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I. INTRODUCTION

Folded plate shells may be defined as structures constructed from

individual plane surfaces, or plates, joined together to form a surface.

The lines of intersection between the individual plates are usually termed

fold lines.

The structural behavior of folded plates is characterized by "slab"

and "plate" actions. The loads acting normal to each plate cause it to

bend transversely between the ridges as a continuous "slab". The plates

supported at their ends on end-diaphragms, bend due to the in-plane "plate"

loads. This behavior of the folded plate gives rise to longitudinal ridge

stresses and transverse bending moments at ridges.

Several kinds of structural materials can be used to construct folded

plate structures, but reinforced concrete has been the most commonly used.

Reinforced concrete folded plates provide a useful and economical

method of construction for roof and floor systems in a wide variety of

structures. This has proven exceptionally economical where relatively

large spans are needed as for auditoriums, industrial buildings, hangars,

department stores and parking garages. They have a striking appearance.

The materials required are usually much less than needed for flat slab,

beam and slab, or other conventional systems. A typical, simply supported

folded plate structure is shown in Fig. 1.1.

Knowledge of the structural behavior of reinforced concrete folded

plate structures due to applied loads is limited. Only a few tests of

reinforced concrete folded plate structures have been reported in literature

sources

.

This thesis is a report of analytical and experimental results from

a study of a direct model of a simply supported, prismatic, reinforced



concrete folded plate structure, rfith an inverted-U type cross section stif-

fened by edge beams along the free edges. The study's focal point is to

determine the actual performance of the whiffle tree loading system and the

distribution of loads , the response of the model at service load level , and

the effect of edge beams on the structural response.



Folds

Plate Thickness

Fig. 1.1 Typical Folded Plate Structure



II. REVIEW OF LITERATURE

2.1 Review of Methods of Analysis

Folded plate roof structures have become widely used in recent years

and several acceptable methods for analyzing such structures have been

developed. Within recent years there have been numerous papers published,

presenting various techniques for the analysis of the folded plate structure

(4,5,8,9,11,12,13-19,21,23,25,31-34). An extensive review of the literature

concerning the folded plate has been presented recently by Sutton (30).

This interest has arisen because the concrete folded plate is attractive for

long spans, and also the folded plate may be used as a mathematical model to

approximate simply supported and continuous barrel-vault shells (5).

The methods of analysis of folded plate structures may be considered to

fall within four principal categories. The categories are designated herein

on the basis of the overall distinguishing characteristic of the method

proposed as (i) beam method, (ii) folded plate theory neglecting relative

joint displacements, (iii) folded plate theory considering relative joint

displacements and (iv) elasticity method.

Since Craemer (8) and Ehlers (11) published their papers in 1930,

various similar and increasingly more advanced linear-elastic methods have

been proposed by numerous authors. Theoretical interest has focused

primarily on methods of analysis which apply to folded plates exhibiting

linear-elastic behavior. Two basic classes of analytical approach are

applicable to linear elastic folded plate systems: the so-called

"simplified, approximate methods," sometimes called the "Ordinary Folded

Plate Theories," and the "exact," or "elasticity" methods. The "exact"

method was presented by Goldberg and Leve (17). An excellent summary of

the various methods of analysis was presented by the ASCE Task Committee on



Folded-Plate Construction in its Phase I Report (25) and also by Sutton

(30). In this report the Task Committee recommended that Gaffar's method

(16), a theory of the "ordinary" type, be used for design purposes with

correction for relative joint displacements. For the complete procedure of

analysis the reader is referred to the bibliography listed at the end of

Ref. (25), to the text by Billington (5) and also the very extensive

bibliography by Sutton (30).

In recent years, developments in structural analysis through

utilization of high-speed digital computers have made complex analytical

approaches practical and feasible.

In conjunction with the general implementation of ultimate strength

design concepts for designing reinforced concrete members, analytical

approaches which allow the assessment of the actual load-carrying capacity

and the true structural response of folded plates have been developed.

Limit design (13, 15) and yield line analysis (14) are of this general type.

Several simplified methods of analysis of continuous folded plate

structures based on a one-dimensional approach are available. Of these,

Yitzhaki's (34) and Gruber's (19) can be used without resorting to digital

computation. Yitzhaki's treats the problem by considering each span

individually, the end conditions being then idealized as fixed, free, or

simply supported. Hence, his method is applicable only when there is

longitudinal symmetry of geometry and loading. Gruber shows that if the

deformations due to transverse forces are neglected, the different plates

can be dealt with separately as continuous beams. Such an approach is not

restricted by considerations of longitudinal symmetry.

Under similar assumptions, i.e., in bending normal to its plane the

plate behaves as a one-way slab and neglecting the stresses induced by

longitudinal slab action and twisting of the plate, Beaufait (4) presented



an analysis that requires the use of a digital computer. Swartz (32)

presented a method of analysis of folded plates with transverse stiffeners

limited to symmetrical loading and cross section with interior, rigid,

diaphragm stiffeners. The method requires a computer implementation, though

the concept is simple. In all these studies the interior supports are

limited to rigid diaphragms . A more rigorous solution makes use of the

formulation advanced by Goldberg and Leve (17) for single span simply-

supported folded plates.

Traum (12) presented an analysis of prismatic folded plates in which

the ridges are first considered as unyielding supports for the calculation

of all transverse moments in the slab. Then the ridges are subjected to

unknown loads which constitute the true slab reactions, taking into account

the settlement of the ridges. The concept presented here is quite similar

to work done by Gaafar (16). The only difference appears to be that Traura

(12) has chosen the loads on the ridges as the desired unknowns, while

Gaafar (16) chose the relative displacements

The available methods of linear-elastic analysis may be classified as

follows

:

1. The Elasticity "Exact" Method (17);

2. The Ordinary "Approximate" Methods (16, 33);

3. The Beam Method.

2.1.1 Basic Assumptions

The following basic assumptions are made in all of the linear

methods applicable to simply supported, prismatic folded plate

structures

:

1) The material is homogeneous and linearly elastic.



2) The actual deflections are minor relative to plate width and

length. Consequently, equilibrium conditions for a given plate may be

developed using the configuration of the undeflected plate.

3) The principle of superposition holds.

4) The structure is monolithic and joints are rigid.

5) The length of each plate is more than twice its width.

6) In all plates, plane sections remain plane after deformation.

(It is, however, to be carefully noted that a plane cross section of

the entire structure does not necessarily remain plane after deform-

ation. )

7) Each supporting end diaphragm is infinitely stiff parallel to

its own plane, but perfectly flexible, normal to its plane.

2.1.2 The Elasticity Method

The classical theory for simply supported prismatic folded plate

structures was presented by J. E. Goldberg and H. L. Leve (17) in 1957.

The elasticity or so-called "Exact" method involves separate analysis

of the slab and plate actions of each individual plate, and requires

satisfying equilibrium and compatibility equations at each joint when

the plates are assembled to form the complete structure. The plate

action is analyzed by the application of two-dimensional elasticity

principles and the slab action is analyzed by the plate bending theory.

The solution procedure involves the use of Fourier half-range series

and the application of a semi-inverse technique.

Its application becomes practical with the use of a digital

computer. DeFries-Skene and Scordelis (9) reported their programming

of the original elasticity method, using the equations presented by

Goldberg and Leve (17) in 1957.



2.1.3 The Ordinary Method Neglecting Relative
Joint Displacements (33)

This method is based on the assumption that the additional

transverse moments due to relative joint displacements are negligible

in comparison with those set up in the transverse direction by the

external loads. The solution is initiated by analyzing the transverse

slab system, assuming rigidly supported joints, under the external

loads, and then subsequently analyzing the longitudinal plate system as

loaded by the slab reactions. The calculations involved are relatively

simple.

2.1.4 The Ordinary Method Considering Relative
Joint Displacements (16)

In this method, the additional moments created by the relative

joint displacements are considered in the analysis; additional slab

reactions due to joint displacement are taken into account. The method

is suitable for hand calculations— less computational effort than the

elasticity method.

2.1.5 The Beam Method

This method is based on the assumption that the behavior of a

folded plate structure is similar to that of a thin-walled beam

spanning between the end supports. The application of this method is

simple but yields only approximate solutions.

2.2 Review of Previous Experimental Work

A brief review of the literature indicates that there have been a large

number of experimental studies of folded plate structures conducted in

various research programs.



In general, there are two types of folded plate model tests: tests of

linear-elastic models, and full loading range (including ultimate strength)

tests of reinforced concrete or micro-concrete models. Small elastic models

have frequently been used by workers to verify analytical solutions (18).

The reasons for using elastic models are numerous. The most important ones

are: simple similitude requirements, a wide choice of materials, and ease

of fabrication and testing.

2.2.1 Experimental Study of Moorman (24)

A large-scale model (single quarter scale model) of a reinforced

concrete folded plate structure was built and tested at Syracuse

University by a group under the direction of R. B. Moorman (24) in

1956. The cross section of the model was an inverted-U shape with two

vertical edge plates, one horizontal top plate and two plates which

were inclined thirty degrees to the horizontal.

The design thickness of all plate elements was 1 1/2 in.

38.1 mm). Difficulty was experienced in controlling the plate thick-

nesses during the placement of concrete. These were found to vary

between 1.52 in. to 2.01 in. (38.61 mm to 51.1 mm). The simply

supported model had: end diaphragm thickness 3 in. (76.2 mm), span

length 26 ft. 3 in. (8001 mm), and plate width 13 ft. 9 1/2 in. (4203.7

mm). Reinforcement was designed to resist transverse bending moments

and longitudinal middle-surface tractions obtained from "ordinary"

(elastic) theory considering relative joint displacements. Strains

were measured by electrical resistance strain gages attached on both

longitudinal and transverse reinforcing steel, as well as on the con-

crete surfaces. Vertical and horizontal deflections at selected loca-

tions were measured. Uniformly distributed load was applied to the
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test structure by means of sand bags placed over the surface of the

plates. Sand bags were added in increments of 25 psf. (1.20 KPa).

Cracks were recorded. Hairline cracks were first noticed in the edge

plates at the design live load of 50 psf. (2.39 KPa). The failure load

was between 200 psf. (9.58 KPa) and 225 psf. (10.77 KPa). The failure

mode was shear at the joint between the inclined plate and the end

diaphragm. The author found the vertical deflections and steel stres-

ses were closely predicted by the ordinary reinforced concrete cracked-

section theory. He also concluded that the relative importance of

considering relative joint displacements in the ordinary folded plate

theory could not be determined from this test. Further tests of large-

scale models were strongly recommended.

2.2.2 Experimental Study of Dykes (10)

In 1960, Dykes presented the results from tests of six reinforced

mortar folded plate models with the inverted-U cross section. The

basic dimensions of the models were: span 29.5 in. (749.3 mm); width

20.5 in. (520.7 mm); rise 6.8 in. (172.72 mm); and plate thickness

0.5 in. (12.7 mm). A lever system was used in the load testing of the

models to distribute discrete point loads located on four inch centers

longitudinally and transversely. The structures had these different

supporting conditions: only longitudinal edges supported and no end

diaphragms; free longitudinal edges and simply supported end dia-

phragms; and simply supported on both the edges and end diaphragms.

The author applied the yield line theory by Johansen (20) to predict

collapse modes and ultimate loads of all models. The predicted values

were in close agreement with those obtained from the model tests.



11

2.2.3 Experimental Study of Chacos and Scalzi (6)

The report of a single test of a simply supported reinforced

concrete folded plate model was made by Chacos and Scalzi. The

inverted-U shape was selected as the cross section for this model.

The basic dimensions of the model were: span 60 in. (1524 mm); rise

5.07 in. (128.78 mm); width 43.72 in. (1110.49 mm); and plate thickness

0.5 in. (12.7 mm).

