/ THE UNITS OF MEASURE CONSISTENCY CHECKER
FOR
THE ENTITY-RELATIONSHIP-ATTRIBUTE REQUIREMENTS MODEL /

by
GALE LYNN METZ

B. S., University of Illinois, Urbana, 1977

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

Kansas State University
Manhattan, Kansas

1986

Approved by:

P

. 7
L/E’E//%/ / yfg}%}{

Major Professor

L.
2 b

etk

. | AL1202 bk3402

i ele Table of Contents

e :'?‘f

s P

Chapter 1: Introduction

Chapter 2: Requirements

Chapter 3: Design

Chapter 4: Implementation

Chapter 5: Extensions and conclusions
Bibliography

Appendix A: BNF Specification

Appendix B: Sample Specification

Appendix C: Data Structures

Appendix D: Example Data Structures
Appendix E: Sample Output ...

--

Appendix F: Source Code ...

14
27
K} |
33
35
39
43
48
53
57

Chapter One

Introduction

1.1 Qverview

This report describes a units of measure consistency checker. The consistency
checker has been developed as part of a group implementation project. The group project is
intended to provide a prototype of a software development environment. This portion of
the system will verify that the output units of measure specified in the prototype's
software requirements specification can be derived from the given input units of measure.

The report is organized into five chapters. The first chapter continues with a
literature review. The literature review demonstrates a need for a more formalized and au-
tomated software development environment. The chapter ends with a summary of the un-
its of measure consistency checker in relation to the literature review.

The second chapter presents a discussion of the requirements necessary for the
consistency checker to be a useful tool within the prototype environment. The chapter be-
gins with a description of the Entity - Relationship - Attribute (E-R-A) Requirements
Specification. This specification is the input used to drive the consistency checker. The
chapter continues with a discussion of the error and warning conditions flagged by the
consistency checker. Finally, the chapter concludes with a discussion of the error process-
ing and the operating environment of the units of measure consistency checker.

The next chapter presents the design of the consistency checker. It begins with
an overview of the high level design, including a hierarchy diagram of the consistency
checker’s structure. The chapter continues with a detailed description of the modules in
the consistency checker. These descriptions include the major data structures used by each
of these modules.

The fourth chapter discusses the implementation of the consistency checker. It

addresses the size of the various modules and the details of the testing used to insure their

correct operation. The chapter also includes the integration testing used to insure the
correct operation of the units of measure consistency checker.

The final chapter presents the conclusions and extensions. These extensions in-
clude design changes as well as increased capabilities.

The report is concluded with several attachments. They are a BNF description of
the E-R-A Requirements Specification language; a sample E-R-A Specification; the function
frame data structure; the i/o data frame data structure; the resolved relations frame data
structure: a sample FUNCT data file; a sample IODATA data file; a sample OTDATA data
file: a sample TDATA data file; a sample UDATA data file; sample long output data: sam-

ple short output data; and finally the code.

1.2 Large System Development

The movement today is toward larger, more complex software systems. These
larger, more complex systems are due to computers gaining an ever increasing share of the
work that has traditionally been performed manually. In addition to this traditional
work, existing facilities and systems are being integrated with new facilities and systems
to perform tasks that have never been possible before.

A small project can be defined as one in which a single individual can encompass
and resolve all of the significant issues involved in developing the system [7]. Unlike these
systems, large systems involve the efforts of many people. Even though these large sys-
tems are typically divided into smaller, more manageable pieces, they still present a
number of problems and challenges not usually found in small projects.

Large systems are typified by a long development interval in which the mass of
information involved quickly exhausts human capabilities to retain a clear picture of the
system as a whole [21]. In this environment individual tasks are designed and pro-
grammed independently of other tasks. This inability to view the system as a whole, in-

troduces problems in the areaz of communication and coordination in addition to common

programming problems. Therefore, help is needed in:
1) recording what is known and what
has been decided about the system.
2) uncovering what is unknown.
3) assessing the suitability and
completeness of the eventual
system.
4) coordinating and monitoring the

efforts of the team. [17]

These problems indicate that large system development must become a sequence
of steps, starting with a formal requirements specification document. This sequence of
steps is commonly called the software life cycle. It consists of several phases:

1) requirements

2) development

3) testing

4) user acceptance

5) operations and maintenance [6,16]

During the requirements phase, a large software system is taken from an
abstract concept or proposal to a well defined software system. This system is described
in the requirements specification document. The completed document can then be used as
a contract between the client and the software development team. Therefore, due to its
impact on the entire development cycle, the requirements phase is becoming an area of in-
creased importance and is gaining more and more attention.

Unfortunately the poor quality of real-world requirements specification docu-
ments has seriously reduced their usefulness. Many of the errors in these documents are
not found until late in the development cycle when they can seriously affect already com-~

pleted and verified software. In the worst case they may necessitate the redesign and

recoding of a significant number of modules, thus negating any previously completed tests.
Savings of up to 100:1 have been noted by finding and correcting these errors as early as
possible in the life cycle [6]. Therefore a correct requirements specification should be
created prior to beginning any actual software development. This step will ease many of
the coordination and communication problems that can develop in a large system and it
can be a major time and cost savings step in the development of a large software system.

The determination of the correctness of a requirements specification can be di-
vided into two areas. The first area is validation. Validation is the process of determining
whether the product fulfills the expectations of the user. The second area is verification.
Verification is the process of determining the internal accuracy of the document itself. [6]

There are four basic criteria for determining the correctness of the requirements
specification document in these areas. They are completeness, consistency, feasibility, and
testability. Completeness establishes that each part is present and fully developed. Con-
sistency determines that the provisions of the document do not conflict with each other.
Feasibility requires that the benefits of the specified system exceed the cost of its life cycle.
The final criteria, Testability requires that there is an economically feasible technique for
determining whether or not the developed software will satisfy the requirements
specification document.

Traditionally, verification of the requirements specification has been a manual
process, due to the use of informal English in these documents. This process can be costly
and time consuming since it may involve the cooperation of several people in different
areas. Therefore, in order to automate some of this verification process, there has been an
increased interest in formalizing the grammar and structure of the requirements
specification document. Several different models have been developed. They are briefly
described in the following sections.

1.2.1 Finite-State Machines

The Finite-State Machine model describes which outputs occur in response to

the last input received and the machine’s current internal state. This model is difficult to
use during the requirements phase since the system states have not yet been defined.
However, it can be modified to use user function states. This model can become quite com-
plex, especially in the case of the augmented-state-transition matrix used for synchroniz-
ing real time systems. Therefore, because of this complexity, the model can be very
difficult for a non-technical client to understand[10]. SADT, developed by Softech, Inc.,
uses a type of Finite - State Machine with user function states approach[26][27].
1.2.2 Stimulus-Response Sequences

The Stimulus-Response sequence model describes the system responses that
result from the user stimuli in an algorithmic English-like notation. The states in this
model correspond to the states in the finite-state machine model. The key advantage to
this model is that the description can be easily read and understood by a non-technical
client. In addition, the descriptions can be easily modularized[10].
1.2.3 General Bi-Partite Graphs

A Bi-Partite graph divides its nodes into two disjoint sets. These sets are

usually represented by different geometrically shaped nodes (ex. circle and diamond).
The nodes in these sets are then connected by arcs. These arcs may not connect two nodes
from the same set. One way of using the model to define requirements would be to assign
function states to one set and system status to the other set. The arcs can then be labeled
with stimuli[10].
1.2.4 Petri Nets

Petri Nets are typically used to define synchronization among parallel processes.
They are a type of bi-partite graph, which use circles to represent states and bars to
represent synchronization points. Circles with no entering arcs are used to indicate stimu-
li. Circles with entering arcs are considered function states, with the arcs referring to sys-
tem responses. The bars are then used to refer to points where synchronization checks

must be made. This model is also not suited to a non-technical client. However, they are

highly useful to the designer[10].
1.2.5 Input-Process-Output Sequences

The Input-Process-Output sequence model is typically used for transaction
oriented requirements. It emphasizes what data is translated into what data by what pro-
cess. This model describes the system as a disjoint set of processes with inputs and out-
puts[10]. PSL/PSA, developed at the University of Michigan, uses a type of Input - Pro-
cess - Output Sequences approach[20].
1.2.6 Requirements Nets

A Requirements Net defines the sequence of processes to be performed in
response to an external stimulus. Each requirements net corresponds to one state of a
user function. The net describes how the rsystem should respond given the stimulus and
current state of the system. This description is given in graphical form[10]. SREM,
developed by TRW, uses an artificial language (RSL) to define requirements nets type ap-

proach[25].

1.3 Summary of Project

As software systems become larger and more complex, many man hours can be
wasted designing and testing software that has been developed from incorrect
specifications. Therefore, increasing effort is being devoted to uncovering errors as early as
possible in the development cycle. Much of this effort is being directed at formalizing the
language used in the requirements specification document. This formalization will eventu-
ally allow computer aids to help ensure the correctness of the requirements specification
document.

One such formalism is the Entity - Relationship - Attribute Requirements
Specification language. It combines the Input - Process - Output sequence model, discussed
previously, with the Entity - Relationship model. developed by Peter Pin-Shan Chen to

describe data[9]. This language uses a frame oriented structure to describe a system as a set

of entities and a set of relations/attributes among those entities. According to Chen, an
entity can be defined as a "thing" which can be distinctly identified. He defines a relation-
ship as an association among these entities and an attribute as a function which maps from
an entity set or a relationship set into a value set[9]. See Appendix A for the BNF syntax
description and Appendix B for a sample specification.

This type of representation allows the specification to be machine checked for
various forms of correctness. One form of correctness verification that can be automated is
the verification of the consistency of the units of measure use in the requirements
specification document. Units of measure can be defined as a means of referring to a quan-
tity of some quality, activity, or substance[1]. By verifying that the specified output units
of measure can be obtained from the given input units of measure and the units of meas-
ure attached to any constants the function has access to, one can assume that each function

has access to all necessary data.

Chapter Two

Requirements

2.1 Overview

The definition of requirements for the units of measure consistency checker is
divided into three sections. The first section describes the input the units of measure con-
sistency checker is expected to process. The second section describes the output the con-
sistency checker is expected to produce in response to the given input, and the final chapter

describes the environment the consistency checker is expected to operate in.

2.2 Input

The units of measure consistency checker must be able to use the F-R-A Re-
quirements Specification document text as input (See Appendix A for the BNF syntax
description of the E-R-A Requirements Specification language). The specification consists
of the specification name and the specification body, followed by a mode table. The units
of measure consistency checker is only required to process the body of the E-R-A Require-
ments Specification document.

The body of the requirements specification document consists of a set of frames.
Each frame containg information describing a given entity. The entity types currently
defined in the E-R-A Specification language are: |

Activity

Periodic_function

Input - defines input relations

Qutput - defines output relations

Input_output - defines relations used as both input and output

Type - defines structure and type relations

Data - defines uses relations

Comment - defines a comment

Within the BNF syntax description for the E-R-A Requirements Specification,
entity types have been divided into two categories. These categories have been named func-
tion entity types and i/o data entity types (See the BNF definition in Appendix A). The
i/o data entity definitions further define the information provided in function definitions
or other i/o0 data definitions. The function entity types are Activity and
Periodic_function. The other entity types are i/o data entity types.

The body of each entity frame definition usually consists of information in the
form of relations between a given entity and other entities within the specification. In ad-
dition, information may also be provided in the form of attributes, which provide infor-
mation about a given entity without referring to any other entities. Each relation/attribute
is specified by a keyword. The relation/attribute keywords currently defined in the E-R-A
Specification language are:

keywords

input - defines input to a function entity

output - defines output from a function entity
required__mode

necessary__condition

occurrence

assertion

action

comment - defines a comment within an entity frame
media

structure - defines a structure

type - defines a data type

units - defines the units associated with a data item

subpart_is

subpart__of
uses - defines data a function entity
has access to

Each relation/attribute keyword in the specification has a value associated with
it. The value of a relation is either the name of the i/o data entity defining that relation, or
a combination of text and the i/o data entity name. The value of an attribute is a text
description of that value.

