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Abstract 

A major challenge for 21st century plant geneticists is to predict plant 

performance based on genetic information.  This is a daunting challenge, especially 

when there are thousands of genes that control complex traits as well as the extreme 

variation that results from the environment where plants are grown.  Rapid advances in 

technology are assisting in overcoming the obstacle of connecting the genotype to 

phenotype.  Next generation sequencing has provided a wealth of genomic information 

resulting in numerous completely sequenced genomes and the ability to quickly 

genotype thousands of individuals. 

The ability to pair the dense genotypic data with phenotypic data, the observed 

plant performance, will culminate in successfully predicting cultivar performance.  While 

genomics has advanced rapidly, phenomics, the science and ability to measure plant 

phenotypes, has slowly progressed, resulting in an imbalance of genotypic to 

phenotypic data.  The disproportion of high-throughput phenotyping (HTP) data is a 

bottleneck to many genetic and association mapping studies as well as genomic 

selection (GS).   

To alleviate the phenomics bottleneck, an affordable and portable phenotyping 

platform, Phenocart, was developed and evaluated.  The Phenocart was capable of 

taking multiple types of georeferenced measurements including normalized difference 

vegetation index and canopy temperature, throughout the growing season.  The 

Phenocart performed as well as existing manual measurements while increasing the 

amount of data exponentially.  The deluge of phenotypic data offered opportunities to 

evaluate lines at specific time points, as well as combining data throughout the season 



to assess for genotypic differences.  Finally in an effort to predict crop performance, the 

phenotypic data was used in GS models.  The models combined molecular marker data 

from genotyping-by-sequencing with high-throughput phenotyping for plant phenotypic 

characterization.  Utilizing HTP data, rather than just the often measured yield, 

increased the accuracy of GS models.  

Achieving the goal of connecting genotype to phenotype has direct impact on 

plant breeding by allowing selection of higher yielding crops as well as selecting crops 

that are adapted to local environments.  This will allow for a faster rate of improvement 

in crops, which is imperative to meet the growing global population demand for plant 

products. 
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Abstract 

A major challenge for 21st century plant geneticists is to predict plant 

performance based on genetic information.  This is a daunting challenge, especially 

when there are thousands of genes that control complex traits as well as the extreme 

variation that results from the environment where plants are grown.  Rapid advances in 

technology are assisting in overcoming the obstacle of connecting the genotype to 

phenotype.  Next generation sequencing has provided a wealth of genomic information 

resulting in numerous completely sequenced genomes and the ability to quickly 

genotype thousands of individuals. 

The ability to pair the dense genotypic data with phenotypic data, the observed 

plant performance, will culminate in successfully predicting cultivar performance.  While 

genomics has advanced rapidly, phenomics, the science and ability to measure plant 

phenotypes, has slowly progressed, resulting in an imbalance of genotypic to 

phenotypic data.  The disproportion of high-throughput phenotyping (HTP) data is a 

bottleneck to many genetic and association mapping studies as well as genomic 

selection (GS).   

To alleviate the phenomics bottleneck, an affordable and portable phenotyping 

platform, Phenocart, was developed and evaluated.  The Phenocart was capable of 

taking multiple types of georeferenced measurements including normalized difference 

vegetation index and canopy temperature, throughout the growing season.  The 

Phenocart performed as well as existing manual measurements while increasing the 

amount of data exponentially.  The deluge of phenotypic data offered opportunities to 

evaluate lines at specific time points, as well as combining data throughout the season 



to assess for genotypic differences.  Finally in an effort to predict crop performance, the 

phenotypic data was used in GS models.  The models combined molecular marker data 

from genotyping-by-sequencing with high-throughput phenotyping for plant phenotypic 

characterization.  Utilizing HTP data, rather than just the often measured yield, 

increased the accuracy of GS models.  

Achieving the goal of connecting genotype to phenotype has direct impact on 

plant breeding by allowing selection of higher yielding crops as well as selecting crops 

that are adapted to local environments.  This will allow for a faster rate of improvement 

in crops, which is imperative to meet the growing global population demand for plant 

products. 
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Preface 

The world’s population is expected to reach 9.7 billion by 2050 and surpass 11 

billion by 2100 (United Nations, Department of Economic and Social Affairs, 2015).  

From 2010-2060, the global population will consume more food than has been 

consumed in the past 10,000 years (James, 2010).  To meet this challenge it is 

predicted that global agricultural output must double by 2050 (Ray et al., 2013).  While 

the task may be daunting, it is not the first time that agricultural scientists have been 

mustered to the challenge.  For example, from The Population Bomb, a popular book in 

the 1960’s: 

The battle to feed all of humanity is over.  In the 1970’s the 

world will undergo famines—hundreds of millions of people 

are going to starve to death in spite of any crash programs 

embarked upon now (Ehrlich, 1968). 

Fortunately such dire predictions failed in response to a “Green Revolution” 

spearheaded by Nobel Laureate Norman Borlaug (Quinn, 2009).  In fact India actually 

produced enough grains to be self sufficient during the 1970’s (Kapila, 2009), during the 

exact decade that Ehrlich predicted mass starvation.   

While many people are familiar with the work and significance of Norman 

Borlaug, they are often less familiar with the research and innovation that allowed 

Borlaug to be successful.  Directly and indirectly agricultural scientists had been quietly 

working for years to improve the lives of their fellow man in all facets of agriculture.  

While a review of all the researchers and contributions to humanity would be far beyond 

the scope of a preface, the work of a few people should be noted.  William and Charles 
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Saunders worked effortlessly, over twenty years, to develop a new variety of wheat 

called Marquis, the progeny of Hard Calcutta and Red Fife.  Marquis was an early 

ripening wheat, which was a necessity for northern climates in Canada, but it was also 

had excellent baking and milling properties (de Kruif, 1928).  Marquis would find 

success in commercial production, but Edgar McFadden would make an improbable 

cross with Marquis and emmer in 1916 resulting in Hope, both literally and figuratively 

(Ebert, 2014).  Hope wheat provided rust resistance that would be instrumental for 

Norman Borlaug and his success.   

Who generated the idea to cross emmer and wheat in the early 1900’s?  The 

answer would belong to a verdadero Kansas State Wildcat Alum Mark A. Carleton who 

suggested in 1901 emmer would be extremely important for improving commercial 

wheat varieties (Babcok, 1940).  Carleton exerted a towering presence in the world of 

wheat at the turn of the 20th century.  Single handedly, he established a durum wheat 

industry in the US worth over $30,000,000 in grain production in 1907, equivalent to 

$735,000,000 today.  While he influenced durum wheat in the Dakotas, he also 

introduced Kharkov wheat, which had immense success in the Great Plains and Kansas 

(de Kruif, 1928).   

The challenge to meet food production has been met time and time again by 

scientist with determination to do the impossible.  Today’s challenge to provide for the 

coming nine billion people will be solved with the same determination as Borlaug, 

McFadden, Saunders, and Carleton displayed.  In the words of Borlaug (2007) “Those 

of us on the food front still have a big job ahead of us. So let’s get on with the job.”  
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Chapter 1 - A match made in heaven—Genomics and Phenomics 

The genomics era has long promised to revolutionize the field of plant breeding.  

In the 1980’s, it was suggested that dense genetic maps could be made with restriction 

fragment length polymorphisms (RFLPs) leading to increased efficiency in manipulating 

agriculturally important traits (Beckmann and Soller, 1986).  By the mid 2000’s, several 

authors have reported that the promise of molecular markers has fallen short of it 

anticipated goal (Bernardo, 2008; Xu and Crouch, 2008).  A myriad of reasons underpin 

the limited success of exploiting genomic markers for improved plant breeding.  One of 

the largest factors is that reported molecular markers for a trait must be validated in a 

breeding population of interest, which is often different from the experimental population 

used to identify the marker.  Once a marker is validated in a breeding population, an 

affordable efficient assay must be developed to screen for the maker (Xu and Crouch, 

2008).  A large number of markers, hundreds or thousands, should also be available 

which is well beyond the capacity of traditional markers like RFLPs (Luikart et al., 2003).  

Additionally, accurate phenotyping has been implicated as hampering genetic progress 

both in identifying significant marker trait associations as well as the predicting gene to 

phenotype associations (Campos et al., 2004; Xu and Crouch, 2008). 

Technology has provided breakthroughs to the problems of the last century, as 

DNA sequencing methods have increased exponentially.  Next generation sequencing 

methods, commercially available since 2004, provide massively parallel, high 

throughput genotyping capabilities (Mardis, 2008).  Today, the cost of sequencing the 

human genome is rapidly closing in on $1,000 (Wetterstrand, 2016) compared to 13 

years and $3 billion dollars for the first human genome sequence completed in 2003 
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(Lange et al., 2014).  Agriculturists have been quick to leverage these new technologies 

for genomic studies as well as plant breeding purposes.   

One of the most popular methods in plant genomics is genotyping-by-sequencing 

(GBS).  GBS simplifies marker development and population genotyping, assaying the 

markers across a group of individuals, into one step.  This results in rapid develop of 

molecular markers as well as avoiding ascertainment bias that accompanies traditional 

assays.  GBS is highly amenable to a large variety of species, and can be adjusted to 

varying degrees of complexity and multiplexing of samples fitting end users needs 

(Poland and Rife, 2012).  Along with providing robust genotyping GBS has shown to be 

effective in a variety of genetic studies including genomic selection (Poland et al., 

2012b; Crossa et al., 2013) and association mapping (Arruda et al., 2016). 

GBS has provided molecular answers to some of the doubts about marker 

assisted selection (MAS) and the role of genomics in plant breeding.  Particularly, GBS 

can provide thousands to hundreds of thousands of molecular markers (Elshire et al., 

2011; Poland et al., 2012a) thus saturating the genome and assuring the best 

opportunity for finding causal marker trait associations (Poland and Rife, 2012).  While 

the ability to sequence DNA and develop molecular markers has advanced rapidly, 

phenotyping has greatly lagged behind these genomic advances (Campos et al., 2004; 

White et al., 2012; Cobb et al., 2013).  This dissertation focuses on the areas in which 

plant phenotyping can be improved and how that phenotypic information can be 

incorporated into breeding programs, thus meeting one of agricultures biggest 

challenges of the 21st century predicting cultivar performance based on its genetic 

architecture (White et al., 2012).  Some of the problems and panaceas investigated are:  
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1.) design and deployment of a flexible phenotyping platforms.  2.) extraction of 

meaningful information from phenotyping platforms.  3.) methods to combine both the 

phenomics and genomics into crop breeding programs. 

 Phenotyping Platform Development 

The trend of decreasing genotyping cost has not been extended to the cost of 

measuring plant phenotypes.  Phenomics, the systematic study of plant phenotypes at 

the organism scale (Houle et al., 2010), has long advocated for increased screening 

capacity at reduced cost (White et al., 2012; Cobb et al., 2013).  High-throughput 

phenotyping (HTP) platforms have been developed to help relieve the phenomics 

bottleneck to plant breeding and genetics (Busemeyer et al., 2013; Andrade-Sanchez et 

al., 2014).  While numerous platforms have been developed in the past few years, with 

the exception of a push cart by White and Conley (2013), all of them have had extreme 

limitations namely cost over $100,000 USD (White et al., 2012).  Chapter 2 investigates 

methods to develop high-throughput phenotyping methods that are sufficiently 

affordable to be used in the developing world.  This will allow local breeding programs 

the world over to utilize HTP techniques (Tester and Langridge, 2010). 

 Exploration of HTP Data 

While high-throughput phenotyping platforms are instruments that provide ways 

to assess traits, it should be noted that HTP measurements are not the goal themselves 

(Granier and Vile, 2014).  Additionally, collecting HTP measurements on a single day 

does not provide insight into the functioning of a plant trait (Granier and Vile, 2014).  To 

examine the value of assessed phenotypes, Chapter 3 looks at how HTP 

measurements can be collected throughout the growing season, how to determine data 
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quality, and statistical methods that can be used to add value to data taken at multiple 

times throughout the growing season.  HTP measurements and their evaluation can be 

used to investigate biological processes resulting in grain yield and have the potential to 

be exploited by plant breeders. 

 Combining Phenomics with Genomics 

Finally, an effort to integrate the disciplines of genomics and phenomics 

culminating with enhanced genomic prediction models is developed in Chapter 4.  While 

there are a myriad of ways that HTP traits may be used in practice, linkage and 

association mapping (Myles et al., 2009), connecting the genotype-to-phenotype (White 

et al., 2012), genomic selection provides a type of marker assisted selection where 

genetic markers are located across the entire genome and each physiological trait is 

associated with at least one marker (Goddard and Hayes, 2007).  The ability to match 

dense genetic markers with high throughput phenotypic data should allow fruition of the 

promises of genomics to revolutionize plant breeding as well as increasing our 

knowledge of genotype to phenotype responses in plants. 
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Chapter 2 - Development and deployment of a portable field 

phenotyping platform 

This chapter has been published as following journal article: 

Crain, J.L., Wei, Y., Barker III, J., Thompson, S.M., Alderman, P.D., Reynolds, M., 

Zhang, N., Poland, J., 2016. Development and deployment of a portable field 

phenotyping platform. Crop Sci. doi:10.2135/cropsci2015.05.0290 

 

 Abbreviations 

CT, canopy temperature; GNSS, global navigation satellite system; HTP, high-

throughput phenotyping; IRT, infrared thermometer; NDVI, normalized difference 

vegetation index; UTM, Universal Transverse Mercator. 

 Abstract 

Accurate and efficient phenotyping has become the biggest hurdle for evaluating 

large populations in plant breeding and genetics. Contrary to genotyping, high-

throughput approaches to field-based phenotyping have not been realized and fully 

implemented. To address this bottleneck, a novel, low-cost, flexible phenotyping 

platform, named Phenocart, was developed and tested on a field trial consisting of 10 

historical and current elite wheat (Triticum aestivium L.) breeding lines at the 

International Maize and Wheat Improvement Center (CIMMYT). The lines were 

cultivated during the 2013 and 2014 growing cycle in Ciudad Obregon, Mexico, and 

evaluated multiple times throughout the growing season. The phenotyping platform was 

developed by integrating several sensors: a GreenSeeker for spectral reflectance, an 
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infrared thermometer (IRT), and a global navigation satellite system (GNSS) receiver 

into one functional unit. The Phenocart enabled simultaneous collection of normalized 

difference vegetation index (NDVI) and canopy temperature (CT) with precise 

assignment of all measurements to plot location by georeferenced data points. Across 

the set of varieties, the Phenocart temperature measurements were highly correlated to 

a handheld IRT. In addition, CT and NDVI were both significantly correlated to yield 

throughout the growing season. The Phenocart is a flexible, low-cost, and easily 

deployable platform to increase the amount of phenotypic data that crop breeders 

obtain as well as provide high-resolution phenotypic data for genetic discovery. 

 Introduction 

Accurately assessing and recording phenotypic data is essential for plant 

breeders and geneticists. With the rapid advances of high-throughput genotyping 

technology—driven in part by the quest to sequence a human genome for less than 

US$1000—scientists have tremendous opportunity to generate high-density genomic 

data for crop improvement (Morrell et al., 2011). However, successfully leveraging 

genotypic data requires large amounts of phenotypic data to connect genotype to 

phenotype and understand plant genomes (Campos et al., 2004; Cobb et al., 2013). 

While great progress has been made in decreasing cost and increasing throughput for 

genotyping and sequencing, phenotyping has lagged behind (Houle et al., 2010; Araus 

and Cairns, 2014). 

Phenotyping is often described as the current bottleneck to applied breeding, 

association and linkage mapping studies (Myles et al., 2009), development of genomic 

selection models (Houle et al., 2010; White et al., 2012; Cobb et al., 2013), and the 
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connection of genotype to phenotype (White et al., 2012). Consensus among 

researchers has indicated that the cost and time associated with phenotyping needs to 

be decreased (Furbank and Tester, 2011; Fiorani and Schurr, 2013; Dhondt et al., 

2013) while realizing concurrent increases in precision and accuracy (Cobb et al., 

2013). An increase in phenotyping capacity could lead to better understanding of the 

genetic basis of complex traits such as yield. Additionally, phenomics, the collecting of 

high-dimensional phenotypic data (Houle et al., 2010), could play a critical role in rapid 

adaptation of staple food crops to the stressed environments predicted for the future 

(Cabrera‐Bosquet et al., 2012). 

Plant phenotyping is often conducted in controlled or field environments. At the 

most stringent levels for whole plants, greenhouses and growth chambers are used, 

allowing for experiments with precisely defined environmental variables including light 

intensity and temperature. However, controlled environments have limitations for field 

applicability; by controlling the growth conditions, plants are not subjected to the 

variable intensity of environmental forces like wind, evaporation rates, soil water 

regimes, and many other diurnal or daily environmental fluctuations. In addition, space 

constraints of controlled chambers often limit the size of the populations that can be 

evaluated. For example, Saint Pierre and Crossa (2012) found a significant response to 

water use efficiency to wheat screened in greenhouse experiments, but subsequent 

field trials did not show the advantage of the greenhouse-selected lines under water-

limited conditions. While it should be noted that the selected lines from this experiment 

were equivalent to the controls, this case highlights the need for field-based evaluation 

and phenotyping. With limited transfer of results from controlled experiments to large-
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scale field environments, field-based research should be preferred in assessing 

complex traits like drought tolerance and yield potential (Campos et al., 2004; White et 

al., 2012). Field-based phenotyping provides the ability to assess plants in real-world 

conditions and with population sizes consistent with those used in breeding programs 

and quantitative genetic studies (Yu et al., 2008; White et al., 2012). 