The unit tested was supplied with end diaphragms and was simply

supported. The model was loaded to collapse by placing bricks over a

three inch sand cushion. Only the top plate was loaded in this manner.

The longitudinal (tensile) steel of the side plates was proportioned in

accordance with strength design principles by beam theory using the

Whitney stress block. In order to prevent a plate-bending type of

failure, the structure was well reinforced for transverse bending

moment and diagonal tension of the plates. The authors concluded that

failure occurred when the tensile reinforcement ruptured. The pre-

dicted ultimate load using the Whitney stress block and simple beam

theory agreed with that observed from the test.

2.2.4 Experimental Study of Aldridge (3)

The author reported a study of three models having a butterfly-

type cross section. All models were alike in every respect except for

the reinforcing systems. Overall plan dimensions were: span 96 in.

(2438.4 mm); width 48.75 in. (1238.25 mm); span to height ratio

8.35 in. (212.5 mm); plate elements were 0.5 in. (12.7 mm) thick; and

the end diaphragms were 1.375 in. (34.93 mm) thick. The first model

was designed by using the results of ordinary folded plate theory

neglecting relative joint displacements; for the other two models the
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effects of these displacements were included in the analysis. The

third model was prestressed in the longitudinal direction. The models

exhibited flexural beam-type failures accompanied by extensive crack-

ing. The second model required about 50 percent more reinforcement

than the first model. Model tests were conducted by the application of

load over the entire horizontal projection of the plate surfaces by

means of a tension-type whiffle tree loading system. Static load was

increased monotonically in increments from dead load of the model to

collapse. Both vertical and horizontal deflections were recorded at

each load increment along each ridge line at the end diaphragms,

quarter points and centerline point. Deflection readings were taken

using dial gages mounted on fixed and portable frames.

The load deflection responses of the test structures were

presented and compared with theoretical values predicted by the folded

plate theory, considering relative joint displacements and a nonlinear

theory based on beam theory. Cracking was observed only on the upper

surfaces of the models.

Aldridge found that predictions of deflection response were not

satisfactory, even at the service load level. He concluded that the

ultimate load-carrying capacity may be predicted quite closely by

ordinary ultimate strength procedures for flexural members.

2.2.5 Experimental Study of Scordelis and Gerasimenko (29)

The authors reported an experimental and analytical study of two

simply supported, prismatic, reinforced concrete folded plate struc-

tures. The two models had free longitudinal edges. The two models,

identical in all respects except for the quantity and arrangement of

reinforcement, were tested. Plan dimensions were: 30 in. (762 mm)
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width by 70 in. (1778 mm) length; plates .5 in. (12.7 mm) thick; and

end diaphragms 1.5 in. (38.1 mm) thick. One model was proportioned in

accordance with the results of the elasticity method, the other by

elementary beam theory.

The former model had generally more reinforcement, particularly in

the transverse direction. The steel was placed in two layers adjacent

to the middle surface for both models, with the transverse steel being

on the top in each case. The loading used for the test consisted of

uniform line loads acting at the folds applied by means of a whiffle

tree system. "These design line loads were equal to joint reactions

produced by a uniform design load acting on a continuous transverse

slab strip rigidly supported at the folds." Two distinct loading

phases were considered for each model: seven loading cycles from zero

to applied design load and a single loading to failure. The instrument-

ation was designed to measure vertical and horizontal deflections of

each joint at the midspan cross section and also to monitor strain in

certain longitudinal reinforcement bars at the same cross section.

Crack formation was noted and marked directly on the models.

For loading to the design service load, both models "generally

behaved as predicted by folded plate theory in terras of deflection and

strain." No cracking was observed for this loading level. Failure of

both models was "caused by diagonal cracking near the support and

cracking in the supporting diaphragms" that was produced by warping of

these elements. The structure exhibited amazing ductility, sustaining

maximum deflection of nearly 3 in. (76.2 mm) before failure. The

failure load occurred at 4.5 times the design service load for both

models

.
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The authors concluded that folded plate theory can be used to

predict the behavior in the working load range for structures similar

to the model tested in cross section with similar ratios of span to

height, and type of loading. Either the folded plate theory or

elementary beam theory will yield a satisfactory design in terms of

deflections at the service load, ultimate strength and overall

behavior. The need for further experimental study of reinforced

concrete folded plate models having different types of cross section,

span to height ratio and type of loading was also stressed.

2.2.6 Experimental Study of Lee, D. W. (22)

The author tested four reinforced micro-concrete models of a

simple span folded plate structure with free longitudinal edges. Three

models had a double inverted trough-type cross section; the other model

had a single inverted trough-type cross section. The models had span

to height ratios of 13.5 and 20.2 and were considered to be long span

folded plate structures. The plate elements and the end diaphragms

were 0.5 in. (12.7 mm) and 1.5 in. (38.1 mm) thick, respectively.

Tests of the models were conducted by applying load as a monotonically

increasing static load from the dead load of the specimens to collapse.

Service live load patterns were simulated by a pull-type whiffle tree

loading system. In analyzing the structures, the ordinary method

neglecting the relative joint displacement was used. A nonlinear

solution based on the observed structural response was developed. The

author proposed that load factors of 1.5 and 4.0 for dead and live

load, respectively, be used for intermediate and long-type structures.

He recommended that the ultimate strength design procedure for beams
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can be used to design the longitudinal steel in folded plate structures

by using his recommended load factors.

2.2.7 Experimental Study of Sutton (30)

The author reported an experimental and analytical study of three

simply supported prismatic reinforced concrete folded plate structures

with an inverted-U cross section. Key dimensions were: span length

184 in. (4673.6 mm); element plate width 45 in. (1143 mm); element

plate thickness 1.5 in. (38.1 mm); and end diaphragms thickness 4 in.

(101.6 mm). The plate inclination was 30 degrees with respect to the

horizontal. The major variable was the system of reinforcement. The

first model was designed in accordance with minimal reinforcement for

ductility and had a reinforcement system consisting of an orthogonal

mesh, spaced equally in both directions and placed in the middle

surface of the concrete. The other two models were designed using the

elasticity, or "exact", method.

The second model was reinforced by a system designed in accordance

with contemporary practice, while the third model had a reinforcement

system with features which reflected inferences drawn from the complete

results of an exact of linear-elastic analysis. Loading was applied

monotonically to the structure in increments by means of a system of

nine hydraulic cylinders delivering nominally identical vertical loads.

The arrangement of applied loads consisted of groups of three

hydraulic cylinders which were mounted on each of three transverse

beams located at each quarter span section and at the midspan section.

The results were presented through an extensive documentation including

tables and photographs, as well as complete crack records. The first

model exhibited excessive cracking, strains, and deflections at the
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service load level and large deflection as it approached collapse. The

model sustained a load equal to 4.1 times the service load. The second

model exhibited cracking, deflections and strains at the service load

level which were acceptable. The third model was generally superior to

the other two. No cracking was observed for this model through the

service load level; deflections and strain data agreed very well with

analytical predictions. The mode of failure was a localized collapse

under one of the off-ridge concentrated loads in the midspan cross

section under a load of 9.14 times the service load level. The author

pointed out that the cracking pattern observed from the tested struc-

tures showed good agreement between crack orientations and the

directions of normals to the maximum principal strains predicted by the

exact-elastic analytical method. He also concluded that the character

of the reinforcement system significantly influenced the nature of

structural response throughout the entire range of loading.

2.2.8 Experimental Study of Pudhaphongsiriporn (26)

The author reported an experimental study of five reinforced

micro-concrete folded plate models with inverted-U cross sections.

Each model had span 96 in. (2438.4 mm) and 68 in. (1727.2 mm) width.

The major variable was the system of reinforcement. Loads were applied

through a "whiffle tree" (pull-type) loading system of a simple beam

interconnected by bolts and threaded rods to the load points on the

model. The instrumentation was designed to measure the deflection and

strains on the steel reinforcement and the concrete plate surfaces.

Visible crack development was observed and recorded. The five systems

of reinforcement were: (1) model 1 had a single longitudinal steel bar

at each free longitudinal edge; (2) model 2 was reinforced with a light
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orthogonal membrane grid; (3) model 3 had a system designed according

to contemporary practice; (4) model 4 had a system designed in

accordance with the complete results of the elastic analysis by an

exact" method; and (5) model 5 had a more optimum system based on the

same analytical results. The author presented his results through an

extensive documentation and demonstrated the validity of the exact

method for predicting the response at the service load level. Load

factors at failure for the last three models were very high. He

concluded that the character of the reinforcement system significantly

influences the nature of structural response.

2.2.9 Experimental Study of Resheidat (27)

The author reported an experimental study of two reinforced micro-

concrete folded plate models with edge beams. The structure was simply

supported and the cross section configuration was of an inverted-U

type. The ratio of span to height was equal to 8. The structure was

subjected to one cycle of uniform static loading. The models were

tested by applying simulated uniform load by means of a "whiffle tree"

loading system. Plan dimensions were span length 144 in. (3657.6 mm);

element plate width 24 in. (609.6 mm); element plate thickness 1 in.

(25.4 mm); and edge beam depth and width 6 in. (152.4 mm) and 2 in.

(50.8 mm), respectively. The two models had the same characteristics

except for differences in the reinforcement system.

The author concluded that the exact method of analysis yielded a

safe design and accurate predictions of structural response for loads

in the service load range. He also pointed out that by including edge

beams, the amount of inclined diagonal reinforcement and transverse

reinforcement was reduced and the stiffness of the structure, and its
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ultimate capacity significantly increased. The author stated that both

models failed in a longitudinal flexural mode and they exhibited

considerably higher load-carrying capacities than that predicted by

conventional strength design criteria.
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III. FOLDED PLATE ANALYSIS

3.1 General

Folded plate structures are usually designed to include edge beams

attached along their longitudinal free edges. It is to be expected that

the behavior of folded plates with longitudinal edge beams will differ from

that of folded plates with free longitudinal edges.

The elasticity method is the method used to analyze the edge beams.

The complete general version of the mathematical development of the exact

method of analysis is presented by Goldberg and Leve (17). The method

developed herein is an adaption of this method to the specific problems of

direct interest for this study.

3.2 Elasticity Method

The assumptions stated in Chapter II are valid here to obtain an

"elasticity solution" which relates the internal forces and deformations to

the applied loads and deformations at the joint lines. Figure 3.1 shows a

typical plate element with an x, y, z coordinate system.

External loads and internal tractions which act on the element in

their positive senses are shown in separate groups.

The loads, forces and deformations are expressed as trigonometric

series in the x-direction. All relations between loads, displacements and

forces are given by Goldberg and Leve (17).

The plate equations are briefly presented in this chapter, whereas the

beam equations are given in Appendix B. For the case of a simply supported

structure having a cross section consisting of (n) plates, the number of

longitudinal joints is equal to (n + 1). The key joint deformations

include a joint rotation (6) and three displacements (u, v, and w) in the

x, y, and z directions, respectively.
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The orientation of axes for folded plate structures with edge beams is

shown in Fig. 3.2.

The internal tractions at the joints can be expressed in terms of

these unknowns. Once the joint forces and the joint displacements are

expressed as Fourier Series, it is then only necessary to solve 4 (n + 1)

equilibrium equations for each Fourier harmonic considered in the analysis.

For the beam, the equations are expressed in terms of the unknown

joint displacements of the connecting joint between the beam and adjacent

plate.

a. The normal displacement w. for the i plate may be expanded

into the Fourier Series:

CO

w. = Z w
m (y ) sin S* (III.l)

m=l

where,

m is the odd term of a Fourier Series. Note that a bar over the

symbol indicates the maximum value for a particular harmonic of any force

or displacement.

If we admit only the m term, then the deflection must satisfy the

homogeneous differential equation

V
4
Wj = (III. 2)

The solution of (III. 2) is

miry

.

miry

.

w„ (y.) = A sinh + A. coshm i 1m a 2m a

miTy . miry

.

miry

.

miry .

