# B. S., Taiwan Provinoial Cheng-Kung University, 1968 

A MASTERS THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1967


## TABLE OF CONTENTE

Pago
INTRODUCTION ..... 1
Need For This Study ..... 1
Purpose of the Study ..... 2
Soope of the Study. ..... 2
Theory ..... 3
REVIEF OF PREVIOUS INVESTIGATIONS ..... 8
EXPERTMENTAL PROCEDURE ..... 11
Experimental Apparatus ..... 11
Preliminary Experiments ..... 11
Experiments For Obtaining Data ..... 15
DATA ANALYSIS ..... 18
Methods of Analysis ..... 18
Computation ..... 24
DISCUSSION OF RESULTS ..... 25
CONCLUSIONS ..... 52
RECOIRENDATIONS FOR FURTHER STUDY ..... 54
ACKNOWLEDGEMENT ..... 55
BIBLIOGRAPHY ..... 56
APPENDICES ..... 57
APPENDIX I
Notations . . . . . . . . . . . . . . . . . . . . . . . ..... 58
APPENDIX II
Flow Diagram for Digital Computer Program. ..... 61
List of Symbols for Computer Program ..... 62
Computer Program Used for This Study ..... 63
APPENDIX III
Input Data to Digital Computer Program ..... 66

## TABLE OF CONTENTS (Contd.)

Page
APPENDIX IV
Output Data from Miomentum Method. . . . . . . . . . . . . . ..... 73
APPENDIX V
Comparison of Overall Head Loss as Calculated by the Modified Method of Enger and Levy, the Momentum Method, and the Energy Method ..... 83

## INTRODUCTION

## Need For This Study

The problem of uniform distribution of a fluid flowing through a manifold With spaoed outlets arises in many praotioal systems. Familiar examples are rapid sand filter underdrains, sewage disposal systems sprinkler systems for irrigation, liquid-distribution systems, and pipe burners for gaseous fuels.

Beoause the manifold represents a regular piping pattern and is frequently reourring in many practioal fields, it has reoeived much theoretioal and experimental study. It is well known that, in general, as the fluid flows along the manifold its longitudinal velocity decreases due to part of the fluid volume being disoharged laterally through the openings. Therefore, the fluid in the manifold is being deoelerated and, in accordanoe with Bernoulli's theorem, this tends to inorease the fluid pressure. Friotion loss as well as other losses, on the other hand, results in loss of pressure along the length. The relative magnitudes of the pressure reoovery due to deceleration and pressure loss due to head loss determine whether the pressure rises or falls from the inlet end to the olosed or dead end of the manifold. Although the flow characteristios, as mentioned above, are simple, there are some unoertainties existing in this type of flow pattern. These unoertainties, if inoorreotly estimated, will lead to a oonsiderable deviation from the assumed conditions. These unoertainties inolude the following:

1. Variable coeffioient of disoharge
2. Velooity head factor
3. Effloiency of conversion of linetic energy to pressure energy
4. Friotion faotor

In order to handle these uncertainties, an assumption has been made that
the manifold aots as a oontinuous, uniform, and homogeneous unit, and can be treated as a simple pipe pattern. Therefore, the manifold problem oan be handled in a simple way by oonsidering its overall effect.

Purpose of the Study

Although literature on the problem of manifold ilow has been in existence since about 1900, little lnowledge has been gathered of the overall offect of such uncertainties as listed above on the flow oharaoteristios of manifold pipes. In this study experiments were oonducted to determine the effect of the Reynolds number at the inlet end and area ratio of openings to the pipe cross section on the overall head loss and pressure recovery in a perforated pipe. In general, it is impossible to obtain an exactly uniform distribution of discharge through a manifold pipe of constant oross seotion with evenly spaced orifices of the same diameter. Therefore, the optimizedflow oonditions, which will ensure approximately uniform distribution of disoharge and which will ocour when the overall head loss is equal to the pressure recovery, have been observed.

## Soope of the Study

The experiments were conducted in a $3^{n}$ PVC pipe. For the flrst four series of runs, the orifioes were drilled in one straight line level with the oenter line of the pipe. The diameter of orifice was ohanged in the order of $3 / 16^{n}, 1 / 4^{n}, 5 / 16^{n}$, and $3 / 8^{n \prime}$ and for each diameter of orifice the spacing between adjacent orifices was ohanged from $1.5^{n}$ to $3^{n}, 6^{n}, 9^{n}, 12^{n}, 18^{n}$, and $2 h^{\prime \prime}$ suocessively. In the fifth series of runs, the orifices were arranged in two rows, one on each side of the pipes the diameter of orifice was fixed at a value of $3 / 8^{\prime \prime}$, and the spacing between adjacent orifices also was ohanged from
$1.5^{\text {n }}$ to $24^{\text {n }}$ suooessively.
Flow varied from 0.012 to 0.1430 .1 .8 . during the runs. The statio pressure head along a 12 ft . seotion of pipe was measured by five peizometer tubes. The head loss along the pexforated pipe was oomputed. The effeot of the Reynolds number and the area ratio on the overall head loss and pressure recovery was determined.

## Theory

Assume the disoharge, $Q^{1}$, of liquid moving under the head $H$ is distributed uniformly and oontinuously over the whole pipe seotion. Let the disoharge per unit pipe length be $Q / L$, ofs $/ f t$. The residual disoharge $Q_{0}$ at point $C$, looated a distance $x$ from point $A$ is equal to the disoharge at point $A$ minus the amount of discharge $Q_{x} / L$ over the length $x$ of the pipe line, as shown in Figure 1.


Figure 1.

$$
Q_{0}=Q-Q x / L=Q(L-x) / L
$$

1 The symbols in this paper are introduoed in text as thoy ooour and are summarized for referenoe in Appendix 1.

By Chezy formula

$$
\begin{equation*}
Q=C A \sqrt{R S} \tag{1}
\end{equation*}
$$

in which C is the Chesy ooefficient. A denotes the oross seotional area of the pipe, $R$ is the hydraulio radius, and $S$ is the hydraulio gradient. Since $A, C$, and $R$ are oonstant for a given pipe, we may define

$$
K=C A \sqrt{R}
$$

$K$ has dimensions of volume flow rate ( $0 . \mathrm{f}_{\mathrm{os}} \mathrm{s}$ ) and is oalled flow rate modulus. Therefore,

$$
\begin{equation*}
Q=K \sqrt{S} \tag{2}
\end{equation*}
$$

The hydraulio gradient at point $C$ is given by equation 2 as

$$
S_{0}=\frac{Q_{0}^{2}}{K^{2}}=\frac{Q^{2}}{L^{2} K^{2}}(L-x)^{2}
$$

On the other hand, if the head loss over an infinitesimal seotion $d x$ is $d H$ then

$$
S_{0}=\frac{d H}{d x}=\frac{Q^{2}}{L^{2} K^{2}}(L-x)^{2}
$$

or

$$
d H=\frac{Q^{2}}{L^{2} K^{2}}(L-x)^{2} d x
$$

The integration of this equation from $x=0$ to $x=L$ gives

$$
\begin{equation*}
H_{A B}=\frac{1}{3} \frac{Q^{2} L}{K^{2}} \tag{3}
\end{equation*}
$$

A oomparison of this formula with that desoribing the flow rate through seotion $A B$ when the disoharge is not distributed over the seotion

$$
\begin{equation*}
H=\frac{Q^{2} L}{K^{2}} \tag{4}
\end{equation*}
$$

shows that $H=3 H_{A B}$. Thus, for a uniform distribution of disoharge along the pipe the head required is only one third of that required for the same rate of
flow through the unperforated pipe.
For the variation of pressure along a manifold pipe we oonsider the pipe with a long, narrow slot and negleat pipe friction. Consider a straight pipe with a uniform oross seotional area of A square feet having a slot e feet wide and $L$ feet long parallel to the axis of the pipe as illustrated in Fig. 2. Assume the pressure on the slot to vary from $h$ feet of water at one ond to $H$ feet of water at the other end and the pressure at any point $x$ feet from the beginning of the slot to be $y$ feet of water. The mass of water passing any section of the pipe $x$ feet from the beginning of the slot in dt seconds will be


Figure 2.
where $r$ is the speoific weight of water ( 62.4 pounds per oubio feet), $\bar{r}$ is the mean velcoity in the plpe at that seotion, in feet per seoond, and $g$ is acceleration of gravity ( 32.2 feet per seoond per second). At a seotion dx feet further along the pipe the velocity in the pipe is $v=d v$ feet per second and the pressure has inoreased to $y+d y$ feet of water. From the prinoiple of momentum which states that the rate of ahange of momentum is equal to the sum
of the external foroes aoting on the control surface of the fluid, it follows

$$
\left.\left.\left[r_{A(y}+d y\right)-r_{A y}\right]=\frac{r_{\nabla A}}{5} d t /(v-d v)-\nabla T\right]
$$

hence

$$
\begin{align*}
d y & =-\frac{\nabla}{g} d v  \tag{5}\\
\int d y & =-\frac{1}{g} \int v d v \\
y & =-\frac{v^{2}}{2 g}+c
\end{align*}
$$

From the boundary oonditions, $V=0$ at $y=H$, we oan solve for the constant of integration.

$$
\mathrm{C}=\mathrm{H}
$$

then

$$
\begin{equation*}
y=H-\nabla^{2} / 2 g \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
v=\sqrt{2 g(H-y)} \tag{7}
\end{equation*}
$$

Equation 6 is important beoause it shows that the pressure at any point of the slot, whon pipe friotion is negleoted, is equal to the head at the ond of the slot minus the velooity head at the given point (1). Next oonsider the disoharge from the slot in the distance $d x$

$$
\mathrm{dq}=\mathrm{c}_{\mathrm{q}} \bullet \mathrm{dx} \sqrt{2 g y}
$$

In whioh $C_{q}$ is the ooeffioient of disoharge of the slot. The discharge, dq, is also equal to the differenoe of the flow through the two sections dx apart, henoe,

$$
\begin{align*}
-A d v & =C_{q} \bullet d x \sqrt{2 g y} \\
d v & =-\frac{c_{q} \bullet \sqrt{2 g y}}{A} d x \tag{8}
\end{align*}
$$

Substituting the value of $v$ from eqn. 7 and the value of dv from oqn. 8 into eqn. 5.

$$
\begin{equation*}
d y=\frac{2 C_{q e}}{A} \sqrt{(H-y) y} d x \tag{9}
\end{equation*}
$$

Integrating eqn. 9 between the limit $x_{g}$ and $y_{s} h_{\text {g }}$ and solving for $y$.

$$
\begin{equation*}
y=\frac{H}{2}\left\{1-008\left[\pi-\frac{2 C_{q} \theta}{A}(L-x)\right]\right\} \tag{10}
\end{equation*}
$$

Eqn. 10 gives the pressure head, $y$, at any point $x$ from the beginning of the slot in terms of the dimensions of the pipe and the slot, the ooeffioient of discharge, and the head, $H$, at the end of the slot. It will be notioed that the ratio of y to H does not depend upon the rate of disoharge, that is, whatever the discharge, the pressure at any given point is always a oonstant proportion of the head at the end of the $s$ lot.

The formalas found for the oase of a slot in a pipe may be modified to apply to a series of holes in a pipe. Eaoh hole may be taken as representing a part of the length of the slot. The distanoe $x$ along the slot and the total length of the slot, may be represented by the number of holes, $Z$ and $N$, respeotively. The areas, eL, ex, and $A$ will be replaoed by $\frac{N \pi d^{2}}{4}, \frac{Z \pi d^{2}}{4}$, $\frac{\pi D^{2}}{4}$ with d denoting the diamoter of the hole and $D$ the diameter of the pipe. With these ohanges eqn. 10 may be writton as

$$
\begin{equation*}
y=\frac{H}{2}\left\{1-00 s\left[\pi-\frac{2 C_{\mathrm{qd}}{ }^{2}}{D^{2}}(N-z)\right]\right\} \tag{11}
\end{equation*}
$$

The head $y$ is, of oourse, the pressure head in the spase beyond hole number 2 .

## review or previous investigations

Many investigators have analyzed the flow charaoteristios of manifold flow, with an attempt to develop the sules and formulas for unifornity of discharge, each with a slightly different approaoh and, genorally, with different results. In 1921, H. N. Jenk (2) published the design rules for rapid sand filter underdrains to acoamplish uniformity of discharge. In 1927, No Malishewsky (3), (4) oonducted a series of experiments relating to the distribution of pressure and velooity head through perforated pipe lines and published his results in the A.W.W.A. Journal of 1927 and 1935. In 1929, M. L. Enger and M. I. Levy (1) published the experimental studies whioh indicated that the prinoiples of impulse and momentum were applicable to perforated pipes. These studies also presented an empirical formula for the discharge coefficient of an orifice whioh revealed the important offeot of varietion in fluid velocity upon the variation of the orifioe ooefficient for free discharge.

In 1931, Jaoob Kunz (5) applied the prinoiple of conservation of energy to the manifold problem and determined the flow of a sheet of water through a slot of infinitesimal width in the wall of a pipe by means of a variable and a oonstant discharge coefficient. He was able to solve the flow problem of separated holes by using the method of differenoe equations. In 1940, R. D. Gladding (6) assumed that outlets were evenly spaoed along a pipe line and eaoh outlet discharged the same quantity of fluid and found a simple relationship between the loss of head in the pipe, the number of outlets, and the total discharge. In 1949, J. D. Keller (7) made a mathematical analysis of the flow of a fluid through a manifold having a uniform oross seotion and uniformly spaced disoharge ports along its length. He conoluded that the ratio of port area to the oross sectional area of pipe should not exoeed unity and that the
ratio of length to diameter should not be greater than 70 for substantially uniform distribution of flow to be obtained.

In 1950, W. M. Dow (8) made a theoretical analysis of the flow through a perforated pipe with a olosed end for the speoial case of a oonstant linear rate of disoharge along the length of the pipe. With this analysis, he developed several theoretioal design equations for uniform distribution of fluid flowing through the perforated pipe in the oase of laminar flow and turbulent flow. The validity of the theoretical design equations was cheoked by experimentation with oonventional and modified pipe burners. The agreement between the theory and experiment was reported to be excellent.

In 1953, W. E. Howland (9) developed a method for computing the oorreot variation in size or in spaoing of holes to affeot uniformity of distribution of discharged fluid from a perforated pipe. In 1955, John Allen and Brian Albinson (10) analyzed the manifold problem for canal locks from a different and less rigid mathematical approaoh, and derived a formula for the required area of eaoh evenly spaoed port of a manifold in order that the quantity of water issuing from eaoh of the ports would be the same. In 1956, J. H. Horlook (1l) derived a differential equation for the ratio of longitudinal velocity to normal disoharge velooity for an inoompressible flow through a manifold of constant oross seotional area and oonstant slot width, and gave an analytical expression for this ratio; three years later, E. Markland (12) solved the differential equation by the relacation method.

