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NOMENCLATURE

X logarithmic decrement, dimensionless

n niimber of cycles

Ln natural logarithm

Ao initial amplitude, centimeters

Ay, amplitude after n cycles, centimeters

-\ir specific damping capacity, dimensionless

W total vibrational energy, inch pounds per cubic inch

bM energy loss per cycle, inch pounds per cubic inch

A^ resonant amplification factor, dimensionless

Kvv material factor, equation (5), dimensionless

Kj- cross sectional shape factor, equation (5), dimensionless

K, longitudinal stress distribution factor, equation {$)

,

dimensionless

Kg energy absorption function, equation (6), dimensionless

K^ stress distribution function, equation (6), dimensionless

D specific damping energy, inch pounds per cubic inch per cycle

J material constant, equation (7), dimensionless

N material constant, equation (7), dimensionless

S stress, pounds per square inch

M binding moment, inch pounds

P bending load, pounds

1 length, inches

Z section modulus, cubic inches

d diameter of rod, inches

iii



VjJ damped natural frequency, radians per second

X amplitude of vibration, inches

damping coefficient, pound-seconds per inch

k spring constant, pounds per inch

t time, seconds

m mass, pounds

-' »-
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INTRODUCTION

Damping capacity, or internal damping, can be defined as that

property of solid material which results in energy absorption when

the material is subjected to a cyclic stress. Damping capacity can be

of prime importance ' in keeping down the amplitude of vibratoiy motion,

and therefore the stress magnitude of a vibrating member. Despite the

significance of internal damping, very little has been done to describe

it analytically, probably because of the large number of parameters in-

volved and the lack of general functional relationships.

As early as 1865, Lord Kelvin \l] had formulated the conception that

damping in solids was a phenomena associated with a viscous force pro-

portional to the strain velocity. He arrived at this conclusion through

analogy with viscous friction in fluids. His own experiments, however,

failed to support his theory. Damping was first presented as a hysteresis

phenomenon in 1912 by Hopkinson and Williams [2^ by noting that the

stress strain diagram for a complete cycle was a closed loop and was

analogous to magnetic hysteresis.

To determine the damping capacity of a material, Foppl \y} assumed

that any strain is composed of an elastic portion and a plastic portion,

the plastic portion causing thn energy loss. This plastic portion being

non-recoverable is dissipated into heat.

In more recent literature, Cochardt L6] and Lazan [$] developed

analytical expressions for internal damping based on the stress resonant

amplification factor as a function of stress distribution, shape of

[_ 3 Numbers in brackets designate references at end of report.



member, and a material factor. These approaches, however, are dependent

on the accurate measurement of stress distribution and a knowledge of the

energy absorbing characteristics of the material. Obtaining meaningful

results analytically for complicated shapes and loadings is extremely

difficiilt, not only due to the difficulty in defining the stress dis-

tribution, but also due to the other variables which affect internal

damping such as variability of stress history, machining stresses,

variation in material properties, and stress concentrations.



METHODS OF DEFINING INTERNAL DAMPING •

A great many investigators have made measurements of the rate of

vibration decay of free vibration, or logarithmic decrement which is

probably the best knovm of the methods of determining internal damping

and is the easiest quantity to determine experimentally. See Appendix

E for derivation of the logarithmic decrement. If A and A are the

amplitudes of vibration n cycles apart, then

c ' \ '^°
'"

Foppl ^3"] presented his data in terms of the specific damping cap-

acity although his measurements v/ere of vibration decay. Specific

dampin?; capacity is defined as the ratio of energy loss per cycle to

the vibrational energy of the member.

AW (2)-^ = -^

Lazan ^U"] showed that the following relationship existed between

the logarithmic decrement and the specific damping capacity.

If the magnitude of <£ is small as in most engineering metals, equation

(3) can be reduced to

If O is large in magnitude, as in mont plastics, then a greater number

of terms must be kept.