+ A, - sinh - + A 1 cosn i
J» a a 4m a a

(III. 3)
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The coefficients A - A are determined from the boundary conditions for

each mode m at the edges j, k of the i plate in terms of edge displace-

The boundary conditions are

yi 2

^y ..^yi 2

(III. 4)

(w )
b i = w

m y±
= — jk

(w )
b
i = w, .

mrj
t

- - -± kj

where 8 , 6
fc

are the edge rotations and w , w are the edge displacements

of the i plate. The differential plate equation of bending including load

effect is given as

*\-^ (HI- 2a)

By substituting into the general plate bending equations (III. 2a) the

internal forces and moments are determined in terms of the rotations and

displacements

.

The fixed end moments and forces due to a normal load on the i
th

plates, p . , are determined by assuming a deflection function w .

Assuming a sine distribution for the normal loading the deflection

function must satisfy the boundary conditions of zero edge displacements

and rotations and the following equation.

n4„ .
^ni _

P
i . mirxv w

Fi " Bj- " d^
sxn— Cm.s)
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The final result is obtained by adding each fixed end moment and force

to its corresponding moment and force due to edge displacements,

b. In-plane displacement in the i plate:

The displacements in the direction of x and y, u. and v. , respec-

tively, are given as

00

u, = E u (y.) cos— (III. 6)

00

v. = Z v (y.) sin— (III. 7)l .mi a
m-1

The associated two dimensional stresses are

E 3u , 3v

.

E 3v 3u,

E 3u. 3v
(^i + 3r

i
) (in. io)xyi 2(l+u

1
)

v
3v

i
3x

From equilibrium equations for the homogeneous solution, the stresses must

satisfy

3a 3t

3t . 3o .

Z*i + _XI=0 (III. 12)
3x 3

yi

3tal displa>

tuting for u^^ and v^^ for mode m into equations (III. 8) through (III. 10)

From this the total displacements for the m mode are obtained by substi-



which yields the solution. The coefficients are determined from the bound-

ary conditions for the m mode at the edges j, k of the 1 plate.

Finally the longitudinal force, the transverse force, and the in-plane

shearing force are determined in terms of edge displacements.

In order to determine the fixed end forces due to a load in the +y.
1

direction of the i plate, p . , the associated deflections u„. and v .ti Fi Fi

must first be calculated from the equilibrium equations (III. 11) and

(III. 12). However, Equation (III. 12) becomes

3a . 3t . p .

3y
±

3x
t

h

where

0=

pti ' \ »tt
sln ^T WLU)

m=l

Fixed edge boundary conditions must also be satisfied. The longitudinal,

transverse, and the shearing forces determined from the above cases

are added to those corresponding to the edge displacement.

A number of simultaneous equations are determined in terms of edge

displacements. These equations may be written in matrix form and the

forces and the displacements transformed to a global coordinate system.

The equilibrium and compatibility equations at the ridges are applied along

with the boundary conditions at the edges which results in the matrix

equation,

KA " F
F (III. 14)

where K = HCH , a 4(n + l)*4(n + 1) stiffness matrix;

C = the plate stiffness matrix

and H = transformation matrix, 4(n + 1) * 8 n.
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A is a 4(n +1) displacement matrix and can be obtained by trans-

forming each joint displacement for each plate to a global displacement.

The fixed end forces matrix, F_, a 4(n +1) must also be transformed.

Finally, n is the total number of plates.

The plate stiffness matrix can be arranged accordingly. Premulti-

plying both sides of Eqn. (III. 14) by K~ , yields

A - K"
1

F
p

(III. 15)

from which the unknown edge displacements and rotations can be determined.

The coefficients for each plate can be determined too, and by substituting

into the appropriate equations, the state of stress for mode m is deter-

mined.

3.2.1 Joint Force-Displacement Equations for Edge Beam

The beam to be considered is of rectangular cross-section and

attached along the joint j. The ends x - and x = a are simply

supported with respect to bending and completely restrained from

twisting because of the assumed behavior of the end diaphragms of the

folded plate structures. Fig. 3.3 shows a cross-section of the model

with edge beams.

In a previous analysis of this model the edge beam was considered

as a plate and the stresses were determined according to this. This

method was used in Ref. (35). Herein an attempt is made to analyze

the edge beams by determining the stiffness matrix and internal forces

of the edge beam. Two subroutines were added to the main program for

this purpose. The details of the analysis and the computer program are

presented in Appendix B. The results of this analysis are more
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accurate than the one considering the edge beams as end plates in the

analysis. The data are shown in Appendix B.

The equations for a beam are written in a similar manner to those

for the plate. For the m term of a Fourier expansion the four

tractions at joint j , are written as follows (17)

:

jO 48k

3

' ?»= k
2

{[16 | (1-0.63 |) k
x
+ k

2
d] 6. + 2dk

2
w.

Q
} sin kx,

v
j0

=
-ikf

k* [d V 2 V slnkx>

2

N n
- -^f-.k

3
[-2dkv + 3u.] sin kx,

3 6k J J

S.g - —2" k [dkv.„ - 2k,u ] cos kx

(III. 16)

where

k = n + Et
2
k
2

. m a 2EtV EdV
1

U 10G ;
'
K
2

U +
5G ; '

k
3

(1 +
10G

'

k - — , d = depth of edge beam, t = width of edge beam,

G- E

2U+U)

If edge n + 1 is the contacting edge, then

M
n+l,n+2 * flkf

k' { t16 I U" - 630
Z>

k
l
+ k2d2 l *

3

Vl.n+2
=
Hkf k [d \+l - 25

n+l,n+2 ] sin te «

2

N
n+l,n+2 " Jr k' f2dk\+l,n+2

+ 3iW sln **>

S
n+l,n+2

=

Jf k? tdk^n+l,n+2
+ 2k3S

n+l ] COS ta

n+1

2
2d d w JO } sin kx

n+1 ,n+2

(III. 17)
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If we call the connection of the left edge beam and first plate

joint j, and the following joint k, with the free edge designated 0,

then the equilibrium equations for joint j are (in global coordinates)

M. n + M. -
jO jk

Nr,
Q
+ Nn.

fc

=

?
j0
+?

jk = °

(III. 18)

A similar system of equations occurs for the right edge beam and is

given in Appendix B. These equations replace the usual free edge

equations for the first and last plate of the structure.

3.2.2 Matrices

The local transformation matrix H. for any plate i is

H.

1

Cosd)

.

-Sin*.

-Sinij)

.

-Cos<|>

.

i

1

(III. 19)

The edge displacements in the local coordinates for plate i can be

written as follows:

"
9.

*

J

•jk

v
jk

"o.
j

"

u.
1 J

&. -
i

6.
k \

1

\i

\i

_v

for the i plate (III. 20)
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The global displacement column vector, S. for plate i is

(III. 21)

The local displacement vectors are related to the global dis-

placement vectors as follows:

_1
l*3*\ /*k{*{) = [H^

-1
{&{}, {&)} - [H^" 1

{if

}

" maximum value function in span for mode m of series.



Fig. 3.1 Slab Coordinate System, Internal Forces,
and Displacements
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Fig. 3.2 Axes' Orientation for Folded Plate
Structure with Edge Beams
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IV. CONSTRUCTION OF THE MODEL STRUCTURE AND
INSTALLATION OF THE MEASUREMENT GAGES

4.1 General

A model of an inverted-U type cross section folded plate structure with

end diaphragms, and edge beams along the free longitudinal edges was built.

A brief description of the model construction and material will be intro-

duced here. For full details of the construction procedures and design the

reader is referred to Ref. (35). The cross section consists of three plates

and two edge beams. The two edge beams are identical. One plate is hori-

zontal and two are inclined 30 degrees with respect to the horizontal. The

key dimensions of each plate are: inclined plate thickness 0.75 in.

(19.05 mm); horizontal plate thickness 0.6 in. (15.24 mm); span length

216 in. (5486.4 mm); plate width 64.6 in. (1641.86 mm); and diaphragm thick-

ness 4 in. (101.6 inn). The beam width is 2 in. (50.8 mm), the beam depth

is 3 in. (76.2 mm), and its span is that of the plates. The cross section

of the model is shown in Fig. 4.1. The supports were designed and con-

structed as described in Ref. (35). The micro-concrete mix used was a sand-

cement-water mortar with a W/C ratio of 0.5. This mix was designed and used

in previous work (7). The sieve analysis of the sand and the quantities per

cubic foot are shown in Table 4.1 and Table 4.2, respectively.

4.2 Fabrication

4.2.1 Formwork

The model formwork consisted of two major parts, the wood sup-

porting frame and the basic form elements. The function of the wood

supporting frame was to facilitate both erection and removal of the

various elements of the forms. The basic form elements consisted of

steel, plywood and plexiglass. Six units of formwork were constructed.
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along with two end bulkheads and four unit formworks . The end bulk-

heads were made of one-quarter inch thick steel plate. They were cut

and dimensionally shaped into the designed cross sections and used to

form the outer faces of the structural end diaphragms. The four unit

formworks were cut from one-quarter inch thick plates, were machined

into the desired inverted-U cross-section shape and functioned as end

supports for each unit formwork. The steel supports were held rigidly

in place. Longitudinal braces consisting of eleven 1" x 1" x 1/8"

steel angles were cut 35.5" (901.7 mm) long and were fastened along the

top and inclined edges of the steel supports for each unit formwork.

One-eighth inch holes were drilled in each angle, for wood screws to

hold 3/4" (19.05 mm) plywood. Plywood of 3/4" (19.05 mm) thickness was

cut for the inner form of the model. The pieces were assembled to-

gether and leak-free joints were produced.

Plexiglass of 3/8" (9.53 mm) thickness was employed as the

interior form surface for the top and inclined plates and was used as

an exterior form only for the inclined plates and the edge beams. The

individual plexiglass pieces were cut and machined so that leak-free

joints were achieved.

The plexiglass was used to allow visual confirmation of consolida-

tion of the mix during placement from the outside edge beam and the top

of the inclined plates.

Holes were drilled in the individual form plates at specific

locations to allow the application of spacers, spreaders and load

points. These were used to maintain uniform thickness between the

exterior and interior forms when connecting these two pieces together.

Size 5/16 in. (7.94 mm) brass tubing was cut in 2 in. (50.8 mm) lengths

for the edge beams, and 0.87 in. (22.1 mm) for the inclined plates to
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get 3/4 in. (19.05 mm) thickness. Size 7/16 in. (11.11 mm) brass

tubing spacers were used for the end diaphragm to give 4 in. (101.6 mm)

thickness

.

Load points for the top plates were made from 5/16 in. (7.94 mm)

brass tubes of length 0.6 in. (15.24 mm).

The forms served as a mold for casting the micro-concrete. They

were supported by three wood frames. Pieces were cut and connected

by straps of 1/4 in. (6.35 mm) thick steel.

4.2.2 Formwork Erection

Erection was begun by fixing the end supports for the model. At

each corner two concrete blocks were placed one on top of the other. The

reinforced concrete beams rested on the blocks. The concrete blocks, in

turn, rested on the laboratory floor. The wood frames were raised by manual

jacks at each corner of each wood frame. Then the unit forms were placed on

the top of the frames. The six forms were aligned and adjusted. The

plywood was attached to the units using wood screws. Positioning of the

unit formworks to obtain flush joints between adjacent units was a tedious,

time consuming job. The units were connected together at their adjacent

bulkheads which had four holes flush to the other four holes of the other

bulkhead. Threaded rods were inserted in the holes and tightened with nuts

from both sides. The joints were sealed by silicon to prevent leakage

during casting. The forms' surfaces were then cleaned and greased to fac-

ilitate form removal. Spreader-load points were installed in their proper

locations. The fabrication process is shown in Figs. 4.2 and 4.3.
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4.3 Reinforcement

Assembly of the reinforcement was performed on the form surface after

the formwork system was completely arranged and aligned in its proper posi-

tion. The longitudinal and transverse reinforcements on the inclined plates

were connected to form a grid. The ends of both wires were bent inside the

end diaphragms. The top plate reinforcement was fabricated aside, then

moved on to the top plate. The steel cages for the beams were then as-

sembled aside and placed in the forms. The cage assembly was made

sufficiently rigid by using fine wire ties at selected joints. The rein-

forcements for the end diaphragms were assembled.

