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Abstract

A significant number of processes we observe in nature can be described as a spreading

process; any agent which is compelled to survive by replicating through a population, exam-

ples include viruses, opinions, and information. Accordingly, a significant amount of thought

power has been spent creating tools to aid in understanding spreading processes: How do

they evolve? When do they thrive? What can we do to control them? Often times these

questions are asked with respect to processes in isolation, when agents are free to spread to

the maximum extent possible given topological and characteristic constraints. Naturally, we

may be interested in considering the dynamics of multiple processes spreading through the

same population, examples of which there are no shortage; we frequently characterize nature

itself by the interaction and competition present at all scales of life. Recently the number

of investigations into interacting processes, particularly in the context of complex networks,

has increased. The roles of interaction among processes are varied from mutually beneficial

to hostel, but the goals of these investigations has been to understand the role of topology

in the ability of multiple processes to co-survive. A consistent feature of all present works

— within the current authors knowledge — is that conclusions of coexistence are based on

marginal descriptions population dynamics.

It is the main contribution of this work to explore the hypothesis that purely marginal

population descriptions are insufficient indicators of co-survival between interacting pro-

cesses. Specifically, evaluating coexistence based on non-zero marginal populations is an

over-simplistic definition. We randomly generate network topologies via a community based

algorithm, the parameters of which allow for trivially controlling possibility of coexistence.

Both marginal and conditional probabilities of each process surviving is measured by stochas-

tic simulations. We find that positive marginal probabilities for both processes existing long



term does not necessarily imply coexistence, and that marginal and conditional measure-

ments only agree when layers are strongly anti-correlated (sufficiently distinct). In addition

to the present thesis, this work is being prepared for a journal article publication.

The second portion of this thesis presents numerical simulations for the Adaptive Contact

- Susceptible Alert Infected Susceptible model. The dynamics of interaction between an

awareness process and an infectious process are computed over a multilayer network. The rate

at which nodes “switch” their immediate neighbors (contacts) when exposed to the infection

is varied and numerical solutions to the epidemic threshold are computed according to mean-

field approximation. We find two unexpected cases where certain parameter configurations

allow the epidemic threshold to either increase above or decrease below the theoretical limits

of the layers when considered individually. These computations were performed as part of a

separate journal article that has been accepted for publication.
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Chapter 1

Introduction

In this work we present investigations on the interactions between spreading processes. The

case for studying interacting processes, where dynamics of multiple process mutually influ-

ence the evolution of each other, is not a difficult one to make due to their ubiquity in nature.

Species competing for resources in their environment, two opposing viewpoints competing to

spread through society, and infectious diseases spreading through human and animal pop-

ulations are a few general examples of interacting processes that exist in everyday life. A

significant portion of work on the dynamics of processes up to this point has considered

processes spreading in isolation. Understanding how a single agent such as a virus, opinion,

or piece of information, is compelled to survive by replicating through a population is contin-

ually impacting on how we interact with and design processes throughout society. However,

our understanding is still limited in the sense that rarely do processes operate in a closed

environment, the behavior we observe in the natural world arrises due to the interaction of

many processes. The total output of these interactions is greater than the sum of each of

their dynamics, processes interacting according to the most basic of principles can give rise

to much richer behavior than a single process.

Modeling the dynamics of spreading processes over complex networks has proved an

effective way to incorporate topology into the evolution of a process, it is thus a natural

launching point for the additional consideration of the dynamics between multiple spreading
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processes. Initial investigations have considered roles of interaction varying from processes

that reinforce and aid in the spread of each other, to roles that are fundamentally opposed;

though a majority focus specifically on competitive processes. One of the most fundamental

characterizations of interacting processes is if and when co-survival is possible. Identify-

ing thresholds for regions where coexistence occurs has been a primary focus in the most

recent literature. By examining the link between contact structures and the thresholds of

coexistence, researchers are aiming to illuminate how the topological conditions over which

processes interact affect long term coexistence.

The approaches thus far used to model interacting processes on complex networks are

straightforward extensions of those used to model isolated processes. Investigators posit a

compartmental model of spreading dynamics and describe the evolution of the marginal pop-

ulation dynamics. For even the most simple models the exact solutions to these equations

are intractable, thus a substantial amount of work has gone into providing useful approxi-

mations. To the extent of the current author’s knowledge, there are no exceptions in studies

which use marginal descriptions of population dynamics to draw conclusions about the co-

existence of processes. As the main contribution of the present thesis, we put forth the

hypothesis that:

1. Marginal descriptions for population dynamics of interacting processes are not informative

enough to characterize coexistence.

We provide experimental support for this hypothesis by showing that the current work-

ing definition of coexistence based on purely marginal descriptions is at best inapplicable

(situations when correctness is trivial) and at worst dead wrong. Argued further is that a

coexistence definition based on conditional survival between processes is more appropriate.

We provide experimental support for this argument through stochastic simulations of

competing processes on a community-based multilayer network (CBMN) model. The param-

eters of the CBMN allow for fine control over community structure. Providing sufficiently

distinct communities enables coexistence through the creation of hubs where each process

can thrive in relative isolation. At the end of simulations, the probability of each process
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surviving is measured. A comparison between marginal and conditional measurements is

presented.