For a sustained vibration, the most convenient and meaningful

method of defining internal damping is the resonance amplification



factor. Lazan [5^ defines the resonance amplification factor to be

where K-^is a factor which defends on the material characteristics,

K is dependent on the cross sectional shape of the specimen, and Kg

is dependent on the longitudinal stress distribution. Cochardt {^6'},

bases his analysis of the resonance amplification factor on two

quantities, a stress distribution function, K^ , and an energy absorp-

tion function. Kg , His difinition then becomes

K V<
^^^

Ar = ^E "^a-

Other methods of expressing internal damping [[7] which are not

so widely used are:

1, Bl\mtness of the rr-sonance c\u've.

2, A "frictional stress" related to the width of the hysteresis

loop,

3, A frequency phase method [S"},

\.J :<.:•



FACTORS AFFECTING INTERNAL DAMPING

The major difficulty noted by most investigators working in the

fiftld of material damping is the large number of parameters involved,

and the apparent lack of relationships between them. The major parameters

are listed below,

1. FREQUENCY, Although slight frequency effects have been noted,

the great majority of investigators ^7] have concluded that damping is

entirely independent of frequency in the range of stresses of engineering

significance,

2. STRESS AMPLITUDE. Amplitude of the stress is probably the most

important single variable. Lazan [5] concluded that for many materials,

the effect of stress magnitude (at constant temperature and stress history)

may be expressed as

D = JS
^

(7)

where D is the specific damping energy in inch pounds per cubic inch per

cycle, and S is the stress in pounds per square inch. J and N are con-

stants which depend on the material. Lazan points out however that the

value of J and N may vary widely for different materials.

3, STRESS DISTRIBUTION. Internal damping is not only a function

of stress ajnplitude, but of stress distribution as well. For this reason

many investigators have used thin walled tubes as test specimens, and

subjected them to a torsional stress to achieve uniform stress throughout

the specimen. Both Lazan C^^and Cochardt C^l have developed expressions for

the resonance amnlification factor in terms of a stress distribution

function for some relatively simple shapes.



U. STRESS HISTORY. The effect of previous stress history has been

noted by many investigators. The general indication is that the damping

changes with repeated cycling, but approaches a constant value for any

specific stress loading. Different materials are apparently affected in

a different manner.

5. TEMPERATURE. Internal ' damping generally increases rapidly with

increase in temperature over a wide range of teiuptiratures ^7 J. An

exception to this is magnetostrictive damping which is the subject of

this report and is discussed in detail later.

6. NATURE OF THE STRESS, There is not much data available on

variation in internal damping due to type of stress, but there is

evidence that damping due to shearing stress is different than that

under normal stress.



MAGNETOSTRIGTIVE DAMPII\fCl

Cochardt [9l noted that the origin of internal damping in metals

has been traced to foiu* sources. -
.

.

1, Plastic flow

2, The thermoelastic effect

3, The magnetoelastic effect

U. Atomic Diffusion

In ferromagnetic alloys, only the magnetoelastic effect contributes

significantly to the high internal doping in the stress and temperature

range of engineering significance. The energy dissipated during a

stress cycle as a result of the magnetoelastic effect is. according

to Cochardt, generally caused by -irreversible magnetostrictive strain.

Every ferromagnetic material contains so called domains or dipoles

which are (in the absence of a magnetic field or a stress field) ran-

domly oriented. When the material is subjected to a magnetic field,

or a stress field, the domains tend to become aligned in the direction

of the field. The re-orientation of these domains results in an ir-

reversible change in the dimensions of the material which is termed

magnetostriction.

The stress dependency of magnetostrictive strain is illustrated

by figure 1, taken from Cochardt {9'] which shows a stress strain hysteresis

loop for a $0^ CoFe alloy. Note that as the material is stressed in

one direction and then cycled, the irreversible strain is of the order

of UO micro-inches per inch at approximately 10,000 pounds per square inch.

