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INTRODUCTION

Need For This Study

The problem of uniform distribution of a fluid flowing through a manifold

with spaoed outlets arises in many praotioal systems e Familiar examples are

rapid sand filter underdrains 8 sewage disposal systems, sprinkler systems for

irrigation, liquid-distribution systems, and pipe burners for gaseous fuels.

Because the manifold represents a regular piping pattern and is frequently

recurring in many praotioal fields, it has reoeived muoh theoretical and exper-

imental study. It is well known that, in general, as the fluid flows along

the manifold its longitudinal velooity decreases due to part of the fluid

volume being discharged laterally through the openings. Therefore, the fluid

in the manifold is being decelerated and, in aooordanoe with Bernoulli^

theorem, this tends to inorease the fluid pressure. Friotion loss as well as

other losses, on the other hand, results in loss of pressure along the length.

The relative magnitudes of the pressure reoovery due to deceleration and

pressure loss due to head loss determine whether the pressure rises or falls

from the inlet end to the olosed or dead end of the manifold. Although the

flow characteristics, as mentioned above, are simple, there are some uncer-

tainties existing in this type of flow pattern. These uncertainties, if

inoorreotly estimated, will lead to a considerable deviation from the assumed

conditions. These uncertainties include the following:

1. Variable coefficient of discharge

2. Velooity head faotor

3. Efficiency of conversion of IdLnetio energy to pressure energy

!(.. Friction faotor

In order to handle these uncertainties, an assumption has been made that



the manifold aots as a continuous, uniform, and homogeneous unit, and oan he

treated as a simple pipe pattern. Therefore, the manifold prohlem oan he

handled in a simple way hy considering its overall effeot.

Purpose of the Study

Although literature on the prohlem of manifold flow has heen in existence

sinoe ahout 1900, little knowledge has heen gathered of the overall effeot of

such uncertainties as listed ahove on the flow characteristics of manifold

pipes. In thi3 study experiments were oonduoted to determine the effect of the

Reynolds number at the inlet end and area ratio of openings to the pipe cross

seotion on the overall head loss and pressure recovery in a perforated pipe.

In general, it is impossible to obtain an exaotly uniform distribution of dis-

charge through a manifold pipe of constant cross seotion with evenly spaoed

orifioes of the same diameter. Therefore, the optimized flow conditions, whioh

will ensure approximately uniform distribution of disoharge and whioh will

ooour when the overall head loss is equal to the pressure reoovery, have been

observed,

Soope of the Study

The experiments were oonduoted in a 3" PVC pipe. For the first four

series of runs, the orifioes were drilled in one straight line level with the

center line of the pipe. The diameter of orifice was ohanged in the order of

3/l6n , 1/V» 5/l6", and 3/B"j and for eaoh diameter of orifioe the spaoing

between adjacent orifices was ohanged from 1.5" to 3
n
, 6n , 9", 12", 18", and

21+" suooessively. In the fifth series of runs, the orifioes were arranged in

two rows, one on eaoh side of the pipe; the diameter of orifioe was fixed at a

value of 3/8"» and the spaoing between adjaoent orifioes also was ohanged from



1.5" "bo 2U" successively.

Plow varied from 0.012 to 0.1l£ o.f.s. during the rune. The statio

pressure head along a 12 ft. section of pipe was measured by five peizometer

tubes. The head loss along the perforated pipe was computed.- The effeot of

the Reynolds number and the area ratio on the overall head loss and pressure

recovery was determined.

Theory

Assume the disoharge, Q , of liquid moving under the head H is distributed

uniformly and continuously over the whole pipe section. Let the disoharge per

unit pipe length be Q/X, cfs/ft. The residual disoharge Qq at point C, looated

a distance x from point A is equal to the disoharge at point A minus the amount

of discharge Qx/L over the length x of the pipe line, as shown in Figure 1.

Figure 1.

Qo - Q - QxA - Q(L - x)A

^•The symbols in this paper are introduced in text as they ooour and are
summarized for reference in Appendix 1.



By Chezy formula

Q-CA/RS (1)

in whioh C is the Chezy coefficient, A denotes the cross seotional area of the

pipe, R is the hydraulic radius, and S is the hydraulic gradient. Since A, C,

and R are oonstant for a given pipe, we may define

k = ca/r*

K has dimensions of volume flow rate (o.f.s.) and is called flow rate modulus.

Therefore,

Q - K •§"
(2)

The hydraulio gradient at point C is given by equation 2 as

On the other hand, if the head loss over an infinitesimal seotion dx is dH then

dx L2K2

or

dH - -j^. (L - x)2dx

The integration of this equation from x • to x L gives

A comparison of this formula with that describing the flow rate through seotion

AB when the discharge is not distributed over the seotion

h-S| <u

shows that H — 3 Hj^. Thus, for a uniform distribution of discharge along the

pipe the head required is only one third of that required for the same rate of



flow through the unperforated pipe*

For the variation of pressure along a manifold pipe we consider the pipe

with a long, narrow slot and negleot pipe friction. Consider a straight pipe

with a uniform oross sectional area of A square feet having a slot e feet wide

and L feet long parallel to the axis of the pipe as illustrated in Fig. 2.

Assume the pressure on the slot to vary from h feet of water at one end to H

feet of water at the other end and the pressure at any point x feet from the

beginning of the slot to be y feet of water. The mass of water passing any

seotion of the pipe x feet from the beginning of the slot in dt seconds will be

V
s vA

dt

Figure 2.

where f is the speoifio weight of water (&»U pounds per oubio feet), v is

the mean velocity in the pipe at that seotion, in feet per seoond, and g is

acceleration of gravity (32.2 feet per seoond per second)* At a section dx

feet further along the pipe the velooity in the pipe is v - dv feet per seoond

and the pressure has increased to y + dy feet of water. From the principle of

momentum which states that the rate of change of momentum is equal to the sum



of the external foroes aoting on the oontrol aurfaoe of the fluid, it follows

honoe

&«j + *r) - tMff-*$**& -«*> m
Zf

dy- - Id?
g

/dy- - IjVdT
g

y "
Sg

(5)

From the boundary conditions, t ™ at y m H, we oan solve for the oonatant of

integration.

C -H

then

y - H - v2/2g (6)

or

v - y2g(H - y) (7)

Equation 6 is important because it shows that the pressure at any point of the

slot, when pipe friotion is neglected, is equal to the head at the end of the

slot minus the velooity head at the given point (l). Next oonsider the

disoharge from the slot in the distance dx

dq - Cq e dx /2gy

in which C
q

is the ooeffioient of disoharge of the slot. The disoharge, dq,

is also equal to the difference of the flow through the two seotions dx apart,

hence,

- Adv -C-e dx /2gy

C e^7 (8)
dv - - cq • /gsy dx



Substituting the value of from eqn. 7 and the value of dv from eqn. 8 into

eqn. 5.

dy - §2a2. /(H - y)y doc (9 )

Integrating eqn„ 9 between the limit x, L and y, h, and solving for y.

y - | fl
- oos^j - &j£. (L - xffj (10)

Eqn. 10 gives the pressure head, y, at any point x from the beginning of the

slot in terms of the dimensions of the pipe and the slot, the coefficient of

discharge, and the head, H, at the end of the slot. It will be noticed that

the ratio of y to H does not depend upon the rate of disoharge, that is, what-

ever the disoharge, the pressure at any given point is always a constant pro-

portion of the head at the end of the slot.

The formulas found for the oase of a slot in a pipe may be modified to

apply to a series of holes in a pipe. Eaoh hole may be taken as representing

a part of the length of the slot. The distance x along the slot and the total

length of the slot, may be represented by the number of holes, Z and N,

respectively. The areas, eL, ex, and A will be replaced by N *[ d ,
Z ,

? d ,

with d denoting the diameter of the hole and D the diameter of the pipe.

With these changes eqn. 10 may be written as

2
y -| (i - ~D& - 2g5- (» - *FJ (11)

The head y is, of oourse, the pressure head in the space beyond hole number Z.
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REVIEW OP PREVIOUS INVESTIGATIONS

Many investigators have analysed the flow characteristics of manifold

flow, with an attempt to develop the rules and formulas for uniformity of

discharge, each with a slightly different approach and, generally, with

different results. In 1921, H, N„ Jenk (2) published the design rules for

rapid sand filter underdrains to accomplish uniformity of discharge. In 1927,

N. Malishewsliy (3), (1+) oonducted a series of experiments relating to the

distribution of pressure and velocity head through perforated pipe lines and

published his results in the A.W.W.A. Journal of 1927 and 1935. In 1929, M. L.

Enger and M. I. Levy (l) published the experimental studies whioh indicated

that the principles of impulse and momentum were applicable to perforated

pipes. These studies also presented an empirical formula for the discharge

coefficient of an orifice whioh revealed the important effect of variation in

fluid velocity upon the variation of the orifioe coefficient for free discharge.

In 1931» Jaoob Kunz (5) applied the principle of conservation of energy to

the manifold problem and determined the flow of a sheet of water through a slot

of infinitesimal width in the wall of a pipe by means of a variable and a

oonstant discharge coefficient. He was able to solve the flow problem of

separated holes by using the method of difference equations. In I9I4O, R. D.

Gladding (6) assumed that outlets were evenly spaoed along a pipe line and eaoh

outlet discharged the same quantity of fluid and found a simple relationship

between the loss of head in the pipe, the number of outlets, and the total

disoharge. In 19i#» J. D. Keller (7) made a mathematical analysis of the flow

of a fluid through a manifold having a uniform oross seotion and uniformly

spaced discharge ports along its length. He conoluded that the ratio of port

area to the cross sectional area of pipe should not exceed unity and that the



ratio of length to diameter should not be greater than 70 for substantially

uniform distribution of flow to be obtained.

In 1950, W» 1£. Dow (8) made a theoretical analysis of the flow through a

perforated pipe with a olosed end for the speoial case of a constant linear

rate of discharge along the length of the pipe. With this analysis, he devel-

oped several theoretical design equations for uniform distribution of fluid

flowing through the perforated pipe in the case of laminar flow and turbulent

flow. The validity of the theoretical design equations was cheoked by exper-

imentation with conventional and modified pipe burners. The agreement between

the theory and experiment was reported to be excellent.

In 1953» w « E. Howland (9) developed a method for computing the correot

variation in sire or in spacing of holes to affect uniformity of distribution

of discharged fluid from a perforated pipe. In 1955, John Allen and Brian

Albinson (10) analyzed the manifold problem for canal looks from a different

and less rigid mathematical approaoh, and derived a formula for the required

area of each evenly spaced port of a manifold in order that the quantity of

water issuing from each of the ports would be the same. In 1956, J, H.

Horlock (11) derived a differential equation for the ratio of longitudinal

velocity to normal discharge velooity for an incompressible flow through a

manifold of constant cross seotional area and constant slot width, and gave an

analytical expression for this ratioj three years later, E. Markland (12)

solved the differential equation by the relaxation method.

In 1959, A. Acrivos, B. D. Baboook, and R. L. Pigford (13) published a

calculation method, based on the one-dimensional flow equation, for the

pressure-rise and head-loss in the manifold pipe. In 19&4, Bessel D. van't

Woudt (lU) showed experimentally that the existing knowledge oan be applied

to obtain uniform discharge from any length of pipe by discharging from
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subpipes of a given length and diameter provided the total discharge from

twenty or more orifiees on the subpipe is fixed and the diameter of an orifice

is very small compared to the diameter of the pipe.
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EXPERIMENTAL PROCEDURE

Experimental Apparatus

A photograph of the experimental apparatus Is shown In Fig. 3, and a

sohematic diagram is presented in Fig. Lj„ Water was pumped from a reservior

and flowed into a stilling tank, then passed through the pipe. The quantity

of water used in the experiments varied from 0.012 to O.li+3 c«f .s. An orifice

was used for measuring the discharge flowing through the pipe. A sloping

differential manometer was used to measure the pressure drop across the orifice.

