic field direction of a current carrying wire. But in the case of Alan, we do not

observe him using the gestural space; instead we see him approach to work in algebraic space

with the predetermined magnetic field direction.

Within the algebraic space, Alan uses the semiotic resource in the mathematical form

integral form of the Ampere’s law and magnetic field. The semiotic resource integral form of

the Ampere’s law allows him to go about figuring out the magnetic field created by the certain

current component. Then the semiotic resource magnetic field allows him to represent the

specific magnetic field component with the directionality information (equation 6.3).
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Alan approaches to develop the diagrammatic space and then moves to work on algebraic

space separately. But while continuing with the mathematics, he returns to the diagram-

matic space and we observe Alan translating between representational spaces. Within the

diagrammatic space, first he uses the semiotic resource arrow as vector which allows him

to indicate the direction on his Amperian loop that later helps him figure out the vector

orientation between the magnetic field (B) and unit length (dl) while simplifying the left

hand side of the integral form of the Ampere’s law.

Table 6.2: Disciplinary affordances of the semiotic resource coordinated to build Alan’s
intermediate representational spaces

Semiotic Resource Disciplinary Affordance

Integral form of the Ampere’s law

This physical law shows the relationship between the
integrated magnetic field around a closed loop and the
electric current passing through the loop. It states that
the magnetic field around an electric current is propor-
tional to the current. In relation to the Amperian loop
each segment of current loop produces a magnetic field
like that of a long straight wire, and the total field of
any shape current is the vector sum of the fields due
to each segment. In this mathematical representation,
the left hand side allows us to show the relative vector
directions (do the dot product) between magnetic field
and the unit length on an Amperian loop. Where, right
hand shows the two scalar quantities, permeability and
current, passing through the loop.

Arrow as vector

Here he uses the arrow as vector to represent the direc-
tion on the loop that helps Alan to build a complete
argument and advance with the mathematical manipu-
lation while working with the left hand side of the inte-
gral form of the Ampere’s law equation.

Finger pointing in direction

Alan uses the index finger to the side while gesturing
for direction. This allows him to show the direction of
the resulting magnetic field while answering instructor’s
question.

After figuring out the magnitude and the direction of the magnetic field created by the

current component that goes around the solenoid then Alan moves to considers the effect by

the current going up (axial current component).
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Alan: Okay there is the z component of the B field. . . so then doing the Br component. . .

(starts recording the mathematical equation but stops half way through
∮
Br ·dl = . . . )

Instructor’s interruption about the loop “Are you doing the same loop or a different

loop?” makes him stop and think a little bit before he started to move forward again.

Alan: I guess. . . do the same loop. . . um. . . let me think about that. Though. . . um. . .

no. . . because it’s gonna be. . . It’s like a cylinder carrying a surface charge, surface

current I mean (Alan draws a cylinder and picks a loop) and there is my new dl . . .

um. . . my new Amperian loop.

Figure 6.5: Alan develops a separate diagram to represent his new Amperian loop

Alan starts developing a separate diagram (Figure 6.5) using the same semiotic resource

cylinder for solenoid. But this time the solenoid is horizontal and he reuses the semiotic

resource arrow as vector to represent the current going up inside the solenoid. He keeps

talking and thinking after stepping back while working on his new diagram. After a little

pause, he uses the semiotic resource circle for loop to represent how he picks the Amperian

loop for this new case.

Now Alan is considering the current component (axial current) going up which is along

the ẑ direction. Then the magnetic field created by this current component should be in φ̂

direction. According to Alan’s notation so far, this should be Bφ. But at beginning of this

section, Alan talked about how he is going to find the r component of the magnetic field
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(“Br component”) which is notationally incorrect. The Instructor pushes Alan to rethink

this and soon he corrects the mistake.

Instructor: Is this going to give you the B in the r direction?

Alan: Nope. I would like to revise that. . . so, it’s going to be the phi component or the

phi direction of B . . . again µ0Ienclosed . . . (completes the Ampere’s law equation) this

will do it . . . easier.

∮
Bφ · dl = µ0Ienc (6.7)

After revising his mathematical equation, Alan turns towards the instructor and starts

to talk about the possible current densities - linear, surface and volume currents - in general

and how to represent those using mathematical symbols. This gives us an idea (actually

he is) that he is going to relate this into his calculations even though the problem does not

talk about the current densities. The following section shows Alan is thinking about how

much current is going through his Amperian loop. To represent that in his mathematics,

first he uses sigma (“sigma times da”) and then another symbol k (may be a surface current

density) that shows us he thinks about a surface current here.

Alan: . . . then Ienclosed is going to be. . . um. . . µ0 . . . total Ienclosed is going to be

(continues recording mathematics) sigma times da . . . um. . . k da right? which is

just. . .

∮
Bφ · dl = µ0Ienc = µ0

∫
k · da (6.8)

Instructor: So, you want to know how much current is piercing your loop?

Alan: Right, so it’s going to be sigma times V and how we get there? . . . so there going

to be sigma times. . .
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Earlier Alan related sigma to the infinitesimal area da that indicated he is thinking about

a surface current but right here he started to relate sigma with volume (“sigma times V ”)

that shows us he is confused. His behavior and the pauses between his words show us that

this is difficult for him. Alan talks to himself (“how much current is piercing the loop?. . .

how we get there?”) and the instructor jumps in to help him resolve this confusion.

Instructor: Where is sigma in this problem?

Alan: Isn’t sigma is the. . . so the total current is just I, the z component of I . . . . . . can

I leave it like that?

Instructor: Yup, we haven’t specified how big is Iz compared to Iφ yet.

Instructor’s questioning helped Alan to rethink and remind him about the current com-

ponent that goes up inside the solenoid. Alan returns to his former mathematical symbol

for current component Iẑ and moves forward with the mathematical calculation.

Alan: Okay. . . and this is going to be (further modifies his mathematics) Bφ . . . two pi . . .

(goes back to his diagram and labels r) . . . r . . . µ0 . . . um. . . again just I . . .

While working on the mathematics, Alan goes back to his diagram and uses the mathe-

matical symbol r to label the radius of his new Amperian loop (Figure 6.5). This time Alan

does not talk much about how he will simplify the left and the right hand sides of the integral

form of the Ampere’s law . instead, he quickly manipulates the mathematics and gets the

magnetic field component along the φ̂ direction.

∮
Bφ · dl = µ0Ienc (6.9)

Bφ2πr = µ0Iz (6.10)

Bφ =
µ0Iz
2πr

φ̂ (6.11)
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Then the instructor’s question (“Is that good inside and outside?”) leads Alan to specify

the regions using the mathematical symbols r for radius of his new Amperian loop and a

for radius of the solenoid (Figure 6.5). Finally, Alan returns to the algebraic space where

he relates the specified regions in space to conclude whether his findings of magnetic field

components are inside or outside the solenoid.

Bz = µ0Iφnẑ → r < a (6.12)

Bφ =
µ0Iz
2πr

φ̂ → r > a (6.13)

Figure 6.6: Final stage of Alan’s representational spaces

Figure 6.6 shows the final stage of Alan’s representational spaces. In addition to the reuse

of the semiotic resources that are already being used in all three representational spaces, the

only modification is to add the semiotic resource circle for loop into his diagrammatic space.

There are two things someone needs to consider when picking an Amperian loop. First,

magnetic field should be parallel to the infinitesimal length on the loop because then the

dot product turns into multiplication. Second, magnetic field should be constant so we can

pull it out of the integral while manipulating the mathematics. Here Alan is considering

the axial component of the current and it produces a constant magnetic field which is going

around it. Considering the requirements when picking the Amperian loop in this situation,

the semiotic resource circle for loop helps Alan to pick the best shape for his Amperian loop

that encloses the axial current inside the solenoid.
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Overall we do not observe Alan spending much time translating between representational

spaces. Throughout this activity Alan spends much time developing a certain representa-

tional space and then moves to the next. The time he spends in the first representational

space helps him to build background knowledge that he is going to use in the next represen-

tational space. Students who solve problems that use Amperian law often use the right-hand

grip rule while figuring out the magnetic field direction from a current wire. Interestingly,

Alan in this case has already determined the resulting magnetic field direction as he moves

to consider a certain current component and relates it to the integral form of the Ampere’s

law.

Table 6.3: Disciplinary affordances of the semiotic resource coordinated to build the final
stage of Alan’s representational spaces

Semiotic Resource Disciplinary Affordance

Arrow as vector

Similar to the previous case of Alan using an arrow
to show the current direction that is going around the
solenoid, this time it allows him to represent the axial
current which is inside (along ẑ) the solenoid.

Circle for loop

This helps Alan to generate a visual representation of
the loop and also to figure out the mathematical manip-
ulations. There are two things someone needs to con-
sider when picking an Amperian loop. First, magnetic
field should be parallel to the infinitesimal length on the
loop. Second, magnetic field should be constant. As
Alan is going to consider the current component going
up the best shape for his Amperian loop is a circle.

At the beginning of this session, Alan does not have a diagram to start with; but after a

few steps, Alan brings in semiotic resources to build up his diagrammatic space that contains

a cylinder to represent the solenoid, arrows to represent the current components and square

to represent the Amperian loop. The moves to the algebraic space to find the magnitude of

the magnetic field by each current component.

We observe the background knowledge that is already being built on one representational

space helps him to work on the second representational space. The diagrammatic space

allows Alan to move forward with the diagrammatic space with ease. During both cases when
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considering current components going around and going up, the specified current component

(direction) and the Amperian loop on the diagrammatic space helps Alan to progress with

the mathematical manipulations.

The case of Alan exemplifies the coordination between multiple semiotic resources with

different disciplinary affordances to build up representational spaces and then using those

representational spaces. The information that is built on those representational spaces allows

Alan to translate among representational spaces to solve the problems.

Student 2: Danny

Danny is the second student to take this problem and the instructor draws a diagram

(Figure 6.7) while presenting the problem.

Figure 6.7: Instructor provided diagram for Danny: helix for solenoid and arrows for
current

Danny starts by asking a question from the instructor to make sure he understands what

the instructor wants him to do.

Danny: Infinitely long. . . but. . . you want me to consider current going down (gesture)?

Instructor: Yes, there is current going around and current going down.

The initial diagram that is provided by the instructor already contains the semiotic

resources helix for solenoid and arrow as vector to indicate the current entering from the

top and the current leaving from the bottom. Right here we observe Danny using the

gestural semiotic resource finger pointing in direction while talking about the axial current

component that is going down. Then he moves to add the current feature to the diagram.
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Danny: If we just call the current going down (draws an downward arrow) as. . . let’s call

it I.

Danny moves to consider the current component going down first and he uses the semiotic

resource arrow as vector to represent it in the diagrammatic space and he labels it using the

mathematical symbol I. After this step, he steps back and keep looking at the diagram for

some time before moving to talk about how he will go about finding the magnetic field of

this current component.

Danny: So, then my first thought could be to put an Amperian loop (gesture- hands to

show a loop) around so. . . like this (adds a loop to his diagram) . . . so, then you

would have a current going down through it.

Unlike Alan, Danny talks about the Amperian loop even before talking about Ampere’s

law. Here he uses the gestural semiotic resource hand for loop to show how he would pick it

and soon after he uses the semiotic resource circle for loop in his diagrammatic space.

Both these students do not spend much time (compared to Larry presented in chapters

4 and 5) when picking the Amperian loop. This may be because the case of straight current

carrying wire is the simplest case related to Ampere’s law. In addition to that, they might

have seen this scenario in their lectures or even in their text book.

Next Danny looks into an equation sheet and starts to record the mathematical equation

for Ampere’s law. While doing it, he seems to think whether he need include the Maxwell’s

correction while recording the integral form of Ampere’s law. To clarify this, he communicates

with the instructor.

Danny: So. . . what was the exact question again?

Instructor: What’s the magnetic field inside and outside?

Danny: Okay and the current. . . there is no varying currents here.

Instructor: Time varying currents? . . . no.

124



He uses the algebraic semiotic resource Maxwell’s correction to Ampere’s law as the

starting point to calculate the magnetic field but his words to follow and the pauses between

his words show the uncertainty in his mind.

∮
Bφ · dl = µ0Ienc + µ0ε0

∫
∂E

∂t
· ds (6.14)

Danny: Umm. . . since there is no. . . (long pause) seems like it. . . trying to think spe-

cially. . . it may be something tricky. . . I don’t know why.

Just then the instructor jumps in and asks him to talk about the simplest possible case

as he was thinking.

Instructor: Okay. . . if there’s the case as simple as you think, what you think it would

be?

Danny: It would be this (points to the equation) is just zero and you just get. . . I . . .

this I (points to the diagram) over two pi r (records the mathematical equation for

magnetic field). That’s for the outside and zero inside.

B =
µ0I

2πr
(6.15)

Danny jumps into work in his algebraic space and first shows that he is going to cancel

the Maxwell’s correction term in his Ampere’s law equation. Then he uses the algebraic

semiotic resource magnetic field (equation 6.15) to show the resulting magnetic field outside

the solenoid. Within this step, he does not show or talk about how he did the mathematical

manipulations. Even though Danny used the equation 6.15 to represent how big the magnetic

field outside the solenoid is, he failed to specify the direction.

Instructor: What’s the direction of the B, on the outside then?

Danny: Then. . . if we call this. . . z (add more parts to his diagram) and then this angle

would be pi (modifies his mathematical equation) and this (points to mathematical

equation) would be phi− hat
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Figure 6.8: Danny decides to further develop his diagrammatic space

Instructor’s question about the direction leads Danny to further develop his diagrammatic

space (Figure 6.8). He uses the semiotic resource 3D vector coordinates to specify the

directions in his diagrammatic space and finally he encodes the directional information into

his mathematical equation for magnetic field. Danny even goes for further explanations

where he uses the gestural semiotic resource finger pointing in direction to show the current

component going down.

Danny: If you define like. . . oh. . . okay. . . I’ve already said this (current direction - points

downward) was down. So. . . this B field equation be minus phi − hat (modifies the

equation).

B =
µ0I

2πr
(−φ̂) (6.16)

After modifying the mathematical equation to show the magnetic field is going around but

pointing downwards (−φ̂), Danny quickly applies the right-hand grip rule. At this point,

Danny has already figured out the resulting magnetic field direction and he did not use

the right-hand grip rule for the usual purpose of finding magnetic field direction or double

checking his direction. Also he gestured towards to instructor and the idea behind that was

to better communicate his magnetic field direction to the instructor.

Figure 6.9 shows the initial stage of Danny’s representational spaces. Within the dia-

grammatic space, Danny has the semiotic resources arrow as vector, 3D vector coordinates,
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Figure 6.9: Initial stage of Danny’s representational spaces

helix for solenoid and circle for loop. Then the semiotics resource finger pointing in direc-

tion, right-hand grip rule and hand for loop are used in the gestural space while Maxwell’s

correction to Ampere’s law and magnetic field occupy the algebraic space. So far we observe

Danny not doing much about coordinating between the representational spaces other than

using the axial labels in diagrammatic space associated with the gestures.

Even though the initial semiotic resource helix for solenoid is used by the instructor,

Danny then uses it as he moves forward within this problem. While it allows showing

the presence of solenoid in the diagrammatic space of the board, the semiotic resource 3D

vector coordinates allows specifying the directional information in the diagrammatic space.

We observe Danny coordinating between the semiotic resources 3D vector coordinates and

arrow as vector. This allows Danny to talk about the current with a definite or specified

direction (−ẑ).

Then within the gestural space, even though he uses the right-hand grip rule it is not for

the purpose of figuring out the magnetic field direction but to show the resulting magnetic

field direction by the downward axial current component. Further he uses the semiotic

resource finger pointing in direction and hand for loop that allows him to best communicate

his idea to the instructor.

Maxwell’s correction to Ampere’s law in algebraic space allows Danny to show how he

will find the magnitude of the magnetic field. In this case Danny has a additional term in his

mathematical equation compared to Alan’s Ampere’s law equation. This is because initially
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Danny is not sure whether the current component going down is steady. But the instructor

confirmed it and that may have helped him to ignore this additional term while doing the

mathematical manipulations. Then he does a similar thing like Alan in that he uses the

semiotic resource magnetic field to specify the resulting magnetic field.

Table 6.4: Disciplinary affordances of the semiotic resource coordinated to build Danny’s
initial stage of representational spaces

Semiotic Resource Disciplinary Affordance

3D vector coordinates
Similar to the previous case of Larry (chapters 4, 5) this
visual representation allows Danny to define the direc-
tion in his diagrammatic space.

Hand for loop
Like in the case of Larry here Danny uses his hand to
represent how he would go about picking an Amperian
loop.

Circle for loop

Similar to the previous case of Alan, this helps Danny
to generate a visual representation of the loop in the
diagrammatic space of the board. Having said that he
is going to consider the current component going down,
the best shape for his Amperian loop is a circle.

Even though Danny made a detailed explanation about the magnetic field direction the

instructor asks Danny to take her through the mathematical manipulation steps that he

skipped earlier.

Instructor: So, you went from. . . the closed integral of B dot dl to B equals two pi r . . .

really quickly. How did that happen?

Danny: Um. . . (points to his mathematical equation) a line integral closed . . . so. . . a

loop right. . . and then um. . . (long pause) because this is still. . . we are considering

a cylinder right (gesture - both hands holding like a cylinder) (long pause) . . . okay. . .

Going back to explain how he did those mathematical manipulations makes Danny think

for a long time and then talk a little bit then pause and use the gestural semiotic resource

hand for solenoid but still he is not able to make a complete statement. After another long

pause, Danny continues and this time he brings in a new idea ”wire of charge”.
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Danny: I see what you were saying. . . because I assumed that was like a line, a wire of

charge. . . because what I did. . . was assume that B is always in the direction of my

loop points.

Finally, Danny is getting there and while talking he keeps pointing towards the diagram

on the board. Then the instructor asks him to talk more about it and this leads Danny to

develop a separate diagram in his diagrammatic space for further explanation.

Instructor: Okay, and is it?

Danny: Well. . . it’s going to be perpendicular to the current (points to the diagram) . . .

okay. . . So. . . I was thinking like. . . a cylinder (draws on the board) and I was

thinking like a instead of a sheet of charge coming down (gesture - both hands holding

like a cylinder), just think like one line coming down. . . and so that would be like a. . .

part of the current. . . and then that would be exactly like line charge. . . So, I’m kind

of imagining like. . . yeah. that should work. . . I think it’s good.

Figure 6.10: Danny represents a wire of charge

This new diagram (Figure 6.10) helps Danny to better explain how he would have sim-

plified the mathematics. He starts talking about how he picked the Amperian loop being

perpendicular to the current component that he considered (“it’s going to be perpendicular

to the current”). Here we also observe Danny taking a part of a whole approach similar

to Larry 9in chapter 4 and 5) that he uses to simplify the current component to consist of
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surface current wires that is a part of the whole or net current going down (“that would be

like a. . . part of the current. . . ”). This gives the idea that the magnetic field created by

the current component is going to be parallel to his Amperian loop.

With this satisfying explanation, the instructor asks Danny to move on to consider the

other current component. We observe Danny using this same part of a whole argument of

current wires when he moves to consider the current component that is going around.

Instructor: Okay. . . so that gives us the B due to the component of the current that’s

going down the outside. There should be some B due to the component of the current

that’s going around. What’s that?

Danny moves on to develop another diagram (Figure 6.11) with a side on view of the

solenoid that he uses to find the other magnetic field component.

Figure 6.11: Danny visualizes the side on view

Danny: And this is still infinite. . . so, we would look at a loop. . . so. . . I turn this onto

side (draws on the board) and say that there was. . . um. . . current coming in out of

the board, so. . . then this is inside. . . I draw my Amperian loop like this then I do

B dot dl . . . and I end up with (continues to work in mathematics) . . . yeah. . . this

(labels on the diagram) is L (records mathematics).
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B =
µ0NI

L
(6.17)

First, he uses the semiotic resource line as wire with a magnification to it that looks

like cylinders (Figure 6.11). Then he uses the semiotic resource arrow as vector to represent

the current that is coming out of the board in his side-on view. Then he moves to pick

the Amperian loop and he uses a different semiotic resource square for loop which is the

appropriate shape in this situation. Further he uses the mathematical symbol L to label the

side of his loop.

Again Danny skips the mathematical manipulation steps but the instructor asks him to

show how he got that.

Instructor: Where did that come from?

Danny: So. . . B . . . dot dl . . . so, this is . . . I’m going to go. . . around this way (picks

the direction on his loop) . . . so. . . We make a loop out here (draws a loop far away)

and there is no flux. . . Yeah. . . so there is no flux through a field out here (points

to the loop that is far away) . . . through the loop out here and there can be any flux

through. . . um. . . a loop at infinity. We know that the field goes to zero at infinity.

So. . . if the field is not charging it has to be zero at infinity and then it’s zero all the

way up to for an infinite solenoid. So. . . that means we don’t consider this side of the

loop (points to the loop) . . . because B is zero. So B dot dl would be zero. These sides

(points to the sides of the loop) won’t contribute so, you just left with L . . . that’s

why there’s one L here (points to his mathematical equation) . . . so it would be B

times L equal µ0 I but there is N of them. So you get whatever up here.

Unlike Alan in the previous case but somewhat similar to Larry, Danny gives a detailed

explanation of how he simplifies the left-hand side of the Amperian law equation with the

use of coordinating between diagrammatic and algebraic spaces. He further adds the missing

steps in his mathematical manipulation but still he misses the directional information. Then

instructor asks him for clarification purposes.

131



Instructor: So you have outside B in the phi − hat direction, inside you have B in the z

direction?

Danny: Yes.

Even though Danny does not specify the regions like what Alan did, he concludes with a

short answer because he already mentioned most of the details while talking about the math-

ematical manipulation steps. One major difference between Alan’s solution and Danny?s is

that Danny does not specify the current components using mathematical symbols. Instead

he calls both current components I.

In summary, the mathematical manipulation steps associated with the Ampere’s law

equation seem to be obvious and easy for Danny and this aligns with what we saw previously

with Alan. First, Danny records the final mathematical equations for the magnetic field then

later he further develops representational spaces and coordinates between them to explicitly

explain it to the instructor.

Figure 6.12: Final stage of Danny’s representational spaces

Figure 6.12 shows the final stage of Danny’s representational spaces. In addition to

reusing the semiotic resources that are already in the representational space, Danny brings

in a few new semiotic resources. The semiotic resources line as wire and square for loop are

being used in the diagrammatic space while semiotic resources hand for solenoid and hand

for wire come into the gestural space. Within the algebraic space, Danny uses the semiotic

resource Integral form of Ampere’s law
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Table 6.5: Disciplinary affordances of the semiotic resource coordinated to build Danny’s
final stage of representational spaces

Semiotic Resource Disciplinary Affordance

Line as wire

This helps Danny to visually represent the current that
helps him to get an idea about the directional relation
between the resulting magnetic field and the direction
on the loop allowing him to simplify the mathematics.

Square for loop

With the newly generated side-on view, this visual rep-
resentation allows Danny again to pick the most appro-
priate shape for the Amperian loop for the current going
around the solenoid.

The semiotic resource line as wire allows Danny to first represent the current in a different

orientation that eventually helps him to figure out and explain how he solves the left hand

side of the Integral form of the Ampere’s law equation. Then both the semiotic resources hand

for solenoid and hand for wire in the gestural space allows him to better communicate his

ideas to the instructor. Finally Danny decides to discard Maxwell’s correction to Ampere’s

law and he uses the semiotic resource Integral form of the Ampere’s law in the algebraic

space.

Overall we observe Danny doing a better job compared to Alan when coordinating among

representational spaces. Danny often coordinates between the diagrammatic and algebraic

spaces while explaining the mathematical manipulations related to the left-hand side of

the Integral form of the Ampere’s law equation. Also he used the gestural space with the

other two representational spaces during explanation related to the current component going

around the solenoid.

Similar to the case of Alan, the case of Danny also shows us how students might coor-

dinate among semiotic resources to build up representational spaces that they use to solve

problems. Similar to Alan we observe Danny working on the diagrammatic space to build

the background knowledge before moving to algebraic space. Even though Danny quickly

completes the mathematical manipulation he was not able to successfully reason how he ar-

rived at the answer. Here we see the disciplinary affordance of the current representational

spaces (Figure 6.9) prevent Danny connecting among representational spaces.
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When Danny tries to use the existing diagrammatic space (Figure 6.8) to reason for

his mathematical manipulations the information that is already available does not seem to

allow him to make a complete argument. Then added feature of current wire (Figure 6.10)

brings in the missing information and the updated representational spaces allows Danny to

make connection among diagrammatic and algebraic spaces to successfully reason for his

mathematical manipulations.