All reinforcement was reassembled in place again, and chairs were

provided for the cover. The thicknesses were controlled by the brass

tubing. The plexiglass was greased and placed in its corresponding loca-

tion. Figure 4.4 shows the reinforcement assembled on the model. The

formwork system thus assembled met the requirements of rigidity and water-

tightness .

4.4 Casting and Curing

The micro-concrete was mixed in a laboratory concrete mixer of three

cu. ft. capacity. After the sand was placed in the oven to dry it was

sieved to pass a #16 sieve. Eight batches were required for the model and its

quality control cylinders. Each batch consisted of one 94 lbs. (418.11 N)

sack of cement, 47 lbs. (209.05 N) of water, and 188 lbs. (836.22 N) of

sand. A set retarder also was used of 61.1 m per batch. The mixing

procedure used for each batch was: sand and cement were placed into the

drum mixer and mixed for thirty seconds, then water was poured gradually

over a period of thirty seconds while the mixer was running.
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Mixing continued for four minutes; the set retarder was added after the

first two minutes. The mix was placed in pans, and poured on the model. A

sander was used for vibration to help the mix flow easier. The quality

control cylinders, six 3 in. x 6 in. (76.2 mm x 152.4 mm) and six 1 in. x

2 in. (25.4 mm x 50.8 mm) were taken according to ACI 318.83 (1, 2). The

cylinders were covered with plastic. The model was covered with a plastic

sheet to cure the concrete. Water was sprayed on the model twice a day to

keep the model wet for the period of curing.

4.5 Formwork Removal

The steel tubing of the edge beams, the side form, and the outside form

of the end diaphragms were removed on the fourth week after casting. The

rest of the formworks were removed thirty-three days after casting. The

bottom plywood forms were unscrewed. The north wood frame was lowered by

the jacks under the corners. All shims were removed. The middle wood frame

was lowered and moved away as the first one. Both middle form units were

removed. The south wood frame and the fourth unit form were removed in the

same sequence. The end unit formwork was stuck in the concrete beams and

the diaphragms, and was therefore difficult to remove. Both ends were

removed by employing a chisel and a hammer to chip off the concrete under

the bulkhead.

4.6 Installation of Measurement Instruments

Locations for strain gages and dial gages for measuring deflection were

preselected (See Figs. 4.5 and 4.7).

Eleven small vertical scales were placed on the top plate to be used as

measurement reference for short term deflection due to self-weight. The

locations are shown in Fig. 4.8. A total of fourteen conventional dial
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gages with ranges of two inches were used. The gages were mounted on a

separate rigid frame.

Strain gages selected for the experiment consisted of single elements,

two element rosettes and three element rosettes. Sixty strain gages were

employed. Thirty gages were mounted on the model and the rest were mounted

on fifteen 1/2 in. x 1/2 in. (12.7 mm x 12.7 mm) bars of the whiffle tree,

to determine the load in the whiffle tree delivered to the model. Three

different kinds of strain gages were used. The first kind was a single

element type strain gage, gage type EA-06-120LZ -120, which has a 120 Ohms

±0.3% resistance, gage length of 0.24 in. (6 mm) and a gage factor of

2.05 ± 0.5%. The second kind was a two element gage and the third was a

three element gage. They were of gage type EA-06-125TF-120 and EA-06-125YA-

120, respectively. Each has 120 Ohms ±0.2% resistance, gage length of

0.125 in. (3.2 mm) and gage factor of 2.015 + 0.5%. The first kind of these

strain gages was used for the whiffle tree.

Gages 31 through 38 were mounted on the whiffle tree bars connected

directly to the load points in the angle plates near the end support. Gages

39 through 46 were mounted to whiffle tree bars which connected directly to

the load points in the angle plate near mid-span. Gages 53, 54 and gages 57

through 60 were on the whiffle tree bars at mid-span (See Fig. 5.4).

Other strain gages were attached to the top and bottom surfaces of the

plates. The lead wires from the strain gages were then hooked in to the

data aquisition system with the help of pin connectors prepared for the

purpose. For the measurement of the strains, an automatic data aquisition

system (Optilog) coupled with an Apple micro-computer was used. The instal-

lation of strain gages and the Optilog is pictured in Figs. 4.5 and 4.6.
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Table 4.1 Properties of Micro-Concrete Sand

Sieve Analysis of Sand

Sieve Size

16

Cumulative Percent

No.

No. 30 17

No. 50 78

No. 100 98

No. 200 99

292

fineness modulus = 2.92

Table 4.2 Mix Quantities per Cubic Foot

Material Quantities

Cement Type I 38.46 lb. (171.1 N)

Sand 76.92 lb. (342.3 N)

Water 19.23 lb. ( 85.6 N)

Set Retarder 25 ml

Air 2 percent

unit weight = 135 lb/cu. ft., (21.2 KN/m)
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V. LOADING SYSTEM AND TESTING PROCEDURE

5.1 Loading System

Selection of the loading method is one of the most important parts of

an experimental model study. The success of any such study depends upon

the precision with which the desired loading can be produced.

Various methods have been employed in experimental structural research

to simulate uniform loading. The most commonly used methods are: dead

weight loading system, vacuum air pressure system, and discrete point load

systems. The most popular type is the discrete point loading system, which

is commonly used to simulate the effect of uniform loading.

Hydraulic cylinders are widely employed to deliver load to discrete

load points. Hydraulic cylinders can be used to transmit load directly to

load points or indirectly by means of a so called "whiffle tree" lever

system. A discrete point loading system, a whiffle tree system was

employed in this study.

5.1.1 Description of the System

The loading system designed to apply load to the model consisted

of whiffle trees, hydraulic rams, a pump equipped with a pressure

gage, pressure hoses and loading frame. The loading frame consisted

of a steel girder and the concrete end beams (35). The whiffle tree

consisted of channels and angles, that added up to one hundred

eighty-four bars which were cut to the desired length. Each two bars

were welded back to back with a gap provided in between for the

threaded rods to pass through (see Fig. 4.6). Three small steel

plates with a hole in each were welded in predetermined locations to

the two pieces. Ninety-two simple beams were manufactured in five
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different cross sections, thirty-two pieces of the first and the

second type, sixteen pieces of the third, eight pieces of the fourth

and four pieces of the fifth type were made. These ninety-two pieces

are the main simple beams of the whiffle-tree which will pull at

ninety-six discrete points on the shell.

The whiffle-tree bars were installed in a way to assure the

loading was evenly distributed, i.e., layer by layer. At first the

loading points were installed, then the first layer, second layer and

third layer. The pressure hoses were connected to each other and

then to the pump. The rams were attached to the girder at their

location. Finally the fourth and fifth layers of the whiffle-tree

were installed and the rams were hooked to the hoses as shown in

Fig. 5.3. The whiffle-tree connected to the hydraulic rams. These

four hydraulic rams were connected to the pump.

The whiffle tree bars were connected to the shell with threaded

rods at ninety-six discrete load points. At each point a bearing

plate and rubber bearing pad were used to assure the distribution of

the loads to the shell surface as described in Ref. (28) and shown in

Fig. 5.1. The four hydraulic rams were attached to a girder which was

bolted to the end reinforced concrete beams. All hydraulic rams and

the pump had an allowable pressure of 10,000 psi (68,950 KPa). Each

ram had a 30 ton (27,216 Kg) capacity and a 6 in. (152.4 mm) stroke.

5.1.2 Whiffle Tree Loading System and Instrumentation

The whiffle tree loading system was made up of several layers of

simple beams interconnected by bolts and threaded rods. The top layer

of the system was connected by threaded rods to the load points on the

model surface at ninety-six discrete load points. The schematic



drawing of the whiff le-tree system is shown in Fig. 5.2. Each group

of twenty-four point loads was connected to whiffle-tree bars and one

hydraulic ram. The single load was created by a hydraulic ram placed

between the lowest level of the whiffle-tree system and the girder.

The hydraulic fluid in the ram was supplied through high pressure

hoses connecting the rams to the pump. Figure 5.3 shows the layout of

the loading system. Thirty channels of electrical resistance strain

gages were mounted on various whiffle tree bars to convert these into

load cells. All channels were connected to an Optilog data acquisition

system, which was used to monitor strain. The strain gage layout is

shown in Fig. 5.4 and the whiffle-tree arrangement is pictured in Fig.

5.5.

5.2 Testing Procedure

The cylinder compressive strength test was conducted for four sets of

cylinders. Eight 3 in. x 6 in. (76.2 mm x 152.4 mm) cylinders were tested,

averaging 3850 psi (26.55 MPa), 4390 psi (30.27 MPa), 5180 psi (35.72 MPa)

and 6080 psi (41.922 MPa). The intervals of testing corresponding to these

were seven days, 15 days, 28 days, and 62 days. Another 36 small cylinders

1 in. x 2 in. (25.4 mm x 50.8 mm) were tested with an average of 5000 psi

(34.47 MPa).

A split-cylinder test was performed on four cylinders with an average

result of 430 psi(2.97 MPa). For more information on these tests and the

reinforcement tests, the reader is referred to Ref. (35).

It was mentioned earlier that four jacks were connected to one pump

equipped with a pressure gage. It was necessary for the pressure vs. load

to be determined for each hydraulic ram. For the jack calibration, each

one was connected to the pump along with a pressure gage. The jack was
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placed in a compression machine to measure direct force. The jack was

raised by the pump until the ram touched the compression machine head. Then

the indicators of the load gage on the machine and the pressure gage on the

pump started to move. The reading was taken in intervals from the pressure

gage and the corresponding reading on the machine. From these data the load

to be delivered to the model structure was determined. The data can be

found in the next chapter. Tension tests were performed on a typical

1/2 in. x 1/2 in. (12.7 mm x 12.7 mm) bar that was used for the strain gages

on the whiffle tree system. Stress-strain curves to failure were plotted

using the Riehle tension machine. The modulus of elasticity, yield point

and ultimate strength were calculated and are shown in Fig. 6.6.

Three separate tests were conducted on the model. In the first test

the model was loaded in increments up to the service load level. This test

was done three times with data on strain and deflection recorded. The main

reason for this test was to stabilize the strain gages and loading system.

The maximum live load reached was 88.9 psf (4.3 KPa ) . There were no cracks

observed during this test.

Before the second test was performed a visual inspection for cracking

was done, and none were found. This test was intended to be conducted until

the model failed. The load was applied to the model by the hydraulic jacks.

The jacks were activated by the pump on increments of 100 psi (0.69 KPa) as

in the previous test; at each load level, the load was held constant until

the corresponding data were collected. The data consisted of deflections,

strains, and crack records. Deflections measured by dial gages were re-

corded manually. The strains were taken by the Optilog and were printed.

Cracking was recorded at each level and marked by ink to show their loca-

tions and extent. The loading continued to a load beyond that which caused

the top plate to buckle, but less than the failure load. A connection of
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the whiffle tree which was not correctly made failed, then the test was

stopped.

The third test was conducted, but for this test it was noticed that

cracks and permanent deformation were present from the start of the test.

The test was performed without whiffle tree rods which contained strain

gages

.

The same steps were followed as in the second test. This time only

one increment more was achieved than in the second test to reach 228 psf

(10.92 KPa) total load. When pumping for the next increment, the model

failed to take any more load and the pressure at the pump dropped suddenly.

