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Abstract 

Military installations are important assets for the proper training of armed forces. To 

ensure the continued viability of training lands, management practices need to be implemented to 

sustain the necessary environmental conditions for safe and effective training.  For this study two 

analyses were done, a contemporary burn history and a time series analysis.  The study area is 

Smoky Hill Air National Guard Range (ANGR), an Impact Area (within the range) and a non-

military Comparison Site. Landsat 5 TM / 7 ETM+ imagery was used to create an 11 year 

composite burn history image. NDVI values were derived from MODIS imagery for the time 

series analysis using the statistical package BFAST.  Results from both studies were combined to 

make conclusions about training impacts at Smoky Hill ANGR and determine if BFAST is a 

viable environmental management tool. Based on this study the training within Smoky Hill 

ANGR does not seem to be having a negative effect on the overall vegetation condition. It was 

also discovered that BFAST was able to accurately detect known vegetation disturbances.  

BFAST is a viable environmental management tool if the limitations are understood.  
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Chapter 1 - Introduction 

Sustainable use of military training lands is necessary for long-term provision of realistic 

and safe conditions that support maneuvers and exercises. The Department of Defense (DoD) 

controls 7,859,618 hectares (ha) of land within the United States (Gorte et al., 2012). Training 

activities on these land holdings can have dramatic impacts on the environment (Shaw et al., 

1989). The land owned by the DoD generally has little urban development and contains areas of 

large unbroken natural landscapes. Some installations are larger than most U.S. national parks 

(Cohn 1996).   

  In compliance with DoD policy, an Integrated Natural Resource Management Plan 

(INRMP) was implemented at Smoky Hill Air National Guard Range (ANGR) (Engineering-

Environmental Management, Inc. 2007). Installation-specific INRMP guides ecosystem 

management within military mission requirements and, at Smoky Hill ANGR, also governs 

livestock and agricultural leases (Busby et al., 2007). The goals for natural resource management 

at Smoky Hill ANGR are “to enhance and maintain biological diversity within the Range 

boundaries, while assuring the successful accomplishment of the military mission. Management 

practices should minimize habitat fragmentation and promote the natural pattern and 

connectivity of habitats; protect rare and ecologically important species; maintain and mimic 

natural processes; and restore species, communities, and ecosystems (Busby et al., 2007, p. 7)”.  

In 2002, Smoky Hill ANGR asked the Kansas Biological Survey (KBS) to do conduct an 

inventory of the flora and fauna for their training lands and to rate the overall ecological 

condition at the range (Busby et al., 2007). The KBS concluded that Smoky Hill ANGR is an 

example of a large preserved tallgrass prairie with large spans of unbroken prairie that serves as a 

hotspot for biodiversity for the Great Plains. Overall, KBS categorized the grassland 
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communities as “good” because of their thoughtful management practices . A goal for the 

INRMP is to raise the overall quality from “good” to “excellent” (Busby et al., 2007).   

 All of the surveys and analyses performed by KBS at Smoky Hill ANGR were extremely 

time intensive, requiring the collection of immense amounts of data about the range to document 

baseline conditions and inform the ongoing management of the tallgrass prairie.  A tool that 

could be included within future INRMP at Smoky Hill ANGR to complement the KBS 

vegetation survey, is a time series analysis of vegetation conditions for the entire range. While 

Smoky Hill ANGR land managers have information concerning what grass species are present at 

the range, they do not currently have access to data describing long-term vegetation trends or 

quantifying the magnitude and extent of disturbances over the entire range.  

Research Question and Objectives 

This study uses a combination of traditional supervised satellite image classification and 

time series temporal decomposition methods to estimate and compare vegetation dynamics for a 

military and non-military site in Smoky Hills ecoregion of Kansas.  Specific questions that will 

be answered are: 

 What is the frequency and spatial distribution of significant disturbances in the 

vegetation trend at Smoky Hill ANGR and do these differ significantly from 

adjacent non-military lands? 

 What is the long-term interannual trend in vegetation conditions, as inferred using 

normalized difference vegetation index (NDVI) data, at Smoky Hill Air National 

Guard Range (ANGR) and do estimated trends differ significantly from adjacent 

non-military lands? 
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 Does the frequency and spatial distribution of abrupt intraannual changes detected 

in the long-term trend component of the temporal decomposition (using moderate 

resolution satellite imagery) agree with classified images of burn scars (using high 

spatial resolution satellite imagery) for the same time period? 

The comparison of long-term trends and abrupt changes between the military and non-

military site will be used to evaluate whether the training activities and land management 

practices in place at Smoky Hill ANGR manifest as different vegetation responses.  The results 

here will be combined with that from other military installations to determine whether vegetation 

dynamics are consistently different on training lands versus surrounding non-military landscapes. 

To answer the questions above, the following objectives will be accomplished: 

 Collect Landsat 5 TM, Landsat 7 ETM+, and MODIS MOD13Q1 16-day NDVI 

composite images for the period 2001-2011. 

 Apply a minimum distance supervised classification on the red and near-infrared 

bands of monthly Landsat imagery to identify burn scars (disturbances) and create 

a data product reflecting the minimum number of annual burns for 2001-2011. 

 Use the Breaks For Additive Seasonal and Trend (BFAST) temporal 

decomposition method, within the statistical software program “R”, to extract the 

long-term interannual trend, number of abrupt changes (breaks) in the linear 

trend, and magnitude and direction of breaks from a 2001-2011 time series of 

MOD13Q1 images. 

 Use a Student’s t-test to evaluate the significance of long-term intraannual trends, 

perform a Chi-square contingency table analysis to detect important differences in 

the number of breaks in trend between study sites, and run a logistic regression to 
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determine whether BFAST derived breaks in trend is an appropriate variable for 

explaining long-term trends. 
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Chapter 2 - Literature Review 

 Environmental Monitoring  

Ecosystems all around the world are in a constant state of change at different spatial 

scales due to both natural and anthropogenic causes (Millennium Ecosystem Assessment 2005). 

Current trends in ecosystem management are often centered on the idea of sustainability.  To 

support these efforts, accurate monitoring of land-use and land change over large areas and time 

is required (Coppin et al., 2004). Lack of long-term quantitative land cover data can lead to a 

misinterpretation of processes that are currently happening and subsequent mismanagement 

(Lampry 1975). Gradual and  abrupt changes in the level of vegetation activity over time can be 

routinely monitored by collecting and analyzing time-series data from medium and coarse spatial 

resolution satellite sensors (Beck et al., 2006; Coppin et al., 2004; Dash et al., 2010; Julien and 

Sobrino 2009; Verbesselt et al., 2010a; Verbesselt et al., 2010b). 

 Times Series Analysis 

A time series is defined as “…a sequence of measurements of the same variable collected 

over time. Most often, the measurements are made at regular time intervals” (Penn State Eberly 

College of Science 2016, Sec. 1.1). The purpose of a time series model is to “obtain an 

understanding of the underlying forces and structure that produced the observed data and to fit a 

model and proceed to forecasting, monitoring or even feedback and feedforward control” 

(NIST/SEMATECH 2012, Sec. 6.4.1,).   

 The two basic types of time series models are autoregressive and regression based. A 

time series analysis can yield important information about a process, including: trend, 

seasonality, outliers, long-run cycle, constant variance, and abrupt changes. Such results can 

significantly inform your interpretation of the process by (1) identifying increasing or decreasing 
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trends in the dependent variable, (2) uncovering repeating patterns in the response that 

correspond to seasonal or other cycles, (3) highlighting the presence of outlying or unusual 

values, (4) determining whether variance is constant or dynamic, and (5) pinpointing change 

points where modelled behavior changes significantly (Penn State 2016).  

Time series analysis is a technique used by many disciplines/industries. Examples include 

(NIST/SEMATECH 2012):  

 Economic and Sales Forecasting 

 Budgetary, Stock Market, and census Analysis 

 Yield and Workload Projections 

 Process and Quality Control 

 Inventory and Utility Studies  

Another application of time series analysis is environmental monitoring and 

classification; it has been a featured method in a number of studies. For example, Yang and Lo 

(2010) used Landsat imagery to detect land use and land cover changes within the metropolitan 

area around Atlanta, Georgia.  Tatsumi et al., (2015) used time series analysis of Landsat 7 

images to classify eight different crops (alfalfa, asparagus, avocado, cotton, grape, maize, 

mango, and tomato) in the Ica region in Peru. Marrari et al., (2016) used high spatial resolution 

imagery from 1997-2015 to analyze the chlorophyll concentration of the reproductive area of the 

Argentine hake (Merluccius hubbsi).   

 Remote Sensing 

Remote sensing is the process of detecting reflected or emitted electromagnetic radiation 

(EMR) from Earth’s surface which is recorded by sensors onboard aerial or satellite platforms 

(Ingle et al., 2003).  Monitoring vegetation cover and vegetation conditions is a necessary task to 
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understand phenomena influenced by vegetation such as terrestrial primary productivity, 

concentrations of atmospheric CO2, the hydrologic cycle, and many others.  Monitoring 

vegetation cover and conditions once was, and still is, accomplished via field surveys. However, 

field surveys can be time intensive and costly, especially if the area of interest is large. Remote 

sensing helps to overcome the challenges associated with in-situ surveying by providing high 

spatial resolution and multispectral images over long time periods for most areas on Earth 

(Tucker et al., 1985; Cihlar et al., 1991).   

 In its early years, remote sensing of vegetation focused primarily on thematic mapping of 

different land cover categories and how those categories may be changing over time. Over time, 

advancements in technology has allowed sensors and computer-based analyses to also extract a 

number of biophysical parameters about the earth’s surface (Underwood 2006).   

 There are many different sensors that are useful for monitoring the terrestrial 

environment.  Table 1 lists a number of these sensors and some of their important operational 

characteristics.  
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Sensor Satellite 

Platform 

Spatial 

Resolution 

Swath Width Spectral Bands 

(nm) 

AVHRR NOAA-POES 1.1 km 2,700 km 580-680 

725-1,000 

1,580-1,640 

3,550-3,930 

10,300-11,300 

11,500-12,500 

POLDER ADEOS 6 km 2,400 km 433-453 

555-575 

660-680 

845-885 

MODIS Terra and aqua 500 m 

500 m 

250 m 

250 m 

500 m 

500 m 

500 m 

1 km 

1 km 

1 km 

2,330 km 459-479 

545-565 

620-670 

841-876 

1,230-1,250 

1,628-1,652 

2,105-2,155 

3,929-3,989 

10,780-11,280 

11,770-12,270 

MERIS Envisat 300 m 

1.2 km 

575 km 

1150 km 

660-670 

855-875 

Table 1 Moderate to coarse resolution sensors onboard satellites commonly used for 

environmental remote sensing with their key operating characteristics (adapted from 

Townshend and Justice 2002). 

  

Remote sensing of vegetation has occurred on a global scale since the early 1980’s 

(Schwartz 1998) with the launch of the Advanced Very High Resolution Radiometer (AVHRR) 

sensor onboard NOAA-POES in 1981. The MODIS sensor followed, first with a launch in 1999 

onboard the Terra satellite and then another in 2002 onboard the Aqua satellite (Townshend and 

Justice 2002). The next sensor, VIIRS, was supposed to go up on March 31, 2014 onboard the 

National Polar-orbiting Operational Environmental Satellite System (NPOESS), but as of 2016 is 

still listed as in “Development”.  It is expected to improve upon the AVHRR and MODIS 

sensors increase the capabilities of the operational environmental monitoring satellite system 

(NASA 2013).    
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 MODIS 

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is on board both 

the Terra and Aqua satellites which comprise part of the Earth Observing System (EOS).  The 

EOS system and program is designed to study the role of vegetation in large-scale processes for 

better understanding how the Earth functions as a system (Huete et al., 2002).  Compared to the 

AVHRR, MODIS sensors offer increased spatial resolution, more precise bandwidths, and a 

greater number of spectral channels (Townshend and Justice 2002).  The Terra and Aqua 

satellites are in a sun-synchronous and near-polar circular orbit and covers the entire Earth’s 

surface every 1-2 days.  Terra crosses the equator from north-to-south at approximately 10:30 

a.m. local time followed by Aqua (from south-to-north) at 1:30 p.m.  Their MODIS sensors have 

a whiskbroom scanner that collects 36 co-registered spectral bands with a field of view of +/- 55° 

off-nadir, and a swath width of 2,330 km (Jensen 2000). MODIS has one of the best and most 

comprehensive calibration subsystems on a remote sensing instrument including a solar diffuser, 

a spectroradiometric calibration instrument, a solar diffuser stability monitor, a space viewport, 

and a blackbody for thermal calibration (Jensen 2000, p. 231). 

 

 Landsat 5 Multispectral Scanner / Thematic Mapper 

The Landsat 5 Multispectral Scanner (MSS) and Thematic Mapper (TM) was launched in 

1984 with a design life of 5 years.  Operational imaging ended in November 2011 and the 

satellite was officially decommissioned on June 5, 2013 (U.S. Geological Survey 2013b). 

Landsat 5 TM was in sun-synchronous, near-polar orbit (altitude of 705 km), inclined at 98.2°, 

had a 16 day repeat cycle, and a swath width of 185 km organized in the WRS-2 path/row 

system.  The operating characteristics of the MSS and TM sensors are listed in Table 2. 
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Sensor Band Number Spectral  

Bandwith (µm) 

EMR Spectrum Spatial Resolution (m) 

MSS 1 0.5-0.6 Visible 60 

2 0.6-0.7 Visible/Near-Infrared 60 

3 0.7-0.8 Near-Infrared 60 

4 0.8-1.1 Near-Infrared 60 

TM 1 0.45-0.52 Visible 30 

2 0.52-0.60 Visible 30 

3 0.63-0.69 Visible 30 

4 0.76-0.90 Near-Infrared 30 

5 1.55-1.75 Near-Infrared 30 

6 10.40-12.50 Thermal 120 

7 2.08-2.35 Mid-Infrared 30 

Table 2 Operating characteristics of the Multispectral Scanner (MSS) and Thematic 

Mapper (TM) sensors onboard the Landsat 5 satellite (U.S. Geological Survey 2014). 

  

 Landsat 5 imagery has been used for a variety of purposes, including to measure surface 

temperature (Sobrino 2004), detect burn scars (Koutsias et al., 2000; Hudak  et al., 2004; Mohler 

2011), monitor landuse change (Seto et al., 2002), show coastal effects of hurricanes (Barras 

2006), identify geomorphic features (Novak et al., 2000), and model glacial hazards (Huggel et 

al., 2004).  

 Landsat 7 Enhanced Thematic Mapper Plus  

 Landsat 7 ETM+ was launched in 1999 and is still gathering data today (NASA 2010). 