6.4.2 Comparison between students: Loosely wound solenoid

Figure 6.13: Combined representational spaces for Alan and Danny

Figure 6.13 shows the combined representational spaces for Alan and Danny. Alan and

Danny use different semiotic resources to represent the presence of the solenoid in the dia-

grammatic space. One major reason for this is because Danny decides to use the instructor-

provided initial diagram while Alan develops his own diagram. in addition to that, Danny

uses the semiotic resources 3D vector coordinates and line as wire in his diagrammatic space

that Alan does not use in his representational space. These additional semiotic resources

allow Danny to talk about directions more specifically while making more detailed expla-

nations about how he simplifies the Integral form of the Ampere’s law equation that is less

detailed in the case of Alan. Other than these differences, both the students use similar

semiotic resources within the diagrammatic space mostly for same purposes.

Then in the gestural space, Danny uses quite a few semiotic resources compared to Alan

using only the finger pointing in direction just to show the resulting magnetic field direction.

Having more tools within the gestural space gives Danny the option to use frequent gestures
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while explaining things and as well in coordinating between other representational spaces.

Within the algebraic space, the only difference we observe is that Danny adds more detail

when he uses the Integral form of the Ampere’s law in that he uses Maxwell’s correction.

Other than that, again both these students use the same other two semiotic resources for

calculation purposes in the algebraic space.

In comparison with Larry solving a problem that also uses the same mathematical equa-

tion, the mathematical manipulation steps associated with the Integral form of the Ampere’s

law seem to be obvious and easy for both Danny and Alan compared to Larry. Students

would often use this equation while figuring out the magnetic field direction from a current

wire. Also we observe Larry, who is in the same class, frequently employing the right-hand

grip rule while solving the problem. But we do not observe Alan even use the right-hand grip

rule. Instead Alan in this case has already determined the resulting magnetic field direction

as he moves to consider a certain current component and goes on to relate it to the integral

form of the Ampere’s law. Similarly, Danny also does not make much use of right-hand grip

rule while solving this problem.

Reason for these differences may be that Larry’s problem is a long and a little complicated

problem that requires him to do much work to determine how the sheet is made before

finding the magnetic field, compared to the problem these two students solving. Also they

might have previously seen this type of question as it involves the most basic application of

Ampere’s law to find the magnetic field of a current carrying wire.

6.4.3 Problem 2: Two charges on a line

Also, the second problem we discuss here is from the Electromagnetism I course that asks

students to determine the electric field generated by two point charges on x-axis. Three

students Larry (same student), Oliver and Charlie solve this problem individually during

the oral exams conducted in the early part of the semester. The instructor presents the

problem with a diagram (Figure 6.14) at the beginning of each session.

Instructor: Suppose (draws on the board) We have two point charges, one at −a & the
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other at +a and this one (at −a) has charge −q and this one (at +a) has charge +q.

What’s the electric field looks like along the x-axis?

Figure 6.14: Instructor-provided initial diagram for two charges

In order to solve this problem one could use to use Coulomb’s law (E = [kq
r2

](r̂)) to find

the magnitude and the superposition principle to find the net electric field in each region

(left of −q, between charges and right of +q).

Student 1: Larry

Larry solving this problem is the same student who solved the Amperian loop problem

presented in previous chapters. In this case, Larry starts by predicting how he is going to

solve this problem.

Larry: Alright, so I suppose let’s start by finding the electric field for each of them. . . then

summing. . .

Then he moves to specify the point of interest (field point) in the far right region (right

of +q that he labels region 3 later).

Larry: Um. . . so let’s put down a point I guess (marks point p on the axis right of +q) and

then I’ve to get the distance from the charge to the point. . . and for each of them. I

think it’s different in each of the three regions. I’ve to write a different. . . expression

for. . . the distance.

After mentioning his plan, he moves to figure out the electric field for each charge.
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Larry: Okay. . . well. . . alright. . . so the electric field from this guy (draws a circle around

+q charge) is gonna be. . . I’ll call him E−plus (starts recording mathematical equation

and calls out the names of the symbols while recording) it’s gonna be k q over. . . um. . .

I’ll just call r − plus and that’s gonna be. . .

E+ =
kq

(r+)2
(6.18)

Larry starts on the diagrammatic space and picks a point of interest in far-right region.

Then he moves to work in the algebraic space to write a generic equation for the electric

field from the +q charge. Moving to describe the distance associated with his mathematical

equation leads him to return to the diagrammatic space to specify the directional information.

Larry: Since it goes outward. . . uh. . . like here it’s going to be this way (records on the

board - a rightward arrow to right from +q charge) and from here (points to the region

left of +q) it’s going to be that way (records on the board - a leftward arrow to left

from +q charge) and here (points to the region right of −q) it looks like that (records

on the board - a leftward arrow towards −q charge).

Within the diagrammatic space, he uses the semiotic resource arrow as vector to represent

the direction of electric field created by each individual charge and further he labels the

regions (Figure 6.15).

Figure 6.15: Larry uses arrows to represent the electric field direction from each charge

Then he continues with region 3.
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Larry: Um. . . so. . . for region 3 . . . uh. . . my E− plus would be k q over. . . my r will be

(recording mathematics) uh. . . x minus a . . . yeah and that would be in the positive

x− hat direction. Then E −minus will be k q over uh. . . x plus a . . . yeah. . . in the

minus x− hat direction.

Larry starts recording mathematical equations and calls out the names of the symbols

while recording. Even though Larry does not specify the coordinate of his field point, he

seems to assume that is to be “x” as he uses it in his mathematical equations.

E+ = [
kq

(x− a)2
]x̂ (6.19)

E− = [
kq

(x+ a)2
](−x̂) (6.20)

Electric field direction in the diagram aligns with what Larry has in his mathematical

equations. Soon Larry thinks about the sign of the −q charge and realizes there is a mistake

in his second equation (for −q) and goes to correct it.

Larry: Oh. . . that’s a minus q as well (modifies the mathematical equation) so they can-

cels. . . never mind they points the same direction. . . they will always add.

E− = [
−kq

(x+ a)2
](−x̂) (6.21)

Now Larry has two minus signs in his equation for −q and when they are combined

the mathematical equation says the electric field created by the −q charge in region 3 will

be along (). This does not match with what he already has on his diagram. With the

instructor?s question about this inconsistency, Larry moves to reconsider it.

Instructor: So. . . before you had. . . in that region minus q charge had a. . . electric field

to the left and now you wanted it to be to the right?

138



Larry: Uh. . . so. . . E−minus will be minus k q over (modifies the mathematical equation)

because that minus is encoded there and so. . . they will end up subtracting from each

other. . . and so. . . the total is the sum of these two (records a mathematical equation)

and that’s gonna be true for all areas.

E− = [
kq

(x+ a)2
](−x̂) (6.22)

Etotal = E+ + E− (6.23)

Larry shows his confidence about his diagram (“I feel good about the arrows”) and

decides to stick to his initial equation. Larry was thinking about the negative sign of the

of the −q charge and he wanted to insert that into his equation but finally he realizes that

the negative sign is already being included in his initial equation (-). In addition to that,

Larry talks about the total electric field at the field point and uses the semiotic resource net

electric field to represent it in the algebraic space.

Figure 6.16: Current stage of Larry’s representational spaces

Figure 6.16 shows the current stage of Larry’s representational spaces. The semiotic

resource coordinate axis is already included in the diagrammatic space as the initial diagram

is provided by the instructor. As usual the semiotic resource arrow as vector allows Larry
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to include the directional information into his diagrammatic space and this time it is used

to specify electric field direction. This semiotic resource allows Larry to visually represent

the physics concept into his diagrammatic space that says the positive charge is distributing

radially away from the charge while negative charge creates a field that points radially

towards it. Also here we see the semiotic resources arrow as vector and coordinate axis

reinforcing each other within the diagrammatic space.

So far, we do not observe Larry using any of the gestural semiotic resources. Next Larry

starts by using the mathematical semiotic resource Coulomb’s law in algebraic space to

represent the magnitude of the electric field from each charge. Then he uses the mathematical

semiotic resource net electric field to represent how he will find the net electric field in region

3.

In addition to that, we see Larry coordinating between representational spaces as he goes

to imbed the electric field direction into his mathematical equations. He looks at and uses

the directional information that is already being developed in the diagrammatic space.

Table 6.6: Disciplinary affordances of the semiotic resource coordinated to build the current
stage of Larry’s representational spaces

Semiotic Resource Disciplinary Affordance

Coordinate axis

Here the one dimensional coordinate system or the co-
ordinate axis allows Larry to determine the distances
(separation between field point and charge) that then
needs to be plugged into the Coulomb’s law equation.
Then this also helps him to interpret the resulting elec-
tric fields with a definite direction ((x̂) or (−x̂)).

Arrow as vector

This allows Larry to visually represent the electric field
direction. In this case this representation allows Larry
to visually represent positive charges radially away and
negative charges radially towards.

Field point

This allows Larry to specify the region that he is con-
sidering. Then having the field point labeled on the
coordinate axis allows Larry to visualize the resulting
electric field directions for a given region.

Coulomb’s law

This represents the electrostatic force between charges.
That is directly proportional to the product of the
charges and inversely to the square of the distance be-
tween them.
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Then Larry moves to consider region 2, which is the middle region, and he predicts that

the process is going to be the same as the previous case.

Larry: Then for region 2. . . it’s basically the same except. . . both of these are gonna be. . .

uh. . . the distance from both of these gonna be. . . a minus x. I’m pretty sure. . . no

I don’t think that’s right. . . they are both in the minus x− hat this time.

On the bright side, the semiotic resource arrow as vector helps him figure out the electric

field direction and Larry concludes correctly that the electric field created by both the charges

in middle region will be in the (-)) direction. While considering the previous region 3, the

first thing Larry did was to pick a field point. That allows him to determine the relative

distances between the charge and field point. But in region 2 he has not picked a field point

yet and we observe Larry getting confused while talking about the distances. So, he uses

generic distances r+ and r− while representing the magnetic field in his algebraic space.

E+ = [
kq

r+2
](−x̂) (6.24)

E− = [
kq

r−2
](−x̂) (6.25)

After that, he moves to pick a field point in region 2 (Figure 6.17 a.) and then he specifies

the distances in his mathematical equations.

Larry: This time the distance. . . if I pick a point here (points to the field point marked in

the middle region) the distance is a minus x for this guy (E+) and the distance here

would be. . . still a plus x or x plus a.

Picking a field point made Larry’s life much easier and we see him moving forward within

the algebraic space.

E+ = [
kq

(a− x)2
](−x̂) (6.26)
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Figure 6.17: Larry picks field points: a.) in region 2 b.) in region 1

E− = [
kq

(x+ a)2
](−x̂) (6.27)

With positive feedback from the instructor (“you are doing fine”), Larry moves to consider

the far-left region 1.

Larry: Um. . . still got (calls out the names of the symbols while recording the math

equation) k q over. . . this time. . . it’s still going to be a minus x down here. Yeah. . .

since x is gonna be negative. . . and that’s in the minus x− hat direction. . . and this

(points to E− equation) is going to be k q over. . . uh. . . a plus x . . . no . . . a minus

x . . . positive x− hat direction.

E+ = [
kq

(a− x)2
](−x̂) (6.28)

E− = [
kq

(a− x)2
](x̂) (6.29)

Again, we see Larry defining the resulting electric field directions with ease. This is

because his diagrammatic space helps him see the directions clearly. Even though Larry

picked a field point in region 1, we still see him hesitating while figuring out the distances.
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Still he seems to be concerned about the distances in his mathematical equations (“No that’s

not right”).

Instructor: Which part of it’s not right?

Larry: Um. . . this (points to E− equation) should be plus (modifies the equation) yeah. . .

that effectively shortens the distance. . . yeah.

E− = [
kq

(x+ a)2
](x̂) (6.30)

Going on to explain how and why he changed the sign in his mathematical equation,

Larry starts to use the diagram on the board and uses the gestural semiotic resource finger

pointing in direction but eventually he finds the best way to do that is by labeling the

distances on the diagram.

Larry: So. . . like intuitively I know this point (points to field point in region 1) closer in

region 1. So. . . the a and the x should interfere with each other and since x is negative

then it should be positive. . . um. . . I mean if you just look at it . . . your distance is

this (gesture- fingers at −q and field point) your total distance is this (gesture- fingers

at mid point and field point) and this is your a (draws lines to specify the distances

on the diagram) and this is your x . . . this is much better way to explain it.

First, he moves to label distances in region 1.

Larry: I change my mind. . . and this (draws lines to specify the distances on the diagram)

is your x . . . and this is your a and your total distance. . . is wait. . . I’ll call this

minus x I guess.

Even with this new approach, Larry seems to be confused about whether or not to

consider the negative sign when he considers the field point on the negative side of the

coordinate axis. Even though ultimately he decides “I’ll call this minus x,” he still seems to

be confused.
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Because of this confusion, Larry skips region 1 for now and returns to label the distances

in region 3 and 2 respectively. Then he rechecks his new approach with region 3. He considers

the electric field of the +q charge and gets the same expression as what he already has. With

satisfaction and with confidence, he returns to consider region 1.

Larry goes on to figure out the electric field in region 1 from the +q charge.

Larry: And then here we got x and then a. So that should be x plus a (modifies the electric

field equation for region 1)

E+ = [
kq

(a+ x)2
](−x̂) (6.31)

Then he moves to figure out the electric field of the −q charge.

Larry: I’ve got x and a . . . so it should be x minus a . . . uh. . . or if I wrote it a minus x

. . .

E− = [
kq

(a− x)2
](x̂) (6.32)

Here he again calls the coordinate of the field point in region 1 x while developing both

equations E+ and E−. But two steps earlier, Larry himself decided that he is going to call

it −x. Soon he realizes the mistake.

Larry: No it doesn’t still come out right. I’m getting hung up on how the . . . in here

(points to region 1) my x is always going to be negative . . . so. . . yeah it should be. . .

I’ll write it negative x plus a . . . so a minus x.

E− = [
kq

(−x+ a)2
](x̂) (6.33)

Even though he mistakenly called it just x while developing both equations E+ and E−,

he makes only the correction for E− equation.
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After talking to the instructor further about it, Larry again changes his mathematical

equation. But he does this only for E−.

E− = [
kq

(x+ a)2
](x̂) (6.34)

Larry kept the E− term change and now he has both E+ and E− as the same and

opposite (equations 6.31 and 6.34) that cancel each other. This leads Larry to make another

sign change.

Larry: No they shouldn’t . . . they should be . . . (modifies the mathematical equations) it

should be x minus a.

E+ = [
kq

(x− a)2
](−x̂) (6.35)

This time he changes the sign of E+ but it is not necessary. After these changes, Larry

seems to be happy with his final expressions. In the next few minutes of this session, the

instructor asks Larry to compare his expressions for all three regions.

This particular problem does not require much use of the gestural space compared to

Larry’s previous problem or the loosely wound solenoid problem. But this problem re-

quires Larry to coordinate between representational spaces - diagrammatic and algebraic.

It requires students to refer to the diagrammatic space for two reasons - to determine the

distances and to determine the electric field directions while working on the algebraic space.

Figuring out the electric field on the positive side of the coordinate axis (regions 2, 3)

seems to be relatively easy for Larry compared to doing it on the negative side. The reason

behind this is the disciplinary affordance of the semiotic resource Coulomb’s law. One reason

is that the students are required to consider the field direction but not the charge signs. Then

when considering the negative side of the coordinate axis and figuring out the distances,

students need to consider the negative coordinate of the field point.
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Student 2: Oliver

Oliver is the second student to solve this problem and the instructor draws a similar

diagram (Figure 6.14) while presenting the problem. He starts by asking a question to make

sure what the instructor is looking for.

Oliver: Okay. . . So you just . . . you just want an expression for it or . . .

Instructor: Sure.

Oliver: So . . . the total field is going to equal the contribution from each of them, because

of the superposition (records math on board) . . . I want to just consider along the

x-axis?

~E = E+q + E−q (6.36)

Similar to Larry, Oliver also starts to solve this problem by talking about how the electric

field from each charge is going to be added or subtracted to figure out the net electric field.

Oliver: Cool . . . so for . . . (records on the board) E+q . . . (steps away from the board)

it’s going to equal . . . (he calls out the names of the symbols while recording the math

equation) one over four pi epsilon note . . . times . . . q . . . um. . . curl r squared . . .

r hat.

E + q =
1

4πε0

q

Γ2
Γ̂ (6.37)

Oliver moves to consider the electric field created by the +q charge. Since he has not yet

specified any region, he uses a generic mathematical symbol r for his distance in theCoulomb’s

law equation. Even though the instructor presents the problem along with a diagram,

both these students approach solving the problem by using mathematics. Maybe they are

trying to get a mathematical expression for electric field. But eventually Larry moved to
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the diagrammatic space relatively early and kept referring back to it while working on the

algebraic space.

Now Oliver moves to specify the distances.

Oliver: Um. . . so. . . um. . . I’m trying to think. I’m sorry. . . this r is going to equal. . .

um. . . (long pause).

Instructor: You look like you are stuck. Where are you stuck?

Oliver: Um. . . I’m . . . figuring out this (points to Γ on the board) it’s (records on the

board, Γ = (a − x)) and then x is anywhere here (indicate the region between a and

−a on the axis) right? . . . no I don’t know if that works.. . . that’s what we have in

notes.

Γ = (a− x) (6.38)

Oliver starts to move forward by figuring out the distance in his mathematical equation

but still he shows some uncertainty about it. This is because so far he has not specified a

region or picked a field point. He refers back to his notes and he talks to the instructor to do

a clarification about ‘script dr (Γ)’ in his equation (“I’m forgetting is it r − prime minus r

or r minus r− prime?”). Finally Oliver understands that it should not make any difference

because he is going to get Γ2.

Oliver: Okay, that’s what I was trying to figure out . . . so, x minus a . . . and so . . . then

we substitute that in (modifies the math equation on the board).

E + q =
1

4πε0

q

(x− a)2
Γ̂ (6.39)

So far Oliver has not mentioned the direction of this electric field. Then he moves to talk

about the electric field of the −q charge.
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Oliver: Then E for negative q equals. . . (records on the board) I’m going to change this

( 1
4πε0

) to k because it’s easier. . . negative q. . . and then we are going to have . . . x

plus a squared and then r-hat. . .

Oliver worked to develop two mathematical equations that represent the electric fields of

+q and −q. In his equation, he has generic for the direction and then, according to Oliver,

x that could be any point along the axis. Also he substitutes for his mathematical symbols

(k = 1
4πε0

).

E + q =
kq

(x− a)2
Γ̂ (6.40)

E − q =
k(−q)

(x+ a)2
Γ̂ (6.41)

Here Oliver starts to talk about the electric field direction and he also gives a hint about

a field point (“it depends on the point we pick. . . ”).

Oliver: Um. . . so. . . r-hat just um r-hat. . . to any region in pointing on the x-axis (points

to x-axis on the diagram) on that direction and I just think it depends on the point

we pick or we want the whole axis. right? So we just change that to x-hat, does that

work?

Then the instructor asks a follow-up question that leads Oliver to expand on his idea and

soon he switches to the diagrammatic space.

Instructor: Well. . . that says the charge from the plus q charge or the electric field from

the plus q is always in the x-hat direction.

Oliver: Um. . . but it could be negative (points the index finger along the negative x

direction on the diagram) . . . and so that would work.

Here Oliver identifies that his earlier statement about changing r-hat to x-hat would not

work and he further associates the gestural semiotic resource finger pointing in direction

while reasoning.
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Oliver: So. . . the field is going to point out here. . . and here (draws arrows). . .

Then he moves to the diagrammatic space and uses the semiotic resource arrow as vector

to represent the electric field direction from each charge (Figure 6.18). Oliver’s next step is

very similar to what Larry did in early parts of his solution. He divides the diagram into

regions (which is the same as what Larry did).

Figure 6.18: Oliver uses arrows to represent the electric field direction from each charge

Now he moves to talk about the electric field in each region.

Oliver: So. . . Um. . . one and three are zero. . . because they. . . they are going to (gestures-

index fingers towards each other) be destructive. . . or is. . . I guess. . . out here (points

to region 3) . . . does this one (points to −q charge) . . . this is gonna have. . . um. . .

a greater effect than the contribution from this (points to +q charge) or just. . .

Oliver reasons the net electric field in regions 1 and 3 to be zero because the electric

fields of each charge are in opposite directions. Even though he considers the direction of

the electric fields, he does not seem to think about the magnitudes that his mathematical

equations Coulomb’s law represent. But during the later part of his statement, he seems to

have understood the effect of the distance.

Different from Larry, Oliver at this very moment uses the gestural semiotic resource finger

pointing in direction to show the electric field direction.

He moves to talk specifically about region 1.
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Oliver: so. . . in area 1. . . it’s gonna be (points to the mathematical equation ~E = E+q +

E−q). This one (E−q) minus this one ( ~E = E+q). . . right?

Oliver is eventually getting to the correct equations, and he now incorporates the direc-

tional information embedded in the diagrammatic space into his mathematics. But he does

not mention the net electric field direction yet.

Instructor: So. . . okay. . . and what will be the overall direction of E?

Oliver: E is going to be to the right (index finger moves rightward).

Instructor: Okay, is that plus x-hat or minus x-hat?

Oliver: Plus x-hat.

Oliver concludes the net electric field direction in region 1 (far left region) to be in the x-

hat direction. While doing so, Oliver again uses the gestural semiotic resource finger pointing

in direction. Next he moves to the algebraic space to represent the net electric field.

Oliver: So. . . E is going to equal (records on the board) . . . k times negative q . . . x plus

a squared . . . minus q . . . that doesn’t seem right though.

E1 = k[
−q

(x+ a)2
− q

(x− a)2
]x̂ (6.42)

A few steps ago, Oliver reasoned that the electric fields from the two charges are going to

be opposite to each other. But his mathematical equation shows that they are in the same

direction, the - direction. Importantly, Oliver’s diagrammatic space already has opposite

information. Right here Oliver seems to be coordinating between his diagrammatic and his

algebraic spaces and soon he realizes the mistake. Also, he seems to believe more in his

diagrammatic spaces, exactly same as what Larry previously did in this problem.

Oliver: Well. . . if these are both negative (points to the two terms in his mathematical

equation) then looks like this. . . I’m not sure about that. It looks like this. . . would

150



add together. . . but I have different denominators. . . so I can’t say for sure. Um. . .

because the field from this guy (points to +q charge) in here (points to region 1) is

going to reduce the field from this guy (points to −q charge) out here (points to region

1).

While talking, Oliver refers back to his diagram on the board. The Instructor tries to

help him sort out this issue.

Instructor: Okay and right now they have the same sign as each other or they have a

different sign from each other?

Oliver: Um. . . right now it looks like they have same as each other. But. . . yeah. . . the

only sign difference is going to be the cross product of the binomial part.

Instructor: Okay. . . is that going to give you an overall sign changed to your term?

Oliver: I don’t think so. I guess you could pull the sign off. . . but. . . does it?

Instructor: No it doesn’t.

Oliver: That’s not right.

Instructor: So, you should have opposite signs from each other.

Oliver: Right.

Instructor: But your math doesn’t say that.

At the end of this conversation between the instructor and Oliver, he agrees that the

terms have to have different signs from each other, and he moves to change the signs. One

reason for this agreement may be use of his previous conclusion about the electric fields

being in opposite directions.

Oliver: Right. . . so I’m not wrong probably am I?. . . oh. . . because this (points to the

second term in his mathematical equation) should be a plus (makes changes in his

mathematical equation) because this still. . . it shouldn’t be minus. That’s my bad.
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E1 = k[
−q

(x+ a)2
+

q

(x− a)2
]x̂ (6.43)

The sign change does not make Oliver’s mathematical equation correct but the two terms

are still opposite in direction. Then the instructor decides to ask a follow-up question.

Instructor: So. . . the contribution from the electric field from the plus q charge points in

the plus x-hat direction?

Oliver: No. . . oh man. . . this should be minus x-hat. you see then this (points to the first

term in his mathematical equation) should be plus.

Instructor: They should both be plus?

Even though Oliver reasons correctly, his mathematical equation shows the exact oppo-

site.

Oliver: No, one should be minus. . . this. . . this. . . okay. . . so. . . this (points to the

second term in his mathematical equation) is this one (points to +q charge) right. . .

this points the negative x-hat direction out here (points to region 1). And then this

one (points to the first term in his mathematical equation) points opposite right here

(points to region 1) because it’s pointing in. . .

Instructor: Good. So, what does your math say about that?

Oliver: It says that’s positive.

Instructor: How would you fix that?

Oliver: Doing the opposite (changes the sign in his mathematical equation) that (first term)

should be a plus and this (second term) should be a minus.