Each relation/attribute definition starts on a new line. If a relation/attribute
definition continues onto another line, the continuation line starts with a blank keyword
field followed by a colon. These continuations are interpreted as an “and" condition in the
relation/attribute definition. Multiple occurrences of a relation/attribute keyword
represent an “or” condition within the entity definition. For example:

Activity : namel
input :$name2$
: $name3$

input : $named$

The occurrence of $name2$ and $name3$ should be interpreted as meaning both
inputs $name2$ and $name3$ are required if that input relation is being used. The oc-
currence of another relation definition $name4$ should be interpreted as an "or” condition.
This "or” condition means that the activity is either expecting $name2$ and $name3$ as in-
put or $name4$. See Appendix B for a sample E-R-A Requirements Specification.

The E-R-A Requirements Specification document will be entered into the units
of measure consistency checker in the form of a text file. The consistency checker will at-
tempt to open the file and read it as input. The input requirements specification in this file
will have several constraints:

1) It must be syntactically correct. This assumption is

reasonable since the E-R-A Requirements Specification

10

document can be assumed to be machine generated.

2) This input document must also be consistent and complete
in terms of the entity definitions. The units of measure
consistency checker is not required to identify any of

these errors, since it is intended as part of a larger,

more complete verification system.

2.3 Output

The output requirements definition is divided into two sections. The first section describes
the output of the units of measure consistency checker during normal operation. The final
section describes the conditions that produce error and warning messages not associated

with the normal operation of the consistency checker.

2.3.1 Normal Processing

The main objective of the units of measure consistency checker is to verify that
the specified output units of measure can be obtained from the given input units of meas-
ure and any units of measure the function entity has access to through the uses relations,
or the synonym and conversion definitions. Currently there are two function entity types
which must be processed by the units of measure consistency checker. They are the Ac-
tivity and the Periodic_function entity types.

In order to determine the units of measure associated with the input. output
and uses relations defined in the function entity frames, the units of measure consistency
checker must use the i/o data entity definitions. The i/o data entity types used to resolve
the input relations are the Input and Input_output entity types. There are also two entity
types used to resolve the output relations. They are the Output and Input_output entity

types. The uses relations can be resolved by using the Constant and Data i/o data entity

types.

11

Within the i/o data entity frames, the units of measure consistency checker
must recognize three types of relations. They are the structure, type and units relations. If
any of the i/o data entity frames used to resolve the input, output and uses relations, do
not contain units attribute definitions, the units of measure consistency checker should at-
tempt to resolve any type or structure relations found in the i/o data frames using the
Type i/o data entity definitions.

After all relations associated with the input, output and uses definitions ex-
pressed in the function entity frames have been resolved, the units of measure consistency
checker should verify that the output units of measure can be obtained from the input un-
its of measure and the uses units of measure. In order to verify the units of measure
within the function definitions, the units of measure consistency checker must interpret
the input, output and uses definitions as a set of "and" and "or" conditions. For example,
the input relations within a function definition may resolve into unitl and unit2 and unit3
or unit4 and unitS. These "and" and "or" conditions can be determined from the structure
of the entity frame described in the Input section of this chapter. In addition, "and" and
"or” conditions can be defined by including the text "and” and/or "or” within the value of
the relation.

Each input and-set will be compared to each output and-set. Any units in the
output and-set which have not been found in the input and-set should be searched for in
the uses set ("And" conditions and "or" conditions are not distinguished in the uses set). If
any units in the output and-set have not been found, a warning message will be printed. If
the output and-set cannot be produced by any input and-set and the uses set. an error
message will be printed.

The matching function should be as strict or as liberal as the user determines is
necessary. Therefore, two additional attempts should be made to match the output and-
set. The first additional attempt should check a set of acceptable synonyms for the un-

matched unit. The second method should attempt to match the unit using an acceptable

12

conversion for the unit. If the unit is matched through using a conversion, a conversion
warning message should be printed.

The synonym and conversion sets should be user defined. If no synonyms or
conversions are provided, the matching function is very strict. The user may also provide
only synonyms or only conversions, or the user may choose to provide both synonyms
and conversions. This capability allows the matching function a large degree of versatility.

The user should also be able to specify either a short or a long report type. The
long report type will print out the function frames as the units of measure consistency
checker processes them, along with any errors or warnings it may encounter. The short
report type will only print out function frames containing errors and/or warnings, and the

associated errors and/or warnings.

2.3.2 Error Processing

Several types of error and warning conditions may occur during the normal pro-
cessing of the units of measure consistency checker. These conditions fall into three
categories. They are the operating environment. physical limitations within the program,
and the input specification. The units of measure consistency checker will attempt to re-
cover from any problems it encounters. If it is unable to recover, it will print an error
message and terminate. Otherwise it will print a warning message and continue. These con-

ditions and messages will be discussed in detail in the design portion of this report.

2.4 Operating Environment
The units of measure consistency checker is intended as part of a much larger
system. Therefore, its interface should be as simple as possible. It should also be written

in C - Language and run on a UNIX operating system.

13

Chapter Three

Design

3.1 Overview

The design chapter is divided into two sections. The first section present the
high level design of the units of measure consistency checker. The second section presents
the detailed design of the consistency checker, including descriptions of each n:;odule and

the data structures used within it.

3.2 High Level Design

The units of measure consistency checker can be functionally divided onto three
parts. They are the lexical scanner, the parser .and the checker (See Figure 1 for the High
Level Structure Chart). The controlling program first calls the lexical scanner. The lexical
scanner removes extraneous information from the input specification and places the
remaining text into a .temp file. The controlling program then passes this .temp file to the
parser.

The parser reads the .temp file as input. It then parses this file and from the in-
formation it finds in the text, it creates five data files. These files are named FUNCT, IN-
DATA, OTDATA, UDATA, and TDATA. The FUNCT data file is built from the informa-
tion found in the function frame definitions (See Appendix C.1 for the function frame data
structure). The other data files, INDATA, OTDATA, UDATA, and TDATA, have the same
format and are built from the information found in the i/o data frame definitions (See Ap-
pendix C.2 for the i/o data frame data structure). The information found in the Input and
Input__output entity frame definitions is used to build the INDATA file. The OTDATA file
is built using the Output and the Input_output entity frames. The Constant and Data en-
tity frames are used to build the UDATA file and the Type entity frames are used to build
the TDATA file (See Appendix D for an example of each data file). After the parser has

completed its processing, the controlling program calls the checker.

14

UNITS OF MEASURE
CONSISTENCY CHECKER

N\

\

AN

LEXICAL
SCANNER

PARSER

3
!

! CHECKER

HIGH LEVEL DESIGN

FIGURE 1

15

The checker uses the i/o data files to resolve the relations stored in the function
frame data file. The frames from the data file are processed one frame at a time. The input
relations, which are defined in the frame, are resolved by the checker using the informa-
tion, which is stored in the INDATA file. Similarly, the OTDATA file is used to resolve
the output relations and the UDATA file is used to resolve the uses relations. The TDATA
file is then used to resolve any structure and/or type relations until the units definitions
are found. If no relations remain to be resolved and no units have been found, the checker
assumes that there are no units associated with that item.

After all the relations have been resolved, the checker attempts to verify that
the specified output units of measure can be obtained from the given input units of meas-
ure and any units of measure the function has access to through the uses relations. In ad-
dition to the units of measure provided in the specification text the checker will attempt to
verify the output units of measure using user defined synonyms and conversions. As the
checker analyzes the units of measure, it prints the units the units of measure being
analyzed to a report file. After the units analysis for that function frame has been com-
pleted. the file is printed on the screen if the long report type has been requested. If the
short type has been requested, the checker will only print the file on the screen if it con-

tains error or warning messages.

3.3 Detailed Design

3.3.1 Controlling Program

The controlling program is a shell script which processes the command line and
calls the scanner, the parser, and the checker. It first determines the report type and the
input filename. It then calls the scanner using the input file as data and traps the output
from the scanner in a temporary file. The name of this file is created by concatenating the

input filename with ".temp". Next the controlling program calls the parser using the .temp

16

file as input. After the parser has completed processing the .temp file, the controlling pro-
gram delt_:tes the temporary file and calls the checker with the desired report type. After
the checker has completed processing, the controlling program will determine if any other
filenames were included on the command line. If any other filenames were included on the
command line, it will process them as described above. When no files are left to process,

the controlling program will terminate.

3.3.2 The Scanner

The scanner is an AWK program which prepares the input requirements
specification for the parser. It first modifies each continuation line to include the proper
keyword and replaces the colon with a "+" to indicate that it is a continuation line. It then

eliminates any unnecessary entity and relation/attribute lines from the specification.

3.3.3 The Parser

See Figure 2 for the Parser Structure Chart.

3.3.3.1 Main Program

The parser is a C-Language program which accepts a filename as input. The main
routine attempts to open the input file. If it cannot open the input file, it prints an error
message and terminates. Otherwise, it calls the routine, determine frame type. When

determine frame type has completed, the routine closes the input file and terminates.

17

PARSER

DETERMINE
FRAME TYPE

/

N

N

PARSE
FUNCTION FRAME

1/0 DATA FRAME

PARSE

- PARSER DETAIL DESIGN

FIGURE 2

18

3.3.3.2 Determine Frame Type

The main purpose of this routine is to build the files FUNCT, INDATA, OTDA-
TA, UDATA and TDATA. It first creates the five output files. If it is unable to create any
of these files, the routine will print an error message and terminate. If the files were creat-
ed successfully, the routine searches for the start of an entity frame. If any lines contain-
ing text are flushed while the routine is searching for the start of a frame, a warning mes-
sage and the flushed line will be printed.

Next the routine determines the entity type. If the entity type is either Activity
or Periodic_function, the routine calls the parse function routine. The frame structure re-
turned by the parse function routine is then stored in the FUNCT file. The i/0 data frames
are handled in a similar manner. The routine which creates the i/o data frame structure is
called parse i/o data. The i/o data frame structures are then stored in the appropriate file.
If the determine frame type routine encounters any entity types other that Activity.
Periodic_function, Input., Output, Input_output, Constant, Data, or Type, a2 warning mes-
sage and the flushed lines will be printed. After all the frames in the input file have been

processed, the routine closes the files it has created and terminates.

3.3.3.2.1 Parse Function Frame

The main purpose of the parse function routine is to build the function frame
data structure (See Appendix C.1 for the data structure format and see Appendix D.1 for
parsed function frame examples). This routine accepts the current line, the input file
pointer, and a pointer to the function data structure as input. The function data structure
is populated by processing lines from the input file one at a time until a frame separator is
found. The routine first parses the frame header and stores the resulting information in
the function frame data structure. After the header has been parsed and stored, the rou-
tine processes the body of the frame.

Within the body of the frame, the routine attempts to locate input, output, and

19

uses relations. If any other relation types are encountered a warning message will be print-
ed and the line will be flushed. Even though the scanner eliminates unnecessary relations
from the input specification, the BNF allows structure, type. and units relations/attributes
in function frame definitions also. Therefore, since the units of measure consistency check-
er is not required to process these relations in the context of a function frame definition.
they will be eliminated here.

The routine uses the values of the input, output, and uses relations to populate
the function data structure. The input, output. and uses structures, in the function frame
data structure, are two dimensional arrays. The first dimension represents the "and" condi-
tions found within the function frame and the second dimension represents the "or" condi-
tions encountered within the frame. If either array limit is reached. while these structures
are being populated, a warning message will be printed and any other relation/attribute
values for that position will be flushed. In addition, if the routine encounters any line

which cannot be parsed, the line will be flushed and a warning message will be printed.

