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Abstract 

Salinity has become a major concern in irrigated agriculture. Degraded water quality due to 

salinity threatens agricultural sustainability by limiting agricultural productivity and profitability. 

The natural intrusion of saltwater into aquifers is one reason for salinity, yet groundwater 

overpumping for irrigated agriculture, and regional climate and hydrology conditions have 

compounded such salinity challenges. The sustainability of irrigated agriculture in a saline 

environment depends on an accurate understanding of the effects of salinity and potential 

methods of adaptation. This dissertation contains three chapters providing insights into how 

salinity impacts agricultural decisions and land values. These insights are obtained by analyzing 

two regions, the High Plains Aquifer in central Kansas and the Central Valley Aquifer in 

California. 

The first chapter examines the impact of groundwater salinity on farmers’ main irrigation 

decisions by estimating the response along the extensive (i.e., irrigated acres), direct intensive 

(i.e., water application depth), and indirect intensive (i.e., crop choice) margins. Econometrics 

models are estimated using observed farmer behavior in response to exposure to different 

groundwater salinity levels using field-level panel data in a region of Kansas during 1991–2014. 

Results demonstrate that farmers facing salinity adjust their water use through all three margins, 

but most of the decrease in water use due to higher salinity is through the extensive margin. 

The second chapter evaluates the impact of groundwater salinity on agricultural land 

values with a unique dataset of parcel sale prices during 1988–2015 in a region of Kansas. I 

estimate hedonic regression models that control for spatial heterogeneity using either county 

fixed-effects or a nonlinear function of the geographic coordinates. The results demonstrate that 



  

groundwater salinity negatively impacts land values. These estimates can be interpreted as the 

economic damages from salinity, or equivalently, farmers’ willingness-to-pay to offset salinity.  

The third chapter quantifies the adaption to soil salinity by farmers in California’s 

Western San Joaquin Valley by econometrically estimating how farmers change crop choices in 

response to different soil salinity levels. I use high-resolution remotely-sensed soil salinity and 

crop data during 2007–2016. My estimates show that as the level of salinity increases, the 

probability of growing salt-tolerant crops increases. This suggests that farmer’ adapt to salinity 

according to the degree of salinity. However, my estimates may have some endogeneity bias 

since crop choice affects the amount of water applied, which could affect the amount of soil 

salinity.  
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(i.e., water application depth), and indirect intensive (i.e., crop choice) margins. Econometrics 

models are estimated using observed farmer behavior in response to exposure to different 

groundwater salinity levels using field-level panel data in a region of Kansas during 1991–2014. 

Results demonstrate that farmers facing salinity adjust their water use through all three margins, 

but most of the decrease in water use due to higher salinity is through the extensive margin. 

The second chapter evaluates the impact of groundwater salinity on agricultural land 

values with a unique dataset of parcel sale prices during 1988–2015 in a region of Kansas. I 

estimate hedonic regression models that control for spatial heterogeneity using either county 

fixed-effects or a nonlinear function of the geographic coordinates. The results demonstrate that 



  

groundwater salinity negatively impacts land values. These estimates can be interpreted as the 

economic damages from salinity, or equivalently, farmers’ willingness-to-pay to offset salinity.  

The third chapter quantifies the adaption to soil salinity by farmers in California’s 

Western San Joaquin Valley by econometrically estimating how farmers change crop choices in 

response to different soil salinity levels. I use high-resolution remotely-sensed soil salinity and 

crop data during 2007–2016. My estimates show that as the level of salinity increases, the 

probability of growing salt-tolerant crops increases. This suggests that farmer’ adapt to salinity 

according to the degree of salinity. However, my estimates may have some endogeneity bias 

since crop choice affects the amount of water applied, which could affect the amount of soil 

salinity. 
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Chapter 1 - Agricultural Decisions in Response to Groundwater 

Salinity on Irrigated Lands in Kansas  

 

1.1. Introduction 

Many of the most productive agricultural areas of the world including the United States depend 

on groundwater. Dependence on groundwater for irrigation has grown rapidly over the last 20-40 

years, even in areas with long dry seasons and/or regular droughts (Llamas and Martínez-Santos 

2005). The UN-FAO initiative estimates that more than one-third of the world’s 303 million ha 

irrigated lands are served by groundwater, and the United States uses groundwater for 59% of its 

irrigated area 26.4 million ha (FAO 2019a).  

The value of groundwater depends on the sustainable availability of water that is of a 

suitable quality and adequate quantity. Much attention has focused on conserving quantity 

through management strategies to reduce depletion of groundwater (e.g., Gisser and Sánchez 

1980; Brozovic et al. 2006; Merrill and Guilfoos 2018; Ashwell, Peterson and Hendricks 2018), 

yet relatively little attention has been given to suitable quality. The likely reason for this can be 

attributed to the fact that the degradation of groundwater quality––due to its hydrogeographic 

position––takes a long time to be visually captured by users. Even if it is noticeable, there exist 

difficulties in sampling and quantifying the change in quality (Suarez 1989).  

Groundwater salinity in irrigated lands is a prominent issue in groundwater quality 

degradation and closely aligned to an intrusion of saltwater into freshwater aquifers in the 

process of pumping for agricultural production (Foster et al. 2000; Scanlon et al. 2007; Van 

Weert, Van der Gun and Reckman 2009; Garduño and Foster 2010). The natural intrusion of 

saltwater is one reason for salinity, yet excessive groundwater pumping triggers aquifer depletion 
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and may change the intrusion rate or flow patterns of the salinity through alterations in 

groundwater head (Rubin, Young and Buddemeier 2000).  

Many previous studies have found evidence that elevated salinity contamination 

adversely affects the agricultural potential by reducing the productivity and profitability of crop 

yields and increasing additional costs for salinity controlled and remediated (e.g., Haw, Cocklin 

and Mercer 2000; Shani and Dudley 2001; Munns 2002; George, Clarke and English 2008). The 

majority of existing literature has largely highlighted crop/plant responses to salinity rather than 

farmers’ responses––mainly in terms of reduction of crop yields. These studies presuppose that 

farmers make no behavioral changes to adjust to losses from groundwater salinity. This 

assumption, however, might overestimate the damages (Seo and Mendelsohn 2008a). The 

existing literature has also found that irrigation practice, current local hydrological properties, 

and the climate were all causes of groundwater salinity (Ma and Sophocleous 1994; Beltran and 

Martinez 1999; Foster, Brozović and Butler 2017; Foster et al. 2018). 

The limited economic literature examining groundwater salinity has focused on analyzing 

salinity control via improved irrigation efficiency and changing cropping pattern using 

mathematical programming optimization approaches and calibration of crop-water production 

functions (e.g., Lee and Howitt 1996; Heaney, Beare and Bell 2001; Schwabe, Kan and Knapp 

2006). Some related papers examine crop choice in the context of water/land environment and 

irrigation technology changes, policy or energy prices changes, and climate changes, yet no 

single paper is involved in groundwater salinity.1 There is a lack of econometric studies that 

 
1 For example, representatively, water/land environment and irrigation technology changes include (Lichtenberg 

1989; Wu, Mapp and Bernardo 1994); policy or energy prices changes include (Wu and Segerson 1995; Wu and 

Adams 2001; Pfeiffer and Lin 2014); and climate changes include (Kurukulasuriya and Mendelsohn 2008; Seo and 

Mendelsohn 2008a; Fleischer et al. 2011). 
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estimate how farmers adapt to higher salinity through changes in irrigation decisions with 

observed behavior.  

Unlike prior literature, I estimate econometric models using observed farmer behavior in 

response to different groundwater salinity levels based on field-level panel data over 23 years in 

south-central Kansas. I analyze responses in terms of three main agricultural decisions: irrigated 

acreage, crop choice, and water application. In particular, I observe changes in such decisions in 

the context of total groundwater use and decompose it into the extensive, indirect intensive, and 

direct intensive margins effect, in the spirit of Moore, Gollehon and Carey (1994), Schoengold, 

Sunding and Moreno (2006), and Hendricks and Peterson (2012). 

My findings demonstrate that farmers in the face of groundwater salinity change their 

decisions on irrigated acreage, crop choice, and water application. First, I find that farmers 

reduce water use along the extensive margin by reducing irrigated acres in response to an 

increase in groundwater salinity. Second, farmers increase water use along the indirect intensive 

margin by switching to more salt-tolerant crops that happen to be more water-intensive. Third, 

farmers decrease water use along the direct intensive margin by reducing the depth of water 

applied to avoid increasing water salinity. Fourth, the overall impact of an increase in salinity is a 

decrease in water use, predominantly through changes at the extensive margin.  

The empirical findings indicate that it is critical to design effective and efficient 

management of groundwater so as to minimize costs from ongoing groundwater quality 

degradation and maximize sustainable agriculture benefits. Understanding the interaction 

between groundwater salinity and agricultural decision-making is important for such 

groundwater management. 
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1.2. Background and Data Description 

To understand how groundwater salinity impacts farmers’ responses, it is necessary to provide 

background on the region’s environmental setting. I focus on field-level decision making by 

constructing panel data of 31,293 unique fields during 1991–2014 from the High Plains Aquifer 

(HPA) in the eastern portion of Big Bend Groundwater Management District No.5 (GMD5) 

underlying the Great Bend Prairie Aquifer of South-Central Kansas (Figure 1.1).  

 

1.2.1. Environmental Setting in GMD5  

The eastern portion of GMD5 shows high salinity contamination in groundwater. The source of 

salinity is ascribed to natural saltwater intrusion from the Permian bedrock into the freshwater 

aquifer, called the Great Bend Prairie aquifer (see the bottom half of Figure 1.2). Since the Great 

Bend Prairie Aquifer is not effectively separated from the underlying Permian bedrock 

containing ancient brine (halite)2, saltwater in the bedrock intrudes freely into the base of the 

aquifer, then disperses upward in the aquifer with groundwater flow. As a result, the base of the 

Great Bend Prairie aquifer shows a salinity pattern similar to the Permian bedrock wells 

(Buddemeier, Sophocleous and Whittemore 1992).  

The source of salinity is in the Permian bedrock, but intensive local pumping causes the 

water table to decline (i.e., the surface of the saturated part of the aquifer), leading to increased 

upward movement of the saltwater into the base of the aquifer. GMD5 in Kansas, which is using 

99% of groundwater pumped for irrigated agriculture (Pfeiffer and Lin 2014), is expected to be 

particularly vulnerable to salinity during the growing season.   

 
2 Halite, commonly known as rock salt, is a type of salt, is composed of sodium chloride with mineral form. 
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The slope of the aquifer and permeability of the aquifer result in greater salinity 

accumulation in the eastern portion of GMD5. The water table in GMD5 slopes downward from 

west to east, resulting in a west-to-east flow of the water (see the bold arrow in the upper half of 

Figure 1.2). Thus, the depth to water table (i.e., the distance between the altitude of the land 

surface and the altitude of the water table) tends to decrease toward the east, thereby the eastern 

part of GMD5 becomes a discharge area for either saltwater or freshwater (Buddemeier, 

Sophocleous and Whittemore 1992).  

If the aquifer has a confining layer, then saltwater intrusion can be blocked. Nearly all 

rocks and sediments contain pores of diverse-size. The fraction of the pores through which water 

can flow relative to the total space is called porosity. Porosity depends on the size of the soil 

particle determining soil texture and is fairly associated with the permeability of soils (Nimmo 

2004). Simply, clay with low porosity by small particles can hold water longer than sand with 

high porosity, easier-drained soils by large particles. This imparts that GMD5, where soils are 

sandier than other regions, and more easily drained, is prone to exposure to saltwater intrusion 

due to the lack of the confining layer acting as a shield from the saltwater (Buchanan et al. 2009). 

 Indeed, since 1990, the eastern portion of GMD5 has maintained a moratorium on 

appropriations due to concerns about groundwater quality challenges. This reflects that 

groundwater salinity is a long-standing concern in the region, and it is quite clear that this 

concern needs to be managed within the context of the sustainability of both groundwater 

resources and irrigated agriculture.  
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1.2.2. Irrigated Acreage, Crop Proportion, Depth of Water 

I construct three dependent variables for three agricultural decisions: (i) the number of total 

irrigated acres during the water-use year (i.e., acres_irr in Table 1.1), (ii) probability of planting 

each of the crops, and (iii) depth of water applied conditional on crop choice (i.e., depth_inches 

in Table 1.1). Mean and standard deviation for these dependent variables are provided in Table 

1.1. These dependent variables are from a unique database known as the Water Information 

Management and Analysis System (WIMAS) administrated by the Kansas Department of 

Agriculture, Division of Water Resources (KDA-DWR) and the Kansas Geological Survey. 

WIMAS contains spatially-referenced information on groundwater wells or surface water intakes 

(i.e., the point of diversion), place of use, authorized quantity, reported water use, crop type, 

irrigation system type, along with an identification number and information on each farmer and 

the field. Farmers are required by law to report this information to the KDA-DWR annually.  

WIMAS does not report the number of acres planted to each crop nor the water applied to 

each crop. Because of this, I follow the methodology of Hendricks and Peterson (2012), and 

simply assume that if k crops were grown, the proportion of the field in each crop was 1/k, based 

on the 78 crop reporting codes provided by the KDA-DWR annual report. Based on this 

methodology, I categorized that the most common irrigated crops grown in the study region are 

corn, soybeans, multiple crops, other crops, alfalfa, sorghum, and wheat, over the entire sample 

period. The proportion of these seven crops are obtained by dividing with irrigated acres. 

Specifically, corn (61.46%), soybeans (20.71%), and multiple crops (16.74%) account for the 

majority of the seven major crops, while alfalfa (6.79%), sorghum (3.87%), wheat (6.75%), and 

other crops (3.40%) comprise a relatively small share of the observations.  
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“Multiple” is defined as double-cropping3 or more than one type of crop but the specific 

crops grown were not indicated by farmers. “Other” is defined as the mixed composition of oats, 

barley, rye, dry beans, sunflowers, orchard grass, golf course, truck farm, and nursery. To 

constitute a more relevant crop choice, this paper reduces the choice to four field crops by 

combining alfalfa, sorghum, and wheat into “other” crops. The four field crops include corn, 

soybeans, multiple, and other. 

 

1.2.3. Groundwater Salinity   

Total dissolved solids (so-called TDS), which is literally the sum of all the substances dissolved 

in water, are generally known as a measure of salinity. However, the regions where the 

groundwater consists of different chemical types or a certain predominant chemical character 

such as chloride and sulfate composing the total dissolved solids, either chloride or sulfate 

concentration can be a better measure of salinity. GMD5 mainly displays chloride-type water and 

hence I use the level of chloride concentration with four salinity classifications: (i) freshwater ( 

<500 mg/L), (ii) low to moderate salinity (500-1,000 mg/L), (iii) moderate to strong salinity 

(1,000-5,000 mg/L), and (iv) very strong salinity (>5,000 mg/L). The first level called freshwater 

is used as the base category. This level appears where there is non-salinity or very slight natural 

saltwater. This level does not cause the region’s main crops yield loss and thus is referred to as 

“freshwater4” in this study.  

The spatial variation of salinity is obtained from the image files displaying maps of 

chloride contours for the Permian bedrock, the base, and the upper of the unconsolidated aquifer 

 
3 Double-cropping means planting two different crops in the same field during a single year. 
4 According to the Department of Health and Environment, freshwater has TDS contents less than 500 mg/L and 

both chloride and sulfate concentrations 250 mg/L. 
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in the eastern part of GMD5. These maps were updated in 2017 from the map generated from 

Whittemore (1993) and provided via personal communication. The base, which has a salinity 

pattern similar to the bedrock, is located at the lower part of the aquifer and has a higher 

concentration of salt than the upper portion of the aquifer. The base of the aquifer has a greater 

concentration of salt because groundwater with a greater density due to the salt content naturally 

sinks towards the bottom.  

My key measure of salinity that impacts farmer behavior is the measure of salinity at the 

base of the aquifer. Even though groundwater wells do not pump water from the base of the 

aquifer, the salinity in the base should affect farmer decisions. The degree of salinity in the base 

affects pumping decisions because farmers want to avoid intrusion of the salinity into the upper 

part of the aquifer.  Pumping more water for irrigation increases how much salinity is in the 

upper portion and thereby affects how much salinity is applied to the cultivated crops and 

ultimately crop yield. Another key advantage of using the salinity in the base of the aquifer as 

my measure of salinity is that it is  not something the farmer can control (i.e., it is exogenously 

determined by natural causes). Even though the salinity of the aquifer in the upper portion is a 

better measure of the salinity of the water actually applied to the crop, I would not want to use it 

as my measure of salinity in the regression because salinity in the upper portion is endogenous 

since the amount of pumping causes changes of the salinity of the upper portion.  

 Based on the map of chloride concentrations for the base of the aquifer, I extract attribute 

values by georeferencing in ArcGIS and spatially merge the data to points of diversions. Figure 

1.3 illustrates an original image file and a new map by georeferencing for the spatial distribution 

of chloride concentrations. It is important to note that I only use measures of how salinity varies 

spatially in this region and do not use measures of how salinity has changed over time. 
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According to Whittemore (1993), chloride concentrations at some sites remained almost 

constant, some slightly decreased/increased, some noticeably decreased/increased, while others 

still fluctuated, but most wells overall show a constant salinity indicating no substantial changes. 

As such, variations in salinity over time across observed wells are detected in the region, but are 

not large enough to yield estimates of meaningful agricultural responses over time. Furthermore, 

the only map of chloride concentrations available from the Kansas Geological Survey was for a 

single point in time, so data availability constrains me from incorporating changes over time. 

 

1.2.4. Soils, Hydrology, and Weather  

I use soil characteristics, hydrological properties, and weather conditions as control variables that 

affect agricultural decisions. Mean and standard deviation for these explanatory variables are 

provided in Table 1.1. 

Soil characteristics include soil organic carbon, bulk density, proportion of cropland with 

a pH less than 6, proportion of cropland with a pH greater than 7.5, root zone available water 

storage, and the log of slope and are collected from the Soil Survey Geographic (SSURGO). 

These variables were selected based on the Soil Quality Indicator Sheets from the USDA’s 

Natural Resources Conservation Service Soils (USDA-NRCS 2019) and are the same variables 

selected by Hendricks (2018).  

Soil organic carbon improves various soil structure or fertility by providing energy 

sources for soil microorganisms and nutrient availability through mineralization, leading to the 

promotion of plant growth. High bulk density indicates low soil porosity and soil compaction by 

restricting root growth and impacting movement of air and water through the soil. Soil pH is an 

indicator of soil health by measuring soil acidity or alkalinity. Soil pH levels that are too high or 
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too low cause declines in crop yields, suitability, or plant nutrient availability, resulting in 

deterioration of soil health. For example, if the pH is less than 6 or greater than 7.5, yields for 

most crops decrease due to limited availability of phosphate to plants. Root zone available water 

storage5 is plant-available water holding capacity in the root zoon depth and supports crop yield 

potential and stability. The slope of the land affects crop productivity in relation to soil loss––for 

instance soil loss tends to increase with steep slopes (Liu et al. 2000; Kapolka and Dollhopf 

2001). I take the log of slope to use a more normally distributed variable. 

For hydrology, I use predevelopment saturated thickness. Saturated thickness is the 

vertical saturated thickness of the aquifer (i.e., the distance from Permian bedrock to the water 

table in Figure 1.2) presenting the amount of water available. As the saturated thickness 

declines, the depth to the water table increases, which implies upward movement of more salinity 

and limits the irrigation extensity and intensity. I use predevelopment values rather than the 

current values to avoid any potential endogeneity issue—current saturated thickness is smaller in 

areas with larger water use—since predevelopment values are estimated before the withdrawal of 

significant amounts of groundwater. 