Several high-throughput phenotyping (HTP) platforms, capable of generating 

large quantities of data quickly, have been reported at both the controlled (greenhouse) 

and field-based levels. One greenhouse-based system, the GROWSCREEN-Rhizo, 

captures images of plant roots and shoots allowing breeders to select for desired 

belowground traits (Nagel et al., 2012). A different greenhouse platform, Phenoscope, 

consists of a robotic system that can move plants, adjust watering, and take images as 

well as process the images automatically. The Phenoscope has been shown to reduce 

environmental variability and resulted in mapping power that was limited by genetic 

complexity rather than inefficient phenotyping (Tisné et al., 2013). 

Several field-based platforms have also been described. A tractor-mounted 

platform using light curtains and spectral reflectance was used for nondestructive, high-

throughput phenotyping of maize biomass (Montes et al., 2011). A similar type system 

named BreedVision was used for nondestructive biomass measurements of triticale 

(´Triticosecale spp.) using a phenotyping platform pulled by a tractor (Busemeyer et al., 

2013a). Andrade-Sanchez et al. (2014) used a platform with four rows of sensors to 

measure parameters including plant height, spectral reflectance, and CT 

simultaneously. White et al. (2012) and Deery et al. (2014) reviewed many advantages 

and disadvantages of current and potential field-based systems. Some systems 
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included tractor-mounted platforms, systems that operate on cranes or mobile vehicles 

(Haberland et al., 2010; White and Bostelman, 2011), towers similar to sports stadium 

cameras (Albus et al., 1993; White and Bostelman, 2011), aerial vehicles (Zarco-Tejada 

et al., 2009; Merz and Chapman, 2011), and push carts (White and Conley, 2013). 

While all these platforms have a potential for use, there are also limitations associated 

with each phenotyping scheme. Tractor-mounted vehicles require an experienced 

operator and could be limited by maneuverability in field. Cranes and cable robots are 

limited in the amount of area that they can cover. Aerial vehicles are usually weight 

limited. In addition to these physical limitations, the cost for these platforms is often 

significant. Equipment costs estimated by White et al. (2012) can be well above 

US$100,000 for a tractor-mounted phenotyping platform. While the pushcart presented 

by White and Conley (2013) is affordable, it has the drawback of being less portable 

between fields. 

One advantage of any phenotyping platform—field or glasshouse—is the 

reliability of automated data collection. Recording data directly from sensors minimizes 

human error from the system by reducing the number of times that data is manually 

entered or transcribed from data collection to completed analysis. In addition, each step 

may be performed by different individuals, further increasing the possibility of 

introducing errors that are included in the analysis and biasing the results (Taylor, 

1987). 

While each phenotyping platform has advantages, currently there is a need for a 

highly mobile, field-based phenotyping platform that could be deployed in locations 

throughout the world at an affordable cost. This will also enable those working in 
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developing countries or remote field locations to capitalize on the developments in field-

based HTP (Tester and Langridge, 2010). To address this scope of phenotyping, we 

have developed a mobile platform, aptly named Phenocart. The Phenocart integrates 

spectral reflectance (NDVI), CT, RGB images, and georeferenced (GNSS) data 

collection. We evaluated the Phenocart across 2 yr of replicated trials consisting of 10 

elite breeding lines of wheat and demonstrated the use of this platform for rapid 

assessment of accurate plant phenotypes. 

 Materials and Methods 

 Design of Phenocart 

The Phenocart integrated multiple pieces of hardware into one functional unit 

(Fig. 1). At a basic level, the Phenocart is comprised of an IRT sensor to measure CT, 

an NDVI sensor for spectral reflectance measurements, and a high-precision GNSS 

(circular error probability, 95% = 10 cm using OmniStar G2 Service) unit to 

georeference all data. Normalized difference vegetation index and CT were chosen as 

parameters to measure because of their documented relationship to yield (Amani, 1996; 

Babar and Reynolds, 2006; Gutierrez et al., 2010). Georeferencing gave each sensor 

measurement a precise location and time, which prevents incorrect assignment of data 

and a uniqueness of each data point. In 2014, we made an additional modification by 

adding a web camera to record color images that were likewise georeferenced. The 

sensors were connected to a laptop computer serving as the main control unit for the 

system. The model, technical specifications, and approximate cost for all components 

are listed in Supplemental Table S1. 
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The system was operated through a custom-designed LabView 2012 program 

(National Instruments). The software had two main functions: (i) to log and sync GNSS 

and sensor data and (ii) to process these data into a useable file format. A separate 

module was built in LabView for each sensor because the connection parameters and 

output data for each device differ. Each new set of data was written to a new line in a 

text file at a rate of 10 Hz, with each line having a unique index number along with 

sensor observation data. A block diagram of the Phenocart software system and 

graphical user interface is provided in Supplemental Fig. 1 and 2. The Phenocart 

software program is provided for download at http://www.wheatgenetics.org/phenocart 

along with a detailed user manual. 

 Phenocart 

Initially, the Phenocart was used as a handheld system during the 2013 crop 

year; however, one of the immediate drawbacks was the overall system weight (~12 

kg). While various carts and bicycles have been shown to carry sensors (White and 

Conley, 2013; Kelly et al., 2015), our design criteria necessitated the cart having a very 

narrow footprint to accommodate varying planting systems and widths. Most 

importantly, our cart required high maneuverability to turn in alleys and borders that 

could be as short as 50 cm between plots, a criteria that had not been addressed by 

currently proposed carts (White and Conley, 2013). To address this issue, we 

developed a cart constructed from a bicycle, metal, and miscellaneous hardware. The 

pedals were removed from the bicycle and then the frame was cut in half. A prebent 

pipe (walker frame) was attached to the bicycle frame for handlebars, resulting in a 

hybrid wheelbarrow cart. The seat connection was used to hold a pipe that could be 



 12 

adjusted for height with the end of the pipe threaded to a mounting bracket that held the 

Phenocart sensors with hose clamps. The entire system was highly flexible, as sensor 

height, orientation, and handlebars could be adjusted to a variety of different crops and 

users. The construction and completed Phenocart are outlined in Fig. 2. 

 Field Design 

A field trial of 10 historical and current elite wheat breeding lines was used to 

evaluate the Phenocart. The trial was conducted at the Campo Experimental Norman E. 

Borlaug CIMMYT research center near Ciudad Obregon, Sonora, Mexico. The 10 

genotypes were planted in 10 by 2.4 m plots in a three-replicate, a-lattice design using 

raised beds with two rows per bed and an interbed spacing of 0.8 m. The trial was 

planted on 27 Feb. 2013 and 22 Nov. 2013 for each year (2013 heat trial with full 

irrigation and 2014 irrigated yield trial, respectively). Irrigation and nutrient levels were 

maintained at optimal levels with pesticides applied as needed. Grain yield was 

obtained by using a plot combine. Five days of observations were recorded in 2013; 

however, in 2014, unexpected rain led to lodging in the plots, and to prevent any 

additional damage to the plots, only one data set was obtained. 

 Phenocart Data Acquisition 

In the field, each instrument (GNSS, IRT, and camera) was mounted to the 

handheld GreenSeeker using a custom fabricated mounting bracket. The bracket 

enclosed the head of the GreenSeeker sensor without blocking either the light source or 

the collector (Fig. 3). All sensors were mounted so that they had a nadir field of view, 

and the GreenSeeker (base of the Phenocart) was held ~80 cm above the crop canopy. 

Data were collected at a walking speed of ~1 to 2 m s−1. Sensor measurements were 
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taken for the entire experiment area, including plot borders and alleys, and assigned 

observations to plots as described in the Data Analysis section. 

Phenocart IRT (Micro-Epsilon CT Series CT-SF02-C1) readings and handheld 

IRT measurements were taken over the same plots to validate the Phenocart IRT with 

standard CT methods because of the difference in angle of view of the instruments. For 

these initial tests, the Phenocart sensor was maintained at a nadir view because of 

potential problems in georeferencing an oblique angle. The Phenocart IRT had a view 

angle of 3.8° and, based on the height, had a viewing area of approximately 50 cm2. A 

Sixth Sense LT300 IRT (Instrumart) was used to collect the handheld IRT data. For 

temperature measurements, the handheld IRT was positioned at a constant height and 

angle (~30° from horizontal) over the canopy following methods outlined by Pask et al. 

(2012). The handheld IRT had a viewing angle of 2.9° and a measurement area of ~12 

cm2 (80 cm from the crop canopy). While field of view was not the same for each 

instrument, we investigated sensor measurements to compare standard techniques 

(outlined by Pask et al. [2012] and often used by CIMMYT and other research institutes) 

to potential HTP techniques. Data were only taken on days with cloud-free skies and 

limited wind (<2 km h−1). Measurements for each plot were taken with both instruments 

in direct succession by passing the Phenocart over the plot followed by the handheld 

IRT. The plots contained two beds, where a measurement was taken directly over each 

bed. While the plot coordinates and georeferenced data were developed from the entire 

experiment, for the IRT handheld comparison, data was only collected over areas 

directly measured by the handheld IRT to assure that comparisons were as consistent 

as possible. Comparisons between the handheld IRT and the Phenocart were made at 
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five different intervals during the vegetative and grain-filling growth stages (Feekes 4 

and 10.5, respectively [Large, 1954]). For validation, each plot was considered as a 

unique experimental unit. 

In 2014, addition of a web camera to the system provided color images of the 

plots. The Phenocart recorded three photos per second, and a basic exploratory 

analysis was conducted with the photos. Using a custom macro in the Fiji platform 

(Schindelin et al., 2012), the image was adjusted for hue by selecting green color (HUE 

between 55 and 110). The image was then converted to a binary via green color 

threshold and used to calculate a percentage area of the photo corresponding to green 

pixels. This value was used for subsequent analysis. 

 Data Analysis 

Data analysis was conducted using R software (R Development Core Team, 

2014) and the plyr (data manipulation), ggplot2 (graphics) packages (Wickham, 2009, 

2011). The rgdal package (Bivand et al., 2013) was used to convert the longitude and 

latitude measurements to the Universal Transverse Mercator (UTM) coordinates. 

Pearson correlation was determined between variables that were collected including 

NDVI, CT, and grain yield. The lme4 (Bates et al., 2015) package was used to fit a 

mixed linear model to determine variance components and calculate broad-sense 

heritability (H2), which is also referred to as repeatability (Piepho and Möhring, 2007). 

The mixed model was fit by first calculating plot-level averages using all measurements 

from a given plot and then using these plot-level averages for the response variable in 

the mixed model. Heritability was calculated on a line-mean basis using the formula 

from Holland et al. (2003): 
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  [1] 

where  is genotypic variance,  is error variance, and r is replications (r = 3). 

To assign observations to plots, an algorithm using NDVI was developed to find 

and georeference plot boundaries. Plot boundaries were determined from a data set of 

the trial before senescence when NDVI over the experimental plots was high (NDVI 

over plots >0.5). The alleyways with bare soil had low NDVI (NDVI < 0.2), which could 

be used to differentiate between adjacent plots. Within the data set, the low-value 

border NDVI observations were removed by filtering. This resulted in the index values 

being noncontinuous. The resulting gap in index values was used to determine plot 

boundaries and assign sequential plots to georeferenced coordinates. The plot 

boundary was extrapolated by taking the first 20 measurements at the start and end of 

each new plot and finding the average coordinates for each respective end of the plot. 

This resulted in removal of the plot ends to avoid possible border affect. Using the two 

average coordinates for the start and end of the plot, a rectangle (polygon) could be 

constructed by adding the fixed dimensions of the plot in meters to the UTM 

coordinates. Figure 4 demonstrates graphically the successive steps in finding and 

assigning plot boundaries. Once the plot boundaries were determined, all data for a 

given trial was assigned to a plot if the data fell within the polygon created by the four 

extrapolated corners (Supplemental Fig. S3). Data were assigned using the sqldf 

package (Grothendieck, 2012). Current data analysis programs are provided at 

www.wheatgenetics.org/phenocart. 
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 Results and Discussion 

 Phenotyping Platform 

We constructed and deployed a small and relatively inexpensive HTP platform 

called Phenocart. This platform integrates multiple sensors and high-precision GNSS to 

precisely tag each sensor measurement within a given field plot. An executable 

software package and detailed users manual are included as supplemental materials. 

The Phenocart records NDVI, CT, and GNSS location at 10 Hz and color photos at 3 

Hz. By measuring both beds in 10-m plots, at an average walking speed, the Phenocart 

generated ~100 data points for NDVI, CT, and GNSS location per plot after removing 

the ends from the plot to eliminate potential border affects. In contrast, the handheld 

device only generated two data observations per plot. Two of the unique advantages of 

the Phenocart are the timesaving in data collection and the type of data recorded. 

The time needed per plot for data collection and processing with the Phenocart 

was less than the handheld IRT. All Phenocart data collected were written to text files 

and were immediately ready for data analysis. Handheld IRT readings required 

additional time to manually record the values and then had to be transcribed into digital 

files, essentially taking many times longer than the Phenocart. For a typical research 

program (CIMMYT) to collect this data efficiently, they often employ groups of two 

people: one person to write the data in the field while a second person takes 

measurements. In the laboratory, another person enters and checks the data, and 

based on experience, this takes approximately the same amount of time as field data 

collection. Using the HTP platform, over three times the number of plots could be 

covered in the same person hours. In addition to being faster than current handheld IRT 
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measurements, NDVI was also obtained simultaneously, further increasing productivity 

as manually collected NDVI requires similar commitment as CT measurements. Again, 

these measurements are often conducted with teams of two people in the field: one to 

operate sensor and one to note plot locations followed by time curating measurements. 

This timesaving provides an efficiency boost to research programs in terms of data 

processing but also by increasing the quantity of data that can be obtained especially 

when trying to collect dynamic data throughout the growing season. 

Along with the time savings, the Phenocart also georeferenced all sensor 

observations. Using the guidelines in Pask et al. (2012), only the average temperature 

was recorded for the handheld CT. The Phenocart records all values so that within-plot 

variation can be determined and included in statistical models, providing a richer and 

more informative data set. 

 Data Processing 

Implementation of the Phenocart for phenotyping greatly increased the amount of 

data that was collected per plot. To effectively handle the quantity of data, we 

developed an algorithm to efficiently process the data. The first part of the algorithm 

converted all longitude and latitude to UTM coordinates. Plots were then identified by 

taking advantage of the bare soil between plots, which resulted in low NDVI values. A 

rectangle polygon, fit smaller than the actual plot dimensions to avoid border affect, was 

inscribed onto the data. Subsequent evaluation of this method with 24 random plots of 

differing sizes resulted in assigning the correct coordinates within 13 cm of the 

extrapolated plot corner based on NDVI to physically measured coordinates of the plot, 

which is within the observed accuracy of the GNSS. Coordinates of the plot boundaries 
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were recorded, and any subsequent data located within that experiment was processed 

by UTM conversion and assigning data observations to the correct plot. This algorithm 

facilitated fast and accurate data processing, and allowed data analysis and summaries 

to be calculated immediately following data collection. Rapid assessment of data should 

enable immediate identification of any abnormalities that may occur and taking 

corrective actions as needed. 

 Validation to Handheld IRT 

To validate the readings of the Phenocart to current instruments, we took 

concurrent measurements with both the Phenocart IRT and a handheld IRT across five 

time points throughout the vegetative and grain-fill growth periods. We observed a high 

correlation (p < 0.01) on 4 of the 5 d between instruments (Table 1). These data 

suggest that the two instruments are consistently measuring the same canopy 

dynamics, and that the Phenocart provides reliable data that is similar to current 

methods that are used in many research programs like CIMMYT. This finding is further 

highlighted by the fact that the measurement area and field of view were different 

between the two instruments. The Phenocart IRT was maintained at a nadir view 

because an oblique view would lead to georeferencing problems based on sensor 

orientation and canopy height. However, it still detected similar differences as the 

handheld IRT. This suggests that using a nadir field of view could be used in place of a 

horizontal view, simplifying future HTP data collection. 

 Canopy Temperature and Yield 

We collected CT data from five different days to evaluate the correlation between 

CT and grain yield. During the grain-filling period, CT measured with the Phenocart was 
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significantly correlated (p < 0.05) to grain yield (Table 1). Correlation between the 

handheld and grain yield was also calculated, with two of the five measurements having 

significant (p < 0.05) negative correlation with grain yield. As might be expected, the 

correlations between the two instruments were much more consistent than correlations 

between yield and the sensor measurements (Fig. 5). Over the five measurement days, 

correlation coefficient for the Phenocart IRT and grain yield had a large range (−0.02 to 

−0.55); however, the handheld IRT had a larger range of correlation (−0.13 to −0.73). 

While this is significant variation, it is consistent with the range observed in previous 

studies such as Keener and Kircher (1983) (r2 = 0.2–0.79) and Balota et al. (2007) (r2 = 

0.05–0.67). Based on these data, the Phenocart IRT is performing as well as current CT 

measurement techniques. 

 NDVI and Grain Yield 

Normalized difference vegetation index formed one of the core components of 

the Phenocart because spectral reflectance indices have been proposed as a selection 

tool for plant breeding (Prasad et al., 2007). We collected NDVI simultaneously with CT 

for each date of data observations. The NDVI was significantly correlated to grain yield 

(p < 0.001) during the grain-fill stages (Table 2). The correlation was not as strong 

during the vegetative growth stages consistent with previous findings that NDVI has 

higher correlation to yield later in the growing season (Babar and Reynolds, 2006). 