3.3.3.2.2 Parse I/0 Data Frame

The main purpose of the parse i/o data routine is to build the i/o data frame
data structure (See Appendix C.2 for the structure format and Appendix D for parsed i/o
data frame examples). This routine accepts the current line, the input file pointer, and the
pointer to the i/o data structure as input. The i/o data structure is populated by process-
ing lines from the input file one at a time until the frame separator is found. The routine
first parses the frame header and then stores the resulting information in the i/o data
frame data structure.

Within the body of the frame, the routine attempts to locate type. structure,
and units relation/attribute definitions. If any other relation types are found. a warning
message will be printed and the line will be flushed. Even though the scanner eliminates

unnecessary relations from the input specification, the BNF allows input, output, and uses

20

relations/attributes in i/o data frame definitions. Therefore, since the units of measure
consistency checker is not required to process these relations in the context of an i/o data
frame definition, they will be eliminated here.

The routine uses the values of the type, structure, and units relations/attributes
to populate the i/o data data structure. The type. structure, and units structures, in the i/o
data frame structure, are two dimensional arrays. The first dimension represents the "and"
conditions found within the i/o data frame and the second dimension represents the "or"
conditions encountered within the frame. If either array limit is reached, while these
structures are being populated, a warning message will be printed and any other
relation/attribute values for that position will be flushed. In addition, if the routine en-
counters any lines which cannot be parsed. the line will be flushed and a warning message

will be printed.

3.3.4 The Checker

See Figure 3 for the Checker Structure Chart.

3.3.4.1 Main Program

The checker is a C-Language program which accepts the report type as input.
The main routine attempts to open the FUNCT file. If it cannot open the FUNCT file it
prints an error message and terminates. Otherwise, it reads a function frame from the file
and processes the frame by calling the resolve relations routine. The resolve relations rou-
tine will then build the resolved relations function frame data structure (See Appendix
C.3 for the structure format). This structure is then passed to the compare units routine.
After the compare units routine has completed, the main program calls the print error rou-
tine with the desired report type. The main routine continues to read frames and process
them until an end of file is reached. The routine then closes the FUNCT file and deletes the

FUNCT, INDATA, OTDATA, UDATA. and TDATA files.

21

-

RESOLVE
RELATIONS

CHECKER

UNITS

COMPARE

AN

AN

DETERMINE | | AND FIND |
UNITS UNITS| |UNITS|
;
|

AND

UNITS

CHECKER DETAILED DESIGN

FIGURE 3

N

PRINT
REPORT

22

3.3.42 Resolve Relations

The main goal of the resolve relations routine is to build the resolved relations
data structure. This structure represents the input function frame with all of the units
resolved. The routine first opens all of the i/o data frame files. If any of these files cannot
be opened, an error message is printed to the screen and the routine is terminated.

In order to build the resclve relations frame data structure. the routine calls
determine units with each relation in the function frame. If the relation used as input to
the determine units routine is part of an "and” condition, the units returned by the routine
are anded with the and-set in the resolved relations data structure. After the resolved re-
lations data structure has been complet_ed. the resolved relations routine closes all of the

i/o data files and terminates.

3.3.4.2.1 Determine Units

The purpose of the determine units routine is to find the units associated with a
given relation value. It is a recursive routine, which accepts a relation value and two file
descriptors as input. The first file descriptor is a primary search file and the second file is a
secondary search file. The primary search file is one of the INDATA, OTDATA, UDATA,
or TDATA files and the secondary search file is always the TDATA file. The routine re-
turns a pointer to a link list of and-sets. Each node within the link list represents an and-
set and each link represents an "or” condition.

Determine units reads frames from the primary search file one at a time until a
match for the given input relation is found. If a match is found, the routine will check the
matching frame for a units definition. If a units definition is found, it is copied to the link
list and the pointer to the link list is returned. If no match is found, "no match® is copied
to the node and the pointer to the node is returned.

If no units definition is found in the matching frame, the frame will be searched

for a type definition. If a type definition is found, determine units will call itself with the

23

secondary search file descriptor in both the secondary and the primary search file descrip-
tor positions, for each relation in the type definition. If no type definition is found, the
frame will be searched for a structure definition. If a structure definition is found. deter-
mine units will call itself with the secondary file descriptor in both the primary and the
secondary search file descriptor positions, for each relation in the structure definition. If no
structure definition is found. "no units" is copied to the node and the pointer to the node is
returned.

If at any time the routine encounters any problems copying the units into the
units structure, a warning message will be printed. The routine will also print a warning
message if any value cannot be added to an and-set because the limit of the array has been
reached. In addition, a warning message will be printed if the routine cannot allocate

storage for a node.

3.3.4.2.2 And Units

And units is a utility routine, which is used to and two and-sets together. An
and-set is a link list of arrays. Each element in the array represents an "and" condition
and each node represents an "or condition. The routine first counts the number of nodes in
the second input and-set. It then makes that number of copies of each node in the first in-
put and-set. After all of the copies have been made, the routine copies each node in the
second and-set into each node in the first and-set. and the routine is terminated.

If the routine encounters any problems while building the link list, a warning
message will be printed. The routine will also print a.warning message if any value cannot
be added to an and-set because the limit of the array has been reached. In addition, a

warning message will be printed if the routine cannot allocate storage for a node.

3.3.4.3 Compare Units

The purpose of the compare units routine is to create the error report file. It ac-

24

cepts the report type, the function frame, and the resolved relations frame as input. The
routine first prints the function frame type and name to the file. After the frame type and
name are printed to the file, the original relation values for the first and-set in the output
definition are also printed to the file. Then, since any relation may resolve into any
number of “and” and "or” conditions, the routine will process the units and-sets for the
current set of output relations one at a time. After the first output units and-set is print-
ed to the file, the routine will print the original relation values for the first and-set in the
input definition, and the first input units and-set 1o the file.

After this information has been printed to the report file, the routine will at-
tempt to locate each of the output units in the current input units and-set, using the utili-
ty function find unit. If any output units are not found in the current input set, the com-
pare units routine will attempt to locate them any where in the uses definition. If any out-
put units still remain unmatched, the routine will attempt to find them in the input set
and the uses definition using user supplied synonyms for the missing units. If any units
still remain unmatched, the compare units routine will attempt to locate them in the input
set and the uses definition using user supplied conversions. If a match is found using a
conversion, a conversion warning message will be printed to the report file. If there are any
units remaining unmatched after all of the previously specified comparisons have been
made, an unmatched units warning message will be printed to the report file.

The compare units routine will then compare this output and-set, in the manner
described above, to each input and-set in the input relation set, while printing each input
and-set to the error file. It will then print the next input relation set to the report file,
and process all of its input and-sets as described above. This procedure will be repeated
until all of the input and-sets have been compared. If no input and-set together with the
uses definition is able to produced the entire output and-set, an error message will be
printed to the report file. The compare unit routine will then process each output units

and-set in the output relation as it processed the first output units and-set. After the first

25

output relation has been completed, the compare units routine will process the next output
relations set. This procedure will be repeated until all of the output relation sets have been

processed. After this processing has been completed, the routine will terminate.

3.3.4.3.1 Find Unit

Find unit is a utility which searches a given and-set for a given unit value. It
accepts the unit value and a pointer to the and-set as input. It compares each unit value in
the and-set to the given input unit value, until a match is found or no unit values in the
and-set remain to be compared. If a match is found the utility returns "1". Otherwise, it

returns "0".

3.3.4.4 Print Errors

The purpose of the print errors routine is to provide the desired report output.
It accepts the desired report type as input. If the report type is short, it will first check the
file for warning or error messages. If no error or warning messages are found, it will delete
the file and terminate. Otherwise, it will print the contents of the file to the screen before
it deletes the file and terminates. If the long report type is desired, it will simply print the

file to the screen, delete the file and terminate.

26

Chapter Four
Implementation

Each of the major functional tasks in the units of measure consistency checker
was developed as an independent program. The scanner is an awk program, which creates
the input file for the parser. The parser is an independent C-Language program, which
creates five output files. These files are then used by the checker, which is also an indepen-
dent C-Language program. The checker then prints the final analysis to the screen (See Fig-
ure 4 for a complete hierarchy chart).

The scanner was developed first. It works in two phases. The first phase dupli-
cates the appropriate keyword on any continuation line and replaces the colon with a "+"
sign. The second phase eliminates any undesirable entities and relations/attributes from
the text file. It is 16 lines of awk code.

Once the scanner was completed, the controlling shell script was developed. It is
invoked by entering "umecc” and the input filenames. If the long report type is desired.
"umecc” may be followed by the "-1" option before the filenames. Otherwise, the short re-
port type is assumed. The controlling program was developed using dummy routines to
stub out the parser and the checker. The controiling program is approximately 52 lines of
shell script. It was verified using various forms of the command line and some echo state-
ments.

The parser was developed in a top down manner. It is approximately 600 lines
of code. First the main routine was developed. It is very simple and does little more than
open the input file and call the determine frame type routine. Next the determine frame
type routine was developed and tested using the data prepared by the scanner. Once the
program was able to differentiate entity types correctly, the frame parsing routines were

developed.

27

7 N

UNITS OF MEASURE
CONSISTENCY CHECKER

PRINT

LEXICAL
SCANNER PARSER CHECKER
/ !ﬁ\
/ | \
b
RESOLVE commm
mms TYPE RELATIONS

/\

REPORT

\\

| PARSE PARSE DETERMINE || AND

| FUNCTION FRAME | I/0 DATA FRAME UNITS j UNTITS UNITS
AND
UNTTS

UNITS OF MEASURE CONSISTENCY CHECKER
STRUCTURE CHART

FIGURE 4

28

The first frame parsing routine to be developed was the parse function routine.
After the parse function routine was tested and determined to be operating correctly, the
parse i/o data routine was written and tested. Both the parse function and the parse i/o
data routines were tested extensively using print statements.

After both routines appeared to be working properly, an independent print rou-
tine was written. This routine is not part of the units of measure consistency checker
parser. It was approxiﬁaately 150 lines of code and was written to open the five output
files one at a time and print their contents to the screen. This final test verified the func-
tioning of the parser.

Once the parser was completely developed and tested, the checker was begun.
The checker, like the parser, was developed in a top down manner. It is approximately 900
lines of code. First, the main routine was developed. It reads a frame from the function
frame file and calls the routines, resolve relations, compare units, and print errors, to pro-
cess the frame. Once the main procedure was completed. the resolve relations routine was
developed.

The resolve relations routine is a relatively simple routine, which calls the
determine units routine with each relation value found in the input frame. It was tested
extensively using print statements. After the resolve relations routine was verified. the
determine units routine was written.

The determine units routine is a recursive routine, which locates the units for a
given relation value. After it was completed. it was tested using print statements to moni-
tor the replacement process. Once the process was verified. the and units routine was creat-
ed to complete the replacement process. This routine was also tested using print state-
ments.

The compare units routine was written after the replacement process had been
verified. This routine verifies each output and-set. It was first written using only the input

and-sets. After these sets were being compared properly. the uses and-sets were added.

29

Next, the synonym replacement code was added, and finally the conversion code was ad-
ded. Each step was verified by using print statements. Once one step was completely test-
ed, the next step was begun.

The last routine to be developed was the print errors routine. This routine is
very simple. It is responsible for printing either the short or the long report form. It was
verified by requesting the long form and then the short form. The output printed for each
report type was verified.

In general, each routine was tested by printing intermediate data. Each data
structure was printed as it was being populated and finally, each data structure was print-
ed after it was complete. In addition, each data structure was verified for array limits,
since C does not check array bounds. Very little error checking was performed on the in-
put specification itself, since it is assumed to have been machine generated and to have
gone through various completeness checks before it is passed to the units of measure con-
sistency checker. Extensive error checking was done on the consistency checking of the
code. Sample specifications. in which units were missing, unresolved, required synonyms or
required conversions were used during testing. The program was able to locate and identi-

fy consistency errors (See Appendix E for some sample output).