If the -stress level is increased above this limit, no further increase in

irreversible strain occurs. The stress value at v;hich this occurs is

called the critical stress. The curve follows a hysteresis loop which is
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Figure 1. Stress Strain Diagram of a 50^ CoFe strip under Static

Load, From Cochardt, "The Origin of Damping in High Strength Ferro-

magnetic Alloys,"



indicated by the dashed lines in Figure 1. The greater the area of the

loop, the greater the internal damping of the material. Prom this it

can be inferred []9] that the internal damping capacity of ferromagnetic alloys

is a function only of magnetostriction and critical stress. The critical

stress level is defined as the stress above which the area of the hysteresis

loop remains constant.

Lazan [10] indicates that the energy dissipated as magnetostrictive

damping may be much larger at low and intermediate stress than the

damping caused by all other mechanisms. That this is true, has been

shown by Cochardt and Lazan by magnetizing a specimen to satxiration

and observing that most of the damping disappears.

The presence of a static stress may also greatly reduce the damping

in ferromagnetic materials, A static stress can suppress the motion of

the domains and thus reduce damping as effectively as a magnetic field.



EFFECT OF TEMPERATURE ON MAGNETOSTRICTIVE DAMPING

Most engineering materials show a decrease in magnetostrictive

damping as the temperature is increased ^103 . The rate of decrease is

generally small at lower temperatures but as the curie temperature is

approached the magnetostrictive damping falls off rapidly and approaches

zero. There are exceptions to this behavior however, one being nickel

which increases in damping with increasing temperature until about

390 degrees F, and then decreases rapidly and approaches zero as the

curie temperature of 680 degrees F is reached.

10



DEFINITION OF PROBLEM .

The purpose of this report is to demonstrate magnetostrictive

damping over a temperature range of 80 to 3^0 degrees F for two

ferromagnetic alloys, mild steel and high carbon tool steel.

The two test specimens chosen were a 3/l6 inch diameter mild steel

welding rod and a 3/16 inch diameter drill rod. They were bent into

a loop as shown in figure 2. to facilitate electrical heating. The rods

were securely mounted to a heavy iron base and extended through the

center of an electrical coil which was used to provide the magnetic

field. The rods were given an initial displacement and released, and

the rate of vibration decay was measured. Two resistance type strain

gages were bonded to the rod and their output monitored on a Sanborn

recorder. Rod temperature was measured from a thermocouple attached to

the rod adjacent to the strain gages. Figures 3 and U show the test

arrangement.

steel bar

tempered masonite

L
test
SDecimen

iron mounting base

w

Figure 2. Test specimen mounting method.
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EXPERIMENTAL PROCEDURE

All tests were conducted at constant stress to insiire that the

variation in damping due to stress level (xirhich is an important parameter)

would not overshadow the effect of the magnetic field or the temperature.

The stress level foimd to give the most consistent results for both

specimens throughout the temperature range was 22^ pounds per square inch.

The strain gage and recorder were first calibrated to measure

stress directly as a function of recorder displacement, then preliiainary

tests were conducted to determine the satiiration magnetization of the two

specimens to insure that sufficient field strength existed to align the

domains. Figures 13 and lU show plots of the magnetization current.

Since the rods were heated electrically, it was also necessary to deter-

mine if the interaction of the current flowing through the test specimen

with the magnetic field would have any appreciable effect on the test.

Immediately before each test at each temperature, the calibration was

rechecked to insure good repeatability.

The mild steel specimen was tested first. At each temperature from

room temperature to 350 degrees F in 50 degree increments, two test runs

were made with the magnetic field and two test rvins were made without the

field. These tests were alternated so that no two tests with the field

were conducted in sequence. The first time the mild steel specimen was

tested, the data at the higher temperature were widely spread, (see figure

5). The test was repeated and the data from this second test was much

better. It is felt that the improvement in the quality of the data is

primarily due to improvement of the test technique and closer sur-

veillance of the test temperature. See figure 6 for the results of the

second mild steel test.
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The test of the high carbon steel drill rod specimen was conducted

using the same procedure established for the mild steel rod, A retest

of the drill rod was also made in an effort to improve the quality of

the data. The data for the drill rod sample are shown on figure 7.