Landsat 7 ETM+ is in sun-synchronous, near-polar orbit (altitude of 705 km), inclined at 98.2°, 

has a 16 day repeat cycle, a swath width of 185 km and, like Landsat 5, uses the WRS-2 

path/row system. The operating characteristics of the eight-band ETM+ sensor is listed in Table 

3. 
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Sensor Band Number Spectral Bandwith (µm) Spectral Bandwith (µm) Spatial Resolution (m) 

ETM+ 1 0.45-0.52 Visible 30 

 2 0.52-0.60 Visible 30 

 3 0.63-0.69 Visible 30 

 4 0.77-0.90 Near-Infrared 30 

 5 1.55-1.75 Near-Infrared 30 

 6 10.40-12.50 Thermal 60 

 7 2.09-2.35 Mid-Infrared 30 

 8 0.52-0.90 Panchromatic 15 

Table 3 Operating characteristics of the Enhanced Thematic Mapper Plus (ETM+) sensor 

onboard the Landsat 7 satellite (U.S. Geological Survey 2013a). 

 

Since May 2003, Landsat 7 scenes suffer from a scan line corrector defect that causes 

data gaps (i.e., striping) in images (U.S. Geological Survey 2015).  Though a given image now 

only contains 78% of their pixels, ETM+ data is still a valuable data source (U.S. Geological 

Survey 2013). Examples of applications from past studies incorporating ETM+ images include 

landuse and landcover change detection (Yang et al., 2002), detecting of coal mine fires (Mishra 

et al., 2011), mapping abundance and distribution of animals (Lynch et al., 2014), and crop 

classification (Tatsumi et al., 2015). 

 Normalized Difference Vegetation Index 

 Normalized difference vegetation index (NDVI) is a vegetation condition metric derived 

from satellite imagery to provide information about vegetation and vegetation change (Wright et 

al., 2012).  A measure of “greenness”, NDVI has been shown to correlate with a number of 

biophysical variables such as leaf-area index (LAI), percent cover, and aboveground biomass and 

has been used in a number of environmental remote sensing studies (Cihlar et al., 1991; Petterelli 

et al. 2005; Tucker et al., 1991). It has also been suggested that NDVI relates to photosynthesis 

and transpiration (Running 1988).  

Extracting NDVI values for an area over a long time period allows valuable information 

about vegetation conditions to be inferred. NDVI values gathered throughout a growing season 
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can also be used to estimate a phenological development curve for the different vegetation types. 

Once such a curve is created, it is possible to identify key “phenometrics” such as the dates for 

the onset and end of a growing season, the magnitude and time when maximum NDVI is 

achieved, and growing season length (de Jong et al., 2011).  

NDVI values are calculated as a ratio of red to near-infrared reflectance and ranges 

between -1 and +1 (Equation 1). Negative numbers relate to the absence of vegetation and the 

more positive the number the greener the vegetation. There are many different NDVI data sets 

available with different temporal and spatial resolutions (Pettorelli et al., 2005). Table 4 lists 

some examples. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Equation 1 NDVI Equation 

 

Satellite Sensor Date Range Spatial Resolution 

AVHRR 1981-Present 8-16 km 

Landsat 5-8 1984-Present 30-60 m 

SPOT 1-7 1986-Present 6-20 m 

MODIS 2000-Present 250-1000 m 

Table 4 Commonly used long-term NDVI datasets (from Pettorelli et al. 2005). 

 

NDVI will increase quite quickly in the spring and will decrease from the middle to end 

of summer through fall (Cihlar et al., 1991).  Changes in NDVI suggest that vegetation is 

responding differently given variations in how photosynthetically active radiation is being 

absorbed or reflected (Sellers 1985).  Because NDVI is dependent on reflected EMR from the 

visible and NIR spectrum, many things can interfere with the response reaching the sensor and 

affect the recorded data.  Examples of such interference include atmospheric effects, satellite 



13 

drift, calibration issues, clouds, bare soil, and smoke from fires (Gutman and Ignatov 1995; 

Privette et al., 1995; Heute and Jackson 1988; De Moura and Galvao 2003).  Another known 

issue with the ratio-based NDVI is that its response is non-linear, especially at its upper (very 

green) end.  At high NDVI values, even a small change might actually represent a significant 

difference in the vegetation.  

 BFAST 

Among methods for analyzing trends in continuous vegetation index time series datasets, 

temporal decomposition techniques have been shown relevant to the study of vegetation 

seasonality (Jönsson and Eklundh 2002) and the detection of vegetation changes as they relate to 

agricultural practices (Millward et al., 2006), gradual interannual vegetation change due to 

rainfall variability and drought (Jacquin et al., 2010; Fensholt et al., 2009; Lambert et al., 2013), 

and abrupt vegetation change observed at the intraannual time scale caused by disturbances such 

as fire, disease and insect outbreaks, deforestation, and construction activities (Verbesselt et al., 

2010a).  Temporal decomposition separates the original time series dataset into three different 

components, each of which may be related to vegetation condition at different time scales 

(Brockwell and Davis 1996; Cleveland and Delvin 1988): 

(1) Seasonal – annual or seasonal  

(2)  Trend – multi-annual linear or nonlinear with, or without, breakpoints 

(3) Noise – residuals remaining after elimination of trend and seasonal components  

The Breaks For Additive Seasonal and Trend (BFAST) approach was selected as the 

temporal decomposition method because of its ability to account for seasonality and to detect 

gradual interannual and abrupt intraannual changes within the trend component (Verbesselt et 
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al., 2010a). Four additional characteristics make BFAST appropriate for near real-time global 

scale disturbance detection (Verbesselt et al., 2012):   

(1) It is fast and requires a minimum amount of processing time 

(2) It does not require definition of thresholds 

(3) There can be gaps in the data and it can still be analyzed   

(4) It analyzes full temporal detail of a time series  

BFAST has been used with time series MODIS 16-day NDVI composite imagery in 

Australia to accurately detect abrupt changes in forests, to detect the magnitude of the change, 

and to determine if the detected change was positive or negative (Verbesselt et al., 2010b). The 

same MODIS imagery and BFAST have also been used to look at the phenological change in 

grasslands and plantations in Australia (Verbesselt et al., 2010b).  BFAST has also been used to 

look at global vegetation trends (de Jong et al., 2013), vegetation trends at a military installation 

(Hutchinson et al., 2015), and tested against other trend models in Alaska (Forkel et al., 2013).   

 Burn Analysis 

Burning prairies for management purposes has been done for over one hundred years and is 

important for their continued viability (Vogl 1974, Towne and Owensby 1984). Benefits of 

grassland burning include promoting native vegetation and decreasing litter cover (Herndon and 

Taylor 1986; Shay et al., 2001; Hulbert 1969). Burning is an important step within the cycle that 

makes up grassland ecosystems.  Without fires, prairies would most likely be overtaken by 

woody vegetation.  Fires dry out soil moisture needed for tree seeds to sprout and also kill 

saplings (Stewart 1951, Hulbert 1969).  The frequency of fires can also have an effect on 

vegetation composition (Shay et al., 2001) allowing different types of grasses to establish.  
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Being able to detect burns over large areas is of interest to many people for forest 

monitoring, prairie management, carbon cycle studies, air quality management, and habitat 

quality assessment (Bourgeau-Chavez et al., 1997; Towne and Owensby 1984; Dwyer et al., 

2000; Huang et al., 2013; Raynor 2015).  Burn detection is frequently done using remotely 

sensed data (Bourgeau-Chavez et al. 1997; Liu et al. 2014).  Mohler (2011) evaluated multiple 

approaches across the tallgrass prairie ecoregion and used nine different scenarios that tested the 

ability of single and multiple bands to detect unburned and burned areas. Mohler’s Scenario #7, 

based on a minimum distance supervised classification with the red and NIR bands was one of 

the best methods for burn detection in tallgrass prairie.  

 Military Installations 

The U.S. DoD, as of 2012, controls 7,859,618 hectares (ha) of land within the United 

States (Gorte et al., 2012) and a total of over 11 million ha worldwide.  The DoD controls land in 

all 50 states, seven U.S. territories, and 40 foreign countries (Base Structure Report 2012).  Since 

the inception of the U.S. Army, Navy, and Marine Corps in 1775 and with the establishment of 

The War Department (later the Department of Defense) in 1789 there has been military training 

activities occurring on U.S. soil, in some areas, for over 200 hundred years. The DoD, as of 

2013, has 1.4 million active duty men and women in the armed forces and 718,000 civilian 

personnel and is the nation’s largest employer (U.S. Department of Defense 2013). The mission 

of the DoD is to, “provide the military forces needed to deter war and to protect the security of 

our country (U.S. Department of Defense 2013).” 

Across all DoD lands, there are 4,451 DoD sites split between Army, Navy, Air Force, 

Marine Corps, and Washington Headquarter Services (Base Structure Report 2012).  These sites 

support a variety of training activities, including light and heavy vehicle maneuvering (e.g., 
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Growler, Humvee, Bradley, tanks), dismounted infantry exercises, air to ground missile strikes, 

gunnery ranges, and search and rescue simulations.     

According to the DoD Base Structure Report (2012) produced by the Office of the 

Deputy Under Secretary of Defense (Installations & Environment), the DoD has a total of 111 

large sites in the U.S. with 103 medium sites, 3803 small sites, and 434 other sites for a total of 

4,451 sites. To be qualified as a large site, the installation has to have a Plant Replacement Value 

(PRV) that is greater than or equal to $1.715 billion (Base Structure Report 2012, p. 27).  The 

total PRV for only the 111 large sites is a minimum of $190 billion. Kansas has two sites that 

qualify as large sites:  Fort Riley (41,180 ha, PRV 4.6 billion) and Fort Leavenworth (2,281 ha, 

PRV 2.6 billion).  The study area for this study is the Smoky Hill ANGR near Salina, Kansas.  It 

spans 13,709 ha and has a PRV of $75.3 million. There are 98 active duty personal at Smoky 

Hill ANGR (Base Structure Report 2012).   

Training that takes place at DoD installations can adversely impact the environment, but 

is essential in preparing soldiers for their wartime missions.  The many different military training 

activities at DoD sites have been shown to have dramatic impacts on the environment (Shaw et 

al., 1989).  Some of these impacts are soil compaction and erosion, native vegetation decrease, 

alien vegetation increase, soil chemistry changes, and aquatic community disturbances (Wilson 

1988; Quist et al., 2003; Whitecotton et al., 2000).  Environmental policy and regulations for 

military installations started in the late 1960’s with military environmentalism (Coates et al., 

2011).  

During the 1960’s and 1970’s civilian protestors considered militarization synonymous 

with destruction and sterility.  One way in which the military responded to such protests was to 

promote the image that military installations were islands of high quality habitat that served as 
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sanctuaries for wildlife.  Without military installations, these lands would be taken over by 

urbanization, tourism, or chemical-fueled agriculture.  

In the U.S., starting with the Conservation Programs on Military Reservations (Sikes) Act 

of 1960, a number of pieces of federal legislation were enacted which required military attention, 

including the Clean Air Act of 1970, National Environmental Policy Act of 1971, Clean Water 

Act of 1972, and Endangered Species Act of 1973 (Coates et al., 2011). The military had 

unintentionally become stewards for increasingly valuable biodiversity.  In 1983, the DoD 

created the National Military Fish and Wildlife Association comprised of natural resource 

experts – nicknamed the “new defenders of wildlife” – as military land management increasingly 

started to include environmental problem solving (Coates et al., 2011).  An Army wildlife 

biologist, James Bailey, said “If we weren’t here this land would be all marinas and 

condominiums” (Cohn 1996, p. 1). He was talking about the Aberdeen Proving Ground on the 

coast of Maryland and without the military installation being there, there wouldn’t be any nature 

left.  

With the passage of the National Environmental Policy Act in 1971, all branches of the 

U.S. government had to give proper consideration to the environment and prepare Environmental 

Impact Statements (EIS) before taking any actions that might have an effect on the environment 

(EPA 2013).  Also, Army Regulation 200-2 (Department of the Army 1988) – which applies to 

the active Army, Army National Guard (ARNG), and the U.S. Army Reserve (USAR) – states 

that, “this regulation sets forth policy responsibilities, and procedures for integrating 

environmental considerations into Army planning and decision making…” (Department of the 

Army 1988, p. 1). An environmental management program that the DoD, U.S. Fish and Wildlife, 

and state fish and wildlife agencies have developed and amended, in 1997, to the Sikes Act of 
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1960 is the Integrated Natural Resource Management Plans (INRMPs) (U.S. Department of 

Defense and U.S. Fish & Wildlife Service 2004).   

The Sikes Act of 1960 mandated the development and implementation of management 

strategies and programs for conserving and protecting biological resources on military lands.  

INRMPs were developed because military lands present the unique situation where land and 

water resources are often protected from typical human access and impacts. INRAMPs are 

defined as:  

“planning documents that allow DoD installations to implement landscape-level 

management of their natural resources… extremely important management tools that 

ensure military operations and natural resources conservation are integrated and 
consistent with stewardship and legal requirements (U.S. Department of Defense and 

U.S. Fish & Wildlife Service 2004, p. 1).” 
 

According to British geographer Martin Coulson a member of NATO’s Committee on the 

Challenges of Modern Society (CCMS), 1969 was a catalyst for military environmentalism with 

the issuing of an Environmental Principles Statement in 1990 and the NATO Environmental 

Policy Statement for the Armed Forces in 1993. The NATO Environmental Policy Statement for 

the Armed Forces contained videos and leaflets that talked about soldiers training “green” and 

initiated courses (1995-present) in environmental management of military lands at the NATO 

school in Oberammergau, Germany (Coates et al., 2011).  

Many military training activities have impacts on the environment, especially those 

involving the use of heavy armored vehicles such as tanks. Tank traffic can compact soil, affect 

soil infiltration rates, change flora composition, increase soil erosion, change wildlife habitat, 

change soil chemistry, and affect persistent litter (Diersing et al., 1988).  In the Mojave Desert, 

tank training activities were still evident in 1982 from General Patton’s training in the 1940’s, 

from “Desert Strike” in 1964, and from “Bold Eagle” in 1967 (Lathrop 1982).   
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In order to balance environmental quality with the need for training lands methods are 

needed to estimate maximum allowable levels of use without causing significant landscape 

degradation. In 1988, Scott Wilson of the University of Manitoba, studied the effects of the 

frequency of tank traffic on prairie ecosystems at the Canadian Forces Base Shilo (Wilson 1988). 