Additionally, I construct January-April and May-August growing season precipitations 

and May-August growing season reference evapotranspiration using daily precipitation, 

maximum and minimum temperature from the PRISM climate group to represent field-level 

weather conditions. Reference evapotranspiration (ET0) is the loss of water from the soil (i.e., 

evaporation) and from crops (i.e., transpiration) of a grass landcover. Therefore, high 

evapotranspiration causes the soil and the plant to lose water faster, which impacts water use. 

 
5 The information of this variable from the Soil Quality Indicator Sheets is insufficient. See Leenaars et al. (2015)  

for details.  
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I do not include temperature as a separate control because temperature is embedded in the 

calculation of ET0. With reference to Allen et al. (1998) and Hendricks (2018), in calculating 

reference ET0, a reduced-set Penman-Monteith method that requires only maximum and 

minimum temperature is used as an alternative to the full Penman-Monteith method that 

demands additional information on solar radiation, vapor pressure, and wind speed, besides 

minimum and maximum temperature. 

 

1.3. Conceptual Model 

Consider a farmer’s total water use on a field where iS  is the groundwater salinity. In the 

conceptual model, I use simple notation by writing the total water use as only a function of the 

salinity––admittedly, water use depends on several other factors, such as crop prices, other input 

prices, pumping costs, land quality, or climate conditions––and by treating salinity as a 

continuous variable for the purpose of decomposing the total margin effect of total water use.  

For each field i over time t, let ( )it iIA S  denote the irrigated acreage, let ( )itj iC S  denote 

the proportion of irrigated acreage for each of the possible j=1,…,J crop choices, and let ( )itjW S  

denote the water applications per acre (inches per acre) for each of the possible j=1,…,J crop 

choices. The summation of ( )itj iC S  times ( )itj iW S  constitutes the average water applied per acre. 

Total water use is driven by multiplying the irrigated acreage to the average water applied per 

acre as follows:  
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where primes denote first derivatives. The definition of the margin effect terms varies with the 

existing literature.6 I refer to the first term in equation (2) as the “pure extensive margin (or more 

concisely, extensive margin)” effect; the second term as the “indirect intensive margin” effect; 

and the third term as the “direct intensive margin” effect according to Hendricks and Peterson 

(2012)’s definitions.   

The pure extensive margin effect measures the effect of an incremental expansion in 

irrigated acreage holding the crop choice decision itjC  and water application on the crop itjW  

constant. The indirect intensive margin effect is a change in water application per acre through a 

change of crop choice decision, holding total irrigated acres itIA  and water application on the 

crop itjW  constant. The direct intensive margin effect captures a change in water applied per acre 

 
6 Moore et al. (1994), Schoengold et al. (2006), and Brent (2018) describe “indirect intensive margin” defined in this 

study as “extensive margin”, and “direct intensive margin” as “intensive margin”. 
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through changes in the water applied on each crop choice, holding total irrigated acres itIA  and 

the crop choice decision itjC  constant.  

Table 1.4 gives a summary of the expected sign of each of the marginal effects of an 

increase in salinity. Excessive pumping causes aquifer depletion that leads to salinity intrusion in 

the upper parts of the aquifer. Accordingly, an increase in the level of salinity in the base of the 

aquifer will cause farmers to irrigate fewer acres to avoid saltwater intrusion into the upper 

regions of the aquifer where water is extracted from. I therefore expect salinity to have a 

negative impact on irrigated acreage. 

I hypothesize that as the salinity increases farmers would switch to more salt-tolerant 

crop, ceteris paribus. Accordingly, salinity will have a negative impact on the probability of 

planting less salt-tolerant crops. Whether these changes in cropping patterns result in an increase 

or decrease in water use depends on whether the more salt-tolerant crops are more water 

intensive crops or not.  

First considering the negative case, farmers switch to more salt-tolerant crops that happen 

to be less water-intensive, leading to reduced pumping. Consequently, this reflects a reduction 

along the indirect intensive margin. Alternatively, farmers could switch to more salt-tolerant 

crops that happen to be more water-intensive, leading to increased pumping. Consequently, this 

reflects an increase in water use along the indirect intensive margin. In summary, the sign of the 

effect of salinity on the indirect intensive margin is indeterminant (see Table 1.4). 

The impact of groundwater salinity on water application per acre conditional on crop 

choice is expected to emerge from two different effects. On one hand, if more water is applied 

then the aquifer is depleted more, and salts move from the lower portions of the aquifer into the 

higher portions of the aquifer, so that pumping more means that there will be effectively more 
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salinity in the water. Consequently, farmers with greater amounts of salinity in the base of the 

aquifer would be induced to decrease the irrigation intensity to avoid saline groundwater 

application, which implies that greater salinity leads to less irrigation intensity (hereafter called 

“salinity intrusion effect”).  

On the other hand, lower irrigation intensity would lead to accumulation of salts in the 

soil over time. In response to this, one might expect farmers to increase their irrigation intensity 

because if more water is applied then it can flush out the salts in the soils (hereafter called 

“salinity washing effect”). Consequently, more salinity in the groundwater could lead to greater 

irrigation intensity. The overall impact of salinity on intensity is indeterminant because it resorts 

to whether the “salinity intrusion effect” or “salinity washing effect” is larger (see Table 1.4 for 

summary).  

 

1.4. Econometric Model 

To estimate the decomposition for each margin effect in equation (2), I exploit three different 

econometric models that enable me to accommodate each agricultural decision in response to 

groundwater salinity.  

In panel data, typically, observations within the panel share similar characteristics, 

thereby the error is large when considering individual observations. However, due to the 

clustering nature, there is a tendency to reduce the standard error of the entire data. Not 

considering this within-cluster dependence can lead to misleadingly narrow confidence intervals, 

large t-statistics, and low p-values, and can be consequently misleading as a result of reduced 

standard error even for results that do not actually have statistical significance (Cameron and 

Miller 2015).  
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A common way to correct the estimation of the standard error is to assume zero spatial 

correlation across groups, but allow the within-group spatial correlation (Cameron and Trivedi 

2005). I cluster standard errors at the point of diversion and assume observations (i.e., all of the 

fields) within a point of diversion close to each other are likely to have dependency, but 

independence across the point of diversions. 

 

1.4.1. Irrigated Acreage Estimation  

The regression model for irrigated acreage is as follows: 

  1 1it t itIA α θ ε′ ′= + + + +i 1 itβ S γ X                                                                      (3) 

where itIA are irrigated acres for each field i in year t and iS is a vector of categorical variables to 

indicate a different levels of salinity for each field i. Specifically, the salinity levels are 

categorized into four levels: (i) freshwater (<500 mg/L) as the base category, (ii) low to moderate 

salinity (500-1,000 mg/L), (iii) moderate to strong salinity (1,000-5,000 mg/L), and (iv) very 

strong salinity (>5,000 mg/L). itX is a vector of controls including soil organic carbon, 

proportion of cropland with a pH less than 6, proportion of cropland with a pH greater than 7.5, 

rootzone available water storage, bulk density, log of slope, saturated thickness, January-April 

precipitation, May-August precipitation, and May-August evapotranspiration. 1β  and 1γ  are 

vectors of parameters to be estimated. 𝜃𝜃𝑡𝑡 represent year fixed effects to estimate a separate 

parameter (i.e., intercept) for each year and captures the effect of macro-level shocks which 

affect all fields, such as changes in crop prices, energy prices, and other input prices. itε is an 

idiosyncratic error term.  
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1.4.2. Crop Choices Estimation  

This section describes the multinomial logit (MNL) model for crop choice, deriving indirect 

intensive margin effect by salinity. The probability of selecting crop 𝑗𝑗 is:  

2

1 2

exp( )       
( )

exp( )  

j j
m m it-1,m

it l l
m m it-1,m

C
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C
α π

α π
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= =
′ ′∑ + +∑

j j
2 i 2 it

l l
2 i 2 it
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                            (4) 

where ( )itProb C j= is the probability that crop j is selected at field i in year t.  j represents four 

crop choice decisions with 1,  2,  3,  4j =  for corn, soybeans, multiple crops, and other crops, 

respectively, at different levels of salinity. The descriptive of ′j
2 iβ S  and ′j

2 itγ X  is the same as in 

equation (3) because the controls used for the estimation for the irrigated acreage decision are 

likely to have the same effect on the crop choice decision. it -1,mC is a variable indicating the 

proportion of the field planted to each crop in the previous year.  

In this MNL model, the lagged values of the proportion of each crop choice decision are 

likely to affect crop choice decision this year due to the crop rotation patterns (Pfeiffer and Lin 

2014; Hendricks, Smith and Sumner 2014). The lagged values are used as the instrument 

variables to address endogeneity of current crop choices for the water application model in the 

next Section 4.3.  

 

1.4.3. Water Application Estimation  

This section estimates the two stage least squares (2SLS) model for water application. In 

estimating this, one potential econometric issue is that crop choices may be potentially 

endogenous due to omitted variable bias. Intuitively, potential unobserved factors that cause crop 

choices can also influence the water application decision. Borrowing Hendricks and Peterson 

(2012)’s example, even if a farmer cultivating corn uses more water than a farmer cultivating 
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wheat, it cannot be concluded that corn is a more water-intensive crop. Possibly some 

unobservable characteristics of the farmer and field where corn is grown may have corn be 

selected more often, thereby more water is applied to corn relative to other crops. 

Using the Robust Durbin-Wu-Hausman test for endogeneity of the crop choice variables, 

I conclude these variables are endogenous by rejecting the null hypothesis that crop choices are 

exogenous with a significance level of 5% (p-values of 0.01 for the crop choices). To address the 

omitted variable bias, I use the Instrumental Variable (IV) estimation approach using one-year 

lagged proportions of each crop choice as IV. The IV should affect the outcome only via its 

connection with the endogenous variable. I assume that the lagged crop choice affects the current 

crop choice due to crop rotation incentives, but that that the lagged crop choice does not directly 

affect water use in the current year. 

Additionally, considering a just-identified model with four endogenous variables 

instrumented by four variables, I incorporate conditional crop choices into the 2SLS estimation  

with the same controls used in other econometric regression models. The specific 2SLS model is 

as follows: 



3

4

                    2nd stage

                                                                                                

it j itj t it
j

itj m m it-1,m t i

W C u

C C n

α δ θ

α φ θ

′ ′= + + + + +

↑
′ ′= + + +∑ + +

∑3 i 3 it

4 i 4 it

β S γ X

β S γ X



        
                 1st staget

 
 
 
 
 
 
 



       (5) 

where the first stage estimates the impact of salinity and other controls on each crop choice 

decision. The predicted probabilities for each crop choice from the first stage are then used to 

estimate the second stage water application model. 

 In the first stage crop choice model, itjC represents crop choices, namely what crop is 

planted for each field i in year t among four choices (i.e., corn, soybeans, multiple crops, other 
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crops). ′4 iβ S  and ′4γ X are the same controls applied in other econometric regression models 

above. m m it-1,mCφ∑   represents one-year lagged proportions of each crop choice and used as IVs to 

account for endogeneity at the second stage.   

 

1.5. Results 

The following estimation results for the decisions on irrigated acreage, crop choice, and water 

application support that groundwater salinity causes the change of farmers’ decisions.  

 

1.5.1. Irrigated Acreage Results 

Table 1.2 shows parameter estimates from the regression model for total irrigated acreage. 

Increases in the salinity level causes a reduction in irrigated acreage from each field. Irrigated 

acreage is decreased by 7.8 acres at the low to moderate salinity level compared to freshwater, 

18.1 acres at the moderate to strong salinity level, and 10.3 acres at the very strong salinity level. 

Such results are all statistically significant at either the 5% or 10% levels.  

In particular, farmers decrease irrigated acreage by 18.1 acres for moderate to strong 

salinity (1,000-5,000 mg/L), which is the level at which the major crops in this region begin to be 

affected by salinity7, compared to the base category (see Fipps 2003). As the biggest reduction, 

this result implies that salinity decreases the likelihood of a field being irrigated since salinity-

induced water quality degradation may cause yield loss, leading to lower farm profitability.  

 

 
7 Crop yields experience a 10% yield loss when salinity concentration of the water applied reaches 605 mg/L for 

corn and 1,815 mg/L for soybeans. 
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1.5.2. Crop Choice Results 

Table 1.3 reports the marginal effects of all variables on the probability of planting each of the 

crops from the multinomial logit model. The interpretation of the results presents how a unit 

change in the independent variables affects the probability of each crop choice instead of 

choosing other alternatives.  

My results at the salinity level with very strong salinity (>5,000 mg/L) conform to 

expectations, showing that salinity causes a decrease in the acreage allocated to corn by 8.9%, 

increase in the acreage allocated to soybeans by 3.6% and multiple crops by 7.6%, and decrease 

in the acreage allocated to other crops by 2.4%. The marginal effects in Table 1.33 for very 

strong salinity are statistically significant. These results reflect that farmers facing salinity tend to 

reduce choices for more salt-sensitive corn and other crops8, while increase choices for more 

salt-tolerant soybeans and multiple crops as a response to groundwater salinity.  

In Table 1.33 the coefficient is not statistically significant at all salinity levels. The 

coefficients in low to moderate salinity level and moderate to strong salinity level are statistically 

insignificant, indicating that farmers may not be attracted to switching crops because those levels 

do not significantly affect yield loss, and there is no reason to invest in the crop adjustment cost.  

Another interesting result comes from the coefficient on the multiple crops indicated by 

significant coefficients at all salinity levels, which implies that these multiple crops are more 

likely to be planted in the presence of salinity, compared to the other crops as the base category. 

This, in large measure, may show that farmers prefer a change from corn or soybeans with the 

 
8 Using the abbreviation, Tolerant(T), Moderately Tolerant(MT), Moderately Sensitive(MS) and Sensitive(S), each 

composition of other crops are: oats(MT); barley(MT); rye(MS); drybeans(S); sunflowers(MS); golf course(MS); 

truck farm specifically including tomatoes(MS), lettuce(MS), melons(MS), beets(MT), broccoli(MS), celery(MS), 

radishes(MS), onions(S), cabbage(MS), and strawberries(S). This has referenced from FAO (1992). 
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single crop composition, to multiple crops with mixed crop composition. That said, the likely 

reason is that under the existence of risk, to the crop choice decision, farmers tend to lower the 

risk of salinity by diversifying the crop composition.  

The marginal effects of the coefficients on the lagged crop choices are all statistically 

significant at either the 1% or 5% levels despite their different statistical signs. I find that 

planting corn the previous year increases the probability of planting corn in the current year by 

35.3% and other crops by 4.4%, compared to the case when other crops were planted in the 

previous year. Planting corn in the previous year also decreases the probability of planting 

soybeans by 5.9% and multiple crops by 33.8%, compared to previously planting other crops. 

Planting soybeans in the previous year increases the probability of planting corn in the current 

year by 37.8% but decreases the acreage allocated to all other alternatives, namely, soybeans by 

6.3%, multiple crops by 26.1% and other crops 5.4%.  

 

1.5.3. Water Application Conditional on Crop Choice Results 

Table 1.5 presents parameter estimates from 2SLS model for water application. I have 

hypothesized that there are two potentially opposing effects on water application per acre––

intrusion effect and washing effect. The intrusion effect is to lower irrigation intensity to avoid 

increasing water salinity, while the washing effect is to increase irrigation intensity to wash 

salinity out of the rootzone.  

Reduction in water application is most pronounced at the moderate to strong salinity 

(1,000-5,000 mg/L). At this level, salinity reduces irrigated groundwater application by 0.4 

inches relative to the base category of freshwater. This reflects that the salinity intrusion effect 

dominates the washing effect. Low to moderate salinity (500-1,000 mg/L) level is not 
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statistically significant, and this may be because there may be a low need for controlling water 

application for intrusion effect or washing effect by no crop yield loss by salinity. The 

statistically insignificant very strong salinity level (>5,000 mg/L) may arise because the intrusion 

and washing effects are roughly the same magnitude at a higher level of salinity. 

The coefficients for water demand conditional on the choice of crop indicate that 

soybeans use the most water in this region, followed by corn and multiple crops. Also, crop 

choice results in the previous section found that farmers tend to switch from corn to soybeans 

with more salt-tolerance as salinity increases. Considering these two results together, it implies 

that farmers switch to more salt-tolerant crops that happen to be more water-intensive, leading to 

increased pumping. 

 

1.5.4. Marginal Effect Decomposition Results 

Table 1.6 reports total margin effect of an increase in the groundwater salinity decomposed into 

the extensive, direct intensive, and indirect intensive margins measured in acre-inches, acre-feet, 

and the relative impact. I compute each decomposed component using coefficients and predicted 

values from each econometric model in Table 1.2, Table 1.3, and Table 1.5 according to 

equation (2).  

The extensive margin effect shows that farmers reduce irrigated acres in the face of 

groundwater salinity and the result is statistically significant. The indirect intensive margin effect 

shows that farmers increase water use due to groundwater salinity through switching to more 

salt-tolerant crops that happen to be more water-intensive. Yet, the indirect intensive margin is 

not statistically significant. The direct intensive margin effect at the level of moderate to strong 

salinity (1,000-5,000 mg/L) shows a decrease in water use that is statistically significant. This 
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indicates that farmers in the face of groundwater salinity respond by reducing water application 

to avoid inducing saltwater intrusion.  

The estimated total margin effect of salinity at low to moderate salinity level (500-1,000 

mg/L) illustrates that salinity of this level reduces total water use by 97.2 acre-inches (8.1 acre-

feet) relative to when a field has access to freshwater. Average water use in the sample period 

was 1357.1 acre-inches (113.1 acre-feet), so the relative impact is a 7.2% decrease in water use 

compared to freshwater. The total margin effect of salinity at moderate to strong salinity level 

(1,000-5,000 mg/L) indicates that salinity of this level reduces total water use by 272.7 acre-

inches (22.7 acre-feet) relative to when a field has access to freshwater. The relative impact is a 

20.1% decrease in water use compared to freshwater. The estimated total margin effect of 

salinity at very strong salinity (>5,000 mg/L) demonstrates that salinity of this level reduces total 

water use by 112.3 acre-inches (9.4 acre-feet) relative to when a field has access to freshwater. 

The relative impact is a 8.3% decrease in water use compared to freshwater.  

Farmers facing salinity primarily change their water use through changes at the extensive 

margin rather than at the intensive margin. At the low to moderate salinity level (500-1,000 

mg/L), farmers reduce water use by 7.4% at the extensive margin with a total decrease in water 

use of 7.2% compared to freshwater. At the moderate to strong salinity level (1,000-5,000 mg/L), 

farmers reduce water use by 17.0% at the extensive margin with a total decrease in water use of 

20.1%. Similarly, the extensive margin dominates the reduction in water use when the 

groundwater is very strong salinity.  

In general, where there are water availability constraints, high water-usage, or water 

quality degradation, farmers reduce water use by lowering irrigation water applications or 

irrigated acreage and a shift to less water-intensive crops (Kurt A. Schwabe, Kan and Knapp 
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2006b; Drysdale and Hendricks 2018; USDA-ERS 2020). Among these mechanisms, reducing 

irrigated acreage can fundamentally reduce water consumption. That said, the reduction in 

irrigated acreage reduces the need for irrigation water itself. Foster, Brozović and Butler (2014) 

support this by finding that farmers reduce irrigated acreage rather than water use intensity once 

well capacities become sufficiently constraining (i.e., a constraint in water quantity).  My 

estimates show that farmers adjust mostly at the extensive margin to reduce the amount of water 

extracted to avoid inducing intrusion of salt into the upper aquifer that harms water quality. 

