AN INVESTIGATION OF COLLERCIAL BACTERIAL AND FUNGAL EL. RATICHS AS ALPHA-ANYIA CUP LELENTS IN BAKING

by

JAMES FRED COMM

B. S., Kenses State College of Agriculture and Applied Science, 1948

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Willing Industry

KANSAS STATE COLLEGE OF AGRIGULTURE AND APPLIED SCIENCE

Document 10 2668 T4 1949 C61 C.2

OF CONTENTS

INTROD	· · NOITOU			•			*	•		٠		1
MATERI	LALS AND MATHODS											6
3	Interials .				•	•			•			6
1	aking Procedure	8	•	•		•	•				٠	6
	Experimente	1 Bak	ing	Proc	sdur	8	٠	*	•	*	٠	6
	Pilot Plant	Bake	ry l	r000	dure		•		•	•		8
	Designation	of A	lphs	-8.007	1050	and	Fro	toir	000			
	Concentrati	on	•		•		*		•	•	*	9
A	stivity of Pazy	me Pr	epar	atio	nə			•	•	•		9
	Alpha-omyla	60 A0	tivi	ty	•	•	•		•	٠	٠	9
	Iroteinase	lotiv	ity				•				٠	10
Ĩ	Thermostsbility	of 11	.phe-	asyl	8868				•			10
	Affermantial Tea	00100	tion	-	(lph	0-00	77] 0.0					
1	roteinese .		*				•	•		*		11
ž	effect of Stores	o on	Enzy	ne A	otiv	ity					•	11
(Compressibility	Measu		nts	of B	read						12
ž	Becterial Spore	Count	Det	erni	neti	on						12
KXPERI	MENTAL RESULTS	AND I	00810	8810	81	•	•					13
1	lpha-anylase an	d Pro	tein		Acti	vity						13
ã	Proliminary Expe	rimer	ital	Baki	ng			٠	+		٠	15
3	Investigation of	Dias	tase	-28	and	-30						17
	Thermostabi	lity	1 20	lphs	+emy	laes	6					17
	Alpha-emple		ivi3	tios	nt.	High	er 3	'enpe	ratu	2.02		19
	Anylograph	Gurve	Hei	ghts								22
	Experiments	1 Bak	ing					*				24
1	investigation of	Rhos	. ymo-	5 83	d he	ltes	0-20	1				26

	Optimu	n Tup/1	60.8	nt ti	on							۰	26
	Diluti	on of	0.7	720-3	an	d el	ltas	8=20	Proj	paret	tions		26
	Fartis	1 Remov	al	of Rh	loza	10-	Pro	teina	83				28
	Ceparate 1	ho-eny	105	e lizé	T	otsin	1-20	upp	1 000	ants 1	tion		30
	Requir	ements	of 1	Rard	l.ed	int	ter	heut	Flo	our			30
	Requir	ements	1 20	H rd	bed	opri	ing	heat	Flo	our			37
	Effect	on Cru	mb (Compr		ibili	Lty						40
	lphs-amyl	se and	Po	teina	80	Activ	riti	es Du	rin	s sta	orage		46
1	deroflora	evolop	non	t									48
ULOLAT	RY AND CONC	UTIONS											54
C 0 01	LIDOUTENTS												57
TTER	TURE CITED												58

INTRODUCTION

The ability of maited cereals to inpurt desirable characteristics to bread has been recognized for hundrads of years. In recent decodes great advances have been made in understanding the use and action of mait supplements. The desirable characteristics have been shown to occur as the result of the action of certain enzyme systems which are present in the added supplement. Johnson, Dirks and Shellsabergar (11) evaluated anylass supplements a follows:

Present insulados of the ociive enume evitess present is bread dough indicates that three, nearly, bates and alphe-saylase and proteolytic enumes are concerned with the near superscription of the same of the original set of the through the use of mail supplements. Francy is a single or unally secondamints the avpless suppress in adj supplements.

Eavernl sources of alpha-anyLase and proteclytic ensyme systems have been recognized. Germinsted exceeds are the next common source of diastatic supplements. Harlay and wheat malt, however, are the only flour supplements used extensively. Hys malt has been used to a minor extent, and inness and innested (14) reported there is no obvious reason why the malts of other excels including onto, sarphum, or maize could not be employed if such supplements would comply with existing food regulations, It was shown by insen (13) that all these excels produce alphaexplace on germination.

Other possible sources of the enzyme systems present in malt supplements include those produced by bectaris and fungi. Chiefly through the efforts of Takamins, commercial production of anyme preparations from microbial sources was developed (27). There has been extensive commercial production of an elpha-emplase by the growth of selected strains of <u>Reallus subtlike</u> or <u>Beallus</u> <u>massniorions</u>. Another commercial suplese preparation has been produced by growing a selected strain of <u>Asperlikus gryane</u> on auitable media. The mylasses generally produced by these organisms have been found to be of the elpha type. Inseen and Sandeteds (14) stated that the use of a purified starile preparation of nold-mylass concentrate as a flour supplement should give results minimar to those obtained by using mall alpha-maylese. Data by Green (6), Reed and Hens (21), and Miller and Johnson (18) suggestion.

Should alpha-snylase supplements from sources other than coreals prove desirable in the baking industry, the utilization of these preparations would be determined in part by the economies of their production. The approval of the Fure Food and Drug Administration must be secured before becterial or fungal alphaanylase preparations may be used for flour supplementation.

A number of problems are involved in the evaluation of new alpha-anylase cources. Kommin (16) and Prockurynkov, Grinberg and Xonhovnikovs (20) have shown that excessive sait alpha-anylase supplementation samed an inelestic and sticky orunb. With increasing alpha-anylase supplementation there was a shorpy increase in destrip formation with a corresponding less of starsh. The use of 0.000 percent potessime bromate gave a slight improvement

and degreece in water extract and destring. Lotic cold also had an inproving effect when mait extract wee used. Miller and Johnson (18) observed no sticlings of the orunb when using an equeous extract equivalent is of percent mailed wheet flour.

Incan and Sundsteit (13) reported that besterial anyiness have a considerably Higher Gegree of thermostability than mail alpha-englase. These workers (13) postulated that starsh breakdown in the oven may be excessive, and some of the alpha-englase may oven remain active throughout the baking period and some liquefaction of the galatinized starsh after the bread is removed from the oven. This would result in undesirable sticky and going bread arms characteristics similar to those escolated with "ropy" bread. Tilden and hadson (26), however, have reported that alpha-englases from differint between string may differ in thermostability. These workers (26) found that the slpha-englase produced by <u>heallhus penerum</u> showed no marked institution when hasted at 50°C. for one hour, while the alphasupless produced by <u>heallhus</u> penerum as instituted by the same treatment.

Differences in the behavior of becterial alpha-anylase as compared with the behavior of malt alpha-anylase ware denonstrated by Hopkins and Fulks (7). In the later stages of starab hydrolymis differences wars not due to leak of stability of the becterial alpha-anylase nor to the presence of inhibiting substances. These workers (7) suggested that the difference may be due to less affinity of besterial alpha-anylase for low grade

dextrins. This phenomenon may cause excessive starch breakdown into dextrins and result in sticky bread orumb characteristics.

Cartain ions are known to start a marked influence on maylese stability. Ovector thermostability may cause accessive stored degradation with resulting sticky and gummy cheresteristics. Inseam, Sandbastet and Hollenbeet (15) have studied the stabiliting effect of calcium-ion on elpha-explase extracts. Since the average patent flour contains approximately 0.018 percent celoium expressed on the dry weight basis (3), and considerable celoium is added to the bread formule in the form of dry milk solids, sufficient celoium may be present to lend greater thermostability to the elpha-explase subcement.

Another problem arising from the use of certain supplements has been essectived with the precences of excessive protocylic enzyme motivity. Since the work of Ford and Outhrie (5) on the provisionse of wheat flour, a number of theories and arguments have appeared in the literature on the role of proteinness in baking. Enveral reviews of the literature, Hildebrend (6), Hildebrend and Burkert (9), Miller and Johnson (18), Reed and Hass (22), and Eandtedt and Fortman (23), on this subject have oppeared.

Miller and Johnson (18) studied proteclymis in streight and sponge doughs. These vorkers (18) found that male supplements containing successive proteclytic activity produced inferior bread by the sponge procedure, but no detrimantal affects were observed in the streight dough procedure. These differences were attributed to the partial institution of the proteinness by the sodium

h,

chloride in the straight dough procedure. Furthermore, removal of part of the proteinmee by ebsorption techniques resulted in a marked improvement in the brend whan backed by the sponge dough procedure. Dirks and Willer (4) working with mold bran extracts were able to innotivate ar remove 60 percent of the proteclytic activity by treatment with modium obloride and pH edjustment, while removing only 10 percent of the siphe-emylnes activity. Hiller and Johnson (19) developed bechnice appropriate for the differential innotivation of alphe-emylnes and proteiness in mailed wheet and barley flour and Tungel prepertions.