In 1959, A. Aorivos, B. D. Baboook, and R. L. Pigford (13) published a oaloulation method, based on the one-dimensional flow equation, for the pressure-rise and head-loss in the manifold pipe. In 1964, Bessel D. van't Woudt (14) showed experimentally that the exdsting knowledge oan be applied to obtain uniform disoharge from any length of pipe by disoharging from
subpipes of a given length and diamoter providod the total discharge from twenty or more orifices on the subpipe is fixed and the diameter of an orifice is very small compared to the diameter of the pipe.

## EXPERTMENTAL PROCBDURE

## Experimental Apparatus

A photograph of the experimental apparatus is shown in Fig. 3, and a sohematio diagram is presented in Fig. 4. Water was pumped from a reservior and flowed into a stilling tank, then passed through the pipe. The quantity of water used in the experiments varied from 0.012 to 0.143 c.f.s. An orifioe was used for measuring the disoharge flowing through the pipe. A sloping differential manometer was used to measure the pressure drop aoross the orifice. A 10 ft . length of straight pipe was used as the upstream approach to the test section to avoid interference from upstream fittings. Five evenly spaoed piezometer tubes were usel to measure the static pressure head along a $12-f 00 t$ section of the perforated pipe. The scales on the piezometer tubes were graduated in increments of 0.001 ft .

## Preliminary Experiments

The preliminary experimental work inoluded orifioe oalibration and unperforated pipe tests. The orifice was oalibrated over the range of flows. Rate of quantity H ow was determined by timing a certain amount of water into the measuring tank. The calibration ourve is shown in Fig. 5. ( $\Delta \mathrm{h}$ represents the differential manometer reading, in inohes of mercury)

Tests were made on unperforated pipe in order to obtain a basis for comparison with the later experiments on perforated pipe, and to enable the operator to become familiar with the characteristics of the PVC pipe. During every run the static pressure heads on the five piezometer tubes were measured; and the pressure drop between two seotions 12 ft . apart was oaloulated. Figure 6 shows the relation of Darcy-Weisbach friction faotor, $f$, to the Reynolds


Figure 3. Experimental Apparatus


Figure 4, Experimental Apparatus


Figure 5. Orifice Calibration


Fig. 6. Friction Factor in an Unperforated Pipe
number, $\mathbb{N}_{\mathrm{R}}$, for the $3^{n}$ unperforated PVC pipe.

## Experiments For Obtaining Data

As mentioned above, the experiments were oomposed of five series of runs, based on the diameter of the holes. At first, eight holes with a diameter of $3 / 16^{n}$ were drilled evenly spaced along one side of the pipe. Whereas the first hole was looated $17 \frac{1}{2}$ " downstream of the first piezometer tube, the last hole was looated $\frac{1}{2}{ }^{n}$ upstream of the last piezometer tube. Letting $S$ derine the spacing between adjacent holes and $D$ denote the inside diameter of the pipe, this gave a ratio of $S / D$ equal to 5.573. Attention was given to removing the burr in the hole after the hole was drilled. The water level in the stilling tank was kept approximately oonstant, at a value of about $57.3^{n}$ above the center line of the pipe, by adjusting the openingsof the control valve on the pump, and by keoping water overflowing from the stilling tank. After finishing the first set of runs, the numbers of holes was inoreased to 12; this gave a ratio of $S / D$ equal to 3.715 . In the same manner, the number of holes was inoreased to $16,24,48$, and 96 for the $3 \mathrm{rd}, 4 \mathrm{th}, 5 \mathrm{th}$, and 6 th set of runs respeotively. The holes that were not to be used for a partioular run were oovered with a waterproof covering. After the first series of runs, the diameter of the holes was inoreased suocessively to $1 / 4^{\prime \prime}, 5 / 16^{n}$, and $3 / 8^{n}$. At oertain series of runs the ratio, $S / D$, was ohanged from 5.573 to 0.465 or from 0.465 to 5.573. In the fifth series of runs the holes were arranged in two rows, one on eaoh side of the pipe. The diameter of the holes was fixed at a value of $3 / 8^{\prime \prime}$, and the ratio, $s / D$, was ohanged from 5.573 to 0.465 . The layout of the holes in eaoh series of runs is shown in Fig. 7. Table 1 gives the relationship between hole diameter, ratio $S / D$, and area ratio.


Pipe

Side of
in One
Layout of Hole
N
Fig.

Table 1. Area ratio.

| (a) One-side $\quad \frac{L}{D}=44.582$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.465 | 0.929 | 1.858 | 2.786 | 3.715 | 5.573 |
| d (m) N N N N ( | 96 | 48 | 24 | 16 | 12 | 8 |
| 3/16 | 0.325 | 0.163 | 0.081 | 0.054 | 0.047 | 0.027 |
| 1/4 | 0.575 | 0.288 | 0.144 | 0.096 | 0.072 | 0.048 |
| 5/16 | 0.901 | 0.451 | 0.225 | 0.150 | 0.113 | 0.075 |
| 3/8 | 1.294 | 0.647 | 0.323 | 0.216 | 0.162 | 0.108 |
| (b) Two-Side $\quad \frac{L}{D}=44.582$ |  |  |  |  |  |  |
| $s / D$ | 0.929 | 1.858 | 2.786 | 3.715 | 5.573 |  |
| a (m) N | 96 | 48 | 32 | 24 | 16 |  |
| 3/8 | 1.294 | 0.647 | 0.431 | 0.323 | 0.216 |  |

## DATA ANALYSIS

## Mathod of Analysis

Three methods of analyais were developed to determine the overall head loss and pressure reoovery along the perforated pipe; they were referred to as the modified method of Enger and Levy, the momentum method, and the energy method.

The Modifled Method of Enger and Levy (1). From eqn. 9

$$
d y=\frac{2 C_{0} \theta}{A} \sqrt{(H-y) y} d x
$$

integrating over the entire length of the slot

$$
\int_{0}^{L} d x=\frac{A}{{ }^{2} C^{\ominus}}{ }^{\theta} \int_{h}^{H} \frac{d y}{\sqrt{(H-y) y}}
$$

this gives

$$
L=\frac{A}{2 C q \theta}\left[\pi-\cos ^{-1}\left(1-\frac{2_{h}}{H}\right)\right]
$$

therefore,

$$
\begin{equation*}
\mathrm{h}=\frac{\mathrm{H}}{2}\left[I-\cos \left(\pi-\frac{2 \mathrm{C}_{\mathrm{g} \Theta \mathrm{~L}}}{A}\right) 7\right. \tag{12}
\end{equation*}
$$

Replacing eL, $A$ by $\frac{\pi}{4} d^{2} N$ and $\frac{\pi}{4} D^{2}$ respeotively, then

$$
h=\frac{H}{2}\left[I-\cos \left(\pi-\frac{2 C_{a} N-d^{-} d^{2}}{\frac{D^{2}}{4}}\right)\right]
$$

or

$$
\begin{equation*}
h=\frac{H}{2}\left[I-\cos \left(\pi-\frac{2 C_{g} d^{2}}{D^{2}} N\right)\right] \tag{13}
\end{equation*}
$$

In which $h$ is the static pressure head at the inlet end, H is the statio pressure head at the closed end beyond the last hole, $C_{q}$ denotes the discharge coefficient for the holes, and $N$ is the total number of holes along the
perforated pipe. Defining

$$
h=P_{1} \text { and } H=P_{5}
$$

then

$$
P_{1}=\frac{P_{5}}{2}\left[I=008\left(\pi-\frac{2 C_{q} d^{2}}{D^{2}} N\right)\right]
$$

Let the theoretical pressure head reoovery be $\Delta P_{0}$, then

$$
P_{0}=P_{5}-P_{1}=P_{5}-\frac{P_{5}}{2}\left[I-\cos \left(\pi-\frac{2 C_{a} d^{2}}{D^{2}} N\right)\right]
$$

or

$$
\begin{equation*}
P_{0}=P_{5}\left\{1-\frac{1}{2} L-\cos \left(\pi-\frac{\operatorname{cog}_{\mathrm{g}}{ }^{2}}{D^{2}} N\right) T\right\} \tag{14}
\end{equation*}
$$

in which $\frac{d^{2}}{D^{2}} N$ is equal to the area ratio, $P_{1}$ and $P_{5}$ denote the statio pressure heads, in feet of water, at the inlet end and the olosed end of the perforated pipe respectively.

In order to evaluate the discharge coefficient, $C_{q}$, for the holes, one assumption was made. It was assumed that $\mathrm{C}_{\mathrm{q}}$ represents the average discharge coeffioient for all the holes. From this assumption we write

$$
Q=\frac{\pi}{4} c_{q N d^{2}} \sqrt{2 g \bar{h}}
$$

In which $\bar{F}$ denotes the average static pressure head along the perforated pipe. Since

$$
\hbar=\frac{P_{1}+P_{5}}{2}
$$

then

$$
Q=\frac{\pi}{4} c_{q} N d^{2} \sqrt{g\left(P_{1}+P_{5}\right)}
$$

Therefore,

$$
\begin{equation*}
c_{q}=\frac{Q}{\frac{\pi}{4} N d^{2}} \frac{1}{\sqrt{g\left(P_{1}+P_{5}\right)}} \tag{15}
\end{equation*}
$$

From eqn. 15, the discharge coefficient of the holes, $\mathrm{C}_{\mathrm{q}}$, can be determined. By theorem of conservation of pressure reoovery, the difference of theoretical pressure recovery and observed pressure reoovery gives the overall hoad loss, $H_{L}$. Let the observed pressure recovery be $\Delta P$ then

$$
\begin{equation*}
H_{L}=\Delta P_{0}-\Delta P \tag{16}
\end{equation*}
$$

Consider the perforated pipe as a oontinuous, uniform, and homogeneous unit, we define

$$
\begin{equation*}
H_{L}=f \frac{L}{D} \frac{\nabla_{0}^{2}}{2_{g}} \tag{17}
\end{equation*}
$$

in which P is defined as the overall friotion faotor of the perforated pipe, and $\nabla_{O}$ is the mean velocity at the inlet end. Sinoe $V_{O}=Q / A$ then from eqn. 17. the overall friction factor, $f$, can be evaluated as soon as the overall head loss, $\mathrm{H}_{\mathrm{L}}$, is computed.

The Momentum Method. As shown in Fig. 8 ABB'A' is the control surface. Assuming the rate of change of momentum of the fluid discharged from the lateral opening in the $x$ direction is $d F_{m}$

$$
\mathrm{dF}_{\mathrm{m}}=u \frac{d}{d x}(\rho \mathrm{AV}) d x
$$

where $u$ is the longitudinal component of discharged velocity at the distenoe $\pi$ from the inlet end, and $\nabla$ is the longitudinal velooity in the pipe at that section.


Figure 8.

Assuming $u=\nabla$ then

$$
d F_{m}=V \frac{d}{d x}(\rho A V) d x
$$

By negleoting pipe friction, $J_{0} H_{0}$ Horlook (1i) gave the following expression to desoribe the variation of longitudinal velooity in the pipe.

$$
\begin{equation*}
\underset{V_{0}}{V}=\frac{\sin n(L-x)}{\sin n L} \tag{18}
\end{equation*}
$$

in which $n=\frac{C_{q}}{A}$, and a denotes the area of opening per unit length of pipe. In eqn. 18, taking the derivative of $V$ with respeot to $x$ and assuming $n$ is a oonstat, then

$$
\frac{d V}{d x}=\frac{-n \text { oos } n(L-x)}{\sin n L} V_{0}
$$

therefore,

$$
d F_{m}=-n \rho \mathrm{AV}_{0}^{2} \frac{\sin n(L-x)}{\sin n L} \frac{\text { oos } n(L-x)}{\sin n L} d x
$$

or

$$
d F_{m}=-\frac{2}{2} n \rho A V_{0}^{2} \frac{\sin \ln (L-x)}{\sin ^{2} n L} d x
$$

Integrating along the entire length of pipe,

$$
\begin{aligned}
& \int d F_{m}=\frac{-\frac{2}{2} \rho_{n A V_{0}}^{2}}{\sin ^{2} n L} \int_{0}^{L} \sin \operatorname{2n}(L-x) d x \\
& \Delta F_{m}=-\frac{2}{4} \rho V_{0}^{2} \frac{A}{\sin ^{2} n L}\left[\operatorname{Oos} \operatorname{nn}(L-x) Z^{L}\right.
\end{aligned}
$$

honce

$$
\Delta F_{m}=-\frac{1}{4} \rho V_{0}^{2} \frac{A}{\sin ^{2} n L} / I-0082 n L T
$$

For separated holes

$$
\begin{equation*}
\left.\Delta F_{m}=-\frac{1}{4} \rho v_{0}^{2} \frac{A}{\sin ^{2}\left(\frac{C_{q} d^{2}}{d^{2}} N\right)} L I-\cos \left(\frac{2 C_{q} d^{2}}{D^{2}} N\right)\right] \tag{19}
\end{equation*}
$$

Applying the momentum principle for the control surface in the $x$ direction,

$$
-\rho Q V_{0}=H\left(P_{2}-P_{5}\right) A=F_{L}+\Delta F_{m}
$$

or

$$
\begin{equation*}
-\Delta F_{m}=\rho Q V_{0}=r\left(P_{2}-P_{5}\right) A-F_{L} \tag{20}
\end{equation*}
$$

in which $F_{L}$ is the unbalanced fore due to loss of head, $P_{1}$ and $P_{5}$ as defined before. Substituting the value of $\Delta \mathrm{F}_{\mathrm{m}}$ from eqn. 19 into eqn. 20 , it follows

$$
\begin{aligned}
& \left.\frac{1}{4} \rho \nabla_{0}^{2} A \frac{1}{\sin ^{2}\left(\frac{C_{q} d^{2}}{D^{2}} N\right)} L I-\cos \left(\frac{2 C_{q} d^{2}}{D^{2}} N\right)\right] \\
& -\rho Q V_{0}=r\left(P_{1}-P_{5}\right) A-F_{L}
\end{aligned}
$$

thus

$$
\frac{1}{4} \rho Q V_{0} \frac{\left[I-\cos \left(\frac{2 C_{q} d^{2}}{D^{2}} N\right)\right]}{\sin ^{2}\left(\frac{C_{q} d^{2}}{D^{2}} N\right)}=\rho Q V_{0}=r\left(P_{1}-P_{5}\right) A-F_{L}
$$

Since

$$
\mathbb{F}_{\mathrm{L}}=\mathrm{H}_{\mathrm{L}}{ }^{\wedge} \mathrm{A}
$$

then

$$
H_{L} r A=r\left(P_{1}-P_{5}\right) A+\rho Q V_{0}-\frac{1}{4} \rho Q V_{0} \frac{\left[I-\operatorname{oos}\left(\frac{2 C_{q d^{2}} D^{2}}{D^{2}}\right)\right]}{\sin ^{2}\left(\frac{C_{q} d^{2}}{D^{2}}-N\right)}
$$

Dividing by A $\%$, we obtain

$$
H_{L}=\left(P_{1}-P_{5}\right)+\frac{\rho Q V_{0}}{A}=\frac{\rho Q V_{0}}{4 A r} \frac{\left.L-\cos \left(\frac{2 C_{g d^{2}}}{D^{2}} N\right)\right]}{\sin ^{2}\left(\frac{C_{q} d^{2}}{D^{2}} N\right)}
$$

or

$$
H_{L}=-\left(P_{5}-P_{1}\right)+\frac{\nabla_{0}^{2}}{g}-\frac{\nabla_{0}^{2}}{4 g} \frac{\left[I-\cos \left(\frac{2 C_{q_{d}}{ }^{2}}{D^{2}}-N\right)\right]}{\sin ^{2}\left(\frac{C_{q^{2}}}{D^{2}} N\right)}
$$

therefore,

$$
\begin{equation*}
H_{L}=\frac{\nabla_{0}}{2 g}\left[2-\frac{1-\operatorname{oos}\left(\frac{2 C_{g} d^{2}}{D^{2}}-N\right)}{2 \sin ^{2}\left(\frac{C_{g} d^{2}}{D^{2}} N\right)}\right]-\left(p_{5}-p_{1}\right) \tag{21}
\end{equation*}
$$

in whioh $\mathrm{C}_{\mathrm{q}}$, the disoharge ooeffioient of the holes, is defined as before. From eqn. 21 the overall head loss, $H_{L}$, oan be oaloulated if the disoharge, $Q$, the area ratio, $\frac{d^{2} N}{D^{2}}$, and the pressure reoovery, $P_{5}-P_{1}$, are measured.