A 10 ft. length of straight pipe was used as the upstream approaoh to the test

seotion to avoid interference from upstream fittings. Five evenly spaoed

piezometer tubes were used to measure the statio pressure head along a 12-foot

section of the perforated pipe. The scales on the piezometer tubes were

graduated in increments of 0.001 ft.

Preliminary Experiments

The preliminary experimental work included orifice calibration and unper-

forated pipe tests. The orifice was calibrated over the range of flows. Rate

of quantity flow was determined by timing a certain amount of water into the

measuring tank. The calibration curve is shown in Fig. 5. (ah represents the

differential manometer reading, in inohes of mercury)

Test 8 were made on unperforated pipe in order to obtain a basis for

comparison with the later experiments on perforated pipe, and to enable the

operator to become familiar with the characteristics of the PVC pipe. During

every run the static pressure heads on the five piezometer tubes were measured;

and the pressure drop between two seotions 12 ft. apart was calculated. Figure

6 shows the relation of Darcy-Weisbach friotion faotor, f, to the Reynolds
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mk\
Figure 3 . Experimental Apparatus

Test section "aiming length

Flume

r

i_

L

— Stilling tank

Figure 4, Experimental Apparatus
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Fig. 6. Friction Factor in an Un perforated
Pipe
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number, NR, for the 3
n unperforated PVC pipe.

Experiments For Obtaining Data

As mentioned above, the experiments were composed of five series of runs,

based on the diameter of the holes a At first, eight holes with a diameter of

3/16" **r* drilled evenly spaoed along one side of the pipe, TOiereas the first

hole was located 17g
n downstream of the first piezometer tube, the last hole

was looated jf upstream of the last piezometer tube. Letting S define the

spaoing between adjacent holes and D denote the inside diameter of the pipe,

this gave a ratio of S/d equal to 5»573» Attention was given to removing the

burr in the hole after the hole was drilled. The water level in the stilling

tank was kept approximately constant, at a value of about 57 •3" above the

center line of the pipe, by adjusting the openingnof the control valve on the

pump, and by keeping water overflowing from the stilling tank. After finishing

the first set of runs, the numbers of holes was increased to 12? this gave a

ratio of S/D equal to 3»715» X» the same manner, the number of holes was

increased to l6, 2U, I48, and 96 for the 3rd, lith, 5th, and 6fch set of runs

respectively. The holes that were not to be used for a particular run were

covered with a waterproof covering. After the first series of runs, the

diameter of the holes was increased successively to 1/^", 5/l6", and 3/8". At

certain series of runs the ratio, S/fo, was ohanged from 5»573 *° 0.1;65 or from

O.I465 to 5»573» In the fifth series of runs the holes were arranged in two

rows, one on each side of the pipe. The diameter of the holes was fixed at a

value of 3/8"# a&d the ratio, S/d, was changed from 5,573 to O.I165. The layout

of the holes in eaoh series of runs is shown in Fig. 7, Table 1 gives the

relationship between hole diameter, ratio S/D, and area ratio.
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Table 1„ Area ratio.
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(a) One-Side L-W.582

d (m) ^^3*

0.1*65 O.929 I.858 2.786 3.715 5.573

96 1+8 2k 16 12 8

3/16

lA

5/16

3/8

O.325

0.575

0.901

1.291*

O.I63

0.288

0.1*51

0.61*7

0.081

0.1I*U

0.225

0.323

O.05U

O.096

0.150

0.216

0.01*1

0.072

0.113

0.162

0.027

O.0I48

0.075

0.108

(b) Two-8ide 3 - 1*U.582

i (m) N

0.929 I.858 2.786 3.715 5.573

96 I48 32 21* 16

3/8 1.29U 0.6U7 0.1*31 0.323 0.216
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DATA ANALYSIS

Method of Analysis

Three methods of analysis were developed to determine the overall head

loss and pressure reoovery along the perforated pipe; they were referred to as

the modified method of Enger and Levy, the momentum method, and the energy

method.

The Modified Method of Enger and Levy (l) . From eqn. 9

dy-^ll /(H - y)y dx

integrating over the entire length of the slot

1
L (fi-

ds- A d7
2^0" J h / (H > y)y

this gives

L -5fe^- ool'"1(1 -f^
therefore,

h-|^T-oos(^ -2gty (12)

Keplaoing eL, A by £ d% and .&D2 respectively, then

h-l^-oosc^-^ttdij^.

or

h-I^T-eosU - %^N,)7 (13)

in whioh h is the statlo pressure head at the inlet end, H is the statio

pressure head at the closed end beyond the last hole, C denotes the disoharge

ooeffioient for the holes, and N is the total number of holes along the
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perforated pipe. Defining

h — Pj and H — Pe

then

p_ or; a^

Let the theoretioal pressure head recovery be a VQt then

p
o " p

5 " pl " p
5 " ^-£ - 008 ( * " -f^NiT'

or

^"^(i-^-oosC^-^iN^ (1U)

d2
in whioh -^1 is equal to the area ratio, P^ and Pc denote the etatio pressure

heads, in feet of water, at the inlet end and the olosed end of the perforated

pipe respectively.

In order to evaluate the discharge coefficient, C„, for the holes, one

assumption was made. It was assumed that Cq represents the average disoharge

coefficient for all the holes. From this assumption we write

Q--^C
q
Nd2 /ig1f

in which E" denotes the average static pressure head along the perforated pipe.

Since

2

then

Q - -^ C
q
Nd2 /g(P1 + P

5
)

Therefore,
J

Cq

"f^ y E(Pi + p
5 )

(15)
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From eqn. 15, the discharge ooeffioient of the holes, C
q, oan be determined.

By theorem of conservation of pressure recovery, the difference of theoretical

pressure reoovery and observed pressure reoovery gives the overall head loss,

H^. Let the observed pressure reoovery be Ap then

HL -dP - A? (16)

Consider the perforated pipe as a continuous, uniform, and homogeneous unit, we

define

HL -f D 2
g

(17)

in which f is defined as the overall friotion faotor of the perforated pipe,

and V is the mean velocity at the inlet end, Sinoe V - Q/A then from eqn.

17, the overall friction faotor, f, oan be evaluated as soon as the overall

head loss, Hl, is computed.

The Momentum Method . As shown in Pig. 8 ABB'A 1 is the oontrol surface.

Assuming the rate of change of momentum of the fluid discharged from the

lateral opening in the x direction is dPm

<*Fm -U2£(fAV)cbc

where u is the longitudinal oomponent of discharged velocity at the distanoe x

from the inlet end, and V is the longitudinal velocity in the pipe at that

section.

A

\8

B

Bf'

Figure 8.
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Assuming u m V then

dFm «V,|L(pAV)dx

By negleoting pipe friotion, J„ H e Horlook (11) gave the following expression

to describe the variation of longitudinal velocity in the pipe.

V _ sin n(L - x)
f
. aS

7 sin nL < l8 >

C n
in which n = -3— , and a denotes the area of opening per unit length of pipe

.

In eqn. 18, taking the derivative of V with respeot to x and assuming n is

a constat, then

dV -n cos n(L - x) —
dx sin nL"" " o

therefore,

'

». -- *».' "a&r *.*&*> «

or

„t> i a .,-, 2 sin 2n(L - x) ,

dFm » - | n
f
AV 2

sin^ nL
dx

Integrating along the entire length of pipe,

/dFm - ijbfegflg
f sin 2n(L - x) dx^ sin^ nL J q

hence
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For separated holes

4P
» " *

pT°
2

g,aA, * "
~(2#'^ <19)

sin2(-^-N)

Applying the momentum prinoiple for the control surfaoe in the x direotion,

-fQV - TCP! -P
5
)A -PL + AFm

or

-AFm - f QV - r(?2 - P
5
)A - FL (20)

in whioh F^ is the unbalanced force due to loss of head, P^ and Pr as defined

before. Substituting the value of A Fm from eqn. 19 into eqn. 20, it follows

- fOJ - r(px - P
5
)A -FL

thus

fi - cos(^!n]7
i^ QVo -rra P QVo - r(Pi - p

5
)a - fl

dn2(2a£N)V
D2

Since

fl - hl r A

then

ad2

hl r A-r(Pi-P5)A+ povo-ir^o^ ^ fl

sin2(2^N)

Dividing by A f , we obtain

L 5 A W .in^)
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or

hl - - (Pb - Pi) + la- -Zg. 2^

D2
r)

therefore.

2 1 " oos( H N )

hl-%^
o
'PTg J - frg - pi)

28in2(2^N)'
(21)

in which C
q, the discharge coefficient of the holes, is defined as before.

Prom eqn. 21 the overall head loss, HL, oan be calculated if the discharge, Q,

the area ratio, -—*» and the pressure recovery, Pc - Pj, are measured.

The Energy Method. As shown in Pig. 9 the total energy at section AA' is

Vn2
1*1 + -*— and the total energy at section BB' is Pc.

<-g -'

B

I!

00000000 o a

Figure 9.

Prom the principle of conservation of energy, it gives

Pl +I2_- P_ +Ht
2g

therefore,

"L-ij-^-v

(22)

(23)

From eqn. 23 the overall head loss oan be easily oaloulated whenever the

velooity head at the inlet end and the pressure recovery from the inlet end to
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the closed ond are known.

Computation

In oomputing the overall head loss, HL, the flow of water was read in

oubio feet per seoond from the orifioe calibration curve. The cross seotional

area of the pipe is 0,057 sq ft. The mean velooity of water at the inlet end

was obtained by dividing the discharge by the oros3 seotional area. Using

this velooity the Reynolds number at the inlet end, YpIL, wa3 obtained. The

observed pressure reoovery from the inlet end to the closed end is equal to

P5 - Pl» All the experimental data were punched in IBM oards, and run through

the 1620 digital oomputer. The computer programs used for these three methods

of analysis are shown in Appendix 2. The input data to the oomputer programs

are listed in Appendix 3# the output results by using the momentum method are

given in Appendix iu
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DISCUSSION OP RESULTS

Relation of Friotlon Faotor to Reynolds Number in the Unperforated Pipe . The

curve obtained from plotting friotion faotor, f, against Reynolds number, NR,

for all the runs on the unperforated pipe is shown as curve 2 in Fig. 6j ourve

1 is a graph of Blasius' smooth pipe equation, f — *fi a7'

.
N
R
"

It is evident that for larger Reynolds number the value of f of the PVC

pipe is less than that of the smooth pipe, but on the oontrary, for smaller

Reynolds number the relation is reversed. It is seen that the PVC pipe is not

smooth, the value of the relative roughnesa, e/D, of the PVC pipe, as shown in

Fig. 6, is as large as 0.005. In the perforated pipe tests, covering some

holes by waterproof oovering a type of wavy roughness results (15), but here

we assume that the latter is negligible in comparison with the roughness of the

pipe.

Loss of Head in the Unperforated Pipe . Figure 10 shows the plot of head loss,

HL, against the discharge of water, Q, in the unperforated pipe. The slope of

this curve is 1 #5°» which indicates that the flow in the pipe is not completely

turbulent.