The second portion of this thesis presents numerical simulations for the Adaptive Contact

- Susceptible Alert Infected Susceptible model. The dynamics of interaction between an

awareness process and an infectious process are computed over a multilayer network. The

rate at which nodes “switch” their immediate neighbors (contacts) when exposed to the

infection is varied and numerical solutions to the epidemic threshold are computed. We exibit

two exceptional cases where certain parameter configurations allow the epidemic threshold

to either increase above or decrease below the theoretical limits of the layers when considered

individually.

1.1 Contributions

• Define the community-based multilayer network (CBMN) model for controlling the

extent of community structure in random multilayer networks

• Provide experimental evidence for hypothesis 1, which states that marginal descriptions

are insufficient characterizations of coexistence between interacting processes

• Present numerical calculations on the threshold behavior of competing awareness and

infection processes with dynamic contact networks
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Chapter 2

Background

2.1 Multilayer Networks

Complex networks are a powerful tool for understanding behaviors of large systems, though

there are inherent limitations to considering only a single network. Extending the theory of

complex networks to incorporate relationships between multiple networks is done in an effort

to model more complicated situations. Work on combining multiple networks is new enough

that a consensus of terminology has yet to be reached. Combining networks by considering

multiple types of edges between the same set of nodes has been referred to as multilayer1

and multiplex2, while combing multiple networks of different elements is often referred to as

interconnected networks3. A simple illustration of multilayer networks can be seen in Figure

2.1. The primary use of multilayer networks in this thesis is to provide a robust framework

for mediating the interaction of multiple processes.

In the present work, a multilayer network, G = (V,E1, E2, ..., EL), is referred to as a

construction of L sets of edges connecting a single set of nodes, V . Single layer graphs,

Gl = (V,El), are represented by an adjacency matrix Al where the value at index aij ≥ 0 is

the strength of connection from node i to node j. A value of zero indicates the absence of a

connection between nodes.
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Figure 2.1: Conceptual illustration of a multilayer network, a mathematical framework for
incorporating multiple layers into a cohesive object4

2.2 Spreading Processes

Compartmental models are used to model spreading dynamics over networks. In them, a set

of states/compartments are defined which describe the state of each node at a given time.

Rules of interactions are then by specifying by the transitions between states and the prob-

ability rates that govern them. The classic example of a compartmental spreading model is

the SIS model which defines two compartments, susceptible and infected. Susceptible nodes

may transition to the infected state depending on the per contact likelihood of transmission,

β, multiplied by the number of infected neighbors. Nodes in the infected state will transition

back to susceptible after an exponentially distributed amount time characterized by the rate

δ.

S
Figure 2.2: State transition diagram for the susceptible, infected, susceptible model

The sequence of states a given node i occupies forms a time series process, xi(t), where

xi(t) = 0 if susceptible at time t and xi(t) = 1 if infected. The following Markov process
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describes the probability of node i to transition to a different state at time t+ ∆t:

Pr[xi(t+ ∆t) = 1|xi(t) = 0, X(t)] = βIi(t)∆t+ o(∆t) (2.1)

Pr[xi(t+ ∆t) = 0|xi(t) = 1, X(t)] = δ∆t+ o(∆t) (2.2)

Where Ii(t) =
∑N

j=1 aijxj(t) is the number of infected neighbors of node i at time t and X(t)

is the overall state of the network. The rate of change of the expected value of xi(t) can be

expressed as

d

dt
E[xi(t)] = β

N∑
j=1

aijE[xj(t)]− β
N∑
j=1

aijE[xi(t)xj(t)]− δE[xi(t)] (2.3)

The second, coupled, term of 2.3 presents an analytically and numerically intractable prob-

lem3 and much work has gone into exploring the solutions to first-order approximations5;6.

The approach to the SIS model seen here is very similar to those used in more complicated

models, including those of interacting processes. After defining the states and transitions

between them, marginal descriptions of state evolution similar to 2.1 and 2.2 are defined

which include some terms relating the two.
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2.3 Computational Tools - GEMFsim

The computational tasks of the present thesis fall into two categories: stochastic simula-

tions and numerical calculations. Both are accomplished with the use of GEMFsim7, which

provides a general framework for computing the dynamics of compartmental models on

complex networks. Tools provided by GEMFsim include stochastic simulations of spreading

processes as well as numerical solutions to mean-field approximations. Compartmental mod-

els are specified by two classes of transitions, nodal and edge based. Edge based transitions

are determined by the states of neighboring nodes which nodal transitions are not. Each

class of transitions is represented by an M ×M matrix, Aδ and Aβ, where M is the number

of model states. Values of transition matrices at index (i, j) are the probability parameter

describing the transition from state i to j. To represent the SIS model described in 2.2 in

GEMFsim, transition matrices would be defined as:

Aδ =

0 0

δ 0

Aβ =

0 β

0 0

 (2.4)

Once a compartmental model is defined and a network specified, simulations are ran using

an event based algorithim that samples from the Markov process described by the model.

Two possible stop conditions may be specified to the simulation, either simulation length or

number of events. One finished GEMFsim produces each node transition and the time at

which it occurred.
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Chapter 3

Coexistence of Interacting Processes

Regardless of the modality of interaction between processes, one of the most basic ways to

characterize models of interacting processes is to evaluate the parameter space for regions

in which it is possible for processes to coexist. The typical approach to answer this question

is to examine the population of each process for an area where both are non-zero. At first

glance this makes sense, but we argue in this chapter that is an over-simplification which

conflates uncertainty in which process will dominate for coexistence. However, first we begin

with studies that have previously investigated interacting processes through measures of

coexistence.