Read and Hame (21) studied the effects of various sources of proteinase on bucky doughs. Considerable improvement in long volume, and grain as well as a reduction in the mamber of holes were obtained by addition of small amounts of several of the proteolytic products. The improvement was particularly true in sponge mizes. This was attributed to e mellowing extion on the clutan, giving a more workable dough. Hucky doughs were greatly benefited by small amounts of certain plant proteiness. Excassive domages of proteinese or "proteinese activator" ruined the baking properties of the glutes. The results indicated that certain flours have sufficient proteinese if the proteines is sativable.

The objective of this investigation was to study the characteristics of cormerial besterial and fungal alpha-anylase preparations and to determine the feasibility of their commercial use as alpha-anylase suppleaents. Consideration also was alyma

to souns of alleviating the undesirable characteristics of cortain proparations and to the retention of alpha-maylolytic and proteolytic estivity in flours supplemented with connercial preparations and stored under controlled conditions.

MATERIALS AND METHODS

Materials

The major flour ealested for this investigation was a commercial hard red wintar, straight grade, unsaited sample having a protein content of 11.6 percent and an eah content of 0.45 percent. This flour showed good mail response. In addition, three hard red spring, unsaited bakar's petent flours and two hard red wintar, unsaited bakar's petent flours ranging in protein content from 11.5 to 12.5 percent were used in studying the separate effects of alpha-emylase and proteinnes supplementation.

The sources of the alpha-anyless supplements employed included a commercial malted wheat flour having an oblivity of 40 alpha-anyless units and eight cormercial anyme preparations. Give of the proparations, (Maltase-20, Disstess-20, Disstess-32, Disstess-3) and Disstess-4) were fungal disstess preparations. The other three preparations (Rhozyms-DX, Disstess-20 and Disstess-30) were boterick disstess preparations.

Baking Procedures

<u>Experimental Baking Frocedure</u>. The sponge dough procedure was amployed for all baking studies. The sponges were mixed two minutes in a "Hohert A-200" mixer and fermented for four hours in a "Bond-Temp"² Termanistics cabinet at 86°, and 85 percent relative hunidity. Remixing was continued with the Hohert mixer to the point of optimum development. After thirty minutes "floor time" the doughs ware scaled to twenty ounces, and given twenty minutes rest before moulding with a "Century" moulder.³ The leaves ware proofed for 55 minutes at 92°, and 85 percent hunidity in an "Ameta" debinet proof box. Baking was for 35 minutes in a "Geed" Rest Oven at 42°C.

A total of 700 grams of flour was used for each mix. The absorption was adjusted to the requirements of the flour. The following formule was used in the experimental baking procedure:

Ingredient	Sponge	Dough
Flour Yeast Yeast food	70 2 0.5	30
(Arkedy?) Sugar Salt Dry milk solids		522
Dough conditionar (Paniplus ⁰)		0.5
Alpha-amylase	According to experiment	
Proteinase	According to	
Water	70 percent of total	30 percent of

Memufactured by Hobert Manufacturing Co., Troy, Chio.
 Manufactured by the Meesersh Products Co., Manusactured by Century Machine Co., Cincinneti, Chio.
 Manufactured by Century Machine Co., Cincinneti, Chio.
 Manufactured by Century Machine Co., Cincinneti, Co.,

Kansas City, Mo.

5 Manufectured by Standard Brands Inc., Topoka, Lansas, 6 Manufectured by The Paniplus Company, Kanses City, No. 7

total

In a few onese a total of 300 grams of flour was used in each mix. With the following exceptions the procedure and forsula were the same as for the larger doughs. The doughs were seeled to 550 grams and moulded by hand efter punching with a "National" Sheeting Roll¹. Toofing was completed in the "Humi-Temp" orbinst at 86°F. and 85 percent relative humidity for 55 minutes. The lowes were baked 25 minutes at 425°F. in the "Read" Real Own.

Ellet Flant Batary Frondure. The sponges were mixed five minutes in a "Bay"² horizontal mixer, forwanted at 66°F, and 65 percent relative humidity for four hours in the formanteion room³ and remixed to optimum development as determined by the characteristics of this dough. After 30 minutes "floor time" the doughs were divided by hand, eccled to 20 cunces, and allowed to rost 20 minutes in a drawar proof cabinst. The doughe were molded in the "Century" moulder and proofed 55 minutes in the "Anset" cabinet at 92°F, and 85 percent relative humidity. Baking we completed in 35 minutes at 425°F, with the "Heed" Real Ower.

The following formule was used in the pilot plant bakery investigations:

¹ Manufactured by National Manufacturing Co., Lincoln, Nebrasko.

² Manufactured by the J. H. Day Go., Cincinnati, Ohio. 3 Manufactured by Union Steel Froducts Co., Albion, Michigan.

Ingredient	Sponge	Dough
Flour	9 lbs.	6 1bs.
Teast	4.8 oz.	
Yeast food (Arkady)	1.2 oz.	
Sugar		12 02.
Salt		4.8 oz.
Dry milk solids		7.2 02.
Shortening		4.8 oz.
Dough conditioner (Famiplus)		1.2 oz.
Water	60 percent of total	40 percent of total
Alpha-amylase	According to experiment	
Proteinase	According to experiment	

Designation of Alpha-meriase and Proteiness Concentration. Arbitrary terms wave defined to indicets the proteines and alpha-maylase concentrations used in baking. For alpha-maylase concentration the term "1X" indicated supplementation to an alpha-maylase level equivalant to the sham-maylase added by 0.25 percent malted wheat flour. The term "1X" indicated proteinese supplementation to the level that would be obtained by the addition to 100 grams of flour of that amount of proteinese which would give a delta titration of one al in the proteclytic cetting determination (7).

Activity of Enzyme Preparations

Alpha-anyless Activity. The preparations were extracted with 0.2 percent calcium chloride solution for one hour at 30°C.

and aliquote of the filtrate used for analysis. Alpha-maylese destrimination solitiky was detarmined by the bohlgamuth procedure as described by dendetedt, kneen and Bliah (24). Values for alpha-maylese activity were expressed as the time in minutes required to produce the standard red-brown and point with indime. These walese are inversaly proportional to the alpha-maylese activity.

Starch liquifying sotivity of the alpha-anylase was determined with the anylograph employing 65 grams of flour and 450 ml of liquid as described by Anker and Geddes (2).

<u>Protinent Activity</u>. Aldquots from extracts of the preparations were analyzed for protoclytic activity by the Ayra-Anderson method as modified by Willer (17). The procedure involves the measurement of non-protein nitrogen released during a five hour direction of a beto-hemoglobin substrate at controlled temperature and pH conditions. The delte titration in all of 0.0714 H sodium hydroxide was used as the indication of protoclytic extirity.

Thermostability of Alpha-amyleses

The affect of temperature on the innotivation of the various alpha-azylases was determined by the tachnic used by Johnson and Miller (12). This involved heating the buffered enzyme solutions in the anylograph and the resourt of aliquote after each five degree rise in temperature. The slphs-axylase activity of each liquot was determined and the results reported as the percent of the original activity remaining.

Differential Inactivation of Alpha-amylase and Proteinase

Technics appropriate for the differential inectivation of alpha-emplase and proteiness in Khoryme-X were described by Dirks and Miller (4) and modified by Miller and Johnson (19). To inactivate the proteiness in Khoryme-X the properation was empended in 0.2 percent existing children of the solution (4 ag per x) and adjusted while stirring repidly to pH 10.5 with ZH sodium hydroxids. The resulting solution was heated at 50°C, for 30 minutes, cooled to room temperature and the pH adjusted to 6.0. This procedure resulted in retention of from 60 to 75 percent of the alpha-emplose solvity which up to 90 percent of the proteinmes we inectivated.

To inscitute the alphn-anylase in Hhosyme-5 the preparation was suspended in water (4 mg per ml) and the pH adjusted to 4.0 with 2M sulfuric soid. After heating at 5000, for 30 minutes, the solution was cooled to room temperature and the pH adjusted to 6.0. Approximately 70 percent of the proteiness was retained while only 10 percent of the alphn-anylase solvity premeined.