E1 = k[
q

(x+ a)2
− q

(x− a)2
]x̂ (6.44)
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Figure 6.19: Current stage of Oliver’s representational spaces

Figure 6.19 shows the current stage of Oliver’s representational spaces. Similar to the case

of Larry, the semiotic resource coordinate axis is already included in the diagrammatic space

and the other semiotic resource arrow as vector allows him to specify electric field directions.

The difference between Larry and Oliver is that Oliver does not pick a field point. Instead

he keeps referring to the whole region. This might prevent him from considering a point on

the axis while considering the electric field direction and the distance.

Oliver has the same semiotic resources as Larry in his algebraic space and both of them

make the same use of it. This may be because this problem requires a limited number of

resources in algebraic space.

Unlike Larry, Oliver used the gestural space quite a few times. Importantly, Oliver

uses the gestural space along with other two representational spaces. He makes frequent

translations between representational spaces.

With the instructor’s suggestion, Oliver moves to consider region 2 and he starts by

talking about the relative electric field directions and he further uses the semiotic resource

finger pointing in direction to support his explanation.

Oliver: Region 2, they are going to be constructive. . . So, E-two. . . by constructive, I

mean they both pointing in same direction (gestures-index fingers in same direction).

So. . . it would be. . .
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Table 6.7: Disciplinary affordances of the semiotic resource coordinated to build the current
stage of Oliver’s representational spaces

Semiotic Resource Disciplinary Affordance

Finger pointing in direction

It allows Oliver to show the electric field direction. Im-
portantly it helps him to represent the destructive na-
ture of the superposition in the gestural space. Also,
this gestural activity helps him best communicate his
idea to the instructor. It also helps him specify different
regions on the coordinate axis.

Again in this region, Oliver moves on to work on mathematics without picking a field

point. We again observe him getting stuck half way through his explanation.

Oliver: Um. . . k um. . . so. . . this (points to −q charge) is my x charge but it has negative

x-hat direction (gestures-index fingers along negative x). So this is going to be (starts

recording mathematical equation for the electric field in region 2) q over x plus a

squared. This (points to +q charge) um. . . wait a second (steps away from the board)

. . . that one is going to be negative then. . . that does not make sense.

He decides to consider one charge at a time.

Oliver: Yeah, um. . . let’s just do both separately. (Oliver calls out the names of the

symbols while recording mathematics o the board) negative q over x plus a squared

and that’s going to be negative x-hat. Since it’s backward. . . plus kqx minus a

squared. . . negative x-hat.

E2 = k
−q

(x+ a)2
−x̂+ k

q

(x− a)2
−x̂ (6.45)

Again, Olive’s mathematical equation contradicts what he mentioned when he moved to

consider this region. But this time he identifies his issue.

Oliver: I do not worry about the sign (charge sign) but do worry about the field points at.

that’s what I’m keeping up on.
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Quickly he modifies his mathematical equation.

E2 = k
q

(x+ a)2
−x̂+ k

q

(x− a)2
−x̂ (6.46)

E2 = kq[
1

(x+ a)2
+

1

(x− a)2
]−x̂ (6.47)

Instructor: Okay. . . what’s region 3 look?

Having identified his mistake in region 2, Oliver moves really quickly in this region without

any mistakes.

Oliver: Region 3. . . is going to be much like region 1 except exactly the opposite. so. . .

(records on the board) kq over x plus a squared and this is going to be negative x-hat. . .

and plus q. . . x minus a squared and going to be positive x-hat, right?. . . so. . . for

this charge (−q) the field is pointing inwards (gesture-index finger to the left) because

this charge (+q) is pointing out. So that’s going to be k minus q x plus a squared plus

q over x minus a squared and x-hat for both of them.

E3 = k[
q

(x+ a)2
−x̂+

q

(x− a)2
x̂] (6.48)

E3 = k[
−q

(x+ a)2
+

q

(x− a)2
]x̂ (6.49)

Even with Oliver, we observe the same issue as Larry came across when figuring out

the electric field on the negative side of the coordinate axis. The reason behind this is

the disciplinary affordance of the semiotic resource Coulomb’s law (detailed description is

provided in section 6.4.4).

Overall, because of the nature of this problem, both of the students Larry and Oliver

seem to be using a limited number of semiotic resources in all three representational spaces

compared to what Larry uses when he solves the Amperian loop problem. Also, we observe
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that Oliver’s use of gestural semiotic resources stands out when we compare his and Larry’s

approaches in this problem.
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Student 3: Charlie

Charlie solves this problem as our third participant and he also gets the diagram (Figure

6.14) with the problem explanation. Charlie’s approach to solving this problem is different

from both Larry’s and Oliver’s. Instead of getting started on the algebraic space, Charlie uses

the instructor-provided diagram and uses the semiotic resource arrow as vector along the

coordinate axis to represent the electric field direction of each charge on the diagrammatic

space.

Figure 6.20: Charlie uses arrows to represent the electric field direction from each charge

Charlie: Positive radiates out and negative radiates in and in the middle, it’s. . . coming

over to the negative

After the instructor asks “shall we do some math?” Charlie moves to work on the algebraic

space and records Coulomb’s law.

Charlie: Um. . . we wanna do the total charge. . . r squared r-hat.

E =
1

4πε0

Q

r2
r̂ (6.50)

While recording the equation, Charlie specified the Q as total charge and right after

recording the equation he defines his total charge.
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Charlie: And then Q is going to be 2q negative 2q . . . with. . . along x direction. So. . .

x-hat . . . with r (points to r in the equation) being a distance of a.

Q = −2q (6.51)

E =
1

4πε0

Q

r2
x̂ (6.52)

Even though Charlie seems to define the electric field direction; so far, he has not men-

tioned any region.

Charlie: So, the. . . just the electric field. . . I don’t know. . . I guess. . . just generally. . . I

guess this is the electric field.

E =
−1

4πε0

2q

r2
r̂ (6.53)

Charlie states that this equation represent the electric field in space “just anywhere”.

And then relating it to this problem he says,

Charlie: Just all along the axis. . . So, it’s going to be in the x direction

E =
−1

4πε0

2q

r2
x̂ (6.54)

The instructor’s follow-up question leads Charlie to move from a general electric field to

specifying the electric field for each region (Figure 6.20).

Instructor: Always in the plus or the minus x?

Charlie: Um. . . well. . . for over here (points to the left of −q) it’s in the positive x direction,

then between here and here (region between two charges) it’s in the negative x direction

and here (points to the right of +q) to the positive x direction again.
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Instructor: Okay. It sounds like you should write electric field for each region.

Charlie starts to record the electric field for each region, starting from far left, middle

and far right regions. Here we observe that Charlie uses his general equation for electric

field and then inserts the directional information that is available in the diagram to generate

specific electric field equations for each region.

Eleft =
1

4πε0

2q

r2
x̂ (6.55)

Emiddle =
−1

4πε0

2q

r2
x̂ (6.56)

Eright =
1

4πε0

2q

r2
x̂ (6.57)

While recording the electric field for the far-right region, Charlie talks about the super-

position and he starts to think about the contribution from charges separately.

Charlie: However. . . am I going to be getting a different electric field from this charge

(points to −q since it’s further away? So, this 2q (points to mathematical equation

recorded for far-left region) going to be something different. So. . . am I suppose to do

superposition too?

Then he modifies the electric field equation for far-left region.

Charlie: So, rather than this (points to mathematical equation recorded for far left region)

we could have something like (calls out the names of the symbols while recording the

math equation) E equal k positive q over 2a squared.

E = k[
q

(2a)2
] (6.58)

Charlie seems to think of the contribution from one charge as he uses q instead of 2q

but still he has not thought about the distance to that charge and the contribution from the
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other charge. Then the instructor’s question leads him to pick a field point which he has not

considered yet.

Instructor: Okay, so, where are you looking at in this region?

Charlie: Will see. Could we look right here (points to the same position as −q is on the

axis) or right beyond it?

Instructor: We could, but we should.

Charlie: Then this one (points to mathematical equation recorded for far left region) could

be. . . it could be some distance x. What I’m referring is x (labels the distance from

+q to the field point in left of −q). So just x squared (modifies the mathematical

equation).

E = k[
q

(x)2
] (6.59)

Charlie picks a field point in the far left region and then he goes on to define the distance

from the positive charge to the field point to be x and he modifies the mathematical equation.

Picking the field point has allowed him to think of how the distances are related in the

mathematical representation of the electric field. Soon he rethinks (Figure 6.21) how he

measures the distance x; and for the first time, he talks about the net electric field in this

region as a contribution from each charge.

Charlie: And then, it also. . . I’m going to re-define my x. I’m going to say my x is from this

point (points to mid point on axis). Makes this (modifies the mathematical equation)

x plus a squared. Sounds like a good idea? And this is going to be. . . um. . . x minus

a squared.

E = k[
q

(x+ a)2
+

−q
(x− a)2

]x̂ (6.60)
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Figure 6.21: Charlie picks a field point in far-left region

Here we observe Charlie coordinating between his diagrammatic and algebraic spaces.

On his diagrammatic space shows the electric field (net electric field) to be on the direction.

Then he thinks his mathematical equation on the algebraic space does not agree with that.

Charlie: Now we got a whole different. . . Now that says it’s going to be negative.

Instructor: What’s negative?

Charlie: The field over here (points to the left of −q) because this (points to the term

−q
(x−a)2 of the mathematical equation) is going to be bigger than this (points to the

term q
(x+a)2

). Because the bottom is going to e smaller than that (points to the term

(x+ a)2).

Instructor: Okay. How would you adjust this?

Charlie: Change my negative sign (laughs)?

So far we observe Charlie developed diagrammatic and algebraic spaces to represent the

electric field in far-left region. But when he coordinate between these to representational

spaces he identifies a mismatch. Charlie also has a problem working in the negative side of

the coordinate axis (that is common for previous two students Larry and Oliver) but there

is no argument behind his suggestion to fix the issue.
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Then with the instructor’s suggestion to identify contribution from each charge in his

mathematical equation, charlie relabels the charges. He labels −q charge as q1 and +q

charge as q2 and then modifies the mathematical equation.

E = k[
q2

(x+ a)2
− −q1

(x− a)2
]x̂ (6.61)

then he combines the two negative signs.

E = k[
q2

(x+ a)2
+

q1
(x− a)2

]x̂ (6.62)

This mathematical equation shows that the contribution from both charges to be in the

same direction which does not agree with Charlie’s previous conclusion about the electric

field directions. So he realizes this issue and modifies the equation.

Charlie: we just do that (modifies the mathematical equation) because that has a negative

direction. Now this one is bigger as earlier said and would be positive.

E = k[
−q2

(x+ a)2
+

q1
(x− a)2

]x̂ (6.63)

Instructor: Okay.

Charlie justifies his answer using diagram along with the gestural space.

Charlie: Because that one (points to +q) should be pushing it (points to −q) away (gesture-

hand moves leftward) over here (points to left of −q).

Charlie successfully argues for the electric field directions using the semiotic resource

finger pointing in direction but representing that in the algebraic space is tricky and difficult

(for the negative side). This is agin due to the nature of the disciplinary affordances of the

semiotic resources Coulomb’s law and the coordinate axis (see section 6.4.4).

Then he moves to consider the middle region and starts with the mathematical equation.

As Charlie has not yet picked a field point in middle region he gets stuck. After a long pause

and a conversation with the instructor Charlie picks a field point and labels the distances.
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Figure 6.22: Charlie picks a field point in middle region

First Charlie labels the distance from midpoint to the field point as x but soon after he

changes his mind and express the uncertainty of whether to label it −x. Charlie picks his

field point in middle region to be on the negative side of the coordinate axis. He again comes

across the same difficulty as in the far-left region. This is exactly the opposite of Larry

picking his field point in middle region to be on the positive side of the coordinate axis and

he does not came across any difficulty.

Right here, Charlie’s words also express the level of difficulty working on the negative

side of the coordinate axis. He says “I got negative and positive signs switched around” and

later “But then my negative is over in the x positive direction. I need to switch them”.

He starts over on the far-left region with labeling x to be −x.

Charlie: Okay. . . over here (marks the field point in the region to the left of −q) this is

going to be negative x (Charlie re-defines the distance on the diagram). So the negative

x plus a. . . that has to be minus a because it’s going in that direction too. Should

make this. . . negative x minus a (modifies the equation). That’s fair.

E = k[
−q2

(−x− a)2
+

q1
(−x− a)2

]x̂ (6.64)

Here we observe using the coordinate of the field point available in diagrammatic space

into the algebraic space. But he only considers and modifies the contribution term from q2
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charge but ignores the contribution term from q1 charge. This makes his correct approach

ineffective. Ultimately, Charlie develops a mathematical equation that has both denominator

terms looks similar which is incorrect.

Then the instructor asks about this issue.

Instructor: That means they both the same as each other?

Charlie: Um. . . plus a (modifies the equation) negative x minus negative a. Should be

minus x and plus this a to get that distance.

E = k[
−q2

(−x− a)2
+

q1
(−x+ a)2

]x̂ (6.65)

Ultimately his approach becomes effective as he treats both charges to get the net con-

tribution. Then he moves to consider the middle region. He goes back to call it x instead of

−x.

Charlie: Still over here (points to the region between q1 and q2) oh man. . . um. . . may be

I’ll just make my positive x over here (points to the diagram). I kind of lost my chain

of thoughts. . . where I was?

First Charlie gets confused but the instructor reminds him how he tackled the issue in

previous far-left region. Still he seems to be confused working in this region and gets the

electric field to be,

E =
1

4πε0
[
−q1

(x+ a)2
+

q2
(−x+ a)2

] (6.66)

Instructor: Are both these in minus x-hat or positive x-hat or one in each?

While reasoning for the net electric field direction, Charlie successfully uses the semiotic

resource finger pointing in direction on the space of the diagram on the board.

Charlie: Um. . . (records x-hat and modifies the equation) oh yeah. because they should. . .

they both pushing the negative x-hat direction. So the field should be going in the

negative x-hat direction (gesture-right hand moves leftward). Yes.
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E =
1

4πε0
[
−q1

(x+ a)2
+

−q2
(−x+ a)2

]x̂ (6.67)

Instructor: Okay. What’s the third region look like?

Working on the far-right region looks starlight forward for Carlie and without much effort

he gets the electric field.

Charlie: This is going to be the same as that (points to the electric field equation in far

left region) with (records equation) ... yeah.

E = k[
−q1

(x+ a)2
+

q2
(x− a)2

]x̂ (6.68)

In summary, Charlie’s use of semiotic resources looks very similar to that’s of Oliver and

his representational spaces looks similar to Figure 6.19. Importantly, Charlie gets the use of

the gestural space often than Larry while coordinating between diagrammatic and algebraic

spaces.

While working on the negative side of the coordinate axis, only Charlie seems to un-

derstand how to insert coordinate information decided from the coordinate axis into the

distances associated with Coulomb’s law. He is successful when considering the far-left re-

gion but again he gets lost when working in the middle region. But working in the far-right

region is very easy for Carlie that aligns with what we observe for other two students as well.

6.4.4 Comparison between students: Two charges on a line

Within this problem we observe students use diagrammatic and algebraic spaces with to-

tally different approaches and this is true for all the three students. While working on the

diagrammatic space students seems to think of a Universal electric field. They think of as

positive charge is distributing radially away from the charge while negative charge creates

field that points radially towards it. Then students use the semiotic resource arrow as vector

to represent electric field in the space. In contrast, while working on the algebraic space
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students seems to think of a Regional electric field. Where we observe students using the

mathematical semitic resource to Coulomb’s law represent the electric field by each large

and then combine those equations to net electric field in each region.

Charlie’s approach to solving this problem is different compared to the other two students.

Carlie stars on the diagrammatic space and then he moves to some mathematical calculations.

But, both Larry and Oliver stars on the algebraic space with more generic mathematical

equations for the electric field but eventually, they have to switch to the diagrammatic

space.

Larry uses a generic distance in his mathematical equation and going to specify the

distances makes him move to diagrammatic space to specify the electric field directions and

to pick field points in each region. Oliver goes further than Larry within the algebraic space

to space to specify the distances from each charge without picking field points in each region.

Even though Charlie does not start with math, when he moves to algebraic space he starts

with the idea of net charge Q (2q). Finally, he moves to think of the contribution from each

charge and moves to pick field points.

Out of the two students pick field points, Larry picks two of them to be on the positive

side of the coordinate axis (that are in middle and far-right regions) compared to Charlie

picking two of them to be on the negative side of the coordinate axis (that are in middle and

far-left regions). Both Larry and Charle figure out the electric field in the positive side of

the coordinate axis easily compared to the field points on the other side.

Overall, all three students use semiotic resources (even though the number is small com-

pared to in other problems presented in this dissertation) to buildup representational spaces

and connection among those spaces to solve this problem. While working on the algebraic

space, we observe students often translating back and forth to the diagrammatic space to

check the consistency. For Larry and Charle the background knowledge (electric field direc-

tion from each charge in regions, field point in each region) that is already developed on the

diagrammatic space helps them to make these transitions with ease. But in Oliver’s case,

we observe the missing information of field points in the diagrammatic space preventing him

from making productive connections between the representational spaces.
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Figuring out the electric field in the positive side of the coordinate axis seems to be rela-

tively easy for all three students compared to doing it in the negative side. The reason behind

this is the disciplinary affordance of the semiotic resources Coulomb’s law and coordinate

axis.

Disciplinary affordance of coordinate axis

Choosing a coordinate system for 1-D space that is, for a straight line - involves choosing

an origin (mid-point), a unit of length, and an orientation for the line. An orientation choice

which of the two half-lines determined by mid-point is the positive, and negative, we then

call the line is oriented or points from negative half towards the positive half. According to

this convention, positive numbers always lie on the right-side of mid-point on side. Then we

can write the coordinate of the +q charge in this problem as x+q = a(x̂). Negative numbers

always lie on the left-side of mid-point on - side. Similarly we can write the coordinate of

the −q charge as x−q = a(−x̂).

Disciplinary affordance of Coulomb’s law

Coulomb’s law says the force on a test charge (Q) due to a point charge (q) at a rest rest

distance Γ away is given by,

F =
1

4πε0
[
Qq

Γ2
]Γ̂ (6.69)

Then the electric field of the source charge q is

|F | = Q|E| (6.70)

Then the magnitude of the electric field is given by,

|E| = 1

4πε0
[
q

Γ2
] (6.71)

To get the direction we have to consider the charge sign. Same charges repel each other

while opposite charges attract each other.

Here ~Γ is the separation vector from ~r′ (source point or the location of q) to ~r (field point
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Figure 6.23: Separation vector

or the location of test charge Q). Then,

~r = ~r′ + ~Γ(6.72)

~Γ = ~r − ~r′ (6.73)

Relating this in to our 1-D problem and using the separation in the electric field equation,

~xseperation = ~xfield point − ~xsource point(6.74)

Field points in regions and the electric field

Some one going to find the electric field along the axis have to take in to consideration

of the above mentioned disciplinary affordances.

Case 1: field point in far-right region

Contribution from +q charge,

~xseperation+ = x(x̂)− a(x̂) = (x− a)x̂ (6.75)

Then we need the | ~xseperation+| to substitute in Coulomb’s law equation and then we get

the electric field,
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Figure 6.24: Field points in regions

~E+ =
1

4πε0

q

(x− a)2
x̂ (6.76)

Contribution from −q charge,

~xseperation− = x(x̂)− a(−x̂) = (x+ a)x̂ = −(x+ a)−x̂ (6.77)

Similarly with | ~xseperation−| we get,

~E− =
1

4πε0

q

(x+ a)2
−x̂ (6.78)

Then the net electric field,

~Enet = ~E+ + ~E− (6.79)

~Enet =
1

4πε0
[

q

(x− a)2
− q

(x+ a)2
]x̂ =

1

4πε0
[

q

(x+ a)2
− q

(x− a)2
]−x̂ (6.80)

Case 2: field point in middle region - positive side

Contribution from +q charge,
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~xseperation+ = x(x̂)− a(x̂) = (x− a)x̂ = (a− x)−x̂ (6.81)

~E+ =
1

4πε0

q

(a− x)2
−x̂ =

1

4πε0

q

(x− a)2
−x̂ (6.82)

Contribution from −q charge,

~xseperation− = x(x̂)− a(−x̂) = (x+ a)x̂ = −(x+ a)−x̂ (6.83)

~E− =
1

4πε0

q

(x+ a)2
−x̂ (6.84)

Net electric field,

~Enet =
1

4πε0
[

q

(a− x)2
+

q

(x+ a)2
]−x̂ =

1

4πε0
[

q

(x− a)2
+

q

(x+ a)2
]−x̂ (6.85)

Case 3: field point in middle region - negative side

Contribution from +q charge,

~xseperation+ = x(−x̂)− a(x̂) = (x+ a)−x̂ = −(x+ a)x̂ (6.86)

~E+ =
1

4πε0

q

(x+ a)2
−x̂ (6.87)

Contribution from −q charge,

~xseperation− = x(−x̂)− a(−x̂) (6.88)

~E− =
1

4πε0

q

(x− a)2
−x̂ (6.89)

Net electric field,

170



~Enet =
1

4πε0
[

q

(x+ a)2
+

q

(x− a)2
]−x̂ (6.90)

Case 4: field point in far-left region

Contribution from +q charge,

~xseperation+ = x(−x̂)− a(x̂) = (x+ a)−x̂ = −(x+ a)x̂ (6.91)

~E+ =
1

4πε0

q

(x+ a)2
−x̂ (6.92)

Contribution from −q charge,

~xseperation− = x(−x̂)− a(−x̂) (6.93)

~E− =
1

4πε0

q

(x− a)2
x̂ (6.94)

Net electric field,

~Enet =
1

4πε0
[

q

(x+ a)2
− q

(x− a)2
]−x̂ =

1

4πε0
[
−q

(x+ a)2
+

q

(x− a)2
]x̂ (6.95)

6.4.5 Mechanics problem - Student: Zeke

This example comes from an oral exam in the second month of Classical Mechanics course.

The episode starts with the instructor posting the problem with a diagram on the board

(Figure 6.25).

Instructor: If you have a platform which rotates, and on the platform is a mass on a

spring...the mass is constrained in the frame of the platform so that it can only go

back and forth... does the mass undergo simple harmonic motion?
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Zeke is working on a much longer problem and he has to consider all the forces on the

mass. Within his approach we observe Zeke taking time to build each representational space

and to frequently coordinating among representational spaces to check for the consistency.

Figure 6.25: Instructor provided diagram for Zeke: mass spring system on a rotating plat-
form

Zeke starts using the given diagram and he confirms with the instructor that both springs

have the same spring constant k. Then he moves to consider the forces on the mass exerted

by the springs. First, he talks about the force on the left spring. Even though Zeke looks like

he is about to record something, he takes a step backward and moves towards the diagram

on the board.

Zeke: OK, the real forces would be... OK, let’s say, we’ll call that x... let’s say equilibrium

(records a dotted line on the diagram).

While talking about the force on the left spring, Zeke goes to the diagram on the board

and uses the semiotic resource midline for equilibrium to represent the equilibrium position

of the mass. After recording a vertical dotted line to the right of the mass (Figure 6.26a)

Zeke talks about the left spring.

Zeke: OK. So, in that case, um. The force on this (force on left spring). Um. I’m going to

write something down but I don’t think it’s right. I’ll have to think about it, negative

kx (records on the board −kx along with a leftward arrow on the diagram).
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Figure 6.26: Equilibrium position: a.) Equilibrium to the left of the mass b.) Equilibrium
to the right of the mass

F = − kx (6.96)

After using the semiotic resource arrow as vector to record the force on the left spring,

Zeke shows the uncertainty of his own work. “I’m going to write something down but I

don’t think it’s right”. He does show this kind of behavior often during this problem-solving

activity. First, he predicts or records something (may be a mathematical equation or adds

a feature onto the diagram) on the board and then he steps back from the board to make

sense of his work. Here, at this very moment, Zeke steps back and starts talking through

the mathematical equation (restoring force on the spring) −kx that he just recorded.

Zeke: So, if x is negative, then we expect k to push (gesture - finger pointing in direction)

... um, OK. So in this situation. Can I? ... I’m going to put the mass over here, just

for sign. Just to make the sign make more sense (moves the mass to the right of the

equilibrium).

Zeke refers to the diagram on the board (Figure 6.26a) and uses the gestural semiotic

resource finger pointing in direction to specify the direction of restoring force on the left

spring. Zeke picks the leftward displacements to be negative (“so if x is negative”) and

rightward to be positive. Figure 6.26a, shows a compressed left spring with a negative
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displacement of the mass. According to the diagram (Figure 6.26a), the compressed left

spring should be pushing, but rightward, with a force F = kx. Even though Zeke makes

one thing right “then we expect (left spring) to push”, his work on the board (−kx along

with an leftward arrow) does not agree with his work on the board. Soon Zeke realizes this

mismatch and decides to change the position of the mass to the right of equilibrium position

(Figure 6.26b)

After changing the position of mass (Figure 6.26b), Zeke takes a step back to check the

consistency between the diagram on the board and the mathematical equation.