The Energy Method. As shown in Fig. 9 the total energy at seotion AA' is $P_{1}+\frac{V_{0}{ }^{2}}{2 g}$ and the total energy at seotion $B B^{\prime}$ is $P_{5}$.


Figure 9.

From the prinoiple of conservation of energy, it gives

$$
\begin{equation*}
P_{1}+\frac{V_{0}^{2}}{2 g}=P_{5}+H_{L} \tag{22}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
H_{L}=\frac{V_{0}^{2}}{2 g}-\left(P_{5}-P_{1}\right) \tag{23}
\end{equation*}
$$

From eqn. 23 the overall head loss oan be easily oaloulated whenever the velooity head at the inlet end and the pressure reoovery from the inlet end to
the olosed ond are known.

## Computation

In oomputing the overall head 108s, $H_{L}$, the 110 w of water was read in oubic feet per second from the orifice calibration ourve. The oross seotional area of the pipe is $0.057 \mathrm{sq} \mathrm{f}^{\mathrm{f}}$. The mean velocity of water at the inlet end was obtained by dividing the discharge by the oross seotional area. Using this velocity the Reynolds number at the inlet end, $\frac{V_{0} D}{\nu}$ was obtained. The observed pressure reoovery from the inlet end to the olosed end is equal to $P_{5}-P_{1}$. All the experimental data were punched in IBM oards, and run through the 1620 digital oomputer. The oomputer programs used for these three methods of analysis are shown in Appendix 2. The input data to the computer programs are listed in Appendix 3, the output results by using the momentum method are given in Appendix 4.

## DISCUSSION OF RESULTS

Relation of Priotion Factor to Reynolds Number in the Unperforatod Plpe. The ourve obtained from plotting friction factor, $f$, against Reynolds number, $N_{R}$, for all the runs on the unperforated pipe is shown as ourve 2 in Fig. 6 ; ourve 1 is a graph of Blasius' smooth pipe equation, $f=\frac{0.316_{4}}{N_{R}{ }^{0.25}}$.

It is evident that for larger Reynolds number the value of $f$ of the PVC pipe is less than that of the smooth pipe, but on the oontrary, for smaller Reynolds number the relation is reversed. It is seen that the PVC pipe is not smooth, the value of the relative roughness, $\theta / D$, of the PVC pipe, as shown in Fig. 6, is as large as 0.005 . In the perforated pipe tests, covering some holes by waterproof oovering a type of wavy roughness results (15), but here we assume that the latter is negligible in comparison with the roughness of the pipe.

Loss of Hoad in the Unperforated Pipe. Figure 10 shows the plot of head loss, $H_{L}$, against the disoharge of water, $Q$, in the unperforated pipe. The slope of this ourve is 1.50 , whioh indicates that the flow in the pipe is not completely turbulent.

Observed Pressure Reoovery. Figures 11 through 14 show the relation between observed pressure reoovery and flow rate of water for hole diameters of $3 / 16^{\prime \prime}$, $1 / 4^{\prime \prime}, 5 / 16^{\prime \prime}$, and $3 / 8^{\prime \prime}$ respeotively. Observing these figures, an exponential relationship is seen to exist between observed pressure recovery and disoharge of water, with area ratio as a third parameter. In Fig. 15 this relation is even more clearly seen where the holes were arranged on each side of the pipe. Figure 16 illustrates that the observed pressure recovery becomes independent of area ratio when the disoharge is greater than 0.120 0.f.s. for two rows of



Fig. II. Pressure Recovery in a Perforated Pipe


Fig. 12. Pressure Recovery in a Perforated Pipe


Fig. 13. Pressure Recovery in a Perforated Pipe


Fig. 14. Pressure Recovery in a Perforated Pipe


Fig. 15. Pressure Recovery in a Perforated Pipe


Fig. 16. Relationship between Pressure Recovery and Area Ratio in a Perforated Pipe with Holes on
Each Side
holes. Figure 17 shows that the observed pressure reoovery is nearly independent of the diameter of the hole when the total number of holes is equal to 96.

Uniformity of Discharge from the Orifices. There is no doubt that the distribution of statio pressure along the perforated pipe plays an important role in the uniformity of disoharge from the orifioes. The uniform distribution of fluid discharged from the evenly spaced outlets in a pipe of uniform diameter can be secured only when the static pressure head is everywhere constant along the pipe. Figures 18 through 22 show the relation between the ratio of $P_{1}$ to $P_{5}$ and the discharge, $Q$, along the main pipe. It is seen that the smaller the area ratio is, the smaller will be the range of the disoharge beyond whioh the ratio of $P_{1}$ to $P_{5}$ is independent of the discharge, $Q$. Thus for a given value of area ratio there is a limiting value of discharge beyond whioh $P_{1} / P_{5}$ is independent of discharge. Figure 23 illustrates the value of $P_{1} / P_{5}$ at overy value of area ratio when the flow rate of water in the pipe is greater than that limiting value. From Fig. 23 one oan deternine the value of area ratio for any uniformity of distribution. Table 2 lists the magnitude of area ratio for oertain ratios of $P_{1}$ to $P_{5}$. For example, if we define $P_{1} / P_{5}$ equal to 0.90 to be the condition of approximately uniform distribution of flow, this aan be carried out when the area ratio is less than 0.67 for one row of orifices and 0.62 for two rows of orifices. From suoh values of area ratio, the perforated pipe oan be easily designed by adjusting the size of the hole and the spacing of holes so as to satisfy this value of area ratio.

Overall Head Loss in the Perforated Pipe. Figures 24 through 27 show the relation between overall head loss, $H_{L}$, and disoharge, $Q$, for hole diameters of $3 / 16^{\prime \prime}, 1 / 4^{n}, 5 / 16^{n}$, and $3 / 8^{\prime \prime}$ respeotively. From these figures it is seen


Fig. 17. Pressure Recovery in a Perforated Pipe






Ratio


Fig, 24. Overall Head Loss in a Perforated Pipe


Fig. 25. Overall Head Loss in a Perforated Pipe


Fig. 26. Overall Head Loss in a Perforated Pipe


Fig. 27. Overall Head Loss in a Perforated Pipe

## Table 2. Uniformity of distribution.

| One-Side    <br> $P_{1} / P_{5}$ 1.00 0.99 0.95 <br> Area Ratio 0.075 0.200 0.480 <br> 0.90 0.80 0.70  <br> Two-Side    <br> $P_{1} / P_{5}$ 1.00 0.99 0.95 <br> Area Ratio 0.075 0.200 0.480 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

that overall head loss is proportional to the velooity of the flow to the mth power, that is

$$
\mathrm{H}_{\mathrm{L}}=\mathrm{C} \mathrm{~V}^{\mathrm{m}}
$$

where $C$ and m are functions of the area ratio and Reynolds number at the inlet end. Figures 28 and 29 are the plots of overall head loss, $H_{L}$, against discharge, Q, for a condition of 96 and 48 holes respectively. It is seen from Fig. 30 that, for the pipe with holes in both sides, the plots are distributed almost in a straight line whioh is parallel to the ourve for unperforated pipe, and that at every flow rate the overall head loss in the unperforated pipe is 2.30 times that in the perforated pipe. R. D. Gladding (6) gave an equation to caloulate the head loss in a closed pipe line with evenly spaced outlets, each discharging the same amount of fluid, $q$. The total discharge $Q$ is then equal to Nq , where N is the total number of outlets.

Total Loss of Head $=\left(\frac{\sum_{N^{m}}^{N} N^{m}}{N^{m}}\right) K Q^{m}$ in which $K$ is constant and $L$ is the length of the pipe. When $m=2$

$$
\text { Total Loss of Head }=\left(\frac{\sum_{1}^{N}}{N^{3}}\right) K R^{2}
$$



Fig. 28. Overair Head Loss in a Perforated Pipe


Fig. 29. Overall Head Loss in a Perforated Pipe


Fig. 30. Overall Head Loss in a Perforated Pipe
or

$$
\text { Total Loss of Head }=\left(\frac{2 N^{3}+3 N^{2}+N}{6 N^{3}}\right) K L Q^{2}
$$

And $\frac{2 N^{3}+3 N^{2}+N}{6 N^{3}}$ beoomes $1 / 3$ when $N$ approaches to infinitive. That is to say When the number of outlets is very large the head loss in the perforated pipe is only $1 / 3$ of that in the unperforated pipe on the oonditions that the outlets are evenly spaced and each outlet is disoharging the same quantity of fluid.

Relation of Overall Friotion Faotor to Reynolds Number in the Perforated Pipe. As defined before

$$
H_{L}=e \frac{L}{D} \frac{V_{0}^{2}}{2 g}
$$

where I is the overall friotion faotor. An attempt was made to find the effeot of the Reynolds number and area ratio upon the ovorall friotion faotor by plotting overall friction faotor against Reynolds number with area ratio as a third parameter. Figure 31 shows this type of plot for a hole diameter of $3 / 8^{\prime \prime}$. Figure 32 illustrates the plot of the overall friotion faotor vs Reynolds number for the pipe with holes in both sides.


Fig. 31. Overall Friction Factor in a


Fig. 32. Overall Friction Factor in a Perforated Pipe

Three methods of computing overall head loss along the perforated pipe, namely the modified method of Enger and Levy, the momentum method, and the energy method, were used in this study; the results agree with each other very well. These methods are helpful in the praotioal design of the perforated pipe with evenly spaoed outlets on one side or on each side.

An exponential relationship was found to exist between observed pressure recovery and the flow rate of water, with area ratio as a parameter. The observed pressure reoovery beoomes independent of area ratio when the disoharge is greater than 0.120 o.f.s. for two rows of holes with a diameter of $3 / 8^{\prime \prime}$. The observed pressure recovery is nearly independent of area ratio when the total number of holes is equal to or greater than 96 for both one row of holes and two rows of holes.

The uniform distribution of disoharged water along the perforated pipe, as observed from experiments, oan be seoured when the area ratio is less than 0.075 for both one row of holes and two rows of holes. It is seen that the unifornity of 99 per cent oan be obtained when the area ratio is less than 0.200 for both cases. The two ourves separate at the point where area ratio is equal to 0.500 , as illustrated in Fig. 23 and Table 2.
J. D. Keller oonoluded that the area ratio should not exceed unity and that the ratio of length to diameter should not be greater than 70 for substantially uniform distribution to be obtained. In this investigation when the area ratio is equal to unity, the uniformity is 80 per oent for one row of holes and 75 per cent for two rows of holes.

It is obvious, for the pipe with orifioes on one side or on eaoh side, that the overall head loss is less than that in the unperforated pipe. For
the case of two rows of holes with a diameter of $3 / 8^{n}$, the overall head loss is about $1 / 2.30$ of that in the unperforated pipe. An attempt was made to find the relationship between overall friction factor and Reynolds number at the inlet end, but their relation is not obvious.

It was found, for the case of two rows of holes, that as the area ratio is equal to 2.588 , there is open channel flow at som point along the perforated pipe. Decreasing the flow rate causes the point at which open channel flow occurs to move upstream.

It was found that there exists a maximm value of overall friction factor, $0.0224_{4} 3$, in the perforated pipe. This was obtained when $P_{1}$ equals $P_{5}$ no matter what the Reynolds number and area ratio are.

## RECOMMENDATIONS FOR FURTHER STUDY

Further research is needed to determine reliable relationships between area ratio, ratio of longth to diameter of pipe, and Reynold number upon over211 head loss and pressure recovery.

Further exsmination of the feasibility of defining the expression,
$H_{L}=f \frac{L}{D} \frac{V_{0}^{2}}{2 g}$, in order to compute the overall head loss along the perforated pipe would be of value. Further study is also needed to determine the aotual relationship between overall friotion factor and Reynolds number at the inlet ond, so that the perforated pipe can be treated as a simple pipe.

Further investigation of the feasibility of applying the perforated pipe as a rotational sprinkler is also desirable.

## ACKNOWLEDGMENT

I wish to express my sinoere appreoiation and deepest gratitude for the direotion, guidanoe, and encouragement given by Dr. Riohard M. Haynie, Assistant Professor of Civil Engineering at Kansas State University. Without his efforts and oounsel this research would not have been as rapid or complete.

For his valuable suggestions in the organization and review of this thesis, I would like to extend my sincere thanks to Dr. Jaok B. Blaokburn, Head of the Civil Engineering Department at Kansas State University.

Appreciation is also expressed to Professor John E. Kipp and Professor Chen-Jung Hsu for being on the advisory oommittee and reviewing the manusoript.

## BIBLIOGRAPEY

1. Enger, $M_{0} L_{0}$ and $M_{0} I_{0}$ Lovy. "Pressure in Manifold Plpeso" $A_{0} W_{0} W_{\bullet} A_{0}$, Vol. 21, May, 1929, p. 699.
2. Jenks, $H_{0} N_{0}$ "An Investigation of Perforated-Pipe Filter Underdrain." Engg. News Record, Vol. 86, No. 4, 1921, p. 162.
3. Malishewsky, $N$. "Experiment in the Hydraulies of Filter Underdrain." A.W.V.A.s Vol. 17, 1927. p. 667.
4. 1 p. $43^{\circ}$ - "Pressure Head in Perforated Pipe." A.W.W.A., Vol. 27, 1935,
5. Kunz, Jacob. "Jots from Manifold Tubes." Tr. A.S.M.E., Vol. 53, 1931, APM, p. 181.
6. Gladding, R. D. "Loss of Head Determination in Uniformly Tapped Pipes." Engg. News Reoord, Vol. 125, 1940, p. 697.
7. Keller, J. D. "The Manifold Probleme" Journal of Applied Meohanics, Vol. 16, 1949, p. 77.
8. Dow, W. M. "The Uniform Distribution of a Fluid Flowing through a Perforated Pipe." Tr. A.S.M.E., Vol. 72, 1950, p. 432.
9. Howland, W. E. "Design of Perforated Pipe for Uniformity of Discharge." The Third Midwestern Conference on Fluid Mechanics, 1953, p. 687.
10. Allen, John and Brian Albinson. "An Investigation of the Manifold Problem for Inoompressible Fluids with Speoial Reference to the Use of Manifolds for Canal Locks." Ins. of Civil Engineers, Vol. 4, 1955, p. $114_{4}$
11. Horlock, J. H. "An Investigation of the Flow in Manifolds with Open and Closed Ends." J. Roy. Aero. Soo., Vol. 60, 1956, p. 749.
12. Markland, "The Analysis of Flow from Pipe Manifolds." Engineering, Vol. 187, No. 4847, 1959, p. 150.
13. Aorivos, A., B. D. Baboook, and R. L. Pigford. "Flow Distributions in Manifolds." Chemioal Enge. Soienoe, Vol. 10, 1959, p. 112.
14. van't Koudt, Bessel D. "Uniform Disoharge from Multi-Orifioed Pipes." Tr. A.S.A.E., Vol. 7, No. 3, 1964, p. 352.
15. O'Sullivan, J. K. "Flow in Pipes with Drilled Holes." Engineering, Vol. 163. No. 4780, 1957, p. 684.