3.1 Background

The first investigations of coexistence were performed on single layer networks, processes

interacted and compete over the exact same contact topology. Newman et al.8 were some of

the first to account for topology in general by identifying thresholds for coexistence of two

competitive spreading processes. In their approach, the first process spreads, immunizing

nodes to the second process along the way. The spreading of the second process is then

simulated over the remaining (residual) network. Coexistence is defined as the presence

of large connected components in both the original and residual network, indicating both
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processes may be sustained. In other words, if the first process leaves behind a network that

is sufficiently large and connected to sustain the spread of a second process then the two are

said to coexistence. Though the methodology neglects the actual interaction of processes

dynamics, these results are some of the first to indicate the importance of distinct process

contact networks in coexisting competitive processes.

Prakash et al.9 also simulate competitive processes on a single layer network. Though

process dynamics evolve together according to a generalized SIS model where nodes can be

infected by either one virus or the other. The authors show that the stronger process will

always and completely dominate the weaker process to extinction, regardless of topology. The

authors of ”Domination-time dynamics in susceptible-infected-susceptible virus competition

on networks”10 provide a deeper look into this idea by introducing a self-infection probability.

Each node has a non-zero probability that it may spontaneously transition to one of the two

process states, essentially making complete domination impossible. They show that even

when one process is dominating, the self-infection probability can lead to a role reversal

where the previously dominating processes is nearly completely minimized. The changing

of regimes between which process dominates oscillates, continually switching between which

process occupies a majority of the population. These findings indicate when all things are

equal, the conditions that lead to domination can be tenuous, resulting from small statistical

fluctuations that lead to runaway advantages.

The important conclusion of these investigations (at least in the context of the present

work) is that the coexistence of competitive processes on a single layer is impossible6;9–11.

This result is not all that surprising and is neatly summarized by the competitive exclusion

principle of ecology which states that “complete competitors cannot coexist”12. If interacting

processes are competing for the same resources (i.e. competing to occupy the same set nodes)

over the exact same set of relations (i.e. edges) then the ”ecosystem” of each process is the

exact same and any competitive advantage, whether it be the result of stronger processes

characteristics or chance benefit from some topological feature, will result in the complete

domination by one process. Therefore a necessary condition for the long term coexistence of

competing processes is sufficiently distinct contact networks.
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One of the earliest investigations to take into account distinct network structures was

published by Funk and Jansen13, who refer to the concept of a multilayer network as an

overlay network. In it the authors generalize Newman et al.8 by specifying separate net-

works for each process and by varying the level of immunity granted by the first spreading

process. They show that correlation between the node degree distributions of each topology

is an important factor in whether or not both processes coexist. If degree distributions are

positively correlated, then the first process is more effective at providing immunity to the

second; implying that a negative correlation between node degree overlap correlates with

coexistence. This idea has continually been affirmed by other studies of coexistence, which

is that coexistence is enabled — at least in part — by the extent to which contact networks

are distinct.14–17.

A number of studies have aimed to identify thresholds between regions of coexistence

and extinction in terms of process and topological characteristics of multilayer networks.

Granell et al.18 examine interacting processes in the context of an alert process competing

with an infectious process on what the authors call a multiplex network, though it is the

same as multilayer is defined in the present work. Using the microscopic Markov chain

approach6, authors identify a threshold for the suppression of the infection process as a

function of the alertness process parameters. For the general case of competitive processes,

in “Competitive epidemic spreading over arbitrary multilayer networks”16 Sahneh et al.

formalize the thresholds between regimes of coexistence in terms of the survival threshold,

the point at which the probability becomes non-zero for a process to have a positve infection

population. And the absolute-dominance threshold which denotes the point when one process

drives the other to extinction. It logically follows that the survival threshold for one process

is the absolute-dominance threshold of the other; the point at which one process completely

dominates is the point at which the other is unable to survive. Thus coexistence is defined

as the region that lies between the survival and complete-domination thresholds, as can be

seen Figure 3.1.

Additional work by Wei et. al19 model competing memes, also with the same extended

SIS model used by several other studies by various authors2;16;17;20. Through spectral analy-
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Figure 3.1: This graph shows the survival and complete-domination thresholds for one of
two competitive processes.

sis of each layer the authors characterize coexistence between processes and develop a method

for predicting which meme, i.e. process, will dominate the other to extinction. Interestingly,

this approach is questioned by Sahneh et al16 as being overly simplistic since, first, eigen-

values do not predict final outbreak size generally for all graphs, it is possible to construct a

multilayer network such that the process corresponding to the layer with a smaller eigenvalue

is able to dominate the other. Secondly, spectral methods are based on layer topology in

isolation, there is no consideration of interaction dynamics. More recent work extends the

same model to incorporate a full spectrum of interacting processes lying between compet-

itive and cooperative2;20 and provides framework “obtain formulas to accurately calculate

epidemic thresholds of spreading processes that are impacted by other processes”2. Watkins

et al.17 extend the same model in a different direction by including heterogeneous epidemic

parameters and showing how the the more robust parameter set can be used to optimize for

the extinction of one of the processes.
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A common theme of each study mentioned previously is that analyses rely on describing

coexistence in terms of marginal probabilities. If the probability of each processes occupying

a portion of the total population is non-zero, then they are said to coexist and the threshold

is identified as the point when one process has a population of zero. The rest of this chapter

presents experiments that demonstrate overlap between marginal survival rates does not

necessarily indicate coexistence, since it may simply indicate an uncertainty in which process

dominates.