Given the strong relationship between NDVI and grain yield, the ability to rapidly 

measure this spectral index with Phenocart will enable more informed selection 

decisions. 
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 Heritability of Canopy Temperature and NDVI 

Broad-sense heritability for each sensor, NDVI, CT, and color photos was 

calculated on a line-mean basis. For the same plots, measured at the same time with 

two different instruments, comparison of broad-sense heritability estimates are a 

reflection of measurement error, as environmental variance should be negligible and the 

genetic entries are identical. For comparison of sensors, a higher heritability estimate 

reflects reduced measurement error. For CT data, the Phenocart had a higher 

heritability estimate than the handheld IRT for three of the five measurements (Table 3). 

While heritability varied considerably, it is again within the ranges reported by Andrade-

Sanchez et al. (2014) (H2 = 0.01–0.9 for CT measured at multiple time points). 

Heritability calculated for NDVI was high (H2 = 0.66–0.94; Table 3), which is also 

consistent with results from Andrade-Sanchez et al. (2014). The heritability of the NDVI 

and CT indicates that the Phenocart can be used to generate data that is extremely 

consistent between plots and measurements. 

 Potential for Color Images 

In 2014, we mounted a web camera on the Phenocart to collect color photos of 

the plots. We investigated the feasibility of the photos to assess variation within and 

between plots by calculating heritability (Piepho and Möhring, 2007) of the number of 

green pixels per plot. The heritability was 0.45 (Table 3), which indicates that the photos 

could be used by a breeding program as an additional layer of information including the 

spatial uniformity and ground cover of the plots. Apart from an assessment of green leaf 

area (for which RGB imaging is not well suited), the photos themselves could be used 

for more sophisticated data analysis such as plant architecture characteristics (Paulus 
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et al., 2014). Image acquisition could even provide breeders with the opportunity to 

investigate abnormalities in data after the growing season. By having opportunity to 

revisit a plot, a breeder could determine if other data readings were correct or in error. 

As an expandable platform, the addition of NDVI, infrared, or multispectral cameras to 

the Phenocart opens new doors of possibilities for data analysis and interpretation in a 

breeding program. 

 Recommendations and Future of Phenocart Phenotyping Platforms 

 We designed the Phenocart to provide dense phenotypic data for genetic 

analysis and plant breeding. Phenocart is a relatively inexpensive platform that can 

easily be deployed to field locations around the world. Some of the unique advantages 

in the Phenocart are that it simultaneously collects multiple measurements including 

NDVI, CT, and images; additionally, the Phenocart georeferences each measurement 

with location and time stamp. Georeferencing will lead to less error in data transcription 

and thus higher data integrity. The addition of image collection to the Phenocart opens 

an entirely new avenue for high-throughput data collection that could add value to a 

breeding program. This also highlights the flexibility of the underlying software platform 

of the Phenocart, which allows for modification and addition of new sensors as needed. 

As a first-generation system, the Phenocart platform is considerably less 

expensive than other phenotyping systems. The current version of Phenocart was 

~US$12,000. while high-clearance vehicle phenotyping platforms have been estimated 

at ³US$100,000 (White et al., 2012). Currently, the complied software provided does not 

require that the end user purchase the entire LabView software; however, any new 

development would require a license, and future developments will focus on open-
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source versions. A large proportion of the expense was related to obtaining high-

precision differential correction GNSS (US$6,400) with centimeter-level resolution. 

Depending on plot size, this level of precision may not be needed for all users. We have 

used this system in genetic mapping populations that had plot size of 2 by 0.8 m, but in 

larger yield trials (3.5 by 1.5 m), less accurate and less expensive GNSS units may 

suffice. In the same manner, other more affordable sensors may also be used in the 

future to reduce total system cost. 

In addition to lower cost georeferencing, development is underway to run the 

system on Linux on small single-board computers, further reducing cost and weight 

while still providing sufficient robustness to incorporate an ever expanding array of 

sensors. A high-level scripting language, Python, is also being used to control sensors 

and record data. The move to Python will allow users with basic technical abilities to 

modify the system to fit their own needs. These modifications will reduce the cost of the 

platform, enabling rapid dissemination and utilization of many units in the breeding 

programs. Such a dense network of phenotypic data, coupled with genotypic data, will 

help increase the efficiency of crop breeding. 

Along with the software, we have tested various hardware, sensors, and mobility 

options. While our test in wheat have provided evidence the system is reliable, as users 

move to other crops, for example maize (Zea mays L.), the users will be well served by 

conducting their own validations. For example, sensor movement from cart sway or 

vibrations may be exacerbated if the sensors are mounted 3 m high as would be 

necessary for maize. Thus basic data quality checks as noted by our work are needed 

to ensure that HTP methods are providing data as reliable or more reliable than 
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established manual methods. While we have demonstrated specific sensors, our goal is 

to provide a system that will be flexible enough that users can add their own desired 

sensor and modify the cart as necessary to meet a wide range of crops, environments, 

and management practices. 

The Phenocart provides the ability to take measurements several times 

throughout the growing season, which will also allow scientists to better understand 

dynamic traits. For example, Busemeyer et al. (2013b) integrated HTP data with 

genomic data to identify quantitative trait loci controlling biomass accumulation in 

triticale (´Triticosecale spp.) that were dynamically expressed at different time points 

over the growing season. Besides grain yield or biomass accumulation, the suite of 

traits that could be recorded by multiple measurements is tremendous; for example, 

Liebisch et al. (2015) recorded early-season plant vigor, senescence, and canopy cover 

using multiple NDVI image measurements throughout the growing season in maize. 

Along with crop growth traits, these tools can also be used to determine effect of 

disease pressure experienced by plants (S.K. Reddy, personal communication, 2015). 

By using an HTP platform like the Phenocart, existing genomic data can be combined 

with new and novel phenotypic data to not only increase the efficiency of selection but 

also increase our understanding of plant processes that are quantitative in nature. 

 Conclusions 

Phenotyping has always been a cornerstone to plant breeding; however, relative 

to rapidly developing genomics technologies and tools, the ability to phenotype plants 

has become an increasingly limiting factor. Developed as one approach for addressing 

this, the Phenocart integrates two sensors commonly used in plant phenotyping as well 
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as georeferencing, which allows for faster data collection in the field and streamlined 

data processing. The reduced risk of incorrectly entering information provides better 

data integrity for researchers. Validation of the Phenocart shows that it performs as well 

as current methods for CT. In addition, NDVI and CT data from the Phenocart were 

significantly correlated to grain yield. The Phenocart is a robust, affordable platform that 

can be modified to fit the user’s need and help close the gap between genomics and 

phenomics. These advances in phenomics, including easily accessible and deployable 

platforms, are needed to complement the wealth of genomic data with field-based, high-

throughput precision phenotyping measurements. 

 Supplemental Material Available 

1. LabView executable file available at http://www.wheatgenetics.org/phenocart 

2. Detailed user manual available at http://www.wheatgenetics.org/phenocart. 

3. Supplemental Table S1. 

4. Supplemental Fig. S1–S3. 
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Figure 2-1.  Integrated hardware components of Phenocart. 
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Figure 2-2.  Phenocart to carry instruments in the field. (A) Completed Phenocart with 
arrows showing adjustable areas of the cart. (B) Attaching a handle to the cart. (C) Bracket 
used to hold the GreenSeeker sensor in combination with hose clamps. (D) Bracket and 
GreenSeeker attached to the cart. 
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Figure 2-3.  Combined sensor design of the Phenocart. (A, B) Custom mounting bracket to 
hold individual sensors. (C) Using the Phenocart as a handheld platform in the field, 
Ciudad Obregon, Sonora, Mexico. 
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Figure 2-4.  Layout of experiment and workflow for assigning plot coordinates. Workflow 
is shown in progressive columns A–D; each step occurred for all experimental plots. (A) All 
data as recorded by Phenocart; plot boundaries are in dashed lines. (B) Removing low 
normalized difference vegetation index (NDVI) values occurring in the border. Low NDVI 
values identified by circles of increased size. (C) Spatially assigning plots by trimming data 
close in proximity to the borders. (D) Assigned data to coordinates within plot boundaries.  
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Figure 2-5.  Correlation between Phenocart infrared thermometer (IRT), handheld IRT 
measurements, and grain yield in wheat plots, Ciudad Obregon, Sonora, Mexico, 2013. (A) 
Relationship between handheld IRT and grain yield. (B) Relationship between Phenocart 
IRT and grain yield. (C) Relationship between handheld IRT and Phenocart IRT. Single 
asterisk (*) indicates model significant at the 0.05 level of probability. Triple asterisks (***) 
indicates model significant at the <0.001 level of probability 
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Table 2-1.  Correlation coefficient between Phenocart infrared thermometer (IRT), 
handheld IRT, and grain yield for vegetative and grain-filling growth stages in wheat, 
Ciudad Obregon, Sonora, Mexico. 

Date Growth stage 

Canopy temperature vs. yield Between instruments 

Phenocart IRT 
Handheld 

IRT 
Phenocart IRT vs. 

handheld IRT 
29 Mar. 2013 Vegetative −0.02 −0.38* −0.08 
1 Apr. 2013 Vegetative −0.34 −0.29 0.84*** 
4 Apr. 2013 Vegetative −0.22 −0.73*** 0.52** 
10 May 2013 Grain fill −0.55** −0.21 0.67*** 
14 May 2013 Grain fill −0.40* −0.13 0.74*** 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 
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Table 2-2.  Correlation between Phenocart normalized difference vegetation index (NDVI) 
and grain yield for vegetative and grain-filling growth stages in wheat, Ciudad Obregon, 
Sonora, Mexico. 

Date Growth stage NDVI vs. yield 
29 Mar. 2013 Vegetative 0.09 
1 Apr. 2013 Vegetative 0.24 
4 Apr. 2013 Vegetative 0.46* 
10 May 2013 Grain fill 0.65*** 
14 May 2013 Grain fill 0.65*** 

* Significant at the 0.05 probability level. 

*** Significant at the 0.001 probability level. 
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Table 2-3.  Broad-sense heritability (H2) for instruments, Phenocart normalized difference 
vegetation index (NDVI) and canopy temperature, and handheld infrared thermometer 
(IRT) for each date measured in 2013 and 2014, Ciudad Obregon, Sonora, Mexico. 

Date 

H2 
NDVI Canopy temperature Photos 

Phenocart Phenocart Handheld IRT Phenocart 

29 Mar. 2013 0.66 0.69 0.35 NA† 

1 Apr. 2013 0.80 0.24 0.51 NA 

4 Apr. 2013 0.83 0.31 0.05 NA 

10 May 2013 0.92 0.77 0.76 NA 

14 May 2013 0.94 0.33 0.51 NA 

6 Mar. 2014 0.82 0.47 NA 0.45 

† NA, data not collected for particular instrument and date. 
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Chapter 3 - Utilizing high-throughput phenotypic data for improved 

phenotypic selection of stress adaptive traits in wheat 

This chapter has been submitted to Crop Science as the following journal article: 

Crain, J.L., Reynolds, M., Poland, J., 2016.  Utilizing high-throughput phenotypic data 

for improved phenotypic selection of stress adaptive traits in wheat. 

 	Abbreviations 

BLUE, best linear unbiased estimator; CENEB, Campo Experimental Normal E. 

Borlaug; CIMMYT, International Maize and Wheat Improvement Center; CT, canopy 

temperature; H2, broad-sense heritability; HTP, high-throughput phenotyping; i.i.d., 

independent and identically distributed; NDVI, normalized difference vegetation index; 

RIL, recombinant inbred line; VPD, vapor pressure deficit 

 Abstract 

Efficient phenotyping methods are key to increasing genetic gain and precisely 

mapping genetic variation.  Recent phenotyping developments have resulted in high-

throughput phenotyping (HTP) platforms that utilize proximal sensing to simultaneously 

measure multiple physiological traits.  However, there has been limited exploration of 

multiple dimensions of this high-resolution data.  To address this, two wheat (Triticum 

aestivum) bi-parental populations were grown for three years under drought and heat 

stress at the International Maize and Wheat Improvement Center, Ciudad Obregon, 

Mexico.  The lines were evaluated at multiple time points throughout the growing 

season with the “Phenocart” a portable field phenotyping platform that integrates 

precision GPS, spectral reflectance and thermal sensors.  Both normalized difference 
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vegetation index (NDVI) and canopy temperature (CT) were correlated to final grain 

yield.  We found that broad-sense heritability (H2) and correlation to yield for both NDVI 

and CT had a regular pattern over the growing season.  The maximum correlation and 

H2 existed during mid-grain fill stage while correlations were low for early and late 

season measurements.  We also found that the H2 of CT on a given day was a good 

indication of how well that dataset correlated to yield.  In addition, the temporal NDVI 

data from heading to senescence was modeled to evaluate stay-green and senescence 

differences between genotypes.  Based on the repeatable correlations, HTP platforms 

can be used to assist with indirect selection through rapid collection of physiological 

measurements that could provide a 3-13% increase in gain from selection compared to 

direct selection for grain yield alone. 

 Introduction 

Wheat is one of the most important cereal crops in the world accounting for 26% 

of world cereal production and 44% of world cereal consumption in 2011 (Food and 

Agriculture Organization of the United Nations). Although advances in wheat yield 

production have been made, the gain is currently less than 1% a year (Reynolds et al., 

2012), and this progress is expected to be reduced by increasing climatic variability 

(Wiebe et al., 2016).  For example, one climate scenario calls for re-classifying up to 

51% of the Indo-Gangetic Plains as heat stressed by 2050, an area that currently 

produces 15% of the world’s wheat supply (Ortiz et al., 2008).  Given that 81% of wheat 

consumed in developing countries is produced domestically (CIMMYT, 2005) this 

plausible scenario poses a real threat to hundreds of millions of people.   
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Numerous studies have reported the impact of increasing temperature on wheat 

yield with estimates for losses ranging from 3-50% based on severity of increasing 

temperatures (Wardlaw and Wrigley, 1994; You et al., 2009; Asseng et al., 2011, 2014).  

In addition to yield loss due to increasing temperatures, changing rainfall conditions 

could also lead to more drought affected areas further depressing yield.  Fischer and 

Maurer (1978) reported grain yield under varying drought conditions ranging from 37-

86% of the control plot yields.  Globally, it is estimated that the effect of climate change 

on cereal production from 1980-2008 have decreased wheat yields nearly 5.5% 

compared to scenarios without climate trends (Lobell et al., 2011).  Additionally, current 

global crop model estimates suggest a 6% yield decrease for each one degree Celsius 

increase in temperature (Asseng et al., 2014). With a growing global population and the 

threat of climate change novel methods are needed to ensure the safety of this food 

supply.   

Efficient and accurate phenotyping methods are needed for breeding programs 

to fully realize the benefits of plant breeding.  In particular, phenotyping is often 

considered the bottle neck of crop breeding (Araus and Cairns, 2014).  To address this 

constraint, several field based high-throughput phenotyping (HTP) platforms have been 

developed in the past few years to successfully measure phenotypic traits (Busemeyer 

et al., 2013a; Andrade-Sanchez et al., 2014; Crain et al., 2016) as well as provide 

opportunity for genetic studies (Busemeyer et al., 2013b).  Even though HTP offers 

solutions for increasing genetic gain (Cobb et al., 2013), phenomics is often costly 

(White et al., 2012; Cobb et al., 2013) and data analysis poses a great challenge.  

Given that HTP technologies need to be affordable and readily accessible for 
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developing countries to implement and realize genetic gains (Tester and Langridge, 

2010) low-cost methods have been developed (White and Conley, 2013; Crain et al., 

2016).  By deploying affordable instruments and high-throughput phenotyping methods 

developing countries should be able realize more success in their breeding programs. 

Several physiological traits that are amenable to high-throughput phenotyping 

have been proposed for use in breeding programs.  For example, spectral reflectance 

has long been advocated as a selection tool in wheat breeding programs (Babar and 

Reynolds, 2006; Babar et al., 2006; Prasad et al., 2007).  Another trait that has been 

suggested for selection is canopy temperature, with several studies finding correlation 

between canopy temperature and grain yield (Amani, 1996; Balota et al., 2007).  With 

low cost infrared thermometers and spectral reflectance measuring devices both of 

these traits can be measured quickly and effectively.   

In addition to providing a single measurement to evaluate lines, there is also the 

possibility to combine multiple data sets to assess temporal dynamics of plant growth 

and development.  Lopes and Reynolds (2012) used multiple measurement dates of 

normalized difference vegetation index (NDVI) to estimate stay-green in wheat.  Stay-

green is measured as delayed leaf senescence (Thomas and Smart, 1993; Thomas and 

Howarth, 2000), and has been shown to be beneficial to crop yield in a variety of crops 

(ex. Borrell et al., 2000, 2014), including wheat (Vijayalakshmi et al., 2010).  

Environmental factors such as high temperature, may induce early senescence in plants 

resulting in lower grain yield and quality (Xu et al., 2000).  While Vijayalakshimi et al. 

(2010) extensively studied stay-green in wheat using Gompertz nonlinear curves to 

model senescence and completed QTL mapping, it is relevant to note that stay-green 
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was characterized by visual observations and plants were grown in a growth chambers.  

Lopes and Reynolds (2012) suggested using spectral reflectance sensors (e.g. 

GreenSeeker, Trimble Navigation Ltd., Sunnyvale, CA) that provide a continuous value  

for estimating stay-green rather than discrete visual scoring.  Thus opportunity exists to 

model stay-green under field conditions, and this trait could be very relevant for 

breeders working to develop stress-adapted material. 