Effect of Storage on Enzyme Activity

To study the effects of storage on enzyme scivity, flour was supplemented with thosyme-5 to the alpha-maylese aquivalent of 1 percent malted wheat flour, Alpha-maylese and proteinese activity ware determined at bimonthly intervals. Fossible socolaration of storage deterioration by the presence of oxymen was

studied by storing the sugglemented flour for sight months in jure containing expyce, mitrogen and sir stamopheres at 35°C, cold room (5°C, to 9°C.), and room (20°C, to 40°C.) temperatures. The geneous stomopheres wave obtained in the following manner. Copper tubes were coldered into lids of half gallen jure, a short piece of rubber tubing stached and a serve cleep applied to give an air tight seal. After the supplemented flour was placed in the jure, the jer was elternately exhausted of sir and filled with expense or sirrogen to a pressure sessured by an arbitrary height of mercury. This procedure was repeated three times to insure replacement of the sir by the gas. At the and of the third cycle the pressure was reduced, to atmospheric pressure.

Compressibility Measurements of Breed

A "Bloom"I gelemeter was used to study the effect of alphaanylase and proteinsse supplementation on bread crumb compressibility. The experimental value recorded was the weight of lead shot required to press a one-inch plunger 4 mm, into a miles of bread. Two determinations on each of two milese out from three looves chosen at rendom from each experimental group were recorded.

Baoterial Spore Count Determination

The official A.A.C.C. method (1) for determining the total

¹ Manufactured by Precision Scientific Co., Chicago, Illinois.

besterial spores in flour was followed in making the spore counts of the various , rep rati s.

EXPERIMENTAL RESULTS AND DISCUSSION

Alpha-anylase and rotinase Activity

Might commercial fungel and bestarial anayme consentrates were analyzed for alpha-anylass and proteiness and compared to the respective anyme astivities of commercial maited wheat flour. Rheayme-S contained over one hundred times the alphaanylase sociarity of malted wheat flour (Table 1). This concentrate also possessed vary high proteclytic activity resulting in a proteinese -- alpha-anylase activity ratio over eight times as great as that for malted wheat flour. Distance-29 was observed to be low in alpha-emplose activity but high in proteclytic activity. Distance-3), -34, and -28 ware found to have low proteinese -- alpha-entytice activity ratios.

Anyines supplements used in baking are normally standardimed on destrinogenic estivity (14). Since Rhouyme-3 is standardized by the samufacturer on saccharifying scivity, it was desirable to check the destrinogenic extivity in a series of emples from commercial bathes. An analysis of variance of the alpha-anyless scivity for these samples (Table 2) showed that the differences worm highly significant. This suggests that the enzyme concentrates should be standardized on destrinogenic motivity.

- I-		atios of activiti	03
Enzyme :	Alpha-anylase	: Proteinase :	to alpha-anylase
Malted wheat	1	1	1
Naltaze-20 (first sample)	74	140	1.9
Maltase-20 (large sample)	66	67	1+
Rhouyme-S	1.20	1000	8.3
Diastase-29	0.21	417	2000
Diastase-32	5.7	244	43
Diastoso-33	50	31.6	.63
Diastase-34	80	0.19	.002
Diastase-26	31	5.7	.18
Liastase-30	24	69	2.9

Table	I.	Alpha-amylase	and ;	prote	olyi	tic act	tivitios	of the	various
		preparations	COL	red	to	Lalted	I wheat	flour.	

Sample number	Tl lst aliguot ²	: Tl ; 2nd alicuot ²
	Min.	Ein.
241	10.12	10,25
249	9.75	9.75
251	8,88	9.37
260	11.25	11.75
262	10.00	10.37
	Analysis of Varian	00
Source of variation	1 Degrees of freedom	: Bean square : F ratio
Individual determinations	5	0.0642
Samples	4	1.5180 23.643
Total	9	

Table 2. Data and analysis of variance of alpha-anylase activities in a series of Rhozyme-3 camples.

IT " time in minutes required to reach the standard brown and point.

2 Mach aliquot equivalent to 2 mg of preparation.

3 .ignificant at the 1 percent level.

Preliminary Experimental Baking

An experimental baking study using extracts of Rhoxyme-S, Maitame-20 (let sample), Mistame-28, -29, -30, and malted wheat flour was made to detarmine the general baking characteristics of the various preparations (Table 3). Disstame-29 osumed bread to have low volume, open grein and poor texture. Disstame-28 and Disstame-30 produced bread with large volume, and sticky and gomey group. Ered produced with Maitame-20 and Storyme-1 was

 $1.11\pm$ concentration equivalent to the alpha-emplase provided by .25 percent malted when from:

Enzyne	Concentration ¹	: Externel : characteristics	: : : Grain :	Texture :	Loof	: Dough : properties	
			v	R	La.		
1	0	P.OOF	20	65	805	200	
Malted wheat	IX 4X 8X	Good Good Dood plus	80 80 80	90 85 0	970 1000 1015	ok ok Slightly s	ticky
Bhozyme-S "	11 AX BX	Fair (rough) Fair (rough) Very good	90 85 80	92 90 85	915 960 980	OK Slightly s Sticky	tioky
Waltase-20	X4 X4 X8	Good Good (rough)	80 75 75	85 80 75	985 1025 980	ok OK Slightly s	tioky
01.astaa-28 "	1X 4X 8X	Fair good Good	75 70 65	602 502 402	980 1010 985	ok OK Slightly s	tioky
Jiastase-29	.001X .004X X800.	Fair (rough) Feir Poor	70 70 70	65 65 65	910 925 935	Sticky Sticky Very stick	ь
)1as tase-30	X X X	Good Good Vary good	80 60	602 502 402	985 1025 1020	OK OK Slightly S	tialty

Comparison of Rhozyme-C, Maltase-20, Diastase-20, -29, and -30 with malted wheef flour as anylate supplements in baking. Table 3.

slightly inferior but comparable in volume, grain and texture to that baked with malted wheat flour.

Experimental baking results obtained with Diestase-32, -33, and -34 are resorted in Table 4. Diestase-32 was minilar to Disates-39, in that sufficient proteinese was present to produce excessive glutant breakdown before the beneficial effocts of the alpha-emplose oppered. Encad produced with Disatese-33 and -34 was quite comparable to that obtained with malted wheat flour. There was no tendency for doughs containing Disatese-34 to elseken eccessively during fermantation. A slight alsokaning was observed, however, in the dough to which 67 concentration of Disatese-33 was edded. Thus, astisfactory bread was produced with Disates-36, Maltese-20, Disatese-33, and Disatese-34. Disatese-39 and +32 censed the sponges to liquify before baseficial alpha-emplose affects ware obtained. Freed produced with two bacterick propertiess, Disatese-28 and -30, was unsatisfactory because of slicky bread arus durasteristics.

Investigation of Diastase-28 and -30

Thermostability of Alpha-anylases. The effect of temperature on the insctitution of alpha-anylases was studied as one of the possible causes of arunb stickiness resulting from the use of Dissusses-28 and -30. The data recorded in Table 5 indicated that the bacterial alpha-anylases, Dissusse-28 and -30, were less thermostable than malted wheat flour elpha-anylase. These results were not in agreement with the work of folknoon and Killer (12). The investigation was repeated including a bacterial

: euxzug	Concentration ¹	a External	Grain	Texture	Tolume	Dough
			R	R	1ª	
Salted wheat	П	Tair	87	60	3125	OIL
×	72	Good	85	85	3475	OK
¥	SX.	в	88	85	3365	Slightly sleck
Diastase-32	TI	Vary poor	60	60	2775	Almost liquefied
t	77					Liquefied
и	119					Liquefied
Dlastase=33	TT	Good to very goo	78 b	88	3190	OK
8	11	8 8 8	85	86	3225	OK
и	T29	Very good	63	84	3240	Slightly slack
Diastasse-34	IX	Good	35	85	3115	OIL
и	11	8	50	00 22	3240	OK
а	119	Good plus	83	83	3375	COK
	0	8	22	80	2900	OK

Table 4. Comparison of Disstance-32, -33 and -34 and malted wheat flour as anylase

18

flour.

Tampareture	Rhozyme-5	Malted : Wheat flour :	Diastase-28	1 1 1 Distase-30
oo	\$	%	95	\$
85	0	0	0	0
80	0	5	0	0
75	6	58	3	11
70	69	94	39	74
65	100	98	96	93
60	100	100	100	100

Table 5. Percentages of alpha-amylase activity remaining after heating to different temperatures in suspending medium containing 0.2 percent celoium chloride.

preparation (Hhonyme-DX) found by these workers to possess high thermostability. As an added pressulin the 0.2 percent celoius shloride was amitted from the suspanding medium since the manufacturer had removed onloius from the besterial preparations in an attacpt to lower their thermostabilities. The results (Flate I) show that the alpha-maylases of Distatese-28 and -30 were less thermostable than malted what flour alpha-maylase. Rhoryme-DX, as expected, possessed high thermostability. These results corrobernis the work of filden and Rudson (26) showing that alpha-maylases from different besterial strains may differ in thermostability.

Alpha-anylase Activities at Higher Temperatures. The effect of higher temperatures on relative alpha-anylase activities from various sources was investigated. The percentage increases in

EXPLANATION OF PLATE I

The effect of heating and enzyme source on the retention of alpha-amylase activity.