Descriptions of the failure modes are presented with other detailed data in

Ref. (35).
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VI. TEST RESULTS AND DISCUSSION

6.1 Surface Thickness Values and Contours

Contour lines of thickness for each plate are given in Fig. 6.1 in

which it is seen that for the major portion of each plate the thickness did

not deviate by more than 0.03 in. (0.76 mm) in the side plates, or 4

percent and by 0.01 in. (0.25 mm) in the top plate or 1.7 percent.

In the top plate, local deviations occurred at the load points due to

the problem with the screed around the tubes through the plate. However,

these were quite localized and should not affect the structural response

any more than the local load bearing would.

6.2 Quality Control of Cylinders

The 1 in. x 2 in. (25.4 mm x 50.8 mm) cylinders are about the smallest

that can be tested. Cylinders that are 3 in. x 6 in. (76.2 mm x 152.4 mm)

in diameter can be successfully tested. Plexiglass tubes were used for the

1 in. x 2 in. (25.4 mm x 50.8 mm) cylinders and cardboard molds were used

for the 3 in. x 6 in. (76.2 mm x 152.4 mm) cylinders. The average strength

at sixty-two days, using all data for 3 in. x 6 in. (76.2 mm x 152.4 mm)

cylinders, was found to be 6294 psi (43.39 MPa).

Tables 6.2 and 6.3 show the test results for the cylinders. Figures

6.2 and 6.3 show the compressive stress-strain curves for the micro-

concrete tested at sixty-two days. The average Young's modulus is 3.38 x

10 psi (23.31 GPa) and the average ultimate strain £ is 0.0031 in. /in.
o

(mm). The data are shown in Table 6.4.
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6.3 Ram Calibration Tests

The jacking forces corresponding to readings of the pressure gage are

shown in Table 6.1. These relations were used to calculate the force

applied on the model during testing, i.e., to interpret the reading on the

pressure gage on the pump as force per each ram. Every increment of load-

ing was conducted based on the force shown in the table for all rams.

6.4 First Test

The first test conducted on the model consisted of three cycles of

loading. This was done to monitor and record the behavior of the model up

to the service load. The deflection and the strain were recorded. How-

ever, the objective of this test, as was mentioned before, was to exercise

the strain gages and the loading system. The deflection response of the

model in the first cycle and the second cycle revealed an inconsistent

pattern. Figure 6.4 shows the deflection response of the model along a

longitudinal line at the midspan due to cycling loading. It can be seen

from this figure in the third cycle that the deflection due to this loading

has stabilized. Figure 6.5 shows the transverse deflections of the midspan

cross section of the top plate. These deflections show an elastic behavior.

Deflection response of the edge beam at midspan showed very good agreement

with the elastic theory during the three cycles, as documented in Ref. (35).

6.5 Second Test

The loading was conducted in 100 psi (0.69 KPa ) increments until

700 psi (4.83 MPa) was read on the gage at the pump. The corresponding uni-

formly distributed load was interpreted from the jack calibration table and

the area of the horizontal projection of the model which has approximately

98 sq. ft. (9.1 sq. m). The corresponding incremental surface loadings were
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25.78 lb./sq. ft. (1.23 KPa) as the first increment and the last was

199 lb./sq. ft. (9.53 KPa).

6.6 Response of the Whiffle Tree

The whiffle tree loading system was made up of several layers of simple

beams interconnected by threaded rods and bolts. This loading system was

used to simulate a uniform live load on the model, as mentioned earlier.

6.6.1 Strains

Strain gages were mounted on a 1/2 in. x 1/2 in. (12.7 mm x

12.7 mm) bar which is interconnected to the whiffle tree bars. The

stress-strain curve for this bar and the physical properties are shown

in Fig. 6.6.

Strains on 15 whiffle tree bars were recorded. Their locations

are given in Fig. 5.4. Strain gages 31 to 38 were placed on rods going

directly through the plate surface close to the support. Strain gages

39 to 46 were placed near midspan in the same manner. Figures 6.7

through 6.12 show the measured load versus theoretical load for rods on

the whiffle tree going directly through the inclined plate surface near

the support and near the midspan.

Calculations of P , P and average readings of the gages
cX p 11160 «

are tabulated in Appendix C.

These figures clearly illustrate that the average readings agree

well with theory. From the graph it is seen that the effect of

deformation influenced the mid-span rod greatly, giving it fairly large

bending moment. This can be seen in Figs. 6.8, 6.10 and 6.12.

Figures 6.13 and 6.14 show theoretical load versus experimental load

for rods not going directly through the angle plate surfaces. For

the gages near the support (gages 47 and 48) the average readings
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agree well with theoretical. But for the gages near the mid-span

(gages 49 and 50), the average readings deviate from theoretical. This

may be due to eccentricity of the middle rod on the whiffle tree's bar

which gave a big jump in the strain. Figures 6.15 and 6.16 show the

agreement of the average experimental readings with theoretical for

rods at mid-span, not going directly through the top plate surface

(gages 59 and 60).

6.7 Elastic Response of the Model

It is assumed that under the service load the structural behavior is

linearly elastic. The response of the model is discussed.

6.7.1 Deflections

At each level of load, deflections were recorded from which the

deflection profiles along the center of top plate and transverse to

the top plate at midspan were obtained. The deflection patterns, as

shown in Figs. 6.17 and 6.18 display stability and consistency of

response up to 110 lb./sq. ft. (5.27 KPa ) . The model exhibited linear

response up to this point. After that, a sudden increase in deflection

can be seen at dial gage numbers, keeping the same wave form that

appeared from the previous load increment. For more details on buck-

ling the reader is referred to Ref. (35).

6.7.2 Strains

Longitudinal strain gage response at mid-span of the top plate is

shown in Fig. 6.19. This figure shows a linear relationship of stress

versus load up to 75 lb./sq. ft. (3.59 KPa), then both strains de-

viated. As it was shown in Ref. (35), all strains are approximately

linear up to a certain loading level, then they start to deviate.
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Thus, it is concluded that elastic analysis is adequate up to these

load levels, which are within the service load range.

6.8 Discussion of Edge Beam Results

The forces transferred from the plates to the edge beams are shown in

Appendix B, in the section of development of equations for left edge beam

and Fig. B.2.

The equations for beam internal tractions were developed using the

trapezoidal rule. The loading is expressed as a trigonometric series in the

longitudinal direction. Using this approach the internal forces on the edge

beam were determined in terms of equations. A subroutine was written to

perform this calculation. The shear, moment, axial forces and torsion for

edge beams were calculated and the printout of the computer is listed in

Appendix B. The results are plotted and they show the same numerical values

for both edge beams as it is expected. The graphs of the results are shown

in Appendix B.

An output from the computer showing the results of the model including

the effect of the edge beam in the analysis is listed in Appendix B. From

this output we can see that the effect of the edge beam in the analysis

reduces the moment capacity in the transverse direction compared to the

analysis that did not include the effect of the edge beam. This comparison

is tabulated in Table B.l. The table reflects the symmetrical effect in the

plates and influence of edge beam stiffness on traction distribution.

From Table B.l it is seen that the transvere moment, M is decreased
y

by including the edge beam in the analysis. The stresses at midspan of the

top plate are reduced too. Moreover, it is noticed that all tractions are

uniformly distributed. However, M stays almost the same in both analyses.

The computer output for edge beams is listed in Appendix B. The

results of edge beam analyses are plotted in Figs. B.3-B.12. It is seen
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from Figs. B.3 and B.8 the shear forces are equal for left and right edge

beams as it was expected, due to symmetrical shape of the model and uniform

load. The edge beam bending moment, M has the same numerical values with

opposite sign according to the coordinate system established in Fig. B.2.

The torsion for both edge beams as shown in Figs. B.5 and B.10 display

equality with opposite sign due to the rotations of both edge beams toward

each other.

The edge beam axial forces N are equal for both edge beams and they

are in tension as expected. They have maximum value at midspan and zero

at end diaphragms. The results are shown in Figs. B.6 and B.ll. The

bending moments, M for left and right edge beams exhibit the same

magnitudes and sign as shown in Figs. B.7 and B.12.
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Table 6.1 Jack Calibrations

No. Pressure
psi

Ram #1,

lb -*
2151

Ram #2,

lb -*

2576

Ram #3,

l fe -*
2328

Ram #4,
lb-*

2346

Average
lb.

1 100 600 700 600 600 625

2 200 1400 1200 1500 1500 1400

3 300 2100 1900 2100 2100 2050

4 400 2700 2600 2800 2600 2675

5 500 3500 300 3400 3200 3275

6 600 4200 4400 4100 4100 4200

7 700 4900 4900 4700 4800 4825

1 psi

1 lb

= 6.89 kPa
= 4.45 N

Serial number of the ram.



Table 6.2 3" x 6" (76.2 mm x 152.4 mm) Concrete Cylinders,
Compression Test Results
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Age, Compression force Stress, f
Cylinder No. days lb.

c
psi

11 7 34,800 4923
21 7 20,000 2829
31 7 29,000 4102
41 7 31,000 4386
51 7 24,200 3424
61 7 24,100 3409
71 7 24,200 3424
81 7 30,600 4329

12 15 35,000 4952
22 15 25,000 3537
32 15 32,000 4527
42 15 32,000 4527
52 15 29,000 4102
62 15 35,000 4952
72 15 26,000 3678
82 15 34,200 4838

14 28 39,000 5517
24 28 45,000 6366
34 28 35,000 4951
44 28 36,000 5093
54 28 34,000 4810
64 28 35,000 4951
74 28 34,000 4810
84 28 35,200 4980

13 62 40,300 5701
23 62 50,700 7173
33 62 41,000 5800
43 62 42,000 5942
53 62 45,000 6366
63 62 47,000 6649
73 62 36,500 5164
83 62 41,400 5857

15 62 49,000 6932
25 62 53,000 7498
65 62 44,000 6225
85 62 44,000 6225

1 lb

1 psi

4.448 N

6.895 kPa
Average = 6294 psi (43.39 MPa

)

at 62 days
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Table 6.3 1" x 2" (25.4 mm x 50.8 mm) Concrete
Cylinders, Compressive Test Results

No. Compressive No. Compressive
of Force of Force

Tests (lb.) Tests (lb.)

1 3620 18 3340

2 4620 19 4920

3 4600 20 3430

4 3000 21 3070

5 3200 22 3110

6 4000 23 2880

7 3900 24 4080

8 3450 25 3390

9 2850 26 4280

10 2900 27 2650

11 2600 28 3670

12 3820 29 5100

13 3280 30 4270

14 3490 31 3600

15 3790 32 5300

16 4250 33 3920

17 3170

Average strength, 4689 psi
Testing age, 62 days

1 psi = 6.895 kPa
1 lb. = 4.448 N
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VII. SUMMARY AND CONCLUSIONS

7.1 Summary

The objective of this study was to investigate analytically and

experimentally the structural behavior of a reinforced concrete folded

plate model with edge beams. An "exact" elastic method was selected as

the method of analysis for use in this research. A brief review of the

"exact" theory has been presented. The analytical solutions were obtained

through the use of a computer program developed by Swartz (32) to handle

the mathematical formulation of the "exact" elastic method of analysis.

Two subroutines were added to the main program to account for analysis of

edge beams. The coefficients for edge beams stiffness and stresses on edge

beams were calculated. The focal point of this study was to determine the

actual performance of the whiffle tree loading system and expected distribu-

tion of loads to the model.

The model was tested three times and the performance of the model

under the service load was as expected by the analysis.

Loads were applied through a whiffle tree loading system of simple

beams interconnected by bolts and threaded rods to load points on the

model. Strain gages were mounted on the whiffle tree bars, which were used

to calculate forces in the whiffle tree delivered to the model. High

accuracy was achieved in controlling the geometry of the model.