To simultaneously explore abiotic tolerance to drought and heat and the ability to 

collect high-density, low cost phenotypic data, we studied two bi-parental populations of 

wheat that were derived from parents contrasting in abiotic stress tolerance at the 

International Maize and Wheat Improvement Center (CIMMYT).  We deployed an 

affordable field phenotyping platform, Phenocart, which utilizes precision GPS to geo-

reference each sensor measurement to collect high-throughput data (Crain et al., 2016).  

Phenocart uses commercial sensors to collect NDVI and canopy temperature (CT).  Our 

objectives were to: 1) Characterize the physiological populations with respect to NDVI 

and CT, 2) Evaluate the potential of HTP to provide novel meaningful dense phenotypic 

data, 3) Determine the effect of stay-green by modeling senescence curves of the lines, 

and 4) Identify selection strategy for grain filling and senescence in wheat. 

 Materials and Methods 

 Genetic Material 

Two bi-parental populations between parents contrasting for heat and drought 

stress were developed at CIMMYT.  The recombinant inbred lines (RILs) had 168 

entries in Family 8 and 162 entries in Family 5.  The populations were selected for no 

more than a 10-day range in flowering date, and were derived from parents that did not 
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show GxE for flowering time in 15 contrasting temperature and photoperiod 

environments. 

  Field Design and Management 

The two populations were grown for three seasons (2012-2013, 2013-2014, and 

2014-2015) at the International Maize and Wheat Improvement Center, Campo 

Experimental Normal E. Borlaug (CIMMYT, CENEB).  Each season, the two populations 

were grown under reduced water (drought) and heat environments.  The drought 

experiment was sown in early December at optimal planting time with irrigation ceased 

at the booting growth stage.  This resulted in a terminal drought stress on the plants.  

The heat environment was induced by a late planting date in mid March leading to 

higher than optimal temperatures throughout the growing season.  Full irrigation was 

maintained throughout the heat trial.   

The trials were planted as an alpha lattice design with two replications.  The 

experimental units were 2m x 0.8m in size.  Nutrient levels were maintained at optimum 

rates, and pesticides were applied as needed.  Grain yield was harvested with a plot 

combine, except for the drought 2014 trial that was harvested by hand to prevent losses 

from lodging. 

 Phenotypic and High-Throughput Phenotypic Data Collection 

Throughout the growing season various phenotypic data was recorded.  Data 

recorded included heading date, plant height, and grain yield for all trials, and anthesis 

date in the drought trials.  Anthesis can occur before heading under heat stress so only 

heading date was recorded in the heat trials (Pask et al., 2012). 
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In addition to these phenotypic data, we employed Phenocart to collect geo-

referenced NDVI and canopy temperature (Crain et al., 2016).  The Phenocart records 

data at 10Hz, which resulted in 12-15 measurements per plot per date after trimming 

plot ends to avoid border effect.  This data was taken at multiple time points throughout 

the growth cycle from tiller elongation though senescence.  We used similar algorithms 

to those presented in Crain et al. (2016) for assigning data to plots and curating the 

data.  Briefly the analysis of raw data consists of 1) Defining plot boundaries, 2) 

Assigning data that fell within plot boundaries to that plot, 3) Curating the data in a 

database. 

 Data Analysis 

All data analysis was conducted in R (R Core Team, 2015).  Principal component 

analysis used the stats package (R Core Team, 2015) to investigate relationships 

among the numerous phenotypic observations observed.  Minimal filtering was 

conducted on the data sets as a whole, but some filtering was used to discard outliers 

as noted.  Only a subset of 40-90 days from planting was used for relationship between 

heritability to correlation of grain yield, as this removed extremely early and late 

observations, and significantly improved correlations. 

 Trait heritability 

The broad-sense heritability, often termed repeatability (Piepho and Möhring, 

2007) was calculated as: 

!"#$%&'( 1:      !! =  !!
!

!!!
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where !!! is the genotypic variance, and !!! is the phenotypic variance.  For grain yield, 

plant height, and heading date broad-sense heritability was calculated across all years 

and environments according to equation 2 (Holland et al., 2003): 

!"#$%&'( 2:     !! =  !!!

!!! +
!!"!
! + !!"

!

! + !!"#
!

!" + !!""#"
!
!"#

 

where !!"!  is genotype by year variance, !!"!  is genotype by environment interaction, 

!!"#!  is genotype by year by environment interaction, and !!""#"!  is residual error 

variance.  The number of years, environments, and replications are signified by y, e, 

and r respectively.   Heritability was also calculated within each environment by 

dropping the environment terms in Equation 2.  We also calculated heritability for each 

HTP data set for the individual trial and date using equation 3: 

!"#$%&'( 3:     !! =  !!!

!!! +
!!"#$!

! + !!""#"
!
!"

 

Equation 3 takes into account the multiple measurements of each parameter 

(pseudoreplication) by fitting a variance term for plot level and subsample level where s 

is the number of subsamples per plot, !!"#$!  is the variance among plots, and !!""#"!  is 

the residual variance (within plot variance) and r is the number of replications.  To fit 

equations all components (year, environment, rep, block, entry, plot) were entered as 

random effects into a mixed model using the lme4 (Bates et al., 2014) and asreml 

(Butler, 2009) packages in R. 

 Senescence Curves 

Senescence was modeled as a logistic growth curve using the following 

nonlinear regression model (Fox and Weisberg, 2011):   



 45 

!"#$%&'( 4:   ! =  !!
1+ !(!(!!!!!!) + ! 

Where y is the response, !! is the maximum value (asymptote), !! is a parameter that 

models the onset of senescence, !! is the rate of senescence, ! is error, and x is time in 

days after (before) heading.  To fit the model, only observations that were 7 days before 

heading or later were used.  This ensured that the model started at maximum NDVI and 

then NDVI values declined as time progressed throughout senescence.  The nlme 

(Pinheiro et al., 2015) R package was used for model fitting. 

 Parameter Estimation 

Best linear unbiased estimators (BLUEs) were calculated for each line using the 

following mixed model: 

!"#$%&'( 5:  !!"#$% = ! +  !! + !! + !!(!) + !!(!,!) + !!(!,!,!) + !!"#$% 

Where !!"#$% is the phenotype for trait of interest, ! is the overall mean of the 

population, !! is the fixed genotype effect of entry i, !! is random effect for each year of 

measurement with independent and identically distributed (i.i.d.) !!~!(0,!!!),  !!(!) is the 

random effect for the k environment nested within year with i.i.d. !!(!)~!(0,!!!),  !!(!,!) is 

the random effect for the l rep nested within year and environment distributed as i.i.d. 

!!(!,!)~!(0,!!!),  !!(!,!,!) is the random effect for the m block nested within year, 

environment, and rep distributed as i.i.d. !!(!,!,!)~!(0,!!! ), and !!"#$% is the residual 

distributed as i.i.d. !!"#$%~!(0,!!!).  BLUEs calculated included grain yield, days to 

heading, plant height, and the three parameters from the senescence curve.  Once 

BLUEs were calculated Pearson correlation was used to determine the relationship 

between grain yield and measured phenotypic traits.   
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 Gain from Indirect Selection 

We estimated the gain that could be achieved from using indirect selection for 

traits correlated to yield.  The formulas for correlated response to selection are provided 

by Falconer and MacKay (1996). 

!"#$%&'( 6:  !"!!!
=  !!ℎ!!!!!"!!ℎ!!!"

 

Where CRX is the correlated response of character X resulting from selection on 

character Y, RX is the response of character X by applying direct selection on X, i is 

selection intensity applied to X and Y characters respectively, h is square root of 

heritability for character X and Y, σAX is the additive genetic standard deviation of trait X, 

and rA is the additive genetic correlation between characters X and Y.  The additive 

genetic correlation can be related to the phenotypic correlation as: 

!"#$%&'( 7:  !!  =  ℎ!ℎ!!! 

  When selection intensity is not changed, rearrangement and substitution of 

equation 6 and 7 result in the gain for indirect selection  

!"#$%&'( 8:  !!ℎ!!
 

Equation 8 was used to determine what types of genetic gains could be achieved by 

utilizing HTP data assuming the same selection intensity for both direct and indirect 

selection.  This equation utilizes narrow-sense heritability, which only captures the 

additive portion of genetic variance.  Because narrow-sense heritability is equal to or 

less than broad-sense heritability equation 8 provides a conservative estimate of the 

gain from indirect selection.  If selection intensity was increased for the correlated trait 

(iY) the gain from selection would further escalate. 
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 Results and Discussion 

 Data Collection and Modeling 

In order to evaluate the suitability of HTP for phenotypic selection, we deployed a 

small field based platform, Phenocart, to collect geo-referenced NDVI and canopy 

temperature across three years and two environments in two different RIL populations.  

For each environment we collected multiple HTP data sets, with the majority of the data 

collected from booting through senescence.  The HTP platform was efficient in data 

collection measuring each family trial (approximately 300 plots) in less than 15 minutes, 

and each trial was measured at multiple time points throughout the growing season 

(Table 1).  In order to objectively measure plant senescence, we measured NDVI 

extensively between heading and maturity.  We fit a logistic growth curve to this data 

using nonlinear least squares regression.  This model decomposed our season long 

measurements (throughout senescence) into three parameters to model the growth.  

The parameters related to maximum NDVI value (!!), a time of initiation in senescence 

(!!), and the rate of senescence (!!).  Our final data set was large with greater than 

500,000 phenotypic observations for each family with which to determine correlation to 

grain yield, NDVI, canopy temperature, and senescence parameter characteristics.  

 Phenotypic Trait Heritability 

Broad-sense heritability on a line mean basis was calculated for grain yield, plant 

height, heading date, senescence parameters, and for each time point of NDVI and 

canopy temperature.  Broad-sense heritability is a reflection of both the genetic variance 

and the level of precision that can be achieved within and across trials (Piepho and 

Möhring, 2007).  We computed heritability across all environments and years, within 
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environments, and within each trial (Tables 2, 3 and 4).  For both populations the 

heritability for grain yield, plant height, and days to heading was high for each 

stratification level of measurement and maintained relatively constant magnitudes.  Trait 

heritability for fitted senescence curves parameters (!!,!,!) was much lower and there 

was less consistency between populations.  It appears that within individual trials these 

parameters show moderate heritability, but upon combining years or environments the 

heritability decreases rapidly suggesting high genotype-by-environment interaction.   

We also calculated the broad-sense heritability of NDVI and CT by each 

measurement day.  The heritability at different time points varied widely with a range 

from a low of 0 to a high of 0.87 (Figure 1).  NDVI spectral reflectance consistently had 

higher heritability than CT.  The H2 range agrees with other studies using HTP data (H2 

=0.28–0.90 for NDVI and H2 =0.01–0.90 for canopy temperature (Andrade-Sanchez et 

al., 2014)).   The higher heritability from canopy reflectance could be expected as the 

GreenSeeker sensor is an active sensor and is not influenced by ambient conditions.  In 

contrast, canopy temperature measurements are strongly influenced by daily 

environmental conditions (Pask et al., 2012), and while efforts were taken to mitigate 

environmental factors, it is difficult to completely eliminate them.  For spectral 

reflectance, the general trend was for heritability measurements to begin at low values 

and then increase until reaching a plateau around mid-grain filling stage.  For late 

season NDVI measurements, there was a slight decline in heritability, which would be 

expected, as all lines would approach full senescence at which point NDVI values for 

each genotype would be at the baseline value.   
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The heritability for canopy temperature was highly variable, rarely exceeding H2 > 

0.5, and had a much less consistent trend throughout the growing season and across 

years and environments.  In addition, there were wide swings from one measurement 

day to the next.  Even when heritability was high (Family 5 and 8, heat trials 2014) there 

were extreme variation in the heritability from day to day measurements, confirming that 

useful CT measurements must be taken on an optimal day with full sun, low humidity 

and no wind (Pask et al., 2012).  Based on this daily variability, it would appear more 

difficult to use this trait with certainty in climates with unstable conditions. 

 HTP Trait Relationships to Yield 

The extensive number of phenotypic parameters evaluated, NDVI and CT for 

each date of observation, created a complex data set with potentially large amounts of 

redundancy.  To evaluate which variables were contributing unique information, we 

performed a principal component analysis on all of the phenotypic parameters (NDVI 

and CT for each data measurement, senescence parameters, plant height, and heading 

date).  We only used principal components accounting for more than two percent of the 

total variation, which were the first ten components for each population.  For the 

selected principal components variation within each component attributable to CT and 

NDVI ranged from 18-57% and 29-69% respectively.  Each population displayed similar 

trends within the PCA analysis (Table 5).  The results from the PCA show that both CT 

and NDVI are providing novel information that can be exploited for breeding purposes. 

To assess the value of using HTP measurements for variety selection we 

investigated the relationship between phenotypic traits to grain yield.  For both 

populations, correlations between grain yield, plant height and days to heading were 
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significant in both populations and relatively consistent in magnitude (Table 6).  Even 

though heritability for the ! parameters was low, there were still moderate correlations 

between the senescence parameters and grain yield, but the magnitude and 

significance of the parameter varied between populations. This lack of consistency in 

the correlation may be expected as the traits had lower heritability than plant height and 

planting date.  However, there was a near perfect correlation between !! and !! in each 

of the populations.  Because of the populations studied, it is difficult to discern if this 

correlation is biological relevant or an artifact of the narrow genetic diversity, but it may 

warrant further investigation in breeding populations. 

Along with assessing senescence parameters over all years and environments, 

we also examined each individual trial for correlation between yield and senescence 

parameters (Table 7).  Upon further investigation, a general trend was that plant height 

and days to heading were usually more highly correlated to final grain yield than any of 

the senescence parameters.  For example, within the heat trial in 2013, !!was 

significantly related to yield.  !! being a parameter for maximum NDVI value, this would 

suggest that selection could occur by finding the highest NDVI genotypes.  However, for 

the same population and environment for the following year !! was not significantly 

correlated, but in contrast !! and !! were correlated.  Based on these observations, 

there is no conclusive evidence for improved selection based on modeling senescence 

curves with NDVI.  If there were a common trend in the data, then selection could target 

certain parameters, whether that be maximum NDVI value (!!) or rate of senescence 

(!!) as each parameter could be related to underlying physiology.  Maximum NDVI 

could occur with large amount of green biomass, leading to a non-stressed high yielding 
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variety, while a fast rate of senescence could allow the plant to maintain maximal 

carbohydrate translocation to the seed and then rapidly senesce after completion of 

grain filling.  Another option would be to delay senescence, the function of !!, and 

suggested by Thomas and Howarth (2000).   

For each day of HTP data measurement, we correlated the measured trait to final 

grain yield (Figure 2).  Across both populations, there were several consistent trends.  

Consistent with previous studies, NDVI was positively correlated with yield, while 

canopy temperature was negatively correlated with yield (Babar et al., 2006; Balota et 

al., 2007; Pinto and Reynolds, 2015).  In general, the correlation between grain yield 

and the HTP traits were higher under the heat trials than the drought trials, suggesting 

that physiological HTP measurements may be more useful as a selection tool under 

heat trials.  CT (under well-watered conditions) is driven largely by vapor pressure 

deficit (VPD), and VPD increases with air temperature which improves the expression 

and resolution of CT under heat environments (Amani, 1996).  Canopy temperature was 

quite variable from day to day with little discernable trend.  Taken as a whole canopy 

temperature usually had less correlation to yield than NDVI, thus more observation days 

where indirect selection would be less efficient due to the lower correlation.   

 Utilization of HTP Traits for Indirect Yield Selection 

Based on the results of trait heritability and correlation to yield as well as the 

ability to take rapid measurements with HTP, NDVI and canopy temperature could be 

used for indirect selection for grain yield under heat and drought.  To see if there was 

any way to determine optimal data quality, we examined the relationship between 

heritability of the HTP traits for each measurement day and the correlation coefficient 
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between grain yield and the HTP measurements on those respective days (Figure 3).  

We used a subset of measurement days, 40-90 days from planting, and observed that 

as heritability of canopy temperature increased, the strength of the correlation with yield 

increased.  Based on the strength of the trend, it would suggest when canopy 

temperature on a given day has a high broad-sense heritability, that the predictive 

power of final grain yield would be high.  NDVI did not present as significant trend in 

relationship between heritability and correlation to grain yield, although both populations 

had similar trends, after the removal of outliers in Family 8.  Based on these data, CT 

can be optimized by selectively using dates that have a high heritability.  For canopy 

temperature, broad-sense heritability provides a good assessment of data quality and 

predictive ability for estimating final grain yield. 

Finally, we investigated the effect of indirect selection using CT or NDVI on grain 

yield.  Using the phenotypic correlations between CT and NDVI measurements and 

yield along with the heritability of yield, we estimated gain from indirect selection using 

HTP measurements.  From equation 8, it is apparent that indirect selection will perform 

better than direct selection when the phenotypic correlation is higher than the square of 

heritability of grain yield.  Additionally, if selection intensity can be increased in the 

correlated response (HTP) trait the response to selection can be increased as well.  We 

had 122 and 120 HTP data sets for Family 5 and Family 8 respectively which were 

evaluated for indirect selection.  Using indirect selection based on HTP measurements 

alone produced very little gain.  Less than 10% of the observation sets alone produced 

an increased gain from indirect selection with the average gain of 5%.  However, if 

selection intensity could be increased, HTP traits provided larger gains.  Many breeding 
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programs use a selection intensity of 15% (Ornella et al., 2014), and if selection 

intensity could be increased to 10% HTP would provide more genetic gain.  Using this 

higher selection intensity resulted in 13% and 9% higher gains than selection for yield 

alone for Family 5 and 8, respectively.  It should be noted that we used known values 

for heritability and phenotypic correlation, in practice this will not be known until harvest 

so the amount of gain realized may be less.  Nonetheless, the magnitude of the percent 

gain suggest that indirect selection could play an important role in selecting improved 

cultivars.  Using HTP will allow breeders to identify superior lines, discarding inferior 

lines sooner, resulting in more efficient use of resources.  