He discovered that frequency and season in which the tanks were used has different impacts on 

the mixed grass prairie.  Depending on the time of year that the tanks were used, more or less 

alien grass species would be present.  Areas that supported tank traffic only in the summer didn’t 

show any signs of alien grass species.  But, areas that were used for tank training in other times 

of the year (e.g., spring) saw an increase in non-natives that led to a shift in the local composition 

prairie grasses.  Further, increasing bare ground was correlated with higher frequencies of tank 

training. Through this type of analysis, Wilson (1988) developed a predictive management model 

to show what vegetation would be like with differences in tank traffic.  

 Similar work that studied the impact of maneuver training on different vegetation and 

soils has also been done across the U.S., including the Cross Timbers region in central Texas 

(Severinghaus et al., 1981), the Mojave Desert in southern California (Lathrop 1982), 

southeastern Colorado’s shortgrass steppe (Milchunas et al., 1999), northeastern Kansas’s 

tallgrass prairie in northeastern Kansas (Quist et al., 2003; Althoff et al., 2009), and mixed grass 

prairie in southwestern Oklahoma (Leis et al., 2005).  
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Chapter 3 - Study Area 

 Overview 

 Smoky Hill Air National Guard Range (ANGR) is a 13,708 hectare (ha) range located 

southwest of Salina, Kansas. The site is located mostly within Saline County, but the extreme 

southern edge of the range falls within McPherson County (Figure 1). The site is also situated in 

the Smoky Hills ecoregion of Kansas (Hansen 2012), a 2,028,997 ha transition area comprised of 

tallgrass prairie in the east to mixed grass prairie in the west (Busby et al., 2007) (Figure 2).  

 

Figure 1 Study area map highlighting the location of the Smoky Hill Air National Guard 

Range (ANGR) and the Comparison Site used in this study. 
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Figure 2  Generalized potential natural vegetation map of Kansas (from Küchler 1974).  

  

 Smoky Hill ANGR is used almost exclusively (estimated 90% of use) by the Kansas Air 

National Guard (KSANG).  It also sees some use (estimated 10% of use) by the Kansas Army 

National Guard (KSARNG). Occupying the center of the range is a 4,091 ha Impact Area for air-

to-ground bomb training (Busby et al., 2007).  

In 1860, a Saline County land survey reported that 99% of the original vegetation at 

Smoky Hill ANGR was tallgrass prairie. There were no developed forests and there were only 

small areas (37 ha) of riparian forest. From the late 1850’s to just before U.S. involvement in 

World War II, the site was sparsely settled and used primarily for crop production and livestock 

grazing (Pike 2011).  
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Figure 3 General landuse/landcover map of Kansas (Kansas Applied Remote Sensing 

Program 2005). 

  

Smoky Hill ANGR vegetation at present time is mostly Dakota Hills Tallgrass Prairie 

(Figure 3). The underlying geology is comprised of sandstone, shale, loamy colluvium (Hansen 

2012). The climate at the range is temperate continental with large temperature swings. The 

average annual precipitation is 75.9 cm (Figure 4) and average temperature is 12.9ºC (NCDC 

2013). 
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Figure 4 Average annual precipitation in Kansas (NRCS 2007). 

 

 Weather Data 

Daily weather data was gathered for January 2001-December 2011, from Weather 

Underground (www.wunderground.com/history), for the Salina Municipal Airport located 

roughly 16 km to the North East of Smoky Hill ANGR. This weather data is the closest 

geographically to the study area that has all the necessary weather measures for the needed time 

period. The average monthly temperature, maximum and minimum monthly temperature, and 

monthly total precipitation were generated from the daily data.  

The monthly data was charted and trend analyzed for mean monthly temperature, 

maximum monthly temperature, minimum monthly temperature, and total monthly precipitation.  

A Student t-test was run on all four weather measurements to determine if the slope of the trend 

http://www.wunderground.com/history
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line was significantly different from null.  The results of the Student t-test showed there was no 

significant difference from null for all four weather measurements. The mean monthly 

temperature, maximum monthly temperature, minimum monthly temperature, and total monthly 

precipitation were stable from 2001-2011.  
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Figure 5  Graph of the Mean Monthly Temperature from January 2001 – December 2011 

for the Salina Municipal Airport near Smoky Hill ANGR data from Weather Underground 

2016. 

 

 Mean Monthly Temperature °Celsius 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

January -0.3 1.3 0.1 -1.0 -1.7 6.0 -1.8 -1.5 -0.4 -3.2 -3.1 

February -1.8 2.0 0.2 -0.7 4.2 2.1 -0.1 -0.3 4.0 -0.8 -1.3 

March 5.2 3.7 7.5 9.8 7.7 8.4 11.7 5.8 7.6 7.5 6.9 

April 15.1 13.9 14.6 13.3 13.5 16.4 11.1 10.5 12.4 14.9 13.1 

May 19.2 17.5 18.4 20.7 18.9 19.8 19.6 17.5 18.4 17.7 18.2 

June 23.4 25.7 23.2 23.2 25.5 25.6 23.4 24.3 25.3 26.6 26.3 

July 29.8 28.5 29.4 25.7 27.8 29.0 26.6 27.0 24.9 27.9 30.9 

August 27.3 27.1 28.4 24.6 26.1 27.1 28.9 25.3 24.2 27.7 28.3 

September 20.6 22.7 19.5 23.8 23.5 18.9 21.9 19.8 19.4 22.1 19.6 

October 14.3 10.5 15.2 16.3 15.1 13.9 15.5 14.1 9.7 15.5 14.8 

November 10.0 6.3 6.5 7.9 8.5 8.1 6.7 6.9 9.1 6.3 6.8 

December 2.8 2.8 1.4 3.2 -0.8 4.0 -2.3 -1.7 -3.8 0.0 1.1 

Table 5 The Mean Monthly Temperatures for every month from 2001-2011 at the Salina 

Municipal Airport near Smoky Hill ANGR data form Weather Underground 2016.  

 

y = -5E-05x + 15.351

-10

-5

0

5

10

15

20

25

30

35

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

D
eg

re
es

 C
el

si
u

s

Mean Monthly Temperature



26 

 

Figure 6 Graph of the Maximum Monthly Temperature from January 2001 – December 

2011 for the Salina Municipal Airport near Smoky Hill ANGR data from Weather 

Underground 2016. 

 

 Maximum Monthly Temperature °Celsius 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

January 15.6 21.7 22.8 17.2 18.9 21.7 13.9 18.9 22.2 13.9 18.9 

February 15.6 20.6 20.0 18.9 20.0 28.9 21.1 13.9 23.9 14.4 23.3 

March 18.9 22.2 27.8 25.6 26.1 27.8 26.7 25.6 29.4 27.2 28.3 

April 31.1 33.9 31.1 31.1 28.9 33.9 30.6 26.7 30.0 31.1 33.3 

May 35.6 35.6 35.0 33.9 36.7 37.8 31.1 32.2 34.4 31.7 38.3 

June 36.7 37.2 37.8 37.8 38.9 37.8 33.9 37.2 40.0 38.3 41.7 

July 42.8 42.8 42.8 40.6 40.0 42.8 36.1 38.3 38.3 39.4 45.0 

August 40.0 40.0 41.7 38.9 38.9 42.2 40.6 41.7 38.9 42.2 43.3 

September 33.9 37.8 33.9 36.1 37.8 35.0 37.2 33.3 31.7 37.2 42.2 

October 30.6 33.9 31.7 30.0 32.8 36.1 33.9 28.3 23.9 32.8 32.2 

November 26.1 21.7 22.8 27.2 27.8 31.7 26.7 25.6 23.9 22.8 22.8 

December 22.2 17.8 15.0 22.2 16.1 18.9 17.8 19.4 15.6 16.7 16.7 

Table 6 The Maximum Monthly Temperatures for every month from 2001-2011 at the 

Salina Municipal Airport near Smoky Hill ANGR data from Weather Underground 2016. 

 

y = 0.0002x + 22.607

0

5

10

15

20

25

30

35

40

45

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

D
eg

re
es

 C
el

si
u

s

Maximum Monthly Temperature



27 

 

Figure 7 Graph of the Minimum Monthly Temperature from January 2001 – December 

2011 for the Salina Municipal Airport near Smoky Hill ANGR data from Weather 

Underground 2016. 

 

 Minimum Monthly Temperature °Celsius 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

January -22.2 -16.1 -18.9 -17.2 -16.1 -7.2 -16.1 -17.2 -16.7 -21.7 -21.1 

February -17.8 -17.2 -17.8 -17.8 -17.8 -17.2 -17.8 -16.1 -14.4 -12.8 -26.1 

March -5.0 -17.2 -10.0 -2.2 -7.2 -7.8 -7.2 -11.1 -12.8 -5.6 -8.3 

April -1.1 -6.1 -4.4 -1.1 0.0 1.7 -7.2 -3.3 -8.3 -1.1 -2.2 

May 6.7 1.7 7.8 1.7 -1.1 7.2 6.7 1.7 5.0 1.7 1.1 

June -10.0 11.1 11.1 11.1 12.8 13.9 10.0 13.9 12.2 15.0 11.7 

July 17.8 17.8 16.1 12.8 12.8 15.0 16.7 11.7 11.7 17.2 18.9 

August 13.9 15.0 16.7 12.2 16.7 13.9 16.7 13.9 10.0 12.2 15.6 

September 5.6 7.8 5.6 12.2 2.8 6.1 7.2 6.7 4.4 6.1 5.6 

October -1.1 -1.1 -1.1 1.7 -1.1 -2.2 1.1 -3.3 -0.6 0.6 -3.9 

November -10.0 -6.1 -10.0 -5.0 -7.8 -7.8 -11.1 -9.4 -5.0 -8.3 -6.7 

December -13.9 -9.4 -12.8 -16.1 -18.9 -12.2 -17.2 -20.6 -22.8 -12.2 -12.2 

Table 7 The Minimum Monthly Temperatures for every month from 2001-2011 at the 

Salina Municipal Airport near Smoky Hill ANGR data from Weather Underground 2016. 
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Figure 8 Graph of the Total Monthly Precipitation from January 2001 – December 2011 

for the Salina Municipal Airport near Smoky Hill ANGR data from Weather Underground 

2016). 

 

 Total Monthly Precipitation Centimeters (Cm) 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

January 2.64 1.60 0.33 0.94 2.90 0.36 1.52 0.56 0.00 0.53 0.23 

February 6.68 0.33 2.74 2.82 6.07 0.00 1.70 2.51 0.66 0.84 0.46 

March 4.70 2.08 6.78 10.72 5.21 4.06 10.21 3.48 1.42 6.58 3.43 

April 7.85 5.49 8.97 7.75 8.64 9.47 7.19 8.33 10.03 5.77 2.36 

May 8.48 7.32 8.61 7.14 7.37 5.11 39.98 10.57 3.05 10.57 10.92 

June 8.66 5.26 13.23 6.25 14.00 11.73 4.52 9.60 10.08 10.57 6.81 

July 4.88 1.42 0.94 13.49 4.04 1.91 6.60 6.65 11.61 11.15 4.60 

August 7.39 5.99 9.19 2.64 11.73 16.38 0.10 9.75 14.99 4.88 6.86 

September 8.10 1.88 8.97 4.57 2.72 4.72 5.97 12.75 10.19 9.75 3.15 

October 3.45 9.86 3.61 3.18 3.53 4.01 10.67 9.96 8.64 0.58 2.08 

November 0.48 0.97 1.04 3.53 2.01 0.15 0.36 1.88 2.18 8.08 6.45 

December 0.51 0.56 1.78 0.76 1.07 5.77 7.54 0.58 0.89 0.15 5.31 

Table 8 The Total Monthly Precipitation for every month from 2001-2011 at the Salina 

Municipal Airport near Smoky Hill ANGR data from Weather Underground 2016. 
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 Military Training 

 The Smoky Hill ANGR area dramatically changed in 1942 when military control of the 

site began.  Due to the military occupation, land use on the range changed with most cropland 

being converted back to grassland.  However, only for a short period during WWII , when the 

range was Camp Phillips (1942-1944), was there intense training over the whole range (Figure 9) 

(Pike 2011).  

 

 

Figure 9 Smoky Hill ANGR, then known as Camp Phillips, in 1942 (image courtesy of the 

Kansas Historical Society). 

 

At present, Smoky Hill ANGR is the largest bombing range in the nation with over 100 

tactical targets.  The live bombing range is only a portion of the overall range and outside of that 

area there is only moderate training activities and several agricultural and livestock leases 
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(Busby et al., 2007). The range is currently controlled by the 184th Bomb Group, Kansas Air 

National Guard (Pike 2011).   

 

 

Figure 10 Examples of training activates conducted at Smoky Hill ANGR (Kansas 

Adjutant General’s Department 2011). 

 Environmental Management 

  In compliance with DoD policy, an Integrated Natural Resource Management Plan 

(INRMP) was implemented at Smoky Hill ANGR (Engineering-Environmental Management, 

Inc. 2007). Installation-specific INRMP guides ecosystem management within military mission 

requirements and, at Smoky Hill ANGR, also governs livestock and agricultural leases (Busby et 

al., 2007). The goals for natural resource management at Smoky Hill ANGR are “to enhance and 

maintain biological diversity within the Range boundaries, while assuring the successful 

accomplishment of the military mission. Management practices should minimize habitat 

fragmentation and promote the natural pattern and connectivity of habitats; protect rare and 

ecologically important species; maintain and mimic natural processes; and restore species, 

communities, and ecosystems (Busby et al., 2007, p. 7)”.  

In 2002, Smoky Hill ANGR asked the Kansas Biological Survey (KBS) to do conduct an 

inventory of the flora and fauna for their training lands and to rate the overall ecological 

condition at the range (Busby et al., 2007). The KBS concluded that Smoky Hill ANGR is an 

example of a large preserved tallgrass prairie with large spans of unbroken prairie that serves as a 
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hotspot for biodiversity for the Great Plains. Overall, KBS categorized the grassland 

communities as “good” because of their thoughtful management practices . A goal for the 

INRMP is to raise the overall quality from “good” to “excellent” (Busby et al., 2007).   