Curve	8.	Diastase=28
Curve	b.	Diastase-30
Curve	с.	Rhozyme-S
Curve	đ.	Malted wheat flou
Gurre		Phone DT

activity at 50°C, as compared with the solivity at 30°C, are recorded in Table 5. Increasing the temperature to 50°C, exceed the slphc-anylase of malted wheat flour to increase in ectivity more than the slpha-anylases of Diestasc-28 or -30. This suggests that at the temperatures of baking, the slpha-anylase activities of Diestasc-28 and -30 increase less than the activity of asled wheat flour slpha-anylase.

<u>Anylograph Ourve Heichts</u>. The effect of various sources of alpha-emplase on the maximus Viscossky of a starch peste es messured with the anylograph was investigated. Equivalent amounts of the various elpha-emyless in the absence of callou chlorids as a stabilist ware employed. Maximus viscosity values (Table 7) lower than the maximum melted wheat flour visocsity values were obtained when equivalent amounts of Diastass-28 and -30 (baned on destrinogenic estivity et 30%)) were used. Thus, equivalent amounts of Diastass-28 and -30 would apparently produce greeter starch degredation than an equivalent amount of mailed wheat flour.

From the insetivation date and destrimination estivities at higher temperature, mained wheat flour might be expected to produes greater storch degradation with resulting lower maximum visossities and possibly sticky bread orunb. This apprent anomaly may be explained by assuming a lesser affinity of besterial alpha-amylass for lower molecular weight destrins. Accordingly bacterial alpha-acylase molecular weight destrins. Accordingly bacterial alpha-acylase molecular may be free to split greater numbers of starch molecules, with a corresponding increase in destring formation and stickness of bread orunb.

and the second second second	3		The second s	LO INSTRUCT POST PRODUCT
Preparation	1	In CaCl2 sxtract	i	In water extract
		\$ ²		%l
Malted wheat	flour	204		
Diestese-28				129
Distase-30		166		164
Maltase=20		127		104
Diastase-29		137		110

Table 6. Effect of calcium chloride and increased temperature on activity of various alpha-amylases.

1 Percentage increase dus to increase in temperature from 30°C. to 50°C.

Table 7. Effect of alpha-anylases from verious sources on maximum anylograph curvs heights.

	Total Date		-	
Preparation	Conce	ntration1	: Naximum : helsht	: Fercent height of cor- : responding melted wheat : flour curve
			(B.U.) ²	\$
Malted wheat	flour	1%	385	
er er		<u>≜</u> x	630	
Diastass-28		11	340	88
ar 19		1x	550	87
Diastase-30		11	280	73
н н		1x	480	76

1 11 Concentration equivalent to the alpha-emylase provided by 25 percent malted wheat flour supplementation. 2 11 Brabender Units.

<u>Experimental Naking</u>. Experimental baking using Disatese-28 and -30 at 0.25%, 1%, and 4% concentrations scale indicated that these two bacterial preparations cause slicky orumb characterletice. A slight improvement in orumb characteristics for both sources was observed when calcium was critted. The bread crusb containing 0.25% concentration of Disatese-28 was least slicky, but when tasted stuck to the testh and roof of the mouth resulting in an uncleasent expection.

An investigation was made to determine if an excess of seccharitying empines would remove the sticky characteristics. The leaves containing it concentrations of Distass-28 or -30 in the presence of as much as 4X concentration of Dhorms-3 (sectionitying ennyme source) wors found to possess very sticky and guary bread srumbs. These results indicate that the odded escelaritying enzyme was probably inactivated in the oven before the stereh liquitying enzyme as inactivated.

Another experimental baking study was completed to determine the concentration at which the crumb stickiness produced by Disstame-28 and +30 became evident. Stickiness was evident at 0.1% concentration of sither preparation, and was very noticeable when 0.45% concentration of sither enzyme was used (Table 8). Stickinese was not observed at 0.04% concentration in either case. However, the grain and tatture scores for these loaves were slightly lower than for the control loaves. No increase in volume was obtined with 0.1% concentration of Distame-28 while 0.1% Distame-30 enzyme that increase in volume. From these results it me concluded that as the concentration of Distame-28 while

Rhozyne-Sl 1	Diastass-281;	Ext	ternal :		:	:LOaf :Vol-
concentration:	concentration:	charac	Sterlatica:	%	:Texture	ml.
0	0.04X	Fair		68	70	2835
0	0.1 X	19		65	65 ²	2840
0	0.25%	17		67	653	2880
LX	11	6000		50	504	3015
4X	11			55	504	2940
	Disatase-30 concentration					
0	0.041	Fair		65	65	2950
0	0.1 X			65	65 ²	3060
0	0.25%	Tair	to good	60	653	2900
lx	11	Good		55	504	3025
43	lx	45		50	504	2915
1%	0	19		85	80	2975
41	0	Fair	to good	80	83	2925
0	0	Poor		70	75	2865

Table 5. Effect of starch liquifying and sacoharifying enzymes on development of orumb stickiness.

1 1x = concentration of alpha-amylase equivalent to the alpha-amylase provided by .25 percent malted wheat flour supplementation.

2 Slightly sticky bread orumb. 3 Sticky bread orumb. 4 Very sticky bread orumb.

or -30 was increased sticky bread grund resulted before any beneficial effects appeared. Thus, Histass=28 and -30 could not be used as alpha-anylase supplements for flour.

Investigation of Rhozyme-S and Maltase-20

Optimum Supplementation. An investigation of optimum supplementation with Rhozyme-S and Maltase-20 (first sample) using concentrations of 1X. 4X and SX was made in the pilot plant bakery (Teble 9). Although the doughs slackened slightly, the dough handling characteristics were satisfactory for doughs conteining 1% concentration of either Rhozyme-S or Maltase-20. The douchs containing LX concentration of Rhozyme-S and SX concentration of Maltase-20 slackcned considerably. The doughs containing SX concentration of Rhozyme-S slackened sufficiently to make dough handling difficult. The most desireble grain and external characteristics were observed when 1% concentration of either Rhozyme-S or Maltase-20 wes used. The texture of the 1X and AX Rhogyme-S supplemented loaves was approximately the same. while deterioration was observed at SI concentration. The optimum texture was observed at 1% concentration of Maltase-20 and progressive deterioration appeared when additional amounts were used. Optimum results were obtained when 1X concentration of either Rhozyme-S or Meltase-20 were used.

<u>Dilution of MnownesS and Mnitenes20 Framerations</u>. MnownesS and Mnitenes20 (2nd cample) were blanded with flour to produce resulting mixtures with alpha-anylose solvities equivalent to the alpha-anylose solvity of commercial malted wheat flour.

levels of	
upplementution flour.	
1 winter	
ng the o	
for a	
data in Ltase-20	
baking and Mai	
bozyme-S	
9. F11	
able	

Suppress of

...

..

Freparation	i con	elative-	: chare	ctor.	rist!	00	Groin		exture :	Volume:	Dough
							W.		v	m1	
1		0	Good				80		75	2925	OK
Rhozyme-S		IX	Good	50	TOLY	8000	1 85		85	3025	OIK
æ		T.	Tair	to .	goog		75=0		M^ 02	30:5	Oli
8		SX.	liood				70-0		2	3145	dluck .
Maltess-20		II	Very	600	-		85		57	3040	OK
и		T.	Good				75-0	-	35	3070	COL
8		SIX.	Good				70-0	-	75	2975	Slightly sleck

l lX \pm concentration equivalent to the slphs-anylase provided by .25 percent sited flow: supplementation.

-7

These blends were studied as alpha-anylass supplements in the pilot plant bakery.

The results (Table 10) were essentially the same as those obtained when extracts of the propersions were used. Again the greater proteolytic sativity of Rhozyme-3 was widenced by the elackening of the dough containing 4X concentration of Rhozyme-6. Therefore, if such enzyme preprentions were used without proper control, the baker could use too much enzyme and experience serious trouble with glutam breakdown. The dough to which 4X Maltens-20 was added clackened only elightly. The bread produced using Malters-20 greade slightly hisher than the bread produced with Rhozyme-3. Bread baked with Rhozyme-5 and Valtaes-20 supplementation was comparable to thet produced with malted wheet flour.

The results showed that it was familie to dilute occurrcial enzyme concentress with flour or other suitable materials to the siphs-anylase notivity of connercial malted wheat flour. Thus, malt feeders now in use in flour mills could be used to blend in the diluted enzymes propretions.