Not every phenotypic observation days were useful, and it appears that the data 

sets most likely to increase genetic gains had high heritability, Figure 4, confirming that 

calculating broad-sense heritability is an important aspect of data quality assessment.  

While there were days where indirect selection failed to enhance genetic gain, HTP 

provides a method to easily measure correlated traits.  As Falconer and MacKay (1996) 

note indirect selection may be useful when the trait of interest is difficult to measure.  

Grain yield is a variable that can be measured only once at the end of the growing 

season, thus using HTP methods throughout the growing season could be used to 

assist in identify superior varieties. 

 Conclusions 

Phenotyping is essential to plant breeding, and enhancements in phenotyping 

capabilities will give breeders new options to ensure sufficient food, fiber, and fuel 

production.  Using Phenocart, we generated dense phenotypic data and applied various 

methods to extract novel and meaningful information from spectral reflectance and 
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canopy temperature.  Both canopy temperature and NDVI were related to final grain 

yield, and using heritability of measurements assisted with prediction accuracy.  While 

the senescence models were not predictive of yield across environments and 

genotypes, this could be a result of the extensive abiotic stresses applied.  Additionally, 

the methods used collected large quantities of data, which are not normally captured in 

public breeding programs. This data provided increased selection accuracy as well as 

more opportunities to evaluate genotypes.  Future applications of these types of 

phenotyping efforts will assist the genomics arena in increasing selection efficiency and 

accuracy. 
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Figure 3-1. Broad-sense heritability of normalized difference vegetation index (NDVI) and 
canopy temperature (CT) for each measurement day for two populations.  Each figure a-f 
corresponds to one year for each family, with drought environment observations in 
triangles, heat observations in circles.  Days after planting are on the x-axis with 
heritability for each day on the y-axis.  Points are observations, with lines being smoothed 
to multiple observations.  NDVI plotted with a dashed red line and canopy temperature 
with a solid blue line.  The horizontal line represents 0.5. 
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Figure 3-2. Correlation between normalized difference vegetation index (NDVI) and 
canopy temperature (CT) measurements and yield for each measurement days.  Each 
figure a-f corresponds to one year for each family, with drought environment observations 
in triangles, heat environment observations in circles.  Dashed red line is smoothed curve to 
NDVI data, and solid blue line is smoothed fit to canopy temperature data.  Days after 
planting are on the x-axis with correlation to yield on the y-axis.  The horizontal lines 
represent -0.5, 0, 0.5 respectively. 
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Figure 3-3.  Relationship between calculated heritability for HTP traits and correlation to 
grain yield for each measurement day.  Each figure A-D shows one instrument and one 
population.  Measured heritability is on the x-axis with correlation on the y-axis.  
Correlation coefficient is noted in each panel with linear regression line.  In figure D, two 
fits are shown, all data, which resulted in no trend, and removing data with heritability 
under 0.5, data shown in colored circles.   
**Model significant at the 0.01 level of probability 

*** Model significant at the <0.001 level of probability. 
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Figure 3-4.  Scatter plot of HTP heritability and genetic gain from indirect selection of CT 
and NDVI.  Each figure A-B shows one population.  NDVI is shown in circles and CT is 
shown in triangles.  Filled symbols indicate that indirect selection resulted in more genetic 
gain that direct selection for yield on these observation dates with equal selection intensity.  
Symbols with red border are days where increasing selection intensity results in enhanced 
gain from selection. 
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Table 3-1.  HTP observations per trial including number of observation days throughout 
the growing season, average number of observations per plot, and total number of 
observations. 

Population	 Year	 Environment	
Days	of	

Observation	

Average	
Observations	
per	plot	per	

day†	

Total	
Observations	
per	Trial	

Family	5	 2013	 drought	 3	 30.1	 29267	
Family	5	 2014	 drought	 16	 30.6	 158452	
Family	5	 2015	 drought	 9	 18.5	 53844	
Family	5	 2013	 heat	 15	 17.6	 85407	
Family	5	 2014	 heat	 13	 28.2	 118790	
Family	5	 2015	 heat	 11	 15.9	 56540	
Family	8	 2013	 drought	 3	 29.8	 30058	
Family	8	 2014	 drought	 13	 26.3	 114979	
Family	8	 2015	 drought	 10	 15.8	 52984	
Family	8	 2013	 heat	 16	 18.6	 100204	
Family	8	 2014	 heat	 14	 37.7	 177346	
Family	8	 2015	 heat	 10	 18	 60342	

†Includes	both	NDVI	and	CT,	thus	30.1	would	be	15	measurements	of	NDVI	and	15	measurements	of	CT.	
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Table 3-2.  Heritability for two populations for measured parameters across three years 
and two environments. 

	 Heritability	

	
Family	5	 Family	8	

Grain	Yield	 0.707	 0.64	
Plant	Height	 0.825	 0.812	
Days	to	Heading	 0.821	 0.92	

Θ1	 0.4	 0.248	

Θ2	 0.315	 0.42	

Θ3	 0.177	 0.359	
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Table 3-3.  Heritability for two populations for traits measured within each environment. 

	 	
Heritability	

Trait	 Environment	 Family	5	 Family	8	
Grain	Yield	 Drought	 0.657	 0.491	
Plant	Height	 Drought	 0.766	 0.861	
Days	to	Heading	 Drought	 0.942	 0.955	
Θ1	 Drought	 0.292	 0	
Θ2	 Drought	 0.395	 0.043	
Θ3	 Drought	 0.082	 0	
Grain	Yield	 Heat	 0.843	 0.698	
Plant	Height	 Heat	 0.875	 0.88	
Days	to	Heading	 Heat	 0.902	 0.911	
Θ1	 Heat	 0.361	 0.766	
Θ2	 Heat	 0.163	 0.443	
Θ3	 Heat	 0.228	 0.452	
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Table 3-4.  Heritability for two populations for traits measured within each trial. 

	 	 	
Trait	Heritability	

Population	 Year	 Environment	 Grain	Yield	
Plant	
Height	

Days	to	
Heading	 Θ1	 Θ2	 Θ3	

Family	5	 2013	 drought	 0.4314	 0.7115	 -	 -	 -	 -	
Family	5	 2014	 drought	 0.4089	 0.4208	 0.8872	 0.5035	 0.5949	 0.5942	
Family	5	 2015	 drought	 0.6513	 0.6308	 0.9178	 0.6836	 0.6865	 0.5947	
Family	5	 2013	 heat	 0.7517	 0.7696	 0.7992	 0.5032	 0.2364	 0.2426	
Family	5	 2014	 heat	 0.8493	 0.8549	 0.9237	 0.4728	 0.6497	 0.7067	
Family	5	 2015	 heat	 0.5287	 -	 0.8069	 -	 -	 -	
Family	8	 2013	 drought	 0.5905	 0.8105	 -	 -	 -	 -	
Family	8	 2014	 drought	 0.4409	 0.7367	 0.9593	 0.5194	 0.3238	 0.0793	
Family	8	 2015	 drought	 0.6337	 0.6717	 0.9621	 0.7526	 0.8659	 0.8176	
Family	8	 2013	 heat	 0.6357	 0.8721	 0.9096	 0.6584	 0.7165	 0.7336	
Family	8	 2014	 heat	 0.8966	 0.8496	 0.9469	 0.6593	 0.7594	 0.7709	
Family	8	 2015	 heat	 0.5415	 -	 0.8203	 -	 -	 -	

 
-	Trait	not	measured	for	particular	trial.	
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Table 3-5.  Principal Component Analysis for phenotypic data.  Components comprising more than 2% of total variation are 
displayed along with the percent contribution of CT and NDVI for each loading vector. 
  Percent of Variation Explained within Each Principal Component 
Population Measurement 1 2 3 4 5 6 7 8 9 10 
Family 5 NDVI 0.68 0.62 0.52 0.68 0.54 0.35 0.41 0.44 0.46 0.34 
Family 5 IRT 0.29 0.37 0.47 0.18 0.44 0.63 0.58 0.55 0.38 0.51 
Total Variance† 0.25 0.10 0.08 0.06 0.04 0.04 0.04 0.04 0.03 0.02 
            
Family 8 NDVI 0.69 0.79 0.49 0.50 0.48 0.40 0.42 0.44 0.30 0.42 
Family 8 IRT 0.30 0.19 0.38 0.50 0.48 0.57 0.54 0.53 0.47 0.50 
Total Variance† 0.26 0.11 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.02 

†Total	Variance	is	the	amount	of	variation	of	the	entire	data	set	explained	by	the	principal	component.		
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Table 3-6.  Pearson correlation between estimated BLUEs for grain yield, plant 
height, days to heading, and senescence parameters.  BLUEs estimated with 3 years 
and 2 environments.  Family 8 correlations presented in the lower triangle, and 
Family 5 correlations displayed in the upper triangle. 

	 Traits	

	
Grain	Yield	

Plant	
Height	

Days	to	
Heading	 Θ1	 Θ2	 Θ3	

Grain	Yield	 -	 0.46***	 -0.31***	 0.26***	 0.12	 -0.14	

Plant	Height	 0.33***	 -	 -0.23**	 0.22**	 0.04	 -0.01	

Days	to	
Heading	 -0.47***	 -0.16*	 -	 0.19**	 -0.45***	 0.30***	

Θ1	 0.22**	 -0.23**	 0.05	 -	 -0.60***	 0.52***	

Θ2	 0.41***	 0.57***	 -0.39***	 -0.5***	 -	 -0.95***	

Θ3	 -0.41***	 -0.54***	 0.33***	 0.43***	 -0.94***	 -	
*Model	significant	at	the	0.05	level	of	probability		
**Model	significant	at	the	0.01	level	of	probability	
***	Model	significant	at	the	<0.001	level	of	probability	
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Table 3-7.  Pearson correlation coefficients between measured parameters, heading date, 
grain yield, plant height, and senescence parameters for each trial environment for two 
populations. 

Population 
Year and 
Environment Parameter 

Grain 
Yield 

Plant 
Height 

Heading 
Date Θ1 Θ2 

Family 5 Heat 2013 Plant Height 0.41*** 
    Family 5 Heat 2013 Heading Date -0.11 -0.27*** 

   Family 5 Heat 2013 Θ1 0.64*** 0.34*** 0.01 
  Family 5 Heat 2013 Θ2 -0.15 0.05 -0.03 -0.60*** 

 Family 5 Heat 2013 Θ3 0.07 -0.13 0.01 0.49*** -0.95*** 
Family 5 Heat 2014 Plant Height 0.55*** 

    Family 5 Heat 2014 Heading Date -0.25* -0.06 
   Family 5 Heat 2014 Θ1 -0.06 0.06 0.39*** 

  Family 5 Heat 2014 Θ2 0.37*** 0.09 -0.50*** -0.76*** 
 Family 5 Heat 2014 Θ3 -0.31** -0.08 0.45*** 0.72*** -0.98*** 

Family 5 Drought 2014 Plant Height 0.42*** 
    Family 5 Drought 2014 Heading Date -0.18* -0.23** 

   Family 5 Drought 2014 Θ1 0.13 0.14 -0.24** 
  Family 5 Drought 2014 Θ2 0.11 0.13 -0.06 -0.78*** 

 Family 5 Drought 2014 Θ3 -0.02 -0.06 0 0.78*** -0.95*** 
Family 5 Drought 2015 Plant Height 0.40*** 

    Family 5 Drought 2015 Heading Date -0.17* 0.04 
   Family 5 Drought 2015 Θ1 0.42*** 0.25** 0.07 

  Family 5 Drought 2015 Θ2 -0.01 0.04 -0.52*** -0.38*** 
 Family 5 Drought 2015 Θ3 0.08 -0.02 0.29*** 0.42*** -0.95*** 

Family 8 Heat 2013 Plant Height 0.35*** 
    Family 8 Heat 2013 Heading Date -0.13 -0.14 

   Family 8 Heat 2013 Θ1 0.30*** 0.02 0.22** 
  Family 8 Heat 2013 Θ2 0.15 0.43*** -0.17* -0.65*** 

 Family 8 Heat 2013 Θ3 -0.25** -0.50*** 0.19* 0.51*** -0.95*** 
Family 8 Heat 2013 Plant Height 0.67*** 

    Family 8 Heat 2014 Heading Date -0.41*** -0.12 
   Family 8 Heat 2014 Θ1 -0.01 0.1 0.19* 

  Family 8 Heat 2014 Θ2 0.63*** 0.34*** -0.26** -0.49*** 
 Family 8 Heat 2014 Θ3 -0.61*** -0.33*** 0.23** 0.45*** -0.97*** 

Family 8 Drought 2014 Plant Height 0.35*** 
    Family 8 Drought 2014 Heading Date -0.1 -0.05 

   Family 8 Drought 2014 Θ1 0.18* -0.11 -0.37*** 
  Family 8 Drought 2014 Θ2 0.20* 0.43*** 0.19* -0.68*** 

 Family 8 Drought 2014 Θ3 -0.02 -0.35*** -0.12 0.48*** -0.81*** 
Family 8 Drought 2014 Plant Height 0.20* 

    Family 8 Drought 2015 Heading Date -0.46*** 0.1 
   Family 8 Drought 2015 Θ1 0.07 0.04 0.39*** 

  Family 8 Drought 2015 Θ2 0.35*** 0.13 -0.74*** -0.45*** 
 Family 8 Drought 2015 Θ3 -0.33*** -0.1 0.70*** 0.48*** -0.98*** 

*Model significant at the 0.05 level of probability  
**Model significant at the 0.01 level of probability 
*** Model significant at the <0.001 level of probability 
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Chapter 4 - Combining High-Throughput Phenotyping and 

Genomic Information to Increase Prediction and Selection Accuracy 

in Wheat Breeding 

A chapter to be submitted to The Plant Genome as: 

Crain, J.L., Mondal, S., Rutkoski, J., Singh, R.P., and Poland, J.  Combining High-

Throughput Phenotyping and Genomic Information to Increase Prediction and Selection 

Accuracy in Wheat Breeding. 

 Abbreviations 

BLUP, best linear unbiased predictor; CENEB, Campo Experimental Norman E. 

Borlaug; CIMMYT, International Maize and Wheat Improvement Center; CT, canopy 

temperature; EN, elastic net; EM, expectation maximization; EYT, Elite Yield Trials; 

GEBV, genomic estimated breeding value; GS, genomic selection; GBS, genotyping-by-

sequencing; HTP, high-throughput phenotyping; H2, Broad sense heritability; MAF, 

minor allele frequency; MAS, marker assisted selection; NDVI, normalized difference 

vegetation index; NGS, next generation sequencing; PLSR, partial lease squares 

regression; QTL, quantitative trait loci; GBLUP, genomic best linear unbiased predictor; 

RR-BLUP, random regression best linear unbiased prediction; SNP, single nucleotide 

polymorphism 

 Abstract 

Genomics and phenomics have promised to revolutionize the field of plant 

breeding.  The integration of these two fields has just begun and is being driven by 

advances in next-generation sequencing and developments of field-based high-
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throughput phenotyping (HTP) platforms.  To study how a large scale breeding 

programs may utilize genomics and phenomics, we evaluated three site years of elite 

yield trials of wheat (Triticum aestivium) grown at the International Maize and Wheat 

Improvement Center (CIMMYT) in Mexico.  In each experiment, 1,170 lines were 

evaluated in drought (2014 and 2015) and heat (2015). Normalized difference 

vegetation index and canopy temperature were collected on wheat lines via proximal 

sensing and tagged with precise GPS coordinates using a small, portable phenotyping 

platform called ‘Phenocart’.  Genotyping-by-sequencing (GBS) was used for marker 

discovery and genotyping.  Using the 2,101 GBS markers along with over 1.1 million 

phenotypic observations, several genomic selection (GS) methods were evaluated.  The 

models investigated how to best leverage genetic information along with HTP data for 

improved GS accuracy.  Phenotypic data, whether used as a response in multivariate 

models or as a covariate in univariate models, consistently improved GS performance.  

All methods evaluated performed similar in predicting individual environments, but there 

were large differences within environments.  On average, models incorporating 

phenotypic and genotypic data had a 12% increase in accuracy compared to genetic 

models alone.  Continued advances in GS model performance as well as increasing 

data generating capabilities for both genomic and phenomic data will make these 

methods tractable for plant breeders to enhance the rate of genetic gain. 

 Introduction 

To meet the future global demand for food, researchers need to double crop 

production by 2050, which is equivalent to a 2.4% yield increase per year (Ray et al., 

2013).  Genetic gains in wheat yield, however, are currently estimated to be less than 
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1% per year (Reynolds et al., 2012; Ray et al., 2013); much lower than the 2.4% target.  

In order to increase genetic gains and maintain a stable food supply plant breeders and 

geneticist need to utilize contemporary methods to enhance classical breeding.  

Genomics has long promised to revolutionize plant breeding by characterizing 

germplasm and allowing individual loci to be dynamically manipulated for crop 

improvement (Beckmann and Soller, 1986).   