 Comparison Site 

 A comparison site located approximately 16 km northwest of Smoky Hill ANGR was 

identified for this study.  The Comparison Site is a 7,351 ha, large unbroken area of grassland 

used for grazing cattle, has very little cropland, and few houses or roads.  It is in the same 

ecoregion as Smoky Hill ANGR and, due to its proximity to the military site, is assumed to have 

the same weather and climate conditions. Figure 11 again shows the location of Smoky Hill 

ANGR and the Comparison Site with a background satellite image showing the proximity of the 

sites and similar landcover conditions. 
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Figure 11 Detailed view of the Smoky Hill ANGR and Comparison Site.  This image 

highlights the 4,091 ha Impact Area internal to Smoky Hill ANGR (image courtesy of the 

Environmental Systems Research Institute, Esri).  
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Chapter 4 - Development of a Contemporary Burn History of 

Smoky Hill Air National Guard Range using Landsat 5 and 7 

Imagery 

 Abstract 

Military installations are important assets for the proper training of armed forces. To 

ensure the continued viability of training lands, management practices need to be implemented 

to sustain the necessary environmental conditions for safe and effective training. This analysis 

uses Landsat 5 TM / 7 ETM+ imagery from 2001-2011 to create a burn history at Smoky Hill Air 

National Guard Range (ANGR), Impact Area (within Smoky Hill ANGR), and a Comparison Site 

to determine if there are differences in burn regimes. A Minimum Distance Supervised 

Classification technique was used on the imagery to detect burn scars. After combining 

individual year burn histories the resulting image was a composite burn frequency history image 

from 2001-2011 for each of the three study areas.  It was found that the entirety of Smoky Hill 

ANGR burns more frequently than the Comparison Site and most of the burning within Smoky 

Hill ANGR happens in the Impact Area. This burning may be used for containment of training 

induced fires or fires starting as a direct result of training. What is not known is if the increase in 

burn frequency within the Impact Area is causing a different vegetation response than at the 

Comparison Site.  
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 Introduction 

The U.S. DoD, as of 2012, controls 7,859,618 hectares (ha) of land within the United 

States (Gorte et al., 2012) and a total of over 11 million ha worldwide.  The DoD controls land in 

all 50 states, seven U.S. territories, and 40 foreign countries (Base Structure Report 2012).  

These sites support a variety of training activities, including light and heavy vehicle maneuvering 

(e.g., Growler, Humvee, Bradley, tanks), dismounted infantry exercises, air to ground missile 

strikes, gunnery ranges, and search and rescue simulations.     

Training that takes place at DoD installations can adversely impact the environment, but 

is essential in preparing soldiers for their wartime missions.  The many different military training 

activities at DoD sites have been shown to have dramatic impacts on the environment (Shaw et 

al., 1989).  Some of these impacts are soil compaction and erosion, native vegetation decrease, 

alien vegetation increase, soil chemistry changes, and aquatic community disturbances (Wilson 

1988; Quist et al., 2003; Whitecotton et al., 2000).   

To help address environmental degradation inherent with military training, and to 

preserve these areas as safe and realistic training sites, a number of environmental policies and 

regulations have been established which apply to military organizations and their training lands.  

Examples of these policies/regulations include the Conservation Programs on Military 

Reservations (Sikes) Act of 1960, the Clean Air Act of 1970, the National Environmental Policy 

Act of 1971, the Clean Water Act of 1972, and the Endangered Species Act of 1973 (Coates et 

al., 2011). 

With the passage of the National Environmental Policy Act in 1969, all branches of the 

U.S. government had to give proper consideration to the environment and prepare Environmental 

Impact Statements (EIS) before taking any actions that might have an effect on the environment 
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(EPA 2013).  In 1983, the DoD created the National Military Fish and Wildlife Association 

comprised of natural resource experts – nicknamed the “new defenders of wildlife” – as military 

land management increasingly started to include environmental problem solving (Coates et al., 

2011).  Also, Army Regulation 200-2 (Department of the Army 1988) – which applies to the 

active Army, Army National Guard (ARNG), and the U.S. Army Reserve (USAR) – states that, 

“this regulation sets forth policy responsibilities, and procedures for integrating environmental 

considerations into Army planning and decision making…” (Department of the Army 1988, p. 

1). 

An environmental management program that the DoD, U.S. Fish and Wildlife, and state 

fish and wildlife agencies have developed and amended, in 1997, to the Sikes Act of 1960 is the 

Integrated Natural Resource Management Plans (INRMPs) (U.S. Department of Defense and 

U.S. Fish & Wildlife Service 2004).  INRMPs were developed because military lands present the 

unique situation where land and water resources are often protected from typical human access 

and impacts. INRAMPs are defined as:  

 
“planning documents that allow DoD installations to implement landscape-level 

management of their natural resources… extremely important management tools that 

ensure military operations and natural resources conservation are integrated and 
consistent with stewardship and legal requirements (U.S. Department of Defense and 

U.S. Fish & Wildlife Service 2004, p. 1).” 
 

 

For military lands located in prairie landscapes, fire is a common grassland management 

practice.  Wildfires resulting from training activities may also occur throughout the year. 

Burning prairies for management purposes has been done for over one hundred years and is 

important for their continued viability (Vogl 1974, Towne and Owensby 1984). Benefits of 

grassland burning include promoting native vegetation and decreasing litter cover (Herndon and 
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Taylor 1986; Shay et al., 2001; Hulbert 1969). Burning is an important step within the cycle that 

makes up grassland ecosystems.  Without fires, prairies would most likely be overtaken by 

woody vegetation.  Fires dry out soil moisture needed for tree seeds to sprout and also kill 

saplings (Stewart 1951, Hulbert 1969).  The frequency of fires can also have an effect on 

vegetation composition (Shay et al., 2001) allowing different types of grasses to establish.  

 

 Background and Objectives 

In order to balance environmental quality with the need for training lands methods are 

needed to estimate maximum allowable levels of use without causing significant landscape 

degradation. In 1988, Scott Wilson of the University of Manitoba, studied the effects of the 

frequency of tank traffic on prairie ecosystems at the Canadian Forces Base Shilo (Wilson 1988). 

He discovered that frequency and season in which the tanks were used has different impacts on 

the mixed grass prairie.  Depending on the time of year that the tanks were used, more or less 

alien grass species would be present.  Areas that supported tank traffic only in the summer didn’t 

show any signs of alien grass species.  But, areas that were used for tank training in other times 

of the year (e.g., spring) saw an increase in non-natives that led to a shift in the local composition 

prairie grasses.  Further, increasing bare ground was correlated with higher frequencies of tank 

training. Through this type of analysis, Wilson (1988) developed a predictive management model 

to show what vegetation would be like with differences in tank traffic.  

 Similar work that studied the impact of maneuver training on different vegetation and 

soils has also been done across the U.S., including the Cross Timbers region in central Texas 

(Severinghaus et al., 1981), the Mojave Desert in southern California (Lathrop 1982), 

southeastern Colorado’s shortgrass steppe (Milchunas et al., 1999), northeastern Kansas’s 
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tallgrass prairie in northeastern Kansas (Quist et al. 2003; Althoff et al., 2009), and mixed grass 

prairie in southwestern Oklahoma (Leis et al., 2005). 

Given the prevalence of grassland burning as both an intentional management practice 

and unintentional disturbance, and the role of fire on grassland health and species composition, 

the ability to detect burns over large areas is of interest to many people for not only prairie 

management, but also carbon cycle studies, air quality management, and habitat quality 

assessment (Bourgeau-Chavez et al., 1997; Towne and Owensby 1984; Dwyer et al., 2000; 

Huang et al., 2013; Raynor 2015). A frequent approach to burn detection uses remotely sensed 

data from active or passive remote sensing (Bourgeau-Chavez et al., 1997; Liu et al., 2014).   

This study uses high spatial resolution satellite imagery from the Landsat 5 TM and 

Landsat 7 ETM+ sensors and a supervised classification technique developed by Mohler (2011) 

to detect burn scars over the period 2001-2011 to create a contemporary burn history of Smoky 

Hill ANGR and a nearby non-military Comparison Site. The frequency of burns between 2001-

2011 is then compared between the two sites.  The research question is: 

 What is the spatial distribution of disturbances (burning) at Smoky Hill ANGR and do 

these differ significantly from adjacent non-military lands? 

 Study Areas  

 Smoky Hill Air National Guard Range (ANGR) is a 13,708 hectare (ha) range located 

southwest of Salina, Kansas in Saline and McPherson Counties (Figure 12).  It has been in 

military use since 1942 when the site was known as Camp Phillips (1942-1944).  Occupying the 

center of the range is a 4,091 ha Impact Area for air-to-ground bomb training (Busby et al., 

2007). The site is situated in the Smoky Hills ecoregion of Kansas (Hansen 2012), a 2,028,997 

ha transition area comprised of tallgrass prairie in the east to mixed grass prairie in the west 
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(Busby et al., 2007). Smoky Hill ANGR vegetation at present time is mostly Dakota Hills 

Tallgrass Prairie. The underlying geology is comprised of sandstone, shale, loamy colluvium 

(Hansen 2012). The climate at the range is temperate continental with large temperature swings. 

The average annual precipitation is 75.9 cm (Figure 4) and average temperature is 12.9ºC 

(NCDC 2013). 

 

Figure 12 Study area map highlighting the location of the Smoky Hill Air National Guard 

Range (ANGR) and the Comparison Site used in this study. 

 

The range is currently controlled by the 184th Bomb Group, Kansas Air National Guard 

(Pike 2011) and is the largest bombing range in the nation with over 100 tactical targets.  Outside 

of the very active Impact Area, training intensity is moderate and is leased for agriculture 

production and livestock grazing (Busby et al., 2007).  Smoky Hill ANGR is used almost 

exclusively (estimated 90% of use) by the Kansas Air National Guard (KSANG).  It also sees 

some use (estimated 10% of use) by the Kansas Army National Guard (KSARNG).  
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In compliance with DoD policy, an Integrated Natural Resource Management Plan 

(INRMP) has been implemented at Smoky Hill Air National Guard Range (ANGR) 

(Engineering-Environmental Management, Inc. 2007). The goals for natural resource 

management at Smoky Hill ANGR are “to enhance and maintain biological diversity within the 

Range boundaries, while assuring the successful accomplishment of the military mission. 

Management practices should minimize habitat fragmentation and promote the natural pattern 

and connectivity of habitats; protect rare and ecologically important species; maintain and mimic 

natural processes; and restore species, communities, and ecosystems (Busby et al., 2007)”. 

 A comparison site located approximately 16 km northwest of Smoky Hill ANGR was 

identified for this study.  The Comparison Site is a 7,351 ha, large unbroken area of grassland 

used for grazing cattle, has very little cropland, and few houses or roads.  It is in the same 

ecoregion as Smoky Hill ANGR and, due to its proximity to the military site, is assumed to have 

the same weather and climate conditions. Figure 13 shows the location of Smoky Hill ANGR 

and the Comparison Site with a background satellite image showing the proximity of the sites 

and similar landcover conditions. 
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Figure 13 Detailed view of the Smoky Hill ANGR and Comparison Site.  This image 

highlights the 4,091 ha Impact Area internal to Smoky Hill ANGR (image courtesy of the 

Environmental Systems Research Institute, Esri). 

 

 

 Data and Methods 

 Satellite Image Acquisition and Processing 

The goal of this analysis is to determine whether or not each pixel was burned at least 

once during each year of the study. This result is then aggregated into a single composite 

heatmap image indicating the number of years in which a pixel burned over the period of 2001-

2011. To accomplish this, Landsat 5 TM and Landsat 7 ETM+ imagery were downloaded from 
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EarthExplorer USGS website (http://earthexplorer.usgs.gov) at no cost.  In total, 253 images 

spanning the 2001-2011 time period were downloaded.  Each image was examined in ENVI 4.5 

and checked for clouds or other issues that would have impacted the forthcoming burn scar 

classification. The objective of this preliminary examination was to identify a minimum of 1 

image per month for the entire study period, or 132 total images, for the burn scar analysis. The 

goal for selecting the 1 monthly image was to capture the maximum burned area and make burns 

more easily detectable without the interference of vegetation regrowth. The selected 

representative monthly burn image ideally had the largest and freshest burn. Some months no 

usable images were available due to cloud contamination.  

All images were then sorted into one of three categories: Burn Scar (Clear Image), No 

Burn Scar (Clear Image), and Cloudy.  A total of 109 images were determined to be cloud-free 

while 23 were contaminated with clouds.  Of the 109 usable images, 58 had visible burn scars 

(45 Landsat 5 TM and 13 Landsat 7 ETM+) that could be classified (Table 9).  Images lacking 

visible burn scars were not used in the classification. 
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Month 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

January                       

February                       

March                       

April                       

May                       

June                       

July                       

August                       

September                       

October                       

November                       

December                       

  

Burn Scar and Clear Image  45  LS5 

 

  

Burn Scar and Clear Image  13  LS7 

No Burn Scar  51   

Cloudy Image  23   

Table 9 Inventory for Landsat 5 TM and Landsat 7ETM+ imagery used in the burn scar 

classification. 

 

Since only 109 of the required 132 monthly images (83%) were usable in the analysis, 

gaps in the Landsat 5 TM/7 ETM+ image archive, use of MODIS Burned Area Monthly L3 

Global 500m SIN Grid V005 images were investigated.  The MODIS Burn Area images were 

downloaded from the NASA’s Earth Observing System Data and Information System website 

(http://reverb.echo.nasa.gov/reverb) at no cost.  To determine if the MODIS images were 

sensitive to the small scale and low intensity fires common in the study areas, three image dates 

were chosen when there were large burn scars known to be present (Figure 14).  MODIS Burned 

Area Monthly images for these same time periods were downloaded and examined to see if fires 

were detected.  None of the three MODIS Burned Area images detected fires during these times.  
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Since the MODIS Burned Area Monthly images weren’t a suitable substitute for cloudy Landsat 

5/7 images, gaps were left in the time series used for burn scar classification.  

 Supervised Image Classification 

The 45 Landsat 5 TM and 13 Landsat 7 ETM+ images that had burn scars were calibrated 

within ENVI 4.5 prior to classification. Burn scar classification was also done within ENVI 4.5 

using the “Scenario 7” technique reported by Mohler (2011) which featured a Minimum 

Distance Supervised Classification using the red and NIR bands from the Landsat 5/7 images.  

The resulting classified images had two classes for burned and unburned pixels.  Though the 

technique appeared to excel at identifying burn scars, the initial classification also overestimated 

the burns by including densely forested areas and water features.  To counter this, water and 

forest masks were created and the supervised classification was performed again (Table 10) 

(Mohler 2011). Once the classification was complete, images were exported from ENVI 4.5 as 8-

bit TIF images with a spatial extent including both study areas. Classified image values were 

either 0 (no burn) or 1 (burn).   

Mask Type Spectral Band Minimum Pixel Value Maximum Pixel Value 

Water NIR 0 .14 

Trees NIR 0.31 0.4 

Table 10 Characteristics of the forest and water masks used to improve the supervised 

classification of burn scars. 
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Figure 14 Visual validation of the MODIS Burned Area Monthly L3 Global 500 m SIN 

Grid V005 images (right) compared with Landsat 5 TM images (left) acquired during the 

same month.  Images dates are 01/09/2001 for A, 09/14/2004 for B, and 12/01/2009 for C. 