## APPENDIX I

## Notations

The following symbols, adopted for use in this paper, conform in all essential respects with "Amerioan Standard Letter Symbols for Hydraulics" (ASA $210.2-1942$ ) prepared by a committee of the American Standards Association with Society representation, and approval by the Assooiation in 19L2:
$A=$ oross sectional area of manifold pipe at any point;
$a \quad$ area of opening per unit length of pipes
C = Cauchy number;
C =ooefficient;
$\mathrm{C}_{\mathrm{q}}=$ ooefficient of discharge:
d = diameter of orifice;
$D$ =inside diameter of pipe;
$\mathrm{dF}_{\mathrm{m}}=$ rate of change of momentum of the fluid discharged from the lateral opening in the flow direotions

- width of slot;
£ = Iriction factor in unperforated pipe; overall friotion factor in perforated pipes
$F_{L}=$ unbalanoed force in the direction of flow;
g = gravitational aooeleration;
H mpressure head:
pressure head at the downstream end of the slot;
$H_{A B}=$ pressure differenoe between seotion $A$ and seotion $B ;$
$H_{L}=$ loss of head in unperforated pipe; overall head loss in perforated pipes
$h=$ pressure head at upstream end of the slot;

```
I_ - average statio pressure along the perforated pipes
K = oonstant;
L = active length of the manifold pipe;
m = coefficient;
n =mmerical constant, }n=\frac{\mp@subsup{C}{q}{}a}{A}\mathrm{ ;
N = total mumber of holes;
N}\mp@subsup{N}{R}{}=\mathrm{ Reynolds number;
P1 = static pressure hoad at the inlet end of the perforated pipes
P
|P= observed pressure head reoovery;
\DeltaP
Q = total rate of flow;
Q = total rate of flow at point C;
q = rate of flow from the outlet;
R = hydraulic radius;
S = spacing of orifices;
S = hydraulic gradient;
Sc}=\mathrm{ hydraulic gradient at point C;
t = time;
u = longitudinal oomponent of disoharging velooity;
V m mean velooity at any point of the perforated pipe;
V
v = perpendioular component of the discharging velooity;
x = distance along manifold pipe from the inlet end;
y = pressure head at a point distanoe x downstream from the inlet end;
Z = number of holes before oertain point at the perforated pipes
\psi = speoiflc weight;
```

$\rho=$ density
$\nu=$ idnetic Fiscosity.

APPENDIX II

Flow Diagram for Digltal Computer Program


## List of Symbols for Computer Program

```
DP = Diameter of pipe:
DH = Diameter of hole;
RALD =I/D, ratio of length of pipe to Its diameter;
HOLE = Total number of holes;
RASD =S/D, ratio of spacing of holes to the pipe diameter;
VISC = Kinetic viscosity;
M = Number of runs;
AREA = Cross sectional area of pipe;
RAREA = Ratio of area of outlets to that of plpe oross seotion;
DISC Total discharge of water in the perforated pipe;
P1 = Static pressure head at the inlet end of the perforated pipe;
P5 . =Statio pressure head at the olosed end of the perforated pipe;
VEL = Mean velooity at the inlet end of the perforated pipe;
DELP = P P 
HL = Overall head loss along the perforated pipe;
COEFF = Overall friotion factor;
REYN = Reynolds number at the inlet ond;
RAPP = P1/ P5, ratio of statio pressure head at the inlet ond to that at the
    olosed ond of the perforated pipe.
```

Computer Program Used for This Study

MOMENTUM IAETHCD
STUDY ，RASD，VISC，N HEL
PIP
 つOتーN゚
mo No
$V J=\operatorname{SGRT}(32 \cdot 2 *(P 1+P 5))$
$C Q=D I S C /(A H * V J)$
X＝CG＊RAREA
$Y=1 \cdot-\operatorname{COS}(2 . * x)$
$Z=(\operatorname{SIN}(X)) * * 2$ ．
CこN $=2 .-.5 * Y / Z$
READ 5，DISC，P1，P5
VEL＝DISC／AREA
DELP＝P5－P1
N

PERFCRATED PIPE STUDY ENERGY METHCD
PERFERATED PIPE STUDY
$\therefore$ •

PUNCH 2,RAREA,DH,RASD

$H L=(V E L * * 2 \cdot / 64.4)-D E L P$
$C C E F F=H L /(R A L D * V E L * * 2 . / 64.4)$
$R E Y N=V E L * D P /(12 . * V I S C)$
$R A P P=P 1 / P 5$
R)


## APPENDIX III

## Input Data to Digital Computer Program

INSIDE DIAMETER ©F PIPE $=3.230$ IN. $L / D=44.582$

| HOLF DIANETER $=.188$ HOLF <br> KINE. VISC. $=.00000980$ |  |  | $\begin{aligned} & N O .=96 \\ & 10 \text { RUNS } \end{aligned}$ | $\begin{array}{r} S / D=.465 \\ \text { SNE }-S I D E \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Q$ | P1 | P5 | Q | P1 | P5 |
| -117 | 1.572 | 1.614 | . 113 | 1.460 | 1.501 |
| .110 | 1.381 | 1.419 | . 105 | 1.255 | 1.290 |
| -10. | 1.155 | 1.187 | . 096 | 1.057 | 1.087 |
| - 092 | . 955 | . 982 | . 086 | . 848 | . 871 |
| . 075 | . 644 | . 661 | . 062 | . 436 | . 447 |
| HOLE DIAMETER $=.188$ HOLE KTNE. VISC. $=.0000098 \mathrm{C}$ |  |  | NS. $=48$ | $S / D=.929$ |  |
|  |  |  | 10 RUNS | CNE-SIDE |  |


| Q | P1 | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .079 | 3.223 | $3.24 u$ | .077 | $2.99 u$ | 3.006 |
| .073 | 2.707 | 2.722 | .071 | 2.446 | 2.461 |
| .067 | 2.142 | 2.155 | .062 | 1.869 | 1.881 |
| .058 | 1.597 | 1.607 | .053 | 1.293 | 1.303 |
| .047 | 1.009 | 1.017 | .037 | .529 | .533 |

H~LE DIANETER=.188 HOLE Nこ. $=24 \quad S / D=1.858$ KINE. VISC. $=.00 \mathrm{COO984} 8$ RUNS $2 N E-S I D E$

| $\bigcirc$ | P1 | P5 | Q | P1 | P5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - 045 | 4.269 | 4.274 | . 044 | 3.792 | 3.796 |
| . 042 | 3.386 | 3.389 | . 040 | 2.930 | 2.932 |
| - 038 | 2.421 | 2.422 | . 033 | 1.907 | 1.907 |
| -028 | 1.129 | 1.129 | . 023 | . 507 | . 507 |
| $\begin{array}{llrr}\text { HOLF DIAMETER }=188 & \text { HCLE } & \text { NO. }=16 & \text { S/D }=2 \cdot 786 \\ \text { KINE. VISC. }=000 \mathrm{C} \text { (U984 } & 8 & \text { RUNS } & \text { SNE-SIDE }\end{array}$ |  |  |  |  |  |
|  |  |  |  |  |  |


| $\cap$ | P 1 | P 5 | 0 | Pl | P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .029 | 4.247 | 4.250 | .026 | 3.572 | 3.574 |
| .029 | 3.061 | 3.063 | .022 | 2.481 | 2.482 |
| .025 | 1.928 | .019 | 1.382 | 1.383 |  |
| .021 | 1.977 | 1.928 | .897 | .897 | .897 |


| HのLE DIAMETER $=.188$ | HCLE | NO. $=12$ | S/D $=3.715$ |
| :--- | :--- | :---: | :---: |
| K!NE. VISC. $=00000973$ | 7 RUNS | ONE-SIDE |  |


| 0 | $P 1$ | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .024 | 4.319 | 4.321 | .022 | 3.592 | 3.593 |
| .021 | 2.939 | 2.940 | .020 | 2.077 | 2.078 |
| .019 | 1.400 | 1.401 | .018 | .848 | .849 |

HOLE DIANETER $=.188$ HOLE NO. $=8 \quad S / D=5.573$
KINE. VISC. $=000000973 \quad 5$ RUNS $2 N E-S I D E$

| Q | P1 | P5 | Q | P1 | P5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| .016 | 4.252 | 4.202 | .015 | 2.225 | 2.225 |
| .014 | 1.885 | 1.885 | .013 | 1.186 | 1.186 |
| .012 | .501 | .561 |  |  |  |
| HOLE DIANETER $=.250$ | HCLE | NO. $=96$ | S/D $=.465$ |  |  |
| KINE | VISC. $=.0000 \cup 984$ | 9 | RUNS | ONE-SIDE |  |


| 0 | P1 | P5 | Q | P1 | P5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .133 | . 601 | . 655 | . 129 | . 562 | .611 |
| -123 | . 517 | .562 | . 118 | . 471 | .513 |
| -113 | . 435 | . 473 | .106 | - 386 | . 420 |
| . 099 | . 341 | . 369 | .092 | . 292 | . 318 |
| - 078 | . 206 | . 227 |  |  |  |
| HOLE DIANETER $=.250$ H |  |  | NC. $=48$ | S/D $=.929$ |  |
| KINE. | SC. $=$ | U0991 | 11 RUNS | SNE-SIDE |  |


| ? | P | P |  | $Q$ | $P 1$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 0.112 | 1.836 | 1.870 | .107 | 1.669 | 1.700 |
| .101 | 1.498 | 1.526 | .096 | 1.329 | 1.354 |
| .089 | 1.168 | 1.189 | .084 | 1.035 | 1.056 |
| .077 | .859 | .878 | .069 | .675 | .689 |
| .060 | .502 | .514 | .051 | .346 | .354 |
| .039 | .179 | .184 |  |  |  |


| HSLE DIAMETER $=.250$ | HCLE | NC* $=24$ | S/D $=1.858$ |
| :--- | :--- | :--- | :--- |
| KINE. VISC. $=.0 \cup O U 0991$ | 10 | RUNS | CNE-SIUE |


| $Q$ | $P 1$ | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .074 | 3.434 | 3.454 | .069 | 3.039 | 3.058 |
| .066 | 2.739 | 2.756 | .061 | 2.320 | 2.334 |
| .057 | 1.985 | 1.999 | .051 | 1.586 | 1.597 |
| .046 | 1.281 | 1.290 | .040 | .992 | .098 |
| .$\cap 33$ | .648 | .652 | .022 | .243 | .243 |


| HOLE DIANETER $=.250$ | HOLE | NO. $=16$ | S/D $=2.786$ |
| :--- | :--- | ---: | ---: |
| KINE. VISC. $=.00000986$ | 9 RUNS | SNE-SIDE |  |


| 0 | $P 1$ | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| .054 | 4.053 | 4.059 | .050 | 3.581 | 3.586 |
| .048 | 3.173 | 3.177 | .043 | 2.587 | 2.590 |
| .039 | 2.127 | 2.130 | .033 | 1.395 | 1.398 |
| .028 | .875 | .877 | .024 | .462 | .463 |
| .020 | .153 | .153 |  |  |  |
| HOLE DIAMETER $=.250$ | HOLE | NO. $=12$ | S/D=3.715 |  |  |
| KINF. VISC. $=.00001056$ | 7 | RUNS | ONE.SIDE |  |  |


| $\cap$ | $P 1$ | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .040 | 3.994 | 3.998 | .035 | 3.314 | 3.317 |
| .033 | 2.764 | 2.766 | .031 | 2.200 | 2.201 |
| .028 | 1.556 | 1.557 | .024 | 1.002 | 1.003 |


| HOLE DIAMETER $=.313$ | HCLE | Nこ. $=96$ | S/D $=.463$ |
| :--- | :--- | :--- | :--- |
| KTNE. VISC. $=000001029$ | 15 RUNS | SNE-SIDE |  |


| 0 | $P 1$ | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| .141 | .245 | .303 | .135 | .225 | .278 |
| .131 | .215 | .262 | .128 | .207 | .256 |
| .123 | .190 | .231 | .120 | .183 | .222 |
| .116 | .172 | .210 | .113 | .165 | .200 |
| .111 | .154 | .188 | .104 | .145 | .175 |
| .102 | .135 | .165 | .096 | .125 | .150 |
| .094 | .119 | .145 | .086 | .100 | .120 |
| .074 | .080 | .093 |  |  |  |
| HOLE DIAMETER $=.313$ | HOLE | NO. $=48$ | S/D $=.929$ |  |  |
| KINE. VISC. $=.00001026$ | 11 | RUNS | ONE-SIDE |  |  |


| 0 | $P 1$ | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .130 | .885 | .927 | .126 | .813 | .854 |
| .120 | .7 .49 | .792 | .116 | .683 | .723 |
| .110 | .619 | .656 | .103 | .352 | .587 |
| .098 | .479 | .510 | .092 | .429 | .458 |
| .085 | .371 | .396 | .078 | .310 | .331 |
| .069 | .277 | .243 |  |  |  |


| HOLE DIAMETER $=.313$ | HCLE | Nこ．$=24$ | S／D＝1．858 |
| :--- | :--- | :--- | :--- |
| KINE．VISC．$=000001026$ | 11 | RUNS | CNE－SILE |


| $\bigcirc$ | P1 | P5 | Q | P1 | ， |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .104 | 2.209 | 2.239 | .100 | 2.010 | 2.038 |
| －$\cap 96$ | 1.834 | 1．858 | .090 | 1.615 | 1.635 |
| －$\cap 84$ | 1.402 | 1.419 | ． 077 | 1.205 | 1.219 |
| － 071 | 1.028 | 1.039 | ． 063 | .804 | ． 814 |
| －$\cap 57$ | ． 612 | ． 619 | .048 | ． 412 | ． 416 |
| － 035 | ． 191 | ． 193 |  |  |  |
| HこLE DIAMETER $=.313$ HCLE KINE．VISC．$=.00 \mathrm{CO} 1035$ |  |  | 16 | $\begin{array}{r} S / D=2.786 \\ \text { SNE-SIDE } \end{array}$ |  |
|  |  |  | RUNS |  |  |