Zeke: We have positive k ... So negative kx makes sense because we have positive displace-

ment, and it’s gonna be pulling backwards in the negative direction (gesture - finger

pointing in direction).

Figure 6.26b shows a stretched left spring with a positive displacement of the mass.

So, the left spring should be pulling, but leftward, with a force F = −kx. This agrees with

Zeke’s mathematical equation (restoring force on the spring). We can observe this agreement

supports Zeke’s confidence in that he reasons with a steady voice without any pauses. Then

he continues to use the gestural semiotic resource finger pointing in direction to indicate the

force direction on the mass.

Figure 6.27: Initial stage of Zeke’s representational spaces

Figure 6.27 shows the initial stage of Zeke’s representational spaces. Within the dia-

grammatic space, Zeke coordinates among the semiotic resources box for mass, midline for
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equilibrium along with arrow as vector. At this initial stage the gestural space consists of a

single semiotic resource finger pointing in direction. Zeke has taken the initial step to find

the net force on the mass and he so far considered only the left spring. As a result of this, his

algebraic space also has one semiotic resource restoring force on the spring (F = −kx). So

far, we observe Zeke is coordinating among representational spaces that he checks for con-

sistency between his diagrammatic and algebraic spaces almost without the use of gestural

space. Even though Zeke uses the gestural space, he uses the finger pointing in direction just

to indicate the direction of the displacement and force on spring. Within the diagrammatic

space, while the semiotic resource box for mass allows Zeke to represent the presence of

mass on the space of the board, both (Midline for equilibrium and box for mass) together

allow Zeke to represent the displacement of the mass while the arrow as vector represents

the force direction. Algebraic space (restoring force on the spring (F = −kx)) allows him

to get an idea about the directional relationship between the displacement of the mass and

the restoring force on the spring.

Here we see the disciplinary affordance (Table 6.8) of the semiotic resource restoring force

on the spring (F = −kx) in the algebraic space, first hinders and then reinforces the use

of the semiotic resource midline for equilibrium in the diagrammatic space. According to

Hooke’s law, if the mass is displaced sideways, such that the spring becomes compressed (or

extended), then the mass experiences a horizontal force given by F (x) = −kx, where k is

the spring constant and the negative sign in the expression indicates that F (x) is a restoring

force (if the displacement is positive then the force is negative and vice versa). The semiotic

resource midline for equilibrium helps to visualize the displacement of the mass from its

equilibrium position. Zeke has already predicted the restoring force on the spring (left) to

be leftward F = −kx; and according to his choice of coordinates, the leftward displacements

are negative. The Figure 6.26a shows a negative displacement of the mass. Hooke’s law for

this situation, indicates the compressed left spring should be pushing, but rightward, with a

force F = kx. Then the Figure 6.26b shows a positive displacement of the mass and for tis

situation, Hooke’s law indicates the stretched left spring should be pulling the mass leftward

with a force F = −kx. Only the restoring force on the spring according to Figure 6.26b
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Table 6.8: Disciplinary affordances of the semiotic resources coordinated to build Zeke’s
initial representational spaces

Semiotic Resource Disciplinary Affordance

Box for mass

This allows Zeke to generate a visual representation of
the mass in the space of the board. He uses it to record
the direction of restoring forces on the mass by each
spring.

Midline for equilibrium

This helps Zeke to visualize the displacement of the mass
from its equilibrium position. The view of the com-
pressed or stretched springs allows him to decide the
direction of the restoring force that is very important
in this situation. As Zeke steps back from the board
to check the consistency between the diagram and the
mathematics, initially this (midline) helps Zeke to check
the validity of his mathematical equation for the force
by the left spring and then later to check the sign on the
mathematical equation for the force by the right spring.

Arrow as vector

In this case, this visual representation of a line with
an arrow head allows Zeke to show the restoring force
direction from each spring to figure out the net force by
both springs.

Restoring force on the spring (F = −kx)

According to Hooke’s law, if the mass is displaced side-
ways, such that the spring becomes compressed (or ex-
tended), then the mass experiences a horizontal force
given by F (x) = −kx, where k is the spring constant
and the negative sign in the expression indicates that
F (x) is a restoring force (if the displacement is positive
then the force is negative and vice versa). The idea that
the direction of the restoring force is opposite to that of
the displacement of the mass, helps Zeke to amend his
diagram according to the mathematical equation that
he recorded.

aligns with Zeke’s prediction. The mismatch in Figure 6.2a results in the diagram being

inconsistent and the semiotic resource restoring force on the spring (F = −kx) stops the

use of the semiotic resource midline for equilibrium in Figure 6.26a. Then later after the

modification (Figure 6.26b) we can see the semiotic resource restoring force on the spring

(F = −kx) reinforces the use of the semiotic resource midline for equilibrium.

With the satisfied agreement in his revised work, Zeke moves to consider the second

(right) spring.
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Zeke: This one [the spring on the right], it’s going to be pushing, so it’s going to be pushing

at... kx.

F = kx (6.97)

After he identifies the direction of the restoring force on the spring (right), Zeke steps

back to do more sense-making.

Zeke: As x is bigger (fist moves rightward), this (force on right spring), the force gets bigger

by the factor of kx, so it’s gonna push this way at kx. That’s correct.

Right here for the first time Zeke uses the semiotic resource fist for mass to represent the

presence of mass in free space. Even though Zeke concludes his work to be correct, Figure

6.26b shows the mass has a positive displacement, and by Hooke’s law, the compressed right

spring should be pushing the mass leftward with a force F = −kx.

Now Zeke has two mathematical equations to represent the restoring force on the spring

from both springs. Then he moves to connect these two equations. While doing so, Zeke

decides to change the direction of the force on right spring (uses the semiotic resource arrow

as vector) and then uses a minus sign in his mathematics to “make it come out of the mass”.

Then he steps back again to check his work. Zeke uses the gestural semiotic resources fist

for mass and finger pointing in direction, but soon he realizes that his work is inconsistent

with the diagram.

Zeke: No, I have done something silly.

Zeke goes back to the board and changes the force on the right spring to be leftward “we

want to push back”. For one last time, he returns to considers both springs.

Zeke: If m goes this way (fist moves rightwards) then we have a positive displacement

(+x)...this (−kx) is negative, that (the force from the left spring) points that way

(leftwards), that makes sense. (then talks about the spring on right) We’ve got a
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positive x (fist moves rightward), this (equation for right spring) is negative (finger

points leftward) and (force) points that way, makes sense.

F = − 2kx (6.98)

After finding an agreement on his work, Zeke concludes “I am happy now” and he gets

the force by two springs is leftward with a magnitude F = −2kx.

Figure 6.28: Intermediate stage of Zeke’s representational spaces

Figure 6.28 shows the intermediate stage of representational spaces. Even tough Zeke

has not added any new semiotic resource to his diagrammatic space, we observe him making

modifications to it. Zeke brings in the new semiotic resource fist for mass into his gestural

space. while working to figure out the net force on the mass, Zeke continuously translates

between the representational spaces: diagrammatic and algebraic to checks for the consis-

tency. This allows him to further develop his algebraic space and Zeke ends up adding the

semiotic resource force by two springs as a result of considering the effect from both springs.

Zeke seems to be confident on his mathematics. Then with much effort, he develops the

diagrammatic space to match with what he has in the algebraic space.

Here for the first time we observe Zeke using the gestural space (fist for mass and finger

pointing in direction) to sort out the contradiction between his diagrammatic and algebraic

spaces. The gestural semiotic resource fist for mass allows him to represent the mass in free

space. By doing so, Zeke can represent the displacement of the mass in free space while
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getting a sense of the restoring forces on the springs (to be either pushing or pulling). Zeke

starts by considering just one spring and the semiotic resource fist for mass allows him to

figure out the force direction on that spring. He then goes back and makes modifications in

his diagrammatic space. After resolving this disagreement Zeke continues to consider both

springs together. Again he returns to the gestural spaces and keep using semiotic resources

fist for mass and finger pointing in direction until he concludes (“I am happy now”) and

record the force by two springs to be directing in the same direction with a magnitude of

F = −2kx.

Table 6.9: Disciplinary affordances of the semiotic resource coordinated to build Zeke’s
intermediate representational spaces

Semiotic Resource Disciplinary Affordance

Fist for mass

This allows Zeke to generate a visual representation of
the mass in the free space. Zeke holds the fist while ges-
turing for mass displacement and keeps referring back as
he progresses in this task. The process of sense-making
using the fist for mass helps Zeke to figure out the di-
rection of the restoring forces that he could mostly do
using the diagram on board.

Finger pointing in direction

Zeke uses the index finger to the side while gesturing for
direction. This allows him to show the direction of the
displacement and the direction of the restoring force in
the free space.

Similar to the previous cases presented in this analysis, we see Zeke connecting among

semiotic resources to build the representational spaces. Initially, he could not connect among

these representational spaces but then the use of additional representational space allows him

to make that connection. So far we observe Zeke working on diagrammatic and algebraic

space. Then we observe the limitations of these representational spaces prevent him from

connecting these representational spaces to check for the consistency. In order to overcome

this limitation, Zeke moves to the other available representational space, the gestural space.

From then we observe the semiotic resources fist for mass and finger pointing in direction in

gestural space bringing the missing information that allows Zeke to connect coming to the

diagrammatic and algebraic spaces.
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After figuring out the force by two springs, Zeke moves to consider the rotation of the

platform to find the effective forces on the mass. When Newton’s laws are transformed

to a rotating frame of reference, the Coriolis force and Centrifugal force appear. One can

represent the effective force on the rotating mass by the following mathematical equation.

F = m[2]~r t︸ ︷︷ ︸
Inertial force

− 2m~ω × ~r t︸ ︷︷ ︸
Coriolis force

−m~ω × (~ω × ~r)︸ ︷︷ ︸
Centrifugal force

− m~ω t× ~r︸ ︷︷ ︸
Angular acceleration force

But in this case, it is clear that we do not have an angular acceleration force because

the platform rotates with a constant ω. But, Zeke starts by figuring out the direction of the

angular velocity and to do so he applies the right-hand grip rule.

Zeke: Okay. Now ω (angular velocity) is going to be (applies the right-hand grip rule)

pointing out of the board (records on the board).

Figure 6.29: Zeke further develops the diagram to include the direction of angular velocity
(arrow head) and the direction of centrifugal force (rightward)

The angular velocity is a vector and its direction is perpendicular to the plane of rotation.

Using the right-hand grip rule, the direction of the angular velocity is defined as the direction

in which the thumb points when Zeke curls his fingers in the direction of rotation. Once

he figures out the direction, then Zeke uses the semiotic resource arrow as vector to add

the direction of the angular velocity onto the diagrammatic space (Figure 6.29). Then Zeke

moves to talk about the inertial force and quickly concludes it to be zero.

Zeke: So, the inertial force. Frame is not accelerating, there is no inertial force.

180



Zeke continues to consider the next force, which is the centrifugal force.

Zeke: Centrifugal force ... um .. we have ω cross r (applies the right-hand grip rule). So, we

are going to have that (~ω×~r) pointing up. And then ω cross ω cross r (~ω× (~ω×~r)) is

(applies the right-hand grip rule) pointing in negative, is going to point out and sense

because centrifugal force always points out of the circle.

Here Zeke first uses the right-hand grip rule to get the direction of direction of the angular

velocity and re-applies it to get the cross product (~ω×~r). then he uses the semiotic resource

finger pointing in direction to indicate the resulting direction to the instructor. Next he

moves to consider the cross product of (~ω × ~r) with ~ω and re-applies the right-hand grip

rule. Zeke’s finding agrees with what he learned in the class and we can see his confidence

as he comments right away about his finding “ sense because centrifugal force always points

out of the circle”. The instructor’s follow up question about the direction of the centrifugal

force leads Zeke to comment “yes, it’s pointing this way (rightward)” and use the semiotic

resource arrow as vector to record it on the diagram on the board (Figure 6.29).

Figure 6.30: Zeke includes centrifugal force into his representational spaces

Figure 6.30 shows the current stage of Zeke’s representational spaces, that he included

the information of the direction of the angular velocity and centrifugal force. Since the

intermediate stage, Zeke has not added any new semiotic resource to both diagrammatic

and algebraic spaces. Zeke mostly works on the gestural space and then he reuses the

semiotic resource arrow as vector to add the directional information into his diagrammatic

space.
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In undergraduate mathematics and physics classrooms, the direction of the cross product

is often found using the right-hand grip rule. So far we see students using the semiotic

resource right-hand grip rule for sense making and communication purposes. Larry (in

chapters 4 and 5) uses the right-hand grip rule to figure out the magnetic field generated by

a current carrying wire. Similarly, during the loosely wound solenoid problem, Danny uses

right-hand grip rule to indicate the magnetic field generated by the axial current component.

Similarly, the gestural semiotic resource right-hand grip rule, first, allows Zeke to assign a

vector (direction of the angular velocity) to the rotation of the platform. Right here he makes

a unique use of right-hand grip rule that stands out from other students in this analysis.

He keeps using it to figure out more complicated mathematical manipulation. Zeke further

employ right-hand grip rule to figure out the cross product between ω and r (~ω × (~ω × ~r))

to figure out the direction of centrifugal force. A given student could use the algebraic space

to figure out the direction of centrifugal force with some effort along with mathematical

calculations. Instead, on this occasion the semiotic resource right-hand grip rule allows Zeke

to skip all those manipulation steps and he gets to the final result result with much ease.

But, here we do not observe Zeke coordinating between representational spaces like what

he did so far. Instead, he uses one semiotic resource in one representational space to figure

out something and then he uses a separate semiotic resource to include his findings onto a

different representational space.

Then Zeke moves to consider the Coriolis force and we can observe Zeke takes relatively

more time to get going. In addition to that his voice level and choice of words “This is

going to be tricky ... how do we want to do this?” indicate that this is a tough task for him.

Finally, Zeke begins to move forward and he starts with another prediction.

Zeke: Well, imagine at this point just for a moment and then we will generalize it in a

second. We will say at this point (refers to the diagram on board) that x dot (ẋ -

linear velocity) is pointing out and it is accelerating this way (rightward arrow).

First he refers to the diagram on board and talks about the linear velocity (ẋ or ~rt) of the

mass when the mass is displaced by x (rightward) from the equilibrium. Here Zeke uses the
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Table 6.10: Disciplinary affordances of the semiotic resource coordinated to include cen-
trifugal force into Zeke’s representational spaces

Semiotic Resource Disciplinary Affordance

Right-hand grip rule

On this occasion, Zeke first uses the right-hand grip rule
to figure out the rotation vector to represent the rota-
tion of the platform, where Zeke’s thumb of right-hand
points when he curls his fingers in the direction of rota-
tion. Then Zeke uses the right-hand grip rule to find the
direction of the centrifugal force that he uses to manip-
ulate the cross product of the three vectors (~ω× (~ω×~r).
By definition the right-hand grip rule states the orien-
tation of the vectors’ cross product (~u × ~v), by placing
u and v tail-to-tail, flattening the right hand, extending
the hand in the direction of u, and then curling the fin-
gers in the direction of the angle v makes with u. Then
the thumb points in the direction of ~u × ~v. Zeke uses
this argument first to find the direction of ~ω × ~r and
then to find the direction of ~ω × (~ω × ~r). Later, Zeke
uses the right-hand grip rule to find the direction of the
Coriolis force that he re-uses to manipulate the cross
product of the vectors ω × ~rt. Zeke flattens the right
hand, extending the direction of ṙ (that is ~rt), and then
curls the fingers in the direction that the angle ω makes
with ṙ. Then Zeke’s thumb points in the direction of
ω × ~rt. In addition to that Zeke uses the direction of
angular velocity that is originally figured out using the
right-hand grip rule.

Arrow as vector

Again Zeke uses the Arrow as vectors visual represen-
tation to show vector direction. Here he uses the same
semiotic resource to visualize the direction of angular
velocity and the direction of centrifugal force. Later, He
uses the same semiotic resource to visualize the direction
of the Coriolis force.

semiotic resource arrow as vector to add the direction (rightward) of the linear velocity onto

the diagram. Then he moves to figure out the direction of the Coriolis force by considering

the cross product (~ω × ~rt).

Zeke: The case then ... ω cross ṙ points up (records on the board). Let’s see if sense. Well

... because ω goes this way (anti-clockwise) ... oh negative. It’s negative ω cross ṙ.

So, it’s this way (downward arrow records on the board).
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While applying the right-hand grip rule, even though Zeke mentions ṙ; he refers to the

linear velocity (ẋ). Soon Zeke realizes that the direction should be downwards and uses the

semiotic resource arrow as vector to add the direction of the Coriolis force onto the diagram.

Zeke’s regains his confidence. We can see that as he further comments on the Coriolis force

with a steady tone with no pauses.

Zeke: This is Coriolis and that makes sense because as if you look at it from the inertial

frame as m comes this way (hand moves leftward) and the platform moves behind

(hand moves anti-clockwise). It’s going to end up ... if it weren’t constrained, it would

end up further down the platform. Because the platform rotates under it.

Then Zeke quickly comments on the angular acceleration force likewise he did for the

inertial force.

Zeke: Okay. Transverse force (angular acceleration force) does not exist because there is no

omega dot (ω̇ - angular acceleration).

From here, we observe Zeke moves to consider the constrained motion of the mass (mass

is constrained in the frame of the platform so that it can only go back and forth). He starts

by ignoring all the forces other than the net force by springs and centrifugal force. So far

he figured out the direction but now moves to work on the mathematics to figure out the

magnitude of the centrifugal force.

Zeke: Now, we have centrifugal force which was ω cross ω cross r (~ω × (~ω × ~r)). So that

would be (records on the board) mω2x and r which in this case is x.

F = mω2x (6.99)

Zeke refers back to the relationship (~ω× (~ω×~r)) that he used to determine the direction

of the centrifugal force and replaces r by the displacement x accordingly to the diagram on

the board. After figuring out the magnitude of the centrifugal force, Zeke talks about the
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net force on mass along the direction of the motion. Zeke did a substantial amount of work

to figure out the direction of the Coriolis force and when he considers the constraint in the

motion, the Coriolis force is perpendicular to the direction of motion. Then Zeke continues

to consider only the forces along the motion.

Zeke: So, we were to add up forces in this direction (rightward) which is the only direction

we care about because of the constraint (and records ΣF = (−2k + mω2)x on the

board).

F = (−2k +mω2)x (6.100)

Zeke adds up all the forces on another part of the board, where he has the net force on

mass as ΣF = (−2k+mω2)x. Zeke accomplishes this step really quickly with no hesitations

or pauses thanks to all the recording steps he has made before of the direction and the

formula for each force.

Figure 6.31: Final stage of Zeke’s representational spaces

Figure 6.31 shows the final stage of Zeke’s representational spaces before he moves to

make some assumptions about the value of the constants. We see Zeke recording some

mathematics but they are mostly simplifications steps. From now we observe Zeke using his

finding the net force on mass (ΣF = (−2k + mω2)x) to go about considering the possible

cases to see if the mass undergoes simple harmonic motion.
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Zeke: So, if we have ω is such that this term mω2 not bigger than 2k (and records mω2 < 2k

on the board).

Zeke starts by checking for the first condition (mω2 < 2k) to see the possibility of the

simple harmonic motion.

Zeke: If that is the case then this (−2k + mω2) going to be constant and stays negative.

So we can define an effective k (k1) which would be k1 = 2k − mω2 (records on the

board) and we get F = −k1x (records on the board). So, in that case it would be

simple harmonic motion because k1 being a constant and they have the same form.

k1 = 2k −mω2 (6.101)

For the first condition, he defines a new quantity ”effective spring constant” effective k.

He records all of them on the board and turns to the instructor as he confirms that it is

the form of simple harmonic motion. As he gets the instructor’s confirmation then Zeke

continues his analysis to check for the second condition (mω2 > 2k).

Zeke: Now, if mω2 is greater than 2k (and records on the board) mω2 > 2k. That would be

interesting, because in that case then we can have like a kappa (records on the board

κ = mω2− 2k) equal to the other way. Just to keep it positive. Then we have the sum

of the forces equal to kappa x (records on the board F = κx), which is funny.

κ = mω2 − 2k (6.102)

While testing the second condition he brings in another symbol κ, which replaces mω2−

2k. Then he starts to comment on the situation.

Zeke: It won’t be simple harmonic motion because it doesn’t have a restoring force. Because

there is no negative sign. With x gets bigger positive force continues to be positive.

So, it’s going to continue come this way (rightward hand movement) until something

stops it. Probably the wall or what ever the spring is tight to.
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Then he continues to talk through and explains this solution to the instructor.

Zeke: What you will have an unstable equilibrium at the center, because at x = 0 you will

have no force (points to F = κx) . But if you give a little jolt in the negative direction,

then you have a negative x and it will force it this way (leftward) that will keep it

forcing until the normal force is counteracted. If you give a little jolt in the positive

direction, then it will continue going until it hits a normal force.

Zeke talks about the unstable equilibrium and the motion of the mass in both possible

initial displacements to either to left or right. Then he moves to summaries of what he has

done so far.

Zeke: So I guess the summary is then, if ω is such that mω2 < 2k, it would exhibit simple

harmonic motion with a slightly different frequency of oscillation. if mω2 > 2k then

no simple harmonic motion and it would just accelerate to the edge of the circle.

Here we observe Zeke talks about the frequency of oscillation while summarizing his

analysis. The instructor asks about the third possible condition, which Zeke has not yet

covered.

Instructor: What happens if mω2 > 2k.

Zeke replies quickly, but as he moves forward, we see frequent pauses between his words.

This may be because he has not thought about this condition until the instructor asks.

Zeke: In this case, this −2k + mω2 becomes zero and this is ... a ... that’s interesting ....

no force, why would be no force. ...

After a long pause Zeke starts to reason again,

Zeke: Okay, you would have where ever your mass was it stays there and that could be

because, if you imagine as the picture is drawn (points to the diagram) the spring

wants to pull it back towards the equilibrium but the exact amount of spring wants to

pull it back. The centrifugal force wants to pull it out.
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Even though he comes to a point where he finds the new situation, which he had not

considered before, he uses the body parts to make sense and explain it to the instructor.

The instructor’s follow up question leads Zeke to explain more.

Instructor: Does it matter where it is?

Zeke: No, because as you go further the restoring force is going to become larger because

the springs displaces more. But at the same time, you are also closer to the outside,

so you are experiencing a bigger centrifugal force.

This concludes Zeke’s problem-solving activity. Zeke is working on a much longer problem

which has an early component of looking at the signs of the forces on a box on two springs. In

order to solve this problem, Zeke has to consider all the forces on the mass, the forces exerted

by the springs and the effective forces on the rotating mass (Coriolis force, centrifugal force

and angular acceleration force). Then he has to consider only the forces along the direction

of motion (because the mass is constrained to move only back and forth) before moving to

consider the possible cases to see if the mass undergoes simple harmonic motion.

Zeke spends a lot of time worrying about this problem and starts with a simpler situation

- a single spring. He breaks it into the cases of expansion and compression. Later he considers

the rotation to see if the mass undergoes simple harmonic motion under different conditions.

We observe as a habit, Zeke does predictions before he moves on to consider the situations

and he does much sense-making. Unlike the other cases presented in this study, we find Zeke

talking, trying things most of the time rather than waiting for instructor to give frequent

feedback or some times helpful cues.

During the episode, Zeke starts using the given diagram and coordinates among other

semiotic and conceptual resources to further develop the diagram. Then he starts to develop

a mathematical relationship. In order to answer the problem at hand, Zeke further uses the

gestural space to check the consistency between the diagrammatic and mathematical spaces.

First, Zeke works to figure out the net force on the mass by the springs. Later he moves to

consider the rotation of the platform to find the effective forces on the mass.
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We observe Zeke doing more coordinating between representational spaces during the

first parts of his problem-solving activity. But after figuring out the force by springs on the

mass he moves to consider effective forces on the mass, where he mostly works with one

representational space before adding originated information into another representational

space. Then he returns to the gestural space while talking about the possibilities of the mass

going on simple harmonic motion or not.

6.5 Discussion

In order to generalize our approach to describe the underlying mechanism behind students

constructing spontaneous representations to solve physics problems by coordinating semi-

otic resources, using our revised framework, first, we analyze multiple cases of individual

students solving two physics problems in an Electromagnetism I course. Then to show the

applicability/ durability of this approach in other physics courses, we further analyze the

case of a student (Zeke) solving another problem in his Classical Mechanics course.