3.1.1 The SI1SI2S Model

The SI1SI2S model is a straightforward extension of the classic SIS model. It describes

the nodal dynamics of two competing processes, which are said to be competing because a

node that is occupied by one process cannot be by the other. Thus processes compete to

survive by occupying nodes which are acting as resources. As can be seen in Figure 3.2,

nodes transition from the susceptible state to process 1 or process 2 based on transmission

probabilities β1 and β2 respectively. Nodes in either infected state will transition back to

susceptible automatically in a time decided by the exponential distributions characterized by

δ1 and δ2. The infectivities of each process are defined as τ1 and τ2 which are each in turn

equal to the ratio of process parameters:

τ1 =
β1
δ1

τ2 =
β2
δ2

(3.1)

3.2 Community Based Multilayer Network Model

Presently we develop a random network model with parameters that can be tuned to trivially

induce coexistence. This is accomplished by defining a multilayer topology that provides

(to varying degrees) a robust contact structure over a subset of the total population —

referred to individually as communities — which supports the spreading of a single specific

12



S
Figure 3.2: State transition diagram for the SI1SI2S model

process. The section of a network that is biased in favor a given process is referred to as the

home community, the contact structure for a process in a community other than its own is

inherently less connected.

In the case of two competing processes, the total population is split into two groups, a and

b, where a is highly connected for one process and sparsely connected for the other and the

reverse is true for community b. Consider then a multilayer network, G = (V,E1, E2) where

V is the node set and E1, E2 are the edges connecting nodes in layer 1 and layer 2 respectively.

The topology of each layer is randomly generated using the so called stochastic block model21,

which extends the classic Erydős-Róyni model to include community structure. Meaning that

edges between members of the same community, as opposed to the entire network, are present

given some probability threshold. Adjacency matrices for each community are labeled: C1a,

C1b, C2a, C2b, and interconnections between them as W1 & W2. The composite adjacency

matrices for each layer are expressed:

A1 =

C1a W1

W ′
1 C1b

 & A2 =

C2a W2

W ′
2 C2b

 (3.2)

Figure 3.2 shows an example topology for the CBMN. The probability threshold of each

home community is multiplied by a factor (1+ ε), while thresholds for the away communities

13



remain at some constant p:

C1a,2b = ER(N, p(1 + ε))

C1b,2a = ER(N, p)

(3.3)

Interconnection adjacency matrices, W1 & W2, define edges between nodes of different com-

munities which are present based on a simple threshold probability pc

Community a

Community b

Community b

Community a

Figure 3.3: Illustration of the community-based multilayer network model. Red lines in
layer 1 describe contacts by which process 1 can be transmitted, blue lines in layer 2 describe
the same for process 2. Note the higher level of connectivity in home communities, while
contacts are more sparse in away communities. Edges that cross the center dotted lines are
those are defined by W1 & W2.

3.3 Measuring Coexistence

Crucial to the arguments of the current thesis is a closer examination of the definition

of coexistence. We introduce the concept of survival to describe when a process has a

steady state infection population greater than zero. Previous works typically have defined

coexistence as the region when marginal population measures are positive for both process.

The issue with this definition is that it includes the scenarios when domination by one

14



process is guaranteed, just not by which process. What is needed is a stricter definition of

coexistence that depends on the joint probability of survival.

Consider two random variables, S1 and S2, which represent whether or not the corre-

sponding process is present at the end of a simulation. Given that a process survives, the

random variables take on the value 1, s1 = s2 = 1. Otherwise if extinct, s1 = s2 = 0. It

follows then that there are four possible outcomes as can be seen in Figure 3.4

𝑆"

𝑆#

𝑝%%

𝑝%"

𝑝"%

𝑝""

Figure 3.4: Diagram of possible random variable outcomes for the two r.v S1 and S2. The
first subscript digit represents the outcome of S1 while the second represents S2.

The total outcome space forms a multinomial distribution. It follows then that the

marginal distributions are binomial:

Si ∼ B(n, µi) (3.4)

The marginal survival probability is then simply equal to the mean of each binomial distri-

bution:

Pr(S1 = 1) = µ1

Pr(S2 = 1) = µ2

(3.5)

The typical working definition of coexistence is when both marginal probabilities of survival

15



are non-zero, i.e when both of the following expressions are true

µ1 > 0

µ2 > 0

(3.6)

We can express each of the likelihoods in 3.5 as the sum of two out of the four total outcomes

(Figure 3.4), essentially integrating over both possible outcomes of the opposing process:

Pr(S1 = 1) = p10 + p11

Pr(S2 = 1) = p01 + p11

(3.7)

Note here that it is the second term of the preceding equations which technically captures

coexistence, when both processes have survived. Due to the first terms however, it is possible

for the conditions of 3.6 to be satisfied while the probability of both surviving is zero, p11 = 0.