| $\cap$ | $P 1$ | $P 5$ |  | P | P1 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| .082 | 3.185 | 3.199 | .078 | 2.869 | 2.881 |
| .076 | 2.626 | 2.637 | .072 | 2.345 | 2.355 |
| .066 | 2.010 | 2.019 | .059 | 1.583 | 1.589 |
| .053 | 1.272 | 1.277 | .046 | .997 | 1.001 |
| .040 | .640 | .644 | .028 | .266 | .269 |
| HOLE DIAMETER＝．313 HNLE | NC．$=12$ | S／D＝3．715 |  |  |  |
| KINE．VISC．$=.0 U C U 1 C 45$ | 10 | RUNS | SNE－SIDE |  |  |


| $\bigcirc$ | P1 | P5 | Q | P1 | P5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| － 167 | 3.677 | 3.686 | ． 064 | 3.374 | 3.382 |
| －$\cap 61$ | 2.923 | 2.930 | ． 058 | 2.67 | 2.616 |
| －$\cap 54$ | 2.219 | 2.224 | ． 050 | 1.888 | 1．892 |
| － 145 | 1.526 | 1.529 | ． 040 | 1.194 | 1.197 |
| － 032 | .656 | .658 | ． 026 | ． 324 | ． 325 |
| HCLE DIAMETER $=.313$ |  |  | $\begin{array}{cc} N C .=8 & S / D=5.573 \\ 8 \text { RUNS } & \text { CNE-SIDE } \end{array}$ |  |  |
| KINE． | ISC＊$=$ 。 | 001050 |  |  |  |


| $\cap$ | $P 1$ | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .050 | 3.989 | 3.994 | .047 | 3.469 | 3.473 |
| .044 | 2.957 | 2.960 | .039 | 2.374 | 2.377 |
| .034 | 1.882 | 1.884 | .029 | 1.294 | 1.296 |
| .024 | .729 | .730 | .016 | .298 | .298 |


| $\begin{aligned} & \hline \text { HOLE } \\ & \text { KINE。 } \end{aligned}$ | DIAMETE $\text { VISC. }=$ | $\begin{aligned} & 375 \quad \mathrm{H} \\ & 001035 \end{aligned}$ | $\begin{aligned} & \mathrm{N}, \\ & 15 \end{aligned}$ | $\begin{aligned} & =96 \\ & \text { RUNS } \end{aligned}$ | $\begin{array}{r} S / D=.465 \\ \text { CNE-SIDE } \end{array}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | P1 | P5 |  | Q |  | P1 |  | 5 |
| . 141 | . 133 | . 188 |  | . 137 |  | . 125 |  | .179 |
| . 134 | . 119 | . 171 |  | . 130 |  | . 115 |  | . 163 |
| -126 | . 110 | . 155 |  | . 124 |  | - 105 |  | - 15.0 |
| -121 | . 100 | . 142 | . 117 |  | . 096 |  | . 137 |  |
| . 112 | . 090 | . 125 |  | . 108 |  | . 085 |  | . 118 |
| . 106 | . 081 | . 114 |  | . 098 |  | . 073 |  | . 101 |
| . 091 | .066 | .091 |  | . 088 |  | . 062 |  | . 082 |
| . 087 | . 060 | . 082 |  |  |  |  |  |  |
| HCLE | DIAMETER | 375 H | N0. | $=48$ | S/D $=$ | $=.9$ |  |  |
| KINE. | VISC. $=$ | 01026 | 16 | RUNS | ONE | E-SI |  |  |


| 0 | P1 | P5 | Q | P1 | P5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -13i | . 480 | . 534 | . 133 | . 445 | .496 |
| -126 | . 405 | .450 | . 120 | - 363 | . 402 |
| . 115 | . 337 | .375 | .110 | . 304 | . 339 |
| - 106 | . 288 | . 320 | .102 | .263 | . 288 |
| - 198 | . 245 | . 274 | .092 | . 219 | . 244 |
| - 086 | . 191 | . 212 | .079 | . 160 | .176 |
| - $\cap 73$ | . 143 | . 158 | . 062 | . 110 | .120 |
| -053 | . 081 | .089 | . 044 | $.06 u$ | . 066 |
| HOLE DIAMETER $=.375$ HCLE KINE. VISC. =.00001016 |  |  | $\begin{aligned} & \text { NC. }=24 \\ & 15 \text { RUNS } \end{aligned}$ | $\begin{gathered} S / D=1.858 \\ \text { ONE-SIDE } \end{gathered}$ |  |
|  |  |  |  |  |  |


| $\bigcirc$ | P1 | P5 |  | Q | P1 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 119 | 1.504 | 1.540 | , | . 113 | 1. 385 | 1.421 |
| -112 | 1.338 | 1.370 |  | . 110 | 1.254 | 1.283 |
| . 104 | 1.156 | 1.183 |  | . 100 | 1.058 | 1. 181 |
| - 094 | . 950 | .973 |  | . 090 | . 869 | . 888 |
| - 086 | - 771 | .790 |  | . 080 | . 685 | -702 |
| . 074 | - 584 | . 598 |  | . 069 | . 476 | - 402 |
| -062 | - 394 | . 406 |  | . 053 | . 281 | .291 |
| - 042 | . 179 | -186 |  |  |  |  |


| HOLE DIAMETER $=.375$ | HOLE | NC. $=16$ | S/D $=2.786$ |
| :--- | :--- | :--- | :--- |
| KINE. VISC. $=.00001008$ | 16 RUNS | SNE-SIDE |  |


| $\bigcirc$ | P1 | P5 | Q | P1 | P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .100 | 2.495 | 2.521 | .096 | 2.323 | 2. 346 |
| - 096 | 2.377 | 2.400 | . 094 | 2.227 | 2. 248 |
| - $\cap 92$ | 2.110 | 2.130 | .090 | 2.035 | 2.052 |
| - $\cap 87$ | 1.910 | 1.925 | . 084 | 1.798 | 1.815 |
| . 082 | 1.635 | 1.698 | . 078 | 1.521 | 1.535 |
| - 070 | 1.244 | 1.256 | . 064 | 1.023 | 1.033 |
| - $\cap 59$ | . 877 | . 885 | .050 | .627 | . 634 |
| - 038 | . 352 | . 356 | . 032 | . 232 | . 235 |
| HOLE DIAMETER $=.375$ HCLE <br> KINE. VISC. $=.00001$ U0'O |  |  | $\begin{aligned} & N O .=12 \\ & 14 \text { RUNS } \end{aligned}$ | $\begin{aligned} & S / D=2.766 \\ & S N E-S I O E \end{aligned}$ |  |
|  |  |  |  |  |  |


| $\cap$ | $P 1$ | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| .086 | 3.106 | 3.120 | .082 | 2.809 | 2.821 |
| .078 | 2.581 | 2.592 | .075 | 2.390 | 2.400 |
| .072 | 2.184 | 2.191 | .067 | 1.885 | 1.894 |
| .064 | 1.682 | 1.690 | .058 | 1.420 | 1.431 |
| .055 | 1.260 | 1.269 | .050 | 1.027 | 1.033 |
| .045 | .791 | .795 | .037 | .565 | .567 |
| .030 | .309 | .310 | .025 | .218 | .219 |
|  |  |  |  |  |  |
| HOLE DIANETER $=.375$ | HCLE | NO. $=8$ | S/D=5.573 |  |  |
| KINE. VISC. $=.00001006$ | 8 | RUNS | ONE-SIDE |  |  |


| $\bigcirc$ | P1 | P5 | $Q$ | P1 | P5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - 060 | 3.560 | 3.566 | . 058 | 3.210 | 3.215 |
| - 056 | 2.908 | 2.912 | . 052 | 2.546 | 2.549 |
| - 148 | 2.105 | 2.108 | . 043 | 1.702 | 1.704 |
| - 036 | 1.206 | 1.207 | . 029 | . 760 | .760 |
| HOLE DIANETER $=.375 \quad \mathrm{H}$KINE. VISC. $=$ COUC 1014 |  |  | $\begin{array}{lr} \text { NO. }=96 & S / D=.929 \\ 15 \text { RUNS } & \text { TNO-SILEE } \end{array}$ |  |  |
|  |  |  |  |  |  |


| $\because$ | $P 1$ | $P 5$ | $Q$ | $P 1$ | $P 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .143 | .104 | .167 | .137 | .095 | .153 |
| .132 | .089 | .142 | .130 | .082 | .134 |
| .127 | .081 | .130 | .123 | .075 | .120 |
| .110 | .070 | .112 | .112 | .063 | .1 .0 |
| .110 | .058 | .093 | .106 | .055 | .089 |
| .098 | .048 | .075 | .092 | .040 | .065 |
| .082 | .029 | .048 | .070 | .016 | .030 |
| .054 | .010 | .016 |  |  |  |


| HOLE DIAMETER $=.375$ | HCLE | NO. $=48$ | S/D $=1.858$ |
| :--- | :--- | :--- | :--- |
| KINE. VISC. $=.00001014$ | 15 RUNS | TWO-SIDE |  |


| $\bigcirc$ | P1 | P5 | Q | P1 | P5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .137 | . 452 | . 515 | . 133 | . 421 | . 474 |
| -130 | . 409 | . 458 | . 124 | . 375 | . 419 |
| . 120 | . 341 | . 383 | .115 | . 315 | . 355 |
| . 112 | . 298 | . 335 | .106 | . 267 | . 300 |
| . 161 | . 242 | . 27 u | .095 | . 212 | .238 |
| -088 | .180 | - 2 u2 | . 080 | .146 | . 164 |
| - $\cap 72$ | .114 | .126 | .063 | .091 | . 099 |
| - $\cap 54$ | .065 | .069 |  |  |  |
| HOLE DIAMETER $=.375$ HCLE KTNF. VISC. $=.00001014$ |  |  | $\begin{aligned} & N 0 .=32 \\ & 15 \text { RUNS } \end{aligned}$ | $\begin{array}{r} S / D=2.786 \\ T W O-S I D E \end{array}$ |  |
|  |  |  |  |  |  |
| $\bigcirc$ | P1 | P5 | Q | P1 | P5 |
| -128 | . 998 | 1. 044 | .122 | . 889 | . 931 |
| .116 | . 808 | . 847 | .111 | .742 | . 779 |
| .109 | .746 | . 739 | . 104 | . 648 | .677 |
| . 100 | . 605 | . 631 | .094 | . 523 | . 546 |
| - $\cap 88$ | . 456 | . 477 | . 081 | - 381 | . 399 |
| - $\cap 75$ | .311 | . 325 | .064 | . 227 | .237 |
| - $\cap 57$ | .177 | . 183 | . 048 | . 117 | . 120 |
| - 141 | .077 | .079 |  |  |  |
| $\begin{aligned} & \text { HCLE DIAMETER }=.375 \mathrm{HCLE} \\ & \text { KINE. VISC. }=.00001 \mathrm{C} 10 \end{aligned}$ |  |  | $\begin{aligned} & \mathrm{NC} \cdot=24 \\ & 15 \text { RUNS } \\ & \hline \end{aligned}$ | $\begin{array}{r} S / D=3.715 \\ T W O-S I D E \end{array}$ |  |
|  |  |  |  |  |  |


| $\bigcirc$ | P1 | P5 | Q | P1 | P5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -118 | 1.525 | 1.565 | . 115 | 1.425 | 1.462 |
| -111 | 1.335 | 1.369 | .106 | 1.190 | 1.227 |
| -102 | 1.115 | 1.141 | .098 | 1.015 | 1.038 |
| - 095 | . 948 | . 970 | . 088 | .813 | .833 |
| - 082 | .730 | .718 | .075 | . 585 | .600 |
| - 068 | . 473 | . 485 | .060 | . 365 | .375 |
| - 049 | . 230 | . 235 | .040 | . 142 | .146 |
| - 132 | . 094 | . 096 | . | . |  |
| HCLE | DIAMETER | 375 | NO. $=16$ | $S / D=5.573$ |  |
| KTNE. | VISC. $=$ | 0001024 | 13 RUNS | TWO-SIDE |  |
| $\bigcirc$ | P1 | P5 | Q | P1 | P5 |
| - 099 | 2.471 | 2.500 | . 094 | 2.235 | 2.260 |
| - 091 | 2.042 | 2.065 | .083 | 1.727 | 1.747 |
| - 075 | 1.395 | 1.412 | .071 | 1.217 | 1.231 |
| -. 265 | 1. 140 | 1.050 | .058 | . 823 | . 831 |
| - $\cap 54$ | . 688 | . 694 | .047 | .515 | . 519 |
| - $\cap 39$ | . 356 | . 359 | .030 | .171 | .172 |
| - 123 | . 072 | .1.92 |  |  |  |

## APPENDIX IV

## Output Data from Momentum Method

| AREA RATI $=$ | .325 | HCLE DIAMETER $=.188$ | $S / D=$ | 465 |
| :--- | :--- | :--- | :--- | :--- |
| HOLF NS. $=$ | 96.000 | KINE. VISC. $=.00000980$ |  |  |


| 0 | $V$ | P1 | P5 | P5-P1 | P1/P5 | HL | F | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .117 | 2.056 | 1.572 | 1.614 | . 042 | . 974 | . 024 | . 0081 | 56474 . |
| .113 | 1.986 | 1.460 | 1.501 | . 041 | . 973 | . 020 | - 0074 | 54543. |
| .110 | 1.933 | 1.381 | 1.419 | . 038 | . 973 | .020 | . 0077. | 53095. |
| .105 | 1.145 | 1.255 | 1.290 | . 035 | . 973 | . 018 | - 6076 | 50682. |
| .101 | 1.775 | 1.155 | 1.187 | . 032 | . 973 | .017 | .0078 | 48751 |
| .096 | 1.687 | 1.057 | 1.087 | . 030 | . 972 | . 014 | .0072 | 46338 |
| .692 | 1.617 | . 955 | . 982 | . 027 | .973 | . 014 | -. 0075 | 44407 |
| .086 | 1.511 | . 848 | .871 | . 023 | . 974 | . 012 | . 0070 | 4151 |
| .075 | 1.318 | . 644 | .661 | . 017 | . 974 | . 010 | .0083 | 3620 |
| . 06.2 | 1.090 | . 436 | . 447 | .011 | . 975 | . 007 | .0090 | 29926. |
| AREA | T $5=$ | . 163 | HCL | I AM | = $\cdot 1$ |  | $S / D=$ | 929 |
| HOLE. | $=48$ | Uu | KINE. | VISC | 0000 |  |  |  |