In our approach, we suggest that students’ approach to solving physics problems is by

first, coordinating among semiotic resources to build representational spaces (diagrammatic,

gestural, and algebraic) and then coordinating among those representational spaces to solve

problems. By coordination, we mean how the disciplinary affordance of a particular semiotic

resource/ representational space hinders or reinforces the use of other semiotic resources/

representational spaces.

Talking about the disciplinary affordance of semiotic resources, especially the second

problem (two charges on a line) appears to be easy because all they have to do is to figure

out the electric field from each charge and then think about the superposition. But it turns

out that students have a hard time figuring out how to use the coordinate information (in

the diagram) within the mathematical calculations (Coulombs law). As shown in section

6.4.4, this is due to the the disciplinary affordances of those semiotic resources. In that

sense, teaching our students about the disciplinary affordances of semiotic resources ahead

of time could make them better prepared to tackle complex problems at this level.
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In addition, according to previous research, the process of translating between represen-

tations was found to be difficult for students. In order to overcome this challenge, students

need to identify the corresponding elements between different representations. The approach

described in our study shows that this could be accomplished by understanding the disci-

plinary affordances of the representational spaces.

Within the first problem, the loosely wound solenoid, both Alan and Danny seem to use

the diagrammatic space to first develop a background understanding that will help them

continue with mathematical manipulations while working in the algebraic space. Perhaps

because of the nature of this problem, we do not observe much coordination between repre-

sentational spaces compared to the other two problems.

Next we consider the two representational spaces that students develop as they solve the

two charges on a line problem. The algebraic space shows a Regional electric field as a reason

for the contribution from each charge. Then the diagrammatic space shows a Universal

electric field that is generated by each charge. When students get stuck while working

on the algebraic space, they return to the diagrammatic space. Even though they have a

Regional electric field idea while working on the mathematics, the coordination between the

diagrammatic space seems to help Larry, Oliver, and Charlie.

On the mechanics problem, Zeke first uses the diagrammatic space to represent the force

on the mass, both when he is considering a single spring and when considering both springs.

Then he moves to the algebraic space to represent this force mathematically. Even though

both these representational spaces help Zeke to gets a sense of the physical scenario, they

both also seem to have limitations. Zeke moves to the gestural space, which allows him

to get a feel for the push and pull from each spring on his fist that he uses to replace the

mass. Moving on to a different representation helps Zeke to get a better understanding of

the physical scenario. He is then able to coordinate between the representational spaces to

move forward.

Cases presented this study show students getting to a point where they can not move

forward (gets stuck) with a particular representational space. They then moves to a dif-

ferent representational space and compare between representational spaces. Such a change
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in direction seems to help students move forward. Within the first problem, we observe

Danny’s attempt to connect between algebraic and diagrammatic spaces to reason for his

quick mathematical manipulations is not successful until he decides to use another semiotic

resource (line as wire) to further develop his diagrammatic space.

Then within the two charges on a line problem we observe the missing background in-

formation in Oliver’s diagrammatic space due to not picking the field point preventing him

connect between the algebraic and diagrammatic spaces. This situation compared to Larry

and Charlie, they pick field points in each region and the developed diagrammatic spaces

allows them to move forward without getting stuck.

On the Mechanics problem, again we observe Zeke could not make the connection be-

tween the algebraic and diagrammatic spaces in his first attempt. Then the gestural space

allows him to feel for the forces that help him to make his algebraic space align with the

diagrammatic space.

Overall, the cases presented in this analysis exemplifies the coordination between multiple

semiotic resources with different disciplinary affordances to build up representational spaces

and then using those representational spaces to solve physics problems. Also, we can conclude

that the disciplinary affordances of those representational spaces influencing how students

connecting among those spaces.

Different representations are used in science learning communities for different purposes.

Within undergraduate classrooms, representations are mostly used for communication and

problem-solving purposes. Studies have shown the importance of improving students’ repre-

sentational practices not only in physics but in other disciplines as well. Some of these studies

focus on how we can facilitate students’ development of representational fluency (206;207;208;209).

Other studies focused on how we can measure students’ representational fluency (210;211;212;213).

One of the important goals of undergraduate physics instruction is to help students

develop expertise in problem-solving (214;215;216) and one part of that is by improving the

representational fluency (127;217;207;218). The researchers who have tried to investigate and

improve students’ representational skills in physics as well as in other disciplines have come

across student difficulties related to conceptualization, interpretation of diagrams and spatial
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reasoning (219;86;87;220;221). In his study Fredlund (130) also suggested that one approach to

overcoming students’ difficulty with this issue is by having instructors unpack or simplify

representations for the students.

Instructors can use the ideas presented in this study to make students more aware of

the disciplinary affordance of semiotic resources or the components of the representations

that they use to build up representational spaces (diagrams, gestures, and mathematics).

This can then be used is to help students to become better problem solvers. In addition,

instructors becoming aware of the semiotic resources students bring in and the disciplinary

affordances of those semiotic resources can help instructors understand why students have

difficulties with solving problems that are associated with certain representations. Using

this understanding, instructors can help students get un-stuck, which will better motivate

students.

Altogether, this approach of understanding how students solve problems through coor-

dination between semiotic resources and representations, can be used to change the way

students think about physics and physics problem solving, which then show students that

their thinking about physics can grow and change and need to be fixed (222;223).

6.5.1 Connection between studies

In our previous work we focused on how students translate among representations (diagrams,

mathematical equations, gestures, and spoken words) in order to solve physics problems (174).

We categorized representations as follows: durable representations, which include diagrams

and written mathematical equations, andevanescent representations, which include gestures

and spoken words. In our study, Larry starts from a durable representation (diagram)

and builds up from there using evanescent representations (gestures and words). He later

translates to a different kind of durable representation (mathematics), where he reasons and

solves the original problem.

Then we focused on how students build up these representations (170). In this study, we

used a social semiotic approach that focuses on all types of meaning-making practices that
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are accomplished through different semiotic modes. These modes, which are examples of

semiotic resources, include visual, verbal (or aural), written, and gestural modes such as

language, text, algebra, diagrams, sketches, graphs, body movements, signs, and gestures.

Here we use the developed theoretical framework to investigate how semiotic resources might

be combined to build up compound representations. These compound representations can

then be used to solve problems.

In this approach, we introduce the idea of compound representations, which are composed

of two or more parts or semiotic modes and which link at least two semiotic resources in the

same representation. As an example, Larry builds the compound representation “current

sheet” using semiotic resources in different modes. He uses the “parallelogram as current

sheet” on the whiteboard (visual-diagram) and “paper as current sheet” on the gestural

space. Later, he uses “hand for wire” on the gestural space and “line as wire” on the

whiteboard (visual-diagram) to represent the current sheet.

In this study, we investigated the underlying mechanisms behind students’ constructing

spontaneous representations as they coordinated among different semiotic resources with

disciplinary affordances. Even though we paid attention to the disciplinary affordances of

the semiotic resources in this study, we did not pay attention to semiotic modes.

In the real world, we observe that students draw diagrams, record mathematical equa-

tions, use body parts (gestures), and use words as they solve problems. This leads us to

continue on our social semiotic approach to investigate how students build up representa-

tions. In this study, we modified our theoretical framework that accounts for how semiotic

resources should be combined to solve problems.We also introduced the idea of represen-

tational spaces (such as diagrammatic, gestural, and algebraic), composed of two or more

semiotic resources in the same semiotic mode. Then these representational spaces can be

used to solve problems.

Even though these studies were published separately and used different theories and

approaches to analyze different cases, they are strongly related. We could say that any

given concept can be divided among representational spaces. Students bring small, reusable

elemental ideas (semiotic resources) that are tightly connected to a particular representation
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to build these representational spaces. Figure 6.32 shows how ideas, semiotic resources,

compound representations,representational spaces and durable/evanescent representations

come together to help us understand how students solve physics problems.

Figure 6.32: Connection between studies: Each semiotic resource (small circles) has a
semiotic mode (visual: diagram in red and algebraic in green, actional: gesture in purple)
that contributes to meaning-making. These semiotic resources are coordinated to build either
representational spaces (diagrammatic, gestural, algebraic) or compound representations

As an example, let’s think of a situation where a force acts upon an object (a mass). We

will have a set of semiotic resources that are in different modes to construct representational

spaces that deal with Newton’s second law. The diagrammatic space would be a free body

diagram that consists of semiotic resources like:“block as object”, “arrow as vector” to repre-

sent forces on the object. Then gestural space would consist of semiotic resources like: “hand

for object”, “finger pointing in direction” to represent the force direction or acceleration di-

rection. Then the algebraic space would consist of the semiotic resource “mathematical

equation F=ma” that shows the object will accelerate in the direction of the force, with

acceleration proportional to the magnitude of the force. Then we observe how students

translate among those developed representational spaces to solve physics problems (174).

But when we talk about the compound representations, still students bring those elemen-

tal idea pieces (semiotic resources) together but they may not be in the same mode as we see

in the representational spaces. As an example, a compound representation named “moving
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object” could be built by coordinating visual semiotic resources“block as object”, “arrow as

vector” and gestural semiotic resources “hand for object”, “finger pointing in direction”.

Above mentioned Newton’s second law example is directly related to physics. But these

approaches to develop representations and translating among those representations to build

meaning to solve problems can be used in other disciplines (such as chemistry, engineering,

biology) to improve student understanding and visualization of concepts (224;132;225). Recent

research identifies the process of students constructing representations as an effective method

to support students’ visual sense-making (226;227) that results in enhancing students’ learning

of domain knowledge in STEM courses (228;229).

Within this context, the approach to solving problems presented can be helpful for effec-

tive student-student and student-instructor interactions in undergraduate classrooms (230;231;232;233;234).

This approach can be very helpful for instructors to create more inclusive environments to fa-

cilitate student learning with different knowledge backgrounds and levels. Importantly, such

a detailed approach of student-generated representations can facilitate collaborative problem

solving that allows students to consider the affordances of each component of the representa-

tion (235;236;237). Also, this allows students to share and modify representations with feedback

from peers who sometimes have limited ability to describe their emerging understandings

and ideas just by using one particular representational type (238;239). This approach to make

the classroom environment to be engaged and collaborative would help us as instructors to

foster a Growth mindset in students.
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Chapter 7

Discussion and Future Work

The goal of this dissertation is to increase understanding of students’ use of mathematical

tools and representations across the undergraduate physics curriculum. First, I used a mod-

ified version of the ACER framework, to make better sense of the ways that students use

mathematical tools in their homework solutions in upper-division mechanics courses. Then

I investigated how students use representations while solving problems. We combined these

results to build better ways of explaining how students connect among different semiotic

resources as they build up representations while solving problems. In this chapter, I briefly

summarize the studies that were presented in the preceding chapters and discuss potential

future research directions for each study.

As I was trying to understand undergraduate students’ problem solving approaches, my

intention was not to develop a new theory but to use an existing theoretical framework

to guide my analysis about what and how students might use mathematical tools to solve

physics problems. In ACER, we find a theoretical framework (45) that provides a structure to

organize analysis of complex, mathematical problem solving. Previously the ACER frame-

work was used to identify student problem-solving difficulties during think-aloud interviews

andclassroom activities. Instead of looking for what students do wrong (finding student

difficulties), we looked for the steps and processes that students actually use as they solve

problems. In addition, we identified student homework solutions as an alternate stream
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ofdata, beyond think-aloud interviews and classroom observations.

In order to identify the most important mathematical operations in the problem-solving

process, I modified the existing ACER framework and used it to code students’ homework

solutions. We could then use these coded solutions to identify the most frequent steps

that students took in a solution. The process of comparing all the solutions in a given

homework even for one student would be prohibitively time consuming if we attempted

to extract this information manually. Instead, we employed a well-known method that is

mostly applied in biological information systems to obtain the information contained in social

networks, known as social network analysis (SNA). We used the visual representations of

networks to represent the relations among students’ ideas/knowledge components. These

knowledge components were organized within the ACER framework, using the connections

between those components, which were decided by the order of emergence of the knowledge

components in the coded solutions. In the network graph representation, the knowledge

components are referred to as nodes and the links between them as edges.

Finally, we were able to identify important mathematical steps/operations in student

solutions that we had interpreted through the ACER codes. We found many problems to

have similar central nodes. This similarity may be because all the problems analyzed in this

study were similar well-designed problems that were picked from end-of-chapter textbook

problems. But, further analysis showed the exact nodes and their order are different across

students and across problems. This difference may be due to different students having

different approaches to starting and working through each problem.

The analysis presented in the 3rd chapter represents the data collected from a tradition-

ally taught mechanics course at a single university. We used a commonly available data

source at the undergraduate level (homework) and applied a very powerful analytical tool

(SNA) to visualize students’ problem-solving approaches that are not immediately apparent

in their written solutions. Instructors can use this method to visualize student problem solv-

ing in a way that allows for comparisons between students across a problem, a homework, or

even across an entire course or multiple courses. In addition, this method helped us visualize

student problem-solving in a way that allowed us to identify common mistakes that students

197



make while solving problems. It takes much labor to code student solutions in this way,

however. Future work with this approach might include comparisons within just one course

- like analyzing real-world problem sets along with ones drawn from textbooks. Or we could

expand this approach to compare between courses across the upper-division level. We could

also analyze student solutions using this approach to compare different teaching styles, such

as active-learning classrooms versus traditional ones.

At the beginning of my research work, we looked at upper-division mechanics students’

written homework solutions (171) using ACER (45) to model student problem-solving. Even

though student homework solutions provide a record of the steps used to solve a given

problem, these solutions still fail at some points. Using only a student’s written solution,

we cannot identify which step was completed first. Also, written solutions often tell us very

little about why a student chose a particular process or substitution. We almost always fail

to find any reasoning in student solutions other than straightforward mathematical steps.

In order to obtain more information about student problem-solving processes, we asked

upper-division Electromagnetism I students to generate problem solving videos (”pencasts”) (240)

as they solved homework problems. In addition, I made analyzing students’ problem solving

videos (oral exams) a part of their upper-division Electromagnetism I course. I was able to

observe interesting moves and processes of students engaging in problems that we could not

observe in written homework solutions.

But, as a project, we are curious about the student process of problem solving. As I

analyze students’ written homework solutions (171), I found that it is just a record of what

students are doing than a process of solving problems. Then pencasts (240) which are student

generated videos felt like a presentation of a problem that students already solved than

actual problem solving. Then I moved to look in to upper division physics students and

we look in to their videos of problem solving as a part of the regular course work (oral

exams). In these videos, students were found to be using different representations (diagrams,

kinesthetic (gestures), mathematics, words) for multiple purposes (recording, sense-making,

and communicating) as they solved their oral exam problems. This study led us to investigate

how students use representations to solve physics problemsas well as how students bring up
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and use those representations.

The case study presented in Chapter 4 shows an example of phases in problem solving.

The case presented in this study, Larry, solves a physics problem by coordinating and trans-

lating between different durable and evanescent representations. Larry starts by using a

diagram (durable representation), but he moves to a different type of durable representation

(mathematics) to better progress and solve the problem. Larry also uses a sheet of paper

along with gestures (evanescent representations) to make sense of his diagram and mathe-

matical equations. As an extension of this project, we were curious to learn how students

construct representations, and we wanted to look into more cases/students across different

problems in different physics courses at the upper-division level.

In previous work on students’ use of representations to solve physics problems, researchers

associated the Cognitive Load Theory (143) to explain the advantage of using spontaneous rep-

resentations. The researchers (145) suggested that the use of representations reduces cognitive

load. The students who did not employ representations had to keep more information in

their working memory while also reasoning about the problem. This may have increased

their cognitive load and ultimately led them to be unsuccessful in deriving a correct solution

to their problem. One major limitation of this approach is that It does not allow us to get

an accurate view of the actual cognitive load that leads to further difficulties with measuring

the cognitive load. On the other hand, the researchers did not focus on how students use

these representations. By use we mean how do students construct representations and make

connections among those representations.

Fredlund (109;130) took a different approach and used the idea of disciplinary affordances of

semiotic resources to explain student problem-solving behaviors using representations.First,

Fredlund (130) with the refraction of light experiment, argued that two semiotic resources,

wavefront diagram and ray diagram, allow students to access different areas of physics knowl-

edge. Then Fredlund (109) with the RC circuit diagram, showed that when students unpack

a representation, they are able to access knowledge that is highlighted by that representa-

tion. Within these previous studies, researchers did not consider spontaneous construction

of representations by students, and they did not look at how students connect among repre-
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sentations that they use to solve a problem.

In the next study, I used a social semiotic perspective to construct a theoretical framework

to tell us how students might construct compound representations as they solved physics

problems. In the study presented in Chapter 5, we use the same case of Larry. Instead of

focusing on how he translates between representation categories, however, we focused on how

Larry coordinates among different semiotic resources with different disciplinary affordances

to build compound representations and to solve a problem. In general, most physics problems

are represented with verbal description (maybe along with a diagram). In order to start the

solving process, students must convert the word problem into a form that is more suitable

to further analysis and mathematical manipulation. In our study, we have observations of

the classroom, where the representations were developed, determined to be insufficient, and

replaced with new representations brought in by the student.

In the theoretical framework we proposed in the previous study, we did not pay atten-

tion to the modes of the semiotic resources. In particular, we did not pay attention to

how representations in different modes get connected to each other or to what factors might

influence how students succeed or fail to connect among representations that they spon-

taneously construct (that are in multiple modes). In the study presented in chapter 6, we

revise our proposed theoretical framework to describe the underlying mechanism behind how

students construct spontaneous representations by coordinating among different semiotic re-

sources with disciplinary affordances. Then we used multiple cases of students solving oral

exam problems to generalize the approach we proposed in our previous study. We did this

in order to explain the underlying mechanism behind how students construct spontaneous

representations by coordinating among different semiotic resources in different modes.

Studies presented in Chapters 5 and 6, use a social semiotics approach and we analyze the

same case of Larry. The study presented in chapter 5 is our pilot study that we investigate the

case of Larry as an initial approach to social semiotics. Later, we identified the limitations

of the theoretical framework used in this study and we analyze and present the case of

Larry again with a revised theoretical framework in chapter 6. Overall, the social semiotics

approach used in the studies presented in chapters 5 and 6 illustrates an analysis that gives
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us a novel way to understand the functionality of each elemental idea (semiotic resource)

as they are used to develop representations to aid in solving problems. Studies (200;231) show

that physics students need explicit help with understanding how to construct representations

and how to coordinate among representations as they solve physics problems.

Researchers who use the social semiotic approach have shown the importance ofunpacking

representations as a way to help students gain a better understanding of the use of these

representations as well as the underlying physics concepts (130). In that sense, understanding

the fine-grain nature of each element of each representation that is illustrated in our analysis

allows the instructor to better show students how to build and use effective representations

when solving physics problems.

Students’ use of representations to solve physics problems were both investigated at the

introductory level and at the upper-division level. Studies conducted at the introductory

level focused on how students use representations to solve physics problems (88) as well as

on the effect of instructor-provided representations on students’ success at solving physics

problems (241;127;242;243). The work done at the upper-division level that used the social semi-

otic approach focused on students’ approaches to solving physics problems with instructor-

provided representations (109;130).

Often times researchers treat students’ representations as static ones (241;127;242;243;88). In

fact these representations are built up over time. Thinking about how students construct

and connect among representations in these two approaches can help us as educators pay

attention to what are the things that actually students are doing while solving problems. For

example often times in problem solving we pay a lot of attention to students’ diagrams and

algebra. But paying attention to their gestures is just as important for understanding how

students sense making. Moving forward, I am interested in investigating how do students

mediate between diagrams and algebra using gestures while solving physics problems.

Work presented in this thesis at the upper-division level focused on the ways individual

students develop representations and how those students use their developed representations

to solve physics problems. We have shown the reliability of our approach by using it across

multiple cases (students) and across different courses. We can predict its applicability across
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different physics courses at different levels. Moving forward, I am excited to look more

deeply at how introductory-level students build up and use representations to solve physics

problems in both individual and group settings. There is a clear difference in conceptual

understanding between introductory-level and upper division students. In addition, students

at the introductory level get only limited exposure to problem-solving and solve less number

of quantitative problems compared to students at the upper-division level. Students at

the upper-division level also learn new and advanced problem-solving skills and approaches

compared to students at the introductory level.

The interviewer involved in these oral exams are the same person who is the instructor for

this Electromagnetism I course. This instructor conducts her classes, oral exams and provides

hints to students in a certain way, but we think this interaction does not materially change

our argument about how semiotic resources can come together to build representations and

arguments to solve problems. But, we understand that other instructors might emphasize

different semiotic resources, therefore students might have experienced a different mix of

semiotic resources that they might use while solving problems. This might be completely

different for institutions where there is a math methods course. Along this lines, it would also

be interesting to investigate how students develop and use representations at the introductory

level at different institutions. More specifically, it would be interesting to compare those

institutions that use more traditional instruction methods with those institutions that use

research-based transformed approaches for instruction.

In summary, overall this thesis presented two novel approaches. First, we presented the

use of rich source of data that is students’ homework solutions along with social network anal-

ysis for studying how students use mathematics in their physics courses. Later, we proposed

and further improved an approach to describe how do students develop representations and

what are the features of how students connect among these representations. It is important

that these representations are developed by students but not ones that are given to them by

researchers.
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Chapter 8

Research Questions and Answers

In chapter 3 we present our attempt to analyze the written evidence of students’ problem-

solving in a traditional physics course. In this study, we investigate the research question:

what, if anything, could be learned about students’ problem solving from their homework

solutions? Using the modified ACER framework and the social network analysis to compare

students and problems, we were able to identify three kinds of differences in student home-

work solutions. Differences in solution paths within one problem - even though this problem

was a well-structured problem, different students had different approaches. Differences in

students? initial problem-solving steps as a function of the type of problem - we found that

there is a dependence on the problem statement reflected on the network graphs that is

because of the cues provided on the problem statement. Additionally, we found differences

among multiple problems of the same type - the problems which consist of more subsections

also lead to relatively complex networks.

The study presented in chapter 4 focuses on students’ use of multiple representations.

In this study, we explore research questions: how can problem-solving be described as a

process of transitioning between durable representations to make new meanings? How do

students build meanings onto durable representations using the evanescent representations?

We found that problem-solving can be described as a cyclic process of building new meaning

onto durable representations using evanescent representations.
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In our initial approach to describing students’ construction of representations, the study

presented in chapter 5 we explore the research question: How do students coordinate among

different semiotic resources to build up compound representations while solving complex

physics problems? We found that in the process of solving physics problems students make-

meaning by coordinating multiple semiotic resources. This analysis highlights how the disci-

plinary affordances of different semiotic resources which make up for the constraint of other

resources or reinforce each other to enhance meaning-making possibilities.

Later in our final study presented in chapter 6, we further study how students construct

representations. In this study, we explore research questions: What is a better mechanism

to explain how students build and connect together among different representations to solve

physics problems? What are the factors that influence how students succeed or fail in con-

necting among representations? We found the need for revising our theoretical framework

presented in chapter 5 to better describe students connecting multimodal representations. In

our new framework, we described how students coordinate among different semiotic resources

(which are in different modes) with different disciplinary affordances to construct represen-

tational spaces (diagrammatic, gestural and algebraic) instead of compound representations

to solve complex physics problems.
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[224] U. Wernecke, K. Schütte, J. Schwanewedel, and U. Harms. Enhancing conceptual

knowledge of energy in biology with incorrect representations. CBE-Life Sciences

Education., 17(1):ar5, 2018. https://www.lifescied.org/doi/full/10.1187/cbe.

17-07-0133.

[225] P. Yuanita, H. Zulnaidi, and E. Zakaria. The effectiveness of realistic mathematics

education approach: The role of mathematical representation as mediator between

mathematical belief and problem solving. PloS one., 13(9):e0204847, 2018. https:

//journals.plos.org/plosone/article?id=10.1371/journal.pone.0204847.

[226] S. Brooks. Drawing, visualization and young children?s exploration of “big ideas”.

International Journal of Science Education., 31(3):319–341, 2009. https://www.

tandfonline.com/doi/abs/10.1080/09500690802595771.

[227] P. Van Meter and C. M. Firetto. Cognitive model of drawing construction. Learning

through visual displays., pages 247–280, 2013.

[228] D. Leutner and A. Schmeck. 18 the generative drawing principle in multimedia learn-

ing. The Cambridge handbook of multimedia learning., page 433, 2014.

[229] P. Van Meter and J. Garner. The promise and practice of learner-generated drawing:

Literature review and synthesis. Educational Psychology Review., 17(4):285–325, 2005.

https://link.springer.com/article/10.1007/s10648-005-8136-3.

[230] Z. H. Zhang and M. C. Linn. Can generating representations enhance learning with

dynamic visualizations? Journal of Research in Science Teaching., 48(10):1177–1198,

2011. https://onlinelibrary.wiley.com/doi/full/10.1002/tea.20443.