<u>Partial Removal of Rhomma-S Proteiness</u>. Repeated baking investigations indicated that the proteinese estivity of Rhogyme-S was too high. Accordingly, solutions of Rhogyme-S having 25 percent, 50 percent, 75 percent, and 90 percent of the proteinese inestivated were studied in the pilot plant bakary employing IX and 4% concentrations of the supplement. The doughs entesing 4% concentration of alpha-suplese slockered scamethit The sffeet of using thorpmo-S and Matense-24, diluted with flour to an opposentiates octivity equivalent to molted wheet flour, as alghe-anyies applycents. Table 10.

Preservetion	: : conce	ntretionl	a disracto	nel ristios	Grein:	Texture :	volume:	Dough properties
					be.	14	Ĩ	
-		0	Fair		80	80	2858	OK
Malted wheat	flour	TT	Good		96	0.	2971	8
8	2	11	Good	plus	92	06	3025	Slightly slack
Shozyne=S		TT	8	×	87	85	2992	Slightly slack
8		12	Good		80	83	2963	Sledk
Mnltase-20		11	Very	good	90	88	2942	CIK
8		T.	Good		88	88	3058	Slightly clack

1 IX = concentration equivalent to the slpha-emplace provided by .25 percent malted wheat flour supplementation.

when 50 percents of the proteiners was retained. Considerable slackening was observed at 4% concentration when 75 percent of the proteiners was retained. The bast bread was obtained when only 10 percent to 25 percent of the proteiners was retained (Table 11). Thus, the desirability of reducing the proteiners existing of theoryme-U was desanatized.

Separate Alpha-anylase and Proteinase Supplementation

Requirements of Mard Hed Minter Thent Flour. The separate affects of alpha-anylass and proteinnes supplementation ware studied in the pilot plant bakery. Rhomyme-N with up to 96 percent of the proteinnes insoftwated was used in auficient amounts to provide 0, 1%, 4%, and 5% sipha-anylass supplementation. In combination with this sipha-anylass, Rhomyme-3 proteinnes was added in amounts equivalent to the proteinnes estivity of 0, 0.5%, 1%, and 4% concentrations of untracted Rhomyme-3. Both external and internal characteristics, (Tables 12 and 13) indiested that 4% to E% concentration of Hhomyme-3 with the proteinnes insoftwated provided optimum alpha-anylase supplementation for the anjor hard red winter flour. Nose inprovement in the quelity of the bread was observed for proteinnes muplementation up to that concentration equivalent to the proteinnes in 1% concentrations of Rhomyme-5.

Since considerable alpha-anylase was not insotivated in securing a source of proteinese from Whonyme-S, the utilization of Diastese-29 as a source of proteinese was investigated.

the JO Allot plant bakery buking data indicating the affact on baking with Discovers having 22 percent, 5 percent, 75 percent and 90 percent probating areased. Table 11.

dua-anylusel	: roteinas	: Externa : Shureoteri	al Latios :	Grain a	Texture :	Loaf Volume	: Dough
	w			W	va	n.l.	
0	1	rair		70	20	2833	011
1X	10	Vory .	good	85	90	2716	OK
IX	25	Good		22	85	2776	Oħ.
IX	50	t		80	80	2676	Slightly sleck
II	22	Very a	good	315	25	2879	
4X	3.0	ε		85	6.0	3008	NO
4.X	25	Ł	æ	63	88	2971	OK
4.2	50	Good	plus	76	85	2946	Slack
4%	35	Fair 1	plus gh)	22	22	2879	Slock

percent malted 52 Concentration equivalent to the alpha-emplase provided by wheat flour. н 1 11

Rhozyme-31 : slpha-shylcze : concentration :	Rhezyme-S ² : proteinase : concentr tium :	External : oh: recteristics :	Stre 1 n	: Texture	Loaf Volume	Dough pro erties
			N	24	m1	
0	0	Feir plus	70	75	2925	OIX
х	0	Good plus	70	80	2925	XO
11	0	Good	75	65	2985	OIX
IS	0	Fair plus	08	85	2903	OK
0	11	Grand	88	88	2972	OIK
0	Lan.	Fair plus	08 77	68	3060	Slightly slac
щ	ж	Good	90	90	2978	200
274	IT I	Very good	86	65	37.62	Slightly slag

Table 12. Hilot plant baking data indicating the separate effect of alphe-waylase and

t of Bhozyme	
oelle	
the separate	lsmentation.
ting 1	i auppi
2nd1o	onylase
deta	1 pha-
baking	and a
plant	toinese
Pilot	DEO
. 13.	
able.	

h

5 5 al. 1X jx 0ood 80 60 79,90 0,00 1X 1X 0ood 80 60 39,90 0,00 1X 1X 0ood 73 90 39,90 0,00 1X 4 0ood 100 73 90,90 0,00 jx 0ood 90 90 90,90 0,00 0,01,10 4X 1x 0ood plum 73 60 307,0 64xy aluekty a 4X 1x 0ood plum 73 90 907,0 64xy aluekty a 4X 1x 0ood plum 73 90,0 10,01 10,01 4X 1x 0ood plum 73 90 11,01,1y a 10,01 4X 1x 0ood plum 73 90,0 10,01 10,01 10,01 4X 1x 0ood plum 90 90 90,03 0,01 0,01 0,01 <th>noentration :</th> <th>oonceltration:</th> <th>characte</th> <th>oristics:</th> <th>Grain :</th> <th>Texture:</th> <th>Tolume :</th> <th>Dough properties</th>	noentration :	oonceltration:	characte	oristics:	Grain :	Texture:	Tolume :	Dough properties
IX MX Good 60 60 79/9 0x IX 1X 0ood 85 65 73/9 0x IX 1X 0ood 85 65 73/9 0x IX 4x 0ood 91 75 90 30/9 81/9/1/y = JX 1X 4x 0ood 75 90 30/9 81/9/1/y = JX 1X 0ood 75 90 30/9 70/9 6xy aluet 4X 1X 0ood 75 90 30/9 61/8/1/y = 4X 1X 0ood 75 90 312.0 81/8/1/y = 4X 1X 0ood 70 90 313.0 81/8/1/y = 4X 1X 0ood 70 70 91/9 91/8/1/y =					26	18	In	
IX IX 000d 85 65 3930 00 IX L 000d blum 75 20 3055 514grthy state JX L 000d blum 75 20 3055 514grthy state JX L 000d plum 75 20 3055 514grthy state JX L 1x 000d plum 75 20 3056 50 JX L Tary 000 plum 75 20 3070 Wastate K JX 000 30 30 300 13.00 13.01 1	IX	łx.	Good		80	80	2950	Cit.
IX L Good plum 75 20 3055 51(ghtly a 3/X jx 0ood 90 90 905 00 ix 0ood 90 90 3065 61(ghtly a ix 0ood 91 90 90 3055 60 ix 1x 0ood plum 75 60 3070 faghtly a indit ix ix fagt 90 90 90 90 90 ix ix 000 90 90 90 90 90 90 ix 1x 000 90 90 90 90 90 90 90 ix ix 000 90 90 90 90 90 10.0 10.0	TT	II	Good		85	85	2930	COK
J X J_X Good 90 905 06 4X 1x 0ood 91 75 60 3070 fary alluet 4X 1x 0ood 91 75 60 3070 fary alluet 4X 4x Fary good 90 90 90 3120 11,ght/h aller 4X 4x Fary good 90 90 90 90 90,51/n aller 6X jx 0.000 90 90 90 90 3130 11,ght/h aller	II	1	Good	plus	75	30	3055	Slightly slack
LK Li Oacd plan 75 80 3070 Wary allekt tablet LX Li Tary good 90 90 90 3120 3140HLy allekt tablet KX Li Tary good 90 90 90 303 3140HLy allekt KX Li Oacd 75 75 75 915 014 Alt Tark Oacd 75 75 755 915 014	341	1 M	Good		06	06	3065	OK
4X 4X Tary good 90 3120 314ghthy a 6X jx 0ood 75 75 90.30 01 1X 1000 75 75 90.30 01 01.4	X [†]	II	Good	plus	75	80	3070	Very slock3
81 <u>1</u> 0000 75 75 3015 00 81 1X 0000 11 75 75 3015 00	T	77	Yery	Good	90	06	3120	Slightly sleck
AT 1Y Read also 20 20 211 A	119	β×	Good		75	75	3015	XO
a frankro oft al al anti-	BX	JX	Good	plus	70	70	3130	Slightly slack

alipha-anylasa aquivalant to the elpha-anylase provided by .25 flour supplementation. Provekness equivalant to the proteinase in 11 commentration of ~

The sometry action of the service equivalent to the allower action of the service equivalent to the protections of the protections of the protections of the protections of the protection equivalent to the protections of the protection equivalent to the protections of the protection equivalent to the prot 01

Ensigne-S from which the probalances had been removed wes used as the source of slpha-anylass. Exparimental pound lowers using 12, 43 and 63 concentrations of alpha-anylass in combination with 0.57, 17 and 47 concentrations of flokese-29 were backd. Masstass-29 anylasentation up to 0.57 proteiness concentration caused no marked improvement of deterioration in the quality of the brand baked with the anjor hard rad winter flour, however, 17 and 47 concentrations produced programsively inferior bread as well as anoments informing of the doughs. The 4% theoremsduced prain, texture, and external ab rooteristics (Table 14) comparable to those produced by 1% and 4% concentrations of malked wheet flour. The results indicated that Plastass-29 was a satisfactory source of proteiness for use in further investimations.