 

1.6. Conclusions  

Farmers face difficult decisions such as whether to irrigate and how much, what to plant, and 

how much water to apply. Multiple factors such as the natural environment, water supply, global 

markets, and government programs can influence this decision-making. My study tests the 

hypothesis that groundwater salinity may be an important factor driving farmers’ agricultural 

decision-making. To test this hypothesis, I estimate econometric models using observed farmer 

behavior in response to different groundwater salinity levels based on field-level panel data in 

southcentral Kansas over 23 years.  

My results support the hypothesis that farmers in the face of groundwater salinity change 

their decisions on irrigated acreage, crop choice, and water application. I find that farmers reduce 

water use along the extensive margin by reducing irrigated acres in response to groundwater 

salinity. Farmers increase water use along the indirect intensive margin by switching to more 

salt-tolerant crops that happen to be more water-intensive, though the effect is small and 

statistically insignificant. Farmers decrease water use along the direct intensive margin by 

reducing water application conditional on the same crops to avoid inducing saltwater intrusion. 



24 

This result shows that the salinity intrusion effect dominates the salinity washing effect. The 

overall impact of an increase in salinity is a decrease in water use, predominantly through 

changes at the extensive margin.  

This study provides useful information on agricultural decisions related to groundwater 

salinity, which has hitherto been less attempted, to relevant government agencies. As well as, this 

study provides important insights: Firstly, excessive pumping in locations where natural 

saltwater intrusion is present, particularly, where vulnerable environment settings are formed, 

accelerates the degradation of water quality. Secondly, careful water management and 

assessment are required in considering water application in areas potentially subject to saltwater 

contamination.  

The quality of the groundwater resource is certainly as important as its quantity. The 

water will be of little value once polluted because it occurs high costs to reverse such 

contamination. Thus, understanding the interaction between groundwater salinity and 

agricultural decision-making has important implications for groundwater management, 

particularly sustainable availability of suitable-quality groundwater 
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1.7. Tables 

Table 1.1. Mean and Standard Deviation for Selected Variables 

                          Dependent Variables Mean SD 

Crop  
choicea 

Proportion for corn  0.5036 0.4817 
Proportion for soybeans  0.1713 0.3521 
Proportion for multiple crops  0.1379 0.3448 
Proportion for other crops  0.1873 0.3623 

Irrigated 
acreage 

Irrigated acres (ac) 
i.e., acres_irr  105.4714 52.0769 

Water 
application 

Volume of water applied measured in acre-feet (ac-ft) 
i.e., af_used  113.0883 72.3639 

Depth of water applied measured in feet (ft) 
i.e., depth_feet = (af_used/acres_irr) 1.0694 0.4278 

Depth of water applied measured in inches (in) 
i.e., depth_inches = (af_used/acres_irr)*12 12.8333 5.1335 

                          Explanatory Variables  Mean SD 

Four salinity 
levelsb  

Freshwater: <500 (mg/L) 0.6324 0.4821 
Low to moderate salinity: 500-1,000 (mg/L) 0.1354 0.3421 
Moderate to strong salinity: 1,000-5,000 (mg/L) 0.1421 0.3492 
Very strong salinity: >5,000 (mg/L) 0.0901 0.2863 

Soil  
characterists 

Soil Organic Carbon in 0‐150 cm depth (kg/m2) 6541.4460 2653.9180 
pH less than 6 0.0351 0.1466 
pH greater than 7.5 0.1265 0.2431 
Root Zone Available Water Storage (mm) 206.5541 32.4031 
Bulk density (g/cm3) 1.5294 0.0348 
Log of slop (%) 0.5385 1.0110 

Hydrological 
properties Predevelopment saturated thickness (ft) 128.8869 34.2058 

Weather 
conditions 

January-April growing season precipitations (mm) 154.5996 60.5895 
May-August growing season precipitations (mm) 389.0493 123.9330 
May-August growing season evapotranspiration (mm) 655.1060 38.2282 

aCrop choice is presented in the probability of planting each of the crops. 
bFour salinity levels measured in chloride concentration. Chloride concentration (<500 mg/L) as the base category 
means “freshwater”. 
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Table 1.2. Regression Model Estimates of Irrigated Acreagea 

Variables Coefficients 
Low to moderate salinity: 500-1,000 (mg/L)b -7.8487 
 (3.4783)** 
Moderate to strong salinity: 1,000-5,000 (mg/L)b -18.0520 
 (3.7371)*** 
Very strong salinity: >5,000 (mg/L)b -10.3458 
 (4.2419)** 
Soil Organic Carbon in 0‐150 cm depth (kg/m2) -0.0034 
 (0.0008)*** 
pH less than 6 20.8806 
 (9.2507)** 
pH greater than 7.5 -18.7007 
 (7.0542)*** 
Root Zone Available Water Storage (mm) 0.4026 
 (0.0614)*** 
Bulk density (g/cm3) -74.3734 
 (46.5760) 
Predevelopment saturated thickness (ft) 0.2516 
 (0.0385)*** 
Log of slop (%) 2.7761 
 (1.2978)** 
January-April growing season precipitations (mm) 0.0580 
 (0.0277)** 
May-August growing season precipitations (mm) 0.0182 
 (0.0064)*** 
May-August growing season evapotranspiration (mm) 0.8025 
 (0.1515)*** 
Constant -425.4112 
 (127.7887)*** 
Year fixed effects                 Yes 
R2 0.1073 
Observations               27,565 

Notes: Asterisks ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust 
standard errors clustered at the point of diversion level are reported in parentheses. 
aDependent variable is irrigated acreage (ac). 
bFour salinity levels measured in chloride concentration. Chloride concentration (<500 mg/L) as the base category 
means “freshwater”. 
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Table 1.3. Marginal Effects on the Probability of Crop Choices from the Multinomial Logit Regression Model Estimatesa  

Variables  
Marginal Effectsb 

Corn Soybeans Multiple Crops Other Crops 
Low to moderate Salinity: 500-1,000 (mg/L)c 0.0141 -0.0040 0.0218* -0.0320** 
 (-0.0156) (-0.0117) (-0.0107) (-0.0107) 
Moderate to strong Salinity: 1,000-5,000 (mg/L)c 0.0127 -0.0128 0.0244* -0.0243 
 (-0.0185) (-0.0125) (-0.0109) (-0.0134) 
Very Strong salinity: >5,000 (mg/L)c -0.0885*** 0.0364* 0.0757*** -0.0236 
 (-0.0207) (-0.0154) (-0.0169) (-0.0157) 
Soil Organic Carbon in 0‐150 cm depth (kg/m2) 0.0000 0.0000 0.0000 0.0000 
 (0.0000) (0.0000) (0.0000) (0.0000) 
pH less than 6 0.0520 -0.0272 0.0024 -0.0272 
 (-0.0384) (-0.0275) (-0.0197) (-0.0328) 
pH greater than 7.5 0.0902** -0.0138 0.0382* -0.1146*** 
 (-0.0322) (-0.0225) (-0.0172) (-0.0271) 
Root Zone Available Water Storage (mm) 0.0009** -0.0004* -0.0002 -0.0003 
 (-0.0003) (-0.0002) (-0.0002) (-0.0002) 
Bulk density (g/cm3) -0.3001 0.1287 0.1155 0.0559 
 (-0.2428) (-0.1597) (-0.1263) (-0.1708) 
Predevelopment saturated thickness (ft) 0.0041*** -0.0005*** -0.0004*** -0.0006*** 
 (-0.0002) (-0.0001) (-0.0001) (-0.0001) 
Log of slop (%) 0.0053 0.0062 0.0006 -0.0122** 
 (-0.0066) (-0.0048) (-0.0042) (-0.0043) 
January-April growing season precipitations (mm) 0.0004 -0.0005** 0.0001 0.0001 
 (-0.0003) (-0.0002) (-0.0002) (-0.0002) 
May-August growing season precipitations (mm) -0.0001 0.0002*** 0.0000 -0.0001 
 (-0.0001) (-0.0001) (-0.0001) (-0.0001) 
May-August growing season evapotranspiration (mm) -0.0006 0.0001 0.0007 -0.0002 
 (-0.0008) (-0.0006) (-0.0005) (-0.0006) 

(Continued) 
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Table 1.3. Continued 

Variables 
Marginal Effectsb 

Corn Soybeans Multiple crops Other crops 
One-year lagged crop choice for corn 0.3528*** -0.0586*** -0.3384*** 0.0443** 
 (-0.0195) (-0.0109) (-0.0116) (-0.0141) 
One-year lagged crop choice for soybeans 0.3784*** -0.0634*** -0.2613*** -0.0536** 
 (-0.0201) (-0.0133) (-0.0138) (-0.0188) 
One-year lagged crop choice for multiple crops 0.1212*** 0.2235*** -0.2410*** -0.1037*** 
 (-0.0215) (-0.0120) (-0.0110) (-0.0191) 
Year fixed effects Yes Yes Yes Yes 
Observations  17,570 17,570 17,570 17,570 

Notes: Asterisks ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust standard errors clustered at the point of 
diversion level are reported in parentheses.  
aDependent variable is probability of planting each of the crops. 
bMarginal effects from the multinomial logit model for crop choices. The category of “Other crops” is used as the base category. “Multiple” means multiple 
crops were grown, but not which crops were grown. “Other” are mixed composition of oats, barley, rye, dry beans, sunflowers, golf course, truck farm, orchard, 
and nursery, wheat. 
cFour salinity levels measured in chloride concentration. Chloride concentration (<500 mg/L) as the base category means “freshwater” for groundwater. 
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Table 1.4. Expected Effects on Farmer Behavior in response to Groundwater Salinity 

Margin of Adjustment Expected Effects 

Irrigated acreage Extensive 
(negative sign) 

 

More pumping causes more depletion of the 
aquifer, thereby increasing saltwater 
intrusion from the lower portions of the 
aquifer into the higher portions of the 
aquifer, leading to greater salinity of water 
that is extracted from the aquifer. 
Consequently, farmers seek to reduce 
irrigated acres to reduce pumping that leads 
to intrusion.  
 

Crop choice 

Indirect Intensive 
(negative sign) 

 
or 

Farmers switch to more salt-tolerant crops 
that happen to be less water-intensive, 
leading to reduced pumping. 

Indirect Intensive 
(positive sign) 

 
 

Farmers switch to more salt-tolerant crops 
that happen to be more water-intensive, 
leading to increased pumping. 

Water application 

Direct Intensive 
(negative sign) 

“Salinity intrusion 
effect” 

 
 

or 

 

More pumping causes more depletion of the 
aquifer, thereby increasing saltwater 
intrusion from the lower portions of the 
aquifer into the higher portions of the 
aquifer. This gives an incentive to reduce 
water application to avoid increasing water 
salinity.  
 

 
Direct Intensive 
(positive sign) 

“Salinity washing effect” 
 

Increasing irrigation intensity can flush the 
salts out of the soil and prevent the 
accumulation of salts in the soil over time.  
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Table 1.5. Two-Stage Least Squares Regression Model Estimates of Water Application 

Variables Coefficients 
Low to moderate salinity: 500-1,000 (mg/L)b          -0.0510 
          (0.2067) 
Moderate to strong salinity: 1,000-5,000 (mg/L)b          -0.4380 
          (0.2067)** 
Very strong salinity: >5,000 (mg/L)b           0.1535 
          (0.2716) 
Soil Organic Carbon in 0‐150 cm depth (kg/m2)          -0.0002 
 (0.0000)*** 
pH less than 6           0.0732 
          (0.5477) 
pH greater than 7.5           0.9202 
         (0.3442)*** 
Root Zone Available Water Storage (mm)          0.0032 
         (0.0039) 
Bulk density (g/cm3)         -6.0793 
         (2.6360)** 
Predevelopment saturated thickness (ft)         -0.0021 
         (0.0025) 
Log of slop (%)          0.2508 
         (0.0929)*** 
January-April growing season precipitations (mm)         -0.0013 
         (0.0022) 
May-August growing season precipitations (mm)         -0.0078 
         (0.0006)*** 
May-August growing season evapotranspiration (mm)          0.0323 
         (0.0085)*** 
Conditional on crop choice for corn          3.4170 
         (0.7109)*** 
Conditional on crop choice for soybeans          4.4373 
         (1.2477)*** 
Conditional on crop choice for multiple crops          2.3505 
         (0.5546)*** 
Constant          1.5682 
         (7.1123) 
Year fixed effects             Yes 
R2          0.2552 
Observations          19,881 

Notes: Asterisks ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust 
standard errors clustered at the point of diversion level are reported in parentheses.  
aDependent variables is depth of water applied conditional on crop choice (ac-ft). 

bFour salinity levels measured in chloride concentration. Chloride concentration (<500 mg/L) as the base 
category means “freshwater” for groundwater. 
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Table 1.6. Total Margin Effect and Decomposition into Extensive, Indirect Intensive, and Direct Intensive Margin Effects 

Salinity Levels Margin Effects Extensive Indirect Intensive Direct Intensive Total 

Low to Moderate 
500-1,000 (mg/L) 
  

Measured in Inches                -100.4628**   8.6447  -5.3887    -97.2068** 
 (42.7553)   (5.3603) (22.0922) (49.0433) 
Measured in Acre-Feet     -8.3719**   0.7204  -0.4491     -8.1006** 
  (3.5629)   (0.4467)   (1.8410)  (4.0869) 
Measured in Relative Impact    -0.0740**   0.0064  -0.0040    -0.0716** 
 (0.0315)   (0.0039)   (0.0163) (0.0361) 

Moderate to Strong 
1,000-5,000 (mg/L) 
 

Measured in Inches                -231.0650***   4.6262    -46.2598**  -272.6985*** 
      (49.5855)   (6.1222) (21.2415)      (56.2060) 
Measured in Acre-Feet   -19.2554***   0.3855      -3.8550**   -22.7249*** 
        (4.1321)   (0.5102)   (1.7701)        (4.6838) 
Measured in Relative Impact     -0.1703***   0.0034      -0.0341**    -0.2009*** 
        (0.0365)   (0.0045)   (0.0157)        (0.0414) 

Very Strong 
>5,000 (mg/L) 
 

Measured in Inches                  -132.4258**   3.9298 16.2156    -112.2804* 
      (57.9772) (11.8844) (27.7702)      (67.4128) 
Measured in Acre-Feet -11.0355**   0.3275   1.3513 -9.3567* 
        (4.8314)   (0.9904)   (2.3142)        (5.6177) 
Measured in Relative Impact   -0.0976**   0.0029   0.0119 -0.0827* 
        (0.0427)   (0.0088)   (0.0205) (0.0497) 

Note: Asterisks ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust standard errors clustered at the point of 
diversion level are reported in parentheses. Robust standard errors are estimated using a bootstrap with 400 replications. 
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1.8. Figures 

  
Figure 1.1. Map of the Kansas portion of the High Plains Aquifer (HPA) and study region  
Note: Modified from a map provided by the Kansas Department of Agriculture Division of Water Resources, 2017. 
The thick line is the boundary of the study region. 
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Figure 1.2. Major features in the eastern portion of GMD5 as the primary region  
Note: Modified from a map adopted by Whittemore (1993). GMD5 covers part of seven counties: Barber, Barton, 
Kingman, Pratt, Reno, Rice, and Stafford.  
 

 

 

 

 



 

 

34 

 

Original colored jpg map New map by Georeferencing 
 

 
 

 

 

 
 

Figure 1.3. Maps displaying chloride contours for the base of the unconsolidated aquifer in the 
eastern part of GMD5 
Notes: Circles on the map denote groundwater points of diversion. 
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Chapter 2 - The Effect of Groundwater Salinity on Land Values in 

Kansas 

 

2.1. Introduction    

Estimating the value of groundwater used for irrigation is essential for policymakers and 

agricultural stakeholders throughout arid and semi-arid regions of the world. The value of 

groundwater depends both on the quantity available and the quality. Most literature assesses the 

value of groundwater according to the quantity available of groundwater using hedonic methods, 

but relatively little attention has been given to the impact of groundwater quality on land values. 

The little literature that does account for water quality is focused on surface water (Shultz and 

Schmitz 2010; Buck, Auffhammer and Sunding 2014).  

Groundwater salinity is the primary form of degradation in groundwater quality, which is 

closely associated with an intrusion of saltwater into freshwater aquifers in the process of 

pumping for agricultural production (Foster et al. 2000; Scanlon et al. 2007; Van Weert, Van der 

Gun and Reckman 2009; Garduño and Foster 2010). Many previous studies have found evidence 

that elevated salinity contamination adversely affects the agricultural potential by reducing the 

productivity of crop yields and increasing additional costs for salinity control and remediation 

(e.g., Haw, Cocklin and Mercer 2000; Shani and Dudley 2001; Munns 2002; George, Clarke and 

English 2008). Schwabe, Kan and Knapp (2006), Connor et al. (2012), and Mukherjee and 

Schwabe (2014) find that salinity-induced water quality degradation lowers farm profitability. 

Therefore, I expect that areas of an aquifer with higher salinity concentrations will have lower 

land values.  
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Despite some studies offering valuable contributions to the literature by showing the 

effects of salinity on agricultural productivity and profitability, there has been relatively little 

literature using hedonic analysis to estimate the impact of salinity on land values. Schwabe, Kan 

and Knapp (2006) and Connor et al. (2012) use mathematical programming methods to estimate 

the impact of groundwater salinity on land values.  

There is a large literature that estimates the value of water quantity using hedonic models 

(Schlenker, Hanemann and Fisher 2007; Shultz and Schmitz 2010; Buck et al. 2014; Sampson, 

Hendricks and Taylor 2019). However, there is a much smaller literature that estimates the value 

of water quality with a hedonic model. Koundouri and Pashardes (2002) investigate empirically 

how sample selection bias affects the hedonic valuation of the effect of groundwater salinity on 

land values with a small sample size (193 observations). Mukherjee and Schwabe (2014) use a 

spatial econometric hedonic analysis including groundwater salinity as an explanatory variable in 

California with farm-level data. In contrast, I estimate hedonic regressions with 5,162 

observations using parcel-level market transaction data to focus on the effect of groundwater 

salinity on land values in Kansas.  

To make an additional contribution to the existing literature on the land value estimation, 

I exploit differences in parcel sale prices in agricultural land across varying levels of 

groundwater salinity, using finer-scale field-level data during 1988–2015 with more observations 

of 5,162 than previous papers and using the hedonic price framework for South-Central Kansas 

wherein groundwater shows high salt contamination. Specifically, I estimate a series of hedonic 

regression models that control for spatial heterogeneity using either county fixed-effects or a 

nonlinear function of the GIS coordinates, together with a specification of standard hedonic 

regression with no spatial controls.  
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The hedonic model is used assuming that the price of the market good reflects the level of 

capitalized environmental value embodied in the good. Based on this assumption, the hedonic 

model has been adopted extensively to value a full range of environmental factors influencing 

the market good, mainly real property prices. Examples of these studies include: evaluating 

ambient air quality and its policies (e.g., Won Kim, Phipps and Anselin 2003; Chay and 

Greenstone 2005), surface water quality (e.g., Boyle 1998; Gibbs et al. 2002), forest vegetation 

(Tapsuwan et al. 2014; Polyakov et al. 2015), ambient disamenities (e.g., Farber and Stephen 

1998; Hite et al. 2001; Mendelsohn and Olmstead 2009), as well as climate change9 on 

agriculture (e.g., Mendelsohn and Dinar 2003; Schlenker, Hanemann and Fisher 2007). 