232

https://www.pnas.org/content/113/31/8664.short
https://www.lifescied.org/doi/full/10.1187/cbe.17-07-0133
https://www.lifescied.org/doi/full/10.1187/cbe.17-07-0133
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204847
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204847
https://www.tandfonline.com/doi/abs/10.1080/09500690802595771
https://www.tandfonline.com/doi/abs/10.1080/09500690802595771
https://link.springer.com/article/10.1007/s10648-005-8136-3
https://onlinelibrary.wiley.com/doi/full/10.1002/tea.20443


[231] R. Nixon. Explicitly teaching multiple modes of representation in science dis-

course: The impact on middle school science student learning. 2012. https:

//scholarsarchive.byu.edu/etd/3582/.

[232] J. Carolan, V. Prain, and B. Waldrip. Using representations for teach-

ing and learning in science. Teaching Science., 54(1):18–23, 2008. https:

//blogs.deakin.edu.au/asell-for-schools-vic/wp-content/uploads/sites/

160/2018/03/Carolan-et-al-Teach-Sci_late-version.pdf.

[233] W. Y. Hwang, N. S. Chen, J. J. Dung, and Y. L. Yang. Multiple representa-

tion skills and creativity effects on mathematical problem solving using a multi-

media whiteboard system. Journal of Educational Technology & Society., 10(2):

191–212, 2007. https://www.jstor.org/stable/jeductechsoci.10.2.191?seq=1#

page_scan_tab_contents.

[234] W. S. S. Li and M. Y. Arshad. Wait-time and multiple representation levels in chem-

istry lessons. Malaysian Online Journal of Educational Sciences., 2(2):45–53, 2014.

https://eric.ed.gov/?id=EJ1086239.

[235] E. Bobek and B. Tversky. Creating visual explanations improves learn-

ing. Cognitive Research: Principles and Implications., 1(1):27, 2016.

https://cognitiveresearchjournal.springeropen.com/articles/10.1186/

s41235-016-0031-6.

[236] P. Van Meter, M. Aleksic, A. Schwartz, and J. Garner. Learner-generated drawing

as a strategy for learning from content area text. Contemporary Educational Psy-

chology., 31(2):142–166, 2006. https://www.sciencedirect.com/science/article/

pii/S0361476X05000202.

[237] J. Heiser, B. Tversky, and M. Silverman. Sketches for and from collaboration. Visual

and spatial reasoning in design III., 3:69–78, 2004.

233

https://scholarsarchive.byu.edu/etd/3582/
https://scholarsarchive.byu.edu/etd/3582/
https://blogs.deakin.edu.au/asell-for-schools-vic/wp-content/uploads/sites/160/2018/03/Carolan-et-al-Teach-Sci_late-version.pdf
https://blogs.deakin.edu.au/asell-for-schools-vic/wp-content/uploads/sites/160/2018/03/Carolan-et-al-Teach-Sci_late-version.pdf
https://blogs.deakin.edu.au/asell-for-schools-vic/wp-content/uploads/sites/160/2018/03/Carolan-et-al-Teach-Sci_late-version.pdf
https://www.jstor.org/stable/jeductechsoci.10.2.191?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/jeductechsoci.10.2.191?seq=1#page_scan_tab_contents
https://eric.ed.gov/?id=EJ1086239
https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-016-0031-6
https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-016-0031-6
https://www.sciencedirect.com/science/article/pii/S0361476X05000202
https://www.sciencedirect.com/science/article/pii/S0361476X05000202


[238] J. Radinsky, S. Goldman, and M. Singer. Students’ sense-making with visual data in

small-group argumentation. pages 237–245, 2008.

[239] D. L. Schwartz. The emergence of abstract representations in dyad problem solv-

ing. The Journal of the Learning Sciences., 4(3):321–354, 1995. https://www.

tandfonline.com/doi/abs/10.1207/s15327809jls0403_3.

[240] N. Weliweriya, E. C. Sayre, and D. A. Zollman. The effectiveness of “pencasts”

in physics courses. The physics teacher., 56(3):161–164, 2018. https://aapt.

scitation.org/doi/abs/10.1119/1.5025294.

[241] M. Thomas. The role of representation in teacher understanding of function. In-

ternational group for the psychology of mathematics education., 4:291–298, 2003.

https://eric.ed.gov/?id=ED501144.

[242] R. J. Dufresne, W. J. Gerace, and W. J. Leonard. Solving physics problems with

multiple representations. The physics teacher., 35(5):270–275, 1997. https://aapt.

scitation.org/doi/pdf/10.1119/1.2344681.

[243] S. Y. Lin, A. Maries, and C. Singh. Student difficulties in translating between math-

ematical and graphical representations in introductory physics. AIP Conference Pro-

ceedings., 1513(1):250–253, 2013. https://aip.scitation.org/doi/abs/10.1063/

1.4789699.

234

https://www.tandfonline.com/doi/abs/10.1207/s15327809jls0403_3
https://www.tandfonline.com/doi/abs/10.1207/s15327809jls0403_3
https://aapt.scitation.org/doi/abs/10.1119/1.5025294
https://aapt.scitation.org/doi/abs/10.1119/1.5025294
https://eric.ed.gov/?id=ED501144
https://aapt.scitation.org/doi/pdf/10.1119/1.2344681
https://aapt.scitation.org/doi/pdf/10.1119/1.2344681
https://aip.scitation.org/doi/abs/10.1063/1.4789699
https://aip.scitation.org/doi/abs/10.1063/1.4789699


Appendix A

Appendix A - Codebook of the

modified ACER framework

1. Activation of the tool

• A1 - Identify the target (quantity/ value)

• A2 - Student uses a general form of an equation

• A3 - Student uses a less-general form of an equation

ANX (N=1, 2, 3) used strategy is unhelpful or incorrect

• A2X Student uses an unhelpful /or other form of an equation

2. Construction of the model

• C1 - Pick a coordinate system

• C2 Visualize the problem

• C3 use an equation specific to the particular problem

• C4 understand the meaning of symbols in equation

• C5 set the limits of the integration

• C6 determine at which point the derivatives should evaluate
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• C8 label forces on the free body diagram

• C9 make assumptions

• C10 stating boundary conditions

• C11 applying boundary conditions

CNX (N=1, 2,..7) used strategy is unhelpful or incorrect

• C1X - mistakes made whenpicking a coordinate system

• C5X - mistakes made whensetting the limits of the integration

3. Execution of the mathematics

• E1 do the integration

• E2 take the derivatives

• E3 make the substitutions

• E4 student draw graph(s)

• E5 doing algebra

• E7 Approximations

• E8 evaluate the derivatives

• C9 make assumptions

• E9 [previously C7] take the cross product

• E10 evaluate the integration

ENX (N=1, 2,..4) used strategy is unhelpful or incorrect

• E1X - mistakes made whendoing the integration

• E2X - mistakes made when taking derivatives

• E3X - mistakes made when making the substitutions

4. Reflection on the result
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• R1 check the units

• R2 check the limits of the final answer

• R3 does this answer make sense?

• R4 does this answer fit in the next part?

• R5 Comparing cases

RNX (N=1, 2 ...4) used strategy is unhelpful or incorrect

• R1X - mistakes made whenchecking the units

• R2X - mistakes made when checking the limits of the final answer
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Appendix B

Appendix B - TRANSCRIPTS

B.1 Larry - Chapter 4 and Chapter 5

Instructor: Suppose you had an infinite sheet which carries current k equal to some con-

stant (records on the board, k = αx̂). What’s the magnetic field look like?

Larry: (draws a parallelogram to represent the sheet) So the coordinate . . . x hat, y hat, z

hat, xyz I mean. Uh... and you want to know like what is a real life infinite sheet...?

Instructor: Yea. What’s it look like?

Larry: (long pause) Uh... I know capacitors like infinite planes of charges but I am pretty

sure there is no current across, like actually across the surfaces of capacitors. Umm...

and solenoids are more of just a bunch of rings. And sheets be assumed there is no

gap...

Instructor: Okay.

Larry: I don’t think you can do a math for them, consider them to be a sheet.

Instructor: Well take one sheet and bend to a circle, not one flat sheet.

Larry: Right...
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Instructor: Okay. Shall we keep going?

Larry: Yes.

Instructor: Okay. What the magnetic field looks like, If you have this sheet of current?

Larry: Um...m okay, so think of this, a sheet is kind of having a bunch of infinite wires (up

and down movement of hand) one next to each other and the current from a single

wire curls around this (applies right-hand grip rule), and so, I think that like if you

look at a point above it (pinpoints to a location), then uh .. from a single wire .... will

point in ... So, if the current is in x hat (records an arrow on diagram). Then above

the sheet it would be pointing out of the board (records on diagram), from one wire,

so above one wire. So, I think it would be true for the rest of the sheet as well.

Instructor: So, if this is the sheet (refers to the sheet of paper), the current is going this

way (indicates the current direction on the sheet)...

Larry: So, if this is the sheet (refers to the sheet of paper), the current is going this way

(across the surface of sheet- right to left), and looking at a point above it, then from

one wire, magnetic field will be point in that way (away from him).

Instructor: Okay.

Larry: So. I would think, ah well, but from... so like from this wire (above the surface of

sheet), the current is gonna ... the magnetic field points that way (away from him), but

from a wire over here (closer to the surface of sheet), it would be pointing more ..uh ..

this way (pointing towards him), uh .. so it seems like they are gonna superposition,

kind of complicated. Because like, so far, we were looking at a wire right here (draws

a line at middle of the sheet) and then the current above the wire (applies right-hand

grip rule) my hand curls ... points back in me. Uh ... if we look at a wire, like this is

(points to the diagram) an infinite sheet so way back here in the y direction, uh then

my fingers at that point will more point in down than they are towards me.
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Instructor: What about one, that mirror, so that wire way far back, the mirror wire way

far forwards?

Larry: Uh ... my finger is pointing up.

Instructor: Okay. Does that up-ness cancel the down-ness.

Larry: Yeah.

Instructor: We went out with a net of?

Larry: uh .. out. So I was right the first time?

Instructor: Yes. So it came out above and below it goes...?

Larry: So ... below it goes in (records on diagram).

Instructor: Okay. How big is it?

Larry: uh... So, I don’t remember the magnetic field from a single wire. Could you tell me

or I will look it up really quick.

Instructor: I could but I think you should use Ampere’s law here instead.

Larry: uh... alright, so it looks like the integral B dot dl equals µ0 I enclosed (records the

Ampere’s law equation
∮
B · dl = µ0Ienc).

Instructor: Cool, now you need to pick an Amperian loop.

Larry: I’ll pick a loop. Current is in this way (pointing on the surface of paper). I think

the loop is like this (hand shows the loop perpendicular to the edge of the paper).

Instructor: Okay. Which way is the current in now?

Larry: Uh ... rather cause current is in this way (points on the paper from left to right), I

think the loop is like this (gestures the loop perpendicular to the edge of the paper).

Instructor: Okay. Good.
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Larry: I can’t ever feel like drawing 3D. Okay. And so? my current enclosed is gonna be ...

said got (records equation) (k = αx̂), so my current is just, my current enclosed is just

gonna be uh ... k dl right (records Ienc = k...). But it can’t just be k times dl cause

that’s a vector and it not be a vector.

Instructor: Right.

Larry: I mean two end up is not a vector. But, could it be k dot dl, you like the sound of

that?

Instructor: Well, you have to be careful about what direction dl in that case?

Larry: Because, I was good to opposites cancel out if...

Instructor: So, usually if we have an integral that is dl around a ... boundary, on the other

side we have an integral of an area

Larry: Yeah, Right. I think about like we have circuit, we draw a loop which’s like a soap

bubble (draws on the board) ... uh, but circuit is just linear current like wire current,

we have surface current

Instructor: So how big is your loop? draw your loop.

Larry: Alright. I am not really sure (draws loop), no it’s not right (erases it). I committed

to an idea of (draw the loops, then take the paper and gestures for the loop) if this is

the current (left to right), it’s gonna be like this. I think that...

Instructor: And you are wondering how to draw it?

Larry: Yeah. Did I communicated it properly?

Instructor: Sure, okay. So one of those dashed lines is sort of above in z, the other one is

below in z.

Larry: And the other two are in the... and so this one (points to the drawing) comes up

and down. It is in yz plane.
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Instructor: Okay, good. And how wide is your loop?

Larry: When you say “wide”, do you mean this dimension or this dimension (points to the

loop on board)?

Instructor: It doesn’t matter cause I am about to ask you about the other dimension so

denote and tell me about the other one.

Larry: l (records next to one leg of the loop).

Instructor: Cool. And what is the other dimension?

Larry: Um... w.

Instructor: Okay, so now you are curious about how much current goes through you loop.

Larry: I am gonna say that these (points to w legs on the diagram) are not really important

because they are perpendicular with the direction.

Instructor: the w lines?

Larry: Yes.

Instructor: Okay. But the l line is?

Larry: Yes.

Instructor: How much current goes through your loop?

Larry: So, we got the surface current k and then it is going across the whole entire thing

and uh... Let’s see. I think it would be (long pause), it would be uh... kl?

Instructor: Yes.

Larry: equals lαx̂

Instructor: Good. Okay. So we did k dot it with dA?

Larry: Um...
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Instructor: And k and dA are in the same direction?

Larry: Yes.

Instructor: So you have no further vector information?

Larry: So (records on the board) integral B dot dl equals µ0 integral k dot da. And then ...

for this (left hand side) I can do four separated integrals right? Since its square (show

by hand) and these two (“w” legs on loop) do not end up mattering.

Instructor: Because?

Larry: Because they’re perpendicular to the ... Am I ... Is it these ones that I am not

gonna concern about? I am pretty sure it is.

Instructor: Yes. Because the direction of dl and the direction of B are ...

Larry: .. are perpendicular.

Instructor: Okay. What’s about the other two legs?

Larry: Uh ... So for the other two legs, uh ... all right, so this one is kind of above it in the

z, which means that the field is coming out at me (finger pointing in direction gesture).

... So, I need to pick a direction for my loop, don’t I?

Instructor: Yes.

Larry: Uh ... Let’s say it all goes this way (counter clockwise). Okay. So, above it B is

coming out and the way I draw my loop is coming out at me so they are parallel and

then below it B is going in and my loop is going that way so they’re parallel again.

Instructor: Cool. OK. So, you get for that integral?

Larry: Uh... so 2Bl (records on the board).

Instructor: Excellent and the right hand side?
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Larry: µ0 and the integral of k dot dA, wait just be kwl.

Instructor: No.

Larry: Okay. k is constant, so I can pull it out?

Instructor: No.

Larry: It’s not?

Instructor: It’s true that k is constant, but k is not everywhere in your dA.

Larry: Oh... uh...

Instructor: How much current pierces this loop? You worked this out not two lines ago.

Larry: Right. lαx̂

Instructor: Yup. Though you do not need the x hat anymore because you have done the

dot product.

Larry: All right. (Completes the right side by µ0lα and records on the board: B = µ0α/2).

Instructor: Good.
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Appendix C

Appendix C - TRANSCRIPTS

C.1 Chapter 6

C.1.1 Problem 1: Loosely wounded solenoid

Student 1: Alan

Instructor: Let’s talk about the solenoid. I premised you that you will get to do a problem

about loosely wounded solenoid. Well, let’s do it. So, you have a solenoid, which

is infinitely long and it is loosely wounded so that there is some component

of the current goes down the solenoid and some component of the current

goes around the solenoid. We want to consider there to be a component of

the current that travels down and a component of the current that travels

around.

Alan: (while the instructor was explaining, Allan draws on the board) Oh, I see. . . so

then. . . where we have previously ignored the fact that current is got some upward

direction. . . okay.

Instructor: Okay, find the magnetic field inside and outside.

Alan: (Alan labels the current component going up to be Iẑ and the current going around
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to be Iφ̂) Okay, the only way this differs is that the B dot dl contribution is. . . we

can’t say it’s a zero for the. . . box of that. . .

Instructor: Why not?

Alan: Well, there is a wrote component. . . since we do B dot dl . . . dot product is going

to be the cosine of the two. If we are looking at (pause, keep talking to self) let’s

consider it separately. . . we might do B dot dl twice. . . (Alan records Ampere’s law)

. . . I wanna say. . . we do Bz and the dot product being the. . . um. . . the cosine

component. . . B cosine dl . . . would be. . . cosine zero is one. . . So, then this is going

to determine our vertical component. . . where µ0Ienclosed (records mathematics) and

then. . . current is constant and then basically. . . B L (Alan picks the direction on his

loop and labels the dimensions) . . . L here. . . µ0I . . . there is a coil density. . . in. . .

per length. . . times that L (continues to record mathematics) so then Bz component

is going to be µ0I over. . . that doesn’t look right. What I’ve done (talking to self and

completes the mathematics)

∮
Bz · dl = µ0Ienc (C.1)

Bz.L = µ0In.L (C.2)

Bz =
µ0I

n
φ̂ (C.3)

Instructor: Why is n in the denominator?

Alan: Yeah. . . um. . . because I stopped about what I’m doing. . . I think about why it

looks different. . . no. . . no. It’s right the z component is (corrects his mathematics

and further modifies it) that’s from the theta . . . φ− hat component. . . I guess.
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Bz = µ0Inφ̂ (C.4)

Bz = µ0Iφnφ̂ (C.5)

Instructor: Okay, why would call this Bz . . . ?

Alan: Because the. . . B is in the direction (gestures) cross with the direction of I. So. . .

Instructor: Okay. . . so, why is it in the phi direction?

Alan: What is in the phi direction? . . . that I or . . . (goes back to mathematical equation

and modifies it)

Bφ = µ0Inz ẑ (C.6)

Instructor: You had phi− hat in your math.

Alan: Yeah. I know. . . I’m sorry. . . I’m (modifies the mathematical equation) . . . there

we go. . . that’s what I meant to do.

Bz = µ0Iφnẑ (C.7)

Instructor: Okay.

Alan: So then the. . . a. . .

Instructor: So that’s good for inside and outside?

Alan: That’s only inside. Because. . . it’s zero outside. . . arguably. . . again. . . I don’t. . .

I still don’t understand why exactly that is. . . it seems. . . you remember that big

conversation. . . it’s zero outside because it’s zero at infinity. . . and difference is

zero. . . therefore.
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Instructor: It turns out that you can do this empirically. . . you can make a really long

one. . . and measure what the magnetic field is really close to it and gets zero.

Alan: Okay. That works for me. Okay there is the z component of the B field. . . so then

doing the Br component. . . (starts recording the mathematical equation)

∮
Br · dl = (C.8)

Instructor: Are you doing the same loop or a different loop?

Alan: I guess. . . do the same loop. . . um. . . let me think about that. Though. . . um. . .

no. . . because it’s gonna be. . . It’s like a cylinder carrying a surface charge, surface

current I mean (Alan draws a cylinder and picks a loop) and there is my new dl . . .

um. . . my new Amperian loop.

Instructor: Is this going to give you the B in the r direction?

Alan: Nope. Is that you originally asked me? . . . I’m sorry.

Instructor: No, but you wrote down B in the r direction.

Alan: I would like to revise that. . . so, it’s going to be the phi component or the phi

direction of B . . . again µ0Ienclosed . . . (continues recording mathematics) this will do

it . . . easier.

∮
Bφ · dl = µ0Ienc (C.9)

Alan: . . . then Ienclosed is going to be. . . um. . . µ0 . . . total Ienclosed is going to be

(continues recording mathematics) sigma da . . . um. . . k da right? which is just. . .

∮
Bφ · dl = µ0Ienc = µ0

∫
k · da (C.10)

Instructor: So, you want to know how much current is piercing your loop?
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Alan: Right, so it’s going to be sigma times V and how we get there? . . . so there going

to be sigma times. . .

Instructor: Where is sigma in this problem?

Alan: Isn’t sigma is the. . . so the total current is just I, the z component of I . . . . . . can

I leave it like that?

Instructor: Yup, we haven’t specified how big is Iz compared to Iφ yet.

Alan: Okay. . . and this is going to be (further modifies his mathematics) Bφ . . . two pi . . .

(goes back to his diagram and labels r) . . . r . . . µ0 . . . um. . . again just I . . .

∮
Bφ · dl = µ0Ienc (C.11)

Bφ2πr = µ0Iz (C.12)

Bφ =
µ0Iz
2πr

φ̂ (C.13)

Instructor: Is that good inside and outside?

Alan: Only outside. . . so if we draw our Amperian loop inside . . . then Ienc is zero (then

Alan specifies the magnetic fields for each region)

Bz = µ0Iφnẑ → r < a (C.14)

Bφ =
µ0Iz
2πr

φ̂ → r > a (C.15)

Student 2: Danny
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Instructor: Okay, we have been talking about the solenoids. As if there were a sheet of

current that got folded around a circle but it turns out that there is actually some

current that goes in at the top and comes out at the bottom. So, there must be a

component of the current goes in the down direction. So, if you had an infinite

long solenoid. what would be the magnetic field inside and outside?

Danny: Infinitely long. . . but. . . you want me to consider current going down (gesture -

hand moves down)?

Instructor: Yes, there is current going around and current going down.

Danny: If we just call the current going down (draws an downward arrow) as. . . let’s call

it I.

Danny: So, then my first thought could be to put an Amperian loop (gesture- hands to

show a loop) around so. . . like this (adds a loop to his diagram) . . . so, then you

would have a current going down through (gesture - downward hand movement)

Danny: (next Danny starts recording math without talking) So. . . what was the exact

question again?

Instructor: What’s the magnetic field inside and outside?

Danny: Okay (keeps recording math) and the current. . . there is no varying currents here.

Instructor: Time varying currents? . . . no.

Danny: . . . um. . . since there is no. . . (long pause) seems like it. . . trying to think

specially. . . it may be something tricky. . . I don’t know why.

∮
Bφ · dl = µ0Ienc + µ0ε0

∫
∂E

∂t
· ds (C.16)

Instructor: Okay. . . if there’s the case as simple as you think, what you think it would

be?
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Danny: It would be this (points to the Maxwell’s correction term in his mathematical

equation) is just zero and you just get. . . I . . . this I (points to the diagram) over

two pi r (records the mathematical equation for magnetic field). That’s for the outside

and zero inside.

B =
µ0I

2πr
(C.17)

Instructor: What’s the direction of the B, on the outside then?

Danny: Then. . . if we call this. . . z (refers to his coordinate system) and then this angle

would be pi (Danny decides to add more parts to his diagram and modifies his math-

ematical equation) and this (points to mathematical equation) would be phi− hat

B =
µ0I

2πr
φ̂ (C.18)

Danny: If you define like. . . oh. . . okay. . . I’ve already said this (current direction - points

downward) was down. So. . . this B field equation be minus phi − hat (modifies the

equation).

B =
µ0I

2πr
(−φ̂) (C.19)

Instructor: So, you went from. . . the closed integral of B dot dl to B equals two pi r . . .

really quickly. How did that happen?

Danny: So, for outside. . . and this would be r (labels direction of r of his diagram) defined

from z (gesture - up and down movement of hand) down the middle. Um. . . (points

to his mathematical equation) a line integral closed . . . so. . . a loop right. . . and then

um. . . (long pause) because this is still. . . we are considering a cylinder right (gesture

- both hands holding like a cylinder) (long pause) . . . okay. . . I see what you were

saying. . . because I assumed that was like a line, a wire of charge. . . because what I

251



did. . . was assume that B is always in the direction of my loop points.

Instructor: Okay, and is it?

Danny: Well. . . it’s going to be perpendicular to the current (points to the diagram) . . .

okay. . . So. . . I was thinking like. . . a cylinder (draws on the board) and I was

thinking like a instead of a sheet of charge coming down (gesture - both hands holding

like a cylinder), just think like one line coming down. . . and so that would be like a. . .

part of the current. . . and then that would be exactly like line charge. . . So, I’m kind

of imagining like. . . yeah. that should work. . . I think it’s good.

Instructor: Okay. . . so that gives us the B due to the component of the current that’s

going down the outside. There should be some B due to the component of the current

that’s going around. What’s that?

Danny: And this is still infinite. . . so, we would look at a loop. . . so. . . I turn this onto

side (draws on the board) and say that there was. . . um. . . current coming in out of

the board (gesture - finger pointing out of the board) so. . . then this is inside. . . I

draw my Amperian loop like this then I do B dot dl . . . and I end up with (continues

to work in mathematics) . . . yeah. . . this (labels on the diagram) is L (then he record

mathematics without any explanation).

B =
µ0NI

L
(C.20)

Instructor: Where did that come from?

Danny: So. . . B . . . dot dl . . . so, this is . . . I’m going to go. . . around this way (picks

the direction on his loop) . . . so. . . do I need to argue like the full argument where. . .

we make a loop out here (draws a loop far away) and there is no flux. . . like or can I

just. . . well I’ll just do it.