  

After classification, each monthly image in a year were combined in a GIS-based raster 

calculation to begin the estimation of the minimum annual burn frequency for 2001-2011.  Each 

annual burn frequency image contained pixels with values ranging from 0 (no burns) to n, with n 

representing the maximum number of times a burn scar was detected on an annual basis.  Once 

such images were generated for each year, they were reclassified so that each annual image 
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contained a 0 (no burn scar) or 1 (burn scar regardless of the number of times it was detected). 

This reclassification step was necessary as a burn scar from the same fire event could have been 

detected across multiple image dates.   

Next, a series of masks were created and applied to the reclassified images to prevent 

early winter burn scars from a previous year from also being counted in late winter the following 

year.  Any burn scar detected from September to December would be used as a mask for the 

following January to March time period.  Pixels that were burned anytime from September to 

December would not have enough time to regrow vegetation and be burnt again from January to 

March of the following year.  Once the September to December masks were created and applied 

to the following year’s burn history, the classified images were an appropriate estimate of 

minimum annual burn frequency. Finally, the minimum annual burn frequency images were 

combined in another GIS-based raster calculation.  The result included pixel values ranging from 

0-11. 

 Results 

The estimated minimum burn frequency between 2001-2011 resulting from the 

supervised burn scar classification is shown in Figure 15.  Visual analysis shows that burn scars, 

hence fire events, were more frequent at Smoky Hill ANGR than the Comparison Site.  

Considering only Smoky Hill ANGR, fires were more frequent inside the Impact Area than 

outside with approximately half of the Impact Area having burned 6 or more times.    
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Figure 15 Estimated minimum burn frequency between 2001-2011 for Smoky Hill ANGR 

and Comparison Site.   

 

 Treating the Impact Area as a separate study area, only 9.2% of the area went unburned 

during the 11 year study period compared to 31.9% for Smoky Hill ARNG (excluding the Impact 

Area) and 67.3% of the Comparison Site (Table 11). The Impact Area shows a more even 

distribution of burn frequency values, while Smoky Hill ARNG (excluding the Impact Area) and 

the Comparison Site have right-skewed distributions with the most common minimum burn 

frequency values of 0-1 (Figure 16). 
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Smokey Hill ANGR 
(excluding Impact Area) 

Comparison Site Impact Area 

No. 
Burns 

No. 
Pixels 

Area 
(ha) 

Percent 
of Total 

Area 
(%) 

No. 
Pixels 

Area 
(ha) 

Percent 
of Total 

Area 
(%) 

No. 
Pixels 

Area 
(ha) 

Percent 
of Total 

Area 
(%) 

0 32,951 2,965.6 31.92% 55,464 4,991.8 67.36% 4,660 419.4 9.23% 

1 36,477 3,282.9 35.34% 15,801 1,422.1 19.19% 5,020 451.8 9.95% 

2 15,082 1,357.4 14.61% 4,722 425.0 5.73% 3,786 340.7 7.50% 

3 6,257 563.1 6.06% 1,657 149.1 2.01% 4,169 375.2 8.26% 

4 3,801 342.1 3.68% 932 83.9 1.13% 4,021 361.9 7.97% 

5 3,120 280.8 3.02% 724 65.2 0.88% 4,673 420.6 9.26% 

6 1,734 156.1 1.68% 634 57.1 0.77% 5,520 496.8 10.94% 

7 1,204 108.4 1.17% 600 54.0 0.73% 5,269 474.2 10.44% 

8 870 78.3 0.84% 511 46.0 0.62% 4,393 395.4 8.71% 

9 578 52.0 0.56% 568 51.1 0.69% 4,587 412.8 9.09% 

10 485 43.7 0.47% 393 35.4 0.48% 2,941 264.7 5.83% 

11 660 59.4 0.64% 334 30.1 0.41% 1,424 128.2 2.82% 

 

Table 11 Summary of estimates for the minimum annual burning frequency between 2001-

2011 for Smoky Hill ANGR (excluding the Impact Area), the Impact Area, and the 

Comparison Site. 
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Figure 16 Histogram for minimum total burn frequency for the period 2001-2011 for 

Smoky Hill ANGR (excluding the Impact Area), Impact Area, and the Comparison site. 

 

A Chi-squared contingency table analysis of minimum total burn frequency for the study 

period was performed comparing Smoky Hill ANGR (excluding the Impact Area), the Impact 

Area, and the Comparison Site.  Results showed highly significant site-specific differences in the 

observed and expected frequencies [χ2 (df = 22) = 152.36, p << 0.0001] suggesting the existence 

of a causal link between training activities within the Smoky Hill ANGR Impact Area and burn 

frequency.   
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 Discussion and Conclusion  

It is evident from visual inspection of Figure 15 that Smoky Hill ANGR is burned more 

frequently than the non-military Comparison Site and burning within Smoky Hill ANGR is 

mostly done within the Impact Area.  Based on the Chi-squared contingency table analysis of 

minimum total burn frequency there is highly significant site-specific differences in the observed 

and expected frequencies at the study areas. The increased burning regime within the Impact 

Area is either caused by active training or purposeful burning to contain potential training 

induced fires.  

There are visual signs of possible border burns in the minimum burn frequency image 

that show pixels that burned at least 11 times, once every year from 2001-2011 (Figure 17). 

Showing that there is intentional burn management happening within the Impact Area. Burning 

is a management technique widely used on tallgrass prairies (Vogl 1974; Towne and Owensby 

1984; Herndon and Taylor 1986; Shay et al., 2001), so it would be normal for land managers at 

Smoky Hill ANGR to use it as such. Even if the burning is not being done for proper tallgrass 

prairie management it is a natural disturbance that is part of the grassland life cycle (Stewart 

1951, Hulbert 1969).   

It is known that military training affects the environment (Shaw et al., 1989; Wilson 

1988; Quist et al., 2003; Whitecotton et al., 2000) and that those effects can have lasting impacts 

(Lathrop 1982). The increased burning at Smoky Hill ANGR and specifically within the Impact 

Area, caused by training activities or wildfire prevention, could be affecting the vegetation at the 

range.  Based on this study it is known that the Comparison Site is burned less frequently than 

Smoky Hill ANGR and the Impact Area is burned most often.  What is not known is if the burns 

are having an affect on the environmental conditions at the range. Further research needs to be 
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done to determine if the increased burn disturbances at Smoky Hill ANGR are having different 

affects on the environment relative to the Comparison Site.   

 To create a more comprehensive burn history for Smoky Hill ANGR a couple things 

could be done. Landsat 5/7 image gaps could be filled in with other imagery to try and detect all 

burned pixels within a year. Also, creating a more granular dataset by counting all burns within a 

year and retaining the value, not just if it burned or not. To get a better understanding of how 

many times within a year areas are burned.   

 

Figure 17 Close-up view of the southwest corner of the Impact Area within Smoky Hill 

ANGR showing the existence of a possible burned perimeter serving as a fire break. 
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Chapter 5 -  Time Series Analysis of Long-term Vegetation 

Dynamics at Smoky Hill Air National Guard Range, Kansas using 

Moderate Resolution Satellite Imagery 

 Abstract 

Military installations are import assets for the proper training of armed forces. To ensure 

the continued viability of the training grounds, management practices need to be implemented to 

sustain the necessary environmental conditions for safe and effective training. This study uses 

satellite imagery over an 11 year time period to gain insight into vegetation conditions over a 

military installation in Kansas. The study areas are Smoky Hill Air National Guard Range 

(ANGR), Impact Area (within the range), and a non-military Comparison Site.  MODIS imagery 

was collected 23 times a year from 2001-2011 resulting in 253 images.  NDVI was extracted and 

analyzed within “R” using the statistical package BFAST. Vegetation trends and disturbances 

were gathered from the BFAST analysis for all three study areas. It was found that the overall 

trend for all three study areas was mostly positive, there were more disturbances within the 

Impact Area, and the largest disturbances within the Impact Area responded negatively.  

Comparisons were made between this study and a BFAST analysis of another military 

installation and it was found that both military installments are different than their respective 

reference sites. It was also found that the difference in training between the sites is having an 

effect in overall trend response.  It was concluded that the training at Smoky Hill ANGR is 

disturbing the vegetation but does not seem to be having a negative effect on the overall long-

term vegetation condition.  
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 Introduction 

Sustainable use of military training grounds is a necessity for the continued viability of 

the installations for training. The land that the U.S. military trains on is an invaluable asset that 

helps our troops stay in top shape for war time actions. The Department of Defense (DoD) 

controls 7,859,618 hectares (ha) of land within the United States (Gorte et al., 2012). Training 

activities on these 7+ million ha can have dramatic impacts on the environment (Shaw et al., 

1989).  

  The Integrated Natural Resource Management Plan (INRMP) was implemented at 

Smoky Hill Air National Guard Range (ANGR) because of DoD policy (Engineering-

environmental Management, Inc. 2007). INRMP implements ecosystem management within 

military mission requirements (Busby et al., 2007, p. 3). In 2002, Smoky Hill ANGR asked the 

Kansas Biological Survey (KBS), at the University of Kansas, to do an inventory of the flora and 

fauna over the entire range and to rate the overall ecological condition at the range (Busdy et al., 

2007).  

 The KBS concluded that Smoky Hill ANGR is an example of a large preserved tallgrass 

prairie with large spans of unbroken prairie that serve as a hotspot for biodiversity for the Great 

Plains. Overall the KBS categorized the grassland communities at Smoky Hill ANGR as “good” 

because of their thoughtful management practices. A goal for the INRMP is to raise the overall 

quality from “good” to “excellent” (Busby et al., 2007).   

 All of the surveys and analysis that the KBS did at Smoky Hill ANGR were extremely 

time intensive. They gathered immense amounts of data about the range for baseline numbers for 

the management to use in further developing the tallgrass prairie at the range. INRMP now has 

quantitative numbers to compare future environmental surveys to.  
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 A tool that INRMP at Smoky Hill ANGR could add to their management program, along 

with their baseline information of species composition from the KBS, is a time series analysis of 

vegetation conditions for the entire range. INRMP knows what grass species are at the range 

from the KBS, but they don’t know the trajectory of vegetation trends or the number, magnitude, 

and location of disturbances (i.e., breaks in trend) over the entire range.  

 The purpose of this study is to use the statistical package Breaks For Additive Seasonal 

and Trend (BFAST), within the statistical software program “R”, to generate a time series trend 

and disturbance analysis of the vegetation conditions at Smoky Hill ANGR. My research 

questions are:  

 What is the frequency and spatial distribution of significant disturbances at Smoky Hill 

ANGR and do these differ significantly from adjacent non-military lands? 

 What is the long-term interannual trend in vegetation conditions, as inferred using 

normalized difference vegetation index (NDVI) data, at Smoky Hill ARNG and do 

estimated trends differ significantly from adjacent non-military lands?  

 

 Background and Objectives 

Monitoring vegetation cover and condition is a necessary process for understanding many 

phenomena including terrestrial primary productivity, concentrations of atmospheric CO2, the 

hydrologic cycle, and others.  Monitoring vegetation cover and condition once was done mostly 

in the field by surveying an area of interest. This can be a very cumbersome process or nearly 

impossible if the study area is extremely large. An answer to the problem of monitoring large 

areas without in-situ surveys is remote sensing (Tucker et al., 1985; Cihlar et al., 1991).   
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 Ecosystems need to be monitored over time and land surface data needs to be gathered 

for proper management (Coppin et al., 2004). Being able to use remotely sensed data can 

improve environmental management practices by providing timely data over large areas 

(Underwood 2006). Using remotely sensed images a time series analysis can reveal NDVI values 

that can provide indicators about the condition of vegetation.  

 Normalized difference vegetation index (NDVI) is a vegetation condition metric that can 

be derived from satellite imagery to provide information about vegetation and vegetation change 

(Wright et al., 2012).  NDVI has been shown to correlate with leaf-area index (LAI), percent 

cover, and aboveground biomass (Cihlar et al., 1991). It has also been suggested that NDVI 

relates to photosynthesis and transpiration (Running 1988). Knowing NDVI values for an area 

over a long time period can produce valuable information about vegetation conditions.  

 For my study I will be using 250m 16-day composite Moderate Resolution Imaging 

Spectroradiometer (MODIS) imagery that is on board the Terra satellite, a program within the 

Earth Observing System (EOS). The EOS program is intended for studying the role of vegetation 

in large-scale processes and for understanding how Earth functions as a system (Huete et al., 

2002, p. 195).   

Many tools have been developed to extract valuable information from satellite imagery.  

One of these tools is Breaks of Additive Seasonal and Trend (BFAST).  BFAST is a generic 

change detection statistical model for time series analysis that is relatively new. BFAST is able 

to discriminate seasonal phenological changes while still calculating long-term change. BFAST 

works on a per-pixel basis and will breakdown a time series into trend, seasonalitly, and noise 

components without having to set thresholds, choose time frames, or define a change trajectory 
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(Verbesselt et al., 2010a, p. 107). Four characteristics make BFAST appropriate for near real-

time global scale disturbance detection (Verbesselt et al., 2012, p. 106):   

 Has a low processing time 

 Does not require definition of thresholds 

 Can perform with data gaps   

 Analyzes full temporal detail of a time series  

 Study Areas 

Smoky Hill Air National Guard Range (ANGR) is a 13,708 hectare (ha) range located 

southwest of Salina, Kansas in Saline and McPherson Counties (Figure 18).  It has been in 

military use since 1942 when the site was known as Camp Phillips (1942-1944).  Occupying the 

center of the range is a 4,091 ha Impact Area for air-to-ground bomb training (Busby et al., 

2007). The site is situated in the Smoky Hills ecoregion of Kansas (Hansen 2012), a 2,028,997 

ha transition area comprised of tallgrass prairie in the east to mixed grass prairie in the west 

(Busby et al., 2007). Smoky Hill ANGR vegetation at present time is mostly Dakota Hills 

Tallgrass Prairie. The underlying geology is comprised of sandstone, shale, loamy colluvium 

(Hansen 2012). The climate at the range is temperate continental with large temperature swings. 