Measured deflections and strains were presented.
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7.2 Conclusions

The following conclusions were derived from this study:

1. The whiffle tree system distributed the loads to the shell

in the predicted manner.

2. By including edge beams in the analysis the capacity of M is

reduced in the range of 1.2 percent to 31 percent lower than in the method

of analysis considered in Ref. (35).

3. The displacements remained the same in both analyses.

4. The membrane forces remained almost the same in both analyses.

5. Reliable results are obtained by including edge beams in the

analysis.

7.3 Recommendations

1. There is a need for further experimental studies of reinforced

concrete folded plate models having different span to height ratios.

2. Unsymmetrical loading should be performed to study the behavior of

these structures.

3. Structural models should be well reinforced for transverse bending

effects to prevent failure in this direction.

4. It was noticed that the girder of the loading system was deflected

due to applied loads, so it is recommended to increase its moment of

inertia for future use.
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APPENDIX A

NOTATION
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A - Cross-sectional area of a beam

a = Span length of the model

b = Plate width

d - Depth of edge beam

E = Modulus of elasticity for concrete
c

E Modulus of elasticity for steel

F„ Fixed end forces

f = Ultimate compressive stress in concrete

f
u , t

= Ultimate strength of steel

f = Yield stress of steel
y

G = Shearing modulus of elasticity

h = Plate thickness

i = Subscript referring to a variable number

j = Subscript referring to a variable number or joint j

K = Stiffness matrix

m - Mode number in Fourier Series

M
x >

M
y

= Bending moment per unit length in the x- and y-directions

,

respectively

N_.N >N = Internal in-plane, normal and shear forcesA y xy

P • Load normal to the plate

P
t £

Load tangential to the plate

T * Torque or torsional moment

t - Beam width

u
£

Displacement in the x-direction of the i plate

v
i

" Displacement in the y-direction of the i'
h

plate

w
£

= Normal displacement in the i plate

A » Edge displacement

£>1 = Global displacements in the plane of cross-section
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U = Poisson's ratio

e = Ultimate strain in concrete

"
" Rotational displacement

E
y

= Yield strain

. • Angle of inclination from vertical of i
th

plate

i ) Describes a vector

I i
= Describes a matrix
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APPENDIX B

EDGE BEAM ANALYSIS AND THE COMPUTER PROGRAM
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EDGE BEAM ANALYSIS

The beam to be considered is of rectangular cross section and

attached along the joint j . The ends x » and x = a are simply

supported with respect to bending and restrained from twisting. The

required joint force - joint displacement equations can be obtained by

taking consistent Fourier series developments for the edge displacements

and edge forces (17). If we first consider edge "j" to be the contact-

ing edge, as shown in Fig. B.l, then the expressions for the forces may

be written as follows (17)

:

3

M
j0 " HIT fc2 {[15

I"
U"- 630 |> k

! + k
2
d
2
]6. + 2dk

2
w.} sin kx

1 J J

3

v
jo

"
" %r fc4 [d9

j
+ 2w

j
] a±n ta

(B.l)

n
jo "fkT-

kJ
[
-2dkv

j
+3u

j
] sinkx

Etd
3

, 3

S
10 "

2k
- k f dkv j

" 2k,u] cos kx

If edge "n+1" is the contacting edge, then

M!lv 2 tf,c 1 «_« <,„ fe> ,. , ,2,2,M
n+l,n+2 " 48^

k {[16 f (1"°- 630 f k
l
+ k dX+l " 2dk\+l } sin kx

Et
3
d ,4

'n+l,n+2 " 24k^
k luD

n+l " iw
n+l J

2

N
n+l,n+2 ' " I7 k3 [2dkVfl + 3

"n+l ] sin ta

S
n+l,n+2 " " If

"
2

[dkVl + 2k3"
n+l ] cos ta

(B.2)
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where

k = —

2 2
EtV

"1 10G

k
2

1 +
2. 2

2Et k
5G

k
3

12

- 1 +

E

2 2
Ed k
10G

2C1-HJ)

The equilibrium equations for joint j are (in global coordinates)

:

N + N
njo njk

^jO ^jk
U

S
j0

+ S jk " °

(B.3)

Equilibrium equations for edge n+1:

M
n+l,n+2

+M
n+l,n

=

8 + N
Vn,n+2 Vl-l,n " °

sn+l,n+2 Si+l,n

S
n+l,n+2

+ S
n+l,n * °

(B.4)

These equations modify the first four and last four equations

of the shell stiffness matrix by superimposing to them the matrix

equations B.7b and B.8b.
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Beam A

The coefficients for edge beam (A) stiffness can be determined

'11 -8sf
"
2

[16 f (1-630 |) k1+ k
2
d
2

]

3 2

k = 2 •
Et d

k
4

12 * 48kj
K

3 2
Et

J
cT , 4

k
21 24k

x

k - -2 Sfl • k
4

K
22 * 24kj

k

k - -2k
4

• 2£*L
33

ZK
6k

2

. = 3k
3

• f"i34 6k,

k - k3
. m£:

43
K

2k
2

k - -2k
3

• Bl k
2

*44 Zk
2k^

k

(B.5)
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Beam B

In the same manner we can write the coefficients for edge beam (B)

stiffness as:

* 3J
"h-3.im

=
far fc2 [16 1 (1- 630 !3 k

i
+ kV]

3 2

V3.N-2 48k
t

K

. .4 Et
3
d
2

TJ-2.N-3 " 24kj

v . _2 . M!l k
4

TJ-2.N-2 24k
L

, , Etd
3

4

Vl,N-l " 6k
2

K

V:,k
- 3 -if k3

t . > »d k
3

Tl.N-l 2k
2

K

*BJS " "2k
3

' 2k"
'

Etd ,_2

2

(B.6)

where k, kj, k
2
and k, are the same as defined in (B.2) and N = 4 (n+1)

.



9S

Beam A

M
io

JO

"jo

s
jo

k k
11

K
12

k
21

k
22

In global coordinates:

M
30

n
J0

'30

JO

'll
k
12

k
21

k
22

Beam B

M
n+1 ,n+2

V
n+1 ,n+2

n+1 ,n+2

n+1 ,ii+2

3,3

4.3

3,3

° ° k
4,3

^-3^-3 ^-3^-2

^-2 ,N-3 ^-2 ,N-2

3,4

4,4

5.
i

"jo

*J0

U.
J

3,4

4,4

V

~ho

TJ-l.N-1 ''n-I.N

h

(B.7a)

(B.7b)

n+1

n+l,n+2

n+1 ,n+2

n+1

(B.8a)
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In global coordinates:

^-3,11-3 ^-3 ,N-2 ° °

^.H-a; ^1-2^-2 ° °

°
^l-l.N-l ^J-l.N

° ° Vn-1 Vn

n+1 ,n+2

'n+l,n+2

Vl-1 ,n+2

99

n+1

'n+l,n+2

^n+1 ,n+2

n+1

(B.8b)

The development of the Internal tractions for each edge beam

subjected to connection tractions from the appropriate plate is presented

in the next pages. This is followed by a description of a computer

program with data and results for the model structure. Final results

are displayed in graphs.
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Equation Development for
Left Edge Beam

Ny
x

Sin * 3IDlNy:<

xy

P
/

Ny
L

Cos (^ + V
x

Sin if - F

Ny
x

Sin *
x
+ Vj Cos $, - F

2

Nxy

9:

— «1
— f-

— f.

T «)
ndx + i
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1) Assume Fj -HjTj Cos <t>.
+ V, Sin $,

F. =-Ny Cos <j> + V Sin

A
ll * 2

(f
ll

+ f
i2

)(Ax)

NDx
V

t
= R - I A

lj'

A
12

- f (f
12

+f
13

)(Ax)

A
13

=
7 (f

13
+ f

i4
>Wx)

A14=2 (f
14
+f

15
)(Ax)

p^r
|

A
12

|

A
13

v i 4
Tv

A
U

=
I (f

n
+ f

U+ i
)(Ax)

where Ax
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V
2 -v" A

ii

V
3 -v-*u

V
4
-v

3
-*u

V
J

=
V:L" A

J--1

where,

v
l

- R

NDx
R

J-l
4j

*n -Ji. (v
i
+ V

\2 -J* (V
2
+ V

*V3 " I ta (V
3
+ V

M
2

"
«l

+ \l

M
3

= M
2
+ A„

M4" M
3
+ \3

VVi +V
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.
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.

i

f00*^
.

'
,

f
^23

-f
2J

^21
> /*25 I • z

1

M M M ___
(<*
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.
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T0~ jr—

H

21

32
_^22

T=T +A * — - A
J ^ Sw 2 S

Bending about y-axis:

NDx
R * V

2R " " * A
2jj-1

. A
21

V
2R

=

2

R

Vj 2R M M + A

V +A
21'2 '1

V = V + A.
22

M = M + A
j-i

V = V + A„
7
J

yj-l
2
j-l

A,„, = 4 (V + V )Ax
vyj 2

7l y2

vyj 2 y. y.
+1

>



4) F. - N
4 xy

107

f4f
f42- ""^3^

B •

A
41

Ax

— A
42

Ax

— A
43

Ax

x "

. 2 4

$:

R - (End diaphragm conditions)

A -
7 Ax Cf, +f

A
)

J J J+l

\z JlL

(r *
M„ = (End diaphragm conditions)

M « M

\ ' \ - A
41 * I

. . M » M - - * A
z

i
z

- i 2 4. ,

J J-l j-l

N = -R + A.
,x, x 41

N • N + A,,x, X- 42

.. N - N + A,x
j

x
j-i Vi

(Due to Case 1)

Vtot.1)
= M

j
* M

j-1
+ \

j-l

J-l j-l

(Due to Case 4)
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Summary of Equations

Left Edge Beam

V. = V.
,

- A.
,

J j-1 j-1

M,,fnf ,, - H. . + A. . , + H . , -4 * A.. ,2 (total) j-1 vj-1 zj-1 2 4j-l

T=T +A * — - A
J j-1 2j-1 2

A
3j-1

M . = M . , + A . ,
yj yj-i vyj-i

N . = N . , + A. . ,xj xj-1 4j-1

Right Edge Beam

V. = V. , + A. .

3 J-1 J-1

Stj/..- 1, M . . + A . , + M . , + ^ * A, . ,2(total) j-1 vj-1 zj-1 2 4j-l

T=T -A * — + AL

j \}-l
A
2j-1 2

+ A
3j

yj yj-i vj-i

S . - H . , - A, . ,xj xj-1 4j-l
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Computer Program

The program was written to analyze end supported folded plate struc-

tures with a maximum number of ten plates. The computer program is based

on the exact method of analysis which is presented briefly in Chapter III.

Young's modulus and Poisson's ratio and density are assumed to be constant.

Input Data

Card No. 1

READ(IR,1)MAXI,IP,IL,NP,NDX,NDY,AL,YM,PR,GAM,IEB
1 FORMAT(6I5,4D10.3,I5)

where

MAXI maximum mode number in Fourier Series "1,3,5 and normally 7."
The number ends in the 5th column of the card.

IP = 1, if the intermediate output is needed, otherwise IP » 0. The
number ends in the 10th column of the card.

IL 0, if uniform load in the horizontal projection is to be input
and cards 2 and 3 are read, otherwise = 1 , if plate loads
should be calculated and card 4 is read. The number ends in
the 15th column.

NP number of plates and ends in the 20th column.

NDX = (number of output points - 1 ) in the X direction and ends in
the 25th column.

NDY = (number of output points - 1 ) in the Y direction and ends in
the 30th column.

AL length of structure in inches and ends in the 40th column.

YM = Young's Modulus which is in psi and ends in the 50th column.

PR Poisson's ratio and ends in the 60th column.

GAM = Specific weight of plate materials which is in lb./cu. in. and
ends in the 70th column.