Instructor: Sounds like you did most of it already.
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Danny: Yeah. . . so there is no flux through a field out here (points to the loop that is far

away) . . . through the loop out here and there can be any flux through. . . um. . . a

loop at infinity. We know that the field goes to zero at infinity. So. . . if the field is

not charging it has to be zero at infinity and then it’s zero all the way up to for an

infinite solenoid. So. . . that means we don’t consider this side of the loop (points to

the loop) . . . because B is zero. So B dot dl would be zero. These sides (points to the

sides of the loop) won’t contribute so, you just left with L . . . that’s why there’s one

L here (points to his mathematical equation) . . . so it would be B times L equal µ0 I

but there is N of them. So you get what ever up here.

∮
B · dl = µ0I (C.21)

B.L = µ0IN (C.22)

B.L =
µ0IN

L
(C.23)

Instructor: Okay. . . is that I same as the I in the other one?

Danny: Well. . . yeah. . . because. . . well. . . let’s see. . . yeah.

Instructor: So you have outside B in the phi − hat direction, inside you have B in the z

direction?

Danny: Yes.

******************************************************************
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C.1.2 Problem 2: Two charges on the line

Student 1: Larry

Instructor : So. . . suppose (draws on the board) We have two point charges, one at −a &

the other at +a and this one (at −a) has charge −q and this one (at +a) has charge

+q. What’s the electric field looks like along the x-axis?

Larry : Alright, so I suppose let’s start by finding the electric field for each of them. . . then

summing. . . um. . . so let’s put down a point I guess (marks point p on the axis right

of +q) and then I’ve to get the distance from the charge to the point. . . and for each

of them. I think it’s different in each of the three regions. I’ve to write a different. . .

expression for. . . the distance. Are you allowed to tell me if what I’m saying is right

or not.

Instructor : Yes.

Larry : And you haven’t fell the need to mention anything so far?

Instructor : I want to see how far you can get.

Larry : Okay. . . well. . . alright. . . so the electric field from this guy (draws a circle around

+q charge) is gonna be. . . I’ll call him E−plus (starts recording mathematical equation

and calls out the names of the symbols while recording) it’s gonna be k q over. . . um. . .

I’ll just call r − plus and that’s gonna be. . . since it goes outward. . . uh. . . like here

it’s going to be this way (records on the board - a rightward arrow to right from +q

charge) and from here (points to the region left of +q) it’s going to be that way (records

on the board - a leftward arrow to left from +q charge) and here (points to the region

right of −q) it looks like that (records on the board - a leftward arrow towards −q

charge).

Instructor : Do you want to divide this in to different regions?

Larry : That’s what my intuition tells me.
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Instructor : Okay, divide it in to regions.

Larry : Alright, we’ll call this region 1, region 2, region 3 (labels on the diagram).

Instructor : Okay.

Larry : Um. . . so. . . for region 3 . . . uh. . . my E − plus would be k q over. . . my r will

be (starts recording mathematical equation and calls out the names of the symbols

while recording) uh. . . x minus a . . . yeah and that would be in the positive x− hat

direction. Then E −minus will be k q over uh. . . x plus a . . . yeah. . . in the minus

x− hat direction.

E+ = [
kq

(x− a)2
]x̂ (C.24)

E− = [
kq

(x+ a)2
](−x̂) (C.25)

Larry : Oh. . . that’s a minus q as well (modifies the mathematical equation) so they

cancels. . . never mind they points the same direction. . . they will always add.

E− = [
−kq

(x+ a)2
](−x̂) (C.26)

Instructor : So. . . before you had. . . in that region minus q charge had a. . . electric field

to the left and now you wanted it to be to the right?

Larry : No that’s not right. Isn’t it? um. . .

Instructor : Definitely inconsistent.

Larry : Yeah. I fell good about the arrows. Uh. . . so. . . E − minus will be minus k q

over (modifies the mathematical equation) because that minus is encoded there and

so. . . they will end up subtracting from each other. . . and so. . . the total is the sum

of these two (records a mathematical equation) and that’s gonna be true for all areas.
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E− = [
kq

(x+ a)2
](−x̂) (C.27)

Etotal = E+ + E− (C.28)

Larry : . . . and. . . then for region 2. . . it’s basically the same except. . . both of these are

gonna be. . . uh. . . the distance from both of these gonna be. . . a minus x. I’m pretty

sure. . . no I don’t think that’s right. . . they are both in the minus x− hat this time.

E+ = [
kq

r+2
](−x̂) (C.29)

E− = [
kq

r−2
](−x̂) (C.30)

Larry : . . . and. . . this time the distance. . . if I pick a point here (points to the field

point marked in the middle region) the distance is a minus x for this guy (E+) and

the distance here would be. . . still a plus x or x plus a.

E+ = [
kq

(a− x)2
](−x̂) (C.31)

E− = [
kq

(x+ a)2
](−x̂) (C.32)

Larry : Then region 1 . . . so I’m not doing anything terrible wrong so far?

Instructor : You are doing fine. You are more nerves than you need to be.

Larry : Um. . . still got (calls out the names of the symbols while recording the math

equation) k q over. . . this time. . . it’s still going to be a minus x down here. Yeah. . .

since x is gonna be negative. . . and that’s in the minus x− hat direction. . . and this
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(points to E− equation) is going to be k q over. . . uh. . . a plus x . . . no . . . a minus

x . . . positive x− hat direction.

E+ = [
kq

(a− x)2
](−x̂) (C.33)

E− = [
kq

(a− x)2
](x̂) (C.34)

Larry : No that’s not right.

Instructor : Which part of it’s not right?

Larry : Um. . . this (points to E− equation) should be plus (modifies the equation) yeah. . .

that effectively shortens the distance. . . yeah.

E− = [
kq

(x+ a)2
](x̂) (C.35)

Instructor : Okay. . . how do you know it’s a plus x?

Larry : So. . . like intuitively I know this point (points to field point in region 1) closer in

region 1. So. . . the a and the x should interfere with each other and since x is negative

then it should be positive. . . um. . . I mean if you just look at it . . . your distance is

this (gesture- fingers at −q and field point) your total distance is this (gesture- fingers

at mid point and field point) and this is your a (draws lines to specify the distances

on the diagram) and this is your x . . . this is much better way to explain it.

Larry : I change my mind. . . and this (draws lines to specify the distances on the diagram)

is your x . . . and this is your a and your total distance. . . is wait. . . I’ll call this

minus x I guess.

Larry : Or may be. . . I shouldn’t. . . (Larry moves to consider region 3 and draws lines to

specify the distances on the diagram)
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Larry : . . . this should be x minus a for the region 3. Then for this one (Larry moves to

consider region 2 and draws lines to specify the distances on the diagram) that’s x and

that’s a and this should be a minus x . . . which I have. . . and for this one (points to

region 1) . . . do you. . . am I being clear enough?

Instructor : I’ll ask. . . if I needed to.

Larry : And then here we got x and then a. So that should be x plus a (modifies the

electric field equation for region 1)

E+ = [
kq

(a+ x)2
](−x̂) (C.36)

E− = [
kq

(x+ a)2
](x̂) (C.37)

Larry : I really should have been more careful. . . when I did this the first time. . . and

(Larry starts to reconsider his mathematical equations) for the negative ones. . . um. . .

I’ve got a point here (points to region 3) so the big x and a and that should be x plus

a, which it is. And then here (points to region 2) I’ve got little x . . . still should be x

plus a, which it is. And then here (points to region 1) . . . I’ve got x and a . . . so it

should be x minus a . . . uh. . . or if I wrote it a minus x . . .

E− = [
kq

(a− x)2
](x̂) (C.38)

Larry : . . . no it doesn’t still come out right. I’m getting hung up on how the . . . in here

(points to region 1) my x is always going to be negative . . . so. . . yeah it should be. . .

I’ll write it negative x plus a . . . so a minus x.

E− = [
kq

(−x+ a)2
](x̂) (C.39)
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Instructor : So the negative x plus a . . . says that. . . if x has a value . . . has a negative

value. . . suppose x was negative seven then you would over here in the left side. . .

then negative x plus a would give you seven plus a . . . is that the distance you got to

express?

Larry : No, it’s not. . . (then Larry modifies the equation) yup.

E− = [
kq

(x+ a)2
](x̂) (C.40)

Instructor : Okay, now you have E − plus and E −minus as the same as each other for

region 1.

Larry : Yes. . . um. . . and no where it looks alike.

Instructor : Should E − plus and E −minus be the same in region 1?

Larry : No they shouldn’t . . . they should be . . . (modifies the mathematical equations)

it should be x minus a.

E+ = [
kq

(x− a)2
](−x̂) (C.41)

Instructor : So now, if we look across all three regions just E − plus . . . is it always the

same?

Larry : Um . . . no.

Instructor : What’s different about it?

Larry : x minus a (points to E − plus equation in region 3), a minus x (points to E − plus

equation in region 2). I like that one though . . . then if my x is positive. . . then a

minus x . . . the number gets smaller the magnitude gets smaller and my distance is . . .

closer in this side (points to right side from mid point in region 2) of the x axis. Then
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if it’s negative then a minus x gets bigger and that would probably be here (points to

left side from mid point in region 2).

Instructor : Okay. Is a minus x quantity square the same as x minus a quantity square?

Larry : Um. . . yeah it is.

Instructor : Okay.

Larry then modifies the equations for region 2)

E+ = [
kq

(x− a)2
](−x̂) (C.42)

E− = [
kq

(x+ a)2
](−x̂) (C.43)

Instructor : Okay. If we look across regions 1,2 and 3 . . . only E − plus is always the

same?

Larry : Um. . . except for the direction in region 3.

Instructor : Okay.

Larry : The magnitude is always the same.

Instructor : What about E −minus?

Larry : Um. . . except for the direction in region 1, yes.

Instructor : Okay.

Final versions of Larry’s mathematical equations.

Region 3,

E+ = [
kq

(x− a)2
](x̂) (C.44)
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E− = [
kq

(x+ a)2
](−x̂) (C.45)

Region 2,

E+ = [
kq

(x− a)2
](−x̂) (C.46)

E− = [
kq

(x+ a)2
](−x̂) (C.47)

Region 1,

E+ = [
kq

(x− a)2
](−x̂) (C.48)

E− = [
kq

(x+ a)2
](x̂) (C.49)

Student 2: Oliver

Instructor: Okay. . . So suppose . . . (draws on the board) We have two point charges, one

at −a & the other at +a and this one (at −a) has charge −q and this one (at +a) has

charge +q. What’s the electric field looks like along the x-axis?

Oliver: Okay. . . So you just . . . you just want an expression for it or . . .

Instructor : Sure.

Oliver : Okay.

Instructor : You can draw on the board. It’s okay.

Oliver : So . . . the total field is going to equal the contribution from each of them, because

of the superposition (records math on board) . . . I want to just consider along the

x-axis?

~E = E+q + E−q (C.50)
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Instructor : Yup.

Oliver : Cool . . . so for . . . (records on the board) E+q . . . (steps away from the board)

it’s going to equal . . . (he calls out the names of the symbols while recording the math

equation) one over four pi epsilon note . . . times . . . q . . . um. . . curl r squared . . .

r hat.

E + q =
1

4πε0

q

Γ2
Γ̂ (C.51)

Oliver : Um. . . so. . . um. . . I’m trying to think. I’m sorry. . . this r is going to equal. . .

um. . . (records Γ = (. . . ) on the board and a long pause. He could not move forward)

Instructor : You look like you are stuck. Where are you stuck?

Oliver : Um. . . I’m . . . figuring out this (points to Γ = (. . . ) on the board) it’s (records

on the board, Γ = (a−x)) and then x is anywhere here (indicate the region between a

and −a on the axis) right? . . . no I don’t know if that works.. . . that’s what we have

in notes.

Γ = (a− x) (C.52)

Instructor : Sure.

Oliver : I’m forgetting is it r-prime minus r or r minus r-prime. . . ?

Instructor : You are going to square script dr right?

Oliver : Yeah.

Instructor : So, does it matter?

Oliver : Um. . . no. . . well. . . no. . . does it?

Instructor : No. So, it would be x minus a.
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Oliver : Okay, that’s what I was trying to figure out (goes back and changes the equation,

Γ = (x− a)). . . so, x minus a . . . and so . . . then we substitute that in (modifies the

math equation on the board).

E + q =
1

4πε0

q

(x− a)2
Γ̂ (C.53)

Oliver : Then E for negative q equals. . . (records on the board) I’m going to change this

(points to, 1
4πε0

) to k because it’s easier. . . negative q. . . and then we are going to

have . . . x plus a squared and then r-hat. . . um. . . so. . . r-hat just um r-hat. . . to

any region in pointing on the x-axis (points to x-axis on the diagram) on that direction

and I just think it depends on the point we pick or we want the whole axis. right?

E + q =
kq

(x− a)2
Γ̂ (C.54)

E − q =
k − q

(x+ a)2
Γ̂ (C.55)

Instructor : Hmm. . .

Oliver : So we just change that to x-hat, does that work?

Instructor : Well. . . that says the charge from the plus q charge or the electric field from

the plus q is always in the x-hat direction.

Oliver : Um. . . but it could be negative (points the index finger along the negative x

direction on the diagram) . . . and so that would work.

Instructor : Alright.

Oliver : So. . . the field is going to point out here. . . and here (points to −q and draws

arrows on the diagram to represent electric field direction from each charge). . . oh. . .
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hold. . . excuse me. . . that way (changes the direction of the arrow from −q charge to

be rightward on the far left-hand region).

Instructor : It’s okay. . . so, you could divide this up in to regions.

Oliver : Yeah. We could do this region (labels the regions, region 3 - left of −q, region 2 -

between −q and +q, region 1 - right of +q) . . . that will work.

Oliver : So. . . Um. . . one and three are zero. . . because they. . . they are going to

(gestures-index fingers towards each other) be destructive. . . or is. . . I guess. . . out

here (points to region 3) . . . does this one (points to −q charge) . . . this is gonna

have. . . um. . . a greater effect than the contribution from this (points to +q charge)

or just. . .

Instructor : Right.

Oliver : Because. . . but I guess. . . um. . . so. . . in area 1. . . it’s gonna be (points to the

mathematical equation ~E = E+q+E−q). This one (E−q) minus this one ( ~E = E+q). . .

right.

Instructor : So. . . okay. . . and what will be the overall direction of E?

Oliver : E is going to be to the right (index finger moves rightward).

Instructor : Okay, is that plus x-hat or minus x-hat?

Oliver : Plus x-hat.

Instructor : Okay.

Oliver : Right. . . so. . . E is going to equal (records on the board while calling out the

names of the symbols) . . . k times negative q . . . x plus a squared . . . minus q . . . that

doesn’t seem right though.

E1 = k[
−q

(x+ a)2
− q

(x− a)2
]x̂ (C.56)
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Instructor : What’s wrong about it?

Oliver : Well. . . if these are both negative (points to the two terms in his mathematical

equation) then looks like this. . . I’m not sure about that. It looks like this. . . would

add together. . . but I have different denominators. . . so I can’t say for sure. Um. . .

because the field from this guy (points to +q charge) in here (points to region 1) is

going to reduce the field from this guy (points to −q charge) out here (points to region

1).

Instructor : Okay and right now they have the same sign as each other or they have a

different sign from each other?

Oliver : Um. . . right now it looks like they have some as each other. But. . . yeah. . . the

only sign difference is going to be the cross product of the binomial part.

Instructor : Okay. . . is that going to give you an overall sign changed to your term?

Oliver : I don’t think so. I guess you could pull the sign off. . . but. . . does it?

Instructor : No it doesn’t.

Oliver : That’s not right.

Instructor : So, you should have opposite signs from each other.

Oliver : Right.

Instructor : But your math doesn’t say that.

Oliver : Right. . . so I’m not wrong probably am I. . . oh. . . because this (points to the

second term in his mathematical equation) should be a plus (makes changes in his

mathematical equation) because this still. . . it shouldn’t be minus. That’s my bad.

E1 = k[
−q

(x+ a)2
+

q

(x− a)2
]x̂ (C.57)
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Instructor : So. . . the contribution from the electric field from the plus q charge points in

the plus x-hat direction?

Oliver :

Instructor : They should both be plus?

Oliver : No, one should be minus. . . this. . . this. . . okay. . . so. . . this (points to the

second term in his mathematical equation) is this one (points to +q charge) right. . .

this points the negative x-hat direction out here (points to region 1).

Instructor : okay.

Oliver : And then this one (points to the first term in his mathematical equation) points

opposite right here (points to region 1) because it’s pointing in. . .

Instructor : Good. So, what does your math say about that?

Oliver : It says that’s positive.

Instructor : How would you fix that?

Oliver : Doing the opposite (changes the sign in his mathematical equation) that (first

term) should be a plus and this (second term) should be a minus.

Oliver : Do I need to go more further than that?

Instructor : Nope. Tell me about region 2.

Oliver : Region 2, they are going to be constructive. . . So, E-two. . . by constructive, I

mean they both pointing in same direction (gestures-index fingers in same direction).

So. . . it would be. . .

Instructor : Okay.

Oliver : Um. . . k um. . . so. . . this (points to −q charge) is my x charge but it has

negative x-hat direction (gestures-index fingers along negative x). So this is going to
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be (starts recording mathematical equation for the electric field in region 2) q over x

plus a squared. This (points to +q charge) um. . . wait a second (steps away from the

board) . . . that one is going to be negative then. . . that does not make sense.

Instructor : You sounds like you are re-considering something.

Oliver : Yeah, um. . . let’s just do both separately. (Oliver calls out the names of the

symbols while recording mathematics o the board) negative q over x plus a squared

and that’s going to be negative x-hat. Since it’s backward. . . plus kqx minus a

squared. . . negative x-hat.

E2 = k
−q

(x+ a)2
−x̂+ k

q

(x− a)2
−x̂ (C.58)

Instructor : So, you have minus q, minus x-hat and plus q, minus x-hat

Oliver : Yeah.

Instructor : So if I stick all those minus together. . . I get the first term is positive and the

second term is negative.

Oliver : So, it would be zero. Well. . . no. . . may be not. . .

Instructor : Are they suppose to be in the same direction or in opposite directions?

Oliver : Same direction.

Instructor : And that direction should be?

Oliver : To the left (points his index finger to left along negative x-hat direction)

Instructor : Okay.

Oliver : So. . . negative x-hat. . . so. . . yeah. I’m confused.

Instructor : You resolved this in region one by saying that the term from the charge on

the left (−q) should be positive because it’s contribution to the electric field is in the
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positive direction and the term from the charge on the right (+q) should be negative

because it’s contribution is in the negative direction.

Oliver : Yup.

Instructor : So. . . now you’re in region 2 and the contribution from charge on the left

should be?

Oliver : I do not worry about the sign but do worry about the field points at. that’s what

I’m keeping up on.

Instructor : Yup.

Oliver : And so. . . just be. . . um. . . (makes changes to his mathematical equations)

E2 = k
q

(x+ a)2
−x̂+ k

q

(x− a)2
−x̂ (C.59)

E2 = kq[
1

(x+ a)2
+

1

(x− a)2
]−x̂ (C.60)

Instructor : Okay. . . what’s region 3 look?

Oliver : Region 3. . . is going to be much like region 1 except exactly the opposite. so. . .

(records on the board) kq over x plus a squared and this is going to be negative x-hat. . .

and plus q. . . x minus a squared and going to be positive x-hat, right?. . . so. . . for

this charge (−q) the field is pointing inwards (gesture-index finger to the left) because

this charge (+q) is pointing out. So that’s going to be k minus q x plus a squared plus

q over x minus a squared and x-hat for both of them.

E3 = k[
q

(x+ a)2
−x̂+

q

(x− a)2
x̂] (C.61)

E3 = k[
−q

(x+ a)2
+

q

(x− a)2
]x̂ (C.62)
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Instructor : Okay.

Oliver : That’s what it should be.

Student 3: Charlie

Charlie : So, along this line be coming in this direction (records the electric field direction

on the axis) . . . this side (right from the mid-line) and also be . . . like so.

Instructor : Okay, So, why does it change direction of that charge (−q) but not the other

charge (+q)?

Charlie : Because with the negative charge it comes in. . . wait a second (goes back to the

diagram and make changes to the electric field direction). Yeah, it suppose to go out

this way (rightward hand movement) that’s my bad.

Instructor : Okay.

Charlie : Positive radiates out and negative radiates in.

Instructor : So, why are they. . . why is it pointing to the left in the middle.

Charlie : Because. . . it’s. . . coming over to the negative (points to the −q charge)

Instructor : Okay.

Charlie : Is that not how it suppose to be?

Instructor : No. It looks good.

Charlie : Okay.

Instructor : Alright, shall we do some math?

Charlie : Yes, we should.

Instructor : What’s this look like in math?
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Charlie : (charlie starts recording a mathematical equation) Um. . . we wanna do the total

charge. . . r squared r-hat.

E =
1

4πε0

Q

r2
r̂ (C.63)

Instructor : Okay.

Charlie : And then Q is going to be 2q negative 2q . . . with. . . along x direction. So. . .

x-hat . . . with r (points to r in the equation) being a distance of a.

Q = 2q → Q = −2q (C.64)

E =
1

4πε0

Q

r2
x̂ (C.65)

Instructor : Okay.

Charlie : I feel like. . . this (points to mathematical equation) is more for. . . like a point. . .

right?

Instructor : Okay.

Charlie : So, the. . . just the electric field. . . I don’t know. . . I guess. . . just generally. . .

I guess this is the electric field (modifies the mathematical equation).

E =
−1

4πε0

2q

r2
r̂ (C.66)

Instructor : Where is that electric field?

Charlie : Just anywhere.

Instructor : Anywhere. . . it’s always in minus r-hat?
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Charlie : I mean. . . I don’t know what. . . what do you want for electric field? Just an

electric field?

Instructor : All along the axis.

Charlie : Just all along the axis. . . So, it’s going to be in the x direction (modifies the

mathematical equation).

E =
−1

4πε0

2q

r2
x̂ (C.67)

Instructor : Always in the plus or the minus x?

Charlie : Um. . . well. . . for over here (points to the left of −q) it’s in the positive x

direction, then between here and here (region between two charges) it’s in the negative

x direction and here (points to the right of +q) to the positive x direction again.

Instructor : Okay. It sounds like you should write electric field for each region.

Charlie : (charlie starts to record electric field for each region, starting from far left, middle

and far right regions) So this going to be E is equal to. . .

(he calls out the names of the symbols while recording the math equation) one over

four pi epsilon note 2q r squared x-hat.

E =
1

4πε0

2q

r2
x̂ (C.68)

E =
−1

4πε0

2q

r2
x̂ (C.69)

E =
1

4πε0

2q

r2
x̂ (C.70)
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Charlie : However. . . am I going to be getting a different electric field from this charge

(points to −q since it’s further away? So, this 2q (points to mathematical equation

recorded for far left region) going to be something different. So. . . am I suppose to do

superposition too? So, rather than this (points to mathematical equation recorded for

far left region) we could have something like (calls out the names of the symbols while

recording the math equation) E equal k positive q over 2a squared.

E = k[
q

(2a)2
] (C.71)

Instructor : Where?

Charlie : Over here (points to the left of −q) where you got. . . because a plus another a.

Instructor : Okay, so, where are you looking at in this region?

Charlie : Um. . . this one (points to the left of −q)?

Instructor : Yeah.

Charlie : Will see. Could we look right here (points to the same position as −q is on the

axis) or right beyond it?

Instructor : We could, but we should.

Charlie : Then this one (points to mathematical equation recorded for far left region) could

be. . . it could be some distance x. What I’m referring is x (labels the distance from

+q to the field point in left of −q). So just x squared (modifies the mathematical

equation).

E = k[
q

(x)2
] (C.72)

Instructor : Okay.
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Charlie : And then, it also. . . I’m going to re-define my x. I’m going to say my x is

from this point (points to mid point on axis). Makes this (modifies the mathematical

equation) x plus a squared. Sounds like a good idea? And this is going to be. . . um. . .

x minus a squared.

E = k[
q

(x+ a)2
+

−q
(x− a)2

]x̂ (C.73)

Charlie : Now we got a whole different. . . Now that says it’s going to be negative.

Instructor : What’s negative?

Charlie : The field over here (points to the left of −q) because this (points to the term

−q
(x−a)2 of the mathematical equation) is going to be bigger than this (points to the

term q
(x+a)2

). Because the bottom is going to e smaller than that (points to the term

(x+ a)2).

Instructor : Okay. How would you adjust this?

Charlie : Change my negative sign (laughs)?

Instructor : Okay.

Charlie : Or is this (points to the mathematical equation) would be. . . or this should be

added right? I think. . . I think I’m missing something. . . that makes my negative

sign. . . obviously something has to happen to it.