I find a negative impact of groundwater salinity on land values by empirically confirming 

parcel sale prices decline with groundwater salinity levels. This is because salinity-induced water 

quality degradation causes yield loss, leading to lower farm profitability, and eventually 

becoming a lower likelihood of a parcel being irrigated. These negative implicit prices can be 

interpreted as the economic damages from salinity, or equivalently farmer’s WTP to offset 

salinity. The novelty of my study is the implicit valuation of groundwater salinity while 

controlling for spatial heterogeneity. My results will provide particularly useful information for 

farmers who need to make land purchase decisions as well as policymakers who seek to 

understand the economic damages caused by salinity. 

 
9 Climate change is a closely related Ricardian approach, which is based on a hedonic regression of land values on 

historical climate variables. 
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2.2. Conceptual Model 

Considering the theoretical underpinnings of the hedonic price model, Court (1939)10 was often 

referred to as the pioneer of the hedonic price model, but theoretical support for its application in 

property value appraisal was provided by Rosen (1974). In Rosen’s (1974) formulation, all 

goods have differentiated characteristics (or attributes), hedonic prices are defined by a vector, 

namely set of the implicit prices of these characteristics and are disclosed in the form of prices 

for goods. Therefore, if a differentiated good containing n characteristics is represented as a 

vector, 𝐶𝐶 = (𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛), the set of hedonic prices is revealed as 𝑃𝑃(𝐶𝐶) = 𝑃𝑃(𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛). 

Besides, the presence of price differences of goods means that various alternative sets 

with differentiated characteristics that enable consumers and producers to make transaction 

decisions are available. Hence, a transaction in good is equivalent to buying and selling the value 

on a set of characteristics for the good. In accordance with the principle of market equilibrium, 

this transaction is made when the demand curve derived from maximizing consumer utility 

meets the supply curve derived from producer maximization. In this context, hedonic prices can 

be recognized as equalizing consumers’ implicit willingness-to-pay (WTP) and producers’ 

implicit willingness-to-accept (WTA), for their decision regarding sets of characteristics, 

simultaneously is also market-clearing implicit prices. 

In the housing market as the most common example of the hedonic price model, hedonic 

prices are not only implicit prices that include the characteristics of the structure itself (e.g., 

number of rooms, plot size, construction year, etc.) and the characteristics of its surrounding 

environment (e.g., education quality of nearby schools  access to services such as transportation 

 
10 Court (1939) developed a pricing index for advertised automobiles to show the demand for those automobiles 

based on three variables of car weight, wheelbase, horsepower covering the periods 1920~39 with 5-year intervals.  
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or green area, air pollution), but also market prices of houses traded where consumers’ WTP for 

the house and the producers’ WTA for the house match each other. 

The model was applied specifically to agricultural land sale prices by Palmquist (1989, 

1991) based on the assumption that producers can differentiate factors of production relating to 

profits when purchasing agricultural land. Thereafter, the model has been used for numerous 

natural and environmental resources or social amenities valuations, beyond real estate valuation. 

The coefficient estimates of the hedonic regression model represent the implicit prices of 

the differentiated characteristics embedded in agricultural land. I use this estimation––

particularly, estimation on salinity––to confirm groundwater salinity is highly likely to be a key 

negative characteristic. These negative implicit prices associated with different salinity levels can 

be interpreted as the economic damages from salinity (i.e., change in chloride concentration or 

degradation of groundwater quality), or equivalently farmer’s WTP to offset salinity.  

The hedonic prices of agricultural land P are a function of all characteristics of the land 

that consist of W and Z: 

𝑃𝑃 = 𝑓𝑓(𝑾𝑾,𝒁𝒁)                                                              (1)  

where W is a vector of key treatment variables to indicate four groundwater salinity levels as 

groundwater quality attribute, and Z is a vector of other control variables to indicate hydrological 

and geographic characteristics. 

 Among various characteristics defining land values, the location of the land is one of the 

essential characteristics. The benefit of including the latitude and longitude is to control for other 

unobserved factors that vary smoothly across space. Spatial heterogeneity in hedonic prices I 

estimate reflects farmers’ demand (or preference) for agriculture land based on the salinity level 
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varied across land location, and also the nearer a land is located to the place with higher salinity 

level, the lower the values for this land, consequently also the lower farmers’ WTP. 

 

2.3. Background and Data Description 

I exploit variation in parcel sale prices in agricultural land across varying levels of groundwater 

salinity using the hedonic model and constructing parcel-level data between 1988 and 2015 from 

the High Plains Aquifer11 in the eastern Big Bend Groundwater Management District No.5 

(GMD5) underlying the Great Bend Prairie Aquifer of South-Central Kansas (Figure 2.1). The 

overall process of constructing a final dataset is to merge unique data of parcel transaction 

variable with the data of groundwater salinity variable and other variables such as hydrological 

and soil characteristics. The following subsections provide information about where these 

multiple data are obtained and how these variables are predicted to influence land value. 

Summary statistics for variables used in estimating the hedonic models are listed in Table 2.1. 

 

2.3.1. Parcel Sale Prices  

A data of parcel sale prices used as an outcome variable in the estimation came from the 

Property Valuation Division (PVD) of the Kansas Department of Revenue. The PVD data 

contain information between 1988 and 2015 on the acres of the parcels in each type of use (i.e., 

irrigated cropland, non-irrigated cropland, native grassland, tame grassland, and total agricultural 

land), parcel identification number, county code, acres of each soil type, improvement values on 

 
11 The HPA underlies about 174,000 square miles of the central United States, covering through parts of Colorado, 

Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming uses about 95% water pumped 

from the aquifer for irrigation (Gutentag et al., 1984). 
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the parcel and location, together with sales-related information such as sales price, sales validity 

codes, and sale date. The PVD data covering GMD5 includes 5,162 unique parcels about seven 

counties: Barber, Barton, Kingman, Pratt, Reno, Rice, and Stafford. 

From the PVD data, first of all, some parcels were removed due to the inherent 

characteristics of parcel data, for example (i) parcels with missing parcel identification numbers 

identifying a parcel’s location; (ii) parcels with sales that are classified as non-public sales and 

forced sales because sales transactions are based on self-interest without external pressures such 

as government; (iii) parcels less than 35 acres in total because there is little chance of farming in 

these small parcels; (iv) parcels with abnormal resales that are sold within the same month; (v) 

parcels with only buildings since I focus on agricultural land values; and (vi) duplicate 

observations due to record retention issues. In the United States, the values of the land and 

structural improvements placed on it both are typically reflected in sale prices. Thus, total 

improvements are subtracted from the parcel sale prices left by the above work according to 

Guiling, Brorsen and Doye (2009) and Nickerson and Zhang (2014). 

For the next, in an attempt to capture parcels selling for crop production purposes in the 

GMD5, the parcels in other types of use except irrigated and nonirrigated cropland are removed 

from the data set and for other GMDs. I consider nonirrigated parcels with irrigated parcels for 

agricultural land purposes since salinity could impact land values by making the land less likely 

to be irrigated in the first place. 

 

2.3.2. Groundwater Salinity Characteristics 

The source of salinity this portion of Kansas stems from natural saltwater intrusion from the 

Permian bedrock (or redbed) into the freshwater aquifer, called the Great Bend Prairie aquifer 
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(see the bottom half of Figure 2.2). Even though the natural intrusion of saltwater is one reason 

for salinity, excessive groundwater pumping for irrigated agriculture triggers the water table to 

decline (i.e., the surface of the saturated part of the aquifer), leading to the increased upward 

movement of the saltwater into the base of the aquifer.  

As GMD5 shows water type with a certain predominant chemical character such as 

chloride, I measure salinity by chloride concentration (mg/L: milligram/liter) and classify four 

levels of salinity in this region as: (i) freshwater ( <500 mg/L), (ii) low to moderate salinity (500-

1,000 mg/L), (iii) moderate to strong salinity (1,000-5,000 mg/L), and (iv) very strong salinity 

(>5,000 mg/L). The first level, called freshwater, is used as the base category. This level appears 

where there is non-salinity or very slight natural saltwater. This level does not cause the region’s 

main crops to yield loss and thus is referred to as “freshwater12” in this study.  

The information on salinity as a key treatment variable is obtained from the maps with 

image files generated from Whittemore (1993) and was provided via personal communication 

after being updated in 2017. These maps display maps of chloride contours for the Permian 

bedrock, the base, and the upper of the unconsolidated aquifer in the eastern part of GMD5. 

Among these maps, my key measure salinity that impacts farmer behavior is the measure of 

salinity at the base of the aquifer. Even though the source of salinity is in the Permian bedrock 

and groundwater wells do not pump water from the base of the aquifer, the salinity in the base 

should affect farmer decisions since pumping results in depletion that induces saltwater intrusion 

from the bedrock toward the upper portions of the aquifer where groundwater is extracted.  

 
12 According to the Department of Health and Environment, freshwater has TDS contents less than 500 mg/L and 

both chloride and sulfate concentrations 250 mg/L. 
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Based on the map of the base of the aquifer, I extract attribute values for chloride 

concentrations by georeferencing in ArcGIS (see Figure 2.3). I only use measures of the spatial 

variation of salinity and do not use measures of the temporal variation of salinity because the 

only map of chloride concentrations available from Kansas Geological Survey was for a single 

point in time. Extracted salinity values are merged spatially to the center point of the parcels in 

terms of a latitude and longitude variable for each parcel to analyze for the effect of salinity on 

land values.  

As salinity contamination gets severe then I expect the profitability from the land to 

decrease, which will lower parcel prices. This in turn will cause land values to fall.  

 

2.3.3. Hydrological and Soil Characteristics 

As other control variables affecting land values, I include one variable for hydrological 

properties and two variables for soil characteristics. For the hydrological properties, data for 

saturated thickness is obtained Kansas Geological Survey. Saturated thickness is the vertical the 

distance from Permian bedrock to the water table (see the upper portion of Figure 2.2), which 

represents the amount of water available. As the saturated thickness declines, the depth to the 

water table increases, which implies upward movement of more salinity and limits current 

irrigation intensity and potential irrigation extensity. Thus, I expect to see lower land values in 

the region with low saturated thickness. I use predevelopment values rather than the current 

values to avoid any potential endogeneity issue between saturated thickness and water use since 

predevelopment values are estimated before the withdrawal of significant amounts of 

groundwater. 
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For the soil characteristics, I use the average National Commodity Crop Productivity 

Index (NCCPI)13 and the slope of the land from the Soil Survey Geographic Database 

(SSURGO). The NCCPI provides condensed information about average national crop 

productivity based on the inherent soil properties. Further, the NCCPI incorporates together other 

factors related to crop production, such as landscape and climate characteristics, and imposes a 

rating (score) on the production. I expect the NCCPI to have a positive impact on parcel sale 

prices. I use Corn and Soybeans NCCPI score to reflect the productivity of the main crops in the 

region.  

Even though the slope of the land (i.e., a measure of the change in elevation between two 

points) is not a direct indicator of soil quality, it can impact involving runoff and erosion which 

affect crop productivity. Borrowing Wu et al. (2004)’s example, corn is likely to be cultivated in 

more sloped land compared to soybeans since soybean is a more runoff- and erosion-prone crop. 

Further, the slope of the land can indirectly impact related to soil loss. For instance, soil loss 

tends to increase with steep slopes, while decrease with flat slopes (Liu et al. 2000; Kapolka and 

Dollhopf 2001). Thus, I expect highly sloped parcels to have lower values. I take the log of the 

slope to use a more normally distributed slope across the parcels, according to Hendricks (2018). 

 

2.4. Econometric Model   

The hedonic price model does not impose any theoretical restriction on the function form 

(Le and Li 2008), albeit the estimated result and its interpretation may vary slightly depending on 

the form used. The findings of earlier literature (e.g., Taylor 2003; Massetti and Mendelsohn 

 
13 For more detail of the NCCPI, refer to as Dobos, Sinclair Jr, and Hipple (2008). 
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2011) support that the semi-log form provides a better fit for hedonic data. The regression 

coefficients of the continuous variable can be interpreted as a percentage change in the outcome 

variable for a one-unit change in a given variable, and the dummy variable can be interpreted as 

a price premium relative to the base category (i.e., a relative change in value), holding all other 

variables fixed (Gennaro and Nardone 2014). 

The hedonic function I estimate is the following:       

In 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑾𝑾𝒊𝒊,𝒁𝒁𝒊𝒊) = 𝛼𝛼 + 𝑾𝑾𝒊𝒊
′𝜷𝜷 + 𝑇𝑇𝑖𝑖𝛾𝛾 + 𝐼𝐼𝑖𝑖𝛿𝛿 + 𝑆𝑆𝑖𝑖𝜃𝜃 + 𝜏𝜏𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖                    (2) 

where In 𝑃𝑃𝑖𝑖𝑖𝑖 is the log of the transaction price of parcel i in time t=1988–2015. It is needed to 

note that the dataset of parcel sale prices used in this analysis is not true panel data because this 

study rarely observes repeat sales of a given parcel. 

As mentioned in equation (1), 𝑾𝑾𝒊𝒊 represents a vector of key variables for four groundwater 

salinity levels measured by chloride concentration: (i) freshwater (<500 mg/L), (ii) low to 

moderate salinity (500-1,000 mg/L), (iii) moderate to strong salinity (1,000-5,000 mg/L), and 

(iv) very strong salinity (>5,000 mg/L). A vector of other control variables indicating hydrologic 

and soil characteristics, 𝒁𝒁𝒊𝒊 specifically includes predevelopment saturated thickness (i.e., 𝑇𝑇𝑖𝑖), 

NCCPI (i.e., 𝐼𝐼𝑖𝑖) and the slope of the land (i.e., 𝑆𝑆𝑖𝑖). 𝜏𝜏𝑡𝑡 represents year-fixed effects to capture the 

effect of prices, government programs, and other macroeconomic variables. 𝜀𝜀𝑖𝑖𝑖𝑖 is an random 

component indicating all unobservable factors affecting the outcome variable. 

The coefficients to be estimated and the implicit prices of an additional change in each 

parcel characteristics are 𝛼𝛼,𝜷𝜷, 𝛾𝛾, 𝛿𝛿,𝜃𝜃. Of particular interest, 𝜷𝜷 are the implicit prices of 

groundwater salinity on the parcel sale prices per acre. This can be regarded as the price 

differential in agricultural land across varying levels of groundwater salinity while controlling 

for other features. As aforesaid, I only use measures of salinity for spatial variation in this region 
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and do not use measures of salinity for temporal variation. In GMD5, as a matter of groundwater 

quality, salinity shows little change over the sample period. Further, the only map of chloride 

concentrations available from the Kansas Geological Survey was for a single point in time.  

A challenge in estimating equation (2) is the potential for omitted variable bias. I avoid 

such concerns by including controls for major characteristics of the land, such as hydrologic and 

soil characteristics. Urban pressure is minimal in the area I analyze. To further control for 

variation in the outcome variable due to time-invariant unobserved factors that could affect land 

values and be correlated with groundwater salinity, I include specifications that contain county 

fixed-effects or flexible controls for the GIS coordinates: 

In 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝑾𝑾𝒊𝒊
′𝜷𝜷 + 𝑇𝑇𝑖𝑖𝑖𝑖𝛾𝛾 + 𝐼𝐼𝑖𝑖𝑖𝑖𝛿𝛿 + 𝑆𝑆𝑖𝑖𝑖𝑖𝜃𝜃 + 𝜏𝜏𝑡𝑡 + 𝜆𝜆𝑐𝑐 + 𝑢𝑢𝑖𝑖𝑖𝑖                             (3)                                                                                                                                            

where the description of the variables that make up the equation is basically the same as above,  

county fixed-effects 𝜆𝜆𝑐𝑐 is added to the regression in equation (3).   

To further control for directional heterogeneity in land value, I also use the GIS 

coordinates as: 

In 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝑾𝑾𝒊𝒊
′𝜷𝜷 + 𝑇𝑇𝑖𝑖𝑖𝑖𝛾𝛾 + 𝐼𝐼𝑖𝑖𝑖𝑖𝛿𝛿 + 𝑆𝑆𝑖𝑖𝑖𝑖𝜃𝜃 + 𝜇𝜇1𝑥𝑥𝑖𝑖 + 𝜇𝜇2𝑦𝑦𝑖𝑖 + 𝜇𝜇3𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 + 𝜇𝜇4𝑥𝑥𝑖𝑖2 + 𝜇𝜇5𝑦𝑦𝑖𝑖2+𝜏𝜏𝑡𝑡 + 𝑛𝑛𝑖𝑖𝑖𝑖      (4) 

where equation (4) is extended by a polynomial expression of longitude and latitude {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖} 

coordinates of up to second-degree. The interaction term between GIS coordinates {𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖} is also 

used.  Given that each parcel has a unique set of GIS coordinates, the parcel sale price on its 

corresponding location is also unique. Particularly, the polynomial expansion of {𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖} 

coordinates in the analytical model is intended to incorporate this spatial heterogeneity 

depending on the location, which is allowed to vary across space nonlinearity.   
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2.5. Results 

I present and compare the three specifications of the hedonic regressions in Table 2.2: no spatial 

controls, county fixed-effects control, and nonlinear function control of the GIS coordinates. As 

expected, all of the regression results at all levels of salinity reflect that salinity reduces land 

values. To control for spatial heterogeneity using either county fixed-effects or a nonlinear 

function of the GIS coordinate shows slightly different results compared to the no spatial 

controls. Overall, these results provide valuable information regarding the effect of various 

characteristics on the parcel sale prices and its interpretation, as well as support that inclusion of 

a nonlinear function of GIS coordinates as controls to reduce omitted variable bias because the 

coefficients on salinity are substantially different when including the controls.  

Considering each hedonic regression result, the first column of Table 2.2 displays the 

regression result with no spatial controls. Salinity at all levels decreases the value of parcels. 

Specifically, low to moderate saline water (500-1,000 mg/L), moderate to strong saline water 

(1,000-5,000 mg/L), and very strong saline water (>5,000 mg/L) show a 12% per acre, a 33% per 

acre, and a 31% per acre reduction respectively, relative to freshwater as the base category (<500 

mg/L). The salinity effects of the coefficients on the parcel sale prices are statistically significant 

at either the 5% level for low to moderate saline water or 1% level for moderate to strong saline 

water and very strong saline water. 

The second and third columns of Table 2.2 present regression results using county fixed-

effects and using a nonlinear function of the GIS coordinates as controls, respectively. First, low 

to moderate saline water (500-1,000 mg/L) dropped the value of parcels in the results of the 

county fixed-effects, while increased the value of parcels in the nonlinear functions. But neither 

was statistically significant. Perhaps because this level is close to the natural saline level and 
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does not substantially affect yield loss; accordingly, it is basically less likely that parcel prices 

will fall, and it would be statistically insignificant. Instead, other attributes affecting land value 

such as land quality crops grown, or/and weather may have influenced parcel prices positively 

and negatively.  