IEB =1, if there are edge beams, otherwise IEB = 0. The number ends
in the 5th column.

If IL = 0, read card two and three.
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Card No. 2

READ(IR,5)QL
5 FORMATC5D10.3)

where

QL load on horizontal projection and ends in the 10th column and the
units are in psi.

Card No. 3

READ(IR,5)B(I),H(I),PH(I)
5 FORMAK5D10.3)

where

B(I) = width of the i plate in inches, and it ends in the 10th
column.

H(I) = thickness of Che i plate in inches, and it ends in the 20th
col umn

.

PH(I) = angle in degrees between the i plate and the vertical. It
is measured clockwise and ends in the 30th column.

This completes the data input if IL = 0.

For every plate one card is needed.

Card No. 4

If IL = 1, then this card is read.

READ(IR,5)B(I),H(I),PHU),PN(I),PT(I)
5 FORMATC5D10.3)

where B( I ) ,H(I),PH(I) are as in card 3.

PN(I) = normal load on the i plate. It ends in the 40th column,
and the units are in psi.

PT(I) = tangential load on the i plate. It ends in the 50th col
and the units are in psi.

This card is read for each plate.

This completes the data input, if thee is no edge beam.

umn

.
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If IEB 1, then this card is read.

READ(IR,200)DB,TB,GB
2000 FORMAT (3D10. 3)

where

DB = beam depth in inches, and it ends in the 10th column.

TB = beam thickness in inches, and it ends in the 20th column.

GB modulus of rigidity in psi and it ends in the 30th column.

Output

The forces and deflections for the structure a>-e printed out which are

N„> N„> N„„> M„> M„> v
>
w and 9 in the intervals specified by the inpt NDXx y xy x y

and NDY for every plate. The eight edge displacements in each mode for

each plate and the coefficients for edge beam stiffness are printed out.

The units for N , N , N are in lb. per inch, and the units for Mx y xy x

and M are in lb. -in. per inch, while w and v are in inches, and 9 in

degrees

.

Enclosed is a printout of the results for the model using the edge

beam modifications.
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Left Edge Beam

una
1 DOUBLE PRECISION FJ 151] , A. V I 5 II .Ml 51 1 . T I 51 I ,F2I 51 1 .D.PH

i:»!'!!:Nm!!S!
l,'"' s"' ," so ' ," ,sl"' M,so, ' Miso1

2 DO 50 I -| ,51
3 Tl I J-Fl 1 1 I-F2I I)-F3II|.F4III«0.
* 50 CONTINUE
5 READIS, 51A.D.PH.NDX
6 PH'PH>3.14159265359/180.
1 5 FURHATI3010.3.I5I
8 HR1TEI6.10|A,D.PH.NDX
9 10 FORMAT!' ',3010.3. 151
10 NDX1>NDX»|

Ji RE40(5,6IINYI II.V1III.F3IIJ.F4I ll,I«l,NOXU
12 DO 110 J.l.NDXI
13 110 KRITEI6,HINY(JJ,V1IJI.F3IJ),F41JI
1« 11 FORMAT!' •,4010.31
15 6 FURHAT UI3X.012.SII

IT STOP
EB"FU,C ' ,'H ' l"a,Nr,V1,f3 ' F*' F1 > F2 '»l>«'43.«*.AV,TI

IB END

19 SUDROUTINE E8EAFI A. D,PH,NDX,Nr, VI , F3,F4,F1 , F2. Al , A2, A3. A4.AV Tl20 DOUBLE PRECISION NY .511 ,F3I 511, A.O. PH.F4I 5 ! I .MY I 51 1 ,F 1 51 !.
2F2I5I),A1(50I.A2I50I.A3I50I,A4I50I,TI51I.MI5II.V2I51I

2i ^J^»«'W«».«tw.n««u»wifflS»!StiMi rfaitKi
22 XND X«ND X

23 DELTAX*A/t2*NDX]
24 DO 100 J-l.NDXL
?
5 F 1IJI-I-NTIJI»OCOSIPHI»V1IJI»OSIN(PHII

26 100 WRITEI6.7I J.F1IJ)
27 ' FORHATI •OF1I',12,.|..,012.5|
28 00 150 J-1.NOX1
29 150 A1(JI«.5»(F1(JI-.F1IJ»1))»0ELTAX

C CALCULATION OF VCRTICAL FORCE i JOINT 1
3 Vdl.O.
31 VI 01-0.
32 DO 200 J-l.NDX
33 VI1).VIII«A1(JJ
34 200 CONTINUE

35 ° TOx5"™»r °F VE" ,CAL SHE" F°»" » "HER JOINTS
36 DO 300 J*2.N0X1
37 300 VIJI-VIJ-ll-AllJ-ll

C TO CALCULATE AREAS OF SHEAR
3" DO 400 J'l.NOXl
39 AVI JI».5»0ELTAX»I V(JI»V(J»1IJ
40 400 CONTINUE

C CALCULATE MOMENTS
*1 DO 500 J»2,N0X1
*2 HI 11-0.
*3 Ml JI.MI J-I).AV(J-l)
44 500 CONTINUE
45 TTY-0.0
*» DO 600 J.l.NDXI
*' F2( JI.NYI JI»DSINIPHI«VIIJI»0C0SIPHI
48 600 URITEI6,8U,F2IJI
49 s FORMATI'0F2l'.I2,.|.., olJ .5,
50 DO 650 J-1.N0X1
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Right Edge Beam

uue
BOWait PRECISION FII51I,A.VI5U.MI5II.TI51I.F?I511 D ph

J DO 50 1-1,51
II ll-Fll|).F2|l|.F3|l|.F«l!l-0.

* 50 CONTINUE
5 «EACI5.5IA,D,PH,N0X
6 PH.FIWJ. 14159265359/180.
I 5 FORHAH 3010.3, 151

WUTEI6.10I A.D.PH.NDX
' 10 FORMATI- -.3010.3,151

'" NDXI>NDX»l

» 3
i
?,

l

!
,

JJKS«,M,,,,M,,,,M, "'w'"IB '

}5 6 FORMAT I4I3X.D12.5II

11 "op
EB"FU,D -'>H ' N0J< -''1'-"'"'':*.':l-F2.*l.«.«3.A*,AV.T )

1° ENO

SUDROUTINE EBEAFIA, 0,PH,N0X,NY. VI FT r» ., r, ,, ., „
2F2

I

51 1, All 501, A2I 50 I, A3 1501 ,AM50I .115 1 1 N { IV. L,,
" 5"'

21
" XNOX'NOX

H OELIAX-A/IJ.NDXI
2 * 00 100 J-l.NOXl

" ioowRnEu;7i"j!F
,

?"!
,PHI *VUJ '* DS "" PHn

»
,

ooTo^,:ndx,
2,,, - , -° 12 - 5 '

« 150 A1(J|..5.(F1IJ|.F1I J»III«DELTAX

30 vm""'"*
° F VERr '"L FDR" s joint 1

31 VI 8 1«0.

JJ 00 200 J. l.NOX
33 VIll-VIU-AllJ)
34 200 CONTINUE

35 ° SSi^NOx'ir °
F VE""" L SHE" F°"CE S 0rHE » JOINTS

3* DO 300 J-2.N0X1
37 300 VIJI.VIJ-ll.AHJ-ll

C TO CALCULATE AREAS CF SHEAR3> DO 400 J-1.NDX1
AVIJ|..5«DELTAX»IVIJ|.VIJ*1||

40 400 CONTINUE
C CALCULATE HOHENTSI DO 500 J-2.NDX1

*' HI 11-0.

Jf
HU|.M(J-1|, 1V (J-1|" 500 CONTINUE

*' VT-0.0
** 00 600 J-1.NDX1

t! «o
F

.RUE,6: a u:^!
f

j!
p,"-" ,j,,D"s "'"'

50
8

5StS*?T!ai.,fcM
--M-"
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Left Edge Beam

f*---^ ft^^-^.^^cn
00

^"•••^^ CO

m
H 1

Fig. B.3 Shear Diagram (lb.)
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Left Edge Beam

Fig. B.4 Edge Beam Bending Moment About y-axis, M (lb. -in.)

Fig. B.5 Edge Beam Torsion, T (lb.-in.)
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Left Edge Beam

Fig. B.6 Edge Beam Axial Force, N (lb.)

Fig. B.7 Edge Beam Bending Moment About z-axis, M (lb. -in.)



Right Edge Beam
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Fig. B.8 Shear Diagram (lb.)



Right Edge Beam

Fig. B.9 Edge Beam Bending Moment About y-axis, M (lb. -in.)
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Fig. B.10 Edge Beam Torsion, T (lb. -in.)



138

Right Edge Beam

Fig. B.ll Edge Beam Axial Force, N (lb.)

Fig. B.12 Edge Beam Bending Moment About z-axis, M (lb. -in.)
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APPENDIX C

Experimental and Theoretical Load
Calculations and Strain Data
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Example calculation of P , :

theor

The whiffle tree layout is shown in Fig. C.l.

Assume a 1000 lb. delivered to point 9 as shown in Fig. C.2. The

load will be distributed as indicated on the figure. The R and R

values were calculated taking the average readings of the ram calibra-

tion (Table 6.1) for each load level, from which P was calcu-
theor

la ted.

Figure C.2 shows the load distribution on whiffle tree.

, 250 lb x 7.5 in _R
l 16.166 in

H6 lb

4 i£ =58!b

R
2 " 25° * TOSS " m lb

"2 _ 134T - T5TT66 " 34 lb

For gage nos. 31 through 46:

P . 625 lb
R
2

theor 1000 lb
x

4

= .625 * 33.504 = 21 lb

L

theor
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For gage nos. 47 through 50

.
625 lb

theor 1000 lb 2

P.. = 84 lb t 100 psi
theor r

For gage nos. 51 through 54:

Pn,=„,
=

- 625 x R
i

" -625 x 116tneor 1

* R,= .625 x 134.016 = 84 lb

72 lb @ 100 psi

For gage nos. 55 through 60:

R
l

P
theor

=
- 625 * T " - 625 x 58 -° = 36 lb

P
theor

= 36 lb @ 10° P8i
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Example calculation of P :

exp.

Stress is expressed as

ami
A

where is the stress, or force per unit area,

P is the applied load, and is the cross-sectional area.