Instructor : Something has to happen yes. Okay

Charlie : These (points to the terms q and −q in mathematical equation) shouldn’t be

subtracted from one other. Should they?

Instructor : Why not?
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Charlie : Just because. . . I feel like it’s. . . like the electric field from both of them added

together (gesture-hands with fingers spread moves towards each other). In one case. . .

just in this case it’s negative (points to the arrows on diagram).

Instructor : So, in this region over here on the left. . . the contribution from the plus

charge points in what direction?

Charlie : Points in the direction (gesture-right hand moves leftward).

Instructor : And the contribution from the minus charge points?

Charlie : That direction (gesture-right hand moves rightward).

Instructor : So these two contributions should add or subtract?

Charlie : Yes. they should subtract (modifies the mathematical equation) and that makes

sense.

E = k[
q

(x+ a)2
− −q

(x− a)2
]x̂ (C.74)

Instructor : Now you have two negative signs, which makes a plus says they are adding.

Charlie : Yeah. Because it will become a positive. . . yes. Alright, I agree with that.

Instructor : So. . . label me which of these terms belongs with the negative charge, which

belongs to positive charge.

Charlie : (Charlie labels −q charge as q1 and +q charge as q2) So q1 and q2 (then modifies

the mathematical equation).

E = k[
q2

(x+ a)2
− −q1

(x− a)2
]x̂ (C.75)

Instructor : Okay and so, when I combine these two negative signs, it says there is a

positive sign.
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Charlie : Yeah (then modifies the mathematical equation).

E = k[
q2

(x+ a)2
+

q1
(x− a)2

]x̂ (C.76)

Instructor : And now I’m saying the direction. . . the contribution of the electric field from

each of these is both in the plus x direction.

Charlie : Or we just do that (modifies the mathematical equation) because that has a

negative direction. Now this one is bigger as earlier said and would be positive.

E = k[
−q2

(x+ a)2
+

q1
(x− a)2

]x̂ (C.77)

Instructor : Okay.

Charlie : Because that one (points to +q) should be pushing it (points to−q) away (gesture-

hand moves leftward) over here (points to left of −q).

Instructor : Okay. Let’s go to the middle region.

Charlie : Um. . . so. . . something. . . (Charlie starts recording mathematical equation

without talking, but stops recording halfway through) just have a distance x that’s

just anywhere from the origin (points to mid-point on axis) . . . I know I need that

there. . . I know.

E = k[
−q

(x+ a)2
(C.78)

Instructor : Why it is need to be there?

Charlie : Because, if it was over here (marks the field point in the region between +q and

−q) then you can’t just say it’s x away from that one (points to +q). So I need. . .

so. . . flip side if it’s over here (marks the field point between +q and mid-point) I can’t

say it’s x away from that (points to −q) one. That’s going to be the x plus negative a.
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So the distance right here is x (labels the distance from mid-point to the field point),

but this is negative a and this should be x minus a (records on the diagram).

Charlie : Then when we extend it to. . . this way (right side of the mid-point) or I guess

then x would become negative or if it was negative over here (left side of the mid-point)

that should work then.

Instructor : Okay. So. . . x is positive going to the left?

Charlie : Yes. I got mine negative and positive signs switched around.

Instructor : Okay. Can you draw for me which direction is x positive?

Charlie : Well draw. But then my negative is over in the x positive direction. I need to

switch them. That means. . . can I just put a negative (modifies the equation)?

E = k[
−q2

(−x+ a)2
+

q1
(x− a)2

]x̂ (C.79)

Charlie : Okay. . . over here (marks the field point in the region to the left of −q) this is

going to be negative x (Charlie re-defines the distance on the diagram). So the negative

x plus a. . . that has to be minus a because it’s going in that direction too. Should

make this. . . negative x minus a (modifies the equation). That’s fair.

E = k[
−q2

(−x− a)2
+

q1
(−x− a)2

]x̂ (C.80)

Instructor : That means they both the same as each other?

Charlie : Um. . . plus a (modifies the equation) negative x minus negative a.

E = k[
−q2

(−x− a)2
+

q1
(−x+ a)2

]x̂ (C.81)

Instructor : Negative x minus negative a . . . so. . . um. . . q1 over negative x plus a

squared. . . when. . .
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Charlie : Should be minus x and plus this a to get that distance.

Charlie : Can’t we just keep it like this (points to the equation) and then. . . the negative

sign with the x.

Instructor : Yes. You can do that.

Charlie : So this is fine?

Instructor : This looks good.

Charlie : Still over here (points to the region between q1 and q2) oh man. . . um. . . may

be I’ll just make my positive x over here (points to the diagram). I kind of lost my

chain of thoughts. . . where I was?

Instructor : Why don’t you erase things in the middle part and start a again with the

middle part. You might want to erase all of your x-s . . . they are confusing.

Charlie : Alright, (Charlie starts over to record the mathematical equation for electric field

in the middle region) got a negative q up here and this is going to be some distance

(re-defines the distance on the diagram) and this is the distance negative x . . . See I

feel like if I didn’t put the negative in there. why am I now calling this negative x?

Instructor : I don’t know why you are doing that.

Charlie : I’m not sure why am I either. I don’t need to. . . do I?

Instructor : No.

Charlie : Where do I caught up last time?

Instructor : You changed the sign on the top one. You hit all the possible comments.

Charlie : Surely, one of them has to be correct. Okay, um. . . this (points to the diagram)

is the distance x. (starts recording equation but stops halfway through) I guess that’s

minus a plus x. I don’t know why I’m still caught up on this? This is just the same. . .
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See what my thought is. . . , if this was x minus a, what suppose to be x minus negative

a? (records equation) Okay that makes sense. . . I think this entire distance is x minus

negative a (records on the diagram). Since that’s negative a because then. . . if x is

negative. . . as it approach to a (points to −a) it gets to zero. Yeah. . . negative q over

a . . . still it would be a positive distance from there.

E =
1

4πε0
[
−q1

(x+ a)2
(C.82)

Instructor : Okay.

Charlie : Or on the positive x direction. . . so. . . and this. . . I think it’s going to be

negative x plus a (records equation) . . . Yes.

E =
1

4πε0
[
−q1

(x+ a)2
+

q2
(−x+ a)2

] (C.83)

Instructor : Are both these in minus x-hat or positive x-hat or one in each?

Charlie : Um. . . (records x-hat and modifies the equation) oh yeah. because they should. . .

they both pushing the negative x-hat direction. So the field should be going in the

negative x-hat direction (gesture-right hand moves leftward). Yes.

E =
1

4πε0
[
−q1

(x+ a)2
+

−q2
(−x+ a)2

]x̂ (C.84)

Instructor : Okay. What’s the third region look like?

Charlie : This is going to be the same as that (points to the electric field equation in far

left region) with (records equation) ... yeah.

E = k[
−q1

(x+ a)2
+

q2
(x− a)2

]x̂ (C.85)
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Instructor : So, it looks like in the denominator x plus a always goes with q1 and x minus

a always goes with q2.

Charlie : That’s what it seems like.

Instructor : Okay. So what are the things that change with these regions?

Charlie : The direction of the field.

Instructor : Okay. How does that show up in your math?

Charlie : Well this (points to middle region) direction would be a negative x-hat. This

(points to far left region) would be a positive x-hat and this (points to far right region)

would be a positive x-hat. Which this direction is positive x-hat and this direction is

negative x-hat (records on the diagram).

Charlie : Because, this (points to term q1
(x+a)2

on electric field equation for the far left region)

is going to be greater than this (points to term −q2
(−x−a)2 on electric field equation for

the far left region) because of the negative and positive signs.

Instructor : Okay.

Charlie : Did I switch this? because that’s not what it showing up. Um. . . I think. . . I

want to go back to my original and (modifies the equation) because now this (points

to term q1
(x+a)2

) will be always be greater. . . that would be if it’s over here (points to

far left region).

E = k[
q2

(−x− a)2
+
−q1

(x+ a)2
]x̂ (C.86)

Instructor : You are confusing your self again.

Charlie : Okay (modifies the equation).

E = k[
−q2

(−x− a)2
+

q1
(x+ a)2

]x̂ (C.87)
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Instructor : Okay. Now we have minus signs in all possible places. Are you going to settle

on this one?

Charlie : I don’t know. . . I’m debating. I’m thinking because if it was that. . . x was

at negative 2a then that would still be negative three and makes nine which makes

smaller. Yeah, I’m still with this one. Then this one (electric field equation for middle

region), two negatives obviously giving us a negative. It’s the same thing with this

(electric field equation for far right region). So yes.

Instructor : x minus a is going to be smaller than x plus a.

Charlie : Yeah. Which means ...

Instructor : Okay. Good. We are done.

Charlie : Is that correct?

Instructor : Yeah.

******************************************************************

C.1.3 Mechanics problem

Student: ZEKE

Instructor: If you have a platform which rotates, and on the platform is a mass on a

spring. . . the mass is constrained in the frame of the platform so that it can only go

back and forth. . . does the mass undergo simple harmonic motion?

Zeke: Ok. . . they’re both spring constants k? it’s not like a half k, half k. It’s k and k.

Zeke: Ok, so, we’ll start by the real forces and do a free-body diagram. OK, the real forces

would be... OK, let’s say, we’ll call that x. . . let’s say equilibrium (records a dotted

line on the diagram).
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Zeke: Um. . . is it too much to say that, I don’t think we necessarily need to say this, but

can we say, just to be easier that when it’s at equilibrium, they’re at rest length?

Zeke: OK. So, in that case, um. The force on this (force on mass by left spring). Um. I’m

going to write something down but I don’t think it’s right. I’ll have to think about it,

negative kx (records on the board −kx along with a leftward arrow).

Zeke: So, if x is negative, then we expect k to push (gesture). . . um, OK. So in this

situation. Can I?. . . I’m going to put the mass over here, just for sign. Just to make

the sign make more sense (moves the mass to the right of the equilibrium).

Zeke: We have positive k. . . So negative kx makes sense because we have positive displace-

ment, and it’s gonna be pulling backwards in the negative direction (gesture).

Zeke: This one (the spring on the right), it’s going to be pushing, so it’s going to be pushing

at. . . kx.

Zeke: As x is bigger (fist moves rightward), this (force on right spring), the force gets bigger

by the factor of kx, so it’s gonna push this way at kx. That’s correct.

Zeke: No, I have done something silly.

Zeke: If m goes this way (fist moves rightwards) then we have a positive displacement

(+x). . . this (−kx) is negative, that (the force from the left spring) points that way

(leftwards), that makes sense. (then talks about the spring on right) We’ve got a

positive x (fist moves rightward), this (equation for right spring) is negative (finger

points leftward) and (force) points that way. Makes sense.

Zeke: I am happy now.

Zeke: Okay. Now ω (angular velocity) is going to be (applies the right-hand grip rule)

pointing out of the board (records on the board).

Zeke: So, the inertial force. Frame is not accelerating, there is no inertial force.
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Zeke: Centrifugal force ... um .. we have ω cross r (applies the right-hand grip rule). So,

we are going to have that (~ω×~r) pointing up. And then ω cross ω cross r (~ω× (~ω×~r))

is (applies the right-hand grip rule) pointing in negative, is going to point out and this

makes sense because centrifugal force always points out of the circle.

Zeke: This is going to be tricky. . . how do we want to do this?

Zeke: Well, imagine at this point just for a moment and then we will generalize it in a

second. We will say at this point (refers to the diagram on board) that x dot (ẋ -

linear velocity) is pointing out and it is accelerating this way (rightward).

Zeke: The case then ... ω cross ṙ points up (records on the board). Let’s see if this makes

sense. Well ... because ω goes this way (anti-clockwise) ... oh negative. It’s negative

ω cross ṙ. So, it’s this way (downward and records on the board).

Zeke: This is Coriolis and that makes sense because as if you look at it from the inertial

frame as m comes this way (hand moves leftward) and the platform moves behind

(hand moves anti-clockwise). It’s going to end up ... if it weren’t constrained, it would

end up further down the platform. Because the platform rotates under it.

Zeke: Okay. Transverse force (angular acceleration force) does not exist because there is no

omega dot (ω̇ - angular acceleration).

Zeke: Now, we have centrifugal force which was ω cross ω cross r (~ω × (~ω × ~r)). So that

would be (records on the board) mω2x and r which in this case is x.

Zeke: So, we were to add up forces in this direction (rightward) which is the only direction

we care about because of the constraint (and records ΣF = (−2k + mω2)x on the

board).

Zeke: So, if we have ω is such that this term mω2 not bigger than 2k (and records mω2 < 2k

on the board).
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Zeke: If that is the case then this (−2k + mω2) going to be constant and stays negative.

So we can define an effective k (k1) which would be k1 = 2k − mω2 (records on the

board) and we get F = −k1x(records on the board). So, in that case it would be

simple harmonic motion because k1 being a constant and they have the same form.

Zeke: Now, if mω2 is greater than 2k (and records on the board) mω2 > 2k. That would be

interesting, because in that case then we can have like a kappa (records on the board

κ = mω2− 2k) equal to the other way. Just to keep it positive. Then we have the sum

of the forces equal to kappa x (records on the board F = κx), which is funny.

Zeke: It won’t be simple harmonic motion because it doesn’t have a restoring force. Because

there is no negative sign. With x gets bigger positive force continues to be positive.

So, it’s going to continue come this way (rightward hand movement) until something

stops it. Probably the wall or what ever the spring is tight to.

Zeke: What you will have an unstable equilibrium at the center, because at x = 0 you will

have no force (points to F = κx) . But if you give a little jolt in the negative direction,

then you have a negative x and it will force it this way (leftward) that will keep it

forcing until the normal force is counteracted. If you give a little jolt in the positive

direction, then it will continue going until it hits a normal force.

Zeke: So I guess the summary is then, if ω is such that mω2 < 2k, it would exhibit simple

harmonic motion with a slightly different frequency of oscillation. if mω2 > 2k then

no simple harmonic motion and it would just accelerate to the edge of the circle.

Instructor: What happens if mω2 > 2k.

Zeke: In this case, this −2k + mω2 becomes zero and this is. . . a. . . that’s interesting. . .

no force, why would be no force.

Zeke: Okay, you would have where ever your mass was it stays there and that could be

because, if you imagine as the picture is drawn (points to the diagram) the spring
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wants to pull it back towards the equilibrium but the exact amount of spring wants to

pull it back. The centrifugal force wants to pull it out.

Instructor: Does it matter where it is?

Zeke: No,because as you go further the restoring force is going to become larger because

the springs displaces more. But at the same time, you are also closer to the outside,

so you are experiencing a bigger centrifugal force.
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Appendix D

Appendix D - SEMIOTIC

RESOURCES AND THEIR

DISCIPLINARY AFFORDANCES

D.1 Chapter 6

D.1.1 Problem 1: Loosely wound solenoid

Student 1: Alan

Semiotic Resource Disciplinary affordance Location
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Cylinder for solenoid Vertical cylinder allows Alan

to generate a visual repre-

sentation of the solenoid in

the diagrammatic space of

the board (diagram on the

board). Alan refers to this

while specifying the current

components before moving

to figure out the magnetic

field

Alan’s initial stage, in Fig-

ure 6.3

Arrow as vector This allows Alan to visually

represent the vector direc-

tion. Spatial extent used to

represent both distances in

coordinate space and mag-

nitudes of electric field vec-

tors. Here, this visual rep-

resentation of a straight line

with an arrow head allows

Alan to show the current

components going up in-

side the solenoid and then

a curved line with an arrow

head allows him to represent

the current components go-

ing around the solenoid

Alan’s initial stage, in Fig-

ure 6.3
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Square for loop This helps to generate a vi-

sual representation of the

loop in the diagrammatic

space of the board. Further

this allows Alan to show the

orientation of the loop with

respect to the orientation of

the current on his diagram

that will allow him to fig-

ure out the mathematical

manipulations while work-

ing with Ampere’s law in the

algebraic space

Alan’s initial stage, in Fig-

ure 6.3
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Integral form of the Am-

pere’s law

This physical law shows

the relationship between the

integrated magnetic field

around a closed loop and

the electric current pass-

ing through the loop. It

states that the magnetic

field around an electric cur-

rent is proportional to the

current. In relation to the

Amperian loop each segment

of current loop produces a

magnetic field like that of a

long straight wire, and the

total field of any shape cur-

rent is the vector sum of the

fields due to each segment.

In this mathematical repre-

sentation, the left hand side

allows us to show the rel-

ative vector directions (do

the dot product) between

magnetic field and the unit

length on an Amperian loop.

Where, right hand shows the

two scalar quantities, per-

meability and current, pass-

ing through the loop

Alan’s intermediate stage, in

Figure 6.4
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Arrow as vector Here he uses the arrow as

vector to represent the direc-

tion on the loop that helps

Alan to build a complete ar-

gument and advance with

the mathematical manipula-

tion while working with the

left hand side of the inte-

gral form of the Ampere’s

law equation

Alan’s intermediate stage, in

Figure 6.4

Finger pointing in direction Alan uses the index finger

to the side while gesturing

for direction. This allows

him to show the direction of

the resulting magnetic field

while answering instructor’s

question

Alan’s intermediate stage, in

Figure 6.4

Arrow as vector Similar to the previous case

of Alan using an arrow to

show the current direction

that is going around the

solenoid, this time it allows

him to represent the ax-

ial current which is inside

(along ẑ) the solenoid

Alan’s final stage, in Figure

6.6
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Circle for loop This helps Alan to gener-

ate a visual representation

of the loop and also to fig-

ure out the mathematical

manipulations. There are

two things someone needs

to consider when picking an

Amperian loop. First, mag-

netic field should be paral-

lel to the infinitesimal length

on the loop. Second, mag-

netic field should be con-

stant. As Alan is going to

consider the current compo-

nent going up the best shape

for his Amperian loop is a

circle

Alan’s final stage, in Figure

6.6

Student 2: Danny

Semiotic Resource Disciplinary affordance Location

Coordinate system Similar to the previous case

of Larry (chapters 4, 5)

this visual representation al-

lows Danny to define the di-

rection in his diagrammatic

space

Danny’s initial stage, in Fig-

ure 6.9
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Hand for loop Like in the case of Larry

here Danny uses his hand to

represent how he would go

about picking an Amperian

loop

Danny’s initial stage, in Fig-

ure 6.9

Circle for loop Similar to the previous case

of Alan, this helps Danny

to generate a visual repre-

sentation of the loop in the

diagrammatic space of the

board. Having said that he

is going to consider the cur-

rent component going down,

the best shape for his Ampe-

rian loop is a circle

Danny’s initial stage, in Fig-

ure 6.9

Line as wire This helps Danny to visually

represent the current that

helps him to get an idea

about the directional rela-

tion between the resulting

magnetic field and the di-

rection on the loop allowing

him to simplify the mathe-

matics

Danny’s final stage, in Fig-

ure 6.12
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Square for loop With the newly generated

side-on view, this visual

representation allows Danny

again to pick the most ap-

propriate shape for the Am-

perian loop for the current

going around the solenoid

Danny’s final stage, in Fig-

ure 6.12

D.1.2 Problem 2: Two charges on a line

Student 1: Larry

Semiotic Resource Disciplinary affordance Location

Coordinate axis Here the one dimensional co-

ordinate system or the co-

ordinate axis allows Larry

to determine the distances

(separation between field

point and charge) that then

needs to be plugged into

the Coulomb’s law equation.

Then this also helps him to

interpret the resulting elec-

tric fields with a definite di-

rection ((x̂) or (−x̂))

Larry’s current stage, in Fig-

ure 6.16
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Arrow as vector This allows Larry to visually

represent the electric field

direction. In this case this

representation allows Larry

to visually represent positive

charges radially away and

negative charges radially to-

wards

Larry’s current stage, in Fig-

ure 6.16

Field point This allows Larry to specify

the region that he is consid-

ering. Then having the field

point labeled on the coordi-

nate axis allows Larry to vi-

sualize the resulting electric

field directions for a given

region

Larry’s current stage, in Fig-

ure 6.16

Coulomb’s law This represents the electro-

static force between charges.

That is directly propor-

tional to the product of the

charges and inversely to the

square of the distance be-

tween them

Larry’s current stage, in Fig-

ure 6.16

Student 2: Oliver

Semiotic Resource Disciplinary affordance Location
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Finger pointing in direction It allows Oliver to show the

electric field direction. Im-

portantly it helps him to

represent the destructive na-

ture of the superposition in

the gestural space. Also,

this gestural activity helps

him best communicate his

idea to the instructor. It

also helps him specify dif-

ferent regions on the coordi-

nate axis

Oliver’s current stage, in

Figure 6.19

D.1.3 Mechanics problem - Student : ZEKE

Semiotic Resource Disciplinary affordance Location

Box for mass This allows Zeke to gener-

ate a visual representation

of the mass in the space

of the board. He uses it

to record the direction of

restoring forces on the mass

by each spring

Zeke’s initial stage, in Fig-

ure 6.27
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Midline for equilibrium This helps Zeke to visualize

the displacement of the mass

from its equilibrium posi-

tion. The view of the com-

pressed or stretched springs

allows him to decide the

direction of the restoring

force that is very impor-

tant in this situation. As

Zeke steps back from the

board to check the consis-

tency between the diagram

and the mathematics, ini-

tially this (midline) helps

Zeke to check the validity

of his mathematical equa-

tion for the force by the

left spring and then later

to check the sign on the

mathematical equation for

the force by the right spring

Zeke’s initial stage, in Fig-

ure 6.27
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Arrow as vector In this case, this visual rep-

resentation of a line with an

arrow head allows Zeke to

show the restoring force di-

rection from each spring to

figure out the net force by

both springs

Zeke’s initial stage, in Fig-

ure 6.27
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Restoring force on the

spring (F = −kx)

According to Hooke’s law, if

the mass is displaced side-

ways, such that the spring

becomes compressed (or ex-

tended), then the mass ex-

periences a horizontal force

given by F (x) = −kx,

where k is the spring con-

stant and the negative sign

in the expression indicates

that F (x) is a restoring force

(if the displacement is pos-

itive then the force is neg-

ative and vice versa). The

idea that the direction of

the restoring force is oppo-

site to that of the displace-

ment of the mass, helps Zeke

to amend his diagram ac-

cording to the mathematical

equation that he recorded

Zeke’s initial stage, in Fig-

ure 6.27
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Fist for mass This allows Zeke to gen-

erate a visual representa-

tion of the mass in the free

space. Zeke holds the fist

while gesturing for mass dis-

placement and keeps refer-

ring back as he progresses

in this task. The process

of sense-making using the

fist for mass helps Zeke to

figure out the direction of

the restoring forces that he

could mostly do using the

diagram on board

Zeke’s intermediate stage, in

Figure 6.28

Finger pointing in direction Zeke uses the index finger to

the side while gesturing for

direction. This allows him

to show the direction of the

displacement and the direc-

tion of the restoring force in

the free space

Zeke’s intermediate stage, in

Figure 6.28
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Right-hand grip rule On this occasion, Zeke first

uses the right-hand grip rule

to figure out the rotation

vector to represent the rota-

tion of the platform, where

Zeke’s thumb of right-hand

points when he curls his fin-

gers in the direction of ro-

tation. Then Zeke uses the

right-hand grip rule to find

the direction of the centrifu-

gal force that he uses to ma-

nipulate the cross product of

the three vectors (~ω×(~ω×~r).

By definition the right-hand

grip rule states the orien-

tation of the vectors’ cross

product (~u × ~v), by placing

u and v tail-to-tail, flatten-

ing the right hand, extend-

ing the hand in the direction

of u, and then curling the

fingers in the direction of the

angle v makes with u. Then

the thumb points in the di-

rection of ~u × ~v. Zeke uses

this argument first to find

the direction of ~ω × ~r and

then to find the direction of

~ω × (~ω × ~r). Later, Zeke

uses the right-hand grip rule

to find the direction of the

Coriolis force that he re-

uses to manipulate the cross

product of the vectors ω ×

~rt. Zeke flattens the right

hand, extending the direc-

tion of ṙ (that is ~rt), and

then curls the fingers in the

direction that the angle ω

makes with ṙ. Then Zeke’s

thumb points in the direc-

tion of ω × ~rt. In addition

to that Zeke uses the direc-

tion of angular velocity that

is originally figured out us-

ing the right-hand grip rule

Zeke includes centrifugal

force, in Figure 6.30
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Arrow as vector Again Zeke uses the Arrow

as vectors visual representa-

tion to show vector direc-

tion. Here he uses the same

semiotic resource to visual-

ize the direction of angular

velocity and the direction of

centrifugal force. Later, He

uses the same semiotic re-

source to visualize the direc-

tion of the Coriolis force

Zeke includes centrifugal

force, in Figure 6.30
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