All salinity coefficients except for the coefficient on low to moderate saline water 

decrease the value of parcels with statistical significance at the 1% level. The moderate to strong 

saline water (1,000-5,000 mg/L), which is the level at which the major crops in this region begin 

to be affected by salinity (see Fipps 2003)14, decreased parcel sale price by 22% per acre under 

the county fixed-effects compared to freshwater as the base category (<500 mg/L) and 19% per 

acre per acre under the nonlinear function of the GIS coordinates relative to freshwater. The very 

strong saline water (>5,000 mg/L) shows decreased parcel sale price by 18% per acre under the 

county fixed-effects and 20% per acre under the nonlinear function of the GIS coordinates, 

respectively, relative to freshwater.  

Comparing hedonic regression results to each other, the case of controlling for spatial 

heterogeneity using either county fixed-effects or a nonlinear function of the GIS coordinate 

clearly shows that the decrease in land value is smaller than that in the specification with no 

spatial controls. These results can be attributed to the following possible reasons: county fixed-

effects reduce bias from time-invariant unobserved factors that could affect land values, and GIS 

coordinates reduce omitted variable bias that could affect land values. In particular, the result for 

the GIS coordinates shows that land value increases from west to east (i.e., longitude), and land 

value decreases from north to south (i.e., latitude). These results are significant at a 1% level. 

 
14 For example, crop yields experience a 10% yield loss when salinity concentration of the water applied reaches 605 

mg/L for corn and 1,815 mg/L for soybeans. 
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There are two primary mechanisms by which salinity can affect land values. First, 

salinity-induced water quality degradation causes yield loss on irrigated land, leading to lower 

farm profitability. Second, salinity decreases the likelihood of a parcel being irrigated and thus 

decreases land values because irrigated land values are larger than nonirrigated. Indeed, I 

confirmed from chapter 1 that farmers in the face of groundwater salinity reduce water use by 

reducing irrigated acres in response to groundwater salinity.  

Regarding other control variables, in the estimation of this study region, an increase of 1-

foot saturated thickness increases parcel sale price by 0.1% per acre under both results with no 

spatial and nonlinear function of the GIS coordinates. The result for no spatial shows statistical 

significance at the 5% level and the result for the GIS coordinates shows statistical significance 

at the 1% level. It can be intuitive that increased saturated thickness will raise land value by 

increasing the amount of water available for irrigation. 

Based on the arguments in Section 2.3.3, I expected that the value of parcels tends to be 

increased due to the higher NCCPI, while decreased due to the higher slopes. The coefficients 

between the NCCPI variable, which represents the inherent capability of soils and the prices of 

parcels, show a positive relationship under the regression with the GIS coordinates, but it is not 

statistically significant. Consequently, there is no real impact of the NCCPI on land value in the 

study region. Meanwhile, the log of the slope is statistically significant at the 5% level under the 

regression with the GIS coordinates, which indicates that a large slope decreases the value of 

parcels by 4.9% per acre.  
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2.6. Conclusions 

I evaluate the impact of groundwater salinity on land values. Using the data of the transaction 

prices of parcels agricultural land in the eastern GMD5 underlying South-Central Kansas, I 

confirm evidence that groundwater salinity is a key negative characteristic of the land and an 

economic bad, which is negatively correlated with land values, through demonstrating 

empirically decreased implicit parcel sale prices with a series of hedonic regression models. 

Using either county fixed-effects or a nonlinear function of the GIS coordinates, I control 

for the spatial heterogeneity of parameters depending on the location and find that the preferred 

specification is to use the nonlinear function of the GIS coordinates by comparison with 

specifications of standard hedonic regression and spatial hedonic regression. Specifically, the 

estimation for the preferred specification shows decreased parcel sale price by the range with 

19~20% per acre at the moderate to strong salinity level or higher, which is the level at which the 

major crops in this region begin to be affected by salinity. This is due to the fact that salinity-

induced water quality degradation causes yield loss, leading to lower farm profitability, and 

eventually becoming a lower likelihood of a parcel being irrigated. 

My main contribution is to provide useful information regarding the effect of salinity on 

the parcel sale prices in agricultural land. These estimates can be interpreted as the economic 

damages from salinity, or equivalently farmers’ willingness to pay to offset salinity. My 

estimates also help farmers and investors understand the impact of salinity on agricultural land 

values when they make land purchasing decisions, as well as policymakers who often face the 

problem of evaluating how water quality affects a region’s economic growth and well-being. 
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2.7. Tables 

Table 2.1. Descriptive Statistics for Selected Variables 

Variable Mean Std.Dev. Min Max 
Log of real parcel sale prices for 1988–2015 ($)a     7.037   0.958   3.579   10.339 
Freshwater: <500 (mg/L)b     0.803   0.398 0 1 
Low to moderate salinity: 500-1,000 (mg/L)b      0.06   0.237 0 1 
Moderate to strong salinity: 1,000-5,000 (mg/L)b     0.082   0.274 0 1 
Very strong salinity: >5,000 (mg/L)b     0.055   0.228 0 1 
NCCPI corn and soybean      0.33   0.102   0.015     0.707 
Predevelopment saturated thickness (ft)  123.679 39.988   10.00  259.61 
Log of slop (%)     0.819   0.813   -4.605     2.996 
Longitude (x-coordinate)   -98.87   0.344 -99.561   -98.06 
Latitude (y-coordinate)    37.963   0.251   37.478   38.515 

aParcel sale prices are adjusted to 2015 prices.  
bFour salinity levels measured in chloride concentration. Chloride concentration (<500 mg/L) as the base category 
means “freshwater”. 
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Table 2.2. Hedonic Regression Results with Different Controls (dependent variable = parcel sale prices adjusted to 2015 prices)   

Variable No spatial controls County fixed-effects Nonlinear function of 
the GIS coordinates 

Low to moderate salinity: 500-1,000 (mg/L)a -0.124 -0.013 0.020 
 (0.053)** (0.055) (0.056) 
Moderate to strong salinity: 1,000-5,000 (mg/L)a -0.326 -0.220 -0.190 
 (0.046)*** (0.048)*** (0.050)*** 
Very strong salinity: >5,000 (mg/L)a -0.309 -0.177 -0.204 
 (0.056)*** (0.059)*** (0.059)*** 
Predevelopment saturated thickness (ft) 0.001 0.000 0.001 
 (0.000)** (0.000) (0.000)*** 
NCCPI corn and soybean -0.029 -0.000 0.063 
 (0.159) (0.186) (0.174) 
Log of slop (%) -0.015 -0.032 -0.049 
 (0.018) (0.020) (0.020)** 
Longitude   181.543 
   (43.625)*** 
Longitude2   0.712 
   (0.177)*** 
Latitude   -198.416 
   (46.166)*** 
Latitude2   1.201 
   (0.335)*** 
Longitude×Latitude   -1.088 
   (0.300)*** 
Constant 7.080 7.286 12,717.942 
 (0.215)*** (0.226)*** (2,861.514)*** 
Year fixed effects (Nyear = 30)         Yes          Yes                 Yes 
County fixed effects (Ncounty = 7)          No          Yes                  No 
R2 0.17 0.19 0.19 
Observations        5,162           5,162                   5,162   

Notes: Asterisks ∗∗∗, ∗∗, and ∗refer to statistical significance at the 1%, 5%, and 10% levels, respectively. Standard errors are provided in parentheses. 
aFour salinity levels measured in chloride concentration. Chloride concentration (<500 mg/L) as the base category means “freshwater”.
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2.8. Figures  

 
Figure 2.1. Kansas Components of the High Plains Aquifer (HPA) and the eastern portion of 
GMD5 lied in the Great Bend Prairie Aquifer of South-Central Kansas  
Note: Modified from a map provided by the Kansas Department of Agriculture Division of Water Resources, 2017. 
The thick line is boundary of the study region.  
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Figure 2.2. Major features in the eastern portion of GMD5 as the primary region  
Note: Modified from a map adopted by Whittemore (1993). GMD5 covers part of seven counties: Barber, Barton, 
Kingman, Pratt, Reno, Rice, and Stafford. 
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Original colored jpg map New map by Georeferencing 
 

 
 
 

 

 

 

Figure 2.3. Maps displaying chloride contours for the base of the unconsolidated aquifer in the 
eastern part of GMD5 
Notes: Circles on the map denote groundwater points of diversion. 



 

 

56 

 

Chapter 3 - Crop Choice Decisions in Response to Soil Salinity on 

Irrigated Lands in California                                                                                                    

 
 

3.1. Introduction 

Soil salinity is the process of the accumulation of soluble salts in the root zone through the 

evapotranspiration of irrigated water and is one of the primary causes of land degradation15. The 

high concentration of salts in the soil limits the growth and productivity of crops by adversely 

affecting soil chemical properties and soil biota, causing specific-ion toxicity or upset the 

nutritional balance of crops (Wong et al. 2006; Jahknwa et al. 2014). Continuous salt 

accumulation may threaten the sustainability of agriculture production (Letey 2000; Lobell 2010; 

Ivits et al. 2013). 

It has been estimated that around one-third of the world’s 260 million hectares of 

irrigated land, which accounts for 40% of global food production, are afflicted by salinity 

(Schwabe et al. 2006). Moreover, the salinized regions are increasing at a rate of 10% annually 

(Shrivastava and Kumar 2015), and are presently expanding to many countries and states, e.g., 

Egypt, Pakistan, Australia, China, and California, the United States of America16.  

Salinity challenge is generally more pronounced in regions with semiarid and arid 

climates than in regions with more humid regions. Albeit salts in soils can be dissipated by 

rainfall, semiarid and arid climates restrict the supply of sufficient water to wash the salts out of 

 
15 Soil erosion is the first primary cause of land degradation, and soil salinity is the second cause of it (Zaman et al. 

2018). 
16 Refer to Ghassemi, Jakeman and Nix (1995) and Tanji, Program and Kielen (2002) for Egypt; Qureshi et al. 

(2008) for Pakistan; (Rengasamy (2006) for Australia; and FAO (2010) for China. 
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the root zone. Further ongoing climate change growing the frequency and severity of extreme 

weather events, including heatwaves and droughts, disrupts the dissipating. That is, the increased 

evapotranspiration and the reduced precipitation cause an instant decline in both surface water 

runoff and groundwater recharge, and also lessen water availability to dilute existing levels of 

saline groundwater discharge and to leach the salts out of the root zone. 

Salinity challenge occurs in irrigated areas where larger amounts are brought in by the 

irrigation water than are removed by natural soil drainage process. Increased irrigated agriculture 

has been considered as a critical adaptation to meet growing food demands due to the world’s 

growing population in arid and semiarid regions. However, such over-irrigated agriculture makes 

intensive local pumping, causing the water table to decline (i.e., the surface of the saturated part 

of the aquifer), leading to increased upward movement of the saltwater into the freshwater. 

A particular concern for these saline regions with climate and hydrology conditions that 

are susceptible to salinity was that soil salinity would induce supply shortages for food relative to 

growing demands for foods, leading to the resultant higher food prices. Despite this concern and 

some studies offering valuable contributions to the literature, a wide variety of studies on the 

effects of soil salinity on irrigation agriculture in arid and semiarid setting have not been 

conducted. Most of the existing studies have focused on agricultural productivity measured in 

yield change in response to soil salinity for a specific crop with linked climate, agronomic, and 

hydrologic models (e.g., Maas 1993; Van Genuchten 1993; Horticulturae 1998). Or even the 

papers linked with economic models have only added economic measurement on agricultural 

productivity with estimating changes in revenues (e.g., Beare and Heaney 2002; Connor et al. 

2012; Welle et al. 2017). 
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Quantifying the impact of salinity on irrigated agriculture cannot rely solely on how 

salinity affects changes in yields or revenues. That said, it also needs to include the 

understanding of how farmers will adjust their management practices to salinity. For instance, as 

soil salinity levels increases, farmers are likely to switch from salt-sensitive crops to more salt-

tolerant crops. Current analysis that overlooks such adjustments may overestimate the welfare 

losses from soil salinity.  

The traditional response to soil salinity is switching crops to more salinity-tolerant 

crops17. This is an instant and relatively easy adaptation compared to other possible alternatives, 

while continuously cultivating, albeit with a less profitable land use due to salinity. Leaving the 

land fallow is a last resort when the land cannot be restored from such salinity (Connor et al. 

2012). Changing irrigation systems with better control of the distribution and depth of water 

application can trigger an intensification of water application and a high irrigation cost. The 

NRCS-USDA (2009), for example, reports that larger irrigation systems requiring pumps and 

permanent piping incurs cost from $1800/ha to $2500/ha. At these high costs, it is not easy to 

change systems without government subsidies or incentives. 

Despite abundant literature on irrigated crop choices18, crop choice decision as farmers’ 

response to soil salinity in arid and semiarid settings have not been dealt with except in 

agronomic field experiments. Ayars (2003) carries out two field experiments in California with 

 
17 Explaining the decline of civilizations in Mesopotamia from 2400 to 1700 BC, Gelburd (1985) reported that 

ancient farmers responded to the soil salinity due to waterlogging from over-irrigation and poor subsurface drainage, 

via switching to more salinity-tolerant crops, such as wheat to barley.  
18 In general, studies of crop choice rely either on the link between crop choice and water/land environment and 

irrigation technology changes (e.g., Lichtenberg 1989; Wu et al. 1994), between crop choice and policy or energy 

prices changes (e.g., Wu and Segerson 1995; Wu and Adams 2001; Pfeiffer and Lin 2014), or between crop choice 

and climate change (e.g., Kurukulasuriya and Mendelsohn 2008; Fleischer et al. 2011). 
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saline soils and saline groundwater, respectively, and demonstrates the type of irrigation systems 

and management techniques to reduce the adverse effect of salinity to sustain irrigated 

agriculture in a saline environment. The study only covers current crop choices as a laboratory 

sampling to show the salinity in the surface layers of the soil profile and the internal drainage of 

soil under the agronomic approach, not as a farmer response. Not only that, it is much more 

concerned with the distribution of soil salinity on the different type of irrigation systems. 

Likewise, Beare and Heaney (2002) also deal with land-use activity choices including different 

crop type in connection with soil salinity, but they merely consider them in the context of the net 

return based on the revenue from crop yields and cost increases caused by incremental irrigation 

salinity, but they do not estimate how farmers’ cropping patterns actually change in response to 

higher salinity.  

To address this gap in the literature, I quantify the adaption to soil salinity by farmers in 

California’s Western San Joaquin Valley (WSJV) by econometrically estimating how farmers 

change crop choices in response to different soil salinity levels. I use high-resolution remote-

sensed soil salinity and remote-sensed crop data during 2007–2016 to capture fine-scale spatial 

variations inherent in agricultural settings, controlling for other soil properties and climate 

conditions on irrigated lands at each field. 

My estimates show that as the level of salinity increases, the probability that salt-tolerant 

crops will be selected for cultivation increases. Similarly, salt-sensitive crops are less likely to be 

selected as salinity increases. This suggests that farmers adapt corresponding to the degree of 

salinity. However, it is necessary to note that it is possible that my estimates have some 

endogeneity bias. Briefly, crop choice affects the amount of water applied which could affect 

salinity. Unfortunately, I cannot determine the direction of the endogeneity bias because 
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applying more water can increase or decrease soil salinity depending on the degree of salinity of 

the water applied.  

 

3.2. Background on Salinity in WSJV  

The WSJV is on the west side of the San Joaquin Valley (SJV) in California (Figure 3.1A), one 

of the most productive farming regions in the world. An arid and semiarid region, the SJV 

cultivates more than 250 unique crops via irrigated agriculture and the annual gross value from 

such agricultural production is more than $25 billion (U.S. Environmental Protection Agency 

2012). The WSJV is challenged by extensive accumulation of soil salinity and such soil 

contamination has accelerated by regional climate and hydrology conditions. A review of the 

regional environment setting provides a better understanding of the effect of salinity on farmers’ 

crop choice decisions.  

As shown in the Figure 3.1B, the WSJV spans across 5,600 square miles and includes 

two subbasins of the SJV groundwater basin, the Delta–Mendota subbasin where Delta–Mendota 

Canal passes through and Westside subbasin where California Aqueduct passes through. The 

WSJV’s aquifer system is constituted of late Tertiary to Quaternary age alluvium19 originated 

from the Coast Mountain Range to the west and the Sierra Nevada Mountain Range to the east 

(Fram 2017b).  

The alluvial aquifer already contains native levels of soluble salt. That is due to that 

almost all waters draining from a bedrock of the aquifer naturally possess major mineral 

components including salts, which were trapped during deposition of the sediment forming the 

 
19 Alluvium is alluvial deposits consisting mainly of poorly to moderately permeable yellowish-brown gravel, sand, 

silt, and clay. 
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bedrock. Specifically, alluvium originating from the Sierra Nevada Mountain Range generally 

has lower salinity since most surface water from infiltration of precipitation as snowmelt 

dominates Sierra Nevada Mountain Range. Whereas alluvium originated from the Coast 

Mountain Range has higher salinity since saline marine sediments from below deep aquifer or 

the ocean dominate the Coast Ranges Mountain Range.  

Irrigation water applied in the WSJV is partially imported as surface water from the 

Sierra Nevada alluvium and partly pumped as groundwater in the Coast Range alluvium 

(Dubrovsky et al. 1999). Accordingly, if irrigation water imported from surface water of the 

Sierra Nevada alluvium is applied, it is likely to be low salinity in soils. Conversely, if irrigation 

water derived from the Coast Ranges alluvium is applied, the WSJV soils naturally contain high 

salinity. This implies that the cross-sectional variation of soil salinity across the spatial units can 

exist depending on which source of adjacent irrigation water is used.  

In essence, the direct source of salinity in WSJV stems from the marine origin of Coastal 

Range alluvium (Scudiero, Skaggs and Corwin 2014). Due to the geographical location of WSJV 

more closely adjacent to the Coast Ranges Mountain Range, it is overall susceptible to saline 

coastal sediments. This vulnerability is compounded by other disturbances, such as the WSJV's 

climate and hydrology conditions.  

First, there is an instant reduction in both surface water runoff and groundwater recharge 

by arid and semiarid climate and by occasional drought. As a result, reduced freshwater limits 

the availability of water needed to flush existing salts, and replaces the reduced volume of 

freshwater with groundwater pumping or groundwater reuse. Second, there is a saltwater inflow 

by overpumping for irrigated agriculture and by the lack of soil drainage. Once water tables fall 

by overpumping groundwater, pumping wells need to be drilled deeper to reach the water. In this 
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process, pumping can cause the upward intrusions of saltwater into the fresh aquifer, which 

ultimately can damage aquifer and contaminate land by exacerbating soil salinity (Figure 3.2).  

The reality is that there is a substantial delay before a reduction in the effects of water 

availability is fully reflected in its resultant salt accumulations since natural soil drainage can 

initially offset the effect (Beare and Heaney 2002). However, the WSJV suffers from a low-

permeability soil drainage problem. Indeed, the WSJV’s soils are dominated by the finer-

textured Corcoran clay20 sourced from saline alluvium deriving from California’s Southern 

Coast Range (Valley 2009; Scudiero et al. 2014) and is estimated that approximately 60% of the 

soils were saline by the 1980s due to the influence of soil texture (Scudiero, Skaggs and Corwin 

2015).  