Observed Pressure Reoovery. Figures 11 through lU show the relation between

observed pressure reoovery and flow rate of water for hole diameters of 3/l6M ,

lA"* 5/l6", and 3/8" respectively. Observing these figures, an exponential

relationship is seen to exist between observed pressure reoovery and discharge

of water, with area ratio as a third parameter. In Fig. 15 this relation is

even more olearly seen where the holes were arranged on eaoh side of the pipe.

Figure 16 illustrates that the observed pressure reoovery becomes independent

of area ratio when the disoharge is greater than 0.120 c.f.s, for two rows of
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holes. Figure 1? shows that the observed pressure recovery is nearly

independent of the diameter of the hole when the total number of holes is equal

to 96.

Uniformity of Discharge from the Orifioes. There is no doubt that the distri-

bution of static pressure along the perforated pipe plays an important role in

the uniformity of disoharge from the orifioes. The uniform distribution of

fluid discharged from the evenly spaced outlets in a pipe of uniform diameter

can be secured only when the static pressure head is everywhere oonstant along

the pipe. Figures 18 through 22 show the relation between the ratio of P
x to

P
5

and the disoharge, Q, along the main pipe. It is seen that the smaller the

area ratio is, the smaller will be the range of the disoharge beyond whioh the

ratio of P
x

to P
5

is independent of the disoharge, Q. Thus for a given value

of area ratio there is a limiting value of disoharge beyond which P^Ar is

independent of disoharge. Figure 23 illustrates the value of P^/p^ at every

value of area ratio when the flow rate of water in the pipe is greater than

that limiting value. From Fig. 23 one can determine the value of area ratio

for any uniformity of distribution. Table 2 lists the magnitude of area ratio

for oertain ratios of Px to P
5 . For example, if we define P-j^ equal to 0.90

to be the condition of approximately uniform distribution of flow, this can be

carried out when the area ratio is less than O.67 for one row of orifioes and

0.6e for two rows of orifioes. From such values of area ratio, the perforated

pipe oan be easily designed by adjusting the size of the hole and the spaoing

of holes so as to satisfy this value of area ratio.

Overall Hea<* Loss in the Perforated Pipe . Figures 2k through 27 show the

relation between overall head loss, HL, and disoharge, Q, for hole diameters

of 3/l6n , lAn
» 5/l6", and 3/8

M respectively. From these figures it is seen



34

O.lr
i

"~T~

9
8

7

o C

A AtI

o
AjfA

3

•
ojL

»
<*- V -9 6 h pies-1 1

c 2

m

iQOi

-

ii

/

-

/7
a Area Ratio * 1.294

• Area Ratio * 0.90 1

• Area Ratios Q575

° Area Ratio* 0.325

qU> 9
— 8

7

S 5o

•

o

Pressure

1 1

-

0.01 2 :3 <* !! (3 "J «r9<ii
;
> 1 4

Discharge , Q , in c. f. s

Fig. 17. Pressure Recovery in a Perforated Pipe



35

<>!

O
OJ

(VI

ro

d
ii

CM

C£

6
II

o

o
0>

o

a
-a»-

ft
ID

?

CO
O
d

m
o
d

o

o
-93-

o
or

o

oo
o
CO

d
'd/'d

o
d

o
§

8
C3

<£

d

2
d

C\J

d

(0

—
. tO

O o 0.

CO . 0_

o «.
o

I s
to" I
d Q

CO

75
o
d

o
d

o
d

o
o
o

o>



36

i

to

6
H

GO
f\J

6
II

1

OC Or

a
JOX.

o

<*-

6
ii

o
or

I-

<

ft

II

7

CD

o
o'
II

-©-

o
OC

o
-0J-

C\J

O
6

o

o
_<u_

<0

d

5
d

CVJ

d

Q.

- o

o
n

00O r» ov-* VJ

O ^1
* o

a>
or.

o»
v_

O
_, -C
CD a en

O tJi
^™

Oo

JO

o»

CVJ

-O
a

o
CM

O
O

o
GO

dc
d / 'd

o
to

d
o
d

o

o
o

P
o



•

37

_

\

!

o

d
1 »

:•

— — m
o m cm

0) 5f (\J

o
in

to if)

_ oodd o o o
L I I it M II 11 11

d
• m

V> Q_

r
Ratio Ratio Ratio

o

o
Ratio Ratio

1

«fc.

el J
• i o o o o o o

. O
o ° -

i i

fl

'

/

Are

•

Are

•

Are u
<

<

< <

© 8

0.1

)
,

in

Of

P|

«L • . / <_> —
1

1

0.

harge

,

Ratio

^— ^ CD °
o w

s

1

~<o
05 S

m^
ii

C7>

-o O
d

i i ;
1
i

3 COo
d

D

8
C>o o o o

CM O CO <0 ^
o c
CM c
b c

)

>

>

#

•



•

V

38

*

to

d

J <<r

T d

J
t S Ifl CD

evi
°°

9
I

0> ^ M — CO O
J N O to CM — —
r - c> o- 6 d d

II II II II II II CJ

f'

i
O o o o o o d

r *-*-*- +- •— «•—

O j O o o D a o v>
(

1

rr a: cc a: cc tr

<•

o

|

67
15 o o a o o o O J

jj

>' a) a> i, 0) a> o-> d
/

< < < < < < H-
/ c o

!* k >

•

(

(

lO

7 • © 4 « go
d -

o

o

«

r i

1?*

J 1 o»
^0 u. M

(

ii

o
<\J

ji

.

s,
§.»

1 i

^
CD

d°
u.

' ro

ii

|

1 o ! o «•

i

i o
d

i
i

i )

1 CMd
d

•

o
o
d

cD O o \ o c> oC\j o 00 *

° C 1
CD d c

J o
) d

.

4

•



39

4

co

CM

f^ — 10

^ IO M
CO <fr rodob

co

cm

o'
CM

CM

o
a:

a o o
cr tr

o

< <
-jo—or

< < <

« © <

CO

ro

n

/

CO
XT
CO

Sd /«d
b CM

b

«

*-: O

2
b

o

O O
b - oc

? •

-c CM
O CJ

o z:

o

CMO

"Oo
b

8
a



'

40

1

.0

2

3

Ratio

c

/

/

•

56789

0.1

2

3

4567891

Area

Ratio

Relationship

between

Pi/

P5

and

Area

f.
/'

1

1

ft> ft)

7-1 Tl
/

J) CO

j

1

o»

S 2 1

CM

CO
1ft

c c

J

i

it

Q
_J G

Holes

*

Holes

O
II

<>

!l

<>

D.OI

2

3

4

Fig.

23.

<t ro c

§
chc f

1

5 u

/'d

F" M1 cm b



41

0.1

9

8

7

u 6

o 5

*. 4
o

«- 3
V
<u

For Unperfoi oted Pi pe

/

1
V

d= 5H'\t

/
/
9

_1
X
m

Soot
o 9

8

/
AA

//

'

/o

J
r

-o 7
o
« 6

5

«- 4
a>
>
O

3

-7<
3
r

1

/"\
Area Ratio = 0. 3"25

A Area Ratio = 0. 1 63

1

i \

i

/
A

/

2

'
-

/

/
A

1

1 A
• Area Ratio = 0.0 81

0.001

1
•

h0.01 d 4456789 0.1 2 34
Discharge , , in c. f. s.

Fig, 24. Overall Head Loss in a Perforated Pipe

#

—""



42

Discharge , , in c. f. s.
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Table 2. Uniformity of distribution.

One-Side

*'™"—

P1A5 1.00 0.99 0.95 0.90 0.80 0.70

Area Ratio 0.075 0.200 0.1*80 O.670 1.000 1.320

Two-Side

P1/P5 1.00 0.99 0.95 0.90 0.80 0.70

Area Ratio 0.075 0.200 O.I48O 0.620 0.880 1.115

that overall head loss is proportional to the velocity of the flow to the mth

power, that is

HT C V*

where C and m are functions of the area ratio and Reynolds number at the inlet

end. Figures 28 and 29 are the plots of overall head loss, HL, against discharge,

Q, for a oondition of 96 and I|S holes respectively. It is seen from Fig. 30

that, for the pipe with holes in both sides, the plots are distributed almost

in a straight line which is parallel to the curve for imperforated pipe, and

that at every flow rate the overall head loss in the imperforated pipe is 2.30

times that in the perforated pipe. R. D. Gladding (6) gave an equation to

oaloulate the head loss in a closed pipe line with evenly spaced outlets, eaoh

discharging the same amount of fluid, q. The total discharge Q is then equal

to Nq, where N is the total number of outlets.
N

f Nm

Total Loss of Head » (—--)KLQm in which K is oonstant and L is the length
jjm+1

of the pipe. When m — 2 I*
Total Loss of Head - (- )KLQ2
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or

Total Loss of Head - (
= »g - N

)KLQ2

2N? + 3&2 + N /
And '

r" beoomea 1/3 whan N approaohes to infinitive. That is to say
&l3

when the number of outlets is very large the head loss in the perforated pipe

is only 1/3 of that in the unperforated pipe on the oonditions that the outlets

are evenly spaoed and eaoh outlet is discharging the same quantity of fluid.

Relation of Overall Friotlon Faotor to Reynolds Number in the Perforated Pipe ,

As defined before

HL -f LYsl.L D2g

where f is the overall friotlon faotor• An attempt was made to find the effeot

of the Reynolds number and area ratio upon the overall friction faotor by

plotting overall friction faotor against Reynolds number with area ratio as a

third parameter. Figure 31 shows this type of plot for a hole diameter of

3/8". Figure 32 illustrates the plot of the overall friction faotor vs

Reynolds number for the pipe with holes in both sides.
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CONCLUSIONS

Three methods of computing overall head loss along the perforated pipe,

namely the modified method of Enger and Levy, the momentum method, and the

energy method, were used in this study; the results agree with eaoh other very

well. These methods are helpful in the praotical design of the perforated

pipe with evenly spaoed outlets on one side or on eaoh side.

An exponential relationship was found to exist between observed pressure

recovery and the flow rate of water, with area ratio as a parameter. The

observed pressure recovery becomes independent of area ratio when the disoharge

is greater than 0.120 o.f .s. for two rows of holes with a diameter of 3/8".

The observed pressure reoovery is nearly independent of area ratio when the

total number of holes is equal to or greater than 96 for both one row of holes

and two row3 of holes.

The uniform distribution of discharged water along the perforated pipe, as

observed from experiments, can be secured when the area ratio is less than 0.075

for both one row of holes and two rows of holes. It is seen that the uniformity

of 99 per cent oan be obtained when the area ratio is less than 0,200 for both

cases. The two curves separate at the point where area ratio is equal to O.5OO,

as illustrated in Fig, 23 and Table 2,

J, D, Keller concluded that the area ratio should not exceed unity and

that the ratio of length to diameter should not be greater than 70 for substan-

tially uniform distribution to be obtained. In this investigation when the

area ratio is equal to unity, the uniformity is 80 per oent for one row of

holes and 75 P^r cent for two rows of holes.

It is obvious, for the pipe with orifioes on one side or on eaoh side,

that the overall head loss is less than that in the unperforated pipe. For
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the case of two rows of holes with a diameter of 3/8", the overall head loss

is about l/2,30 of that in the imperforated pipe. An attempt was made to find

the relationship between overall friotion factor and Reynolds number at the

inlet end, but their relation is not obvious.

It was found, for the case of two rows of holes, that as the area ratio

is equal to 2,588, there is open channel flow at some point along the perfor-

ated pipe. Decreasing the flow rate oauses the point at which open ohannel

flow occurs to move upstream.