30

Chapter Five

Conclusions and Extensions

The units of measure consistency checker is not very valuable alone. It was
created to be used in conjunction with the software development environment currently
being prototyped at Kansas State University. The units of measure consistency checker
described here, along with several other types of consistency and correctness verification
systems, will be extremely valuable in locating errors within the requirements specification
documents created within this new environment. By locating these errors in the require-
ments stage of the development cycle, more costly errors can be avoided further along in
the development cycle.

The design of the units of measure consistency checker is extremely simple. It is
based on the assumption that the checker would be most valuable in analyzing extremely
large requirements specification documents, and that it is part of a more complex system.
Therefore, it was designed to use a minimum of resources. The checker uses a file struc-
ture to store the parsed specification. If the use of resources is of less importance, several
changes could be made to the units of measure consistency checker to increase its speed
and make it more dynamic.

In order to improve the checker's ability to handle large complex requirements
specifications, the array structures used in the checker could be changed to linked lists.
This change would eliminate the possibility of running out of room in the array struc-
tures. The linked lists would also save space when complex relations were not being
analyzed. If this change were incorporated. the complexity of storing the parsed frames in
the file structures, would increase greatly.

In order to improve the speed of the units of measure consistency checker, the
parser and the checker could be rewritten as one program, keeping the parsed specification

in memory. The i/o data structures could be stored in four sorted trees. The determine un-

31

its routine would then use these structures to locate the appropriate i/o data frames to
resolve the relations in the function frames. The rest of the program would remain the
same.

In addition to the design changes outlined in the paragraphs above, several ex-
tensions could be made to the current capabilities of the units of measure consistency
checker. The checker processes "and” and "or”" conditions found within the text of the rela-
tions values. The parsing of the relations values could be expanded to recognize combina-
tions of "and" and "or" conditions using parenthesis. The compare units routine could also
be expanded to recognize the "and" and "or” conditions within the uses relations. Finally,
the units of measure consistency checker could also be expanded to provide an exact can-
cellation of units.

In general, the area of mechanized requirements specifications is still very new.
The units of measure consistency checker, together with other forms of consistency check-

ing, could provide great cost savings in the software development life cycle.

32

Bibliography

[1] Abbot, Russell J. "Program Design by Informal English Descriptions.” Communications
of the ACM, Vol. 26, No. 11, November 1983, pp. 883-894.

[2] Agusa. Kiyoshi, Atsushi Ohnishi, and Yutaka Ohno. "Verification System for Formal
Requirements Description.” IEEE, 1982, pp. 120-126.

[3] Balzer, Robert and Neil Goldman. "Principles of Good Software Specifications and Their
Implications for Specification Languages." National Computer Comference, 1981,
pp. 393-400.

[4] Buaer, Friedrich L. "From Specifications to Machine Code: Program Construction
through Formal Reasoning."IEEE, 1982, pp. 84-91.

[5] Belford, P. C. and D. S Taylor. "Specification Verification - A Key to Improving
Software Reliability." Computer Software Engineering, April 1976, pp. 83-96.

[6] Boehm, Barry W. "Verifying and Validating Software Requxrements ans Design
Specifications.” IEEE Software, Vol. 1, No. 1, January 1984, pp. 75-88.

[7] Boehm, B. W., R. K. McClean and D. B. Urfrig. "Some Experience with Automated Aids
to the Design of Large-Scale Reliable Software.” Proceedings, International Confer-
ence on Reliable Software, April 1975, pp. 105-113.

[8] Campbell, R. H. and P. G. Richards. "SAGA: A System to Automate the Management
of Software Production.” National Computer Conference, 1981, pp. 231-234.

[9] Chen, Peter Pin-Shan, "The Entity-Relationship Model- Toward a Unified View of
Data." ACM Transactions on Data Base Systems, Vol. 1, No. 1, March 1976, PP-
9-36.

[10] Davis, Alan M. and Tomlinson G. Rauscher. "Formal Techiniques and Automatic Pro-
cessing to Ensure Correctness in Requirements Specifications." Proceedings,
Specifications of Reliable Software, 1979, pp. 15-35.

[11]Greenspan, Sol J.. John Mylopoulos and Alex Borgida. "Capturing More World
Knowledge in the Requirements Specification.”" 6th International Conference on
Software Engineering, September 1982, pp. 225-234.

[12] Heitmeyer. Constance 1. and John D. McLean. "Abstract Requirements Specifications:
A New Approach and its Application.” [EEE Transactions on Software Engineering,
Vol. SE-9, No. 5, September 1983, pp. 580-589.

(13] Matsumoto, Yoshihro and Kazuo Matsumuro. "A Specification Analysis and Documen-
tation System for Process Control Software.”" The IEEE Computer Society's Fifth
International Computer Software and Application Conference, 1981, pp. 411-417.

[14] McCorduck, Pamela. "Introduction to the Fifth Generation." Communications of the
ACM, Vol. 26. No. 9, September 1983, pp. 629-630.

(15] Nyari. Erika and Harry Sneed. "Sofspec: A Pragmatic Approach to Automated
Specification Verification." The Journal of Systems and Software, 3, 1983, pp.

33

193-200.

[16] Reifer, Donald J. and Stephen Trattner. "A Glossary of Software Tools and Tech-
niques.” Computer, July 1977, pp. 6-14.

[17] Riddle, William E. "An Assessment of Dream.” Tutorial on Software Systems, 1981,
pp- 231-234.

[18] Shapiro, Ehud Y. "The Fifth Generation Project - A Trip Report.” Communications of
the ACM, Vol. 26, No. 9, September 1983, pp. 637-641.

[19] Stephens Sharon A. and Leonard L. Tripp. "Requirements Expression and Verification
Aid." Proceedings, 3rd International Conference on Software Engineering, May
1978, pp. 60-67.

[20] Teichroew, Daniel and Ernest a. Hershey,III. "PSL/ PSA: A Computer - Aided Tech-
ruque for Structured Documentation and Analysis of Information Processing Sys-
tems." IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, January
1977, pp. 41-48.

[21] Tichy, Walter F. "Software Development Control Based on Module Interconnection.”
Proceedings, 4th International Conference on Software Engineering, 1979, pp. 29-
41.

[22] Treleaven, P. C. and I. Gouveia Lima. "Japan's Fifth Generation Computer System."
Technical Report Series. University of Newcastle upon Tyne, May 1982, No. 176.

[23] Wasserman, Anthony I. "Toward Integrated Software Development Environments."
IEEE, 1981, pp. 15-35.

(24] Zave, Pamela. "The Operational Versus the Conventional Approach to Software
Development.” Communications of the ACM. Vol. 27, No. 2, February 1984, pp.
104-118.

[25] Bell, Thomas E., David C. Bixler, and Margret E. Dyer. "An Extendable Approach to
Computer - Aided Software Requirements Engineering." IEEE Transactions on
Software Engineering, Vol. SE-3, No. 1, January 1977, pp. 49-60.

[26] Ross, Douglas T. and Kenneth E. Schoman, Jr. "Structured Analysis for Requirements
Definition.” IEEE Transactions on Software Engineering, Vol. SE-3, No. 1. January
1977, pp. 6-15.

[27] Ross. Douglas T. "Structured Analysis (SA): A Language for Communicating Ideas."
IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, January 1977, pp.
16-34.

34

35
Appendix A
BNF Syntax Description

<era_fspec> im
<era_title> <era_bedy> <mode_table>

<era_title> =
PROCESS : <text>

<era_body> e
<frame> | <frame> <era_body>

<frame> ;=
<NL> <NL> <frame_header> <frame_body>
| <NL> <NL> Comment : <text_lines>

<frame_header> ii=
<i_o_data_header> : <i_o_data_name>
| < function_header> : <CAPITAL_WORD>

<i_o_data_header> =
Type | Input | Output | Input__output | Data
| Constant | <CAPITAL_WORD>

<function__header> ::=
Activity | Periodic_function | <CAPITAL__WORD>

<frame_body> =
<relation> | <relation> <frame_body>

<relation> =
<NL_B> <relation_type> : <relation_value>

<relation_type> =
keywords | input | cutput | required__mode
| necessary_ condition | occurence | assertion
l action | comment | media | structure | type
| units | subpart_is | subpart_of | uses
| <WORD>

<relation_value> =

<text_lines> | <structure>

<structure> ;=
<struct> | <struct> <NL_B> : <structure>

<struct> =
<name> | <text> | <name> <structure>
| <text> <structure>

<name> =
<mode_name> | <i_o_data_name>

<i_p_data_name> =
$ <WORD> $

<mode_name> i=
* <WORD> *

<mode_table> =
<NL> <NL> MODE_TABLE <mode_list> <inital_mode>
<transition__body >

<mode_list> =
<mode> | <mode> <mode_list>

<mode> =
<NL_B?> Mode : <mode_name>

<initial_mode> :i=
<NL> <NL_B> Initial_Mode : <mode_name>

<transition__body > =
<NL> <NL_B> Allowed_Mode_Transitions :
< transition__list>

<transition_list> :i=
<transition> | <transition> <transition_list>

<transition> =
<NL_B> <event> : <mode_name> -> <mode_name>

36

<event> =
<i_o_data_name> | <i_o_data_name> =" <text> '
| <function_header>

<text_lines> =
<text> | <text> <text_cont>

<text> lim
<WORD> | <WORD> <text>

<text_cont> =
<NL_B> : <text> | <NL_B> : <text> <text_cont>

<NL> ;=
'01°0 <NL>

<NL_B> =
<NL> """

LEXICAL SCANNER INFORMATION
Tokens used in the productions above begin with
one of the following:

8. . -= <char>,[} (excluding the
commas)

The following tokens are important above:

<WORD> :m <char> | <char> <WORD>
<CAPITAL_WORD> u= <capital_letter> <WORD>
<char> =

<lower_case_char> | <symbol>

<lower_case_char> =
albl.lzl0olll..19

<symbol> =
#l%I1&ICI)I21__

<capital_letter> =

37

AlBIl..lZ

There exists a set of "reserved word" tokens which
includes:
{keyboard,crt.internal,secondary_storage,
NONE .every.mode}

38

Appendix B
Sample E-R-A Requirements Specification

PROCESS $weather_calc$

Activity : $predict_arrival$
input : Scurrent_position$
input : $500mb_ winds$

output : $arrival_time$

Activity : $Spredict_wind_velocity$
input : $surface_pressure_gradient$
uses : $hydrostatic_parameter$

output : $surface_wind$

Activity : $predict_low_temp$
input : $skewT_temp$

output : $low_prediction$

Activity : $predict_precip$
input : $upper_air_moisture$
uses : $water_density$

output : $moisture_ total$

Input : $current_position$
type . integer

units : miles

39

Input : $surface_pressure_gradient$
type :real
units : millibars / kilometer
Input : $skewT_data$
type :array of $temp$
size : 1..100
Input : $upper_air_moisture$
type : array of $specific_humidity$
size :1.100
Input :$500mb_winds$
type : $velocity$
Output : $moisture_totals$
type :real
units :centimeters
Type : $velocity$

structure : $speed$, $direction$

Type
type

units

Type

$speed$

: real

: meters/second

: $direction$

40

type :integer

units : degrees

Output : $arrival_time$§
type :char

units : hours and minutes

Qutput : $surface_wind$
type :real

units : meters/second

QOutput : $low_prediction$

type : $temp$
Type :S$temp$
type :real

units : degrees Celsius

Type : $specifc_humidity$
type :real

units : grams/centimeter**3
Constant : $hydrostatic_parameter$
type :real

units : meters**2/seconds

Constant : $water_density$

type :real
value : 1

units : grams/centimeter**3

42

Appendix C.1

Function Frame Data Structure

#define WORD_SIZE 50

#define FRAME_OR_MAX 10
#define FRAME__AND_MAX 10

struct rel_val

{
char term{WORD_SIZE+1];

|

struct fstart
{
char ftype[WORD__SIZE+1];

char name[WORD_SIZE+1];
%

struct frame

{
struct fstart header;

struct rel_val

input[FRAME_OR_MAX+1][FRAME_AND_MAX+1];

struct rel_val

output(FRAME_OR_MAX+1][FRAME_AND_MAX+1];