Studies have shown that genomics and marker assisted selection (MAS) can be 

incorporated into breeding programs often resulting in a near 2-fold rate of genetic gain 

compared to traditional phenotypic selection (Eathington et al., 2007).  Next generation 

sequencing (NGS) techniques have been developed that radically reduce the amount of 

time for marker discovery, one of the historical challenges of MAS (Xu and Crouch, 

2008).  Methods such as genotyping-by-sequencing (GBS) (Elshire et al., 2011), 

reduced representation libraries, and restriction site-associated DNA sequencing can be 

used to quickly discover thousands of markers and genotype individuals.  Additionally, 

these approaches avoid ascertainment bias that can be present in high-throughput SNP 

arrays (Davey et al., 2011).  Along with providing a high number of markers, NGS 

methods are also very cost effective for genomic profiling of thousands of breeding lines 

(Poland and Rife, 2012).  In comparison to ever increasing cost associated with field 

trials (Bernardo and Yu, 2007; Heffner et al., 2010), NGS provides opportunities for crop 

breeders and geneticist to genotype entire breeding programs (Poland, 2015) and 

generate dense genomic information that can be used for plant improvement (Morrell et 

al., 2011).   
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One method utilizing this wealth of genomic data is genomic selection (GS) first 

proposed by Meuwissen et al. (2001).  Genomic selection simultaneously estimates all 

marker effects to predict total genetic value.  Genomic selection works by using a 

sufficient quantities of markers to cover the entire target genome so that each 

quantitative trait loci (QTL) is in linkage disequilibrium with a marker (Goddard and 

Hayes, 2007).  By estimating all marker effects, variation can be captured that may not 

have identified above a significance threshold using traditional statistical approaches 

(Meuwissen and Goddard, 2001).  Genomic selection has been shown to be extremely 

accurate in predicting estimated breeding value in relationship to true breeding values in 

simulation (Heffner et al., 2009), and GS is estimated to be twice as efficient as MAS in 

winter wheat (Heffner et al., 2010).    

Genomic selection requires accurate phenotyping, which has long been the key 

to enhancing genetic gains through classical plant breeding.  Phenotypic observations 

are collected on the training population that is then used by the GS model for 

predictions.  The phenotypic information is used not to select individual plants per se, 

but to train prediction models and predict the performance of non-phenotyped 

individuals from their marker scores (Meuwissen et al., 2001).  Thus phenotyping plays 

an essential role in the success of traditional phenotypic selection and genomic 

selection.  However, the ability to assess phenotypes has lagged behind advancements 

in genomics capabilities (Campos et al., 2004; White et al., 2012; Cobb et al., 2013).   

Recently several field-based high-throughput phenotyping (HTP) platforms have 

been developed to alleviate the phenotyping bottleneck.  Some of the platforms have 

been push carts (White and Conley, 2013; Crain et al., 2016), tractor mounted systems 
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(Busemeyer et al., 2013a; Andrade-Sanchez et al., 2014) and aerial vehicles (Liebisch 

et al., 2015).  White et al. (2012) and Deery et al. (2014) provide detailed reviews of 

potential phenotyping platforms and the benefits and challenges associated with each 

system.  While each phenotyping system is varied in its capabilities and cost, they all 

have the option to provide dense phenotypic data can be used to understand crop 

growth.  Measurements provided by HTP systems have been shown to be highly 

correlated to manual measurements suggesting high accuracy relative to current 

approaches and many HTP platforms can measure multiple traits simultaneously 

(Andrade-Sanchez et al., 2014; Crain et al., 2016).  For example, Busemeyer et al. 

(2013b) mapped temporal genetic dynamics for biomass accumulation using 

hyperspectral imaging and time of flight cameras.   

The addition of HTP platforms provides opportunities to increase genomic 

selection through enhancing prediction models, but the question persists of how best to 

incorporate this new information.  Currently, most GS models are single trait models, 

incorporating phenotypic information on only the target trait (Jia and Jannink, 2012).  

While single trait models have proven to be useful (Heffner et al., 2009, 2011), they do 

not take advantage of correlations between traits (Jia and Jannink, 2012).  Often grain 

yield is predicted by GS models, but there are a myriad of physiological process that 

culminate in grain yield (Pask et al., 2012) and well documented cases of physiological 

phenotypes correlated to yield (Amani, 1996; Gutiérrez-Rodríguez et al., 2004; Babar 

and Reynolds, 2006).  HTP methodologies have been very amenable to measuring 

traits such as spectral reflectance and canopy temperature (CT) that have potential for 

use as selection tools because of their high correlations to grain yield (Amani, 1996; 



 

 75 

Gutiérrez-Rodríguez et al., 2004; Babar et al., 2006).  Multiple-trait genomic selection 

has been proposed to leverage the shared information between correlated traits (Jia 

and Jannink, 2012).  However, there are few examples in literature where multiple-trait 

or multivariate GS models have been deployed.  Jia and Jannink (2012) showed that 

prediction accuracies could be increased significantly for traits with low heritability 

through multivariate GS models that include correlated traits to the trait of interest.  

Calus and Veerkamp (2011) also found that higher genomic prediction accuracy could 

be achieved by using multi-trait GS models.  Their study found that multi-trait models 

performed better when there were high genetic correlations between traits resulting in 

up to a 0.14 increase in model accuracy, even with low genetic correlations they found a 

small increase in accuracy.  While both examples show progress for the multi-trait 

model, it is difficult to ascertain how the models would perform in a large-scale wheat 

breeding program, particularly because of the large use of simulated data.   

Utilizing the promise of genomic selection combined with HTP measurements, 

we evaluated how a large breeding program could incorporate GS models and high 

density HTP data.  Specifically, we examined the following:  1) how best to incorporate 

dynamic HTP data into GS models through comparison of single and multi-trait GS 

models in abiotic stress environments based on model prediction accuracy, and 2) 

assess the potential for using high-throughput phenotyping platforms for selection 

decisions large breeding nurseries. 
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 Materials and Methods 

 Field Trial Design and Management 

All field trials were grown during the 2013-2014 and 2014-2015 growing seasons 

at the Campo Experimental Norman E. Borlaug (CENEB), Sonora, Mexico.  The genetic 

materials were advanced lines in the Elite Yield Trials (EYT) of the CIMMYT bread 

wheat breeding program.  Each year approximately 1100 lines are evaluated in 

replicated field trials under drought and heat stress conditions simulating mega 

environments, 4A and 5B respectively.  Mega environments are considered substantial 

land areas that experience the common abiotic and biotic stresses (Braun et al., 1996), 

with over 13 million hectares globally represented by these two drought and heat 

stressed environments.  Two experiments, or different years, of data were obtained for 

the drought experiment, and one year of data was collected for the heat environment.  

The drought environments were sown at optimal planting time, mid-November, and 

water was provided using drip irrigation with a season total of 180 mm.  The heat 

experiment had a late planting date at the end of February that resulted in temperature 

stress throughout the life cycle, with irrigation applied sufficiently to prevent water 

stress.   

The drought experiments were grown on a flat planting surface in plots that were 

3.5 m x 1.6 m, while the heat environment was grown on raised 80cm beds, with similar 

plot dimensions.   Because of the large number of experimental units, the total 

experimental area was greater than 2 ha in size for each environment.  To manage 

spatial variability, each experiment area was divided into 39 individual trials (Figure 1).  

Each individual trial was comprised of 30 genotypes (2 check varieties and 28 entries) 
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in an alpha lattice design with three replicates.  For clarity within this study, experiment 

refers to year and environment combination (3 experiments, 2014 Drought, 2015 

Drought, and 2015 Heat) and trials refer to subsets of plots within each experiment that 

contained three replicates of breeding lines arranged in alpha lattice designs.  

 Phenotypic Data Collection 

Days to heading and plant height were collected in all plots, with days to maturity 

only collected in the first replicate as the replications were highly correlated.  Grain yield 

was determined at the end of the growing season using a small plot combine.  In 

addition to hand measured phenotypic data, we used the Phenocart (Crain et al., 2016) 

to collect NDVI and CT from heading throughout senescence (Table 1).  The Phenocart 

collects georeferenced NDVI and CT data, and after assigning data to plots resulted in 

an average of 34 measurements per plot for each sample date.  To collect data from all 

of the plots required 5-7 hours depending on walking speed.  Because of the time 

limitation, most often the entire experiment area was taken over the course of two 

consecutive days for a given time point during the growing season.  To efficiently record 

data, the Phenocart was pushed along columns of plots rather than following individual 

trial layout (Figure 1).  With the GreenSeeker being and active sensor, spectral readings 

of NDVI change little over the course of the day.  Canopy temperature, however, was 

processed to compensate for ambient temperature changes resulting from the data 

collection pattern as noted in the data processing section. 

 HTP Data Processing and Analysis 

For each experiment we collected three to four sets of observations from heading 

through senescence.  For each time of data collection, we processed the data as 
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follows:  1) assigned data to its correct plot using methods similar to Crain et al. (2016).  

2) calculated heritability for each individual trial for each measurement day, and 3) 

calculated genotype best linear unbiased predictors (BLUPs).  The BLUPs utilize the 

field-design and help compensate for the large spatial variability as they present a 

difference from the mean of the trial for each genotype.  This compensates for trials that 

had higher yield based on spatial location in the experiment.   

Broad sense heritability (H2) is the ratio of the genetic variance to the phenotypic 

variance and is often called repeatability (Piepho and Möhring, 2007).  A high H2 is 

indicative of higher precision, and has been related to higher predictive ability for 

ancillary traits correlated to grain yield (Crain et al. 2016).  We computed trait heritability 

on a trial basis as (Fehr, 1987): 

!"#$%&'( 1:     !! =  !!!

!!! +
!!"#$!

! + !!""#"
!
!"

 

where !!! is the genotypic variance, !!"#$!  is the variance between plots, and !!""#"!  is the 

residual variance (within plot variance), r is the number of replications and s is the 

number of subsamples per plot.  For traits measured only once, grain yield, plant height, 

and days to heading, the model simplifies to: 
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which removes the effect for subsampling. 

NDVI is relatively static throughout the day, but CT is affected by ambient 

temperature so we assessed several methods with which to compensate for this 

potential problem. We tested spatial correction of the raw data by 1) normalized by 
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direction of travel,  2) modeling the data with a time of observation covariate, and 3) 

modeling data with a date of heading covariate.  For each of these correction 

approaches we assessed heritability of the corrected data and compared to the 

heritability of the raw recorded data.  To calculate BLUPs for CT data to use in GS, we 

chose the model with CT data normalized by direction of travel.  This method provided 

the highest heritability of CT data as this suggest that environmental variations had 

been minimized relative to the genotypic differences. 

Best linear unbiased predictors for each genotype were calculated by fitting the 

following mixed model: 

!"#$%&'( 3:  !!"#$ = ! + !! + !!(!)+!! + !!(!"#) + !!"#$ 

where !!"#$ is the phenotype observation for the trait of interest, ! is the overall mean of 

the population, !! is the random genotype effect of entry i distributed as iid !!~!(0,!!!), 

!! is the random effect for the j replication distributed as iid !!~!(0,!!!),  !!(!) is the 

random effect for the k block nested within replication distributed as iid !!(!)~!(0,!!!), 

!!(!"#) is the t subsample nested within i genotype, j replicate, k block and is distributed 

as iid !!(!"#)~!(0,!!!), and !!"#$ is the residual distributed as iid !!"#$~!(0,!!!).  For traits 

measured without subsamples, the term !!(!"#)  is removed from the model.  Missing 

phenotypic data was imputed with an expectation maximization (EM) algorithm using 

the Amelia R package (Honaker et al., 2011).  Pearson correlations between BLUPs for 

HTP traits and grain yield were calculated.   

 Genotypic Information 

Wheat lines were genotyped using genotyping-by-sequencing (GBS) following 

protocols by Poland et al. (2012).  Single nucleotide polymorphisms (SNPs) were called 
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using the TASSEL GBSv2 pipeline (Glaubitz et al., 2014) with Chinese Spring serving 

as the reference genome (Mayer et al., 2014).  Initial SNP calling resulted in 2,079 

individuals and 19,583 markers.  Individuals with more than 85% missing data were 

excluded from the final data set.  Filtering the genetic loci consisted of: 1) excluding 

markers with minor allele frequency (MAF) less than 0.05,  2) excluding markers with 

greater than 5% heterozygosity,  3) excluding markers with more than 30% missing 

data,  4) excluding markers in complete linkage disequilibrium with another marker.  

After filtering, the final genotypic marker set included 2,033 individuals and 2,101 

markers.  We imputed missing markers with an EM algorithm in the R package rrBLUP 

(Endelman, 2011).  The EM imputation has been shown to be computationally efficient 

and provide increased GS accuracies over mean maker imputation (Rutkoski et al., 

2013). 

 Genomic Prediction 

We evaluated genomic prediction for grain yield using several statistical 

methods.  A univariate-single trait model (uniGS), a model using only HTP traits as 

predictors (HTPr), a model with phenotypic covariates (GS+HTP), and a multi-trait 

model that included grain yield, NDVI and CT for responses (multiGS) were fit for each 

experiment individually.  The GS models were evaluated using partial least squares 

regression (PLSR), elastic net (EN), and genomic BLUP (GBLUP).  The R packages pls 

(Mevik et al., 2013), glmnet (Friedman et al., 2010), and asreml (Butler, 2009) were 

used to fit the PLSR, EN, and GBLUP methods respectively.  A detailed review of 

methods for GS is given by Lorenz et al. (2011) and Heslot et al. (2012).  The models 

were fit as a two-step process, first fitting BLUPs for each genotype and trait, and 
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secondly fitting the GS method and model with the calculated BLUPs and genomic 

markers. 

With each GS method and experiment, we fit four different model formulas.  The 

general form that markers and predictors entered the models are: uniGS—A univariate 

formula for grain yield 

!"#$%&'( 4: ! =  µ+ !! +  !  

where y is grain yield and is predicted by µ overall mean and the deviation given from a 

random marker matrix !!, with ! as an error term. 

GS+HTP—A univariate model for grain yield that included covariate predictor 

traits. 

!"#$%&'! 5: ! = µ+ !! +  !! +  !  

where components are equal to Equation 4 with the incorporation of fixed-effect HTP 

predictor traits (!!) of NDVI and CT for each measurement date. 

MultiGS—A multivariate model predicting grain yield along with HTP traits NDVI 

and CT. 

!"#$%&'( 6: ! = µ+ !! +  !  

where Y is a matrix of grain yield and the HTP traits of NDVI and CT.   

HTPr (HTP with multiple regression)—A univariate model predicting grain yield 

with only the measured HTP traits. 

!"#$%&'( 7:! = !!  

where HTP traits are fixed effects.  This model is similar to the GS+HTP with the 

removal of genetic marker information. 
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In addition to fitting individual days of predictor traits, BLUPs for NDVI and CT 

were averaged across entries as this reduced the computational time in fitting the 

multivariate models.  To evaluate the accuracy of the GS models, we used a cross 

validation where the data from each experiment was divided by individual trials fit within 

the model.  This division followed from the experimental design and with no filtering 

represented 39 trials and subsequently 39 cross validation folds.  The most closely 

related lines (e.g. full-sibs) are arranged within the same trial, thus predicting individual 

trials presents a realistic application of GS when predicting into new sets of breeding 

lines.  If a random sample of genotypes was used for the cross validation, it is likely 

genetically similar lines would be used to predict line performance possibly biasing the 

results.  Thirty-eight of the divided data sets were used to train the prediction model, 

and from the trained model prediction were made on the final fold.  The cross validation 

was repeated for each trial predicting all genotypes one time.  For data sets where 

filtering was used the number of folds of cross validation represented the number of 

trials that were used in the particular model following the same leave one out strategy 

as presented above.  The prediction accuracy was determined by Pearson correlation 

coefficient between the observed values and the cross-validated genomic estimated 

breeding value across all folds of cross validation.  We did not divide the correlation 

coefficient by heritability, as that would introduce additional error from the heritability 

calculation (Heslot et al., 2012).  



 

 83 

 Results and Discussion 

 Phenotypic Data Collection and Processing 

To collect high density phenotypic data, we utilized the Phenocart (Crain et al., 

2016) to collect georeferenced NDVI and CT data.  Each day of measurements for the 

experiment area resulted in ~100,000 data observations that were assigned to individual 

plots using geo-referencing.  It took approximately 5-7 hours to cover the entire 

experiment area at teach time point during the season.  Due to the large time difference 

in data collection as well as the fact that often the experiment area was covered over 

two consecutive days, we assessed how best to use CT as it is influenced by diurnal 

environmental conditions.  Many of the observation days for CT had clear patterns that 

were not random and based upon the time of observation (Figure 2a).  To mediate this, 

we examined a number of methods to account for the time variation.  We evaluated 

models accounting for the time of observation, heading date of the genotypes as 

covariates as well as normalizing the data by column of travel (Figure 1).  To assess 

these correction approaches, we used the average broad-sense heritability of all trials in 

the experiment.  While using time of observation covariates and date of heading 

improved the models slightly, normalization of CT by column improved the average H2 

from to 0.34 to 0.55 (Figure 3) and removed much of the non-random patterns that were 

observed (Figures 2a and 2b).  Also using the normalized data, we observed a negative 

correlation with grain yield which has been observed in other studies (Balota et al., 

2008; Crain et al., 2016), further suggesting the data transformation was appropriate 

(Figure 4).  We used NDVI measurements from each trial without correction.  NDVI was 

collected with an active sensor, which limits effects due to environmental variation 
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(Solari et al., 2008), and the observed values changed little from one day to the next.  

The high H2 values from the NDVI data also provide evidence that there was little 

variation over data collection time compared to CT (average H2 over all trials 0.87 for 

NDVI compared to 0.34 for uncorrected CT).  H2 from each trial and observation date 

are reported in Supplemental Table S1. 