It was found that there exists a maximum value of overall friction faotor,

0,0221+3, in the perforated pipe. This was obtained when P-^ equals Pc no matter

what the Reynolds number and area ratio are.
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RECOMMENDATIONS FOR FURTHER STUDY

Further research is needed to determine reliable relationships between

area ratio, ratio of length to diameter of pipe, and Reynold number upon over-

all head loss and pressure reoovery*

Further examination of the feasibility of defining the expression,

L Vo^
Ht " f *- , in order to oampute the overall head loss along the perforated

D 2g
^

pipe would be of value. Further study is also needed to determine the aotual

relationship between overall friotion factor and Reynolds number at the inlet

end, so that the perforated pipe oan be treated as a simple pipe.

Further investigation of the feasibility of applying the perforated pipe

as a rotational sprinkler is also desirable*



55

ACKNOWLEDGMENT

I wish to express ny sincere appreciation and deepest gratitude for the

direotion, guidanoe 9 and encouragement given by Dr. Riohard M. Haynie,

Assistant Professor of Civil Engineering at Kansas State University. Vfithout

his efforts and counsel this research would not have been as rapid or complete.

For his valuable suggestions in the organisation and review of this thesis,

I would like to extend my sinoere thanks to Dr. Jaok B. Blaokburn, Head of the

Civil Engineering Department at Kansas State University.

Appreciation is also expressed to Professor John E. Kipp and Professor

Chen-Jung Hsu for being on the advisory committee and reviewing the manusoript.



56

BIBLIOGRAPHY

1. Enger, M. L. and M. I. Levy. "Pressure In Manifold Pipes." A.W.W.A.,
Vol. 21, May, 1929, p. 699.

2. Jenks, H. N. "An Investigation of Perforated-Pipe Filter Underdrain."
Engg. News Reoord, Vol, 86, No. k» 1921, p. 162.

3. Malishewsky, N. "Experiment in the Hydraulics of Filter Underdrain."
A.W.W.A., Vol. 17, 1927. p. 667,

**• « "Pressure Head in Perforated Pipe." A.W.W.A., Vol. 27, 1935,
P. W.3.

5. Kunz, Jacob. "Jets from Manifold Tubes." Tr. A.S.M.E., Vol. 53, 1931,
AFM, p. 181.

6. Gladding, R. D. "Loss of Head Determination in Uniformly Tapped Pipes."
Engg. News Reoord, Vol. 125, I9I4O, p. 697.

7. Keller, J. D, "The Manifold Problem." Journal of Applied Heohanios, Vol.
16, 19lj9, p. 77.

8. Dow, W. M. "The Uniform Distribution of a Fluid Flowing through a
• Perforated Pipe." Tr. A.S.M.E., Vol. 72, 1950, p. l£2.

9. Howland, W, E. "Design of Perforated Pipe for Uniformity of Discharge."
The Third Midwestern Conference on Fluid Mechanics, 1953, P» 687.

10. Allen, John and Brian Albinson. "An Investigation of the Manifold Problem
for Incompressible Fluids with Special Reference to the Use of Manifolds
for Canal Locks." Ins. of Civil Engineers, Vol. lj, 1955, p. III4.

11. Horlock, J. H. "An Investigation of the Flow in Manifolds with Open and
Closed Ends," J. Roy. Aero. Soo., Vol. 60, I956, p. 7I49.

12. Markland, "The Analysis of Flow from Pipe Manifolds." Engineering, Vol.
187, No. Wtf, 1959, P. 150.

13. Aorivos, A., B. D. Baboook, and R. L. Pigford. "Flow Distributions in
Manifolds, " Chemical Engg. Soienoe, Vol. 10, 1959, p. 112.

lU. van't Woudt, Bessel D. "Uniform Disoharge from Multi-Orifioed Pipes."
Tr. A.S.A.E., Vol. 7. No. 3, 19&+, p. 352.

15. O'Sullivan, J, K. "Flow in Pipes with Drilled Holes," Engineering, Vol.
I63, No. U780, 1957, p. 681*.



57

APFENDICES



58

APJENDIX I

Notations

The following symbols, adopted for use in this paper, conform in all

essential respects with "American Standard Letter Symbols for Hydraulics" (ASA

Z10.2 - I9I42) prepared by a committee of the American Standards Association

with Society representation, and approval by the Association in 191^2:

A — oross sectional area of manifold pipe at any point;

a - area of opening per unit length of pipej

C « Cauchy number;

C - coefficient;

Cq - coefficient of discharge

j

d m diameter of orifice;

D — inside diameter of pipe;

dFm rate of ohange of momentum of the fluid discharged from the lateral

opening in the flow direotion;

e — width of slot;

f friction factor in unperforated pipe;

overall friction factor in perforated pipe;

FL - unbalanoed force in the direotion of flow;

g » gravitational acceleration;

H — pressure head;

pressure head at the downstream end of the slot;

HAB " pressure difference between seotion A and seotion B;

Hl loss of head in unperforated pipe;

overall head loss in perforated pipe;

h • pressure head at upstream end of the slot;
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h" average statio pressure along the perforated pipe;

K ~ constant;

L — aotive length of the manifold pipe;

m — coefficient;

Cq a
n » numerical constant, n » ? — *

A

N ™ total number of holes;

% Reynolds number;

Pi - static pressure head at the inlet end of the perforated pipe;

?c " static pressure head at the closed end of the perforated pipe;

A P = observed pressure head recovery;

AP « theoretical pressure head recovery;

Q m total rate of flow;

Q m total rate of flow at point C;

q = rate of flow from the outlet;

R hydraulic radius;

S — spacing of orifices;

S hydraulic gradient;

Sc ~ hydraulic gradient at point Cj

t «= time;

u — longitudinal component of discharging velocity;

V — mean velooity at any point of the perforated pipe;

V — mean velooity at inlet end, V — Q/A;

v » perpendicular component of the discharging velocity;

x — distanoe along manifold pipe from the inlet end;

y — pressure head at a point distance x downstream from the inlet end;

Z — number of holes before certain point at the perforated pipe;

f » specifio weight;



p- density;

j)- kinetic viscosity

„

.*

•'

•
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APPENDIX II

Plow Diagram for Digital Computer Program

START

Read a Card with
values of

DP, DH, RAID, HOLE
RASD, VISC, M

Compute
AREA, RAREA

Punoh
RAREA, DH, RASD

HOLE, VISC

Set
I -

Set
1=1+1

Read a Card with value
of

DISC, Px , P
5

1 ~
Compute

VEL, DELP, EL
COEFF, REYN, RAPP

Punch

DELP
DISC, VEL, P,, Pj-

, RAPP, HL, COEFF, REYN
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List of Symbols for Computer Program

DP — Diameter of pipe;

DH — Diameter of holes

RALD - L/b, ratio of length of pipe to its diameter;

HOLE * Total number of hoi© 85

RASD « S/D, ratio of spacing of holes to the pipe diameterj

VISC Kinetic visoosity;

M *» Number of runs;

AREA Cross sectional area of pipe;

RAREA -= Ratio of area of outlets to that of pipe oross section;

DISC — Total discharge of water in the perforated pipe;

P^ — Static pressure head at the inlet end of the perforated pipe;

P5 "" Static pressure head at the olosed end of the perforated pipe;

VEL — Mean velocity at the inlet end of the perforated pipe;

DELP — P5 - T\ t observed pressure head recovery;

HL — Overall head loss along the perforated pipe;

COEFF Overall friotion factor;

REYN m Reynolds number at the inlet end;

RAPP — Pi/Rj# ratio of statlo pressure head at the inlet end to that at the

olosed end of the perforated pipe.
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APPENDIX in

Input Data to Digital Computer Program

inside diameter cf pipe=3.23o in. L/D=44.582

H~LF DIAMETER=.188 HOLF NC.=96 S/D= .465
KTNE. VISC. =.00000980 10 RUNS CNE-SIDE

66

o
.117
• 11(1

.10.

.092

.075

PI
1.572
1.381
1.155
.955
.644

P5
1.614
1.419
1.187
.982
.661

Q

.113

.105

.096

.086

.062

PI
1.460
1.255
1.057
.848
.436

P5
1.501
1.290
1.087
.871
.447

H~LF DIAMETER=.188 HOLE NC.=48
KTNE. VISC.=.C00C0980 10 RUNS

S/D = .929
CNE-SIDE

Q
.079
.n73
.067
.058
.n47

Pi
3.223
2.707
2.142
1.1,97

1.009

P5
3.24u
2.722
2.155
1.607
1.017

Q
.077
.071
.062
.053
.037

PI
2.99u
2.446
1.869
1.293
.529

P5
3.006
2.461
1.881
] .303
.533

HOLE DIAKETER=.188 HOLE NC.=24 S/D=].858
KTNF. VISC. =.00000984 8 RUNS CNE-SIDE

o

.045

.042

.n38

.028

PI
4.269
3.386
2.421
1.129

P5
4.274
3.389
2.422
1.129

Q
.044
.040
.033
.023

PI
3.792
2.93U
1.907
.507

P5
3.796
2.932
1.907
.507

HOLE
KTNF

DIAMtTER=.188 HOLE NC. =16 S/D=2.786
VISC. =. 0000^984 8 RUNS CNE-SIDE

.029

.o25

.021

.018

PI
4.247
3.061
1 .927
.897

P5
4.250
3.063
1.928
.897

.026

.022

.019

.016

PI
3.572
2.481
1.^82
.449

P5
3.574
2.482
1.383
.449



HOLE DIAMETER=.188 HOLE NO. =12 5/0 = 3.715
KTNE. VISC. =.00000973 7 RUNS ONE-SIDE

67

o PI P5
.02' 4.319 4.321
.021 2.939 2.940
.019 1.400 1.401
.ol6 .391 .391

Q PI P5
.022 3.592 3.593
.020 2.077 2.078
.018 .848 .849

Hf>LE DIAMETER = . 188 HOLE NO.= 8 S/D=5.573
KTNE. VISC. =.00000973 5 RUNS CNE-SIDE

P] P5 Q PI P5
.016 4.2J2 4.202 .015 2.225 2.225
.014 1.885 1.885 .013 1.186 1.186
.012 .561 .561

*

HOLE DIAMETER=. 250 HOLE NO. =96 S/D= .465
KINE. VISC.=.000uo984 9 RUNS ONE-SlDt

PI P5
.1 33 .601 .655
.1 23 .517 .562
.113 .435 .473
.099 .341 .369
«, 078 .206 .227

Q PI P5
.129 .562 .611
.118 .471 .513
.106 .386 .42
.092 .292 .318

HOLE DIAMETER=. 250 HOLE NO. =48 S/D= .9k9
KINE. VISC. =.00000991 11 RUNS ONE-SIDE

Q
.1 12

. i 01

.089

.077

.060

.039

PI
1.836
] .498
1.168
.859
.502
.179

P5
1.870
1.526
1.189
.878
.514
.184

Q
.107
.096
.084
.069
.051

PI
1.669
1.329
1.035
.675
.346

P5
1.700
1.354
1.0 56
.689
.3 54

HOLE DIAMETER=.250 HOLE NO. = 24 S/D = 1.85>8
KINE. VISC. =.00000991 10 RUNS ONE-SIDE

.074

.066

.057

.^46

.033

PI
3.434
2.739
1.985
1 .281
.648

P5
3.454
2.756
1 .999
1.290
.652

.069

.061

.051

.040

.022

PI

3.039
2.32^
1.586
.992
.243

P5
3.058
2.334
1.597
.003
.243



HCLE DIAVETER=.250 HCLE NC.=16 S/D=2.766
KTNE. VISC. =.00000986 9 RUNS CNE-SIDE

68

o
.054
• n48
.039
.028
.020

PI
4.053
3.173
2.127
.875
.153

P5
4.059
3.177
2.130
.877
.153

Q
.050
.043
.033
.024

PI
3.581
2.587
1.395
.462

HCLE DIAMETER=.250 HCLF NO. =12 S/D=3.715
KTNF. VISC. =.00 00 10 56 7 RUNS CNE-SIDE

P5
3.586
2.590
1.398
.463

• 040
.033
.028
.019

Pi
3.994
2.764
1.556
.325

P5
3.998
2.766
1.557
.325

.035

.031

.024

P]