The average annual precipitation is 75.9 cm (Figure 4) and average temperature is 12.9ºC 

(NCDC 2013). 
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Figure 18 Study area map highlighting the location of the Smoky Hill Air National Guard 

Range (ANGR) and the Comparison Site used in this study 

  

The range is currently controlled by the 184th Bomb Group, Kansas Air National Guard 

(Pike 2011) and is the largest bombing range in the nation with over 100 tactical targets.  Outside 

of the very active Impact Area, training intensity is moderate and is leased for agriculture 

production and livestock grazing (Busby et al., 2007).  Smoky Hill ANGR is used almost 

exclusively (estimated 90% of use) by the Kansas Air National Guard (KSANG).  It also sees 

some use (estimated 10% of use) by the Kansas Army National Guard (KSARNG).  

In compliance with DoD policy, an Integrated Natural Resource Management Plan 

(INRMP) has been implemented at Smoky Hill Air National Guard Range (ANGR) 

(Engineering-Environmental Management, Inc. 2007). The goals for natural resource 

management at Smoky Hill ANGR are “to enhance and maintain biological diversity within the 

Range boundaries, while assuring the successful accomplishment of the military mission. 



57 

Management practices should minimize habitat fragmentation and promote the natural pattern 

and connectivity of habitats; protect rare and ecologically important species; maintain and mimic 

natural processes; and restore species, communities, and ecosystems (Busby et al., 2007)”. 

 A comparison site located approximately 16 km northwest of Smoky Hill ANGR was 

identified for this study.  The Comparison Site is a 7,351 ha, large unbroken area of grassland 

used for grazing cattle, has very little cropland, and few houses or roads.  It is in the same 

ecoregion as Smoky Hill ANGR and, due to its proximity to the military site, is assumed to have 

the same weather and climate conditions. Figure 19 shows the location of Smoky Hill ANGR 

and the Comparison Site with a background satellite image showing the proximity of the sites 

and similar landcover conditions. 



58 

 

Figure 19 Detailed view of the Smoky Hill ANGR and Comparison Site.  This image 

highlights the 4,091 ha Impact Area internal to Smoky Hill ANGR (image courtesy of the 

Environmental Systems Research Institute, Esri). 

 

 Data and Methods 

 MODIS Image Acquisition and Processing 

The imagery analyzed was 16-day maximum value composite normalized difference 

vegetation index (NDVI) images (250 meter spatial resolution) recorded by the Moderate 

Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite (Maccherone 2012). 

The MODIS sensor flies over Smoky Hill ANG and the Comparison Site every day and captures 

an image. To make a 16-day maximum value composite, a total of 16 consecutive daily images 
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are combined into the composite which contains the maximum value recorded during the period 

for each pixel. A total of 23 MODIS composite images are produced each year.  For this study, 

satellite data collected during the period 2001-2011 was acquired, yielding a total of 253 

individual composite images. Satellite images from MODIS were gathered from the National 

Aeronautics and Space Administration Earth Observing System Data and Information System 

website (http:// http://reverb.echo.nasa.gov) at no cost.  Raw images, from the website, are 

comprised of two separate files, including a .hdf (image) file and a .xml (text) file.  

The raw MODIS imagery downloaded from NASA, containing the study areas, is in 

sinusoidal projection and covers nearly half of the eastern United States.  The MODIS imagery 

was reprojected into NAD 1983 UTM Zone 14N and clipped down to cover most of Kansas.  In 

addition, the NDVI band is extracted from the multiband .hdf file.  All of this preprocessing is 

automated within ENVI 4.5 using an Interactive Data Language (IDL) script.  

Boundary shapefiles for the Comparison Site and Smoky Hill ANGR where constructed 

using ArcMap 10.0 based on source data from Open Street View.  The Smoky Hill ANGR 

boundary was checked for accuracy by looking at the boundary maps that the KBS report 

produced on Smoky Hill ANGR and cross checking the boundary with the one produced in 

ArcMap.  

  

 BFAST Processing 

 Time series analysis was performed on the MODIS NDVI images for the study areas 

using the BFAST routine available with the “R” statistical environment.  BFAST is a time series 

analysis technique that will run data gaps, doesn’t require thresholds to be set, and it can handle 

large datasets  (Lu et al., 2001; Johnson et al., 2008; Verbesselt et al., 2010a).  LOESS-driven 

http://reverb.echo.nasa.gov/
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STL temporal decomposition is the temporal decomposition that BFAST is based on that was 

first developed by Cleveland and Delvin (1988) then modified by Verbesselt et al., (2010) to 

create BFAST.   

BFAST is a time series analysis tool that uses an additive model to decompose the raw 

NDVI data into seasonal trend, long-term trend (and breaks in the trend), and noise for each 

pixel. The additive model is (Hutchinson et al., 2015): 

Yt = Ct + St + εt 

Equation 2 Additive Model Equation Used in BFAST 

Ct = trend 

St = seasonal  

εt = residuals 

 

Before BFAST will estimate trend and seasonal components, it performs a test that looks 

for abrupt differences in the data using ordinary least squares residuals (Zeileis and Kleiber 

2005).  If a significant difference is found the number of breaks in trend and their location are 

determined using the method outline from Bai and Perron (2009). 

For BFAST to run within “R”, the following library programs must be loaded: 

 1. zoo- S3 Infrastructure for Regular and Irregular Time Series (Z’s ordered observations) 

 2. sandwich- Robust Covariance Matrix Estimators (Depends on zoo) 

 3. MASS- Support Functions and Datasets for Venables and Ripley’s MASS 

 4. quadprog- Functions to solve Quadratic Programming Problems 

 5. tseries- Time series analysis and computational finance (Depends on quadprog and zoo) 

 6. strucchange- Testing, Monitoring, and Dating Structural Changes (Depends on zoo and  

  sandwich) 

 7. fracidiff- Fractionally differenced ARIMA aka ARFIMA (p, d, q) models 
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 8. iterators- Iterator construct for R 

 9. codetools- Code Analysis Tools for R 

 10. foreach- Foreach looping construct for R (Imports iterators) 

 11. bfast- Breaks For Additive Season and Trend  

*All of the information about the “R” packages is from CRAN Packages By Name- The Comprehensive R Archive 

Network.  HYPERLINK "http://cran.r-project.org/web/packages/available_packages_by_name.html" http://cran.r-

project.org/web/packages/available_packages_by_name.html. 

Before the BFAST script is run 5 parameters must be set (Table 12): length of the time 

series represented by the total number of images available, length of the season or the number 

encompassing the complete vegetation cycle, the season model, a value (h) corresponding to the 

minimum time interval between potential breakpoints in the seasonal or trend components or the 

number of images in one vegetation cycle divided by the total number of images in the time 

series, and the maximum number of break points. 

 

Table 12 The 5 parameters set for BFAST to run on the three study areas. 

 

Once the parameters are set, the BFAST script pulls in a comma separated values (.csv) 

file containing NDVI values for each pixel (rows) for all composite periods (columns, n=253).  

A BFAST analysis is run on every pixel within the study areas and generates seasonal, trend, and 

noise components for each pixel (Figure 20). The BFAST results are then used for further 

analysis and mapping.  Maps generated from the BFAST results are trend over time, amount and 

location of breaks, and vegetation response to the largest break in trend.  

Total Number of Images 253

Images for Vegetation Cycle 16

Season Model Harmonic

Minimum Time Interval 0.1

Maximum Number of Breakpoints 11

5 BFAST Parameters

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
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Figure 20 Raw 16-day MODIS NDVI time series between 2001-2011 (black) and 

components resulting from BFAST temporal decomposition (red) for two grassland pixels 

within the Impact Area.  The graph on the left shows an overall negative trend, 4 breaks in 

trend, and an abrupt decrease in greenness at the largest magnitude break.  The graph on 

the right illustrates a stable (slope not different from null) with no significant breaks. 

 

Statistical Analysis of Long-Term Trends 

 After BFAST runs it will produce two different indicators for trend.  The first one 

represents the slope of the trend over the entire 11 year time series from 2001-2011.  It looks 

solely at the overall slope of the trend line.  A Student t-test (Equation 3) was run on the slope of 

every trend line for every pixel to see if there was a slope significantly different from null.   

 

𝑡 = (𝑎𝑛 −  𝑎0)/(
√(

1
𝑛 − 1) ∑(𝑥 − �̅�)2

√𝑛 − 3
) 

Equation 3 Student t-test  
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a0 = slope of a null trend (0) 

n = number of images into the time series  

x = time series NDVI value 

�̅� = mean NDVI value of the time series 

Depending on the statistical significance and direction of the sign of the slope, all of the 

pixels were divided up into three categories to then be mapped and analyzed (Table 13).   

 

 

 Long-Term Interannual (Gradual) Trend Validation 

One of the goals of the overall study is to test the effectiveness of the BFAST time series 

analysis tool in tracking vegetation trends and disturbances using low-resolution satellite 

imagery. An approach to validating this technique is to compare the trend results from BFAST 

with those from an alternative method. One method, recommended by Borak et al., (2000), has 

proven well adapted for grassland ecosystems (Serneels et al., 2001; Jacquin 2010; Hutchinson 

et al., 2015). This method only requires two high-spatial resolution (HSR) NDVI images 

acquired near the beginning and end of the study period. The main advantages of this method 

compared to post-classification change analysis is that field data is not required and 

interpretation of NDVI change is easier than changes in landcover classes.  The four steps below 

were taken to perform this validation method (Hutchinson et al., 2015, p. 360): 

Trend 

Class 

Significance of Trend Slope 

Value 

(? = 0.05) 

Sign of Trend Slope Interpretation 

NDVI Change Vegetation 

Condition 

Negative Slope value significantly 

different from a null slope 

Negative Decrease Decline 

Positive Positive Increase Improve 

Stable Slope value not significantly 

different from a null slope 

Negative and 

Positive 

Stable No change 

Table 13 Three categories for interpreting the trend results. 
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 Step 1:  Two Landsat-5 images from 06/18/2001 and 06/30/2011 were acquired from the 

USGS Global Visualization Viewer website (http://glovis.usgs.gov) and were processed 

to derive the NDVI. 

 Step 2:  The difference in NDVI (2011-2001) was calculated for all pixels and the mean 

and standard deviation of the NDVI difference were computed for each site. Three 

classes were created (browning, no change, greening) based on a threshold (±0.5 standard 

deviations of mean NDVI difference).  

 Step 3: The Landsat NDVI change classes were then resampled to the same spatial 

resolution of the MODIS imagery using a 250 m x 250 m grid. In order to assign a single 

change class to the down-sampled image, the percentage area of each Landsat change 

class was first calculated for each cell of the grid. A minimum threshold of 70% area for 

a single change class was then used to determine whether or not each cell would be 

retained for analysis or discarded.  

 Step 4: A confusion matrix was constructed with rows representing the resampled 

Landsat change classes and columns the MODIS change classes, with the Landsat change 

classes serving as the reference. Figures on the diagonal indicate class-by-class 

agreement. 

 

 Magnitude, Direction, and Number of Significant Breaks in Trend 

The second trend indicator was dramatic change in vegetation condition as found by 

breaks in the trend, there was a significant change in NDVI values from one image to the next.   

BFAST will not only detect the number of breaks but also the magnitude of the biggest break 

and its sign (positive or negative).  The magnitude and sign can give insight into post-disturbance 
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vegetation response.  All of the pixels where divided into three categories depending on their 

breaks (Table 14). 

 

Break Class Number of 

Breakpoints 

Sign of Highest 

Magnitude of Change 

Interpretation 

No Break 0 N/A No significant disturbances detected  

Post-

Disturbance 

Positive  

1 or more Positive Significant disturbances detected and 

gradual improvement in condition 

Post-

Disturbance 

Negative 

1 or more -/+ Significant disturbances detected and 

gradual decline in condition 

Table 14 Summary of the magnitude of the largest break for the study areas. 

  

 Limitations of BFAST  

There are limitations to BFAST to consider when interpreting the output results.  Some 

problems with how BFAST works are inherent to using composite imagery and some are based 

on how BFAST calculates results. When using MODIS 16-day maximum value composite 

NDVI imagery there could be values recorded for the maximum NDVI anywhere from 1 day to 

31 days apart.  The value analyzed by BFAST isn’t recorded at equal time intervals and 

depending on season and disturbance activity this could result in missing disturbances all 

together or misinterpreting disturbance events.  

Another limitation of BFAST is how trend is calculated.  The overall trend of the time 

series is heavily influenced by the first and last NDVI image value.  This meaning that if the first 

or last image is representing an abnormal year, drought or wet period, this could overly influence 

the overall trend and skew the trend to be positive or negative. 



66 

 Image Quality Assessment  

Because cloud contamination, snow cover, and aerosols in the atmosphere can lower the 

quality of the VI estimate measured by sensors such as MODIS, Huete et al. (2002) and 

Hutchinson et al. (2015) developed the constrained view angle-maximum NDVI value (CV-

MVC) compositing technique.  This method, which is used in the MOD13Q1 image product, 

reduces atmospheric and cloud effects in the final maximum value composite images.  However, 

image contamination is still possible.   

In order to assess the quality of the MODIS NDVI images, the pixel reliability band of 

the MOD13Q1 product was used.  In this study, pixel reliability were used as described in NASA 

LP DAAC (2013) guidance to monitor NDVI quality. The purpose of VI quality analysis is 

assess the overall quality of the NDVI images and to identify areas suffering from persistent 

quality issues that might impact later analysis of long-term NDVI trends. 

The pixel reliability band (11) from the MOD13Q1 HDF file for each image date in the 

2001-2011 time series was extracted, clipped to the extent of the study area, and re-projected to 

NAD 83 UTM Zone 14N.  Pixel reliability values (Table 15) for the entire time period were then 

quantified to determine their percentage membership into each reliability rank category. 

Based on pixel reliability rank (Table 15), the vast majority of study area pixels were rated as 

good quality throughout the study period (Figure 21). 
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Pixel 

Reliability 

Rank  

Classification  Description  Minimum % Maximum 

% 

-1  Fill/No data  Not processed  0.0 0.0 

0  Good data  Use with confidence  93.2 98.4 

1  Marginal data  Useful but look at other QA 

information  

0.4 3.9 

2  Snow/Ice  Target covered with snow/ice  1.2 3.6 

3  Cloudy  Target not visible, covered with cloud  0.0 0.4 

4  Estimated  Based on MODIS historic time-series. 

All products are gap-filled, indicating 

whether or not the value was 

interpolated from long-term averages.  