In additional experimental beking investigations 0, 0.57, 17 and 47 concentrations of Finstens-3 ware used in combination with 0, 12, 42, and 65 concentrations of Mhonyme-5 alpha-mayless. Based ang grain and texture scores, 0 to 0.57 proteinness supplementation was required to secure the optime multip bread from hard red winter flour Ho. 2 (Table 15). A third hard red winter flour else required from 0 to 0.57 concentration of Disstars-59 to produce the optimum bread. The level of alphaanylase muphementation required by these flours did not appart to be critical.

Supplementation with disstance-29 at 0, 1Y, and 4Y concentrations in combination with 0, 1X, and 6X concentrations of

31 = consentinition of Calum-scylams outbalant to the althe-merilams provided by .35 present mainted when filture upideminterior is anount of Markane-29 proteines with 17 = the addition to 100 grams of Flour that maxous of Markane-29 proteines with would give a delta titheritor of case all in a protectivit outbalance interior determination.

3300

STIGUETA STOCK

hozymo-S concentration lx 4X 4X alted wheet flo concentration 1X 4X		; lpha-anylase; oncentration1; c
in the second se	47 117 117 117 117 117 117 117 117 117 1	Diastase-29 : proteinase ; oncentration?
Tair Good Good plus Good	Foor Good Good Good Good Good Good Good Jias Good Jias Good Jias	External a sharacteristics1
896 900 890 900	A 4000000000	Grain
220 8889 0000	000000000 % 000000000000000000000000000	Texture :
3285 3115 3125 3125 3140	m1 2990 3040 3100 3225 3150 3150 3150 3150 3150 3150 3150 315	Losf
ok slightly sl Black	GK Sikchtly al Slack Slack Slack Slack Slack Slack	properties
nok	ack	

Table 14. Experimental boking data using teinase to supplement a hard Rhozyme-S alpha-amylase and Linstase-29 pro-red winter wheat.

to b

Rhosyme-Sl alpha-emylese soncentretion	: Distase-292 : concentration	Chores	zterr	el. stics	crain	: : Texture :	Loef	Dough pronerties
					18	v	Ia	
0	0	Poor			85	80	3025	00
00	ARE	Fair			82	82	3000	OK
0	17	Good			222	80	3160	OK
IX	0	Good			6	06	3065	OK
1		Good	to V	NY 800	d 88	38	3115	OK
ALL ALL	11	Good			501	85	3015	OIK
11	141	Good			222	20 00 00	3000	Slack
T	1 IN	Good	to ve	IFY GOO	06 PM	000	3075	OK
17	11	Good			10.0	600	3100	Slightly slac
18	40	Cood		1000 mm	CD 82	200	3140	Slack
RX	11 P		2 2	17.7 80C	100	0 8	2865	
SI IS	IT 4T	Good			80.08	100 00	3025	Slightly slad
Malted .	maat flour					2	2/21	-
TEOTINO	11	Good			66	92	3070	OK
	4X 8X	Good	50 We	ary goo	4 88 90	10 10	3215	OK Slightly slad

Table 15.

Nonyme-S slphn-employe we used in pilot plant bekery investigations of hard red winter wheet flours No. 2 and No. 3. The optimum breed was obtained when no proteince was added to flour No. 3 (Table 16), but the flour easily tolarated proteinase up to IY concentration. Flour Fo. 2 essentially confirmed these results with a tendency toward slightly more deterioration at IY concentration of Distance-29.

From these results, it was concluded that the optimum quality break was obtained when the hord red winter wheat flours received 0 to [Y proteiness supplementation. The level of alphe-acyless supplementation up to EX concentration did not exposer to be critical.

Rectificements of Mark led Suring Meet Flour. A composite of hard red spring wheat flours was experimentally based with the usual combinations of proteiness and alpha-anyless supplementation. Encountry builtness was not observed in the control doughs. Concentrations of 0.5Y and 1Y Disstass-29 caused some logrowement in grain and texture (Table 17), while at 4Y concentration glutum breakdown was indicated by dough softening and by grain and texture deterioration. The optimum level of alpha-anyless supplementation was 4% concentration, however, this level was not critical. This experiment was repeated three times using different hard red spring flours. These flours gave the best results when supplemented with 0.5Y to 1Y concentration of Disstass-29 proteiness while the level of alphe-anyless supplemention, was not critical.

The three herd red spring flours, supplemented with

zyme-Sl -emylase ntrution	Disstance202:	Exto	arnel :	Grein:	Texture:	Loaf volume	Dough properties
0	0	Good		75	r 00	2916	Good
0	II	Good		80	78	2781	Good
0	14	Good	plus	85	80	2988	slightly slack
14	0	Good	plus	60	88	3059	Good
M	II	Vory	Bood	60	88	3041	Slightly slack
н	14	Good	plus	88	85	2959	Slack
	4	0 0		-			

Filot plant baking data indicating the separate effect of alpha-anylace and protainans supplementation of hard red winter wheat flour No. 3. Table 16.

1.1.X.= concentration of cilibrary margines with starts to the Alpha-emplorer provided by 25 provide mathem when from supplementation.
2.1.X.= the addition to 100 graves of france that another of blastmanes. Supplementations of mathematical sector and other attraction of one and in a protocylity devirting determination.

Good plus

Slightly slack

Slack 3066

tion.

Rhozyme-S ⁴ : alpha-emylane : c - trytion :	Distane-292: concentration:	Szternel Mursoteristios	: Grain:	: Texture:	Loaf : V l 0:	Dough prop rtiss
			VC.	VA.	(m	
0 11	00	Good Vary much	65	70	3290	COR COR
11	and the second s	Very good	62	140	3450	30
121	T.t	Good	500	50	3400	Slightly slack
44	0 II	Very good	35	75	3565	OK
YY	IX	Good	60	06	3425	· · · · · · · · · · · · · · · · · · ·
118	14	Very good	96	80	3540	Slightly slack
118	14	Good	82	80	3440	10
12 AV	1Y	Very good	82	000	3475	Slightly slack
0	1 200	Very good	000	08	3237	UK NOK
0	IT	Very good	100	63	3325	OIL
0	11	Good	83	80	3375	Slaak

Table 17. Experimental baking data indicating the separate effect of alpha-anylase and

z if a the addition to 100 grams of flour of that amount of Blastsse-29 probaines which would give s dalta titration of one m1 in a proteolytic activity isianzina-tion.

Diastess=39 proteinnes and inorgames. slpha-anylass were baked in the pilot plant bakeny. The ortians sually bread was obtained when 1Y to 4Y concentration of thestess=39 proteinnes was used (Table 18). The results with the other two hard red spring flours also suggested that at least 1Y concentration of Piestess= 39 was required for optimum proteinnes supplementation. Little difference appeared between 1X and 6X alpha-anylass supplementation.

These results obtained with hard red spring wheat flour indicated the optimum lawel of proteiness supplementation was substantially different from that required by hard red winter wheat flours. Mard red spring wheat flours in general require more proteiness than do hard red winter wheat flours.

<u>Affect on Crumb Compressibility</u>. The esperate effect of elpha-explase and proteinnes supplementation on breed orush compressibility was staticd. The dots are presented in Tebles 19 and 20. The dots in Table 20 were obtained 24 hours efter baking, while the dots in Table 20 were baken on duplicate looves 94 hours after baking. An analysis of variance (Table 21) of these date showed that eignificant differences in the breed arush compressibilities are exceed by alpha-anylase, proteinnes, and langth of storage. Both alpha-anylase and proteinnes insresses the compressibility while storage decreases the compressibility the storage decreases the theory ensemblidity.

Least significant mean differences were determined by the method of findesor (25). From these oriountions it was some oluded that the compressibility values for bread containing 4Y concentration of proteinness were significantly lower than the

103		y bucky					y slack		y sleek	y slock
Dough		Slightl	Good	Good	Good	Good	Slightl	Good	lightl	S11ght1
Loof : Vol e:	n1	2788	2738	2869	2747	5262	2994	2858	2953	2959
Texture:	N	80	82	82	85	67	60	87	06	90
: Grein :	10	75	27	11	80	50	92	80	92	92
Externel :		Vair	Good	Good	Good	Good	Very good	Good	Very good	Good plus
Dlastese-292 : soncentration :		0	11	47	0	II	14	0	II	47
Rhoryme-S : alpha-emylase : cono ntration :		0	0	0	II	II	ы	T2	22	SAT.