Possible management practices to mitigate soil salinity include salinity leaching, saline 

drainage water reuse, land retirement, and changes to salinity-tolerant crops. Salinity leaching is 

basic and traditional management practice for controlling salinity. This practice is to flush the 

existing salts below the root zone of crops by applying more water (Fipps 2003; Welle and 

Mauter 2017). Yet, this practice, unlike some regions wherein average snowpack or rainfall can 

supply adequate water availability (i.e., the availability of water recharge) for leaching, may be 

limited in WSJV with limited water availability. Indeed, California’s 5-year drought reduced 

approximately 30% of available surface water in the state of California, and an estimated $600 

million in pumping cost occurred to replace the reduced volume with groundwater pumping 

 
20 Finer-textured Corcoran clay soils usually have weak soil drainage levels by less permeability. 
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(Lund et al. 2018). These losses21 were concentrated in the SJV with the inferior climate and 

hydrology environment and resulted in more pronounced salinity (Scudiero et al. 2015).  

The reuse of drainage water to reclaim salt-affected soils can be a useful practice in 

places wherein irrigation water is scarce in terms of supplementing water needed (FAO 2019b). 

However, this is only effective when original irrigation water with good-quality is reapplied. It is 

generally known that drainage water is not as good as the original irrigation water. That is due to 

that recharge under post-development conditions has inferior water-quality than recharge under 

pre-development conditions (Fram 2017a). Specifically, under pre-development conditions, 

groundwater was recharged by infiltration of precipitation, river, and scattered streamflow from 

the Coast Ranges through alluvial fans and from the San Joaquin and Jings Rivers in the basin, 

and groundwater was discharged principally by evapotranspiration from crops (Belitz and 

Heimes 1990; Fram 2017a). Whereas under post-development conditions, groundwater is 

recharged mostly by infiltration of groundwater and surface water used for irrigation, and 

groundwater is discharged mostly by pumping for irrigated agriculture, besides 

evapotranspiration from crops, and engineered drainage (California Department of Water 

Resources 2006; Faunt 2009). Therefore, salt accumulation aggravates in irrigated areas. 

Another management practice is land retirement, namely leaving saline land fallow 

(Connor et al. 2012). It can often be a difficult decision for farmers concerning economic returns, 

which is chosen as a last resort when the land cannot be restored from salinity.  

Instead, switching crops to more salinity-tolerant crops, as another primary management 

practice to reduce the negative impacts of soil salinity, is a more popular alternative to fallow 

 
21 Drought has restricted the availability of irrigation water and thereby leading to reduced irrigated land drastically. 

Detail information on the economic impacts of the drought, see Howitt et al. (2014, 2015).  
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lands for farmers. This practice is also an instant and relatively easy adaptation compared to 

other possible alternatives aforementioned, while continuously allowing to cultivate, albeit the 

land’s productivity is lower due to salinity. 

 

3.3. Data Description 

The overall process of constructing the final dataset is to spatially merge the soil salinity data 

with crop type classification with ArcGIS. By additionally merging other data needed for my 

empirical analysis on the WSJV with statistical software, I compose a field-level dataset for the 

period 2007–2016 including 139,060 unique fields, which covers five counties (i.e., Merced, 

Fresno, Kings, Tulare, and Kern). The final dataset contains records on the crop type 

classification, five levels of soil salinity measured by the electrical conductivity, other soil 

properties, and climate conditions at each field. Note that crop type classification is the only 

variable that changes over time in the dataset. Table 3.1 presents descriptive statistics for all 

variables used in the analysis. 

 

3.3.1. Cropland Data Layer 

The records of crop-specific land cover data for field-level crop choice decision is derived from 

the national Cropland Data Layer (CDL) provided by the National Agricultural Statistics Service 

(NASS) of the National Agricultural Statistics Service (USDA). The CDL is a raster-formatted 

data with 30m spatial resolution (i.e., one pixel size on the ground is 30m×30m) and produced 

annually for the conterminous U.S. via satellite imagery from the Landsat 8 OLI/TIRS sensor 

and the Disaster Monitoring Constellation DEIMOS-1 and UK2 sensors collected based on the 

current growing season (Boryan et al. 2011, 2012; USDA-NASS 2016; Yan and Roy 2016). In 
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this study, the California CDL data for the years 2007–2016 were obtained through the 

CropScape. The 2007–2016 CDL data show total crop mapping accuracies22 range from 89.53% 

to 97.22% for 247 crop categorization code. Non-agricultural land cover classes, for example, 

fallow23, forest, shrubland, barren, water, wetlands, and open space, were excluded from the 

code, along with missing values (i.e., crop codes 248 and 250). Finally, 72 crops are selected for 

inclusion in the data.  

I select a sample point within each field boundary spatially joined with the Moderate 

Resolution Imaging Spectroradiometer Irrigated Agriculture Data for the U.S. (MIrAD-US) land 

cover in Subsection 3.3.2 because I focus on field-level decisions instead of pixel-level24. These 

Common Land Unit (CLU) field points are defined as the centroid of the field. Next, the CDL 

data are assigned to given the CLU field points using a spatial join tool in ArcGIS (ArcGIS 

Resource Center 2018) to capture field-level crop choice decision. Based on the spatially joined 

crop data, I made two crop categories for econometric estimation: (i) five categories (i.e., Field 

Crops, Forage Crops, Fruit Crops, Vegetable Crops, Other Crops25) and soil salinity tolerance 

level by each crop type followed weighted average in each crop type; as well as (ii) seven 

categories by selected major crops among 72 crops in the study region according to their share 

 
22 The overall accuracies consider only row crops and seasonal fruit and vegetables, not non-agricultural land cover 

classes. 
23 The reason why fallow was excluded from the crop choice data is that soil salinity on the corresponding fields was 

not estimated Scudiero et al. (2017).    
24 Refer to the supplementary appendix in Hendricks et al. (2014) for further details on constructing the CDL data. I 

followed their process with only the study region changed and orchards excluded.  
25 Other crops for five categories by crop type include seed crops, herbs, and double crops. 
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(i.e., Alfalfa, Cotton, Winter Wheat, Tomato, Corn, Almond, Others26) and soil salinity tolerance 

level by each selected major crop followed crop tolerance index. 

 

3.3.2. Soil Salinity  

My key variable of interest that impacts crop choices, soil salinity, was defined as the occurring 

when dissolved salts in the water are transpired by crops or evaporate to the air, leaving salts 

behind at the soil surface. I used remote-sensed soil salinity data measured by the electrical 

conductivity of saturated soil paste extract (ECe, ds/m: deciSiemens per meter), which is a 

measure of the concentration of salts in soil. This remote-sensing approach with high-resolution, 

as Scudiero et al. (2017)27 asserts, provides a more precise assessment of soil salinity than 

traditional sampling methods with coarse resolution, allowing capture abrupt changes between 

neighboring fields. Specifically, I focused on the soil salinity in the root zone (i.e., soil volume 

down to a depth of about 0 to 4 feet), which is the salinity indicator that gets the most attention in 

the agricultural evaluation, not salinity on the soil surface (i.e., sometimes visible as salt crusts).  

The remote-sensed root zone soil salinity in the WSJV covering the five counties, as 

shown in Figure 3.3, is obtained from Scudiero et al. (2017) via personal communication. 

Figure 3.3 shows five levels for root zone salinity quantified as the ECe classified by Richards 

(1954) and percentage of at each level in the total area is as follows: 0–2 dS/m nonsaline 

(433,777 acres, 25%); 2–4 dS/m slightly saline (349,007 acres, 40%); 4–8 dS/m moderately 

saline (436,476 acres, 25%); 8–16 dS/m strongly saline (374,000 acres, 22%) and >16 dS/m 

 
26 Others for seven categories by selected major crops include all remaining crops grown on a small scale except 

seven major crops. 
27 For additional well-documented papers on the advantages of using the use of remote sensing for assessing and 

mapping soil salinity, see (Lobell 2010; Allbed and Kumar 2013). 
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extremely saline (145,070 acres, 8%). This salinity data is assigned to given CLU field points by 

using spatial join in ArcGIS after the CDLs joined (see Figure 3.4). 

 

3.3.3. Irrigation Classification  

To identify irrigated agricultural lands in WSJV, I use the MIrAD-US land cover, which is from 

the U.S. Geological Survey. The MIrAD-US reveals detailed spatial patterns of irrigation change 

across the nation, including the WSJV and describe. These data are a measure of irrigation status  

classified from remote sensing at 250m spatial resolution (Brown, Maxwell and Pervez 2009; 

Boryan et al. 2012; Brown and Pervez 2014). The most recent 2012 MIrAD-US was used as a 

measure of irrigation status in this application and is spatially joined to the USDA’s Farm 

Service Agency CLU boundary data (Woodard 2016a,b). The CLU boundary data represent field 

boundaries. 

 

3.3.4. Soil Properties 

Data on soil properties such as soil drainage classes and other properties such as bulk density, 

root zone available water storage, soil organic carbon, soil pH, and the log of slope are from the 

Soil Survey Geographic provided by the Natural Resource Conservation Service. The soil data 

are aggregated to the map unit level. Then they are merged to the field by the map unit 

associated with the point at each field. These soil properties were selected based on the Soil 

Quality Indicator Sheets from the USDA’s Natural Resources Conservation Service (USDA-

NRCS 2019).  

Soil drainage classes mean the frequency and duration of wet periods during soil 

formation. It refers to natural soil drainage condition, unlike altered drainage, which is mainly 
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caused by the result of artificial drainage or irrigation; in summary, it is the rate at which water is 

removed from soils. This natural soil drainage for the WSJV is categorized as four discrete 

classes as follows: well drained, moderately well drained, somewhat poorly drained, and poorly 

drained. These soil drainage classes can affect crop choice in terms of accelerating soil salinity 

but can also directly affect crop choice through other factors than salinity. As aforementioned in 

Subsection 3.3.1, the clay soils usually have poor drainage levels by less permeability compared 

to the sand soils with a faster infiltration water rate. This implies that the clay soils may retain 

essential nutrients that foster crop growth; at the same time, that salinity results in remaining at 

or near the ground surface since water is removed from the soil so slowly. Thus, the higher the 

clay percentages, the more severe drainage issues, thereby more remaining salinity, especially in 

the WSJV with finer-textured Corcoran clay soils.  

As other soil properties, bulk density indicates the soil compaction and reflects the 

movement of air and water through the soil. Bulk density above thresholds means impaired 

function because high bulk density has low soil compaction and porosity, thereby restricting root 

growth and impacting the movement of air and water through the soil. Root zone available water 

storage28 is the plant-available water volume that the soil can hold within the root zone. This 

water holding in root zone can be stored and used for crop uptake, and thereby it is a critical 

variable affecting crop yield potential and yield stability. Soil organic carbon29 improves various 

soil structure or fertility by providing energy sources for soil microorganisms and nutrient 

availability through mineralization, thus affecting plant growth. Soil pH (H2O)30 describes the 

 
28 Further information on this variable beyond the Soil Quality Indicator Sheets, see Leenaars et al. (2015). 
29 Further information on this variable beyond the Soil Quality Indicator Sheets, see Thiele-Bruhn (2016). 
30 Further information on this variable beyond the Soil Quality Indicator Sheets, see Batjes (1995). 
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degree of acidity, neutral, or alkalinity of a soil sample expressed as a numerical pH value and 

indicates soil health by affecting various chemical or biological activities in the soils. The pH is 

measured in a 1:1 soil to water ratio method in this study. Soil pH levels that are too high or too 

low cause declines in crop yields, suitability, or plant nutrient availability, resulting in 

deterioration of soil health. The average National Commodity Crop Productivity Index 

(NCCPI)31 provides condensed information about average crop productivity based on the 

inherent soil properties. The NCCPI incorporates together several factors related to crop 

production, such as landscape and climate characteristics, and imposes a rating (score) on the 

production.  

Elevation indicates height from fixed reference point and slope is degree to which a 

surface is tilted and is a measure of change in elevation. Although slope is not a direct indicator 

of soil properties, it affects crop productivity by influencing the distribution of soil moisture near 

the land surface. For example, steeper slopes generally have lower soil moisture than flatter 

slopes due to lower infiltration rates, rapid subsurface drainage, and higher surface runoff 

(Famiglietti, Rudnicki and Rodell 1998). Also, soil loss tends to increase with steep slopes (Liu 

et al. 2000; Kapolka and Dollhopf 2001). I take the log of slope to use a more normally 

distributed variable across fields.  

 

3.3.5. Climate Conditions   

I measure the climate with precipitation and degree days (DDs) in each field based on the daily 

weather data (i.e., maximum temperature, minimum temperature, and total precipitation) 

provided from PRISM Climate Group. I construct long-run average weather variables (i.e., 

 
31 For more detail of the NCCPI, refer to as Dobos, Sinclair Jr, and Hipple (2008). 
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1981–2016) given that long-run average weather (i.e., the climate) is most likely to have an 

impact on what crop is planted.  

For the impact of temperature, I follow the piecewise linear approach, which is applied to 

prediction of nonlinear temperature effects by referring to Schlenker and Roberts (2009) and 

Tack, Barkley and Nalley (2015). The piecewise linear model is estimated by including DDs as 

controls. DDs are a measure of cooling and heating defined as the number of degrees calculated 

by the sum of degrees above a lower threshold and below an upper threshold during the growing 

season Fraisse and Brown (2011). DDs are calculated between 0 and 10, 10 and 20, 20 and 30, 

30 and 40, and above 40 for a growing season of March 1–September 30. Next, I averaged these 

DDs and precipitation variables for 36 years of data and then finally merge with field-level CDL 

data. 

 

3.4. Model 

In this section, I explain the conceptual model and empirical model specification underlying 

farmers’ crop choice decisions based on existing studies of crop choice decisions using a 

multinomial logit model (MNL) (e.g., Wu et al. 2004, Kurukulasuriya and Mendelsohn 2007; 

Seo and Mendelsohn 2008a,b; Seo et al. 2008; Fleischer, Mendelsohn and Dinar 2011). 

 

3.4.1. Conceptual Model 

Each farmer cultivating a field i in year 𝑡𝑡 is assumed to make a crop choice decision to maximize 

expected profit. Thus, the profit function is composed of π𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑗𝑗(𝑋𝑋𝑖𝑖𝑖𝑖) + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 and crop j will be 

chosen if  π𝑗𝑗 ≥ π𝑘𝑘 for all 𝑗𝑗 ≠ 𝑘𝑘. The profit function consists of two parts, the deterministic 

component 𝑉𝑉𝑗𝑗 and the random component 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. The 𝑉𝑉𝑗𝑗 is a function of a vector of explanatory 
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variables 𝑋𝑋𝑖𝑖𝑖𝑖 that include variables to indicate different levels of soil salinity, soil properties, and 

climate conditions. Typically, the deterministic portion 𝑉𝑉𝑗𝑗 can be assumed in separable linear 

fashion, the expected profit, π𝑖𝑖𝑖𝑖𝑖𝑖 can be expressed as: 

π𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 .                                                              (1) 

 Since 𝑉𝑉𝑗𝑗 is the portion observed by the econometrician and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the unobserved portion, 

making the choice in field i  in year 𝑡𝑡 to be represented in a probability manner as follows (Baltas 

and Doyle 2001): 

𝑃𝑃𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑗𝑗) = 𝑃𝑃𝑃𝑃�π𝑖𝑖𝑖𝑖𝑖𝑖 ≥ π𝑖𝑖𝑖𝑖𝑖𝑖� = 𝑃𝑃𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖�    𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝑗𝑗≠𝑘𝑘     (2) 

Assuming that 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 follows an independent and identical Gumbel distribution, also known as 

Type I  Extreme Value distribution, then the probability of choosing crop j  can be calculated 

using the familiar MNL as follows (Mcfadden 1981):  

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋𝑖𝑖𝑖𝑖
′ 𝛽𝛽𝑗𝑗+𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖)

∑ (𝑋𝑋𝑖𝑖𝑡𝑡
′ 𝛽𝛽𝑘𝑘+𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖)𝐽𝐽−1

𝑘𝑘=0
,    𝑗𝑗 = 0,1,2, … , 𝐽𝐽 − 1                               (3) 

This method is generally used to predict the probabilities of three or more possible categorical 

outcomes given a set of explanatory variables.  

 

3.4.2. Econometric Model 

I estimate how farmers change crop choices in response to different soil salinity levels with a 

field-level dataset covering a 9-year period. Given five salinity levels, soil properties, and 

climate conditions, together with year fixed effects and county fixed effects, the MNL with fixed 

effects model is specified as follows: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑗𝑗|𝑋𝑋𝑖𝑖𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋𝑖𝑖𝑖𝑖
′ 𝛽𝛽𝑗𝑗+𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖)

∑ (𝑋𝑋𝑖𝑖𝑖𝑖
′ 𝛽𝛽𝑘𝑘+𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖)𝐽𝐽−1

𝑘𝑘=0
                                                                              (4) 



 

 

72 

 

                                                    =  𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑗𝑗1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖+𝛽𝛽𝑗𝑗2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖+𝛽𝛽𝑗𝑗3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖+𝛾𝛾𝑗𝑗𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡+𝛿𝛿𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑘𝑘1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖+𝛽𝛽𝑘𝑘2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖+𝛽𝛽𝑘𝑘3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖+𝛾𝛾𝑘𝑘𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡+𝛿𝛿𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)
𝐽𝐽−1
𝑘𝑘=0

                         

where i denotes 139,060 unique fields and t indexes time period 2007–2016.  j represents 

different crop choices and two alternative classifications were used in model estimation: (i) five 

categories J={Other Crops, Field Crops, Forage Crops, Fruit Crops, Vegetable Crops} and (ii) 

seven categories J={Others, Alfalfa, Cotton, Winter Wheat, Tomato, Corn, Almond}. 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =

𝑃𝑃𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑗𝑗|𝑋𝑋𝑖𝑖𝑖𝑖) denotes the probability of observing crop j on field 𝑖𝑖 in year 𝑡𝑡.  

 Thus, 𝛽𝛽𝑗𝑗 is the coefficient vector including the intercept 𝛽𝛽0𝑗𝑗 and 𝛽𝛽𝑘𝑘𝑘𝑘 are the slope 

coefficients. Since the probabilities must sum to one, I restrict 𝛽𝛽𝑗𝑗 = 0 for one of the alternatives 

used as the base category. Consequently, only 4 (J-1) for and 6 (J-1) are estimates for five 

categories and seven categories, respectively. In this study, I apply “other crops” as the base 

category for five categories and “other” as the base category for seven categories.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 has 5 salinity levels: 0–2 dS/m, nonsaline; 2–4 dS/m, slightly saline; 4–8 dS/m, 

moderately saline; 8–16 dS/m, strongly saline; and >16 dS/m, extremely saline. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 contains 

soil drainage classes, bulk density, root zone available water storage, soil organic carbon, soil 

pH, and the log of slope of field i. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 includes precipitation and DDs of field i. 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡 are 

year fixed-effects to capture the effect of macro-level shocks which affect all fields, such as 

changes in crop prices, energy prices, and other input prices. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  are county fixed-effects to 

capture differences across counties. Robust standard errors are clustered at the county level to 

allow error correlation for a given field over time as well as spatial correlation within a county. I 

allow fields within a county to be spatially correlated, but independent across the counties.  