The combined data for both specimens are shown on figure 8,

Additional tests were conducted to determine if an appreciable time

was required for the magnetic field to align the domains, and also to

determine if the time required for the domains to become randomly orient-

ed after the field was removed affected the test data, Lazan LIOJ

found that the domains would "follow" a cyclic stress at frequencies up

to hundreds of kilocycles, but no information was fovmd which indicated

the time required for the magnetic field to take effect.

In a few instances where a data point appeared to be too far re-

moved from the norm, a re-check was made and in all cases the new data

were found to fit closer to adjacent points.
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DISCUSSION OF RESULTS

The test results show conclusively that at a stress level of 22^

pounds per square inch, the presence of the magnetic field significantly

reduces the internal damping of both the test specimens. The damping

characteristics of the two materials however are quite different. At

room temperature the damping of the mild steel rod (as measured by the

logarithmic decrement) was less than half the value for the high

carbon tool steel rod. This result was expected however, since most of

the literature describes the high strength alloys as being "high damping".

Both Lazan 0-0} and Cochardt [9^ have presented their data as a plot

of damping versus stress at a single temperat-jre. This experiment

then, is purported to show what happens to one point of the damping-

stress curve as the temperature is increased. Throughout the temperature

range of this test, which is well below the curie temperatures of both

materials, the damping of the mild steel rod increased with increasing

temperature, \

The theory [^lO] indicates that magnetostrictive damping decreases

with increasing temperature up to the curie temperature where it re-

duces to zero. If the magnetostrictive damping does decrease with

temperature, the txiro curves would draw closer together as the temperature

is increased, or in other words, the effect of the magnetic field would

decrease and if the temperature approached the curie temperature, the

effect would disappear and the two curves wo\ald be coincident. For

the temperature range used in this experment, there was no obvious

decrease in the magnetostrictive damping. It will probably be necessary

to continue the experiment to higher temperatiires to detect this effect.

20
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The curves shown in Figure 8 do, however, show the general damping

characteristics -of the two materials at the 225 pound per square inch

stress level. The general indication is that although the high carbon

steel exhibits higher damping at room temperature, for temperatures

above 3^0 degrees, the mild steel may have higher damping.

It must be remembered that the damping measured includes the

external damping also which includes the energy absorbed by the support

system and the viscous damping effect of the atmospheric air surrounding

the vibrating beam. The part of the total damping effect which is attrib-

uted to magnetostrictive strain is the decrease in magnitude of the

logarithmic decrement which results from applying the magnetic field.

i»*
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CONCLUSIONS

) *

1

Although Imitations of the experimental apparatus precluded

testing the specimens at temperatures approaching the curie temperature,

the results definitely show magnetostrictive damping to be a signif-

icant part of the total damping characteristic of both naterials tested.

However it should not be inferred from this experiment that at different

stress levels or at higher temperatures that mild steel would have a

higher damping capacity than high carbon steel, or that the general

trends shown for the limited conditions of this test would hold true.

This experiment does do what was set out to doj that is, to

demonstrate that magnetostrictive damping does occur and is significant

at low to intermediate stress values and at temperatures below the curie

temperature. It would be desirable to continue this test by extending

the temperature range and testing a large number of high strength

ferromagnetic materials.

22
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! CilLIBRATION PROCEDURE

The first step in the calibration was to calculate the maximum

stress as a function of a concentrated load on the end of the cant-

ilever beam. For the simple cantilever, the maximum stress is given

by

^ _
_M_ Pj^ (8)

For the doubled cross section, the sectional modulus is

The rod diameter was 0.1875 inches and the beam length was 13.8 inches.

Using these values, the stress-load relationship was found to be

SO'^^o P (10)

where P is the load in pounds.