Based on these data, it appears that sensor readings can be standardized to 

better reflect the true biological information that is present in the field.  While we have 

used a normalization technique, other sensors may require a different type of 

calibration.  Nevertheless, this finding is useful for scientists trying to collect dynamic 

measurements over large field trials. 

 Genomic Prediction 

We evaluated several different GS models to identify the best approaches to 

leverage genomic information and HTP measurements.  Because genomic selection 

can enhance plant breeding by reducing the time per breeding cycle (Meuwissen et al., 

2001; Heffner et al., 2009) and HTP data should increase the accuracy of phenotypic 

selection and training models for GS prediction (Cobb et al., 2013), the combination of 

GS and HTP should translate to higher genetic gains in the field.  We used three distinct 

models (PLS, EN, GBLUP) for genomic prediction and assessed their accuracy using 

cross validation with accuracy reported as the Pearson correlation coefficient between 

BLUP for grain yield and the predicted value for grain yield.  

The H2 values varied widely among traits and days of observations, so we 

explored the effect of filtering data based on H2 values in the Heat 2015 experiment.  If 

an individual trial had H2 below 0.25 for CT or NDVI the entire trial was removed from 
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the data set, resulting in a data set of 22 of the original 39 trials with complete 

phenotypic observations.  We also removed CT Observations dates 1 and 4 as the 

majority of trials had low H2 for these dates.  While this reduced the size of the data set, 

we wanted to evaluate the effect that only choosing high heritability data would have on 

the predictions.  To evaluate if the changes in prediction accuracy came from filtering for 

higher heritability or from decreasing the training population size, we fit the same 

models using a random selection of 22 trials.  Overall, we found that filtering based on 

H2 values made little changes in the prediction accuracy (Figure 5).  Across all methods, 

there was not a clear trend that filtering resulted in higher performing models.  Based on 

our finding of limited effect for filtering phenomic data on the model performance, we fit 

all data for each experiment. 

 Genomic Prediction Accuracy 

Across the three environments there were large differences in prediction 

accuracy among and within environments (Figure 6).  Overall, environments that had 

low heritability for grain yield (Drought 2015) had worse prediction performance than 

environments with higher heritability for grain yield (Drought 2014 and Heat 2015).  

Across environments, models tended to perform similarly (Table 2)  While the PLSR 

and EN models were computationally efficient, the GBLUP methods required much 

more computation time, thus we fit each model with all of the HTP traits (6 to 8 HTP 

observation time points) and the same models with the average of the HTP traits.  Using 

the averaged HTP traits resulted in predictions that were not statistically different to 

models using individual HTP traits (Table 3), except for a few of the HTPr models.   
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The highest prediction accuracy came from models using only HTP traits as 

predictors (HTPr) models (Figure 6).  Across environments, the models displayed 

several trends.  Partial least squares regression models usually had the lowest 

prediction accuracy.  With the exception of PLSR HTPr models, the addition of HTP 

traits had no significant impact on prediction accuracy within these models.  Elastic net 

models tended to have the highest performance with the HTPr and GS+HTP models.  

Using the HTP data for covariates performed almost as well as EN HTPr models.  The 

GBLUP models performed the best when using multiGS compared to other models.  

The multiGS GBLUP model achieved accuracies almost comparable to HTPr trait only 

models (Figure 6).  This is significant as the GBLUP model using the covariance matrix 

between traits aids in predictive power almost comparable to utilizing HTP traits alone.  

The observed trend that HTPr generally outperformed the other models (UniGS, 

GS+HTP, and multiGS) (Figure 6) may be due to the assumptions that each model 

inherently makes and how the models utilize the data.  For example, partial least 

squares regression is a model that extracts latent variables and is useful when there are 

a number of variables and their relationships are not clearly understood (Tobias, 1995).  

Latent variables are extracted as linear combinations from the original data sets (both 

predictors and response) and the latent variables are chosen to maximize the predicted 

response (Lorenz et al., 2011).  Within our data set, we have variables which are 

expected to have relationships to yield from previous research (Amani, 1996; Gutiérrez-

Rodríguez et al., 2004; Babar and Reynolds, 2006), and the GS method like PLSR may 

be identifying these known associations.  Elastic net penalizes the models when the 

number of predictors (marker set) is much larger than the number of observations 
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(genotypes).  It functions by both selecting variables (markers are dropped from the 

model) as well as imposing shrinkage on the variables that remain in the model (Zou, 

2005).  Using HTP variables, would allow the EN method to single out a few predictors 

and drop other terms (markers) while still maintaining or improving model performance 

over the uniGS models.  In both GS+HTP and HTPr models, the EN models could 

effectively select variables related to HTP that are predicting yield and result in the 

nearly identical performance between the two models (Figure 6).  The GBLUP methods 

are a popular statistical technique to perform GS using random regression best 

unbiased prediction (RR-BLUP) (Lorenz et al., 2011).  In RR-BLUP, the typical least 

squares estimates are shrunken toward zero using a penalty term that reduces 

collinearity between predictors but keeps all predictors (Lorenz et al., 2011).  Keeping 

all predictors could account for the difference in EN and GBLUP model performance for 

the HTP+GS methods (Figure 6).  The implicit assumptions that each method imposes 

on the data also assert practical limits on the utility of the methods as elaborated in the 

model assessment section.  

Compared to the standard GS models, the addition of HTP traits had a large 

increase in efficiency.  Across all models that utilized genomic information (GS+HTP 

and multiGS), adding HTP traits resulted in 12% average increase compared to marker 

(uniGS) selection alone.  While the HTPr models did not rely on genetic information, 

they averaged the highest increase of 1.5 fold greater than GS.  Regardless of how a 

breeding program chooses to use HTP information, this approaches seems very 

effective in increasing selection accuracy.  
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 Model Assessment 

Genomic selection has the potential to revolutionize the practical aspects of plant 

breeding programs (Desta and Ortiz, 2014).  Determining how best to utilize this 

information in concert is needed to allow breeders to maximize resources and achieve 

maximum genetic gains.  In this study, we have examined several possibilities to 

incorporate HTP information into genomic selection models, based on our future vision 

that breeding programs will have genomic profiles available for all breeding lines and 

that high-throughput phenotyping will become routine.  Our findings show that HTP 

traits consistently improve model performance over univariate GS models alone.  Elastic 

net and HTPr models were often the highest in terms of prediction accuracy.  Due to 

computational constraints we only fit the mulitGS model with HTP data that had been 

averaged across all days; however, its prediction was equivalent to HTPr models.  

Application of dimensional reduction techniques such as matrix decomposition (Mrode, 

2014) may allow for faster model fitting and for the addition of more traits given that the 

number of effects (variance and covariance parameters) rise linearly with the addition of 

more traits and observation time points.  As phenotyping programs expand the number 

of traits measured and the frequency of measurements making efficient computational 

use of the data will be an active area of research.  Currently, the models selected by a 

breeding program may depend on the use of the predictions.  For a breeding program 

HTPr models may work well for decisions in advancing lines to further generations while 

providing fast computation.  The application of HTPr models is limited to field trials as 

the model provides no information about the underlying genetic architecture and can 

only be assessed on the same environment that the line per se is evaluated.  However, 
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if a breeder wanted to select lines to add in the crossing block GBLUP methods may be 

more appropriate in representing the potential breeding value based on genomic 

composition.   

 Conclusions 

Sustaining food production into the future will be challenging with expected 

population increases and limited availability of land and resources (Hawkesford et al., 

2013).  To meet the expected increase in demand, a marked increase in genetic gain is 

needed.  We investigated several GS methods and the how best to model the 

phenotypic information.  Utilizing HTP traits improved model performance, thus enabling 

more accurate selection of superior breeding lines from larger populations.  The 

advances in genotyping combined with efficient phenotyping platforms will continue to 

push the integration of genomics and phenomics for breeding and genetics.  By utilizing 

both genetic information and phenotypic data, it is expected that breeders will be able to 

better connect genotype to phenotype while more efficiently identifying and selecting 

superior higher yielding crop varieties. 
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Figure 4-1.  Example field layout and design of each experiment area (2014 and 2015 
Drought, and 2015 Heat).  Each experiment area was approximately 2 ha in size which was 
subdivided into 39 individual trials that had 30 unique entries in an alpha lattice design.  
Broken lines with arrows in the first 5 trials represent the pattern of data collection, with 
CT data normalized based on the column pass of all trials. 
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Figure 4-2.  Canopy temperature  (CT) data assigned to plot that is color coded by value of 
3,510 plots.  Panel A shows the uncorrected CT data that was obtained collecting data 
column by column (Figure 1).  The data collection was over two days, and there are clear 
differences in the right and left portions showing environmental differences due to day as 
well as daily changes.  Day 1 shows non random measurements with an increasing 
temperature progression from left to right.  Panel B is the temperature differences 
normalized by column.  The inter and intra daily gradients have been effectively removed, 
resulting in gradients from top to bottom that are related to irrigation patterns.  Along 
with the minor spatial patterns, there is also differences among genotypes.  
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Figure 4-3.  Broad sense heritability (H2) for canopy temperature (CT) for each individual 
trial.  Unprocessed data is shown in blue with a vertical line at 0.34 representing the mean, 
Panel A.  Normalizing the data resulted in much higher H2 values with a mean of 0.55 
shown by the red vertical line, Panel B. 
  



 

 98 

 
Figure 4-4.  Pearson relationship between best linear unbiased predictors (BLUPs) for 
canopy temperature (CT) and grain yield using BLUPs for CT that had been normalized 
by column of data collection.  Trend line is line of best fit (r = -0.35).  
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Figure 4-5.  Performance of genomic selection (GS) methods and models filtering on 
heritability of high-throughput phenotyping (HTP) traits.  Each panel shows a particular 
GS method, partial least squares regression (PLSR), elastic net (EN), and best linear 
unbiased predictor, panels A, B, and C respectively.  The models were fit to four sets of 
data from the Heat 2015 trial, all data (H15), a filtered data set based on heritability of 
HTP traits (H15 Filtered), and a random subset that was filtered and unfiltered that 
matched the size of the H15 Filtered data set (H15 Filtered Subset and H15 Random Subset 
respectively).  uniGS is genomic selection only with no phenotypic data, GS+HTP uses HTP 
as covariates, multiGS uses HTP data as responses, and HTPr is prediction only with HTP 
data.  Error bars represent 95% confidence intervals.  
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Figure 4-6.  Performance of genomic selection (GS) across three experiments.  Each panel 
represents one experiment area with the three different GS methods and four GS models.  
Methods are grouped on the x-axis by type of statistical method, BLUP best linear 
unbiased predictor, EN elastic net, and PLSR is partial least squares regression.  Four 
model formulations are only genetic data (uniGS), genetic data and phenotypic data 
(GS+HTP), multi response for grain yield and HTP (multiGS), and phenotypic traits only 
(HTPr).  Model accuracy are given on the y-axis in terms of the correlation coefficient 
between best linear unbiased predictor for grain yield and the genomic estimated breeding 
value from model prediction with error bars representing 95% confidence interval.  
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Table 4-1.  Days of phenotypic observation, Ciudad Obregon, Mexico, for normalized 
difference vegetation index (NDVI) and canopy temperature (CT) for each experiment 
along with the total number of collected data points and average number of data per plot.  
The average number is sum of NDVI and CT data combined. 
 

Experiment	
Type	of	

observation	
1st	

Observation	
2nd	

Observation	
3rd	

Observation	
4th	

Observation	
Total	

Observations	

2014-Drought	

Date	 Feb.	15-16	 Feb.	22-23	
Feb.	28-Mar.	

1	 NA	 	
Number	of	

data	 109545	 107517	 134955	 	 352017	

Average	data	
per	plot	 31	 37	 38	 	 	

2015-Drought	

Date	 Feb.	20-21	 Feb.	26	 Mar.	5-6	 NA	 	
Number	of	

data	 110699	 142795	 140490	 	 393984	

Average	data	
per	plot	 37	 41	 40	 	 	

2015-Heat	

Date	 Apr.	23-24	 Apr.	30	 May	7	 May	18-19	 	
Number	of	

data	 95223	 97857	 98732	 101838	 393650	

Average	data	
per	plot	 27	 28	 28	 29	 	
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Table 4-2.  Genomic prediction and 95% confidence intervals (CI) for prediction accuracies for three different genomic 
selection (GS) methods in three experiments.  Accuracy is given as Pearson correlation between observed best linear unbiased 
predictor (BLUP) for grain yield and genomic estimated breeding value (GEBV) for grain yield.  uniGS is a univariate model 
with only genetic markers, GS+HTP is a univariate model for grain yield with high-throughput phenotyping traits as 
covariates, multiGS is a multi response GS model with both grain yield and high throughput-phenotyping traits as responses, 
HTPr is a univariate model for grain yield predicted only with high-throughput phenotyping traits.  MultiGS model for BLUP 
is not fit based on computational constraints. 
	

	 	
2015	Heat	 2015	Drought	 2014	Drought	

Avg.	
Accuracy	

Increase	
from	HTP	
traits	Method	 Model	 r	 95%	CI	 r	 95%	CI	 r	 95%	CI	

Partial	Least	
Squares	
Regression	

uniGS	 0.24	 0.18-0.3	 0.14	 0.08-0.21	 0.34	 0.29-0.4	 0.24	 1	
GS+HTP	 0.27	 0.21-0.33	 0.14	 0.08-0.2	 0.35	 0.3-0.41	 0.25	 1.04	
multiGS	 0.19	 0.14-0.25	 0.12	 0.06-0.18	 0.23	 0.17-0.29	 0.18	 0.75	
HTPr	 0.46	 0.41-0.51	 0.43	 0.38-0.48	 0.52	 0.47-0.56	 0.47	 1.96	

Elastic	Net	

uniGS	 0.28	 0.22-0.33	 0.06	 0-0.12	 0.35	 0.29-0.4	 0.23	 1	
GS+HTP	 0.49	 0.44-0.53	 0.34	 0.29-0.39	 0.55	 0.51-0.59	 0.46	 2	
multiGS	 0.27	 0.22-0.33	 0.11	 0.05-0.16	 0.35	 0.3-0.41	 0.24	 1.04	
HTPr	 0.46	 0.41-0.51	 0.43	 0.38-0.48	 0.52	 0.47-0.56	 0.47	 2.04	

GBLUP	

uniGS	 0.25	 0.2-0.31	 0.17	 0.11-0.23	 0.39	 0.33-0.44	 0.27	 1	
GS+HTP	 0.21	 0.15-0.27	 0.11	 0.05-0.17	 0.32	 0.27-0.38	 0.21	 0.78	
multiGS	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	
HTPr	 0.46	 0.41-0.51	 0.43	 0.38-0.48	 0.52	 0.47-0.56	 0.47	 1.74	
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Table 4-3.  Genomic prediction and 95% confidence intervals (CI) for prediction accuracies for three different genomic 
selection (GS) methods in three experiments.  Accuracy is given as Pearson correlation between observed best linear unbiased 
predictor (BLUP) for grain yield and genomic estimated breeding value (GEBV) for grain yield.  uniGS is a univariate model 
with only genetic markers, GS+HTP is a univariate model for grain yield with high-throughput phenotyping traits as 
covariates, multiGS is a multi response GS model with both grain yield and high throughput-phenotyping traits as responses, 
HTPr is a univariate model for grain yield predicted only with high-throughput phenotyping traits.  All methods and models 
were fit with average NDVI and CT values from all dates of observations. 
	

	 	
2015	Heat	 2015	Drought	 2014	Drought	

Avg.	
Accuracy	

Increase	
from	HTP	
traits	Method	 Model	 r	 95%	CI	 r	 95%	CI	 r	 95%	CI	

Partial	Least	
Squares	
Regression	

uniGS	 0.27	 0.21-0.32	 0.13	 0.07-0.19	 0.35	 0.3-0.41	 0.25	 1	
GS+HTP	 0.26	 0.2-0.31	 0.14	 0.08-0.2	 0.36	 0.31-0.42	 0.25	 1	
multiGS	 0.19	 0.13-0.25	 0.11	 0.05-0.17	 0.22	 0.16-0.28	 0.17	 0.68	
HTPr	 0.44	 0.39-0.48	 0.31	 0.26-0.37	 0.48	 0.43-0.52	 0.41	 1.64	

Elastic	Net	

uniGS	 0.28	 0.22-0.33	 0.06	 0-0.12	 0.35	 0.29-0.4	 0.23	 1	
GS+HTP	 0.47	 0.42-0.52	 0.29	 0.23-0.34	 0.54	 0.5-0.59	 0.43	 1.87	
multiGS	 0.3	 0.24-0.35	 0.06	 0-0.12	 0.35	 0.29-0.4	 0.24	 1.04	
HTPr	 0.44	 0.39-0.48	 0.31	 0.26-0.37	 0.48	 0.43-0.52	 0.41	 1.78	

GBLUP	

uniGS	 0.25	 0.2-0.31	 0.17	 0.11-0.23	 0.39	 0.33-0.44	 0.27	 1	
GS+HTP	 0.21	 0.15-0.27	 0.15	 0.09-0.21	 0.33	 0.27-0.38	 0.23	 0.85	
multiGS	 0.37	 0.32-0.42	 0.24	 0.18-0.30	 0.48	 0.43-0.52	 0.36	 1.33	
HTPr	 0.43	 0.38-0.48	 0.31	 0.26-0.37	 0.48	 0.43-0.52	 0.41	 1.52	
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Chapter 5 - Conclusions 

Plant breeding is a cornerstone to providing sufficient food, fiber, and fuel to meet 

the world’s demand.  Utilizing new technologies to gain efficiencies is imperative to 

meeting this ever-increasing demand.  The fields of genomics and phenomics have 

advanced at an outstanding pace, and the integration of these two disciplines is in its 

infancy.  When work began on developing the Phenocart (late 2012), there were just a 

handful of reviews (Tester and Langridge, 2010; Houle et al., 2010; White et al., 2012) 

and few available platforms (Montes et al., 2011; Busemeyer et al., 2013), additionally 

much of what was available would be cost prohibitive for developing countries.  Today, 

phenotyping platforms are more common, including the Phenocart, tractor mounted and 

pulled platforms (Busemeyer et al., 2013; Andrade-Sanchez et al., 2014) to zeppelins 

(Liebisch et al., 2015), but data collection, management, analysis, and data curation 

remain challenging.  This dissertation addresses many concerns in connecting the 

genotype to the phenotype starting at phenotyping platform development, to deployment 

and utilization, throughout the entire data cycle resulting in enhanced genomic 

predictions.   