From the above relation

P = oA

but a = Ee

P - AEe

The value of E was found experimentally to be:

E = 29.4 x 10
6

psi

A = 0.25 in
2

For gage nos . 31 and 32:

E = 14.1 x 10"5 in/in

P
exp

= 29-4 X 1<)6 Psi x 14a x 10
~5

in/ in x -25 in
2

P
ex

= 104 lb
"

@ 10° psi

P =96 lb. 8 200 psiexp r

P = 143 lb. @ 300 psiexp r

P = 193 lb. @ 600 psi

In the same way P was calculated for other gages for each load

increment

.
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1000 lb

1 lb = 4.45N

Fig. C.2 Load Distribution on Whiffle Tree
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Table C.l Calculated Experimental vs. Theoretical Loads
(Gages 31 and 32)

Load, psi P , lb.
exp

P
theor'

lb

100 104 21

200 96 47

300 143 69

400 132 90

500 150 110

600 193 141

Table C.2 Calculated Experimental vs. Theoretical Loads
(Gages 35 and 36)

id, psi P , lb.
exp P

th , lb
eor*

100 110 21

200 90 47

300 136 69

400 129 90

500 161 110

600 179 141
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Table C.3 Calculated Experimental vs. Theoretical Loads
(Gages 37 and 38)

id, psi P , lb.
exp

P
th

, lb.
eor

100 75 21

200 68 47

300 107 69

400 100 90

500 125 110

600 161 141

Table C.4 Calculated Experimental vs. Theoretical Loads
(Gages 41 and 42)

id, psi P , lb.
exp P

th , lb
eor

100 47 21

200 50 47

300 76 69

400 79 90

500 97 no

600 115 141
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Table C.5 Calculated Experimental vs. Theoretical Loads
(Gages 43 and 44)

Load, psi P , lb.
exp

P
th

, lb
eor

100 54 21

200 68 47

300 97 69

400 104 90

500 133 110

600 154 141

Table C.6 Calculated Experimental vs. Theoretical Loads
(Gages 45 and 46)

Load, psi P , lb.
exp P

th . lb
eor'

100 79 21

200 75 47

300 111 69

400 122 90

500 136 110

600 143 141
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Table C.7 Calculated Experimental vs. Theoretical Loads
(Gages 47 and 48)

id, psi P , lb.
exp

P
th . lb

eor

100 93 84

200 164 188

300 254 275

400 311 358

500 419 439

600 512 563

Table C.8 Calculated Experimental vs. Theoretical Loads
(Gages 49 and 50)

Load, psi P , lb.
exp theor

'

100 75 84

200 82 188

300 142 275

400 171 358

500 228 439

600 282 563



Table C.9 Calculated Experimental vs. Theoretical Loads
(Gages 57 and 58)

id, psi P , lb.
exp

P
th , lb

eor

100 75 36

200 89 81

300 139 119

400 161 155

500 204 190

600 222 243

Table CIO Calculated Experimental vs. Theoretical Loads
(Gages 59 and 60)

id, psi P , lb.
exp P

tn
, lb.

eor

100 86 36

200 86 81

300 143 119

400 165 155

500 193 190

600 229 243

149
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Zero Load Values

CHftN.031 CHftN.033 CHAN. 033 CHAN. 034 CHAN. 035 CHAN.034 CHAN. 037 CHAN. 03a

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

14 - 6 6.8 -47.7 2.9 5.8 1.9 2.9

CHAN. 039 CHAN. 040 CHAN. 041 CHAN. 042 CHAN. 043 CHAN. 044 CHAN. 045 CHAN. 04a

8TFWtW STRAIN ^ STRAIN f™ 1 * STRAIN STRAIN STRAIN STRAIN

-134.5 5.8 3.8 3.S 3.8 .9 7.7 6.8

CHAN. 047 CHAN. 048 CHAN. 049 CHAN. 050 CHAN. 051 CHAN. 052 CHAN. 053 CHAN. 054

?I=--!L-=,-fI-
AI-— f

TRA™ STRAIN STRAIN STRAIN STRAIN STRAIN

""' * ° -16.5 -2650.5 3.8 -2.9

CHAN. 055 CHAN. 056 CHAN. 057 CHAN. 058 CHAN. 059 CHAN. 060

fJ
RflI N_ _STRAIN STRAIN STRAIN STRAIN STRAIN

»' t.» "2.9 .9 .9

CHAN. 000

STRAIN

MEASUREMENT NO.
: 2 FOLDED PLATE BUCKLING RUN NCLSHELL NO.

1
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Ram Pressure = 100 psi

CHAN. 031 CHAN. 032 CHAN. 033 CHAN. 034 CHAN. 035 CHAN. 036 CHAN. 037 CHAN. 038

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

-12,6 -25.3 -17.5 -70.1 -22.4 -17.5 -12.6 -25.3

CHAN. 03? CHAN. 040 CHAN. 041 CHAN. 042 CHAN. 043 CHAN. 044 CHAN. 045 CHAN. 046

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

-175.4 -6.8 -23.3 10.7 -31.1 -24. 4 -44.8

CHAN. 047 CHAN. 048 CHAN. 049 CHAN. 050 CHAN. 051 CHAN. 052 CHAN. 053 CHAN. 054

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

80.9 33.1 12.6 -47.7 155.9 -2497.4 76 -48.7

CHAN. 055 CHAN. 056 CHAN. 057 CHAN. 058 CHAN. 059 CHAN. 060

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

-32.1 63.3 -12.6 S.7 -38 -2.9

CHAN. 000

STRAIN
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Ram Pressure = 200 psi

CHAN.03t OWN.OK CHAN. 033 JXAN.034 CHAN. 035 CHAN. 036 CHAN. 037 CHAN. 038

BTRflIN aTWftIN 8TRWIN _ STRAIN STRAIN STRAIN STRAIN STRAIN

29.2 13.6 18.5 17.5 21.4 . 10.7 14.6

CHAH.OOT CHAN. 040 CHSN.Q41 CHAN.042_ CHAN. 043 CHAN. 044 CHAN. 045 CHAN. 046

OTRftIN 3HMIN f™ fl™
===_

STRfl
f
N STRAIN STRAIN STRAIN Strain

-112.1 16.5 7.7 12.6 17.5 1.9 23.3 12.6

CHflN.047 CHAN.,048 CHAW. 049 CHAN. 050 CHAN. 051 CHAN. 052 CHAN. 053 CHAN. 054

=I==i-==„?I=-f==-==
S
I
Rfi

I- _
S
Z1111

STRAIN STRAIN STRAIN STRAW

17 " 5 7 " 7 *•* -9 32.1 -2656.3 37 -3 .a

-"^ifff
_CHAN.056^ CHAN. 057 CHAN. 058 CHAN. 059 CHAN. 060

WW* STRAIN STRAIN STRAIN STRAIN STRAIN

3.B 32.1 7.7 10.7 9.7 14.6

CHAN. 000

STRAIN

O
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Ram Pressure = 300 osi

CHAW, (gt CHAN. 032 CHAN. 033 CHAN. 034 CHAN. 035 CHAN. 036 CHAN. 037 CHAN.03B

STRAIN STRAIN BTRA1N STRAIN STRAIN STRAIN STRAIN STRAIN

2S - 2 12 - 6 I'-* -20.4 14.6 1B.S 11.6 11.6

CHAN.039 CHAN. 040 CHAN. 041 CHAN. 042 CHAN. 043 CHAN. 044 CHAN. 045 CHAN. 046

STRAIN STRAIN STRAIN 8TRAIN _ STRAIN STRAIN STRAIN STRAIN

-126.7 17.5 7.7 13.6 21.4 1.7 2S.3

-"-^:°!I__^:^L_C™N'° 4<?

__
CHAN - 050 CHAN -°=1 CHAN.052 CHAN.03S CHAN. 054

STR6IN S™™ STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

32 - J 12 - 6 5. a SB. 4 -2680.7

CHAN. 055 CHAN. 056 CHAN. 037 CHAN.05B CHAN. 059 CHAN. 060

f™fl™ S™ IN
_ STRAIN STRAIN STRAIN STRAIN

2 - 9 47 - 7 9-7 12.6 7.7 16.5

CHAN. 000

STRAIN



154

Ram Pressure = 400 psi

CHm.031 CWW.032 CHAN. 033 CHAN. 034 CHAN. 035 CHAN. 036 CHAN. 037

SI=S~= f™i= "rmm 8TOA1W __STRAIN __STRAIN STRAIN STRAIN

34 "' 19 ' 4 2=" 3 "SI-* 22-4 23.3 16 .S 17.5

CHAN.0S9 CWM.040 CWIN.041 CHW.042 CHAN.043 CHAN.044 CHAN.045 CHAN. 04a
STRAIN 8TBASW atlWIH BT^IN STRAW STRAIN

~

s7r7ih STRAIN

-153 21.4 9.7 1B.5 28.2 2.9 33.1 ,U4

CHAN.047 CHAN. 048 CHAN.049 CHAN.050 CHAN.051 CHAN.0S2 CHAN.053 CHAN. 054

STRAIN STRAIN STRAIN gTRAIN STRAIN 3TRAIN STRAIN strain"

31 - 6 17 "= 7 - 7 14.6 87.7 -2=91 76 -4.8

CHAN.08B CHAN. OS* CHAN. 057 CHAN. 058 CHAN. 059 CHAN. 060

J™*™ S™ IN STRAIN STRAIN STRAIN STRAIN

"•8 65.3 12.6

CHAN. 000

STRAIN
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Ram Pressure = 500 psi

CHAN. 031 CHAN. 032 CHAN. 033 CHAN. 034 CHAN. 035 CHAN. 036 CHAN. 037 CHAN. 038

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

34.1 16.5 25.3 -71.1 20.4 23.3 16.5 15.5

CHAN. 039 CHAN. 040 CHAN. 041 CHAN. 042 CHAN. 043 CHAN. 044 CHAN. 045 CHAN. 046

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

-1S7.1 21.4 7.7 21.4 30.2 2.7 35 12.6

CHAN. 047 CHAN.048 CHAN. 049 CHAN. 050 CHAN. 051 CHAN. 052 CHAN. 053 CHAN. 054

STmiN BTBftIN 8TOMM 8TWKN STmiH strain STRAIN ^rain~

62. j 22.4 13.6 16.5 102.3 -2934.2 S3. 7

CH^OSS CHAN. 056 CHAN. 057 CHAN. 058 CHAN. 059 CHAN. 060

8TRAIW STRAIN STRAW STRAIN strain Strain"

3-7 73" 1 14 -6 27.2 16.5 29.2

CHAN. 000

-5002.9
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Ram Pressure = 600 psi

CHAN. 031 CHAN. 032 CHAN. 033 CHAN. 034 CHAN. 035 CHAN. 036 CHAN. 037 CHAN. 038

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

36 19.4 32.1 -78.9 23.3 29.2 21.4 17.5

CHAN. 039 CHAN. 040 CHAN. 041 CHAN. 042 CHAN. 043 CHAN. 044 CHAN. 045 CHAN. 046

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

-180.3 24.3 9.7 24.3 35 5.8 37 14.6

CHAN. 047 CHAN. 048 CHAN. 049 CHAN. 050 CHAN. 051 CHAN. 052 CHAN. 053 CHAN. 054

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

7? 37 29.2 16.3 130.6 -2553 103.3

CHAN. 055 CHAN. 056 CHAN. 057 CHAN. 058 CHAN. 059 CHAN. 060

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

14.6 88.7 1B.5 33.1 19.4 34.1

CHAN. 000

STRAIN

-5002.9
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Ram Pressure = 700 psi

CHAN. 031 CHAN. 032 CHAN. 033 CHAN. 034 CHAN. 03= CHAN. 036 CHAN. 037 CHAN. 038

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

41.9 25.3 37 -B3.8 26.3 31.1 27.2 21.4

CHAN. 039 CHAN. 040 CHAN. 041 CHAN. 042 CHAN. 043 CHAN. 044 CHAN. 045 CHAN. 046

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

-196.9 27.2 9.7 29.2 42.B 4.S 37 16.5

CHAN. 047 CHAN. 048 CHAN. 049 CHAN. 050 CHAN. 051 CHAN. 052 CHAN. 053 CHAN. 054

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

90.6 48.7 37 23.3 160.8 -2901 116

CHAN. 055 CHAN. 056 CHAN. 057 CHAN. 058 CHAN. 059 CHAN. 060

STRAIN

STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN

CHAN. 000

STRAIN
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ABSTRACT

The objective of this thesis is to report analytical and experimental

results of tests on a prismatic folded plate model shell. In this research,

a long span reinforced concrete model was built and was tested three times.

The loading system was constructed. The performance of the model under the

working service load was as predicted by the analysis. The performance of

the whiffle tree was determined, where measured load versus theoretical load

is given for different rods. It was shown that the average readings of

experimental values agree well with theory. A computer program was de-

veloped to carry out the computations involved in the analytical solution of

the "exact" elastic method of analysis. Two subroutines were added to the

main program to account for analysis of edge beams. The coefficients for

edge beams stiffness and stresses on edge beams were calculated. Results

from the model which analyzed the structure as edge beams are compared with

results of analysis which treated edge beams as end plates are shown. It is

believed that considering edge beams in the analysis as edge beams gives more

reliable results than treating them as end plates in the analysis.