0.0 0.0 

Table 15 MODIS MOD13Q1 pixel reliability ranks, their interpretation, and summary of 

reliability values for study area pixels between 2001-2011 (adapted from NASA LP DAAC, 

2013) 

 

 

Figure 21 Maps of MODIS MOD13Q1 reliability values for study area pixels between 

2001-2011.  
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 Results 

 

Figure 22 Map of the vegetation trends from 2001-2011 at the study areas. Green 

represents a positive (greening) trend and red represents a negative (browning) trend 

  

 Long-Term Trends 

Analysis of the BFAST results show that a majority of the pixels for the Comparison Site, 

Smoky Hill ANGR, and the Impact Area are trending positive, showing an increase in greenness 

(Figure 22). Pixels that show a statistically significant (α = 5%) positive slope are represented as 

green, pixels that show a statistically significant (α = 5%) negative slope shown in light red, and 

stable pixels are shown in gray. This map allows for Smokey Hill’s land management team to 

access the vegetation trends across the whole range for the overall long-term vegetation 
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conditions from 2001-2011. Areas in green represent an improvement in vegetation health, a 

greening up of vegetation over those 11 years and the light red represent a decrease in vegetation 

health, a browning in the vegetation and the stable vegetation is gray.  

 Looking at Smoky Hill ANGR (excluding the Impact Area) and the Impact Area the 

overall trends are very similar with the Comparison Site being slightly more varied. All three 

sites have 70%+ of their pixels greening up over the 11 year time frame (Table 16).  A Chi-

squared contingency table analysis was run to determine if the overall trend from study area to 

study area were different. The results show no significant site-specific difference in the observed 

and expected frequencies [χ2 (df = 4) = 7.07, p > 0.1] meaning that the trends observed are 

independent of study area.  

Overall Trend 
No. 

Pixels 
Area 
(ha) 

Percent of 
Total Area 

(%) 
Negative 

No. 
Pixels 

Area 
(ha) 

Percent 
of Total 

Area 
(%) 

Positive 

No. 
Pixels 

Area 
(ha) 

Percent 
of Total 

Area 
(%) 

Stable 

Comparison 
Site 337 1,798 23.02% 1,046 5,582 71.45% 81 432 5.53% 

Smoky Hill 
ANGR 216 1,153 11.92% 1,432 7,641 79.03% 164 875 9.05% 

Impact Area 112 598 12.31% 700 3,735 76.92% 98 523 10.77% 

 

Table 16 Summary of the overall trend results at the study areas.  

 

Validation of Long-Term Trend Results 

Evaluation of the confusion matrix provides one form of validation of the BFAST-

derived MODIS trend classes at Smoky Hill and the Comparison Site (Table 17).  For both sites, 

producer’s accuracy (number of correctly estimated pixels divided by the column total for a trend 

class) was highest for the positive and lowest for the negative trend class.  At Smoky Hill, both 

the HSR-derived negative and positive change classes were confused with the BFAST stable 
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class.  At the Comparison Site, there was important, but less, disagreement between the HSR and 

BFAST negative trends classes.  However, the HSR positive trend class was often confused with 

the BFAST negative and stable classes.   

In this study, we were most interested in the negative trend class to highlight potential 

areas of degradation for land managers.  Unfortunately, these validation results provide little 

confidence in the accurate interpretation of both the BFAST negative and positive trend classes.  

The 2011 image was acquired nearly two weeks later (June 30) than that used in 2001 (June 18).  

During June in both years, study site vegetation was at, or near peak development.  However, 

warmer temperatures in 2011 likely supported advanced vegetation growth that, when compared 

with NDVI from 2001, resulted in a lower range and less variability in NDVI differences than 

was expected.  When classifying the Landsat NDVI difference image using the standard 

deviation approach, more data values then fell into the ‘no change’ class.  In addition, visual 

examination of the HSR images show evidence of several disturbances yielding positive and 

negative differences that would be masked by the smoothing performed in BFAST.  These 

results confirm some of the limitations of using this established validation approach and 

highlight challenges remaining with the validation of trend analysis results derived from medium 

spatial resolution satellite data. 
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Table 17 Confusion matrix with validation results for BFAST-derived MODIS trend 

classes.  Landsat NDVI change classes are considered the reference.  Numbers are the 

percentage of MODIS pixels belonging to the each Landsat class. 
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Figure 23 Map of the sign (+/-) of the largest magnitude break. 

 

 Magnitude and Direction of Breaks in Trend 

The next aspect of the BFAST analysis is looking at an abrupt change from the trend, and 

disturbance. These disturbances in the trend can either have a negative (browning) or a positive 

(greening) response from the vegetation. These responses can start to give you an idea of what 

type of disturbances caused a break in trend (Figure 23).  

In the Impact Area 76.5% of the largest disturbance responses caused browning 

compared to Smoky Hill ANGR (excluding the Impact Area) and the Comparison Site with 30% 

(Table 18). Smoky Hill ANGR (excluding the Impact Area) and the Comparison Site have the 
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same percent of pixels responding to disturbances 70% greening and 30% browning.  A Chi-

squared contingency table analysis was run on the response to the largest break. Results showed 

highly significant site-specific difference in the observed and expected frequencies [χ2 (df = 2) = 

59.35, p << 0.0001] meaning that the responses to the largest break are dependent on study area.  

Sign of the 
Magnitude of 
the Largest 
Break 

No. 
Pixels 

Area 
(ha) 

Largest 
Break 

Negative 
(%) 

No. 
Pixels 

Area 
(ha) 

Largest 
Break 

Positive 
(%) 

Comparison Site 27 144 29.67% 64 342 70.33% 

Smoky Hill ANGR 77 411 30.20% 178 950 69.80% 

Impact Area 186 993 76.54% 57 304 23.46% 

Table 18 Summary of the sign (+/-) of the largest break at the study areas.  
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Figure 24 Map of the total number of breaks within the study areas from 2001-2011. 

 

 Number of Breaks in Trend  

 The last aspect analyzed with BFAST was the number of breaks from the trend. This 

shows how many disturbances occurred that caused a negative (browning) or positive (greening) 

response in the vegetation.  

 The area with the largest percentage of pixels having at-least one break is the Impact 

Area with 26.7%. Smoky Hill ANGR (excluding the Impact Area) has 14.07% with at-least one 

break and the Comparison Site has only 6.22% with at-least one break (Table 19). A Chi-squared 

contingency table analysis was run to determine if there was a statistical difference between the 
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number of breaks at the study areas. Results showed significant site-specific differences in the 

observed and expected frequencies [χ2 (df = 2) = 17.00, p < 0.001] meaning that the disturbances 

are dependent on study site.  

 Looking at Figure 24, it shows that most of the pixels that had more than one 

disturbance are within the Impact Area. This can imply that there are disturbances to the 

vegetation within the Impact Area that aren’t happening within the entirety of Smoky Hill 

ANGR or the Comparison Site.  

Breaks 
No. 

Pixels 
Area 
(ha) 

Percent 
with no 
Breaks 

No. 
Pixels 

Area 
(ha) 

Percent 
with at 
Least 1 
Break 

Comparison Site 1373 7,326 93.78% 91 486 6.22% 

Smoky Hill ANGR 1557 8,308 85.93% 255 1,361 14.07% 

Impact Area 667 3,559 73.30% 243 1,297 26.70% 

Table 19 Summary of the percent of pixels without a break and the amount of pixels with 

at least one break at the study areas. 

  

 Discussion and Conclusion 

 The overall trend for a majority of the pixels at all three study areas were greening up 

over the 11 years (Table 16). The Impact Area had more disturbances in trend than the other two 

sites and most of these disturbances responded with browning.  Compared to the other two sites 

where more of the disturbances responded with greening up of vegetation (Table 18).  The 

differences in response to a disturbance could be misleading because of when the NDVI value 

was taken and how vegetation responds to burning.  Depending on when the NDVI image was 

taken the same burn could show a browning or greening response.  This is a limitation of 16-day 

composite imagery with BFAST.   
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 Even though the overall trend for all areas is the same there is a difference in the 

disturbances from the Impact Area compared to Smoky Hill ANGR (excluding the Impact Area) 

and the Comparison Site.  The weather over the study period didn’t show any significant trends 

for mean monthly temperature (Figure 5), maximum monthly temperature (Figure 6), minimum 

monthly temperature (Figure 7), and total monthly temperature (Figure 8) so weather trends are’t 

significantly influencing the trend analysis.  There is something happening in the Impact Area 

that is disturbing the vegetation, more than the other two sites, but isn’t negatively influencing 

the overall vegetation trend of the site.  

 Knowing that military training affects the environment (Wilson 1988; Shaw et al., 

1989; Whitecotton et al., 2000; Quist et al., 2003) and based on the results from this studies 

BFAST analysis it can be concluded that there are training activities happening within the Impact 

Area that are effecting the vegetation conditions.  A similar study was done using BFAST on 

another military installation in Kansas, Fort Riley (Hutchinson et al., 2015).  Both Smoky Hill 

ANGR and Fort Riley are comprised of mostly prairie land, are within proximity of each other, 

and have active ongoing training areas. The big difference between the two sites is the type of 

training happing at each. Smoky Hill ANGR is mainly used as a bombing range and Fort Riley is 

used for “on- and off-road field maneuvers (including tracked and wheeled combat vehicle 

operations), mortar and artillery fire, small arms fire, and aircraft flights (Hutchinson et al., 2015, 

p. 357).” Even with differences in training activities at the installations there are similarities 

between the two sites.   

 The training areas, at both locations, received more frequent disturbances in vegetation 

compared to the rest of the installations and their respective comparison sites. Which, is to be 

expected based on past research of military training environmental effects (Lathrop 1982; 
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Diersing et al., 1988; Wilson 1988; Shaw et al., 1989; Milchunas et al., 1999; Whitecotton et al., 

2000; Quist et al., 2003; Leis at el., 2005; Althoff et al., 2009).  Another similarity is that the 

military installations had different vegetation disturbances and responses compared to the non-

military areas.  The military installations are different from the non-military lands.  With the 

similarities between the two sites there are also some notable differences. 

 To start off with the overall trend between the two areas is quite different. At Fort Riley 

54% of the pixels were browning compared to only 12% at Smoky Hill ANGR. Fort Riley also 

had only 32% of is pixels without a break compared to 82% of Smoky Hill ANGR.  Based on the 

differences in the two studies and knowing the difference in training activities it can be inferred 

that the training at Fort Riley is having greater negative vegetation impacts than the training at 

Smoky Hill ANGR. It also suggests that if the type of training at Fort Riley was implemented at 

Smoky Hill ANGR it would have adverse effects on the vegetation conditions.  

 To further this research more needs to be done to determine what is causing the 

increase in disturbances and the negative response to disturbances within the Impact Area.  Is it 

direct effects of training or management practices like burning?  It would also be interesting to 

do an analysis between the Impact Area of Fort Riley compared to the Impact Area at Smoky 

Hill ANGR to see how areas with similar training at different locations are acting.   
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Chapter 6 - Synthesis of Findings 

Military training grounds are important, but the training on those lands can have impacts 

on the environment. Proper environmental assessments and management are necessary for the 

continued viability of the training grounds. For this study two separate analyses were done a 

contemporary burn history and a long term trend analysis at three study areas from 2001-2011.  

Based on these two studies the following conclusions can be made.  

The Impact Area had more burning (Figure 15) and disturbances detected (Figure 24), 

from BFAST, than the rest of Smoky Hill ANGR and the Comparison Site.  The vegetation 

response to the largest break within the Impact Area is also telling; 76% of the largest breaks 

responded with a negative vegetation response.  This is what you would expect after a burning 

event.  The NDVI values would be trending in a certain trajectory and then burning occurs, 

causing a dramatic decline in the NDVI values.  Registering as a break from the trend in the 

BFAST analysis. The vegetation response after large disturbances found will BFAST indicate 

that burning could be causing the breaks. But, because of the way BFAST works burns could 

show up as a positive or negative response meaning that the responses indicator from BFAST 

might be misleading.  

To determine if there was a relationship between burns and breaks separate Chi-squared 

contingency table analyses were run on the entirety of Smoky Hill ANGR and then the 

Comparison Site.  The Smoky Hill ANGR results showed that there is significant relationship 

between burns and breaks [χ2 (df = 66) = 262.52, p << 0.001] meaning that BFAST is detecting 

known disturbances. At the Comparison Site the results showed no relationship between burns 

and breaks [χ2 (df = 55) = 44.01, p > 0.5]. An explanation for there being no relationship 

between burns and breaks at the Comparison Site could be there was not very many burned 
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pixels or breaks detected. Only 6% of the pixels recorded one or more breaks and only 14% of 

the pixels had 2 or more burns. Most of the data points were zero.  But, where there were a lot of 

burns, Smoky Hill ANGR, BFAST was able to pick up on the disturbances.  

Another aspect analyzed was the relationship between breaks and overall trend found 

with BFAST. To determine if there was a relationship between the two a logistic regression was 

run on the entirety of Smoky Hill ANGR and then the Comparison Site.  For Smoky Hill ANGR 

the coefficient estimate is 0.55 and p << 0.0001. There is a relationship between overall trend 

and disturbances. Then a McFadden test was run to determine if disturbances were a good 

predictor of trend. The McFadden result (3.23e-02) showed that disturbances are not a very good 

predictor of trend.  For the Comparison Site the coefficient estimate is 0.98 and p < 0.001 and the 

McFadden value 0.02 is the same result as Smoky Hill ANGR. There is a relationship between 

overall trend and disturbances but disturbances are not a strong predictor of trend.   

When comparing the results of this studies BFAST analysis to another BFAST study of a 

military installation in Kansas, Fort Riley, some similarities and differences exist.  Two main 

similarities stick out between the two studies. One is that the impact areas at both sites are the 

most disturbed, recording more breaks in trend than outside of the training areas. Second is that 

the military installations are significantly different than the non-military reference sites.  A main 

difference between the two sites is the overall trend. For the entirety of Smoky Hill ANGR only 

12% of the pixels are browning compared to 54% at Fort Riley. This difference in overall trend 

could be a result of the different training regimes between Fort Riley and Smoky Hill ANGR.  

The training at Fort Riley seems to be having more negative effects on the overall vegetation 

condition and if the training at Fort Riley was moved to Smoky Hill ANGR it would have 

adverse effects on the vegetation conditions there.   
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Based on the results from both of these studies, burn history and time series analysis, I 

have concluded that BFAST is an effective and viable environmental management tool.  It has 

limitations, like; how the first and last images in the time series have large influences on the 

overall trend and how using moderate resolution 16 day composite imagery smooths out 

disturbances within the overall trend. Even with these limitations BFAST was still able to detect 

known disturbances and add to the narrative that military installations are different from non-

military lands.  Using BFAST on MODIS 16 day composite imagery would be a helpful tool for 

land managers to be able to determine areas that might be over stressed and need a break or areas 

that have responded well to changes in management practices.   