| Q | V | 21 | P5 | P5-P 1 | P1/P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 079 | 1.388 | 3.223 | 3.240 | . 017 | . 995 | - Cl 13 | - 0097 | 38132. |
| .077 | 1.353 | 2.990 | 3.006 | . 016 | . 995 | . 012 | . 0098 | 37167 。 |
| . 073 | 1.283 | 2.707 | 2.722 | . 015 | . 994 | - 011 | . 0093 | 35236. |
| . 071 | 1.248 | 2.446 | 2.461 | . 015 | . 994 | . 009 | .0085 | 34270 。 |
| .067 | 1.177 | 2.142 | 2.155 | . 013 | . 994 | - ก09 | -.0089 | 32340 |
| .062 | 1.090 | 1.869 | 1.881 | . 012 | . 994 | - 016 | - $0 \sim 78$ | 29926. |
| . 058 | 1.C19 | 1.597 | 1.607 | .010 | . 994 | - 006 | - 0085 | 27996 |
| . 053 | . 931 | 1.293 | 1.303 | . 010 | . 992 | - 03 | . 0058 | 25582. |
| . 047 | . 826 | 1.009 | 1.017 | . 008 | . 992 | . 003 | . 0055 | 22686. |
| . 637 | . 650 | . 529 | . 533 | . 004 | .992 | .003 | - $\cup 088$ | 17859. |
| APEA R | RATIC= | . 681 | HCLE | DIAME | $\mathrm{R}=.1$ |  | $S / D=$ | 858 |
| HSLE | NO. $=24$ | 060 | KINE | VISC. | . 0000 |  |  |  |


| 0 | $V$ | $P 1$ | $P 5$ | $P 5-P 1$ | $P 1 / P 5$ | $H L$ | $F$ | $R$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .045 | .791 | 4.269 | 4.274 | .005 | .999 | .005 | .0109 | 21632. |
| .044 | .773 | 3.792 | 3.796 | .004 | .999 | .005 | .0128 | 21152. |
| .042 | .738 | 3.386 | 3.389 | .003 | .999 | .005 | .0145 | 20190. |
| $.04 ;$ | .703 | 2.930 | 2.932 | .002 | .999 | .006 | .0166 | 19229. |
| .038 | .668 | 2.421 | 2.422 | .001 | 1.000 | .006 | .0192 | 18267. |
| .033 | .580 | 1.947 | 1.907 | 0.000 | 1.000 | .005 | .0224 | 15864. |
| .028 | .492 | 1.129 | 1.129 | 0.000 | 1.000 | .004 | .0224 | 13460. |
| .023 | .404 | .507 | .507 | 0.000 | 1.000 | .003 | .0224 | 11057. |


| AREA | RATIC= | - 654 | HCLE | DIAMETER | $=.188$ | $S / D=$ | 2.786 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HOLE | NC. $=$ | 16.000 | KINE. | VISC. $=$. | 00000984 |  |  |


| 0 | V | P1 | P5 | P5-P1 | P1/P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 029 | . 510 | 4.247 | 4.250 | . 003 | . 999 | - 001 | . 0057 | 13941. |
| . 026 | . 457 | 3.572 | 3.574 | . CO 2 | . 999 | . 001 | . 0086 | 12499. |
| . 025 | . 439 | 3.061 | 3.063 | . 002 | . 999 | - 000 | .0075 | 12018. |
| . 022 | . 387 | 2.481 | 2.482 | .001 | 1.000 | . 201 | . 0128 | 10576. |
| . 021 | . 369 | 1.927 | 1.928 | . 001 | . 999 | . 001 | . 0118 | 10095. |
| .019 | . 334 | 1.382 | 1.383 | . 001 | . 999 | . 000 | . 0095 | 9134. |
| . 018 | . 316 | - 897 | . 897 | 0.000 | 1.000 | . 002 | . 0224 | 8653. |
| .016 | . 281 | . 449 | . 449 | 0.000 | 1.000 | . 001 | . 0224 | 7692. |
| ADEA | RATI $\hat{0}=$ | . 641 | HOLE | DIAME | $\mathrm{R}=.18$ |  | $S / D=$ | 3.715 |
| H^LF | Nこ. $=12$ | 2.00 C | KINE. | VISC. | . 0000 |  |  |  |


| $Q$ | $V$ | $P 1$ | $P 5$ | $P 5-P 1$ | $P 1 / P 5$ | $H L$ | $F$ | $R$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .024 | .422 | 4.319 | 4.321 | .002 | 1.000 | .000 | .0062 | 11668. |
| .022 | .387 | 3.592 | 3.593 | .001 | 1.000 | .001 | .0128 | 10695 |
| .021 | .369 | 2.939 | 2.940 | .001 | 1.000 | .001 | .0118 | 10209. |
| .020 | .351 | 2.077 | 2.078 | .001 | 1.000 | .000 | .0107 | 9723. |
| .019 | .334 | $1.40 C$ | 1.401 | .001 | .999 | .000 | .0095 | 9237. |
| .018 | .316 | .848 | .849 | .001 | .999 | .000 | .0080 | 8751. |
| .016 | .281 | .391 | .391 | 0.000 | 1.000 | .001 | .0224 | 7778. |
| AREA RATI $=$ | .027 | HSLE DIAMETER $=.188$ | $S / D=$ | 5.573 |  |  |  |  |
| HคLE NO. $=$ | 8.000 | KINE. VISC. $=.000 .0973$ |  |  |  |  |  |  |


| Q | Q V | P1 | P5 | P5-P1 | P1/P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .016 | . 281 | 4.202 | 4.202 | 0.000 | 1.00 U | .001 | -U224 | 7778. |
| .015 | . 264 | 2. 225 | 2.225 | 0.000 | 1.000 | .001 | - C 224 | 7292. |
| .014 | . 246 | 1.885 | 1.885 | 0.000 | 1.00 u | . 000 | . 0224 | 6806. |
| .013 | . 228 | 1.186 | 1.186 | 0.000 | 1.000 | . 000 | . 0224 | 6320. |
| .012 | . 211 | . 561 | . 561 | 0.000 | 1.000 | . 000 | . 0224 | 5834. |
| AREA | RATIS $=$ | . 575 | HCLE | DIAME | $R=.2$ |  | $S / D=$ | .465 |
| HCLE | NC. $=96$ | . 000 | KINE. | VISC. | . 00001 |  |  |  |


| $Q$ | $V$ | P1 | P5 | P5-P1 | P1/P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .133 | 2.337 | . 601 | . 655 | .054 | . 918 | . C31 | . 0082 | 63936. |
| .129 | 2.267 | . 562 | .611 | . 049 | . 920 | . 031 | .0087 | 62013. |
| . 123 | 2.162 | . 517 | .562 | . 045 | . 92 | . 028 | .0085 | 59129. |
| . 118 | 2.674 | . 471 | . 513 | . 042 | . 918 | . 025 | .0083 | 56725. |
| .113 | 1.986 | . 435 | . 473 | . 038 | . 920 | . 023 | .0085 | 54321 |
| .106 | 1.863 | . 386 | . 420 | . 034 | - 919 | - 020 | .0083 | 5095 |
| . 099 | 1.740 | . 341 | . 369 | . 028 | . 924 | . 019 | . 0091 | 4759 |
| . 092 | 1.617 | .292 | - 318 | . 026 | . 918 | . 015 | . 0081 | 44226 |
| .078 | 1.371 | .206 | . 227 | .021 | . 907 | - 108 | -.063 | 37496 |


| AREA RATI $=$ | .288 | HCLE DIAMETER $=.250$ | $S / D=$ | .929 |
| :--- | :--- | :--- | :--- | :--- |
| HคLF NO．$=48.0 U C$ | KINE．VISC．$=.000 \cup 0991$ |  |  |  |


| Q | V | P1 | P5 | P5－P1 | P1／P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .112 | 1.968 | 1.836 | 1.870 | ． 034 | ． 982 | ． 026 | ． 0098 | 53460 。 |
| .107 | 1.880 | 1.669 | 1.700 | .031 | ． 982 | ． 024 | ． 0098 | 51074 。 |
| .101 | 1.775 | 1.498 | 1.526 | ． 028 | ． 982 | ． 021 | .0096 | 48210 ． |
| .096 | 1.687 | 1.329 | 1.354 | ． 025 | ． 982 | ． 019 | ． 0097 | 45823. |
| .089 | 1.564 | 1.168 | 1.189 | ． 021 | ． 982 | ． 017 | ． 0100 | 42482 。 |
| ． 084 | 1.476 | 1.035 | 1.056 | .021 | ． 980 | ． 013 | .0085 | 4009 |
| .077 | 1.353 | ． 859 | ． 878 | ． 019 | ． 978 | ． 009 | .0074 | 3675 |
| .069 | 1.213 | ． 675 | ． 689 | ． 014 | ． 980 | － 009 | ． 0087 | 3293 |
| .060 | 1.054 | ． 502 | ． 514 | ． 012 | ． 977 | － 005 | － 0068 | 286 |
| .051 | ． 896 | ． 346 | ． 354 | ． 008 | ． 977 | － 004 | ． 0080 | 2434 |
| .039 | ． 685 | .179 | ． 184 | .005 | ． 973 | ． 002 | .0071 | 18616. |
| $A D F A$ | RATIC＝ | －144 | HCLE | DI AMF | ＝－ |  | $S / D=$ | 858 |
| HへLE | NC．$=24$ | OU | KINE． | VISC． | ． 0000 |  |  |  |


| Q | $V$ | $P 1$ | $P 5$ | $P 5-P 1$ | $P 1 / P 5$ | $H L$ | $F$ | $R$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .074 | 1.300 | 3.434 | 3.454 | .020 | .994 | .006 | .0053 | 35322. |
| .069 | 1.213 | 3.039 | 3.058 | .019 | .994 | .004 | .0038 | 32935. |
| .066 | $1.16 C$ | 2.739 | 2.756 | .017 | .994 | .004 | .0042 | 31503. |
| .061 | 1.072 | 2.320 | 2.334 | .014 | .994 | .004 | .0048 | 29117. |
| .057 | 1.002 | 1.985 | 1.999 | .014 | .993 | .002 | .0023 | 27208. |
| .051 | .896 | 1.586 | 1.597 | .011 | .993 | .001 | .0026 | 24344. |
| .046 | .808 | 1.281 | 1.290 | .009 | .993 | .001 | .0025 | 21957. |
| .040 | .703 | .992 | .998 | .006 | .994 | .002 | .0049 | 19093. |
| .033 | .580 | .648 | .652 | .004 | .994 | .001 | .0053 | 15752. |
| .022 | .387 | .243 | .243 | 0.000 | 1.004 | .002 | .0224 | 10501. |


| ADEA RATI $=$ | .096 | HCLE DIAMETER $=.250$ | $S / D=$ | 2.786 |
| :--- | :--- | :--- | :--- | :--- |
| HOLE NO．$=16.000$ | KINE．VISC．$=.000 \cup 0986$ |  |  |  |


| 9 | $V$ | $P 1$ | $P 5$ | $P 5-P 1$ | $P 1 / P 5$ | $H L$ | $F$ | $R$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .054 | .949 | 4.053 | 4.059 | .006 | .999 | .008 | .0128 | 25906. |
| .050 | .879 | 3.581 | 3.586 | .005 | .999 | .007 | .0131 | 23987. |
| .048 | .844 | 3.173 | 2.177 | .004 | .999 | .007 | .0143 | 23028. |
| .043 | .756 | 2.587 | 2.590 | .003 | .999 | .006 | .0148 | 20629. |
| .039 | .685 | 2.127 | 2.130 | .003 | .999 | .004 | .0132 | 18710. |
| .033 | .580 | 1.395 | 1.398 | .003 | .998 | .002 | .0095 | 15832. |
| .028 | .492 | .375 | .877 | .002 | .998 | .002 | .0105 | 13433. |
| .024 | .422 | .462 | .463 | .001 | .998 | .002 | .0143 | 11514. |
| $.02 C$ | .351 | .153 | .153 | 0.000 | 1.000 | .002 | .0224 | 9595. |


| AREA HOLE | RATI $0=$ NO．$=1$ | $\begin{array}{r} .072 \\ 12.006 \\ \hline \end{array}$ | $\begin{array}{r} \text { HCLE } \\ \text { KINE。 } \end{array}$ | $\begin{aligned} & \text { DIAMETER }=.250 \\ & \text { VISC }=.00001056 \end{aligned}$ |  |  | $S / D=$ | 3.715 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | V | P1 | P5 | P5－P1 | P1／P5 | HL | F | R |
| ． 440 | ． 703 | 3.994 | 3.998 | ． 004 | ． 999 | ． 004 | ． 0107 | 17918. |
| ． 035 | ． 615 | 5 3.314 | 3.317 | ． 003 | ． 999 | ． 003 | ． 0110 | 15678. |
| ． 033 | ． 580 | 2．764 | 2.766 | ． 002 | ． 999 | － CO 3 | ．C138 | 14782. |
| ． 031 | ． 545 | 52.200 | 2.201 | ． 001 | 1.000 | ． 204 | ． 0176 | 13886. |
| ． 028 | ． 492 | 21.556 | 1.557 | ． 001 | ． 999 | － 003 | －C165 | 12542 ． |
| ． 024 | ． 422 | 1．002 | 1.003 | ． 001 | －999 | － 002 | ． 0143 | 10751 ． |
| ． 019 | ． 334 | 4.325 | ． 325 | 0.000 | 1.003 | ． 002 | ． 0224 | 8511. |
| ADEA | RATIに＝ | ． 901 | HOLE | DIAMET | $R=.3$ |  | $S / D=$ | ． 465 |
| HOLE | NO．$=$ S | S0．000 | KINE． | VISC． | ． 600 l |  |  |  |


| Q | $\checkmark$ | P1 | P5 | P5－P1 | P1／P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ． 141 | 2.478 | ． 245 | ． 303 | ． 058 | ． 809 | ． 037 | ． 0088 | 64817. |
| ． 135 | 2．372 | ． 225 | ． 278 | ． 053 | ． 809 | ． 234 | ．0088 | 62050． |
| ． 131 | 2.302 | ． 215 | ． 262 | ． 047 | ． 821 | ． 035 | ． 0096 | 60220. |
| ． 128 | 2.249 | － 207 | ． 256 | ． 049 | ． 809 | ． 030 | ． 0084 | 58841. |
| ． 173 | 2.162 | ． 190 | ． 231 | ． 041 | ． 823 | ． 032 | ． 0098 | 56542 |
| ． 120 | 2.109 | ． 183 | ． 222 | ． 039 | ． 824 | ． 030 | ． 0098 | 55164. |
| .116 | 2.039 | ． 172 | ． 210 | ． 038 | ． 819 | ． 027 | ． 0092 | 53325. |
| .113 | 1.986 | ． 165 | ． 200 | ． 035 | ． 825 | ． 026 | ． 0096 | 51946. |
| ． 111 | 1.951 | ． 154 | ． 188 | ． 034 | ． 819 | ． 025 | ． 0095 | 51026 |
| ． 104 | 1.828 | ． 145 | ． 175 | ． 030 | ． 829 | ． 022 | －C095 | 47809. |
| ． 102 | 1.793 | ． 135 | ． 165 | ． 030 | ． 818 | ． 020 | ． 0089 | 46889 |
| ． 096 | 1.687 | ． 125 | ． 150 | ． 025 | ． 833 | ． 019 | ． 0097 | 44131 |
| ． 094 | 1.652 | ． 119 | ． 145 | ． 026 | ． 821 | ． 016 | － C 087 | 43212. |
| ． 086 | 1.511 | －100 | ． 120 | ． 020 | ． 833 | ． 015 | ． 0098 | 3953 |
| ． 074 | 1.300 | ． 080 | ． 093 | .013 | ． 86 | ． 013 | .0113 | 34018 。 |
| ADEA | RATIC＝ | ． 451 | HOLE | DIAMET | $R=.31$ |  | $S / D=$ | 929 |
| HOLE | NO．$=48$ | ． 000 | KINE． | VISC．$=$ | ． 00001 |  |  |  |