The beam was loaded progressively from 10 to 60 grams and the

resulting deflection from the strain gage output on the Sanborn

recorder was noted. This gave a direct relationship between maximum

stress in the beam and deflection on the recorder which is independent

of the gage factor and all other strain gage or recorder characteristics.

The resonant frequency of the beam (approximately 23 cps), was well

within the frequency response range of the recording instrument. For

each series of tests a set of calibration curves was made. These

calibration curves are included in this report as figures numbered

9, 10, 11, and 12, It is interesting to note that although the sensitiv-

ity decreased considerably at the higher temperatvires, the response

26
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remained linear. Figures 3 and h show the test setup with the cal-

ibration weights in place,

A copper-constantan thermocouole bonded to the rod adjacent to the

strain gages was used to measure test temperature. The rod temperature

was read out on a potentiometer with internal cold reference junction

compensation, and the temperature was controlled by limiting the current

flow through the rod with a variac which controlled the input to the

current transformer.

The logarithmic decrement was calculated using the formula

. \ 1
Ao (11)

X = L-V^ -r-

In all cases during this experiment, n was taken to be 10, The

procedure followed in determining the logarithmic decrement was as

follows

.

1. From the calibration curve, figures 9 through 12, determine

the deflection corresponding to 225 psi at the test temperature.

2. Since this deflection is from zero to peak amplitude, and the

amplitudes A and A are measured from peak to peak, multiply the de-

flection reading obtained by two.

3. Find the cycle on the Sanborn recording where the amplitude

corresponds to 225 psi.

U, Measure the peak to peak amplitude after 10 cycles,

5. Using these values of A^ and Ay, and setting n equal to 10

calculate the logarithmic decrement from formula (l).
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EQUmffiNT LIST •

The following is a list of the equipment and measuring instr-

uments used during this experiment, Nuirib-^rs refer to the notation

on figure 3*

1, Sanborn Recorder model no, 6O-I3OOB, with Sanborn Strain
Gage Amplifier, model no, 6U-500B.

2, Variac, 2^0 volt input, 0-2U0 volt output, 10 amp maximum,

3, AC Ammeter, variable range, 1 amp to ^0 amp full scale,

U, Current Transformer, Weston model no, 1596U.

5» Millivolt Potentiometiir, Leeds and Northrop, Catalog

no, 3686.

6«. Cast iron mounting base,

•7» Precision metric balance weights,

8. Heavy duty electrical coil,

9. DC Ammeter, Weston variable range, 10 amp to 100 amp full

scale,

10. DC Power Supply, Consolidated Electrodynamics Corporation,

variable range.

The strain gages used were Baldwin SR-U, type FA-12-12, l/h inch

gage length. The gages vrere bonded to the test specimens with high

temperature epoxy cement.

33
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TYPICAL DATA

Calibration Data: Stress - 3750(P), where P is the load in pounds.

Load, lbs. Deflection, cm. Stress, psi.

0.0220U6 - OoU9 82,67

0,0UU09 0.93 165.3U
0,06613 1.39 2U8,01
0.08818 1.82 330.68
0.11023 2,27 la3.35

High Carbon Steel Drill Rod, Test No, 3. Experimental data.

Temp, Stress A A £_ Field*

80 225 2,5 1,92 0,026U WO
80 225 2,5 1,90 0,027U w
80 225 2,5 1,90 0.027U WD .

80 225 2.5 1.90 0.027U W

1^0 225 2.5 1.82 0.0318 WO
150 225 2,5 1.89 0.028 w
150 225 2,5 1.81 0.0323 wo
150 225 2.5 1.90 0.027U w

200 225 2,58 1,88 .032U wo
200 225 2,58 1.97 0.02695 w
200 225 2,58 1.88 .032U wo
200 225 2.58 1,9U 0.0285 w

250 225 2,U2 1,85 .0268 wo
250 225 2,U2 1,90 .02U1 w
250 225 2,U2 1,86 ,0263 vro

250 225 2.1;2 1,87 ,0258 w

300 225 1,02 0,81 0.023 wo
300 225 1,02 0,8U .0195 .w
300 225 1,02 0.82 .0218 V/0

300 225 1,02 0.85 .01825 w

350 225 0,52 O.Ul .0237 wo
350 225 0.52 O.UO ,0262 w
350 225 0,52 0.1;2 ,02m wo
350 225 0,52 O.Ul ,0237 w

»«• W means with magnetic field, WO means without the field.