Thus we posit that the definition of coexistence should be based on the probability of

joint survival, specifically by conditioning survival probabilities on each other:

Pr(S1 = 1|S2 = 1) =
p11

p01 + p11

Pr(S2 = 1|S1 = 1) =
p11

p10 + p11

(3.8)

and define the threshold for coexistence as the point when either of the following expressions

are true

Pr(S1 = 1|S2 = 1) > 0

Pr(S1 = 1|S2 = 1) > 0

(3.9)

or more simply, when p11 > 0

Although the difference between these two definitions of coexistence is subtle, we find

that it is quite possible for large areas of a parameter space to lie in between the area of

disagreement between the two definitions. These scenarios represent outcomes for which
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domination is the only possibility though the specific process which actually dominates is

uncertain.

3.4 Methods and Experiment Design

To measure the likelihood of outcomes from Figure 3.4 we simulate competitive dynamics of

the SI1SI2S model outlined in 3.1.1 over the CBMN model from Section 3.2. Each simulation

for a given parameter set is composed of n independent trials ran in parallel; seeds are reset

for each trial, providing reproducible random numbers which helps to isolate the effects of

each experiment. Additionally, separate networks are generated for each trial, reducing the

effects of chance topological characteristics that may create a fortuitous situation for one

process over the other. Each r.v. S1 and S2 takes on the value 1 given the event that the

corresponding process is still present in the population at the end of a single trial. From

there we can calculate the conditional probabilities of survival and compare the resulting

coexistence region to the one determined by marginal distributions.

In addition to measuring survival probability as a function of topological parameters,

we also measure the average degree correlation between layers of each network. Degree

correlation, ρ, is calculated as defined in16:

ρ(G) =

N∑
i

(dE1,i − d̄E1)(dE2,i − d̄E2)√
N∑
i

(dE1,i − d̄E1)
2

√
N∑
i

(dE2,i − d̄E2)
2

(3.10)

Every work to date that models competitive processes on a multilayer networks has noted

the importance of correlation between each layer as an important determining factor for

coexistence8;13;14;16;17;19. We measure layer correlation in order to place current findings into

the context of past results.

Since we are only interested examining the effect of competition between processes on the

outcome of simulations, spreading and topological parameters are specified so to make sure
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that processes are not effect by insufficient spreading and topological characteristics. What

this means is that spreading strengths and topological parameters are tuned such that both

processes trivially survive in the extreme case of complete isolation between communities.

The constant edge probability threshold for communities, p, we set as a multiple of the

theoretical threshold for a large connected component in Erydős-Róyni networks22, p =

2 log(N)
N

. This ensures communities are sufficiently connected to sustain a process in the

first place. For the same reason, we artificially introduce each process randomly into 1
5

of

their home community. Networks are composed of 50 nodes, N = 50, and simulations are

sufficiently long to arrive at steady state solutions, we find a value of T = 2048s is well suited.

Recovery rates are set to unity, δ1 = δ2 = 1, which trivially makes processes infectivities

equal to the transmission probability: β2 = τ1 and β2 = τ2. The following sections outline

conditions specific to each experiment.

3.4.1 The Effect of Home Community Bias

We vary the extent to which each home community is biased in support of its respective

process by the parameter ε. As defined in equation 3.3, ε is a term that multiplies the

constant threshold, p, for each home community. In these simulations, the threshold for

interconnections between communities, pc, is set to 2%; this value was arrived at by empirical

observation. Results from the following experiment additionally suggest that a threshold up

to 5% is sufficient for coexistence. The range over which ε varies is logarithmically distributed

over the interval [10−2, 10] and each value of ε is simulated 200 times.

At some point ε will be large enough to guarantee coexistence due to the fact that the

relative difference between the connectivity of home communities and the rest of the network

is sufficiently large. The number of connections within each home community increases to

the point that the competing processes have no chance of competing outside of their home

community.
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3.4.2 The Effect of Community Distinction

In addition to home community bias, we also vary the connections between each community.

We set ε = 2, a value that will enable sufficient community structure for coexistence, by

varying pc over the interval [10−3, 1] we once again are looking at the onset of coexistence

and measuring marginal and conditional probabilities of survival. Similar to the previous

section, we expect at some point the competing processes will undergo a transition between

complete dominance and coexistence.

3.4.3 Unequal Competitors

The topological experiments outlined in Section 3.4.1 & 3.4.2 assume equal strength pro-

cesses, any advantage that leads to the extinction of a process purely results from topological

advantage. The results of both experiments are used to identify values for ε and pc which

we use in simulations where the strengths of processes are varied. As can be seen in the top

two graphs of Figure 3.5, which show survival probabilities as a function of topological pa-

rameters, there exists a range of parameters for ε and pc between the points where marginal

and conditional are maximally different (at the point where conditional probabilities become

non-zero) and where they converge. We use the mid-point of this interval, ε = 1.75 and

pc = .05, as parameters for the CBMN model.

As stated previously, recovery rates are held constant at one, thus the strength of each

virus is varied by the infection probability. Both τ1 and τ2 are varied over the interval [0, .7]

which is a sufficiently long range to observe all regimes of competitive behavior.
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3.5 Results & Discussions

3.5.1 Home Bias & Community Distinction

The first experiment conducted is measuring the survival probability of processes by varying

the connectivity within each community via the parameter ε. Results for this experiment can

be seen on the left side of Figure 3.5. The top graph shows both marginal and conditional

probabilities of each process surviving, marginal probabilities reach a steady state even for

very low values of ε while conditional probabilities go to zero at ε = 1. The base threshold

for communities, p, defined in Section 3.2, is fairly large without the additional 1 + ε term

and produces fairly well connected communities. Thus the value of ε for which probabilities

converge is somewhat “extreme”.