The coefficients obtained from the above MNL model are difficult to interpret directly 

unlike the slope coefficients of the Ordinary Least Squares regression model (Greene, William 
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2012; Wulff 2015). In particular, simply with the positive coefficients, the increase in the 

explanatory variable does not necessarily mean an increase in the selection probability of a 

particular outcome. Instead, the marginal effects (MEs) of the explanatory variables for the 

categories are calculated as: 

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖𝑖𝑖

= 𝜕𝜕𝜕𝜕𝜕𝜕�𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑗𝑗�𝑋𝑋𝑖𝑖𝑖𝑖�
𝜕𝜕𝑋𝑋𝑖𝑖𝑖𝑖

= 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖(𝛽𝛽𝑗𝑗 − 𝛽𝛽𝚤𝚤� ),   where  𝛽𝛽𝚤𝚤� = ∑ 𝑃𝑃𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑘𝑘|𝑋𝑋𝑖𝑖𝑖𝑖)𝛽𝛽𝑘𝑘𝑘𝑘             (5)                                                                            

Here, 𝑋𝑋𝑖𝑖𝑖𝑖 is the explanatory variables including the soil salinity variable as a key treatment 

variable, and 𝛽𝛽𝚤𝚤�  is a probability-weighted average of the coefficients for other alternative 

combinations. 

The MEs are nonlinear since they depend on the probabilities varying across all 

explanatory variables in the model. This implies that the MEs are not constant as well as they 

may be positive for some values of explanatory variables or they can be negative for others. The 

MEs are often calculated at the means (MEM) of the explanatory variables as follows: 

MEM = 𝑃𝑃�𝑗𝑗(𝛽𝛽𝑘𝑘𝑘𝑘 − 𝛽𝛽𝚤𝚤� )                                                                (6) 

where 𝑃𝑃�𝑗𝑗𝑗𝑗  computed by holding 𝑋𝑋𝑖𝑖𝑖𝑖 at their mean values. In this study, I evaluated the MEM. 

Another way, average marginal effects (AME)32 based on actual values of the explanatory 

variables can be used. While MEM and AME yield different estimates, there is no consensus as 

to which of the two is the most representative (Greene, William 2012; Wulff 2015), both can be 

utilized to get MEs.  

 Equation (6) represents MEM for continuous variables. Yet, I have categorical variables, 

such as five soil salinity levels and four soil drainage classes. In such case, taking the difference 

of estimated probabilities between the different levels of the categorical variable is suitable in 

 
32 AME = 1

𝑛𝑛
∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖(𝛽𝛽𝑘𝑘𝑘𝑘 − 𝛽𝛽𝚤𝚤� )𝑛𝑛
𝑖𝑖=1  
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analyzing the MEM. If, say, 𝑥𝑥 denote the dummy explanatory variable to capture the categorical 

effect and 𝑋𝑋∗denote the other explanatory variables at their means. The effect due to the discrete 

change for categorical variable, 𝑥𝑥 on the predicted probabilities of 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑗𝑗 is 

ME = 𝑃𝑃𝑃𝑃[𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑗𝑗|𝑥𝑥 = 1,𝑋𝑋𝑖𝑖𝑖𝑖∗ ]− 𝑃𝑃𝑃𝑃[𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑗𝑗|𝑥𝑥 = 0,𝑋𝑋𝑖𝑖𝑖𝑖∗ ].                                   (7)                                                                

 

3.5. Results 

The results in Table 3.3 and Table 3.4 present the marginal effects of all variables from the 

MNL regression models in five categories and seven categories by selected major crops, 

respectively. The interpretation of the marginal effects on continuous variables represents the 

change in predicted probabilities of choosing a particular alternative due to a one-unit change in 

a particular variable. The interpretation of the marginal effects on categorical variables (such as 

five soil salinity levels and four drainage classes) represents the difference in predicted 

probabilities of choosing a particular alternative due to a variable taking that particular level 

compared to the base category. The results of particular interest are the marginal effects of 

different soil salinity levels on crop choices as a key variable. The marginal effects of the levels 

inform about how the change in salinity encourages or discourages the probability of a particular 

crop being grown on a given field.  

Table 3.3 indicates the marginal effects in five categories. Overall, at all levels for soil 

salinity except for slightly saline soil level, the marginal effects of field crops, forage crops, fruit 

crops, and vegetable crops show signs that match expectations in the light of the relative salinity 

tolerance index for those crops. They are also statistically significant.  

Specifically, the probability that a field is planted to field crops is 3.16% smaller and to 

vegetable crops is 5.31% smaller if it has slightly saline soils (i.e., ECe 2-4 dS/m) rather than 
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nonsaline soils (i.e., ECe 2-4 dS/m). These results are statistically significant at the 1% level of 

significance. Meanwhile, the probability that a field is planted to forage crops is 5.98% larger if 

it has slightly saline soils rather than nonsaline soils, and its result is statistically significant at 

the 1% level. These results are in contradiction with my expectation, based on the relative salt 

tolerance index for those crops. Perhaps because this level is close to the natural saline level and 

does not substantially affect yield loss.  

At the slightly saline soils or higher, the probability that a field is planted to fruit crops is 

2.24% larger, while to vegetable crops is 9.38% smaller if it has moderately saline soils (i.e., ECe 

-8 dS/m) rather than nonsaline soils. These results are both statistically significant at the 1% 

level. The probability that a field is planted to forage crops is 5.98% larger if it has slightly saline 

soils rather than nonsaline soils, and its result is statistically at the 1% level. The probability that 

a field is planted to field crops is 17.26% larger and to fruit crops is 8.32% smaller if it has 

strongly saline soils (i.e., ECe 8-16 dS/m) rather than nonsaline soils. The results of field and fruit 

crops show statistical significance at the 5% and 1% levels, respectively. While, the probability 

that a field is planted to vegetable crops is 16.33% smaller if it has strongly saline soils rather 

than nonsaline soils, and its result is statistically significant at the 1% level. The probability that 

a field is planted to field crops is 25.84% larger and to fruit crops is 11.62% larger if it has 

extremely saline soils (i.e., ECe >16 dS/m) rather than nonsaline soils. The results of field and 

fruit crops show statistical significance at the 5% and 1% levels, respectively. While, the 

probability that a field is planted to forage crops is 16.48% smaller and to vegetable crops is 

15.72% smaller if it has extremely saline soils (i.e., ECe >16 dS/m) rather than nonsaline soils. 

The results of field and fruit crops show statistical significance at the 10% and 1% levels, 

respectively. 
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As the level of salinity increases, the probability that salt-tolerant crops will be selected 

for cultivation increases gradually. In contrast, salt-sensitive crops are incrementally less likely 

to be selected as cultivated crops. This suggests that the extent of farmers’ adaptations to salinity 

change correspondingly to the degree of salinity. 

One notable result comes from fruit crops with all positive and statistically significant 

marginal effect results at the slightly saline soils or higher. In the light of the relative salinity 

tolerance index, I anticipated that the choice probability of salt-sensitive fruit crops being grown 

on a given field would decrease. Possibly this result may be due to that most crops composing 

fruit crops grow perennially in all locations of the study region. Especially almonds, which 

account for the largest portion of fruit crops, are representative of perennial crops and crop 

rotation33 will not be applicable to perennial crops like almonds. That said, almond trees 

generally live for 25 to 30 years, depending on the growing conditions. They begin to decline 

slowly after reaching their maximum yields for about 15 years and given the roughly seven years 

for the almond tree to reach the point where they can launch for commercial production, the peak 

production is only for the remaining seven years (Almond Board of California 2016; Ternus-

Bellamy 2019). Given the long time and other input costs compared to annual crops (i.e., 

involving relatively higher sunk costs than the other crops), a slight increase in soil salinity is 

unlikely to be an incentive to induce an immediate change of choice to different crops.  

 It is possible that my estimates have some endogeneity bias. For example, if the crop 

chosen uses much water, and if that water contains much salinity, then water will potentially 

 
33 Crop rotation is to plant different crops more than two sequentially on the same plot of land for growing season to 

improve soil health by preventing soil diseases or pests and by optimizing nutrients in the soil (Dufour 2015). 

However, crop rotation has not confirmed to be an entirely adequate control practice for almond trees (Micke 1997). 
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increase soil salinity. Alternatively, the farmer could want to grow a crop that uses more water to 

try to flush the salinity out of the soil and soil salinity will decrease on fields with water intensive 

crops. Therefore, crop choice depends on how much salinity is in the water being applied and the 

amount of water applied by crop could affect salinity. Unfortunately, I cannot determine the 

direction of the endogeneity bias.  

 Table 3.4 indicates the marginal effects in seven categories by selected major crops in 

the WSJV according to their share. Overall, except for cotton and almond, the marginal effects of 

alfalfa, winter wheat, tomato, and corn show signs that match expectations in the light of the 

relative salinity tolerance index for those crops, at all levels for soil salinity except for slightly 

saline soil level. They are also statistically significant.  

Specifically, the probability that a field is planted to alfalfa is 5.39% larger if it has 

slightly saline soils (i.e., ECe 2-4 dS/m) rather than nonsaline soils (i.e., ECe 2-4 dS/m). This 

result is statistically significant at the 1% level. Meanwhile, the probability that a field is planted 

to cotton is 5.65% smaller and to tomato is also 2.20% smaller if it has slightly saline soils rather 

than nonsaline soils. Both results are statistically significant at the 1% level. Likewise, the result 

of the five categories above, these all results are in contradiction with my expectation, based on 

the relative salt tolerance index for those crops.  

At the slightly saline soils or higher, the probability that a field is planted to winter wheat 

is 6.77% larger and almond is 1.05% larger if it has moderately saline soils (i.e., ECe -8 dS/m) 

rather than nonsaline soils. The results of winter wheat and almond show statistical significance 

at the 5% and 1% levels, respectively. While the probability that a field is planted to cotton is 

8.76% smaller and to tomato is 4.35% smaller if it has moderately saline soils rather than 

nonsaline soils. Both results show statistical significance at the 10% and 1% levels. Meanwhile, 
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the probability that a field is planted to alfalfa is 10.97% smaller and to corn is 3.02% smaller if 

it has strongly saline soils rather than nonsaline soils. The results of alfalfa and corn crops show 

statistical significance at the 5% and 1% levels, respectively. The probability that a field is 

planted to winter wheat is 17.80% larger and to almond is 4.60% larger if it has extremely saline 

soils (i.e., ECe >16 dS/m) rather than nonsaline soils. These results show statistical significance 

at the 1% levels. Whereas, the probability that a field is planted to alfalfa is 17.50% smaller, to 

cotton is 24.10% smaller, to tomato is 11.67% smaller, and corn is 2.94% smaller if it has 

extremely saline soils rather than nonsaline soils. The results of alfalfa, cotton, tomato, and corn 

show statistical significance at the 5%, 1%, 1% , and 5% levels, respectively. 

Notable results in the seven categories are for cotton (a field crop) and almonds (a fruit 

crop). Cotton was expected to be highly selected for farmers facing more salinity because it was 

a salt-tolerant crop. Its sign is expected to be positive and consistent with the results of field 

crops in the five categories shown earlier. However, the result was opposite to expectations, and 

also statistically significant. This may stem from cotton’s water use intensity (see Table 3.2). 

Even though cotton is the salt-tolerant crop, farmers are willing to be less likely to choose cotton, 

due to its high-water use intensity (i.e., average water need: 1000mm/growing period). This 

high-water need offsets the impact of salinity on the likelihood of choosing a salt-tolerant crop.  

Almond, like cotton, has a different statistical sign than expected. The possible reasons 

for this result are the same as the fruit crops in the five categories shown above. In other words, 

due to the relatively higher sunk costs than the other crops, no matter how much almonds are 

salt-sensitive, farmers will not be able to leave from almond cultivation immediately. Moreover, 

almonds (600mm/growing period) use less water than either walnut in the same fruit crop 
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category or corn and cotton; thus, the effect of salinity on farmers' almond selection also has the 

potential to increase. 

Conversely, winter wheat and corn are field crops as well and showed signs that matched 

their relative salinity tolerance indices and statistical significance. Moderately salt-tolerant 

winter wheat is also the best choice for farmers facing salinity because water use intensity (i.e., 

average water need: 550mm/growing period) is not only resistant to salinity to some extent but 

also lower water use intensity compared to cotton. Indeed, farmers in the region facing salinity 

show a high tendency to choose winter wheat. On the other hand, farmers in this region reduce 

the choice of moderately salt-sensitive corn, as in the case of cotton, but because the corn uses 

less water than cotton, the magnitude of the decrease is small compared to cotton.  

Soil properties and climate conditions also affect crop choice. In Table 3.3, as the soil 

drainage classes are poorly, it decreases the likelihood of selecting moderately salinity sensitive 

fruit crops. The effect of soil drainage class could partly capture some soil salinity effects 

because poor drainage can increase soil salinity. This can be seen from field crops and fruit 

crops. The probability that a field is planted to salt-tolerant field crops is larger if it has more 

poorly drained soil class relative to a well drained soil class as the base category. Conversely, the 

probability that a field is planted to salt-sensitive fruit crops is smaller if it has more poorly 

drained soil class relative to a well drained soil class as the base category. Likewise, seven 

categories by selected major crops in Table 3.4 can be interpreted in the same way for the soil 

drainage classes. In summary, as the soil drainage classes are poorly, it encourages the likelihood 

of choosing salt-tolerant cotton, while discourages the likelihood of selecting salt-sensitive 

almond. The results for cotton and almond are matched to the results for field crops and fruit 

crops, respectively. However, it also possible that the soil drainage class captures other aspects 
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of the soil that affect plant growth so the soil drainage class could be capturing other aspects than 

soil salinity. 

Soil properties such as bulk density and soil pH do not significantly affect crop choice in 

five crop categories. The seven crop categories are not significantly impacted by bulk density 

and soil organic carbon. Precipitation has significant effects on all crop categories, and in the 

case of DDs, between 10°C and 20°C has the most significant impact on crop choice. 

 

3.6. Conclusions 

Soil salinity has threatened the agricultural productivity and sustainability in the WSJV, one of 

the highest crop productivity regions in the United States. The source of salinity in WSJV stems 

from saline Coastal Range alluvium, yet the lack of freshwater availability by regional climate 

conditions and saltwater inflow by excessive irrigated agriculture and regional hydrology 

conditions compound such salinity challenges. 

A robust literature examines the effect of salinity in terms of the productivity and crop 

yields, however, less examines changes in cropping patterns as an adaptation strategy to salinity. 

I quantify the adaption to soil salinity by farmers in the WSJV by econometrically estimating 

how farmers change crop choices in response to different soil salinity levels. I use high-

resolution remote-sensed soil salinity and remote-sensed crop data during 2007–2016 to capture 

fine-scale spatial variations inherent in agricultural settings, controlling for other soil properties 

and climate conditions on irrigated lands at each field. For robust estimation for farmers’ crop 

choices, I estimate the multinomial logit model with fixed effects for two crop classifications: 

five categories and seven categories by selected major crops in the study region. 
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My estimated total marginal effect shows that basically, as the salinity level increases, the 

probability of choosing a salt-tolerant crop increases. This chapter has focused on changes in 

cropping decisions, which is likely to be more substantial in California than Kansas because 

California has a more diverse range of crops that farmers choose from. Unfortunately, I do not 

have access to water use data in California. Future research could quantify the extensive and 

intensive margin changes in water use In California if data were available and compare to the 

results for Kansas in Chapter 1.  

My results provide useful information for farmers and policymakers on how farmers 

adjust cropping choices in response to soil salinity in irrigated lands. This information could be 

used in deriving a reasonable picture of adaptation to it when they make agricultural decisions 

under more complex environments due to a variety of factors threatening agricultural production 

and sustainability. Specifically, my work makes an additional contribution to a much broader 

literature in the WSJV, confined to assessing, sampling or mapping soil salinity at regional and 

state levels.  
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3.7. Tables 

 
Table 3.1. Descriptive Statistics 

Outcome Variables Obs Mean Std.Dev.  Min  Max 
Five categories by crop type      
 Field Crops 139807 0.44 0.14 0.04 0.93 
 Forage Crops 139807 0.27 0.13 0.00 0.70 
 Fruit Crops 139807 0.08 0.10 0.00 0.94 
 Vegetable Crops 139807 0.13 0.14 0.00 0.81 
 Other Crops 139807 0.08 0.06 0.00 0.42 
Seven categories by selected major crops      
 Alfalfa 139807 0.26 0.13 0.00 0.69 
 Cotton 139807 0.20 0.12 0.00 0.82 
 Winter Wheat 139807 0.13 0.09 0.01 0.68 
 Tomato 139807 0.09 0.10 0.00 0.70 
 Corn 139807 0.05 0.05 0.00 0.47 
 Almond 139807 0.03 0.05 0.00 0.65 
 Others 139807 0.25 0.12 0.01 0.80 

Explanatory Variables Obs Mean Std.Dev.  Min  Max 
Soil Salinity       
 Nonsaline: 0–2 (dS/m) 139807 0.35 0.48 0.00 1.00 
 Slightly saline: 2–4 (dS/m)a 139807 0.30 0.46 0.00 1.00 
 Moderately saline: 4–8 (dS/m)a 139807 0.26 0.44 0.00 1.00 
 Strongly saline: 8–16 (dS/m)a 139807 0.08 0.27 0.00 1.00 
 Extremely saline: >16 (dS/m)a 139807 0.01 0.11 0.00 1.00 
      
Soil Properties Variables      
 Moderately well drainedb 139753 0.13 0.34 0 1 
 Somewhat poorly drainedb 139753 0.2 0.4 0 1 
 Poorly drainedb 139753 0.27 0.44 0 1 
 Bulk density (g/cm3) 139165 1.44 0.10 1 1.65 
 Root Zone Available Water Storage (mm) 139666 190.32 51.40 0 270 
 Soil Organic Carbon in 0–150cm depth (kg/m2) 139577 6815.35 3349.72 92.44 27709.79 
 Soil pH 139165 8.09 0.42 4.83 9.80 
 National Commodity Crop Productivity Index 139595 0.10 0.05 0 0.44 
 Log of slop (%) 139753 0.83 0.59 0 12 
      
Climate Conditions Variables       
 Precipitation (mm) 139807 214.71 40.83 140.57 302.77 
 Degree days between 0°C and 10°C 139807 6406.58 210.73 5945.26 6822.23 
 Degree days between 10°C and 20°C 139807 3076.06 195.18 2669.43 3443.63 
 Degree days between 20 °C and 30°C 139807 998.3 111.37 767.02 1213.49 
 Degree days between 30°C and 40°C 139807 163.22 34.37 83.18 238.61 
 Degree days greater than 40°C 139807 0.67 0.42 0.01 2.59 

aFive soil salinity levels measured by the electrical conductivity of saturated soil paste extract (ECe) and the base 
category is “Nonsaline: 0–2 (dS/m)”. 
bThe base category for four soil drainage classes is “Well drained”. 
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Table 3.2. Soil Salinity Tolerance Indexes and Water Use Intensity 

Crop 
Code 

Crop 
Name 

Crop 
Type 

Salinity 
Toleran

ce  
0% Yield Loss 

(ECe, dS/m)  
50% Yield Loss 

(ECe, dS/m)  

 
Share 

(%) 
Growing Period 

(days) 

Average 
Growing Period 

(days) 
Water Need 

(mm/growing period) 

Average 
Water Need 

(mm/growing period) 
1 Corn Field MS 1.7 5.9 4.94 125-180 152.5 500-800 650 
2 Cotton Field T 7.7 17.0 19.82 180-195 187.5 700-1300 1000 
3 Rice Field S 3.0 7.2 0.15 90-150 120 450-700 575 
4 Sorghum Field MT 4.0 11.0 0.28 120-130 125 450-650 550 