Filot plant baking data indicating the separate offect of alpha-emylase and unotednote environmentation of bood rad conduct flave. Table 13.

1 -

II.E. consecutions of ciphereytaes equivate to the ciphe-argues provided Nr. 45 Percent and the ciphereytaes equivalent to the ciphereytae equivalent to the ciphereytae of ciphere are cipherey and ciphereytae of c

1	I		1 Compt	to cart ht	144-	to luce	1
Alpha-amylase	: s concentration :	Loaf No.	t for	two sl	1008 1	ber	:Group
			gms.	gos.	gns.	gms .	1
0 10	0 #	30 3b	98 104 88	99 106	99 98	105	100 /
0	l¥ #	50	108	105 103	97 94	100	20084
0	4 <u>T</u> "	40 75 85	84 92	79 90	98 88 81	90 94 90	95.1
1X 11 11	0	110 11b 120	85 75 85	85 92 91	77 81 85	83 86 82	83.9
lx "	1¥ "	150 155 140	74 76 84	80 86 83	67 90 79	96 92 80	62.3
1 <u>x</u> "	4.X 11	17b 16b 170	68 83 68	66 77 84	67 74 66	67 87 88	74.6
n n	0 **	21b 21c 19b	76 78 68	85 80 82	61 84 86	84 90 92	82.2
a n n	ly "	22b 24b 24c	67 71 79	66 70 88	75 82 82	77 81 72	75.8
SX n n	4¥ "	26b 250 270	71 78 60	65 77 75	77 74 68	71 71 63	71.0

Table 19. Twenty four hour compressibility values for bread baked with different levels of alpha-savisse and proteiness.

1 12 concentration of alpha-anylose equivalent to the alpha-anylese provided by 25 percent salted wheat flour supple-

2 1Y the addition to 100 grams of flour of that amount of In the substants to 100 greas of riour of that emount of Disetness-29 proteinase which would give a data titration of one all in a proteclyic activity determination.
 The greas of lead shot required to press s one inch plunger 4 mm. into the bread orunb.

Alpha-amylas	1; Proteinese	2 iLoaf:0	compressi	bility	valu	es for	Group
CONCENTRATIO	10000eucler	0A: NO.:	Gms.	gne.	gae.	gne.	gae.
0 =	0	16 15 25	157 168 139	144 146 128	146 176	177 157	152.0
0	11	60 50	130 165	129 131	108	124 171	27210
0	4.Y	40 70 95	168 133 143	151 130	149 124 147	162 148 142	149.3
" 11	•	8e 12b	150 122	146	163	156	144.4
" "		100	137 132 140	139	153	126	131.6
		130 13b	123 130	111 122	129 131	122 126	125.3
11 # #	4 <u>Y</u> #	170 170 180	118 113 112	118 107 128	138 123 113	138 125 110	120.5
BX w	0 = =	200 20b 190	115 142 119	141 127 125	131 115 127	123 143 112	126.6
81 "	1¥ *	220 23b 230	134 119 123	112 100 150	123 119 100	124 117 124	120.4
a n n	4¥ **	25b 260 27b	115 137 113	129 118 122	130 106 98	123 126 107	118.7

Table 20. Minety four hour compressibility values for bread baked with different levels of alpha-anylass and proteinass.

¹ IX concentration of elpha-anylase equivalent to the elpha-anylase provided by .25 percent mailed wheat flour supplementation. 2 IX the addition to 100 grame of flour of that amount of Distance-

² If the addition to 100 grame of flour of that amount of Disetsee-29 proteinace which would give a delte titration of one ml. in a proteinitie activity detarmination.

³ The grame of lead shot required to proce a one inch plunger 4 mm. into the bread crumb.

Source of variation	9. 05 Of free	t liean source	: F ratio
Proteinese	2	1,926.0	10.21
Alpha-anylose	2	9,988.5	84.11
toroge	1	127,653.0	1,0751
.'rotsinase x alphe- anylase	4	25.8	
Proteinese x Storage	2	56.5	****
Alpha-amylase x storage	2	516.5	4.35
Proteinese x elpha- amylase x storege	4	34.5	
Individual values	198	118.7	
Total	215		
	Bre-d type men	0.0	
roteinese 0	112.8, T 108.	0, 47 - 1 2.5	
Alpha-amylase 0	121.2, X - 203.	0, 8 - 9.1	
torage 24 hr.	83.5, 94 hr	132.2	

Table	21.	Analysis of	veriance	20	the	sepes	ete:	off	200	20
		elpha-any crumb con	lass, ro ressibil:	tein ity.	680,	end	stot	1010	012	bread

8.772 8-12.573

 Mignificent at the 1 percent level.
 Renderd deviation of the difference of two means which will be significant at the 5 percent level.
 Renderd deviation of the difference of two means which will be significant at the 1 percent level.

values obtained for bread to which me proteiness and been added. Compressibility values for hread containing me proteiness and for bread containing IV proteiness concentration were not significantly different at the y percent lareal of significances. Likewise, the differences at the n the values for bread baked with IV proteiness o most braid and baked with 47 proteiness concentration wars not significant. The compressibilities of bread baked with sither 1% or 8 concentration of sighemayings were significantly (1 percent lareal) greater than the compressibilities of bread containing no althe-explose. It the 5 percent level of significance there was no difference observed between 1% and 6% alpha-anylase compressibilities. The compressibility of the bread after 94 haurs of storues was sigmificantly (1 percent level) has than for the bread stored 24 hours.

The results suggest supplementation with an elphe-anylese preparation law in proteiness and a separate proteinese prepartion law in elphe-anylese may produce more desirable results for the baker. If such a technic work used, axasing control would be necessary because of the oritical nature of proteiness supplementation. Then such control necesures are not evellable, so anymes preparation with a proteiness elphe-anylese sativity ratio approximately the same on that for malita wheet flowr would supchely protous the not desirable results.

Alpha-anylase and roteinese tetivities During Storage

The results from a study on the effect of storage under oxygen, mitrogen and air stocopheres at three different temperatures on the retention of slobe-mayless and proteiness extivities of Mongme-2 supplemented flour are presented in Table 22. Significent differences in the slobe-mayless extivities at the dirferent temperatures were observed (Table 23). The ourse of Plate II provided a graphical representation of the relationship of slobe-mayless extivity retention to time and temperature of slorage. Hour stored in the cold room retained the greatest enount of slobe-mayless extivity. The slobe-mayless extivities fell during the first few institute that leveld off. This does not necessarily indicate a serious problem in conservate supplementation.

The passous examplers did not significantly effect retention of either elpha-emplese or proteiness exitity. Noth storage tengenture and length of storage exerted a marked effect on the retention of proteinese exitity. The surves of late II indicated storage in the cold room produced lass deorense in proteinese notivity than storage at either room temperature or at 35°C. With the approach of summer, the temperature in the laboratory increased and for considerable periods was substantially growther than 35°C. This secounts for the intermingling of the room temperature and 35°C.

Table 22. Algha-amylase and proteinase activity of thoryma-S su plemented flour remaining during eight months of storage.

Storage temperature	6. trobs of a way	1 act	1pha-	reno	ae ining :	805	Frote 1.1ty	olyt1	alutur
			-	0	8	2	4	0	8
1		R	V.	N.	N	A	W.	12	18
_woor pron	02	90	80	1.8	87	92	78	277	68
	M2	76	84	50	81	16	85	83	29
5 2	kår.	86	87	22	25	16	83	73	68
tone tomp."	02	81	73	72	54	80	75	62	50
	N2	38	72	25	62	69	75	04	20
E	ALT	83	22	25	81	69	22	66	20
1200°	02	76	72	72	11	85	277	55	20
8	M2	26	72	70	79	82	22	56	2
	Air	32	68	73	72	86	75	52	28

Table	23.	Analysis of	veriance	of the	offeet o	f tampes	cature and
		gaseous	atmosphere	upon	the retan	tion of	alpha-
		anylase	and protei	nese e	ctivities	during	storage.

Source of verience : De	grees of free	dom : Mean square	: F ratio
/lp	ha-amylase ac	tivities	
Atmosphere	2	. 5	
Temperature	2	315	23.7%
Length of storage	4	857	64042
Atmosphere x tempera- ture	4	7	
Atmosphere z langth	8	10.1	1.191
Temperature x length	8	29.2	3.441
Atmosphere s lenghh of storage x alpha-anylase	16	8.5	
Total	44		
J.	roteinase act	ivities	
Atmosphere	2	19	1.481
Temperature	2	413	16.62
Length of Storage	la	2,752	11 .52
Atmosphere x	4	9	
temperature Atmosphers x length	. 8	6	
of storage		-	2
Temperature x length	8	76 .	5.94~
Atmosphere x length of storage x	16	12.8	
Total	44		

1 Mansignificant at the 5 percent level. 2 Significant at the 1 percent level.

Microflors Development

The sioroflore of the supplementation preparations were investigated by determining the number of becterial spores per

EXPLANTION OF PLATE II

The effect of rescous atmosphere, temperature of storage, and length of storage on the retention of alpha-emylase activity by a flour sup-lemented with Rhozyme-5.