35
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Determination of Magnetic Satiiration
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DETERiMKATION OF MAGNET TC SATURATION

Before the calibration could be performed or the test conducted,

it was necessciry to oerform saturation tests on both the mild steel

and the high carbon steel specimens to insure that adequate current

was available to provide a sufficiently strong magnetic field to

completely align the domains in the material. For both specimens,

a definite saturation level was found. Saturation current for the

mild steel was found to be approximately 1.2 amperes, and for the

high carbon steel, about 0,1 amperes. The saturation level apparently

doen not vary with temperature.

All the tests were conducted with ^,$ amperes flowing through the coil

so that it is highly probable that the domains were completely aligned

for all tests with the field on. Figures 13 and lU show the magnetization

curves.

37
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DERIVATION OF THE LOG.'^ITHMIC DECREMENT

The general equation for a free damped vibration of a simple

spring mass system is given as

(12)

'WV'X -h C -X -+ ^0<. = <^

To obtain a solution to this, equation, assume a solution of the form.

Differentiate this expression twice and substitute back into

equation (ll).

Divide each term of this expression by

0<t

/'V/\ f\e

and the following quadratic equation results.

o^"- -V
~ -< ^ #. = O (11;)
-V/N 'WN

This equation has the roots

^\,z - £^ - a Vv^)
" 4^

which simplifies to

oi ^ -^ ± ^ ~\rc}- - ^ ^"^

Ul
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the solution (12) is then seen to be

(15)

The algebraic sign of the quantity'fC*- 4 ^vvi determines the type
.

of motion that will occur. For an oscillatory motion, 4--V5'Vv\ > C

andl/C*- 4^vv\ will be imaginary. In this case ^^ and (^i become

\ Zw\ 2,vv\ < '

(16)

ex - - -^ ^ l/TSwT-^'^Z g:vv\ ^W\ 1/

~-^<vvi (17)

Now define'y^y^.vA-c*- to be the damped natural frequency <-^ , then the

following simplifications follow

~ 2>*^^ ,^^ Zrrt^^

'X- h?. t.

- 3.VVA " ?:v¥>

-V 66 e

or= e
— t A(o^lt^-'>*i-^^) * 6(c-^^,>.t-AAi^^-t)

0, = e'^'-^F"^ r-.-^ (^^ e.) -* >• *^tw.t C^-^)

c, - (A-6^ c. > C'^-B)
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^-.e Cvc^r^.^ ^AA-v^^^t (18)

Now consider the amplitude at time t and at time t + T, where

T is the period of vibration and is difined to be

Now form the ratio

T =
ZTT

\ ^-f^i^^'^)0<(t+T)

The sin and cos terms cancel since

the ratio then reduces to

-vet) tiTw^^ +^:;;w"^
"^ 2.w\^^M

-y^-^T)
-e

The logarithmic decrement, <S , is defined as

y(^ ^-VaT)

(ly)

'0^ ^"t ; /p -T^jjCoo
- C (20)
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For this case n = 1 and the logarithmic decrement is

C - ^^ (21)

or the damping coefficient, c, is expressible as

_S^^:^1_^ (22)
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The vibration decay rate of two ferromagnetic alloys is nca.iurcd

in a strong magnetic field to demonstrate magnetontrictive damping.

The magnetic field aligns tho magnetic domains in "o^e material and

substantially reduces the int' ,'nal damping. Vibra;.:on decay measurements

were made at temperatures from 80 to 3^0 degrees F at a stress level

of 225 pounds per square inch.