43

struct rel_val

uses{FRAME_OR_MAX+1][FRAME_AND_MAX+1];

44

Appendix C.2

1/0 Data Frame Data Structure

#define WORD_SIZE 50

#define FRAME_OR_MAX 10
#define FRAME_AND_MAX 10

struct rel_wval
{
char term{WORD_SIZE+1];
IE

struct fstart
{
char ftype[WORD_SIZE+1];
char name[WORD_SIZE+1];
15

struct iframe
{
struct fstart header;
struct rel_val
structure{lFRAME_ OR_MAX+1][FRAME_AND_MAX+1];
struct rel_val

typelFRAME_OR_MAX+1][FRAME_AND_MAX+1];

45

struct rel_val

unitsf FRAME_OR_ MAX+1][FRAME_AND_MAX+1];

46

#define WORD_SIZE 50

#define FRAME_OR_MAX 10
#define FRAME_AND_MAX 10

#define AND_SET_MAX 30

struct rel_val
char term{WORD_SIZE+1];
k:

struct and__set
struct rel_val units{AND_SET_MAX+1];

struct and_ set *or__set;

L

struct hframe
struct and_ set *input{FRAME_OR_MAX+1];
struct and_set *output[FRAME_OR_MAX+1];
struct and_ set *uses[FRAME_OR_MAX+1];
5

Resolved Relations Frame Data Structure

47

Appendix D.1

Sample FUNCT Data File

Activity : $predict_arrival$
input : $current_position$
input : $500mb_winds$

output : $arrival_time$

Activity : $predict_wind_ velocity$
input : $surface_pressure_gradient$
output : $surface_wind$

uses : $hydrostatic_parameter$

Activity : $predict_low_temp$
input : $skewT_temp$

output : $low_prediction$§

Activity : $predict_precip$
input : $upper_air__moisture$§
output : $moisture_total$

uses : $water_density$

48

Input

units

Input

units

Input

type

Input

type

Input

type

Appendix D.2

Sample INDATA Data File

: Scurrent__position$

: miles

: $surface_pressure_gradient$

: millibars kilometer

: $skewT _data$

: $temp$

: $upper_air_moisture$

: $specific_humidity$

: $500mb_ winds$

: $velocity$

49

Output

units

Qutput

units

Qutput

units

Qutput

type

Appendix D.3

Sample OTDATA Data File

: $moisture_ totals$

: centimeters

: $arrival_time$

: hours minutes

: $surface_wind$

: meters second

: $low_prediction$

: $temp$

50

Type

Appendix D.4

Sample TDATA Data File

: $velocity$

structure : $speed$ $direction$

Type

units

Type

Type

units

: $speed$

! meters second

: $direction$

: degrees

: $temp$

: degrees Celsius

: $specifc_humidity$

: grams centimeter

31

Appendix D.5

Sample UDATA Data File

Constant : $hydrostatic_parameter$

units : meters seconds

Constant : $water_density$

units : grams centimeter

52

Appendix E.1

Long Output

Processing file spec.uts

report type = long

Activity : $predict_arrival$
Processing output set -

$arrival_time$

hours minutes
Processing input set -

$current_ position$

miles

Warning - unresolved units - hours minutes

Processing input set -

$500mb_ winds$

meters second degrees

Activity : $predict_wind_ velocity$
Processing output set -
$surface_wind$
meters second
Processing input set -
Ssurface_pressure_gradient$
* millibars kilometer

Warning - conversion required second

53

Activity : $predict_low_temp$
Processing output set -
$low__prediction$
degrees celsius
Processing input set -
$skewT_temp$
no match
Warning - unresolved units - degrees celsius

Error - output units set was never produced

Activity : $predict_precip$

Processing output set -
$moisture_total$
no match

Processing input set -
$upper_air_moisture$

no match

54

Appendix E.2

Short Qutput

Processing file spec.uts

report type = short

Activity : $predict_arrival$
Processing output set -

$arrival_time$

hours minutes
Processing input set -

$current_ position$

miles

Warning - unresolved units - hours minutes

Processing input set -

$500mb_winds$

meters second degrees

Activity : $predict_wind__velocity$

Processing output set -
$surface_wind$
meters second

Processing input set -
$surface_pressure_gradient$
millibars kilometer

Warning - conversion required second

55

Activity : $predict_low_temp$
Processing output set -
$low_prediction$
degrees celsius
Processing input set -
$skewT_temp$
no match
Warning - unresolved units - degrees celsius

Error - output units set was never produced

56

Appendix F

: "This shell procedure preprocesses the’

: "input files and calls the units checker’

: "Process options’

report=short

while test TRUE

do
case ${1} in
-1%)
: "Long report form requested’
report=long
: "Process illegal option’
echo illegal option ${1}
: 'No more options, begin’
: ‘'main processing’
break
esac
shift
done

: "Start main processing’

57

if test $# -eq O
then
echo "Input file needed"
else
while test $# ~ne 0
do
if test -r "$1"
then
echo "Processing file $1"
awk -f pre.cont $1 |
awk -f pre.strip > $1.temp
units.parser $1.temp
rm $1.temp
units.checker $report
else

echo "Can’t open $1"

shift

done

58

Scanner

Process continue statements

$1 1" /:/ {print;prev=$1}

$1° /:/ {$1 = prev" + ";print}

Strip out unnecessary entities and

relations/attributes

$1 7 /" Activity$/ {print";print}

$1 7 /"Periodic_function$/ {print™;print}
$1~ /"Type$/ {print™;print}

$1 7 /“Input$/ {print™;print}

$1~ /"Output$/ {print™;print}

$1 7 /“Input_output$/ {print™;print}
$1 7 /"Data$/ {print"";print}

$1 ~ /"Constant$/ {print™;print}

$1 " /“input$/ {print}

$1 7 /“output$/ {print}

$1 7 /“type$/ {print}

$1 7 /"units$/ {print}

$17 /uses$/ {print}

$1 ~ /“structure$/ {print}

59

/* Double Words */

degrees celsius

degrees farenheit

/* Synonyms */

second : seconds
second : sec
seconds : second
seconds : sec
sec : second

sec . seconds

/* Conversions */

second : minute
second : minutes
second : min
second : hour
second : hours

seconds : minute

Word Data Files

60

seconds : minutes
seconds : min
seconds : hour
seconds : hours
sec . minute

sec : minutes

sec : min

sec : hour

sec : hours
minute : second
minute : seconds
minute : sec
minutes : second
minutes : seconds
minutes : sec
min : second
min : seconds
min : sec

hour : second
hour : seconds
hour : sec

hours : second
hours : seconds

hours : sec

61

Header File For C - Code

#define FRAME_SEPERATOR "0

#define OR '
#define AND '+’
‘#define DELM '$’

#define WORD_SIZE 50

#define LINE_SIZE 80

#define FRAME_OR__MAX 10
#define FRAME__AND_MAX 10

#define AND_SET_MAX 30

#define PMODE 0600

struct rel_val
{
char term[WORD_SIZE+1];
h:

struct fstart
{
char ftype[WORD_SIZE+1];

char name{WORD_SIZE+1];

62

struct fframe

{

struct fstart header;

struct rel_val input
[FRAME_OR_MAX+1][FRAME_AND_MAX+1];

struct rel_val output
[FRAME_OR_MAX+1][FRAME_AND_MAX+1];

struct rel_val uses

[FRAME_OR_MAX+1][FRAME_AND_MAX+1];

struct iframe

{

struct fstart header;

struct rel_ val structure
[FRAME_OR_MAX+1][FRAME_AND_MAX+1];

struct rel_val type
[FRAME_OR_MAX+1][FRAME_AND_MAX+1};

struct rel_val units

[FRAME_OR_MAX+1J[FRAME_AND_MAX+1];

struct and_ set

{
struct rel_val unitsl]AND_SET_MAX+1];

struct and_set *or_set:

Ji

struct hframe

{
struct and_set *input[FRAME_OR_MAX+1];

struct and_set *output[FRAME_OR_MAX+1]:

struct and_set *uses[FRAME_OR_MAX+1];
ko

64

Parser

#include <stdio.h>
#include <ctype.h>

#include "era.parser.c”

main(arge.argv)
int arge;

char *argv(];

{
FILE *ifp, /* input file pointer *f

*fopen();

if ((ifp = fopen(*++argv,"r")) == NULL)
{
printf("Can’t open %s0, *argv);
}
else
{
det_ftype(ifp);
felose(ifp);
}

65

Determine Frame Type

#include <stdio.h>
#include _ <ctype.h>
#include "era.def”
#include "era.struct”
#include "era.funct.c”

#include "era.iod.c"

det_ftype(ifp)

FILE *ifp; /* Input file pointer */

{

int fid, /* Function Data file descriptor */
infd, /* Input Data file descriptor */
otfd, /* Output Data file descriptor */
tfd, /* Type Data file descriptor */

ufd; /* Uses Data file descriptor */

struct frame funct;

struct iframe iod;

int i, /* String index */
i /* String index */
char line[LINE_SIZE],

token[WORD_SIZE];

66

infd = creat("INDATA", PMODE);
otfd = creat("OTDATA", PMODE);
tfd = creat("TDATA", PMODE);
ufd = creat("UDATA", PMODE);
ffd = creat("FUNCT", PMODE);

if (infd == -1 || otfd == -1 || tfd == -1

| ufd == -1 Il ffd == -1)

prinf("Error *** unable to create DATA files0);

else
{
/* parse era spec */
while (fgets(line, LINE_SIZE.,ifp) = NULL)
{
if (line[0] }= FRAME_SEPERATOR)
{
/* parse era frame */
im-1;
while (isspace(line[++i]) != 0
&& line[i] 1= " *);

if (isupper(line[i]) = 0)

{

/* first character of frame */
/* type is capital x/
j=0;

token[j] = line[il;

67

while ((islower(line[++i]) 1= 0
Il line[i] == "_")
&& line[i] =" ")
token[++j] = line[i];

token[++j] = " *;

/* determine entity type */

if (stremp(token,"Activity") == 0)
{
/* function entity */
parse_funct(line,ifp.&funct);
write(ffd.&funct,sizeof (funct));
}

else

if (strcmp(token,"Periodic_function") == 0)
{
/* function entity */
parse_ funct(line,ifp.&funct);
write(ffd,&funct,sizeof (funct));
}

else

if (stremp(token,"Input") == 0)

{
/*1_0_Data entity */

68

parse_jod(line.if p,&iod):
write(infd.&iod sizeof (iod));
}

else

if (stremp(token,"OQutput”) == 0)
{
/*1_0O_Data entity */
parse_iod(line,ifp.&iod);
write(otfd.&iod.sizeof (iod));
}

else

if (strcmp(token,"Input_output”) == 0)
{
/*1_0_Data entity */
parse_iod(line,if p.&iod);
write(infd,.&iod sizeof(iod));
write(otfd.&iod sizeof (iod));
}

else

if (strcmp(token,"Type") == 0)
{
/*1_0_Data entity */
parse_iod(line,ifp.&iod);

write(tfd.&iod sizeof (iod));

69

else

if (stremp(token,"Constant”) == 0)
{
/*1_0_Data entity */
parse_iod(line,if p,&iod);
write(ufd,&iod,sizeof(iod));