3.314
2.20u
1.002

HCLE DIAMETER=.313 HCLE NC.=96 S/D= .465
KTNE. VISC. =.00001029 15 RUNS CNE-SIDE

P5
3.317
2.201
1.003

.141

.131

.123

.1 16

.1 11

.102

.094

.n74

PI
.245
.215
.190
.172
.134
.135
.119
.080

P5
.303
.262
.231
.210
.188
.165
.145
.093

.135

.128
• 120
.113
.104
.096
.086

PI

.225

.207

.183

.165

.145

.125

.10u

H~LE DIAMETER=.313 HCLE NC.=48 S/D= .929
KTNE. VISC. =.00001026 11 RUNS CNE-SIDE

P5
.278
.256
.222
.2 00
.175
.150
.120

.13

.120

.1 10

.098

.085

.069

PI
.885
.7.49

.619

.479

.371

.277

P5
.927
.792
.656
.5 10

.3 96

.243

.126

.116

.103

.092

.078

PI
.813
.683
.552
.429
.310

P5
.854
.723
.587
.458
.331
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HOLE DIAMETER=.313 HOLE NO. =24 S/D=1.658
<INE. VISC.=. 00001026 11 RUNS ONE-SIDE

o
.1 04
.096
.o84
.071
.057
.035

PI
2.209
1.834
1.402
1.028
.612
.191

P5
2.239
1.858
1.419
1.039
.619
.193

Q

.100

.090

.077

.063

.048

PI
2.01G
1.615
1.205
.804
.412

HOLE DIAMETER=. 313 HOLE
K.TNE. VISC. = .00001035

NC.=16
10 RUNS

S/D=2.7b6
ONE-SIDE

P5
2.038
1 .635
1.219
.814
.416

o PI P5 PI P5
.082, 3.185 3.199 .078 2.869 2.881
.o76' 2.626 2.637 .072 2.^45 2.355
.066 2.010 2.019 .059 1.583 1.589
.053 1.272 1.277 .046 .997 1.001
.04 .640 .644 .028 .266 .269

HOLE DIAMETER =.313 HOLE NC.=12 S/D=3.7i5
KINE. VISC.=. OU0u1l45 10 RUNS ONE-SIDE

PI P5 Q PI P5
.067 3.677 3.686 .064 3.374 3.382
.061 2.923 2.930 .058 2,670 2.6/6
.054 2.219 2.224 .050 1.888 1 .892
.045 1.526 1.529 .040 1.194 1.197
.032 .656 .658 .026 .324 .325

HOLE DIAMETER =.313 HOLE NC. = 8 S/D=5.573
KINE . VISC.=. 00001050 8 RUNS

Q

CNE-SIDt

PI P5 PI P5
.050 3.989 3.994 .047 3.469 3.473
.044 2.957 2.960 .039 2.374 2.377
.034 1.682 1.884 .029 1.294 1.296
.024 .729 .730 .016 .298 .298

•



HOLE DIAMETER=.375 HOLE NC.=96 S/D= .465
KTNE. VISC. =.00001035 15 RUNS CNE-SIDE

70

o
.141
.134
.1 26
.121
.112
.106
*091
.087

PI
.133
.119
.110
.100
.090
.081
.066
.060

P5
.186
.171
.155
.142
.125
.114
.091
.082

117

Q
,137
,130

124

.108

.098

.08 8

.U96

PI
.125
.115
.105

.085

.073

.062

137

P5
.179
.163
.150

.118

.101

.082

HOLE DIAMETFR=.375 HOLE NC.=48 S/D= .929
KINE. VISC. =.00001026 16 RUNS CNE-SIDE

Q
.13*

.126

.1 15

.106

.098

.086

.053

PI
.480
.405
.337
.288
.245
.191
.143
.081

P5
.534
.450
.375
.320
.274
.212
.158
.089

Q
.133
.120
.110
.102
.092
.079
.062
.044

PI
.445
.363
.304
.263
.219
.16,;

.110

.060

HOLE DIAMETER=.375 HOLE NO. =24 S/D=1.85b
KINE. VISC. =.00001016 15 RUNS CNE-SIDE

P5
.496
.402
.339
.288
.244
.176
.12
.066

.1 19

.112

.104

.094

.086

.074

.062

.042

PI
1.504
1.338
1.156
.950
.771
.584
.394
.179

1

P5
1.540
1.370
.183
.973
.790
.598
.406
.186

Q

.113

.110

.100

.090

.080

.069

.053

PI
1.385
1.254
1.058
.869
.685
.476
.281

P5
1.421
1.283
1.081
.838
.702
.402
.291



•
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71

HOLE DIAMETER =.375 HOLE NO. =16 S/D=2.7b6
-KINE.r VISC.=. 00001008 16 RUNS ONE-SIDE

PI P5 PI P5
.100' 2.495 2.521 .096 2.323 2.346
.096 2.377 2.400 .094 2.227 2.248
.092 2.110 2.130 .090 2.035 2.052

* .087 1.910 1.925 .084 1.798 1.815
.082 1.635 1.698 .078 1.521 1.535
.07C 1.244 1.256 .064 1.023 1.03 3
.o59 .877 .885 .050 .627 .634
.038 .352 .356 .032 .232 .2 35

HOLE DIAMETER =.375 HOLE NC.=12 S/D=2.7b6
KTNE. i VISC.=. uoooioo'o 14 RUNS ONE-SIDE V

PI P5 PI P5
.086 3.106 3.120 .082 2.809 2.821
.078 2.581 2.592 .075 2.390 2.4C0
.072 2.184 2.191 .067 1.885 1.804
. 064 1.682 1.690 .058 1.42o 1.431

* .055 1.260 1.269 .050 1.027 1.033
.045 .791 .795 .037 .565 .567
.030 .309 .310 .025 .216 .219

HOLE DIAMETER =.375 HC:LE NC.= 8 S/D=5.573
KTNE.

o

VISC.=. C0001006 8 RUNS ONE-SIDE

PI P5 PI P5
. o60 3.560 3.566 .058 3.210 3.215
.056 2.908 2.912 .052 2.546 2.549
.048 2.105 2.108 .043 1.702 1.704
.036 1.206 1.2 07 .029 .760 .760

HOLE DIAMETER =.375 HC LE NC.=96 S/D= .929
KTNt . VISC.=. 000^1014 15 RUNS TWC-SIOE

•

PI P5 Q PI P5
.143 .104 .167 .137 .095 .153
.1 32 .089 .142 .130 .082 .134
.1 27 .081 .130 .123 .075 .120
.1 lo .070 .113 .112 .063 .100
.1 10 .058 .093 .106 .055 .08«?
.098 .048 .073 .092 • 040 .065
.082 .029 .048 .070 .016 .030
.054

*

.010 .016
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H-LE DIAMETER =.375 HOLE NO .=48 S/D=1.858
KTNF,

1 vise*.

PI

C00C1014 15 RUNS TWC-SIDE

P5 PI P5
.1 37 .452 .515 .133 .421 .474
.1 30 .409 ,458 .124 .375 .419
.120 .341 .383 .115 .315 .355
.112 .298 .335 .106 .267 .300
.101 .242 .27j .095 .212 .238
.088 .180 .202 .080 .146 .164
.o72 .114 .126 .063 .091 .099
.054 .065 .0 69

H~LE DIAMETER =.375 HC:le NO. =32 S/D=2.786
KTNF. , VISC.=. 0000 10 1-4 15 RUNS TWC-SIDE

o PI P5 Q PI P5
• 128 .998 1.044 .122 .889 .931
.1 16 .608 .847 .111 .742 .779
. 1 u9 .706 .739 .104 .648 .677
• IOC .605 .631 .094 .523 .546
.088 .456 .477 .081 .381 .399
.075 .311 .325 .064 .227 .237
.^57 .177 .183 .048 .117 .120
,n4( .077 .079

H~LE DIAMETER =.375 HC:|_E NO. =24 S/D=3.715
KTNE. VISC.=. 00 001010 15 RUNS TWC-SIDE

n Pi P5 PI P5
.1 18 1.525 1.565 .115 1.425 1.462
.111 1.335 1.369 .106 1.19b 1.227
.1 02 1.115 1.141 .098 1.015 1.038
.095 .948 .970 .088 .813 .833
.082 .700 .718 .075 .585 .600
.068 .473 .485 .060 .365 .375
.049 .230 .235 .040 . 142 .146
.032 .094 .0 96

H~LE DIAMETER =.375 HC LE NO. ,
= 16 S/D=5.573

K I NE . VISC.=. D0001024 13 RUNS TWC-SIDE

PIQ PI P5 Q P5
.099 2.471 2.500 .094 2.235 2.260
.091 2.042 2.065 .083 1.727 1.747
.075 1.395 1.412 .071 1.217 1 .231
.065 ] .040 1.050 .058 .82 3 .831
.o54 .688 .694 .047 .515 .519
.r>39 .356 .359 .030 .171 .172
.023 .092 .(,92



APPENDIX IV

Output Data from Momentum Method
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APEA RATIC= .325 HOLE
H~LE NC.= 96.0C0 KINE.

DIAMETER= .188
VISC.= ,C00'-0980

S/D = .465

.117

.113

.110

.105

.10 1

.096

.0 92

.086

.075

.0 6.2

2,

1,

1,

1,

1,

1,

1,

1,

1,

1 ,

V

056
986
933
t 45
lib
687
617
511
318
090

PI

1.572
1.460
1.381
'1.255

1.155
1.05 7

.955

.848

.644

.436

ADFA RATIC= .

HOLE, MC.= 48.0

P5
1.614
1.501
1.419
1.290
1.187
1.087
.982
.871
.661
.447

P5-P] P1/P5
.042
.041
.038
.035
.032
.030
.027
.023
.017
.011

.974

.973

.973

.973

.973

.972.

.97 3

.974

.974

.975

HL
.024
.02
.020
.018
.017
.014
.014
.012
.010
.007

.0081

.00 74

.0077

.0076

.0078

.00 72

.0075

.007Q

.0083

.0090

R

56474.
54543.
53095.
50682.
48751.
46338.
44407.
4151]

.

3620]

.

29Q26.

163 HOLE DIAMETER= .188
o«J KINE. VISC." »00OOU980

S/D = 92<

.079

.077

.073

.071

.067

.062

.058

.053

.047

.037

V
1.388
1.353
1.283
1.248
1.177
1.090
1 . CJ 1.9

.931

.826

.650

PI
3.223
2.990
2.70 7

2.446
2.142
1 .869
1.597
1.293
1.009
.529

APEA RATIC= .081
HOLE NC.= 24.000

P5

3.240
3.006
2.722
2.461
2.155
1.881
1.607
1.303
1.017
.533

P5-P1 P1/P5 HL R

.017

.016

.015

.015

.013

.012

.010

.010

.008

.004

.995

.995

.994

.994

.994

.994

.994

.992

.992

.992

013 .0097 38132.
.012
.011
.009
.009
.^06
.00 6

.00 3

.003

.003

.0096

.0093

.0085

.0089

.0078

.0085

.0058

.0055

.0088

37167.
35236.
34270.
32340.
29926.
27996.
25582.
22686.
17859.