The middle left graph which is a snapshot of the final state of simulation trials, simply

referred to as a final state matrix. The x-axis is the network model parameter that we

are changing and each unit on the y-axis is a specific trial execution thread. Each pixel

represents the outcome of a single trial for a specific parameter value. Note that by using

a set of reproducible random numbers for each trial, there is context provided between

horizontal results. The difference between marginal and conditional coexistence is due to

the two processes “trading off” between dominating the other.

The bottom left graph shows layer correlations — defined in equation 3.10 — averaged

over all simulation trials, as might be expected, we observe a strong correspondence between

the convergence of probabilities and the steep decline of layer correlations.
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Figure 3.5: Results on the left correspond to ε, home community bias and on the right,
pc, community distinction. (Top) Marginal and conditional probabilities of survival. The
conditions for which they converge for ε are relatively tenuous, communities are already highly
connected. (Middle) Final state matrix showing outcomes for a subset of the total amount
of trials. Red marks indicate a trial where only process 1 survives, blue when only process
2, and green when both survive. (Bottom) the average correlation between layers. For ε the
steep drop from low (negative) correlation to apparently perfectly anti-correlated corresponds
to the transitions of the top two graphs. The behavior of ρ̂ vs pc is not as distinct with respect
to the transitions above it, possibly suggesting fragile threshold for ”real” coexistence.
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In the second experiment community distinction is varied by the parameter pc. Essentially

it is a different way to tune the multilayer network’s ability to sustain coexistence. Instead of

increasing bias in home communities, the distinction between communities is altered by con-

necting random nodes between them. The specific mechanism controlling coexistence may

be different but the results for pc are qualitatively the same as changing community bias,

which is that we observe a threshold between regimes of agreement between survival proba-

bilities. The relationship between community distinction and average layer correlation, ρ̂, is

not as stark as community bias; most likely due to the formulation of the multilayer model

itself, pc affects total overlap to a lesser extent than ε. Divergence of survival probabilities

corresponds to the period where correlation measurements are increasing.

Past studies have all agreed that correlation between node degrees in each layer is an

important factor in the coexistence of processes. The present results have not only confirmed

that but also provided insight into the reason behind why layer correlation is closely tied

with coexistence, since it is a sort of measure of community distinction.

3.5.2 Unequal Competitors

We simulated competitive processes over a range of strengths, the results of which can be seen

in Figures 3.6 & 3.7. Values for ε and pc were chosen based off method outlined in Section

3.4.3. In Figure 3.6 we observe a plot of survival probabilities, marginal on top and condi-

tional on the bottom. Survival probabilities for each process are nearly symmetric, though

skewed in favor of process 1 (red). The next figure, 3.7 shows a heatmap with marginal

probabilities of coexistence in yellow and conditional coexistence in green. Evidently that

marginal predictions of coexistence differ from conditional the most for infectivities that are

relatively close to the epidemic threshold (around τ = .2).

3.5.3 Comparing Mean-Field with Exact Results

Many formulations of compartmental models utilize the mean-field assumption in order to

make the resulting coupled differential equations analytically tractable. As an aside, we com-
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Figure 3.6: 3D Plot of competing processes for marginal and conditional probabilities. Red
corresponds to process 1 and blue to process 2. On top are marginal probabilities, conditional
are on bottom

pare marginal survival probability with the coexistence thresholds predicted by mean-field

theory16. From Figure 3.8 we observe a clear correspondence between theoretical predictions

from mean-field approximations and marginal measurements. This demonstrates that the

specific approximation technique does not account for the discrepancies we have presented;

further underscoring the fact that the issue lies with relying on marginals.
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Chapter 4

Interacting Processes on Dynamic

Networks

In addition to the investigations of coexistence outlined in the preceding chapter, work on

a different scenario for interacting processes was also completed and is presented here. We

perform numerical investigations into the behavior of interacting awareness and infectious

processes over a dynamic contact network. Using a two layer network we define two separate

families of contacts for each node, “normal” contacts which a node is initially in contact

with, and a set of contacts which the node may “switch” to in the presence of an infection.

The “switch” itself is a mechanism by which nodes implement adaptive behavior, thus we

use the term adaptive contact network.

In a soon to be published paper this problem is fully explored, my contribution to the

article were the numerical investigations of theoretical predictions. Thus in this chapter I

will include only as much of the article as background that is needed to understand the

context of the present authors contributions. We start by defining the dynamic epidemic

process that will take place on top of the switching contact network which in turn motivates

the multilayer adaptive contact network.
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4.1 AC-SAIS

The Adaptive Contact - Susceptible Aware Infected Suscetible model is an extension of the

SAIS model which investigates the dynamics of interactions between an infection process

and an awareness (of the infection) process that reduces the infection transition probabil-

ity23. The key difference between the original SAIS model and the current one, is that the

awareness state does not inherently weaken the strength of the infection process. Instead it

induces a topological change, which does not inherently aid or inhibit the infection, we find

some interesting implications for the behavior of the epidemic threshold as a function of the

alerting rate.