}

else

if (strcmp(token,"Data") == 0)
{
/*1_0_Data entity */
parse_iod(line.ifp.&iod);
write(ufd,&iod.sizeof (iod));
}

else
{
/* entity type was added to preprocessor ¥/
/* but not to parser ' 4
printf("*** Warning *** ynknown entity");
printf("** line flushed0);
printf("%s" line);
}

else

71

{

/* first character is not upper case */

/* flush rest of unknown entity frame */
printf("*** Warning *** line flushed0);
printf("%s" line);

}

)
close(infd);
close(otfd);
close(ifd);
close(ufd);
close(ffd);

}

#include <stdio.h>
#include <ctype.h>

#include "era.def”

_funct(line,if p.funct)
char line[];
FILE *ifp; /* Input file pointer

struct fframe *funct;

int i,

i

int input_or_index,
input_and__index,
output_or_index,
output_and_ index.
uses_or_index,

uses__and_index;

char token[WORD_SIZE];

Parse Function Frame

L

/* process function frame header */

i=-1

while (isspace(line[++i]) =0

72

&& line[i] =" ");

j=0;
token(j] = line[i];
while ((islower(line[++i]) 1= 0
I line[i] == "_") && line[i] t=*)
token[++j] = line[il;

token[++j] ="' ;

strepy(funct-> header.ftype.token);

while ((isspace(line[++i]) 1= 0
I lineli] == *:") && line[i] t= " *):

j=0:

token[j] = line{i];

while (isspace(line[++i]) == O && line[i] t=" ")

token[++j] = line[il;

token[++j] =" *;

strepy(funct- > header.name,token);

/* process function frame body */
strepy(funct-> input[0][0].term,™):
strepy(funct- > output[0][0].term.™);

strepy(funct-> uses[0][0].term,™);

73

input_or_index = -1;
output_or_index = -1;

uses_or_index = -1;

while ((fgets(line, LINE_SIZE.,ifp) = NULL)
&& (line[0] I= FRAME_SEPERATOR))
{
/* skip beginning white space */
i=-1;
while (isspace(line[++i]) 1= 0

&& line[i] t=" *);

/* process text */
if (islower(line[i]) != 0)
{
/* first character of relation/attribute */

/* is lower case x/

j=0;
token(j] = line[i);
while ((islower(line[++i]) != 0
I line[i] == "_") && line[i] t= *)
token[++] = line[i];

token[++j] =

/* determine relation/attribute type */

74

if (stremp(token,"input”) == Q)
{

/* parse input relation ¥/

/* skip white space */
while (isspace(line[++i]) 1= 0
&& line[i] I=" *);

while (line[i] t=")
{
if (line[i] == OR)
{
/* set up or index ¥/
input_and__index = 0;
if (input_or_index == -1)
input_or__index++;
if (stremp(funct-> inputfinput_or_index]
[input_and_index].term, ™) = 0)
input_or_index++;
if (input_or_index < FRAME_OR_MAX)
strepy(funct-> inputlinput_or_index+1]

[input_and_index].term, "™):

/* parse relation/attribute value */
if (input_or_index < FRAME_OR_MAX)
{

73

/* find start of nonterminal */
while (line[++i] t= DELM

&& line[i] =" *);

if (line[i] == DELM)
{
j=0;
token[j] = line[i];
while (line[++i] = DELM
&& line[i] t= ")
token[++j] = line[i];
if (line[i] == DELM)
{
token[++j] = line[i];

token[++j] = " ’;

/* store nonterminal */
if (input_and_index < FRAME_AND_MAX)
{
strepy(funct-> input[input_or_index]
[input_and_index].term,token);
input_and__index++;
strepy(funct-> inputfinput_or_index]

[input_and_index].term, ");

else

76

77

printf("**¢ Error ** AND limit reached"):
printf(" *** function parser0):
printf("%s : %s0, funct-> header.ftype,
funct-> header.name);
printf("%s", line);
}
}
else .
{
printf("*** Error *** invalid relation ");
printf("%s0, token);
}

else
if ((line[i] == ‘0" Il line[i] == '0")
&& (line[i+1] == 'r’ Il line[i+1] == "R"))
{
line[i] = OR;
linefi+1] =" *;
}

else
{
printf("*** Error *** OR limit reached ");
printf("*** function parser0);

printf("%s : %s0. funct-> header.ftype,

funct-> header.name);

else

if (stremp(token,"output”) == 0)

{

/* parse output relation */

/* skip white space */
while (issi:ace(line[++i]) l=0

&& line[i] =" *);

while (linefi] t=")
{
if (line[i] == OR)
{
/* set up or index */
output_and_index = 0;
if (output_or_index == -1)
output_or_ index++;
if (stremp(funct-> output[output_or_index]
[output_and_index].term, ™) t= 0)
output_or_index++;
if (output_or_index < FRAME_OR_MAX)
strepy(funct-> output[output_or_index+1]

[output_and_index].term, "™);

/* parse relation/attribute value */
if (output_or_index < FRAME_OR_MAX)
{
/* find start of nonterminal ¥/
while (line[++i] = DELM
&& line[i] t=" ');

if (line{i] == DELM)
{
j=0
token[j] = lineli];
while (line[++i] t= DELM
&& line[i] =")
token[++j] = line[i];
if (line{i] == DELM)
{
token[++j] = linefi]:

token[++j] = * *;

/* store nonterminal ¥/
if (output_and_index < FRAME_AND_MAX)
{
strepy(funct-> outputloutput_or_index]
[output_and__index).term,token):

output_and_index++;

79

strepy(funct-> outputfoutput_or_index]
[output_and_index].term, ™);
}
else
{
printf("*** Error ** AND limit reached");
printf(" #** function parser0);
printf("%s : %s0, funct-> header.ftype,
funct-> header.name);
printf("%s”, line);
}
}
else
{
printf(™** Error *** invalid relation *);
printf("%s0, token);
}

else
if ((line[i] == "o" Il line[i] == "0")
&& (linefi+1] == "’ I line[i+1] == 'R*))
{
line[i] = OR;
line[i+1] = ' ’;

}

80

else
{
printf("*** Error ** OR limit reached ");
printf("*** function parser0);
printf("%s : %s0, funct-> header.ftype,

funct-> header.name);

else

if (stremp(token,"uses™) == 0)
{
/* parse uses relation */
. while (isspace(line[++i]) 1= 0

&& line[i] t=" *);

while (line[i] t=")

{

if (line[i] == OR)
{
/* set up or index */
uses_and_index = Q;
if (uses_or_index == -1)

uses_or__index++;
if (stremp(funct-> uses{uses_or_index]
[uses_and_index].term, ™) != 0)

uses_or_index++;

81

if (uses_or_index < FRAME_OR_MAX)
strepy(funct-> uses[uses_or_index+1]

[uses_and_index].term, "™);

/* parse relation/attribute value */

if (uses_or_index < FRAME_OR_MAX)
{
/* skip white space */
while (line[++i] l= DELM

&& lineli] 1= ");

/* build nonterminal ¥/
if (line[i] == DELM)
{
=0
token[j] = line[i];
while (line[++i] t= DELM
&& lineli] l=" *)
token[++j] = line[il;
if (line[i] == DELM)
{
token[++j] = line{il;

token[++j] =" ";

/* store nonterminal */

if (uses_and_index < FRAME_AND_MAX)

82

{
strepy(funct->> uses[uses_or_index]
[uses_and_index].term, token);
uses_and_ index++;
strepy(funct-> uses[uses_or_index]
[uses_and_index].term, ™);

}

else
{
printf("** Error *** AND limit reached");
printf(" ¥** function parser0);
printf("%s : %s0, funct-> header.ftype,

funct-> header.name);

printf("%s", line);
}

}

else

{

printf("*** Error *** invalid relation ");

printf("%s0, token);

}

else
if ((line[i] == "o’ Il lineli] == "0")
&& (linefi+1] == '’ I linefi+1] == "R")
{
line[i] = OR;

83

line[i+1] = ' ";
}

else
{
printf("*** Error ** OR limit reached ");
printf(™** function parser0);
printf("%s : %s0, funct-> header.ftype.

funct-> header.name);

{

/* preprocessor will also allow structure, type */
/* and uses relations/attributes, however they
/* are parsed by the iod frame parser. L4
printf("*** Warning *** unknown function");
printf(" relation/attribute0);

printf("*** line flushed *** function parser0);
printf("%s".line);

}

i

84

Parse I/0 Data Frame

#include <stdio.h>
#include <ctype.h>

#include "era.def”

parse_iod(line,ifp.iod)
char line[]:
FILE *ifp; /* Input file pointer

struct iframe *iod;

int i,

j:

int type_or_index,
type_and_index.
str_or_index,
str_and_ index,
uts_or_index,

uts_and__index;

int match;

char word1[WORD_SIZE],

word2[WORD_SIZE],

double_ word[LINE_SIZE];

¥

85

char token[WORD_SIZE];

FILE *fopen(),
*dwip;

/* process iod frame header */
i=-1;
while (isspace(line[++i]) t= 0

&& line[i] =" 7);

j=0;
token([j] = line{i];

while ((islower(line[++i]) 1= 0

I line[i] == '_") && line[i] =")

token[++j] = line[il;

token[++j] =" *;

strepy(iod-> header.ftype,token);

while (line{++i] I= DELM

&& lineli] =" *);

if (line[i] == DELM)
{
i=0
token(j] = linelil:

while (line[++i] I= DELM

86

&& line[i] =" ")
token[++j] = line[il;
if (line[i] == DELM)
{
token[++j] = linei];
token[++j] =" °;
strcpy(iod-> header.name,token);
}
else
printf("%s invalid nonterminalQ,token);
}
else

printf("frame name not found0);

/* process iod frame body */

strepy(iod-> structure[0][0].term,"™);
strepy(iod~> type[0][0].term,™);

strepy(iod-> units{0][0].term,"™);

type_or_index = -1;
str_or _index = -1;

uts_or_index = -1;

while(fgets(line, LINE_SIZE.ifp) != NULL
&& line[0] = FRAME_SEPERATOR)

87

/* skip white space */
i==-1;
while (isspace(line[++i]) =0
&& line[i] = "0";

/* process text */
if (islower(line{i]) t= 0)

{

/* first character of relation/attribute */

/* is lower case */

j=0;
token(j] = linefi];
while ((islower(line[++i]) = 0
I tine[i] == *_") && line[i] 1= ")
token[++j] = linei];

token[++j] =" ;

/* determine relation/attribute type */

if (stremp(token."structure”) == 0)
{

/* parse structure relation */

/* skip white space */
while (isspace(line[++i]) t= 0

&& lineli] l= " *);

88

while (line[i] I= *)
{
if (line[i] == OR)
{
/* set up or index */
str_and_index = C;
if (str_or_index == -1)
str__or_index++;
if (stremp(iod-> structure{str_or_index]
[str_and_index].term, ™) = 0)
str_or_index++;
if (str_or_index < FRAME_OR_MAX)
strepy(iod-> structure(str_or_index+1]

[str_and_index].term, "™);

/* parse relation/attribute value */

if (str_or_index < FRAME_OR_MAX)
{
/* find start of nonterminal */
while (line[++i] 1= DELM

&& line[i] t= " ');

if (line[i] == DELM)
{
j=0;

token(j] = line[i];

89

while (line[++i] t= DELM
&& line[i] 1=" ")
token[++]] = line[i];
if (line[i] == DELM)
{
token[++] = line[il;

token[++j] =" *;

/* store nonterminal */
if (str_and__index < FRAME_AND_MAX)
{
strepy(iod-> structurelstr_or_index]
[str_and_index].term, token);
str_and_index++;
strepy(iod-> structurelstr_or_ index]
[str_and_index).term, ™);
}
else
{
printf("*** Error *** AND limit reached");
printf(" ** iod parser0);
printf("%s : %s0, iod-> header.ftype,
iod->header.name);
printf("%s", line);

}

else

90

{

printf("*** Error *** invalid relation ");
printf("%s0, token);
}

else
if ((line[i] == ‘o’ Il line[i] == ‘0")