HOLE DIAMETER" .188
KINE. VISC.= .00000984

S/D= 1.858

.045

.044

.042

.040

.038

.0 33

.028

.023

V
.791
.773
.738
.703
.668
.580
.492
.404

PI
4.269
3.792
3.386
2.93
2.421
1.90 7

1.129
.50 7

P5
4.274
3.796
3.389
2.932
2.422
1.90 7

1.129

P5-P1 P1/P5
.005
.004
.00 3

.00 2

.001
0.000
0.00

.999

.999

.999

.999
l.OOo
1.000
1.00 J

HL
.005
.005
.00 5

.006

.006

.00 5

.004

.0109

.0128

.0145

.0166

.0192

.0224

.0224

R

21632.
21 152.
20190.
19229.
18267.
15864.
13460.

.507 0.000 1.00'J .003 .0224 11057.



ApEA RATIC= .054
HOLE NC.= 16.000

HOLE DIAMETER= .166
KINE. VISC.= .00000984

S/D= 2.786

.029

.026

.025

.022

.021

.019

.018

.016

V
.510
.457
.439
.387
.369
.334
.316
.281

PI
4.247
3.572
3.061
2.481
1.927
1.362
.897
.449

P5
4.250
3.574
3.063
2.482
1.928
1.363
.897
.449

P5-P1 P1/P5
.00 3

.002

.00 2

.001

.001

.001
0.00
0.000

.999

.999

.999
1.000
.999
.999

1.000
l.OOu

HL
.001
.001
.000
.001
.001
.000
.002
.001

.0057

.0086

.0075

.0128

.0118

.0095

.0224

.0224

R

1394]

.

12499.
12018.
10576.
10095.
9134.
8653.
7692.

APEA RATIC= .041
H~LF N0.= 12.000

HOLE DIAMETER= .168
KINE. VISC.= .00000973

S/D= 3.715

V PI P5 P5-P1 P1/P5 HL F R

.024 .422 4.319 4.321 .00 2 1.000 .000 .0062 11668.

.022 .387 3.592 3.593 .001 1.000 .001 .0128 10695.

.021 .369 2.939 2.940 .001 l.OOu .001 .0118 10209.
,02u .351 2.07 7 2.0 78 .001 1.000 .000 .0107 9723.
.019 .334 1.400 1.401 .001 .999 .000 .0095 9237.
-.018 .316 .648 .849 .001 .999 .000 .0080 8751.
.016 .281 .391 .391 0.00 1.000 .001 .02 24 7778.

APEA RATIO= .027 HOLE DIAMETER= .168 S/D= 5 .57?
H~LF NO 8 .000 KINE. VISC.= .0001,0973

Q V PI P5 P5-P1 P1/P5 HL F R

.016 .281 4.202 4.202 0.00 l.OOu .001 .0224 7778.

.0 15 .264 2.225 2.225 0.000 1.000 .001 .0224 7292.

.014 .246 1.885 1.885 O.OuO l.OOu .000 .0224 6806.

.013 .228 1.186 1.186 0.00 1.000 .000 .0224 6^20.

.012 .211 .561 .561 0.00 1.000 .000 .0224 5834.

APEA RATIC= .575
HOLE N0.= 96.000

HOLE DIAMETER= .250 S/D=
KINE. VISC.= .00000984

.465

V PI P5 P5-P1 P1/P5 HL F
.133 2.337 .601 .655 .054 .918 .031 .0082
.129 2.267 .562 .611 .049 .920 .031 .0087
.123 2.162 .517 .562 .045 .92u .028 .0085
.118 2.0 74 .471 .513 .042 .918 .025 .0083
.113 1.986 .435 .473 .038 .92 .023 .0085
.106 1.663 .366 .420 .034 .919 .02 .0083
.099 1.740 .341 .369 .028 .924 .019 .0091
.092 1.617 .292 .318 .026 .918 .015 .0081
.078 1 .371 .20 6 .227 .02 1 .907 .008 .0063

R

63936.
62013.
59129.
56725.
54321.
50956.
47591.
44226.
37496.
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APEA RATIC= .288
H~LF NC.= 48. COG

HOLE DIAMETER= .250 S/D=
KINE. VISC.= .000^0991

.929

.112

.107

.101

.096

.U89

.08 4

.07 7

.069

.060

.051

.039

V

1.968
1.680
1.775
1.687
1.564
1.476
1.353
1.213
1.054
.896
.685

PI
1.336
1.669
1.498
1.329
1.168
1.035
.859
.675
.50 2

.346

.179

P5
1.870
1.700
1.526
1.354
1.189
1.056
.878
.689
.514
.354
.184

P5-P
.03
.03
.02
.02
.02
.02
.01
.01
.01

.00

.00

P1/P5
.982
.982
.982
.982
.982
.980
.978
.980
.977
.977
.973

HL
.026
.024
.021
.019
.017
.013
.009
.009
.no 5

.004

.002

F

.0098

.0098

.0096

.0097

.0100

.0085

.0074

. 00 8 7

.0068

.0080

.0071

R

53460.
51074.
48210.
45823.
42482.
40095.
36754.
32935.
28640.
24344.
18616.

A" r A RATIC= .144
HOLE NC.= 24.000

HOLE DIAMFTFR= .250
KINE. VISC.= .000^0991

S/0 = 1.858

Q
.074
. 6 9

.066

.061

.057

.051

.046

.04

.033

.02 2

V
1.30G
1.213
1.16C
.072
.002
.896
.808
.703
.580
.387

PI
.434
.039
.739
.320
.985
.586
.261
.992
.64 8

.243

P5
3.454
3.058
2.756
2.334
1.999
1.597
1.2 90
.998
.652

P5-P1 P1/P5
.020
.019
.017
.014
.014
.011
.00 9

.006

.004

.994

.994

.994

.994

.993

.993

.993

.994

.994

HL
.006
.004
.004
.004
.002
.001
.001
.002
.001

.243 0.000 1.000 .002

.00 53

.0038

.0042
• 00^8
.0023
.0026
.0025
.0049
.0053

R

35322,
32935,
31503,
29117,
27208,
24344,
21957,
19093,
15752,

'224 10501

A^EA RATIC= .096 HOLE DIAMETER= .25t) S/D= 2 .786
HOLE NC .= 16 .000 KINE. VISC.= •000u0986

V PI P5 P5-P] P1/P5 HL F R
.054 .949 4.053 4.059 .006 .999 .^08 .0128 25^06.
.050 .879 3.581 3.586 .005 .999 .007 .0131 23987.
.048 .844 3.173 3.177 .00 4 .999 .007 .0143 23028.
.043 .756 2.587 2.590 .00 3 .999 .006 .0148 20629.
.039 .685 2.127 2.130 .003 .999 .004 .0132 18710.
.03 3 .580 1.395 1.398 .00 3 .996 .002 .0095 15832.
.^2 8 .492 .375 .877 .002 .998 .002 .0105 13433.
.024 .422 .462 .46 3 .001 .99 8 .002 .0143 11514.
.02C .351 .153 .153 0.000 1.000 .002 .0224 9595.
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AREA RATIC= .072
HOLE NC.= 12.001

HOLE DIAMETER= .250
KINE. VISC.= .000ulQ56

S/D= 3.715

.040

.035

.C3?

.031

.02 8

.024

.019

V
.703
.615
.580
.545
.492
.422
.334

PI
3.994
3.314
2.764
2.200
1.556
1.002
.325

P5
3.998
3.317
2.766
2.201
1.557
1.00 3

P5-P1 P1/P5
.004
.00 3

.00 2

.001

.001

.001

.999

.999
1.000
.999
.999

HL

.003

.003

.004

.003

.0110

.0138

.0176

.0165

R

.999 .004 .0107 17918.
15678.
14782.
13886.
12542.

002 .0143 10751.
325 0.000 l.OOJ .002 .0224 8511

ApEA RATIC= .901
HOLE NC.= 96.000

HCLE DIAMETER= .313
KINE. VISC.= .000ui029

S/D: 465

Q V PI P5 P5-P1
.141 2.478 .245 .30 3 .058
.135 2.372 .225 .278 .053
.131 2.302 .215 .262 .047
.128 2.249 .207 .256 .049
. 123 2.162 .190 .231 .041
.12 2.109 .183 .222 .039

' .116 2.039 .172 .210 .038
.113 1.98 6 .165 .200 .035
.111 1.951 . 154 .188 .034
.104 1.828 .145 .175 .030
.102 1.793 .135 .165 .030
.096 1.687 .125 .150 .025
.09 4 1.652 .119 .145 .026
.086 1.511 . 1 .120 .020
.074 1.300 .08 .093 .013

APEA RATIC= .451
HOLE NC.= 48.000

P1/P5
.809
.809
.821
.809
.823
.8 24
.819
.825
.819
.829
.818
.833
.821
.833
.86^

HL
.037
.034
.035
.030
.032
.03
.027
.026
.025
.022
.020
.019
.016
.015
.013

F

.0088

.0088

.0096

.0084

.0098

.0098

.0092

.0096

.0095

.0095

.0089

.0097

.0087

.0098

.0113

R

64817,
6205Q,
60220,
58841,
56543,
55164,
53325,
51946,
51026,
47809,
46889,
44131,
43212,
39534,
34018,

HCLE DIAMETER= .313 S/D=
KINE. VISC.= .00001026

929

Q V PI P5 P5-P1
.130 2.285 .885 .927 .042
.126 2.214 .813 .854 .041
.12 2.109 .74 9 .792 .043
.116 2.039 .683 .723 .040
. 1 1 o 1.933 .619 .6 56 .037
.103 1.810 .552 .587 .035
.098 1 .722 .479 .510 .031
."02 1 .617 .429 .45 8 .029
.08 5 1 .494 .371 .3 96 .025
.078 1.371 .310 .331 .021
.069 1.213 .227 .243 .016

'1/P5

.955

.952

.946

.945

.944

.940

.939

.937

.937

.937

.934

HL
.039
.035
.026
.025
.021
.016
.015
.012
.010
.008
.007

F

.0108

.0104

.0085

.0085

.0081

.0070

.0073

.00 64

.0062

.0063

.006 7

R

59935.
58091.
5^325.
53481.
5 715.
47487.
^582.
A241f .

3018Q.
35^61.
31812.
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ApEA ratic=
H~LE NC.= 24,

.225
00

HOLE DIAMETFR= .313
KINE. VISC.= .00001026

S/Ds 1.858

Q V PI P5 P5-P1
.104 1.828 2.209 2.239 .030
.100 1.757 2.010 2.038 .028
.096 1 .687 1.834 1.858 .024
.090 1.582 1.615 1.635 .020
.084 1.476 1.402 1.419 .017
.0 77 1.353 1.205 1.219 .014
.071 1.248 1.02 8 1.039 .011
.063 1.107 .804 .814 .010
.057 1.002 .612 .619 .007
.048 .844 .412 .416 .004
.035 .615 .191 .193 .00 2

P1/P5
.987
.986
.987
.988
.988
.989
.989
.988
.989
.990
.990

HL
.022
.020
.^20
.019
.017
.014
.013
.009
.009
.007
.004

F

.0095

.0093

.0103

.0109

.0112

.0114

.0122

.0106

.0124

.0143

.0148

R

47948.
46104.
44260.
41494.
3872P.
35500.
32734.
29046.
26279.
22130.
16136.