| Q | $\checkmark$ | P1 | P5 | P5－P1 | P1／P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ． 130 | 2.285 | ． 885 | ． 927 | ． 042 | ． 955 | ． 039 | ． 0108 | 59935 |
| ． 126 | 2.214 | ． 813 | ． 854 | ． 041 | ． 952 | ． 035 | ． 0104 | 58091. |
| ． 12 ！ | 2.109 | ． 749 | ． 792 | ． 043 | － 946 | ． 026 | ． 0085 | 55325 |
| ． 116 | 2.039 | ． 683 | － 723 | ． 040 | ． 945 | －025 | ． 0085 | 53481 |
| .110 | 1.933 | ． 619 | ． 656 | ． 037 | ． 944 | ． 021 | ． 0081 | 50715 |
| ． 10.3 | 1.810 | ． 552 | ． 587 | ． 035 | ． 940 | ． 016 | － 0070 | 4748 |
| －098 | 1.722 | ． 479 | － 510 | ． 031 | ． 939 | .015 | ． 0073 | 45182． |
| －09？ | 1．6！7 | ． 429 | ． 458 | ． 029 | ． 937 | － 012 | ． 0064 | 42416 |
| ． 085 | 1．494 | ． 371 | ． 396 | ． 025 | ． 937 | ． 010 | ． 0062 | 39180. |
| － 78 | 1.371 | － 310 | ． 331 | ． 021 | ． 937 | －008 | ． 0063 | 35961 |
| ． 069 | 1.213 | － 227 | ． 243 | ． 016 | － 934 | ． 007 | ． 0067 | 31812 |


| AREA RATI $=$ | .225 | HCLE DIAMETER $=.313$ | $S / D=1.858$ |
| :--- | :--- | :--- | :--- | :--- |
| HSLE NO. $=24.000$ | KINE. VISC. $=.000 \cup 1026$ |  |  |


| Q | $V$ | P1 | P5 | P5-P1 | P1/P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .104 | 1.828 | 2.209 | 2.239 | . 030 | . 987 | - 022 | - 0095 | 47948. |
| .100 | 1.757 | 2.010 | 2.038 | . 028 | . 986 | . 02 C | . 0093 | 46104. |
| . 096 | ].687 | 1.834 | 1.858 | . 024 | . 987 | - 220 | . 0103 | 44260. |
| .098 | 1.582 | 1.615 | 1.635 | . 027 | . 988 | - 019 | . 0109 | 41494. |
| . 084 | 1.476 | 1.402 | 1.419 | .017 | . 988 | .017 | . 0112 | 38728. |
| .077 | 1.353 | 1.205 | 1.219 | .014 | . 989 | . 014 | . 0114 | 35500. |
| .071 | 1.248 | 1.028 | 1.039 | .011 | . 989 | - .13 | - C122 | 32734. |
| .063 | 1.107 | . 8 C4 | . 814 | .010 | . 988 | . 009 | - 0106 | 29046. |
| . 057 | 1.002 | . 612 | .619 | .007 | . 989 | . 009 | . 0124 | 26279 |
| . 048 | . 844 | . 412 | . 416 | . 004 | . 990 | . 007 | . 0143 | 22130 |
| . 035 | . 615 | . 191 | .193 | . 002 | . 990 | . 004 | . 0148 | 16136. |
| APEA | RATIS= | . 150 | HEL | DIAM | = $\cdot 3$ |  | $S / 0=$ | 786 |
| H®LE | 10. $=16$ | . 00 C | KINE | VISC. | .000 u |  |  |  |


| $Q$ | $V$ | $P 1$ | $P 5$ | $P 5-P 1$ | $P 1 / P 5$ | $H L$ | $F$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .082 | 1.441 | 3.185 | 3.199 | .014 | .996 | .018 | .0127 | 37477. |
| .078 | 1.371 | 2.869 | 2.881 | .012 | .996 | .017 | .0132 | 35649. |
| .076 | 1.336 | 2.626 | 2.637 | .011 | .996 | .017 | .0135 | 34735. |
| .072 | 1.265 | 2.345 | 2.355 | .010 | .996 | .015 | .0134 | 32906. |
| .066 | 1.160 | 2.010 | 2.019 | .009 | .996 | .012 | .0128 | 30164. |
| .059 | $1 . C 37$ | 1.583 | 1.589 | .006 | .996 | .011 | .0144 | 26965. |
| .053 | .931 | 1.272 | 1.277 | .005 | .996 | .008 | .0141 | 24223. |
| .046 | .808 | .997 | 1.001 | .004 | .996 | .006 | .0136 | 21024. |
| $.04 C$ | $.7 C 3$ | .640 | .644 | .004 | .994 | .004 | .0107 | 18281. |
| .028 | .492 | .266 | .269 | .003 | .989 | .000 | .0045 | 12797. |
| AOEA RATIS= | .113 | HCLE DIAMETER $=.0313$ | $S / D=$ | 3.715 |  |  |  |  |
| HOLF NS. $=$ | 12.010 | KINF. | VISC. $=.00061045$ |  |  |  |  |  |


| 0 | $V$ | $P 1$ | $P 5$ | $P 5-P 1$ | $P 1 / P 5$ | $H L$ | $F$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .067 | 1.177 | 3.677 | 3.686 | .009 | .998 | .013 | .0131 | 30328. |
| .064 | 1.125 | 3.374 | 3.382 | .008 | .998 | .012 | .0133 | 28970. |
| .061 | 1.072 | 2.923 | 2.930 | .007 | .998 | .011 | .0136 | 27612. |
| .058 | 1.019 | 2.670 | 2.676 | .006 | .998 | .010 | .0141 | 26254. |
| .054 | .949 | 2.219 | 2.224 | .005 | .998 | .009 | .0144 | 24444. |
| .050 | .879 | 1.888 | 1.892 | .004 | .998 | .008 | .0149 | 22633. |
| .045 | .791 | 1.526 | 1.529 | .003 | .998 | .007 | .0155 | 20370. |
| .040 | .703 | 1.194 | 1.197 | .003 | .997 | .005 | .0137 | 18106. |
| .032 | .562 | .656 | .658 | .002 | .997 | .003 | .0133 | 14485. |
| .026 | .457 | .324 | .325 | .001 | .997 | .002 | .0155 | 11769. |


| AREA | RATIC= | . 075 | HCLE | DIAME TER $=0.313$ | $S / D=$ | 5.573 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HCLE | NO. $=$ | 8.000 | KINE. | VISC. $=.00001050$ |  |  |


| 0 | $\checkmark$ | P1 | P5 | P5-P1 | P1/Ps | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 050 | . 879 | 3.989 | 3.994 | . 005 | . 999 | . 007 | . 0131 | 22525. |
| . 047 | . 826 | 3.469 | 3.473 | . 004 | . 999 | - 007 | . 0140 | 21174. |
| . 044 | . 773 | 2.957 | 2.960 | . 003 | . 999 | . 006 | . 0152 | 19822. |
| . 039 | . 685 | 2.374 | 2.377 | . 003 | . 999 | . 004 | .0132 | 17570. |
| . 034 | . 598 | 1.882 | 1.884 | . 002 | . 999 | . 004 | . 0143 | 15317 。 |
| . 029 | . 510 | 1.294 | 1.296 | . 002 | . 998 | . 002 | .0113 | 13065. |
| . 024 | - 422 | . 729 | . 730 | . 001 | . 999 | . 002 | . 0143 | 10812. |
| . 016 | . 281 | . 298 | . 298 | 0.000 | 1.000 | . 001 | . C 224 | 7208 |
| AREA | RATIO= | 1.294 | HELE | DIAME | $\mathrm{R}=.3$ |  | $S / D=$ | . 465 |
| HOLE | Nこ. $=9$ | 6.000 | KINE. | VISC. | . 0000 |  |  |  |


| Q | $\checkmark$ | P1 | P5 | P5-P1 | P1/P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 141 | 2.478 | .133 | . 188 | . 055 | . 707 | - 040 | . 0095 | 64442 |
| . 137 | 2.408 | . 125 | .179 | . 054 | . 698 | . 036 | . 0090 | 62614. |
| . 134 | 2.355 | . 119 | .171 | . 052 | . 696 | - 34 | . 0089 | 61242. |
| . 136 | 2.285 | . 115 | . 163 | . 048 | . 706 | . 033 | . 0091 | 59414 |
| . 126 | 2.214 | . 110 | . 155 | . 045 | . 71 u | . 031 | .0092 | 57586 |
| . 124 | 2.179 | .105 | . 150 | . 045 | . 706 | . 029 | .0087 | 56672 |
| . 121 | 2.126 | . 100 | . 142 | . 042 | . 704 | . 028 | -.090 | 55301 |
| . 117 | 2.656 | . 196 | .137 | . 041 | . 701 | . 025 | . 0084 | 53473 |
| . 112 | 1.968 | . 690 | . 125 | . 035 | . 72 J | . 025 | .0094 | 51188 |
| . 108 | 1.898 | . 085 | .118 | . 033 | . 72 V | . 023 | . C 092 | 4936 |
| . 106 | 1.863 | . 081 | . 114 | . 033 | . 711 | . 021 | . 0087 | 4844 |
| . 098 | 1.722 | . 073 | .101 | . 028 | . 723 | .018 | . 0088 | 47 |
| . 091 | 1.599 | . 066 | . 091 | . 025 | . 725 | . 015 | .0083 | 41590 |
| . 088 | 1.546 | . 062 | . 082 | . 020 | . 756 | . 017 | . 0104 | 40219 |
| . 087 | 1.529 | . 660 | . 082 | . 022 | . 732 | . 014 | . 0088 | 39762 |
| APEA | RATIO= | . 647 | HELE | DIAME | $\mathrm{R}=.3$ |  | $S / D=$ | . 929 |
| HoLE | NO. $=48$ | 000 | KINE. | VISC. $=$ | . 0000 |  |  |  |


| Q | V | P 1 | P 5 | $\mathrm{P} 5-\mathrm{P} 1$ | $\mathrm{P} 1 / P 5$ | HL | F | R |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .137 | 2.408 | .480 | .534 | .054 | .899 | .036 | .0090 | 63163. |
| .133 | 2.337 | .445 | .496 | .051 | .897 | .034 | .0080 | 61319. |
| .126 | 2.214 | .405 | .450 | .045 | .900 | .031 | .0092 | 58091. |
| .125 | 2.109 | .363 | .402 | .039 | .903 | .030 | .0098 | 55325. |
| .115 | 2.021 | .337 | .375 | .038 | .899 | .025 | .0090 | 53020. |
| .110 | 1.933 | .304 | .339 | .035 | .897 | .023 | .0089 | 50715. |
| .106 | 1.863 | .288 | .320 | .032 | .90 | .022 | .0091 | 43870. |
| .102 | 1.793 | .263 | .288 | .025 | .913 | .025 | .0112 | 47026. |
| .098 | 1.722 | .245 | .274 | .029 | .894 | .017 | .0083 | 45182. |


| . 092 | 1.617 | 7.219 | . 244 | . 025 | . 898 | . 016 | . 0086 | 42416. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 086 | 1.511 | 1.191 | . 212 | . 021 | . 901 | . 014 | . 0092 | 39650. |
| . 079 | 1.38i | - .160 | .176 | . 016 | . 909 | .014 | . 0104 | 36422. |
| . 073 | 1.283 | 3.143 | . 158 | . 015 | . 905 | . 011 | . 0093 | 33656. |
| . 062 | 1.090 | C . 110 | . 120 | . 010 | . 917 | . 008 | . 0103 | 28585. |
| . 053 | . 931 | 1.081 | . 089 | . 008 | . 910 | -003 | . 0091 | 24 |
| . 044 | . 773 | 3.060 | . 066 | . 006 | . 909 | . 003 | .0079 | 20286. |
| ADEA | RATIO= | . 323 | HCLE | DIAMET | $\mathrm{R}=.3$ |  | $S / D=$ | 1.858 |
| H~LF | Nこ. $=2$ | 24.000 | KINE。 | VISC. $=$ | . 00001 |  |  |  |



| $\cap$ | $V$ | $P 1$ | $P 5$ | $P 5-P 1$ | $P 1 / P 5$ | $H L$ | $F$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .100 | 1.757 | 2.495 | 2.521 | .026 | .99 | .022 | .0103 | 46927. |
| .096 | 1.687 | 2.323 | 2.346 | .023 | .990 | .021 | .0108 | 45050. |
| .096 | 1.687 | 2.377 | 2.400 | .023 | .990 | .021 | .0108 | 45050. |
| .094 | 1.652 | 2.227 | 2.248 | .021 | .991 | .021 | .0113 | 44112. |
| .092 | 1.617 | 2.110 | 2.130 | .020 | .991 | .021 | .0114 | 43173. |
| .090 | 1.582 | 2.135 | 2.052 | .017 | .992 | .022 | .0126 | 42235. |
| .087 | 1.529 | 1.910 | 1.925 | .015 | .992 | .021 | .0132 | 40827. |
| .084 | 1.470 | 1.798 | 1.815 | .017 | .991 | .017 | .0112 | 39419. |
| .082 | 1.441 | 1.685 | 1.698 | .013 | .992 | .019 | .0134 | 38481. |
| .078 | 1.371 | 1.521 | 1.535 | .014 | .991 | .015 | .0117 | 36603. |
| .070 | 1.230 | 1.244 | 1.256 | .012 | .990 | .011 | .0110 | 32849. |
| .064 | 1.125 | 1.23 | 1.033 | .010 | .990 | .010 | .0110 | 30034. |
| .059 | 1.037 | .877 | .885 | .008 | .991 | .009 | .0117 | 27687. |
| .050 | .879 | .627 | .634 | .007 | .989 | .005 | .0093 | 23464. |
| .038 | .668 | .352 | .356 | .004 | .989 | .003 | .0095 | 17832. |
| .032 | .562 | .232 | .235 | .003 | .987 | .002 | .0087 | 15017. |


| ADEA RATIC $=$ | .162 | HCLE DIAMETER $=.375$ | $S / D=3.715$ |
| :--- | :--- | :--- | :--- | :--- |
| HCLE NC．$=12.000$ | KINE．VISC．$=.000 \cup 1 C U 0$ |  |  |