&& (line[i+1] == 'r’ | line[i+1] == 'R"))

{
linefi] = OR;
line[i+1] = * -
}
}
}
else
{

printf("*** Error *** OR limit reached ");
printf("*** iod parser0);
printf("%s : %s0, iod-> header.ftype,

iod-> header.name);

else

if (strcmp(token,"type") == 0)

{

/* parse type relation */

91

/* skip white space */
while (isspace(line[++i]) 1= 0

&& line[i] =" ");

while (line[i] t=" *)
{
if (lineli] == OR)
{
/¥ set up or index */
type_and_index = 0;
if (type_or_index == -1)
type_or_index++;
if (stremp(iod-> type[type_or_index]
[type_and_index].term, ™) l= Q)
type_or_index++;
if (type_or_index < FRAME_OR_MAX)
strepy(iod-> typeltype_or_index+1]

[type_and_index].term, ™);

/* parse relation/attribute value */

if (type_or_index < FRAME_OR_MAX)
{
/* find start of nonterminal */
while (line[++i] l= DELM

&& line[i] =" *);

9

if (line[i] == DELM)
{
j=0;
token[j] = line[il:
while (line[++i] t= DELM
&& lineli] t=" *)
token[++j] = line[i];
if (line[i] == DELM)
{
token[++j] = line[il:

token[++jl =" ";

if (type_and_index < FRAME_AND_MAX)
: ,
strepy(iod-> typeltype_or_index]
[type_and_index].term, token);
type_and_index++;
strepy(iod-> type[type_or__index]
[type_and_index].term, ");
}
else
{
printf("*** Error ** AND limit reached");
printf(" *** jod parser0);
printf("%s : %s0, iod-> header.ftype,
iod->header.name);

printf("%s", line);

93

else
{

printf("*** Error *** invalid relation ");
printf("%s0, token);
}

else
if ((line[i] == "o Il line[i] == '0")
&& (line[i+1] == 'z’ |l line[i+1] == R"))
{
line[i] = OR;
line[i+1] = ";

}

else
{
printf("*** Error *** OR limit reached ");
printf("*** iod parser0);
printf("%s : %s0, iod-> header.ftype,

iod-> header.name);

else

if (stremp(token,"units™) == Q)

94

(

/* parse units relation */

dwfp = fopen("DOUBLE.WORDS", "r");

/* skip white space */
while (isspace(line[++i]) l= 0

&& linefi] t=" *):

if (line[i] == OR)

{

/* set up or index */

uts_and_ index = Q;

if (uts_or_jindex == -1)
uts_or_index++;

if (stremp(iod-> units{uts_or_index]

[uts_and_index].term, ™) = 0)

uts_or_index++;

if (uts_or_index < FRAME_OR_MAX)
strepy(iod-> units[uts_or_index+1]

[uts_and_index].term, "):

/* parse relation/attribute value */
if (uts_or_index < FRAME_OR_MAX)
{
while (line[i] t=" ")
{

95

while (isalpha(line[++i]) == 0

&& lineli] 1= *);

if (isalpha(line[i]) = 0)
{
j=0:
if (isupper(line[i]) == 0)
token(j] = line[i];
else
token[j] = tolower(line[i]):
while (isalpha(line[++i]) = 0
&& linefi] 1= " ")
if (isupper(line[i]) == 0)
token[++j] = line[i];
else
token[++j] = tolower(line[i]);

token[++j] = ’;

if (stremp(token, "and") t= 0)
{
if (uts_and_index < FRAME_AND_MAX)
{
match = 0;
if (uts_and_jndex > 0)
{
fseek(dwfp,0L,0);

while (fgets(double_word,

96

97

LINE_SIZE,dwfp)
t= NULL && match == 0)
{
sscanf(double_word,"%s %s",word1,
word2);
if (stremp(token,word2) == 0)
{
if (stremp(iod-> units[uts_or_index]
[uts_and_index-1].term,
word1) == 0)
{
streat(iod-> units{uts_or_index]
[uts_and_index-1].term,"");
strcat(iod-> units{uts_or__index]
[uts_and_index-1).term,
token);

match++;

)

}
if (match == 0)
{
strepy(iod- > units{uts_or__index]
[uts_and_index].term, token);
uts_and__index++;

strepy(iod-> units[uts_or_index]

[uts_and_index].term, ");

}
else
(

printf("0** ERROR *** AND limit reached0);

printf(" *** jod parser0);

printf("%s : %s0, iod-> header.ftype,
iod->header.name);

printf("%s", line);

)

else
{

printf("*** Error *** OR limit reached");
printf(" *** iod parser0);
printf("%s : %s0, iod-> header.ftype,
iod->header.name);

}

fclose(dwfp):

}

else
{

/* relation/attribute has been added to the */

98

/¥ preprocessor but not to the parser or */

/* input, output, or uses was found in an */

/* jod relation. e

printf("*** Warning ** unknown relation/attribute");
printf("*** line flushed0);

printf("%s",line);

}

99

Checker

#include <stdio.h>
#include <ctype.h>
#include "era.def”
#include "era.struct”
#include "era.resolve.c”
#include "era.compare.c”

#include "era.error.c”

main(arge.argv)
int argc;

char *argv(];

{

int ffd; /* Function Data file descriptor */

struct fframe funct;

struct hframe header_frame;

char report_typelWORD_SIZE]:

strcpy(report__type.*++argv);

printf("report type = %s0, report_type):

ffd = open("FUNCT",0);

if (ffd < 0)

100

101

{
printf("*** Error ** cannot");
printf(" open file FUNCTO);
}
else
{
1seek(ffd.OL.0);
while (read(ffd.&funct.sizeof (funct)) 1= 0)
{
/* resolve function frame relations */
resolve_relations(&funct.&header_frame);
compare_units(&funct,&header_frame);
print_errors(report_type):
}
close(ffd);
}
unlink("FUNCT");
unlink("INDATA");
unlink"OTDATA");
unlink("TDATA");
unlink("UDATA");
}

Resclve Relations

#include <stdio.h>
#include <ctype.h>
#include "era.def”
#include "era.det.c"

#include “era.and.c”

resolve_relations(funct,header_frame)
struct fframe *funct;

struct hframe *header_ frame;

{

int infd, /* Input Data file descriptor */
otfd, /* Output Data file descriptor */
tfd. /* Type Data file descriptor ¥/

ufd; /* Uses Data file descriptor */

int i,

i

struct and__set *units_ ptr;

infd = open("INDATA",0);
otfd = open("OTDATA",0);
ufd = open("UDATA",0);

tfd = open("TDATA",0);

102

103

if (infd < Ollotfd < Ol
ufd < 01l tfd < 0)
{
printf("*** Error *** cannot ");
printf("open data files0);
}
else

while (stremp(funct->
input[++i][j].term,") 1= 0)
{
header_frame-> input[i] =
(struct and_set *)
determine_units(infd,funct->
input[illj.term,tfd);
while (stremp(funct->
input[i][++jl.term.™) I= 0)
{
units_ ptr =
(struct and_set *)
determine_ units(infd.funct->
input{i](jl.term,tfd);
and_ unitsCheader_frame->

input(il, units_ptr);

104

j=0
}

header_frame-> input[i] = NULL:

while (stremp(funct->
output[++iJljl.term,”) != 0)
{
header_frame-> output[i] =
(struct and_ set *)
determine_ units(otfd.funct->
output[i][j].term,tfd);
while (stremp(funct->
outputfill++jl.term,™) 1= 0)
{
units_ ptr =
(struct and_set *)
determine__units(otfd.funct->
output{illjl.term.tfd);
and_ units(header_frame->

output(i],units_ptr);

j=0;
}

header_frame->output[i] = NULL;

i=-1;
j=0
while (stremp(funct->
uses{++i][jl.term,") = 0)
{
header_frame-> uses{i] =
(struct and_set *)
determine_ units(ufd,funct->
uses{i][j].term,tfd);
while (stremp(funct->
uses[i][++jl.term,”™) 1= 0)
{
units_ ptr =
(struct and_set *)
determine_ units(ufd,funct->
uses[i]{j].term,tfd);
and_ units(header_frame->

uses{i],units_ptr);

j=0;
}

header_ frame-> uses[i] = NULL;

close(infd);
close(otfd);
close(ufd);

close(tfd);

105

106

Compare Units

#include <stdio.h>
#include <ctype.h>
#include "era.def"

#include "era.find.c"

compare_units(funct,header_frame)
struct fframe *funct;

struct hframe *header_frame;

{
int input_or__index,
output_or_index,

uses_or_index;

int input_and__index,

output__and_ index;

int match;

int no_error,

uts_ flag:

struct and_set *output__ptr,
*input_ptr.

*uses_ ptr;

107

struct rel_ val

unresolved_units{l AND_SET_MAX];

int unres__uts__index:

FILE *fopen(),
*efp.
*sfp.

*cfp:

char line[LINE_SIZE],
word[WORD_SIZE],
syn[WORD_SIZE],
con[WORD_SIZE];

efp = fopen("ERROR.REPORT", "a");

fputs(funct-> header.ftype, efp);
fputs(" : *. efp);
fputs(funct-> header.name, efp);

fputs(“0, efp);

output__or_index = -1;
while (header_frame->output
[++output_or_index] t= NULL)
{

fputs(*Processing output set -0, ef p);

108

109

fputs(" ", efp);

output_and__index = -1;
while (stremp(funct-> outputfoutput_or_index]
[++output_and_index].term,™) l= ()
{
fputs(" ", efp);
fputs(funct-> output{output_or_index]
[output_and_index].term, efp);
}

fputs("0, efp);

/* process output set */
output_ ptr = header_frame—S
outputfoutput_or_index];
while (output_ptr = NULL)
{
fputs(" ", efp);
output_and__index = -1;
while (stremp(output__ptr-> units
[++output_and_index].term, ™) != 0)
{
fputs(" *, efp):
fputs(output__ptr-> units
[output_and_index].term ,efp);
}
fputs("0, efp);

no_error = 0;
if (header_frame-> input[0] == NULL)
{
uts_flag = 0;
while (stremp(output_ ptr-> units
[++output_and_index].term,™) t= 0)
if (stremp(output__ptr-> units
[output_and_index].term,"no match") 1= 0
&& stremp(output_ptr-> units
[output_and_ index].term,"no units") l= 0)
uts__flag+-+;
if Cuts_flag == 0)
No_error++;
}
input_or_index = -1;
while (header_frame-> input
{++input_or_index] = NULL)
{
fputs("Processing input set -0, efp);
fputs(" ", efp):
input_and__index = -1;
while (stremp(funct-> inputlinput_or_index]
[++input_and_index].term,™) != 0)
{
fputs(" *, efp);
fputs(funct-> input[input_or_jindex]

[input_and_index].term.efp):

110

}

fputs("0, efp);

/* process input set */

input_ptr = header_frame->

input{input_or_index];

while (input_ptr t= NULL)

{

fputs(" ", efp);

input_and_index = -1;

while (stremp(input__ptr->units

[++input_and_index].term, ™) != 0)
{
fputs(" *, efp);
fputs(input_ptr-> units
[input_and_index].term, efp):

}

fputs("0, efp);

strepy{unresolved_units[0].term,™);
unres_uts__index = -1;
output_and_index = -1;
while (stremp(output__ptr-> units
[++output_and_index].term.™) = 0)
{
if (stremp(output_ptr->units

[output_and_index].term,

111

"no units") 1= 0 &&
stremp(output_ ptr-> units
[output_and_index].term,
"no match") t= 0)
{
match = find__unit(output_ptr->
units{output_and_index].term,
input_ptr);
if (match ==)
{
/* check uses */
uses_or_index = -1;
while (header_frame->uses
[++uses_or_index] = NULL)
{
uses__ptr = header_frame->
uses{uses_or_index];
while (uses_ptr t= NULL)
{
match = find_unit{output_ptr->
unitsfoutput_and_ index].term,
uses_ptr);
if (match 1= 0)
uses_ptr = NULL:
else

uses__ptr = uses__ptr-> or_set;