APEA RATIC= .150 HOLE DIAMETER= .313
HOLE IC.= 16.000 KINE. VISC.= .00001035

S/D= 2.786

V PI P5 P5-P1
.082 1.441 3.185 3.199 .014
.078 1.371 2.869 2.881 .012
.076 1.336 2.626 2.637 .011
.072 1.265 2.345 2.355 .010
.066 1.160 2.010 2.019 .00 9

.059 1.037 1.583 1.589 .006

.053 .93^ 1.272 1.277 .005

.046 • 8 08 .997 1.001 .004

.040 .70?. .640 .644 .00 4

.028 .492 .266 .269 .00 3

P1/P5
.996
.996
.996
.996
.996
.996
.996
.996
.994
.989

HL
.018
.017
.017
.015
.012
.011
.008
.006
.004
.000

.0127

.0132

.0135

.0134

.0128

.0144

.0141

.0136

.0107

.0045

R

37477.
35649.
34735.
32906.
30164.
26965.
24223.
21C24.
18281.
12797.

AoEA RATIC= .113 HOLE
HCLF NC.= 12.000 KINE.

DIAMETER= .313
VISC.= .000^1045

S/D= 3.715

V PI P5 P5-P1
.067 1.177 3.677 3.686 .00 9
.064 1.125 3.374 3.3 82 .008
.061 1.072 2.923 2.930 .007
.058 1.019 2.670 2.676 .006
.054 .949 2.219 2.224 .00 5

.0 50 .879 1.888 1.892 .004

.045 .791 1.526 1.529 .003

.0 40 .70 3 1.194 1.1 97 .003

.032 .562 .656 .658 .002

.026 .457 .324 • 325 .001

.998

.998

.998

.998

.998

.998

.998

.997

.997

.997

HL
.013
.012
.011
.010
.009
.008
.007
.005
.003
.002

.0131

.0133

.0136

.0141

.0144

.0149

.0155

.0137

.0133

.0155

0328.
8970.
7612.
6254.
4444.
2633.

8106.
4485.
1769.
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AREA RATIC= .075 HOLE DIAMETER= .313 S/D= 5 .573
HOLE NC.= b .0 00 KINE. VISC.= .00001050

V PI P5 P5-P1 P1/P5 HL F R

.050 .879 3.989 3.994 .005 .999 .007 .0131 22525.

.047 .826 3.469 3.473 .004 .999 .007 .0140 21174.

.044 .773 2.957 2.960 .003 .999 .006 .0152 19822.

.039 .685 2.374 2.377 .003 .999 .004 .0132 17570.

.034 .598 1.882 1.884 .002 .999 .004 .0143 15317.

.02 9 .510 1.294 1.296 .002 .998 .002 .0113 13065.

.024 .422 .729 ..7 30 .001 .999 .002 .0143 10812.

.016 .281 .298 .298 0.000 1.00,; .001 .0224 7208.

ApEA ratic= 1.294 HCLE DIAMETER= .375 S/D = .465
HOLE NC.= 96 •000 KINE. VISC.= .000-1035

V PI P5 P5-P1 P1/P5 HL F R

.141 2.478 .133 .188 .05 5 .70 7 • C40 .0095 64442.

.137 2.4CC .125 .179 .054 .698 .036 .0090 62614.

.134 2.355 .119 .171 .05 2 .69 6 .r,34 .00 89 61242.

.130 2.285 .115 .163 .048 .706 .033 .0091 59414.
' .126 2.214 .110 .155 .045 .71^ .031 .0092 57586.
.124 2.179 .105 .150 .045 .70- .029 .0087 56672.
.121 2.126 . 100 .142 .042 .704 .028 .0090 55301.
.117 2.056 .0 96 .137 .041 .701 .025 .0084 53473.
.112 1.968 .090 .125 .035 .72J .02 5 .0094 51188.
.108 1.898 .085 .118 .033 .72-' .023 .0092 49360.
. 106 ] .663 .081 .114 .033 .711 .021 .0087 48445.
.098 1.722 .073 .10 1 .028 .723 .018 .0088 44789.
.091 1.599 .066 .091 .025 .725 .015 .0083 41590.
.088 1.546 .06 2 .082 .02 .756 .017 .0104 40219.
.087 1.529 .060 .082 .022 .732 .014 .0088 39762.

APEA RATIC= .647 HCLE DIAMETER .375 S/D = .929
HOLE N!0.= 48 .000 KINE. VISC.= •000U1026

V PI P5 P5-P1 PI/P5 HL F R
.137 2.4C8 .480 .534 .054 .899 .036 .0090 63163.
.133 2.337 .445 .496 .051 .89 7 .034 .008° 61319.
.126 2.214 .40 5 .450 .04 5 .901' .031 .0092 5809] .

.120 2.109 .363 .40 2 .039 .90 3 .030 .0098 55325.

.115 2.02] .337 .375 .038 .899 .025 .0090 53020.

.110 1.933 .304 .339 .035 .897 .02 3 .0089 50715.

.106 1.863 .288 .320 .032 ,90<J .02 2 .0091 43870.

.10 2 1.793 .263 .288 .025 .913 .025 .0112 47026.
,u98 1.722 .245 .274 .029 .894 .017 .0083 45162.
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.092 1.617 .219 .244 .025 .898 .016 .0086 42416.

.086 1.511 .191 .212 .021 .901 .014 .0092 39650.

.U79 1.380 .160 .176 .016 .909 .014 .0104 36422.

.073 1.283 .143 .158 .015 .90 5 .Oil .0093 33656.

.062 1.090 .110 .120 .010 .917 .008 .0103 28585.

.053 .931 .081 .089 .00 8 .910 ..005 .0091 24435.

.044 .773 .060 .066 .00 6 .909 .003 .00 79 20286.

AoFA RATIC= .323 HOLE DI£METFR= .375 S/D= 1 .858
H~LF MC.= 24 .0 00 KINE. VISC.= .00001 016

V PI P5 P5-P1 P1/P5 HL F R
.119 2.091 1.504 1.540 .036 .977 .032 .0105 55404.
.113 1.986 1.385 1.421 .036 .975 .025 .0092 52611.
.112 1.968 1.338 1.370 .032 .977 .028 .0105 52145.
.110 1.933 1.254 1.283 .029 .977 .029 .0112 51214.
.104 1.628 1.156 1.183 .027 .977 .025 .0108 48420.
.ICC 1.757 1.058 1.081 .02 3 .979 .025 .0117 46558.
.014 1 .652 .950 .973 .023 .976 .019 .0103 43765.
.0QO 1.582 .860 .888 .019 .979 .020 .0] 15 4] oop,
.08 6 1.511 .771 .790 .019 .976 .016 .0104 4004n.
.080 1.406 .685 .702 .017 .976 .014 .0100 37246.

• .074 1.30C .584 .598 .014 .977 .012 .0105 34453.
.06 9 1.213 .476 .492 .016 .967 .007 .0067 32125.
.062 1.0 90 .394 .406 .012 ,97u .006 .0078 28866.
.0 53 .931 .281 .291 .010 .966 .003 .0058 24676.
.0 42 .738 .179 .186 .00 7 .962 .001 .00 39 19554.

APEA RATIC= .216 HOLE DIAMETER* .3 S/0= 2 .786
HOLF \' vy . - 16 .000 KINE. V I sc . = .000'.'

1

008

HL FV PI P5 P5-P1 PI /P5 R
.100 1.757 2.495 2.521 .026 .990 .022 .0103 46927.
.096 1 .687 2.323 2.346 .023 .990 .021 .0108 45050.
.096 1.687 2.377 2.400 .023 .99u .021 .0108 45050.
.0 94 1.652 2.227 2.248 .021 .991 .021 .0113 44112.
.092 1.617 2.110 2.130 • .02 .991 .021 .0114 43173.
.09 1.582 2.L35 2.052 .017 .992 .022 .0126 42235.
.087 1.529 1.910 1.925 .015 .992 .021 .0132 40827.
.084 1.47c 1.798 1.8] 5 .017 .991 .017 .0112 39419.
.082 ] .441 1.685 1 .698 .013 .992 .019 .0134 38481.
.07 8 1.37] 1.521 ] . 5 3 5 . 1 4 .991 .015 .0117 3660^.
.C7C 1 ,2i.P 1.244 1.256 .012 .990 .011 .0110 32P49.
.064 1.12 5 1.023 1.033 .010 .99u .010 .0110 30034.
,
rJb°< 1.037 .877 .865 .008 .991 .009 .0117 27687.

.050 .879 .627 .6 34 .00 7 .98 9 .005 .0093 2 3464.

.03 8 .668 .352 .356 .004 .98 9 .003 .0095 17832.

.032 .562 .232 .235 .003 .987 .002 .0087 15017.
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A(?EA RATIC= .162
HOLE NC.« 12.000

HCLE DIAMETFR= .375
KINE. VISC.= .COO'JlOOO

S/D = 715

V PI P5 P5-P1
.086 1.511 3.106 3.120 .014
.082 1.441 2.809 2.821 .012
.078 1.371 2.581 2.592 .011
.075 1.318 2.390 2.400 .010
.072 1.265 2.184 2.191 .007
.067 1.177 1.885 1.894 .009
.064 1.125 1.682 1.690 .00 8

.058 1.019 1.420 1.431 .011

.055 .967 1.260 1.269 .009

.050 .879 1.027 1.033 .00 6

.045 .791 .791 .795 .004

.037 .650 .565 .567 .002

.030 .527 .309 .310 .001

.025 .439 .218 .219 .001

P1/P5
.996
.996
.996
.996
.99 7

.995

.995

.992

.993

.994

.995

.996

.997

.995

HL
.021
.020
.018
.017
.018
.013
.012
.005
.006
.006
.006
.005
.003
.002

F

.0136

.0141

.0140

.0141

.0161

.0131

.0133

.0071

.0085

.0112

.0132

.0156

.0172

.0149

R

40681.
38788.
36896.
35477.
34058.'
31693.
30274.
27436.
26017.
23651.
21286.
17502.
14191.
11826.

A°EA RATIC=
HALE NC.=

.108 HCLE DIAMETER= .375
8.000 KINE. VISC.= . 000'.-' 1006

S/D= 5.572

.060

.058

.056

.052

.048

.043

.036

.029

V

1.054
1.019
.984
.914
.844
.756
.633
.510

PI
3.560
3.210
2.90 8

2.546
2.105
1.70 2

1.206
.760

P5
3.566
3.215
2.912
2.549
2.108
1.704
1.207

P5-P1 P1/P5
.00 6

.005

.004

.00 3

.003

.002

.001

.998

.9^8

.999

.999

.999

.999

.999
.760 0.000 1.00*

HL
.011
.011
.Oil
.010
.008
.007
.005

.0146

.0155

.0165

.0172

.0163

.0174

.0188

APEA RATIC= 1.294
HOLF NC.= 96.000

R

28212.
71717,
26332.
24451.
22570.
20219.
16927.

.004 .0224 13636.