12 Sweet Corn Vegetable MS 1.7 5.9 0.06 80-110 95 500-800 - 
21 Barley Field T 8.0 18.0 1.56 120-150 135 450-650 550 
22 Durum Wheat Field T 5.9 13.0 1.11 120-150 135 450-650 550 
23 Spring Wheat Field T 6.0 13.0 0.01 120-150 135 450-650 550 
24 Winter Wheat Field T 6.0 13.0 12.55 120-150 135 450-650 550 
27 Rye Forage MT 5.6 12.2 0.07 - - - - 
28 Oats Field T 2.0 - 2.62 120-150 135 450-650 550 
33 Flaxseed Others MS 1.7 5.9 1 150-220 185 450-900 675 
36 Alfalfa Forage MS 2.0 8.8 25.64 100-365 232.5 800-1600 1200 

37 
Other Hay/Non 

Alfalfa Forage MT 6.0 13.0 0.73 - - - - 
38 Camelina Forage T - - 0.02 - - - - 
41 Sugarbeets Field T 7.0 15.0 0.06 160-230 195 550-750 650 
42 Dry Beans Vegetable S 1.0 3.6 0.28 95-110 102.5 300-500 400 
43 Potatoes Vegetable MS 1.7 5.9 0.40 105-145 125 500-700 600 
44 Other Crops Field - - - 0.02 - - - - 
46 Sweet Potatoes Vegetable MS 1.5 6.0 0.03 - - - - 
47 Misc Vegs & Fruits Others - - - 0.04 - - - - 
48 Watermelons Fruit MS - - 0.27 120-160 140 400-600 500 
49 Onions Vegetable S 1.2 4.3 1.09 150-210 82.5 350-550 450 
50 Cucumbers Vegetable MS 2.5 6.3 0.01 105-130 117.5 350-500 425 
53 Peas Vegetable MS 3.4 - 0.11 90-110 95 350-500 425 
54 Tomatoes Vegetable MS 2.5 7.6 8.68 135-180 157.5 400-800 600 
57 Herbs Others - - - 0.08 - - - - 
58 Clover/Wildflowers Forage MS 1.5 5.7 0.03 125-130 127.5 579-1320 949.5 
59 Sod/Grass Seed Others - - - 0.01 - - - - 
66 Cherries Fruit S 1.7 - 0.07 - - - - 
67 Peaches Fruit S 1.1 1.4 0.04 - - - - 
68 Apples Fruit S 1.7 4.8 0 - - - - 
69 Grapes Fruit MS 1.5 6.7 1.68 - - - - 
71 Other Tree Crops Others - - - 0.02 - - - - 
72 Citrus Fruit S 1.7 4.8 0.03 240-365 302.5 900-1200 1050 
74 Pecans Fruit MS - - 0 - - - - 
75 Almonds Fruit S 1.5 4.1 3.29 180-240 210 500-700 600 
76 Walnuts Fruit S 1.7 4.8 0.27 130-140 135 700-1000 850 

(Continued) 
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Table 3.2. Continued 

Crop 
Code 

Crop 
Name 

Crop 
Type 

Salinity 
Toleran

ce  
0% Yield Loss 

(ECe, dS/m)  
50% Yield Loss 

(ECe, dS/m)  

 
Share 

(%) 
Growing Period 

(days) 

Average 
Growing Period 

(days) 
Water Need 

(mm/growing period) 

Average 
Water Need 

(mm/growing period) 
204 Pistachios Fruit MS - - 1.68 - - - - 
205 Triticale Field T 6.1 14.0 0.68 - - - - 
206 Carrots Vegetable S 1.0 4.6 0.69 100-150 125 350-500 425 
207 Asparagus Vegetable T 4.1 18.0 0.13 - - - - 
208 Garlic Vegetable MS 3.9 6.0 0.69 - - - - 
209 Cantaloupes Vegetable MS 2.2 9.1 0.78 - - - - 
210 Prunes Fruit MS 1.5 4.3 0.01 75-95 85 300-600 450 
211 Olives Fruit MT 2.7 8.4 0.01 150-180 165 600-1000 800 
212 Oranges Fruit S 1.3 4.8 0.33 240-365 302.5 900-1200 1050 
213 Honeydew Melons Fruit MS 1.0 - 0.17 120-160 140 400-600 500 
214 Broccoli Vegetable MS 2.8 8.2 0.03 100-150 125 250-500 375 
216 Peppers Vegetable MS 1.5 5.1 0.13 120-210 165 600-900 750 
217 Pomegranates Fruit MS 2.7 8.4 0.28 120-130 125 280-600 440 
218 Nectarines Fruit S 1.7 4.1 0.01 - - - - 
219 Greens Vegetable MS 0.9 - 0.01 - - 250-500 375 
220 Plums Fruit S 1.5 4.3 0.02 - - - - 
222 Squash Vegetable MT 4.9 - 0 95-120 107.5 500-650 600 
223 Apricots Fruit S 1.6 3.7 0.01 - - - - 
224 Vetch Forage MS 3.0 - 0.06 - - - - 

225 
Dbl Crop 

WinWht/Corn 
Others - - - 3.90 - - - - 

226 Dbl Crop Oats/Corn Others - - - 1.95 - - - - 
227 Lettuce Vegetable MS 1.3 5.2 0.33 75-140 107.5 400-600 500 

231 
Dbl Crop 

Lettuce/Cantaloupe 
Others - - - 0 - - - - 

232 
Dbl Crop 

Lettuce/Cotton 
Others - - - 0 - - - - 

234 
Dbl Crop Durum 

Wht/Sorghum 
Others - - - 0 - - - - 

235 
Dbl Crop 

Barley/Sorghum 
Others - - - 0.03 - - - - 

236 
Dbl Crop 

WinWht/Sorghum 
Others - - - 0.95 - - - - 

237 
Dbl Crop 

Barley/Corn 
Others - - - 0.02 - - - - 

238 
Dbl Crop 

WinWht/Cotton 
Others - - - 0.03 - - - - 

242 Blueberries Fruit S 2.0 - 0 - - - - 
243 Cabbage Vegetable MS 1.8 7.0 0.01 120-140 130 350-500 425 
246 Radishes Vegetable MS 1.2 5.0 0 35-45 40 300-400 350 
247  Turnips Vegetable MS 0.9 - 0 - - - - 

Notes: Compiled from various sources 
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Table 3.3. Marginal Effects of the Probabilities to Choose Alternative Crops in Five Categories  
 

Tolerant Moderately 
Sensitive 

Moderately 
Sensitive 

Moderately 
Sensitive 

Moderately 
Sensitive 

Variables Field crops Forage crops Fruit crops Vegetable crops Other cropsc 
Slightly saline: 2–4 (dS/m)a     -0.0316***       0.0598*** 0.0006      -0.0531***       0.0255*** 

       (0.0072) (0.0108) (0.0016) (0.0074) (0.0025) 
Moderately saline: 4–8 (dS/m)a        0.0153 0.0286       0.0224***      -0.0938***       0.0275*** 

       (0.0337) (0.0347)  (0.0038) (0.0069) (0.0054) 
Strongly saline: 8–16 (dS/m)a   0.1726**        -0.0775       0.0832***      -0.1633***        -0.0151 

      (0.0869)        (0.0500) (0.0096) (0.0369) (0.0124) 
Extremely saline: >16 (dS/m)a 0.2584**        -0.1648*       0.1162***    -0.1572**      -0.0525*** 

      (0.1043)        (0.0886)  (0.0083) (0.0619) (0.0119) 
Moderately well drainedb    0.1222***        -0.0433      -0.0494*** 0.0132      -0.0427*** 

      (0.0239)        (0.0294)  (0.0068) (0.0288) (0.0102) 
Somewhat poorly drainedb    0.1300***         0.0169      -0.0683***        -0.0528    -0.0259** 

      (0.0280)        (0.0347) (0.0067)  (0.0406) (0.0088) 
Poorly drainedb    0.1714***         0.0200      -0.0808***        -0.0165      -0.0940*** 

      (0.0183)        (0.0609) (0.0084)        (0.0509) (0.0140) 
Bulk density (g/cm3)      -0.3155         0.2176 0.0707        -0.0205 0.0477 

      (0.2659)        (0.2135) (0.0840)        (0.0639) (0.0552) 
Root Zone Available Water Storage (mm)      -0.0006**        -0.0001       0.0003***       0.0003*** 0.0001 

      (0.0002)        (0.0003) (0.0000)        (0.0001) (0.0001) 
Soil Organic Carbon in 0‐150 cm depth (kg/m2)      -0.0000        -0.0000   0.0000*         0.0000 0.0000 

      (0.0000)        (0.0000) (0.0000)        (0.0000) (0.0000) 
Soil pH       -0.0193         0.0384**    -0.0093**    -0.0153** 0.0055 
      (0.0168)        (0.0153) (0.0038)        (0.0065) (0.0060) 

(Continued) 
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3.3. Continued 
 

Tolerant Moderately 
Sensitive 

Moderately 
Sensitive 

Moderately 
Sensitive 

Moderately 
Sensitive 

Variables Field crops Forage crops Fruit crops Vegetable crops Other cropsc 
National Commodity Crop Productivity Index           0.7635***        0.2296        -0.3532***       -0.2666*      -0.3733*** 
         (0.1548)       (0.2675)        (0.0710)       (0.1593) (0.0682) 
Log of slop (%)          0.0668**     -0.0774***         0.0198**        0.0097        -0.0188 
         (0.0215)       (0.0206)       (0.0100)       (0.0068)  (0.0158) 
Precipitations (mm)         -0.0021**     0.0029***       -0.0003    -0.0012***  0.0007 
         (0.0009)       (0.0007)       (0.0002)       (0.0003)  (0.0005) 
Degree days between 0°C and 10°C  -0.0005       -0.0026        0.0007**   0.0024**        -0.0000 

   (0.0023)       (0.0024)       (0.0003)       (0.0010)        (0.0010) 
Degree days between 10°C and 20°C  0.0002   0.0061**  -0.0015**    -0.0052***         0.0004 

  (0.0028)       (0.0026) 0.0005)       (0.0012)        (0.0014) 
Degree days between 20 °C and 30°C  0.0018       -0.0091        0.0017    0.0071**        -0.0014 

  (0.0028)       (0.0061)       (0.0013)       (0.0025)        (0.0015) 
Degree days between 30°C and 40°C        -0.0035        0.0120       -0.0024       -0.0107*         0.0045 

        (0.0104)       (0.0159)       (0.0024)       (0.0056)        (0.0031) 
Degree days greater than 40°C        -0.0574       -0.0658        0.0526*    0.1713**    -0.1008** 

        (0.1979)       (0.2286)       (0.0307)       (0.0628)        (0.0350) 
Year fixed effects Yes Yes Yes Yes Yes 
County fixed effects  Yes Yes Yes Yes Yes 
Observations 139,060 139,060 139,060 139,060 139,060 

Notes: Asterisks ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust standard errors clustered at the county level 
are reported in parentheses. 
aFive soil salinity levels measured by the electrical conductivity of saturated soil paste extract (ECe) and the base category is “Nonsaline: 0–2 (dS/m)”. 
bThe base category for four soil drainage classes is “Well drained”. 
cOther crops for five categories by crop type include seed crops, herbs, and double crops. Other crops are used as the base category. 
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Table 3.4. Marginal Effects of the Probabilities to Choose Alternative Crops in Seven Categories by Selected Major Crops 

 Moderately 
Sensitive 

Tolerant  Moderately 
Tolerant 

Moderately 
Sensitive 

Moderately 
Sensitive 

Sensitive 
 

Undetermined 

Variables Alfalfa Cotton Winter Wheat Tomato   Corn Almond Othersc 
Slightly saline:  
2–4 (dS/m)a 

      0.0539*** 
(0.0103) 

     -0.0565*** 
(0.0097) 

0.0215 
(0.0146) 

    -0.0220*** 
     (0.0024) 

0.0028 
(0.0039) 

0.0005 
(0.0022) 

      -0.0000 
 (0.0188) 

 
Moderately saline:  
4–8 (dS/m)a 

0.0068 
(0.0257) 

    -0.0876*** 
(0.0158) 

   0.0677** 
     (0.0267) 

   -0.0435*** 
     (0.0042) 

-0.0003 
(0.0043) 

      0.0105*** 
(0.0027) 

    0.0463**  
(0.0177) 

 
Strongly saline:  
8–16 (dS/m)a 

   -0.1097** 
(0.0365) 

     -0.1682*** 
(0.0102) 

     0.1678*** 
     (0.0420) 

   -0.0724*** 
     (0.0102) 

    -0.0302*** 
(0.0048) 

      0.0382*** 
(0.0034) 

     0.1745*** 
(0.0257) 

 
Extremely saline:  
>16 (dS/m)a 

  -0.1750** 
     (0.0794) 

   -0.2410*** 
     (0.0372) 

     0.1780*** 
     (0.0449) 

  -0.1167*** 
    (0.0076) 

   -0.0294** 
(0.0136) 

     0.0460*** 
(0.0067) 

     0.3381*** 
(0.0632) 

 

Moderately well drainedb       -0.0188 
(0.0310) 

    0.1659*** 
     (0.0231) 

      0.0168 
     (0.0116) 

     0.0190 
    (0.0117) 

   -0.0115** 
 (0.0055) 

     -0.0305*** 
(0.0035) 

     -0.1410*** 
(0.0256)  

Somewhat poorly drainedb 0.0273 
(0.0392) 

    0.1723*** 
    (0.0390) 

      0.0278 
     (0.0216) 

    -0.0029 
    (0.0138) 

-0.0161 
 (0.0117) 

     -0.0205*** 
(0.0039) 

     -0.1879*** 
(0.0400)  

Poorly drainedb 0.0540 
(0.0568) 

   0.2553*** 
    (0.0250) 

     -0.0097 
     (0.0332) 

     0.0111 
    (0.0216) 

-0.0013 
 (0.0172) 

     -0.0277*** 
(0.0031) 

     -0.2817*** 
(0.0374)  

Bulk density (g/cm3) 0.1845 
(0.1609) 

    -0.1515 
    (0.2407) 

     -0.0617 
     (0.0844) 

     0.0025 
    (0.0401) 

  0.0254* 
(0.0138) 

0.0442 
(0.0405) 

      -0.0434 
 (0.1286)  

Root Zone Available Water 
Storage (mm) 

      -0.0003 
(0.0002) 

    -0.0000 
    (0.0003) 

 -0.0003** 
     (0.0002) 

 0.0001** 
    (0.0000)  

    -0.0001*** 
(0.0000)  

    0.0001** 
(0.0000)  

    0.0004**  
(0.0001) 

 
Soil Organic Carbon 
in 0‐150cm depth (kg/m2) 

     -0.0000 
     (0.0000)  

   0.0000*** 
    (0.0000) 

 -0.0000** 
     (0.0000) 

     0.0000 
    (0.0000) 

      0.0000*** 
(0.0000) 

   -0.0000** 
(0.0000)  

       0.0000 
(0.0000) 

 

Soil pH    0.0379** 
     (0.0186) 

      -0.0108 
(0.0275) 

      -0.0153 
(0.0152) 

   -0.0087 
   (0.0055) 

      -0.0026 
(0.0046) 

    -0.0125*** 
(0.0019) 

0.0119 
(0.0207)  

(Continued) 
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Table 3.4. Continued 
 

Moderately 
Sensitive 

Tolerant  Moderately 
Tolerant 

Moderately 
Sensitive 

Moderately 
Sensitive 

Sensitive 
 

Undetermined 

Variables Alfalfa Cotton Winter Wheat Tomato   Corn Almond Othersc 
National Commodity Crop 
Productivity Index  

  0.6541* 
(0.3351) 

     0.6327** 
 (0.3163) 

0.2207 
(0.2361) 

-0.0760 
 (0.0903) 

     0.0896** 
      (0.0306) 

     -0.0789*** 
(0.0170) 

   -1.4422**  
(0.5001) 

 
Log of slop (%)    -0.0803** 

 (0.0326) 
       -0.0005 

 (0.0298) 
    0.0205** 

(0.0080) 
    0.0065** 

(0.0030) 
-0.0133 

 (0.0163) 
      0.0052*** 

(0.0014) 
    0.0619**   

(0.0295)  
Precipitations (mm)       0.0032*** 

      (0.0006) 
    -0.0015** 

 (0.0005) 
  -0.0012** 

(0.0005) 
     -0.0006*** 

(0.0002) 
      0.0016*** 

(0.0002) 
 -0.0002* 
(0.0001) 

      -0.0014 
 (0.0011)  

Degree days between 0°C and 
10°C 

      -0.0041 
      (0.0025) 

   -0.0025** 
 (0.0011) 

    0.0013** 
(0.0005) 

 0.0006 
 (0.0005) 

     -0.0025*** 
(0.0004) 

 0.0001 
 (0.0001) 

    0.0071**  
(0.0024)  

Degree days between 10°C 
and 20°C 

   0.0080** 
     (0.0029) 

       0.0040*** 
 (0.0007) 

     -0.0028*** 
(0.0006) 

   -0.0017** 
(0.0007) 

      0.0044*** 
(0.0009) 

-0.0003 
 (0.0003) 

     -0.0117*** 
(0.0029)  

Degree days between 20 °C 
and 30°C 

     -0.0085 
     (0.0058) 

      -0.0018 
(0.0052) 

0.0033 
(0.0031) 

    0.0032** 
(0.0013) 

  -0.0028** 
(0.0010) 

0.0004 
(0.0005) 

  0.0062* 
(0.0033)  

Degree days between 30°C 
and 40°C 

      0.0091 
    (0.0148) 

      -0.0026 
(0.0098) 

      -0.0039 
 (0.0063) 

   -0.0058** 
(0.0027) 

0.0020 
(0.0014) 

-0.0002 
 (0.0008) 

0.0014 
(0.0100)  

Degree days greater than 40°C     -0.0661 
    (0.2127) 

        0.0292 
(0.0547) 

0.0387 
(0.0631) 

    0.0896** 
(0.0289) 

     -0.0638*** 
(0.0180) 

-0.0066 
 (0.0102) 

      -0.0210 
 (0.1482)  

Year fixed effects Yes Yes Yes Yes Yes Yes Yes 
County fixed effects  Yes Yes Yes Yes Yes Yes Yes 
Observations 139,060 139,060 139,060 139,060 139,060 139,060 139,060 

Notes: Asterisks ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust standard errors clustered at the county level 
are reported in parentheses. 
aFive soil salinity levels measured by the electrical conductivity of saturated soil paste extract (ECe) and the base category is “Nonsaline: 0–2 (dS/m)”. 
bThe base category for four soil drainage classes is “Well drained”. 
cOthers for seven categories by selected major crops include all remaining crops grown on a small scale except seven major crops. Others are used as the base 
category. 
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3.8. Figures  

A 
 

 
Note: Modified from Scudiero et al. (2016). 

             B 

 
                Note: Adapted from Fram (2017a). 

Figure 3.1. Overview of the study region: Western San Joaquin Valle California, USA       
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Figure 3.2. Saline water inflow and a subsurface drainage process  
Note: Modified from Foster and Chilton (2003). According to the paper, “Those marked with an asterisk are a direct consequence of locally excessive 
groundwater abstraction but those associated with soil concentration (a plus symbol) are widely distributed. Mid-grey, brackish and saline water; light grey, 
freshwater”. 
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Figure 3.3. Map of remote-sensed root zone soil salinity in the WSJV covering the five counties 
Note: Adapted from Scudiero et al. (2017). Boxes indicate the extent (in percentage) of soil salinity.  
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Figure 3.4. Example map of CDLs joined to remote-sensed root zone soil salinity with CLU 
field boundaries and points used as the unit of analysis for the econometric model 
Note: This example targets Tulare County in the WSJV, wherein it shows the most proportion for extreme salinity. 
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