112

113

}
if (match == Q)
{
/* check synonyms */
sfp = fopen("SYNONYM.DATA","r");
while (fgets(line, LINE_SIZE,
sfp) 1= NULL && match == 0)
{
sscanf(line, "%s : %s", word, syn);
if (strcmp(output_ ptr-> units
[output_and__index].term,word) = 0)
{
match = find_unit(syn,.input_ptr);
if (match == 0)
{
/* check for synonym in */
/* uses structure *
‘uses_or_index = -1;
while (header_frame-> uses
[++uses_or_index] != NULL)
{
uses_ptr = header_ frame->
uses[uses_or_index];
while (uses_ptr = NULL)
{

match = find_ unit(syn,uses_ptr);

114

if (match |=0)
uses_ ptr = NULL;
else

uses__ptr = uses__ptr->or_ set;

}
fclose(sfp);
}
if (match == 0)
{
/* check conversions */
cfp = fopen("CONVERSION.DATA""r");
while (fgets(line, LINE_SIZE,
¢fp) 1= NULL && match == 0)
{
sscanf(line, "%s : %s", word, con);
if (stremp(output_ptr->units
[output_and_index].term,word) == 0)
{
match = find_unit(con,input_ptr):
if (match == 0)
{
/* check for conversion in */

/* uses structure */

uses_or_index = -1;
while (header_frame-> uses
[++uses_or_index] != NULL)
{
uses_ ptr = header_frame->
uses[uses_or__index]:
while (uses_ptr != NULL)
{
match = find_unit(con,uses_ptr);
if (match I=0)
us&s;_ptr = NULL;
else

uses_ ptr = uses_ ptr->» or_ set;

}
fclose(cfp):

if (match != 0)
{

/* print conversion warning */

fputs(" Warning - conversion required ",

efp);
fputs(output_ptr-> units
[output_and_index].term, efp);

fputs("0, efp);

115

}
if (match == 0)
{
strepy(unresolved_ units[++unres_uts_index].term,
output_ptr->units{output_and_index].term);
strepy(unresolved_units[unres_uts_ index+1].term,

")

}
unres_ uts_ index = 0;
if (strcmp(unresolved_units
[unres_uts_index].term, ") {= 0)
{
/* print warning */
fputs(" Warning - unresolved units -", efp);
while (stremp(unresolved_ units
[unres_uts_index].term, ") != 0)
{
fputs(" ", efp);
fputs(unresolved_ units
[unres_uts__index++].term, efp):
: .
fputs("0, efp);
}

else

116

117

No_error++;
input__ptr = input_ ptr->or_ set,
}
}
if {no_error == 0)
{
fputs("Error - output units set was", efp);
fputs(" never produced0, efp):
}
output__ptr = output__ptr-> or_set;
}
}
fclose(efp):
}

Print Errors

#include <stdio.h>
#include <ctype.h>

#include "era.def”

print_errors(report__type)

char report_type{l;

{
FILE *fopen(),

*efp:

int match;

char line[LINE_SIZE],
word[WORD_SIZE];

ef p = fopen("ERROR.REPORT", "r");

match = 0;
if (stremp(report_type."short") == 0)
{
while(fgets(line, LINE_SIZE,
efp) = NULL && match == 0)
{

sscanf(line, "%s", word):

118

119

if (stremp(word,"Warning") == 0)

match++;

else

match++;

if (match tw Q)
{
fseek(efp.0L,0);
while(fgets(line, LINE_SIZE, efp) 1= NULL)

printf("%s" line);

fclose(efp);
unlink("ERROR.REPORT");

}

Determine Units

#include <stdio.h>
#include <ctype.h>

#include "era.def”

struct and_set *

determine_ units(fd,word,tfd)
int fd;

char word(];

int tfd;

{

int match;

int i,

i

struct iframe iod;
struct and_set *and_ ptr,
*or_ptr,

*units__ptr;

char *malloc();

1seek(fd,0L,0):

match = (;

120

while (read(fd.&iod.sizeof(iod)) l= 0
&& match == 0)
{
if (stremp(word,iod.header.name) == 0)
{
/* match found */

match++;

if (stremp(iod.units[0][0].term,™) != 0)
{
/* units found - copy units ¥/
i=-1;
j=0;
units_ptr = (struct and_set *)

malloc(sizeof (struct and_set));
if (units_ptr == NULL)
{

printf("*** Error *** malloc ¥**");

printf(" units pointer error0);
}
and__ptr = units_ ptr:
while (stremp(iod.units
[++i][jl.term,™) 1= 0)
{
strepy(and _ptr- > units{j).term.
iod.units[il[jl.term);

while (stremp(iod.units

121

[i][++j].term,™) I= 0)
strepy(and__ptr-> units(j].term,
iod.units{i][j].term);

strepy(and_ptr- >units[j].term,™);

j=0;

/* look ahead for more units */
if (stremp(iod.units[i+1][j].term,"™) t= 0)
{
or_ptr = (struct and_set *)
malloc(sizeof (struct and_ set));
if (or_ptr = NULL)
{
printf("*** Error *** malloc");
printf(" *** or pointer error0);
}
and_ptr->or_set = or_ptr;
and_ ptr = or__ptr;
}
else

and_ ptr->or_set = NULL;

else

122

/* no units - process structure */
/* and type 2/
if (stremp(iod.type[0][0].term,"™) t= 0)
{
/* process type */
i=-1;
j=0;
units_ptr = NULL;
while (stremp(iod.type
[++i][j].term,"™) 1= 0)
{
or_ptr = (struct and_set *)
determine_units(tfd.iod.type
(illj].term,tfd);
if (units_ptr == NULL)
Units_ptr = or_ptr;
while (stremp(iod.typelill++il.
term,™) = 0)
{
and_ptr = (struct and_set ¥)
determine_units(tfd,iod.type
[illj].term,tfd);

and_units(or_ptr.and__ptr):

}

/* connect or set */

if (units_ ptr l= or_ptr)

123

124

{
and__ptr = units_ ptr;
while (and_ptr->or_set != NULL)
and_ ptr = and__ptr-> or_set;
and__ptr->or_set = or_ptr;
}
j=0O;
}
}
else
if (stremp(iod.structure
[0][0].term,™) 1= 0)
{
/* process structure */
i=-1;
=0
units__ptr = NULL;
while (stremp(iod.structure
[++i][j].term,™) 1= 0)
{
or_ptr = (struct and_set *)
determine _units(tfd.iod.
structure(illil-term.tfd);
if (units_ptr == NULL)
units__ptr = or__ptr:
while (stremp(iod.structure

[ill++j).term,™) = 0)

125

{

and_ptr = (struct and_set ¥)
determine_units(tfd.iod.
structurefi][j}.term,tfd);

and_ units(or_ptr.and_ ptr);

}

/* connect or set */
if (units_ptr l= or_ptr)
{
and_ ptr = units_ptr;
while (and__ptr-> or_set != NULL)
and_ptr = and__ptr-> or_set;

and_ ptr-> or_set = or_ptr;

else
{
/* no units found */
units__ptr = (struct and_ set *¥) malloc
(sizeof (struct and_gset));
if (units_ptr == NULL)
{
printf("*** Error *** malloc");

printf(" *** no units pointer error0);

126

}
units__ptr->or_set = NULL;
strcpy(units_ptr-> units{0].term,"no units");
strepy(units_ptr-> units[1]1.term,");

}

}
if (match == 0)
{
units_ptr = (struct and_set *) malloc
(sizeof (struct and_ set)):
if (units_ptr == NULL)
{ _
printf("*** Error *** malloc ***");
printf(* no match pointer error0);
}
units_ptr->or_gset = NULL:
strepy(units_ptr-> units(0].term,"no match”);
strepy(units_ptr-> units[1].term.™);
}

return(units_ptr);

}

127

Find Units

#include <stdio.h>
#include <ctype.h>

#include "era.def"

int
find_unit(unit,and_ptr)
char unit{];

struct and_ set *and__ptr;

{
int i;

int match;

i=-1;

match = Q;

while ((stremp(and_ ptr-> units{++i].term,™)
b= Q) && match == 0)
if (stremp(unit.and_ptr->
unitsfi].term) == 0)
match++;

return(match);

}

And Units

#include <stdio.h>
#include <ctype.h>

#include "era.def”

and_units(or_ptr.and_ptr)
struct and_ set *or_ ptr;

struct and__set *and_ ptr;

int i,

i

int count;

char *malloc();

struct and__set *units_ptr,

*cp_ptr,
*next_ptr;

if (and_ptr = NULL)
{
/* count nodes */
units_ptr = and__ptr->or_get;

count = 1;

128

while (units_ ptr l= NULL)
{
units_ ptr = units_ ptr->or__set;
count++;

}

/* copy nodes */
units_ptr = or_ptr;
while (units_ ptr '= NULL)
{
next_ptr = units_ptr-> or_gset:
for (i=1;i < count; i++)
{
cp_ptr = (struct and_gset *) malloc
(sizeof(struct and_set));
if (cp_ptr == NULL)
{
printf("** Error ** malloc ***");
printf(" and units pointer error0);
}
units_ ptr->or_gset = cp_ptr;
j=-1;
while (stremp(units_ptr->
units{++jl.term,”) l= 0)
strepy(cp_ptr-> units{j].term,
units_ptr-> units{jl.term);

strepy(ep_ptr-> units{j].term,™);

129

units_ ptr = cp__ptr;
}
units_ ptr-> or_set = next__ ptr;
units_ptr = next_ ptr;
}
units_ptr = or_ptr:
while (units_ ptr = NULL)
{
/* and nodes */
cp_ptr = and__ptr;
while (cp_ptr 1= NULL)
{
i=-1;
while (stremp(units_ ptr->
units[++i].term,”) 1= 0);
j=-1;
while (i < AND_SET_MAX && (strcmp
(cp_ptr->units[++jl.term,"™) 1= 0))
{
strcpy(units_ptr-> units[i].term,
cp_ptr-> units[j].term);
i++;
)
if (stremp(ep_ptr-> units{jl.term,™) == 0)
strepy(units_ptr-> units[i].term,™);
else
{

130

131

printf("*** Error *** too many units");
printf(" *** and_ units0);
strepy(units_ ptr-> units{il.term,"™);
}
€p_ptr = cp__ptr->> or_set;
units__ptr = units__ptr->or__set;

}

THE UNITS OF MEASURE CONSISTENCY CHECKER
FOR
THE ENTITY-RELATIONSHIP-ATTRIBUTE REQUIREMENTS MODEL

by

GALE LYNN METZ

B. S., University of Illinois, Urbana, 1977

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

Kansas State University

Manhattan, Kansas

1986

Abstract

As software systems become larger and more complex, many man hours can be
wasted designing and testing software that has been developed from incorrect
specifications. Therefore, increasing effort is being devoted to uncovering errors as early as
possible in the development cycle. Much of this effort is being directed at formalizing the
language used in the requirements specification document. This formalization will eventu-
ally allow computer aids to help ensure the correctness of the requirements specification
document. One such formalism is the Entity-Relationship-Attribute (E-R-A) Requirements
Specification language, which uses a frame oriented data structure to represent real-world
knowledge. This type of representation allows the specification to be checked for various
forms of correctness.

This report describes a units of measure consistency checker that has been
developed for the E-R-A model. It is part of a group implementation project. This portion
of the system will verify that the specified output units of measure can be obtained from
the given input units of measure. In order to accomplish this goal, it first parses the E-R-A
Specification, searches until all the input and output units of measure have been obtained
and then verifies that the necessary units of measure exist to obtain the required output

units of measure.