HCLE DIAMFTER= .375
KINE. VISC.= .00001014

S/D = .929

Q
143
137
132
13u
127
123
119

V

2.513
2.408
2.320
2.285
2.232
2. 162
2.091

PI
.104
.095
.089
.082
.081
.075
.070

P5
167
153
142
134
130
120
113

P5-P1 P1/P5
.063
.058
.053
.052
.049
.045
.043

.623

.621

.627

.612

.623

.625

.619

HL
035
,032
,031
,029
02 8

028
025

F

.0080

.0080

.0082

.0080

.0082

.0085

.0082

R

66709.
63910.
61578.
60645.
5924b.
57379.
55513.



81

.112 1.968 .063 .100 .037

.110 1.933 .058 .093 .035

.106 1.863 .055 .089 .034

.098 1.722 .048 .075 .027

.092 1.617 .040 .065 .02 5

.082 J .441 .029 .048 .019

.070 1.230 .016 .030 .014

.054 .949 .010 .016 .006

.630

.624

.618

.640

.615

.604

.533

.625

.023

.023

.020

.019

.016

.013

.009

.008

.0086

.0089

.0083

.0093

.0086

.0092

.0091

.0128

52248.
51315.
49449.
45717.
42918.
38253.
32655.
25191.

ApEA RATIC= .647
H~LE NC.= 48.000

HOLE DIAMETER= .375
KINE. VISC.= .00001014

S/D= 1.858

V PI P5 P5-P1
.137 2.408 .452 .515 .063
.133 2.337 .421 .474 .053
.13 2.285 .409 .458 .049
.124 2.179 .375 .419 .044
.120 2.109 .341 .383 .042
.115 2.021 .335 .355 .040
.112 1.968 .298 .335 .037
.106 1.863 .267 .300 .033
. 1 C 1 1.775 .242 .270 .028
.095 1.670 .212 .238 .026
.088 1.546 . 180 .202 .022
.080 1.406 .146 .164 .018
.072 1.265 . 114 .126 .012
.063 1.107 .091 .099 .008
.054 .949 .065 .069 .004

P1/P5
.878
.886
.893
.895
.890
.887
.890
.890
.896
.891
.891
.890
.905
.919
.942

HL
.02 7

.032

.032

.030

.027

.02 3

.023

.021

.021

.017

.015

.013

.013

.011

.010

F

.0067

.0084

.0089

.0090

.0088

.0083

.0086

.0087

.0096

.0090

.0091

.0093

.0116

.0130

.0160

R

63910.
62044.
60645.
57846.
55980.
53647.
52248.
49449.
47116.
44317.
41052.
37320.
33588.
29389.
25191.

APEA RATIC= .431
H~LF N0.= 32.000

HOLE DIAMFTER= .375
KINE. VISC.= .OOOolOlO

S/0= 2.786

Q V PI P5 P5-P1
.128 2.249 .998 1.044 .046
.122 2.144 .889 .931 .042
.116 2.039 .808 .847 .039
.111 1.951 .742 .779 - .037
.109 1.916 .706 .739 .033
.104 1.828 .648 .677 .029
.100 1.757 . 60 5 .631 .026
.094 1.65? .523 .546 .023
.088 1.546 .456 .477 .021
.081 1 .4? 3 .381 .399 .018
.075 1.318 .311 .325 .014
.064 1.125 .227 .237 .010
.057 1.002 .177 .183 .006
.048 • 84h .117 .120 .003
.040 • 703 .077 .0 79 .00 2

P1/P5
.956
.955
.954
.953
.955
.957
.959
.958
.956
.955
.957
.958
.967
.975
.975

HL
.033
.029
.026
.022
.024
.023
.02 2

.019

.016

.013

.013

.010

.010

.008

.006

F

.0093

.0092

.0089

.0084

.0094

.0099

.0103

.0103

.0097

.0096

.0108

.0110

.0 138

.0163

.0166

R

59948.
57138.
54328.
51986.
51050.
48708.
46835.
44024.
4 1214.
37936.
35126.
29974.
26696.
22481.
18 734.
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•APEA RATIC= .323
HOLE NC.= 24.UO0

HCLE DIAMETER" .375
K1NE. VISC.= .OOOOlulO

S/D= 3.715

Q
.118
.115
.111
.106
.102
.098
.095
.088
,u82
.075
.068
.060
.049
.040
.032

V
2.074
2.021
1.951
1.863
1.793
1.722
1.670
1.546
1.441
1.318
1.195
1.054
.861
.703
.562

PI P5 P5-P1
1.525 1.565 .040
1.425 1.462 .037
1.335 1.369 .034
1.198 1.227 .029
1. 115 1.141 .026
1.015 1.038 .023
.948 .970 .022
.813 .833 .020
. 7uO .718 .018
.585 .600 .015
.473 .485 .012
.365 ..375 .010
.230 ..2 35 .005
.142 ..146 .004
.0 94 .096 .00 2

•ApEA RATIC= .216
HfLE NC.= ]6.000

P1/P5
.974
.975
.97 5

.976

.977

.978

.977

.976

.975

.975

.975

.973

.979

.973

.979

HL
.027
.026
.025
.02 5

.024

.023

.021

.017

.014

.012

.010

.007

.00 7

.004

.003

F

.0090

.0093

.0095

.0104

.0107

.0112

.0110

.0104

.0099

.0100

.0103

.0094

.0127

.0107

.0133

R

55265.
53860.
51986.
4964 5.

47771.
45898.
44493.
41214.
3 8404.
35126.
31848.
28101.
22949.
18734.
14987.

HOLE DIAMETER= .375
KINE. VISC.= .00001024

S/D: 5.573

V PI P5 P5-P1
.U99 1.740 2.471 2.500 .029
.094 1.652 2.235 2.260 .025
.091 1.599 2.042 2.065 .02 3
.083 1.459 1.727 1.747 .02
.075 1.318 1.395 1.412 .017
.071 1 .248 1.217 1.231 .014
.065 1.142 1.040 1.050 .010
.058 1 . ] 9 .823 .831 .008
.0 54 .949 .688 .694 .006
.047 .826 .515 .519 .004
.039 .685 .356 .359 - .003
.030 .527 .171 .172 .001
.023 .404 .092 .092 0.00

P1/P5
.988
.989
.989
.98 9

.988

.989

.990

.99l

.991

.992

.992

.994
1.000

HL
.018
.017
.017
.013
.010
.010
.010
.008
.008
.007
.004
.003
.003

F

.0086

.0092

.0094

.0089

.0083

.0094

.0114

.0113

.0128

.0140

.0132

.0172

.0224

R

45732.
43423.
42037.
38341.
34646.
3279P.
30026.
26793.
24945.
21711.
18016.
13858.
10625.
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APPENDIX V

COMPARISON OF OVERALL HEAD LOSS As CALCULATED
BY THE MODIFIED METHOD OF FNGER AND LEVY*
THE MOMENTUM METHOD, AND THE ENERGY METHOD

AREA RATIO= .901 HOLE DIAMETER= .313 S/D = .465
HOLE NO.= 96<.000 KINE. VISC.= .000ul029

Q MODIFIED MET>IOD MOMENTUM METHOD ENERGY METHOD
.141 .036 .037 .037
.135 . .033 .034 .034
.131 .0 34 .035 .035
.128 .029 .030 .030
.123 .03 .032 .032
.120 .029 .030 .030
.116 .025 .027 .027
.113 .025 .026 .026
.111 .024 .025 .025
.104 .021 .022 .022
.102 .019 .020 .020
.096 .018 .019 .019
.094 .016 .016 .016
.086 .015 .015 .015

Adta RATIO= .451 HOLF OIAMFT ,r R= .313 S/D = ,o?Q

HOLF NO.= 48,.0 00 KINE. VISC." .000^1026

Q MODIFIED METHOD MOMENTUM METHOD ENERGY METHOD
.130 .039 .039 .039
.126 .035 .035 .035
.120 .026 .026 .026
.116 .024 .025 .025
.110 .021 .021 .021
.103 .016 - .016 .016
.098 .015 - .015 .015
.00? .012 .012 .012
.08 5 .010 .010 .010
.078 .008 .008 .008
.069 .007 .007 .007

AREA RATIO= .225 HOLE DIAMETER= .313 S/D = 1.858
HOLF N0.= 24 .000 KINE. VISC.= .O00ulO26

Q MODIFIED METHOD MOMENTUM METHOD ENERGY METHOD
.104 .022 .022 .022
.100 .020 .020. .020
.096 .020 ,.020. .020
.090 .019 .019. .019



QU

.0P4 .0 17 .017 .017

.077 .014 .014 .014

.071 .013 .013 .013

.06? .009 .009 .009

.057 .009 .009. .009

.048 .007 .007 .007

.035 .004 .004 .004

area rati .150 HOLE DIAMETER= . 313 S/D= 2.786
HCLF ,N0.= 16..0 00 KINE. VISC.= .000 01035

MODIFIED METHOD MOMENTUM METHOD ENERGY METHOD
.06 2 . .018 .018 .018
.07R .017 .017 .017
.076 .017 .017 .017
.072 .015 .015 .015
.066 .012 .012 .012
.059 .011 .011 .011
.053 .008 .008 .008*
.046 .006 .006 .006
.040 .004 .004 .004
.028 .001 .000 .001

AREA RATI w — .113 HOLE DIAMETER= . 313 S/D = 3.715'
HOLE N,C.= 12,.000 KINE. VISC* .00001045

MODIFIED METHOD MOMENTUM METHOD ENERGY METHOD
.06 7 .013 .013 .013
.064 .012 .012 .012
.061 .011 . .011 .011
.058 .010 .010 .010
.054 .009 .009 .009
.050 • 008 .008 .008
.045 .007 .007 .007
.0 40 .005 .005 .005
.032 ' .003 .003 .003
.026 .002 .002 .002

ApEA RATI /"% mm .075 HOLE DIAMETER= . 313 S/D = 5.573
HOLE NC.= 8,.000 KINE. VISC.= .000 01050

MODIFIED METI-IOD MOMENTUM METHOD ENERGY METHOD
.050 • .007 .007 .007
.047 .007 .007 .007
.044 .006 .006 .006
.039 .004 .004 .004
.034 .004 .004 .004
.029 .00 2 .002 .002
.024 .002 .002 .002
.016 .001 .001 .001
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ABSTRACT

For years, the study of the uniform distribution of discharged fluid and

the head loss along the manifold pipe has attracted the interest of many

Investigators. As the flow characteristics of perforated pipe involve complex-

ities by reason of several uncertain factors, such as variable coefficient of

discharge, velocity head factor, efficiency of conversion of kinetic energy to

pressure energy, and friction factor. The author has studied the problem by

combining results of experiments and of simplified analysis. The perforated

-.3 considered as a continuous, uniform, and homogeneous unit, and treated

as a simple pipe. Experiments were conducted to determine the effect of the

Reynolds number at the inlet end of the perforated pipe and ratio of area of

the holes to the pipe cross sectional area on the overall head loss and pressure

recovery. Three methods of analysis, namely the modified method of Engor and

levy, the momentum method, and the energy method, have been employed in this

study. These methods are helpful in the practical design of a perforated pipe

with evenly spaced outlets on one side or on each side.

Approximately uniform distribution of discharged fluid may be secured

from a perforated pipe with holos of equal size and equal spacing if the total

area of holes is small in relation to the cross sectional area of the pipe and

if the pipe is of large diameter in relation to its length. It was found from

this study, that the uniformity of 99 per cent can be secured vrhen the area

ratio is less than 0.200 for both one row of holes and two rows of holes; that

the uniformity of 90 per cent can be obtained vrhen the area ratio is less than

0.67 and 0.62 for one row of holes and two rows of holes respectively.