   An area that still needs more research is further validation of the overall trend 

component.  The validation method in this study had contradicting results to the BFAST 

analysis. The contradiction might have been because of the dates of usable imagery for the 

validation or that BFAST is not accurately capturing trend.  More research needs to be done to 

validate the BFAST trend component. Another analysis that could be telling is comparing the 

Impact Area at Fort Riley to the Impact Area at Smoky Hill ANGR to see how areas with similar 

training at different locations are acting.   
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Appendix A - BFAST Code and Documentation 

 loadZbfast {bfast} R Documentation 

 Break detection in the seasonal and trend component of a univariate time series  

 Description 

Iterative break detection in seasonal and trend component of a time series. Seasonal breaks is a function that 

combines the iterative decomposition of time series into trend, seasonal and remainder components with significant 

break detection in the decomposed components of the time series.  

 Usage 

bfast(Yt, h = 0.15, season = c("dummy","harmonic","none"),  max.iter = NULL, breaks = NULL, hpc ="none") 

  
 Arguments 

Yt univariate time series to be analyzed. This should be an object of class "ts" with a frequency greater than 

one without NA's.  

h minimal segment size between potentially detected breaks in the trend model given as fraction relative 

to the sample size (i.e. the minimal number of observations in each segment divided by the total length 

of the timeseries.  

season the seasonal model used to fit the seasonal component and detect seasonal breaks (i.e. significant 

phenological change). There are three options: "dummy", "harmonic", or "none" where "dummy" is the 

model proposed in the first Remote Sensing of Environment paper and "harmonic" is the model used in 

the second Remote Sensing of Environment paper (See paper for more details) and where "none" 

indicates that no seasonal model will be fitted (i.e. St = 0 ). If there is no seasonal cycle (e.g. frequency 

of the time series is 1) "none" can be selected to avoid fitting a seasonal model.  

max.iter maximum amount of iterations allowed for estimation of breakpoints in seasonal and trend component.  

breaks integer specifying the maximal number of breaks to be calculated. By default the maximal number 

allowed by h is used.  

hpc A character specifying the high performance computing support. Default is "none", can be set to 

"foreach". Install the "foreach" package for hpc support.  

 Details : To be completed.  

  
 Value  

 An object of the class "bfast" is a list with the following elements:  

Yt equals the Yt used as input. 

output is a list with the following elements (for each iteration):  

Tt  the fitted trend component 

St  the fitted seasonal component 

Nt  the noise or remainder component 

Vt  equals the deseasonalized data Yt - St for each iteration 

bp.Vt  output of the breakpoints function for the trend model 

ci.Vt  output of the breakpoints confint function for the trend model 

Wt  equals the detrended data Yt - Tt for each iteration 

bp.Vt  output of the breakpoints function for the seasonal model 

ci.Vt  output of the breakpoints confint function for the seasonal model  
 

nobp is a list with the following elements:  

nobp.Vt  logical, TRUE if there are breakpoints detected 
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nobp.Wt  logical, TRUE if there are breakpoints detected  
 

magnitude magnitude of the biggest change detected in the trend component 

Time timing of the biggest change detected in the trend component 

 Author(s) : Jan Verbesselt  

 References :  

 Verbesselt, J., R. Hyndman, G. Newnham, and D. Culvenor (2009). Detecting trend and seasonal changes 

in satellite image time series. Remote Sensing of Environment. http://dx.doi.org/10.1016/j.rse.2009.08.014.  

 Verbesselt, J., Hyndman, R., Zeileis, A., & Culvenor, D. (2010). Phenological change detection while 
accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment, 

114, 2970-2980. http://dx.doi.org/10.1016/j.rse.2010.08.003. Or see http://bfast.r-forge.r-project.org/.  

 See Also 

plot.bfast for plotting of bfast() results.  

breakpoints for more examples and background information about estimation of breakpoints in time series.  

  
 Examples 

# Simulated Data 

plot(simts) # stl object containing simulated NDVI time series 

 

datats <- ts(rowSums(simts$time.series)) # sum of all the components (season,abrupt,remainder) 

tsp(datats) <- tsp(simts$time.series) # assign correct time series attributes 

plot(datats) 

 

fit <- bfast(datats,h=0.15, season="dummy", max.iter=1)  

plot(fit,sim=simts) 

fit # prints out whether breakpoints are detected in the seasonal and trend component 

 

# Real data 

# The data should be a regular ts() object without NA's 

# See Fig. 8 b in reference 

plot(harvest, ylab="NDVI") # MODIS 16-day cleaned and interpolated NDVI time series  

 

(rdist <- 10/length(harvest)) # ratio of distance between breaks (time steps) and length of the time series  

fit <- bfast(harvest,h=rdist, season="harmonic", max.iter=1,breaks=2) 

plot(fit) 

plot(fit,type="trend",largest=TRUE) 

plot(fit,type="all")  

 

# output 

niter <- length(fit$output) # nr of iterations 

out <- fit$output[[niter]]  # output of results of the final fitted seasonal and trend models and nr of brea kpoints in 

both. 

 

# References 

citation("bfast") 

 

# For more info 

?bfast 

  

http://dx.doi.org/10.1016/j.rse.2009.08.014
http://dx.doi.org/10.1016/j.rse.2010.08.003
http://bfast.r-forge.r-project.org/
http://127.0.0.1:18458/library/bfast/html/plot.bfast.html
http://127.0.0.1:18458/library/strucchange/html/breakpoints.html
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function (Yt, h = 0.15, season = c("dummy", "harmonic", "none"),  

    max.iter = NULL, breaks = NULL, hpc = "none")  
{ 

    season <- match.arg(season) 

    ti <- time(Yt) 
    f <- frequency(Yt) 

    if (class(harvest) != "ts")  

        stop("Not a time series object") 

    output <- list() 
    St <- stl(Yt, "periodic")$time.series[, "seasonal"] 

    Tt <- 0 

    if (season == "harmonic") { 
        w <- 1/23 

        tl <- 1:length(Yt) 

        co <- cos(2 * pi * tl * w) 
        si <- sin(2 * pi * tl * w) 

        co2 <- cos(2 * pi * tl * w * 2) 

        si2 <- sin(2 * pi * tl * w * 2) 

        co3 <- cos(2 * pi * tl * w * 3) 
        si3 <- sin(2 * pi * tl * w * 3) 

        smod <- Wt ~ co + si + co2 + si2 + co3 + si3 

    } 
    else if (season == "dummy") { 

        D <- seasonaldummy(Yt) 

        D[rowSums(D) == 0, ] <- -1 
        smod <- Wt ~ -1 + D 

    } 

    else if (season == "none") { 

    } 
    else stop("Not a correct seasonal model is selected ('harmonic' or 'dummy') ") 

    Vt.bp <- 0 

    Wt.bp <- 0 
    CheckTimeTt <- 1 

    CheckTimeSt <- 1 

    i <- 0 
    while ((!identical(CheckTimeTt, Vt.bp) | !identical(CheckTimeSt,  

        Wt.bp)) & i < max.iter) { 

        CheckTimeTt <- Vt.bp 

        CheckTimeSt <- Wt.bp 
        Vt <- Yt - St 

        p.Vt <- sctest(efp(Vt ~ ti, h = h, type = "OLS-MOSUM")) 

        if (p.Vt$p.value <= 0.05) { 
            bp.Vt <- breakpoints(Vt ~ ti, h = h, breaks = breaks,  

                hpc = hpc) 

            nobp.Vt <- is.na(breakpoints(bp.Vt)[1]) 
        } 

        else { 

            nobp.Vt <- TRUE 

            bp.Vt <- NA 
        } 

        if (nobp.Vt) { 

            fm0 <- rlm(Vt ~ ti) 
            Vt.bp <- 0 

            Tt <- ts(fitted(fm0)) 

            tsp(Tt) <- tsp(Yt) 
            ci.Vt <- NA 

        } 

        else { 
            fm1 <- rlm(Vt ~ breakfactor(bp.Vt)/ti) 

            ci.Vt <- confint(bp.Vt, het.err = FALSE) 

            Vt.bp <- ci.Vt$confint[, 2] 

            Tt <- ts(fitted(fm1)) 
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            tsp(Tt) <- tsp(Yt) 

        } 
        if (season == "none") { 

            Wt <- 0 

            St <- 0 
            bp.Wt <- NA 

            ci.Wt <- NA 

            nobp.Wt <- TRUE 

        } 
        else { 

            Wt <- Yt - Tt 

            bp.Wt <- breakpoints(smod, h = h, breaks = breaks,  
                hpc = hpc) 

            nobp.Wt <- is.na(breakpoints(bp.Wt)[1]) 

            if (nobp.Wt) { 
                sm0 <- rlm(smod) 

                St <- ts(fitted(sm0)) 

                tsp(St) <- tsp(Yt) 

                Wt.bp <- 0 
                ci.Wt <- NA 

            } 

            else { 
                if (season == "dummy")  

                  sm1 <- rlm(Wt ~ -1 + D %in% breakfactor(bp.Wt)) 

                if (season == "harmonic")  
                  sm1 <- rlm(Wt ~ (co + si + co2 + si2 + co3 +  

                    si3) %in% breakfactor(bp.Wt)) 

                St <- ts(fitted(sm1)) 

                tsp(St) <- tsp(Yt) 
                ci.Wt <- confint(bp.Wt, het.err = FALSE) 

                Wt.bp <- ci.Wt$confint[, 2] 

            } 
        } 

        i <- i + 1 

        output[[i]] <- list(Tt = Tt, St = St, Nt = Yt - Tt -  
            St, Vt = Vt, bp.Vt = bp.Vt, Vt.bp = Vt.bp, ci.Vt = ci.Vt,  

            Wt = Wt, bp.Wt = bp.Wt, Wt.bp = Wt.bp, ci.Wt = ci.Wt) 

    } 

    if (!nobp.Vt) { 
        Vt.nrbp <- length(bp.Vt$breakpoints) 

        co <- coef(fm1) 

        Mag <- matrix(NA, Vt.nrbp, 3) 
        for (r in 1:Vt.nrbp) { 

            if (r == 1)  

                y1 <- co[1] + co[r + Vt.nrbp + 1] * ti[Vt.bp[r]] 
            else y1 <- co[1] + co[r] + co[r + Vt.nrbp + 1] *  

                ti[Vt.bp[r]] 

            y2 <- (co[1] + co[r + 1]) + co[r + Vt.nrbp + 2] *  

                ti[Vt.bp[r] + 1] 
            Mag[r, 1] <- y1 

            Mag[r, 2] <- y2 

            Mag[r, 3] <- y2 - y1 
        } 

        index <- which.max(abs(Mag[, 3])) 

        m.x <- rep(Vt.bp[index], 2) 
        m.y <- c(Mag[index, 1], Mag[index, 2]) 

        Magnitude <- Mag[index, 3] 

        Time <- Vt.bp[index] 
    } 

    else { 

        m.x <- NA 

        m.y <- NA 
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        Magnitude <- 0 

        Time <- NA 
        Mag <- 0 

    } 

    return(structure(list(Yt = Yt, output = output, nobp = list(Vt = nobp.Vt,  
        Wt = nobp.Wt), Magnitude = Magnitude, Mags = Mag, Time = Time,  

        jump = list(x = ti[m.x], y = m.y)), class = "bfast")) 

} 

<environment: namespace:bfast>  
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Load these packages in R: 

zoo 
sandwich 

MASS 

quadprog 
tseries 

strucchange 

fracdiff 

forecast 
iterators 

codetools 

foreach 
bfast 

 

setwd("z:/Projects/RTLA/MODIS_Smoky/BFAST_Results ")  
datafile <-"smoky_ndiv_table.csv" 

 

inidata<-read.table(datafile,header=TRUE,sep = ",",dec = ".") 

mdata<-as.matrix(inidata) 
tpdata<-mdata 

vmax<-dim(mdata) 

#number of lines 
vmax[1] 

#number of columns 

vmax[2] 
 

for(count in 1:vmax[1]) 

{ 

poly_id<-tpdata[count,1] 
ndvi<-tpdata[count,2:vmax[2]] 

plot(ndvi) 

tsdata<-ts(ndvi,frequency=23,start=c(2001,1)) 
dim(tsdata)<-NULL 

#(rdist<-23/length(tsdata)) 

fits<-bfast(tsdata,h=0.10,season="harmonic",max.iter=1) 
plot(fits) 

fits2<-fits$Time 

ts_trend_break_time<-t(fits2[1]) 

fits3<-fits$Magnitude 
ts_trend_break_magnitude<-t(fits3[1]) 

fits4<-fits$output 

fits4a<-fits4[[1]]$Vt.bp 
fits4adata<-as.matrix(fits4a) 

fits4amax<-dim(fits4adata) 

ts_trend_nbbreak<-t(fits4amax[1]) 
results1<-ts_trend_break_time 

aLine<-t(c(poly_id,results1)) 

write.table(aLine,file="trend_breaks_time_smoky.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",dec=".",row.na

mes=FALSE,col.names=FALSE,qmethod=c("escape","double")) 
results2<-ts_trend_break_magnitude 

aLine<-t(c(poly_id,results2)) 

write.table(aLine,file="trend_breaks_magnitude_smoky.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",dec=".",ro
w.names=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

results3<-ts_trend_nbbreak 

aLine<-t(c(poly_id,results3)) 
write.table(aLine,file="trend_nbbreaks_smoky.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",de=".",row.names=

FALSE,col.names=FALSE,qmethod=c("escape","double")) 

fits4b<-fits4[[1]]$Tt 
results4<-fits4b 

aLine<-t(c(poly_id,results4)) 

write.table(aLine,file="trend_bfast_smoky.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",dec=".",row.names=FA

LSE,col.names=FALSE,qmethod=c("escape","double")) 
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fits4c<-fits4[[1]]$Wt.bp 

fits4cdata<-as.matrix(fits4c) 
fits4cmax<-dim(fits4cdata) 

ts_season_nbbreak<-t(fits4cmax[1]) 

results5<-ts_season_nbbreak 
aLine<-t(c(poly_id,results5)) 

write.table(aLine,file="season_nbbreaks_smoky.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",de=".",row.names

=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

ts_season_breaks_time<-t(fits4cdata) 
results6<- ts_season_breaks_time 

aLine<- t(c(poly_id,results6)) 

write.table(aLine,file="season_breaks_time_smoky.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",de=".",row.na
mes=FALSE,col.names=FALSE,qmethod=c("escape","double")) 

fits4d<-fits4[[1]]$St 

results7<-fits4d 
aLine<-t(c(poly_id,results7)) 

write.table(aLine,file="season_bfast_smoky.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",dec=".",row.names=F

ALSE,col.names=FALSE,qmethod=c("escape","double")) 

} 

 

 

 