| Q | V | P1 | P5 | P5－P1 | P1／P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ． 086 | 1.511 | 3.106 | 3.120 | ． 014 | ． 996 | .021 | .0136 | 40681. |
| ． 082 | 1.441 | 2.809 | 2.821 | ． 012 | .996 | ． 020 | .0141 | 38788. |
| ． 078 | 1.371 | 2.581 | 2.592 | .011 | ． 996 | .018 | .0140 | 36896. |
| .075 | 1.318 | 2.390 | 2.400 | .010 | .996 | .017 | .0141 | 35477 。 |
| .072 | 1.265 | 2.184 | 2.191 | ． 007 | ． 997 | ． 018 | .0161 | 34058 。 |
| .067 | 1.177 | 1.885 | 1.894 | ． 009 | ． 995 | .013 | .0131 | 31693. |
| .064 | 1.125 | 1.682 | 1.690 | ． 008 | ． 995 | ． 012 | .0133 | 30274. |
| ． 058 | 1.019 | 1.420 | 1.431 | .011 | ． 992 | .005 | .0071 | 27436. |
| .055 | ． 967 | 1.260 | 1.269 | .009 | ． 993 | ． 006 | .0085 | 26017 。 |
| .050 | .879 | 1.027 | 1.033 | .006 | ． 994 | － 006 | .0112 | 23651. |
| .045 | .791 | .791 | .795 | ． 004 | ． 995 | ． 006 | .0132 | 21286. |
| ． 037 | ． 650 | ． 565 | ． 567 | .002 | ． 996 | ． 005 | .0156 | 17502. |
| .030 | ． 527 | － 349 | ． 310 | ． 001 | ． 997 | ． 003 | .0172 | 14191. |
| ． 025 | .439 | ． .218 | ． 219 | ． $0 \cup 1$ | ． 995 | .002 | .0149 | 11826. |
| ADEA RA | RATI $=$ | ． 108 | HCLE | DIAME | $=.3$ |  | $S / D=$ | 572 |
| HOLE | NC．$=$ | 8.000 | KINE． | VISC． | ． 0000 |  |  |  |


| Q | $V$ | P1 | P5 | P5－P1． | P1／P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .067 | 1.054 | 3.560 | 3.566 | ． 006 | ． 998 | .011 | .0146 | 28212. |
| .058 | 1.019 | 3． 210 | 3．215 | .005 | ． 998 | － 011 | .0155 | 2727？． |
| ． 056 | ． 984 | 2.908 | 2.912 | ． 004 | ． 999 | ． 011 | ． 0165 | 26332. |
| .052 | ． 914 | 2.546 | 2.549 | ． 003 | ． 999 | ． 010 | .0172 | 24451 |
| .048 | ． 844 | 2.105 | 2.108 | .003 | ． 999 | ． 008 | .0163 | 22570. |
| ．$\cup 43$ | ． 756 | 1．702 | 1.704 | .002 | ． 999 | .007 | ． 0174 | 20219. |
| .036 | ． 633 | 1.206 | 1.207 | ． 001 | ． 999 | ． 005 | ． 0188 | 16927. |
| ． 029 | ． 510 | ． 760 | ． 760 | 0.000 | 1.00 u | ． 004 | ．$U 224$ | 13636. |
| AREA RA | RATI $=$ | 1.294 | HCLE | DIAME | ＝$\cdot 3$ |  | $S / D=$ | ． 929 |
| HOLF | NO．$=96$ | .000 | KINE． | VISC． | ． 0000 |  |  |  |


| 0 | $V$ | $P 1$ | $P 5$ | $P 5-P 1$ | $P 1 / P 5$ | $H L$ | $F$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .143 | 2.513 | .104 | .167 | .063 | .623 | .035 | .0080 | 66709. |
| .137 | 2.408 | .095 | .153 | .058 | .621 | .032 | .0080 | $63910 \cdot$ |
| .132 | 2.320 | .089 | .142 | .053 | .627 | .031 | .0082 | $61578 \cdot$ |
| .130 | 2.285 | .082 | .134 | .052 | .612 | .029 | .0080 | $60645 \cdot$ |
| .127 | 2.232 | .081 | .130 | .049 | .623 | .028 | .0082 | 59245. |
| .123 | 2.162 | .075 | .120 | .045 | .625 | .028 | .0085 | $57379 \cdot$ |
| .119 | 2.091 | .070 | .113 | .043 | .619 | .025 | .0082 | 55513. |


| . 112 | 1.968 | . 063 | . 100 | . 037 | . 630 | . 023 | . 0086 | 52248 . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .110 | 1.933 | . 058 | .093 | . 035 | . 624 | . 023 | . 0089 | 51315. |
| . 106 | 1.863 | . 055 | . 089 | . 034 | .618 | . 020 | . 0083 | 49449 . |
| . 098 | 1.722 | . 048 | . 075 | . 027 | . 640 | . 019 | . 0093 | 45717. |
| . 092 | 1.617 | . 040 | . 065 | . 025 | . 615 | . 016 | . 0086 | 42918 |
| . 082 | 1.441 | . 029 | . 048 | . 019 | . 604 | .013 | . 0092 | 38253 |
| . 070 | 1.230 | . 016 | . 030 | . 014 | . 533 | . 009 | . 0091 | 32655. |
| . 054 | . 949 | .010 | . 016 | . 006 | .625 | . 008 | . 0128 | 2519 |
| AREA | RATIこ= | . 647 | HCLE | DIAMET | R $=.37$ |  | $S / D=$ | 1.858 |
| HALLE | NO. $=48$ | . 000 | KINE. | VISC. $=$ | . 00001 |  |  |  |


| Q | $\checkmark$ | P1 | P5 | P5-P1 | P1/P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 137 | 2.408 | 8.452 | . 515 | . 063 | . 878 | . 027 | . 0067 | 63910. |
| . 133 | 2.337 | 7.421 | . 474 | . 053 | . 888 | . 032 | . 0084 | 62044 |
| . 130 | 2.285 | 5.409 | . 458 | . 049 | . 893 | . 032 | . 0089 | 60645. |
| . 124 | 2.179 | 9.375 | . 419 | . 044 | . 895 | . 030 | . 0090 | 57846 |
| . 120 | 2.109 | 9.341 | - 383 | . 042 | . 89. | . 027 | . 0088 | 55980. |
| .115 | 2.021 | 1.315 | . 355 | . 040 | . 887 | . 023 | . 0083 | 53647. |
| . 112 | 1.968 | 8.298 | - 335 | . 037 | . 890 | . 023 | . 0086 | 52248. |
| .106 | 1.863 | 3.267 | - 300 | . 033 | . 890 | . 021 | . 0087 | 49 |
| . 101 | 1.775 | 5 . 242 | - 270 | . 028 | . 896 | . 021 | . 0096 | 47116. |
| .095 | 1.674 | - 212 | . 238 | . 026 | . 891 | . 017 | . 0090 | 44317 |
| . 488 | 1.546 | 6.180 | . 202 | . 022 | . 891 | . 015 | . 0091 | 41052. |
| . 080 | 1.406 | 6.146 | . 164 | . 018 | . 890 | . 013 | . 0093 | 37320. |
| . 072 | 1.265 | -114 | .126 | . 012 | . 905 | .013 | .0116 | 33588 |
| . 063 | 1.107 | 7.091 | . 099 | . 008 | . 919 | . 011 | .0130 | 29389. |
| . 054 | . 949 | 9. 065 | . 069 | . 004 | . 942 | . 010 | . 0160 | 25191. |
| APEA R | RATIO= | . 431 | $\begin{aligned} & \text { HCLE DIAMETER }=.375 \\ & \text { KINE. VISC. }=.000 \cup 1010 \end{aligned}$ |  |  |  | $S / D=$ | 2.786 |
| HOLE N | NC. $=32$ | 32.000 |  |  |  |  |  |  |


| Q | $\checkmark$ | P1 | P5 | P5-P 1 | P1/P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 128 | 2.249 | . 998 | $1 . \cup 44$ | . 046 | . 956 | . 033 | . 0093 | 59948 |
| . 122 | 2.144 | . 889 | .931 | . 042 | . 955 | . 029 | . 0092 | 5713 |
| . 116 | 2.039 | . 808 | . 847 | . 039 | . 954 | . 026 | . 0089 | 54328 |
| .111 | 1.951 | . 742 | . 779 | . 037 | . 953 | . 022 | . 0084 | 51986 |
| . 109 | 1.916 | .706 | . 739 | . 033 | . 955 | . 024 | . 0094 | 51050 |
| .104 | 1.828 | . 648 | . 677 | . 029 | . 957 | . 023 | . 0099 | 48708 |
| . 100 | 1.757 | . 605 | . 631 | . 026 | . 959 | . 022 | . 0103 | 46835 |
| . 094 | 1. 652 | . 523 | . 546 | . 023 | . 958 | . 019 | . 0103 | 4 |
| . 688 | 1.546 | . 456 | . 477 | . 021 | . 956 | . 016 | . 0097 | 4121 |
| . 081 | 1.423 | . 381 | . 399 | . 018 | - 955 | . 013 | . 0096 | 379 |
| . 675 | 1.318 | . 311 | - 325 | . 014 | . 957 | .013 | .0108 | 35126 |
| . 064 | 1.125 | . 227 | . 237 | . 010 | . 958 | . 010 | .0110 | 29974 |
| . 057 | 1.002 | . 177 | -183 | . 006 | . 967 | . 010 | . 0138 | 26696 |
| . 648 | .844 | -117 | -120 | . 003 | . 975 | . 008 | . 1163 | 22481 |
| . 04 C | . 703 | . 077 | . 079 | . 002 | . 975 | . 006 | . 0166 |  |


| AREA | RATIC= | . 323 | HOLE | DIAMETER | $=.375$ | $S / D=$ | 3.715 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HתLE | NO. $=$ | 24.000 | KINE. | VISC. $=$. | 00001010 |  |  |


| Q | V | P1 | P5 | P5-P 1 | P1/P5 | HL | F | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 118 | 2.074 | 1.525 | 1.565 | .040 | . 974 | . 027 | . 0090 | 55265. |
| .115 | 2.02 .1 | 1.425 | 1.462 | . 037 | . 975 | . 026 | . 0093 | 53860. |
| . 111 | 1.951 | 1.335 | 1.369 | . 034 | . 975 | . 025 | . 0095 | 51986. |
| . 106 | 1.863 | 1.198 | 1.727 | . 029 | . 976 | . 025 | . 0104 | 49645. |
| . 102 | 1.793 | 1.115 | 1.141 | . 026 | . 977 | . 024 | . 0107 | 4777 |
| . 098 | 1.722 | 1.015 | 1.038 | . 023 | . 978 | . 023 | . 0112 | 45898. |
| . 095 | 1.670 | . 948 | . 970 | . 022 | . 977 | . 021 | . 0110 | 44493. |
| .088 | 1.546 | . 813 | .833 | . 020 | . 976 | . 017 | .0104 | 41 |
| .082 | 1.441 | -7u0 | . 718 | . 018 | . 975 | . 014 | .0099 | 384 |
| . 075 | 1.318 | . 585 | . 600 | . 015 | . 975 | . 012 | . 0100 | 35126. |
| . 068 | 1.195 | . 473 | . 485 | . 012 | . 975 | . 010 | . 0103 | 31848. |
| . 060 | 1.054 | . 365 | . 375 | . 010 | . 973 | . 007 | . 0094 | 281 |
| . 049 | . 861 | . 230 | . 235 | . 005 | . 979 | . 007 | . 0127 | 22949. |
| . 040 | . 703 | . 142 | . 146 | . 004 | . 973 | . 004 | .0107 | 18734. |
| . 032 | . 562 | -C94 | . 096 | . 002 | . 979 | . 003 | . 0133 | 14987 . |
| - AREA RA | RAT10= | . 216 | HOLE | DIAME | = • 3 |  | $S / D=$ | 573 |
| HOLE | NO. $=36$ | . 00 | KINE. | VISC. | . 00001 |  |  |  |


| $Q$ | $V$ | $P 1$ | $P 5$ | $P 5-P 1$ | $P 1 / P 5$ | $H L$ | $F$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .099 | 1.740 | 2.471 | 2.500 | .029 | .988 | .018 | .0086 | 45732. |
| .094 | 1.652 | 2.235 | 2.260 | .025 | .989 | .017 | .0092 | 43423. |
| .091 | 1.599 | 2.042 | 2.065 | .023 | .989 | .017 | .0094 | 42037. |
| .083 | 1.459 | 1.727 | 1.747 | .020 | .989 | .013 | .0089 | 38341. |
| .075 | 1.318 | 1.395 | 1.412 | .017 | .988 | .010 | .0083 | 34646. |
| .071 | 1.248 | 1.217 | 1.231 | .014 | .989 | .010 | .0094 | 32798. |
| .065 | 1.142 | 1.040 | 1.050 | .010 | .990 | .010 | .0114 | 30026. |
| .058 | 1.019 | .823 | .831 | .008 | .994 | .008 | .0113 | 26793. |
| .054 | .949 | .688 | .694 | .006 | .991 | .008 | .0128 | 24945. |
| .047 | .826 | .515 | .519 | .004 | .992 | .007 | .0140 | 21711. |
| .039 | .685 | .356 | .359 | .003 | .992 | .004 | .0132 | 18016. |
| .030 | .527 | .171 | .172 | .001 | .994 | .003 | .0172 | 13858. |
| .023 | .404 | .092 | .092 | 0.000 | $1.00 U$ | .003 | .0224 | 10625. |

## APPENDIX V

COMPARISON OF OVERALL HEAD LOSS AS CALCULATED
BY THE MCDIFIED METHOD OF ENGER AND LEVY, THE MOMENTUM METHOD, AND THE ENERGY METHOD



| Q | MODIFIED METHCD | MCMENTUM METHOD | ENERGY METHCD |
| :--- | :---: | :---: | :---: |
| .104 | .022 | .022 | .022 |
| .100 | .020 | $.020 \cdot$ | .020 |
| .096 | .020 | .020. | .020 |
| .090 | .019 | .019. | .019 |



AV EXPERIIMTTAL SMUDY OF HEAD LOSS AND PRESSUPE RECOVERY IN PEPFORATED PIPES
by

## WEN-ESIUNG CHIU

B. S., Taiman Provincial Cheng-Kung University, 1962

- AN ABSTRACT

OF A MASTERS THESIS
subritted in partiel fulfillment of the
requiremonts for the degree

MASTER OF SCIENGE

Dopartment of Civil Engineoring

KANSAS STATE UIIVERSITY
Manhatian, Kansas
1967

For yoars, the study of the uniform distribution of discharged fluid and the head loss elong the manifold pipe has attractod the interest of many investigators. As the flow characteristics of perforated pipe involve complexitios by reason of several uncertain factors, such as variable coefficient of discharge, velocity head factor, efficiency of convorsion of linetic energy to pressure energy, and friction factor. The author has studied the problem by combining results of experiments and of simplified analysis. The perforated pipe was considered as a continuous, uniform, and homogeneous unit, and treated as a simple pipo. Experiments mere conducted to deternine the effect of the Reynolds number at the inlet ond of the perforated pipe and ratio of area of the holos to the pipe cross sectional area on the overall head loss and prossure recovery. Three mothods of analysis, nomely the modified method of Enger and Lery, the monentum mothod, and the onergy mothod, have been employed in this study. Theso motiods are helpful in the practical design of a perforated pipe with evenly spaced outlets on one side or on each side.

Approcimately uniforn distribution of discharged fluid may bo secured from a perforatod pipe with holes of equal size and equal spacing if the total area of holes is small in relation to the cross sectional area of the pipe and if the pipe is of large diamoter in relation to its length. It was found from this study, that the uniformity of 99 por cont can be secured when the area ratio is less than 0.200 for both one row of holes and two rows of holes; that tho unifornity of 90 por cent can bo obtained whon the area ratio is less than 0.67 and 0.62 for one row of holes and two rows of holos respectively.