> Fig. 1. Oxygen stmosphere Fig. 2. Hitrogen stmosphere Fig. 3. Air stmosphere Curve a. 5°C. to 9°C. Curve b. 20°C. to 40°C. Curve o. 35°C.

EXPLANATION OF LATE III

The effect of gaseous atmosphere, temperature of storage, and length of storage on the retention of proteinase activity by a flour supplemented with theoryme-S.

> Fig. 1. Oxygen stmosphere Fig. 2. Mitropan stmosphere Fig. 3. Air stmosphere Ourve a. 5⁰C.to 9⁰C. Ourve b. 20⁰C.to 40⁰C.

Curve c. 3500.

grem of preparation. The results were as follows:

Malted wheat flour	2,100	spores	per	gran
hozyme-9	405,000	**	99	**
Dicstase=29	1,000,000	π		-
leltase-20	2,500	**	**	10

The counts for thosyme- and factors-30 appear very high. However, based an equivalent al ha-ruylose octivity there is not such difference between "...yma- and the malted wheet flour. In myplementing 100 grans of flour to 11 concentration of slyhmanylass, 535 spores would be added if the malted wheet flour was used, while 555 spores would be added if theoryme-5 was added. In supplementing 100 grans of flour to 14 concentration with Distance-30, 2,350 spores would be added.

From the ortifician of Jaces and Swith (10) of the present A.A. C. method of datamining rops spore counts, it was concluded that these results scriby gave presemptive indication of the number of rops spores present. However, rops development in bread baked with either Rhoxyme-5, Maitese-20 or Hinttose-29 and stored up to eight days under favorable conditions was not observed.

While the results of this investigation indicated fungel enzyme preparations may be used as Generatical alpha-maytese supplements for flour, the approval of the Jure Yood and Drug Administration must be search before such preparations may be utilized for commorpial flour supplementation.

SUMMA Y AND CONCLUSIONS

 Gomperison of the siphs-anyiolytic and proteclytic estivities of eight enyme concentrates indicated that an enyme concentrate could be obtained which would possess any desired proteinese to alpha-anyiase ratio.

 Verience of destribugenic estivities of a series of Thozyme-S camples suggests enzyme concentrates should be standardized on destrinogenic estivity.

3. Thosyme-S, Maltese-20, Disebee-3) and Disetase-34 supplementation may be used to produce bread comparable in quality to that produced with maited wheat flour. Disetase-29 and Disetase-32 Idquirided the sponges if used in concentratione sufficient to produce beneficial results from the siphs-amylase. The bacterial propertions, Disetas-28 and -30, were undesirable as siphsamylase mapplements for flour since they caused sticky and gummy bread orumb.

4. The alpha-empletee of verious bacteriel enzyme concentrates may vary in thermostability.

 Increasing the temperature from 30°C to 50°C counsed the elphn-amylese of malted wheet flour to increase more in estivity than either Diestess-28 or Diestass-30.

6. Equivalent amounts of Plastame-28 and -30 (based on destringenic estivity et 30°C) produced maximum viscosity values significantly lower than the values for malted wheat flour. Thus, equivalent emounts of Distame-28 and -30 (besteriel) elphaonylame apprently cours greater attroch degredation than an equivaent set. leat amount of malted wheet flour elphe-explose even though thermostability and increase in estivity at higher temperatures date indicate malted wheat flour would produce the greatest estarch degradation. This apparent anomaly may be explained by assuming a lesser effinity of beateriel elphe-explose for lower molecular weight destring.

7. Pilot plant beking studies with Rhoryme-3 and Maltage-20 confirmed the experimental baking suggestion that these two preparations may be used on a commercial scale to produce bread comparable in quality to the bread produced with malted whest flour.

8. Pilot plant bakery investigation demonstrated that it would be feasible to dilute commercial enzyme preparations with flour to the alpha-saylase activity of commercial malted wheat flour, thus, the malt feaders now in use in flour mill could be used to blend in the diluted anylese proparation.

 The desirability of reducing the proteinese estivity of Ehozyme-S was demonstrated by beking with Ehozyme-S extracts in which various amounts of proteinese had been inactivated.

 Investigation of the separate effect of elphe-anylase end proteiname supplementation corroborated the work of Read and Hane (21), that various flours may be improved by increments of proteiname enzyme concentrate.

11. The level of proteinees supplementation was found to be quite sritical while the amount of sipha-anyless supplementation could be varied considerably without causing excessive detrimental affects. 12. Increasing amounts of proteinase and or alpha-amylase, increased the bread arumb compressibility.

1). Generate a tecopheres did not significantly affect the retention of alpha-anylase and proteiness activities. The higher temperatures significantly decreased both alpha-anylase and proteiness activities balow that of the activities retained by storage in the cold room. The proteiness activities consistently decreased during storage. While significant decrease in alphaanylase activity was found, a science problem in commercial supplease trian is not measured in the text.

14. Commercial anyme preparations would not necessarily introduce more bestarial spore contamination than would maited what flour supplementation then compared on equivalent alphaanylase concentration.

15. The approval of the Fure Food and Drug Administration must be secured before fungal enzyme concentrates may be used for commercial flour supplementation.

CENO LEDGMENTS

Acknowledgment and mineurs thanks are extended to Mr. John A. Johnson, major instructor and Associate Professor of Willing Industry, and to Dr. Hyron S. Miler, Associate Professor of Willing Industry, for invelueble sid in directing this investigation and for counsel and oriticism in the preparation of this manuscript. Thanks are due Mr. W. S. Teylor, Department of Becksricley, for earing the beckricl spore count determinations.

Apprediation is appressed to Dr. John J. Shellsabargar, Hand, Department of Milling Industry, for providing research facilities; to Dr. Max Milnar for counsel, and to other anabars of the Department of Willing Industry without whose co-operion this investigation could not have been completed.

The suthor is indebted to toke and Heas Company, Philedelphia, Fennsylvania, for the financial assistance which has made this investigation possible and for furnishing the commercial anyme preservices.

Thanks are due the following companies for contributing various types of flour for the investigation: Bay State Milling Co., Winnes, Minnesotes; The Larebus Flour Mills Company, Kenses Oity, Wissouri; Montans Flour Mills Company, Orset Tells, Montana; and Fodney Milling Company, Kanses City, Missouri. Thanks are also due Kamasa Milling Co., Wichtte, Kanses, for furnishing the malked whet flour.

LITERATU & CITED

- American Association of Osrael Chemists. Careal Laboratory Methods, 5th ed. St. Peul, Minn. Amer. Assocs. Gereal Okemists. 341 p. 1947.
- (2) Anker, C. A. and J. F. Geddes. Gelatinization studies upon wheat and other starohse with the amylograph. Gereal Chem. 21:335-360, 1944.
- (3) Builey, C. H. The constituents of wheat and wheat products. New York: Reinhold Pub. Corp. 332 p.
- (4) Dirke, B. M. and B. G. Miller. Inactivation and removal of proteolytic enzymes from anylolytic supplements. Gereal Chem. 26:98-109, 1949.
- (5) Ford, J. S. and J. M. Guthrie. The maylolytic and proteclytic ferments of whesten floure and their relation to "baking value". J. Soc. Chem. Ind. (London) 27:383-333. 1908.
- (6) Green, W. F. The value of disetstic and other enzymatic ectivity in flour and doughe. Geneal Chem. 11:319-329, 1926.
- (7) Hopkins, R. H. and D. Rulka. Some comparisons between a bacterial anylase and malt alpha-anylase. I. Kinotics of starch eacoharification by the two enzymes. alleratin Lab. Com. Ho. 15, 115-124. 1942.
- (8) Hildebrand, F. C. Role of proteinsees in baking. Enzymee and their role in wheat technology. Amer. Aseoo. Cereel Chemiste. New York: Interestence Pub., Inc. 371 c.
- (9) Hildsbrand, F. C. and G. M. Burkert. Amylace and proteinace systems of malted wheat flour. Gereel Ohem. 19:27-35, 1942.
- (10) James, H. end K. H. Smith, Studies on the microflows of flour. Gan. Jour. of Research. 26(0):479-485, 1948.
- (11) Johnson, J. A., B. M. Dirks and J. A. Shellenberger. Evaluation of anylase supplements for bread-making purposes. Bakers eligest 23:51-54. 1949.