Node i

Node i

Neighbors 

of node i, if 

Susceptible

S I

A

Neighbors of 

node i, if Alert

𝛽𝑌𝑖(𝑡)

𝜅𝑌𝑖(𝑡) 𝛽𝑍𝑖(𝑡)

𝛿

Figure 4.1: Diagram of AC − SAIS model and an illustration of an example multilayer
network.

As in the classic SIS model, we define a transmission probability, β, and recovery rate,

δ. Additionally consider κ, the probability of a node transitioning to the aware state given

infected neighbors. The state transition diagram can be seen in Figure 4.1. The following
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differential equations are the mean-field approximate descriptions of the AC−SAIS model:

ṗi = −δpi + β(1− qi − pi)
∑

wSijpj + βqi
∑

wAijpj,

q̇i = κ(1− qi − pi)
∑

wSijpj − βqi
∑

wAijpj,

(4.1)

Where ṗi is the marginal evolution of the infected state and q̇i is the awareness.

From these the equations solutions for the epidemic threshold can be obtained:

τc(κ̄) =
1

λ1(WS)
(1 + κ̄(Ψ(WS,WA)− 1)) + o(κ̄),

τc(κ̄) =
1

λ1(WA)
(1 + κ̄−1(Ψ(WA,WS)− 1)) + o(κ̄−1)

(4.2)

where κ̄ is a normalized alerting rate, WS & WA are adjacency matrices for each layer.

Ψ(A,B) is defined as:

Ψ(A,B) ,
∑N

i=1
uivi

∑N
j=1 aijvj∑N
j=1 bijvj

, (4.3)

vA = [v1, ..., vN ]T and uA = [u1, ..., uN ]T are the right and left dominant eigenvectors of A

corresponding to λ1(A) with vTAuA = 1. Figure 4.2 shows three different regimes of solutions

to equations 4.2 which occur due to the configuration of node degrees and eigenvectors.

4.2 Adaptive Contact Network Model

For a network of size N , each node has one of two contact sets active at a given time, meaning

the complete ensemble of possible states (with regards to topology) the network may be in

is of size 2N . One approach to modeling epidemic processes on this network would be to

define a Markov process describing transitions between each of the 2N possible networks;

clearly, a cumbersome task that does not scale well. It is the novel contribution of the soon

to be published article, of which this work is a small part, to avoid this obstacle entirely by

defining an equivalent 2-layer network representation which incorporates the full 2N state

space.
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Figure 4.2: Normalized epidemic threshold τc(κ̄)/τc(0) as a function of normalized alerting
rate κ̄, showing all three dependency scenarios.

4.3 Experimental Setup

We use the well known “Football” network from24 with N = 115 nodes and |ES| = 615

edges, and spectral radius 10.8. Given GS, the unaltered football we synthesize three alert

contact edges EA1, EA2, and EA3 such that the following conditions are met:

1. The spectral radii of GAi graphs are all equal to 2
3

of the spectral radius of GS, i.e.

λ1(WAi) = 2
3
λ1(WS). Guaranteeing that the alert contact layers are more robust to

epidemic spreading compared to the default contacts layer.

2. For GA1, Ψ(WS,WA1) < 1. From Equation 4.2, we predict that for small values of κ̄,

the epidemic threshold decreases below the threshold if no contact adaptation was in

place at all.

3. For GA2, Ψ(WA2,WS) > 1. From Equation 4.2, it is also possible to for the epidemic

threshold of the multilayer network to be greater than its constituent layers. In this

29



configuration, the characteristics are such that an enhanced robustness is created syn-

ergistically.

4. Graph GA3 is made by decreasing the link weights from GS, which we expect to see a

monotonic increase in the epidemic threshold as the contact adaptation rate increases.

All three alert layers have the same spectral radius with respect toGS i.e. λ1(WS)/λ1(WAi) =

1.5. Therefore, in all of them the threshold value τc(κ̄) starts from τc(0) = 1/λ1(WS) and

converges to τc(∞) = 1.5τc(0). Graph GA1 is synthesized such that Ψ(WS,WA1) < 1. From

the red curve we can observe that τc(κ̄) decreases for small κ̄ values after which it increases.

Graph GA2 is synthesized such that Ψ(WS,WA2) > 1. In this case the green curve τc(κ̄)

is maximal around κ̄ ≈ 2. The topology of graph GA3 is GS with reduced weights and is

represented by the yellow epidemic threshold curve which increases monotonically by κ̄.

In order to synthesize GA1 and GA2, we performed a greedy search to obtain desired

values of Ψ functions. For each alert contact graph, GAi, and subsequent multilayer network

representation, Gi = (V,ES, EAi), we examine spreading behavior at three effective infection

rates seen in Fig. 4.2 (dotted lines). Steady-state solutions to the mean-field AC-SAIS

Equations 4.1 are calculated for 10−3 ≤ κ̄ ≤ 102 and fraction of population infected p̄ =

1
N

∑N
i=1 pi—as the indicator of severity of an epidemic—is plotted as a function of the alerting

rate.

4.4 Results

4.4.1 Adaptation gone wrong

In the top plot of Figure 4.3, we can see that for most alert values, κ, there is no outbreak,

as one would expect since the effective infection rate is below the epidemic threshold for

each layer. However, for .03 ≤ κ̄ ≤ .6 an epidemic is sustained due entirely to inter-layer

dynamics that create conditions where an epidemic is more effectively carried throughout the

population. Indicating that persons who alter who they come into contact with, although in
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an effort to avoid becoming infected, may in fact unintentionally contribute to the opposite

outcome. For case 2, with τc(0) < τ < τc(∞), we observe two regimes of behavior: for lower

alerting rates, where the effective infection rate is below the epidemic threshold τc(κ̄), an

infection is sustained. For higher alerting rates the reverse is true since the critical threshold

goes above τ . In case 3, effective infection rate is set above the critical threshold for all

values of κ̄, i.e., τc(κ̄) < τ . Therefore, persistent infections are observed regardless of contact

adaptation rate.
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Figure 4.3: The effect of alerting rate on infection size for the undershooting scenario.
Case 1 Despite setting the effective infection rate below that of the extreme cases, i.e.,
τ < τc(0) < τc(∞), an epidemic outbreak is still observed for small alerting rates because τ
is larger than the minimum of τc(κ̄).
case 2 Effective infection rate lies in between the two extreme values, i.e., τc(0) < τ < τc(∞).
There is a slight increase in infected individuals around the minimum of the threshold curve
after which the infection size drops to 0 due to the increase in the critical threshold.
case 3 The effective infection rate is set above the critical threshold for all κ̄, i.e., τc(κ̄) < τ .
Therefore an infection is sustained regardless of the alerting rate.
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4.4.2 Enhanced robustness

For the same set of computations on graph G2. Case 1 yields trivially zero infection size. For

case 2, shown in the top plot of Fig. 4.4, we observe that increasing alerting rate beyond a

certain value successfully suppresses the infection spreading. Case 3 provides an interesting

observation in that the critical threshold raises even larger than the alert contacts layer,

indicating that a moderate rate of contact adaptation is indeed better than fast rates in

enhancing the robustness of the network. Therefore, for κ̄ values around 1, the critical

threshold increases such that no infection is sustained. While for a larger values an outbreak

occurs, and the infection size increases as contact adaptation rate is increases.

κ̄

10−3 10−2 10−1 100 101 102

F
r
a
c
t
io
n
I
n
fe
c
t
e
d

10−2

10−1

100

Case 2

κ̄

10−3 10−2 10−1 100 101 102

F
r
a
c
t
io
n
I
n
fe
c
t
e
d

10−2

10−1

100

Case 3

Figure 4.4: The effect of alerting rate on infection size for the overshooting scenario.
case 1 This case is omitted since the infection size would be 0 regardless of the alerting rate
case 2 The behavior is similar to case 2 with GA1 (middle graph in Fig. 4.3) though the
transition to a more robust threshold (due to increased alert state occupants) occurs at a
smaller alerting rate.
case 3 One of the more interesting scenarios is when the effective infection rate is larger
than the extreme values, i.e., τc(0) < τc(∞) < τ yet is less than the maximum of the threshold
curve τc(κ̄). A non-zero infection size is observed for small alerting rates, eventually κ̄ raises
above τ so that an epidemic cannot be sustained. As the threshold converges towards τc(∞),
an epidemic can once again persist, and the infection size even increases by the contact
adaptation rate.
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4.4.3 Monotonic Dependency

The monotonically increasing threshold curve of G3 in Fig. 4.2 is the result one would

intuitively expect (or at least hope for) from adaptive contact behavior. Meaning, that

when considering nodes can “switch” to a neighborhood constituting a more robust network,

the intuitive, expected effect on the overall robustness of the network would be to increase

monotonically with the alerting rate. As the previous two sections have shown, this is not

always the case. Indeed, we observed non-monotone dependency of the epidemic threshold in

most of our experiment trials. However, we can see that in some cases, case 2 for example,

the epidemic response for the three network configurations are generally the same. They

differ only so far as where the transition from sustaining an infection to not occurs.
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Figure 4.5: The effect of alerting rate on infection size for the monotonically increasing
threshold curve.
case 2 Similar to Sections 4.4.1 and 4.4.2, case 2 shows a transition between low and high
alerting rates where epidemic outbreaks occur for the former and not the latter
Cases 1 and 3 are omitted for trivial behavior.
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Chapter 5

Final Words

The work presently submitted in fulfillment of the Master’s thesis requirement has showcased

the author’s research into the dynamics of interacting processes. With respect to the coexis-

tence of interacting processes, a case has been presented against the effectiveness of marginal

population dynamics to accurately characterize coexistence. Support for this conclusion is

based on the experimental results of processes competing over a community-based multi-

layer network model. Previous investigations have indicated that sufficiently anti-correlated

contact networks are crucial to coexistence. The CBMN model exploits this to generate

topologies which trivially support co-survival of processes by way of isolation. By measuring

the survival outcome distribution for each process we demonstrated that though marginal

descriptions of survival correspond well with predictions of previous studies, they were not

reliable indicators of true coexistence i.e. where both processes are present at the end of the

same trial.

At the very least these results indicate the need for further investigation and may in the

future give pause when choosing to model interacting processes. Take as an example, the

LotkaVolterra equations25, which model dynamics of predator-prey interactions by defining

two differential equations describing the populations of each. Coexistence among the two

species is determined by positive solutions to the dynamical equations, so an interesting and

possibly important question to ask would be if situations such as the LotkaVolterra equations
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are perhaps flawed in the same respect as the situations presented here.
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