While enhancing genomic selection models and increasing the rate of genetic 

gain has been the ideal, this work has produced a number of notable findings.  An 

affordable and high portable phenotyping platform has been developed.  The software 

controlling the system is freely available allowing anyone to clone a platform for his or 

her use.  Additionally, the software is being rewritten in python, a freely available 

scripting language.  This will further allow new users to build their own platforms as well 

as modify the platforms with any sensors that they desire.  Along with platform 
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development, there has also been extensive work in developing efficient methods to 

handle the data.  One method of georeferencing plots was presented within this 

dissertation, but solving problems of locating plots and assigning data has led to further 

database and algorithm development.  Another data method was that of normalizing 

large amounts of canopy temperature data to reduce environmental noise while still 

maintaining biological relevance.  Finally, utilizing the Phenocart allowed users to 

generate much more data than is normally captured in a breeding program.  Much of 

this data was correlated directly to yield, but was also modeled temporally through 

mathematical functions describing plant growth.  The parameters within these functions 

can also be utilized for genomic selection and association mapping. 

The pinnacle of this work integrated both the phenomic data from the Phenocart 

with next generation sequencing data into genomic selection models.  Utilizing 

phenotypic data resulted in genomic selection models that were on average 12% more 

efficient than models on using genotypic data.  This synergy will allow for a faster 

dissection of the genotype to phenotype problem and most importantly allow plant 

breeders and geneticists to meet the demands of a growing population. 
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Appendix A - Copyright Permission 

This appendix includes copyright permission for the published article 

Development and Deployment of a Portable Field Phenotyping Platform, Chapter 2. 
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Appendix B - Supplementary Materials Chapter 2 

This appendix includes the supplementary figures and tables for the chapter 

Development and Deployment of a Portable Field Phenotyping Platform. 

 

Figure B-1.   Block diagram of the Phenocart software, showing each sensor module and 
main module that records data from each sensor.  
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Figure B-2.  Graphical user interface that displays data in real time. 
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Figure B-3.  A. NDVI color coded by value for vegetative wheat.  Low value NDVI is red in 
color, high value NDVI is blue to purple.  B. Canopy temperature color coded by value.  
Hotter temperatures are in red, with cooler temperatures light in color.  Data recorded 
March 29, 2013, Ciudad, Obregon, Sonora, Mexico.
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Table B-1.  Phenocart Components and Technical Specifications. 
 
†Represents	approximate	cost,	may	be	different	

Instrument	 Company	 Field	of	
View	 Output	 Output	

Type	 Other	Specifications	 Sensor	Cost†	

Aspire	4830	 Acer	Inc.,	San	
Jose,	CA	 	 	 	

Windows	7,	2.4	Ghz	process,	8	GB	
RAM,	64	bit	

$750	

GreenSeeker	 Trimble,	CA	 1cmX60
cm	

10	Hz/	38400	
baud	 RS-232	 RS-232	to	USB	converter	used	 $4000	

SXBlue	III-L	 Geneq,	Montreal,	
Canada	 	

10	Hz	/	19200	
baud	 USB	 Omnistar	G2	for	95%	accuracy	<=	

10cm	

$6695	
$1400	Omnistar	G2	
yearly	subscription	

CT	Series	
Thermometer		

MicorEpsilon,	
Raliegh,	NC	 1:2	 10	Hz/	9600	

baud	 analog	
Analog	to	Digital	(AD)	converter,	
Temperature	resolution	0.1	°C,	System	
accuracy:	±1	°C	

$355	
$75	AD	converter	

C920	Logitech	 		 		 ~3	Hz	 USB	 HD	1080p	 $100	
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Appendix C - Additional Material for  

 

Figure C-1.  Original Color image as captured by the Phenocart, March 6, 2014, 
Ciudad Obregon, Mexico. 
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Figure C-2.  Image using color threshold.  Pixels that have green HUE between 55-
110 have been converted to white.  All other pixels are black allowing for a percent 
green pixels to be calculated.  March 6, 2014, Ciudad Obregon, Mexico. 
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 IRT Sensor Root Mean Square Error 

Root mean square error was calculated for relationship between the 

handheld infrared thermometer and grain yield, along with Phenocart IRT 

observations and grain yield.  Across five different time points, there were no 

significant differences in the root mean square error between the two sensor as 

determined by a t-test (t=0.413, p=0.694). 

Table C-1.  Root mean square error values for relationship between measured 
canopy temperature with Phenocart and Handheld IRT and grain yield for five 
sampling days. 

Date Phenocart	RMSE Handheld	RMSE 
3/29/13 27.4 25.3 

4/1/13 25.8 26.2 

4/4/13 26.7 18.7 

5/10/13 22.8 26.8 

5/14/13 25.1 27.2 
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Appendix D - Supplementary Material Chapter 4 

This appendix includes the supplementary figures and tables for the 

chapter Utilizing High-Throughput Phenotyping for Enhanced Genomic Prediction 

Accuracy. 
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Table D-1.  Broad sense heritability for grain yield and HTP traits of canopy 
temperature (CT) and normalized difference vegetation index (NDVI) for 
measurement date in each trial. 
	
Trial	

Grain	
Yield	 NDVI	1	 CT	1	 NDVI	2	 CT	2	 NDVI	3	 CT	3	

2014	Drought	Trial	1	 0.82	 0.95	 0.43	 0.9	 0	 0.89	 0.41	

2014	Drought	Trial	2	 0.78	 0.91	 0.57	 0.91	 0	 0.9	 0.36	

2014	Drought	Trial	3	 0.85	 0.84	 0.43	 0.88	 0.21	 0.83	 0.38	

2014	Drought	Trial	4	 0.8	 0.96	 0.31	 0.96	 0.6	 0.96	 0.77	

2014	Drought	Trial	5	 0.82	 0.87	 0.27	 0.88	 0.35	 0.89	 0.59	

2014	Drought	Trial	6	 0.84	 0.92	 0.46	 0.93	 0.28	 0.93	 0.53	

2014	Drought	Trial	7	 0.96	 0.92	 0.53	 0.94	 0	 0.94	 0	

2014	Drought	Trial	8	 0.98	 0.9	 0.02	 0.96	 0.3	 0.95	 0.69	

2014	Drought	Trial	9	 0.95	 0.84	 0	 0.85	 0	 0.91	 0.33	

2014	Drought	Trial	10	 0.95	 0.8	 NA	 0.91	 0.43	 0.95	 0.21	

2014	Drought	Trial	11	 0.85	 0.75	 NA	 0.86	 0.1	 0.85	 0.21	

2014	Drought	Trial	12	 0.78	 0.84	 NA	 0.88	 0.31	 0.93	 0.45	

2014	Drought	Trial	13	 0.97	 0.94	 0.34	 0.96	 0.61	 0.96	 0.29	

2014	Drought	Trial	14	 0.96	 0.95	 0	 0.96	 0	 0.96	 0	

2014	Drought	Trial	15	 0.96	 0.91	 0	 0.94	 0.6	 0.96	 0.14	

2014	Drought	Trial	16	 0.98	 0.88	 0.53	 0.94	 0.55	 0.95	 0.52	

2014	Drought	Trial	17	 0.96	 0.87	 0.22	 0.92	 0.07	 0.9	 0.58	

2014	Drought	Trial	18	 0.94	 0.9	 0.49	 0.83	 0.35	 0.9	 0.44	

2014	Drought	Trial	19	 0.93	 0.9	 0.24	 0.93	 0.47	 0.95	 0.23	

2014	Drought	Trial	20	 0.78	 0.96	 0.45	 0.97	 0.61	 0.98	 0.26	

2014	Drought	Trial	21	 0.95	 0.92	 0.4	 0.95	 0.64	 0.96	 0.5	

2014	Drought	Trial	22	 0.97	 0.92	 0.76	 0.95	 0.14	 0.95	 0.63	

2014	Drought	Trial	23	 0.95	 0.9	 0.21	 0.94	 0.55	 0.95	 0.45	

2014	Drought	Trial	24	 0.9	 0.8	 0.26	 0.85	 0.47	 0.89	 0.34	

2014	Drought	Trial	25	 0.92	 0.96	 0.51	 0.96	 0.72	 0.97	 0.13	

2014	Drought	Trial	26	 0.98	 0.97	 0.68	 0.98	 0.75	 0.97	 0.43	

2014	Drought	Trial	27	 0.93	 0.89	 0.41	 0.92	 0.5	 0.94	 0.19	

2014	Drought	Trial	28	 0.94	 0.9	 0.39	 0.93	 0.53	 0.94	 0.07	

2014	Drought	Trial	29	 0.94	 0.88	 0.2	 0.93	 0.6	 0.94	 0.55	

2014	Drought	Trial	30	 0.95	 0.9	 0.63	 0.83	 0	 0.85	 0.16	

2014	Drought	Trial	31	 0.98	 0.93	 0.56	 NA	 NA	 0.95	 0.05	

2014	Drought	Trial	32	 0.99	 0.94	 0.31	 NA	 NA	 0.94	 0.53	

2014	Drought	Trial	33	 0.97	 0.92	 0.19	 NA	 NA	 0.91	 0.6	

2014	Drought	Trial	34	 0.93	 0.95	 0.64	 NA	 NA	 0.96	 0.36	

2014	Drought	Trial	35	 0.93	 0.94	 0.64	 NA	 NA	 0.96	 0.55	

2014	Drought	Trial	36	 0.96	 0.95	 0.62	 NA	 NA	 0.92	 0.39	

2014	Drought	Trial	37	 0.97	 0.78	 0.57	 NA	 0.82	 0.82	 0.43	

2014	Drought	Trial	38	 0.99	 0.89	 0.63	 NA	 0.39	 0.93	 0.43	

2014	Drought	Trial	39	 0.95	 0.87	 0.4	 NA	 0.67	 0.95	 0.62	
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Trial	

Grain	
Yield	 NDVI	1	 CT	1	 NDVI	2	 CT	2	 NDVI	3	 CT	3	

2015	Drought	Trial	1	 0	 0.4	 0.54	 0.65	 0.29	 0.89	 0.59	

2015	Drought	Trial	2	 0.12	 0.79	 0.61	 0.87	 0.63	 0.94	 0.78	

2015	Drought	Trial	3	 0.02	 0.84	 0.72	 0.93	 0.61	 0.97	 0.73	

2015	Drought	Trial	4	 0.74	 0.97	 0.56	 0.97	 0.73	 0.99	 0.76	

2015	Drought	Trial	5	 0.83	 0.97	 0	 0.96	 0.41	 0.98	 0.69	

2015	Drought	Trial	6	 0.73	 0.92	 0.2	 0.94	 0.55	 0.96	 0.66	

2015	Drought	Trial	7	 0.7	 0.94	 0.5	 0.96	 0.71	 0.97	 0.58	

2015	Drought	Trial	8	 0.82	 0.97	 0.24	 0.98	 0.59	 0.99	 0.54	

2015	Drought	Trial	9	 0.66	 0.95	 0.51	 0.97	 0.4	 0.97	 0.45	

2015	Drought	Trial	10	 0.63	 0.88	 0	 0.95	 0.38	 0.96	 0.63	

2015	Drought	Trial	11	 0	 0.97	 0.24	 0.98	 0.49	 0.98	 0.82	

2015	Drought	Trial	12	 0.04	 0.96	 0	 0.97	 0.76	 0.99	 0.76	

2015	Drought	Trial	13	 0.25	 NA	 NA	 0.97	 0.47	 0.97	 0.47	

2015	Drought	Trial	14	 0.71	 NA	 NA	 0.98	 0.73	 0.98	 0.83	

2015	Drought	Trial	15	 0.61	 NA	 NA	 0.99	 0.67	 0.99	 0.81	

2015	Drought	Trial	16	 0.69	 NA	 NA	 0.93	 0.68	 0.98	 0.41	

2015	Drought	Trial	17	 0.47	 NA	 NA	 0.97	 0.68	 0.99	 0.77	

2015	Drought	Trial	18	 0.71	 NA	 NA	 0.93	 0.12	 0.98	 0.79	

2015	Drought	Trial	19	 0.46	 0.96	 0.55	 0.95	 0.59	 0.98	 0.68	

2015	Drought	Trial	20	 0.74	 0.9	 0	 0.95	 0.54	 0.95	 0.39	

2015	Drought	Trial	21	 0.82	 0.94	 0.6	 0.96	 0.77	 0.98	 0.68	

2015	Drought	Trial	22	 0.81	 0.71	 0.17	 0.63	 0.23	 0.86	 0.84	

2015	Drought	Trial	23	 0.74	 0.84	 0.21	 0.93	 0.65	 0.97	 0.87	

2015	Drought	Trial	24	 0.48	 0.47	 0.17	 0.79	 0.13	 0.92	 0.85	

2015	Drought	Trial	25	 0.5	 0.95	 0.3	 0.92	 0.59	 0.98	 0.85	

2015	Drought	Trial	26	 0.75	 0.93	 0.47	 0.95	 0.71	 0.99	 0.85	

2015	Drought	Trial	27	 0.87	 0.89	 0.09	 0.93	 0.5	 0.98	 0.79	

2015	Drought	Trial	28	 0.91	 0.88	 0.72	 0.92	 0.4	 0.97	 0.85	

2015	Drought	Trial	29	 0.74	 0.8	 0.67	 0.86	 0.4	 0.94	 0.9	

2015	Drought	Trial	30	 0.66	 0.79	 0	 0.81	 0.43	 0.9	 0.67	

2015	Drought	Trial	31	 0.6	 0.74	 0.6	 0.79	 0.46	 0.92	 0.77	

2015	Drought	Trial	32	 0.88	 0.95	 0.75	 0.93	 0.74	 0.96	 0.69	

2015	Drought	Trial	33	 0.91	 0.97	 0.73	 0.99	 0.59	 0.99	 0.85	

2015	Drought	Trial	34	 0.87	 0.98	 0.5	 0.99	 0.32	 0.99	 0.82	

2015	Drought	Trial	35	 0.75	 0.97	 0.83	 0.98	 0.62	 0.99	 0.79	

2015	Drought	Trial	36	 0.05	 0.96	 0.39	 0.97	 0.12	 0.98	 0.7	

2015	Drought	Trial	37	 0.9	 NA	 NA	 0.98	 0.27	 0.98	 0.8	

2015	Drought	Trial	38	 0.9	 NA	 NA	 0.98	 0.67	 0.99	 0.83	

2015	Drought	Trial	39	 0.85	 NA	 NA	 0.98	 0.42	 0.99	 0.75	
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Trial	

Grain	
Yield	 NDVI	1	 CT	1	 NDVI	2	 CT	2	 NDVI	3	 CT	3	 NDVI	4	 CT	4	

2015	Heat	Trial	1	 0.53	 0.82	 0.44	 0.7	 0.1	 0.81	 0.74	 0.93	 0.84	

2015	Heat	Trial	2	 0.93	 0.91	 0.77	 0.83	 0.27	 0.84	 0.54	 0.92	 0.86	

2015	Heat	Trial	3	 0.72	 0.9	 0.85	 0.8	 0.6	 0.83	 0.66	 0.88	 0.82	

2015	Heat	Trial	4	 0.72	 0.81	 0.74	 0.75	 0.61	 0.78	 0.49	 0.88	 0.69	

2015	Heat	Trial	5	 0.73	 0.86	 0.51	 0.83	 0.42	 0.79	 0.2	 0.88	 0.74	

2015	Heat	Trial	6	 0.83	 0.53	 0.54	 0.51	 0.27	 0.78	 0.4	 0.86	 0.63	

2015	Heat	Trial	7	 0.84	 0.42	 0.27	 0.61	 0.69	 0.67	 0.26	 0.94	 0.64	

2015	Heat	Trial	8	 0.89	 0.64	 0.54	 0.56	 0.44	 0.72	 0.78	 0.92	 0.51	

2015	Heat	Trial	9	 0.87	 0.75	 0.86	 0.65	 0.82	 0.79	 0.64	 0.96	 0.85	

2015	Heat	Trial	10	 0.64	 0.56	 0.63	 0.56	 0.67	 0.76	 0.56	 0.95	 0.74	

2015	Heat	Trial	11	 0.7	 0.59	 0.72	 0.66	 0.82	 0.72	 0.63	 0.92	 0.62	

2015	Heat	Trial	12	 0.84	 0.63	 0.63	 0.66	 0.66	 0.85	 0.62	 0.93	 0.65	

2015	Heat	Trial	13	 0.91	 0.65	 0.71	 0.68	 0.75	 0.85	 0.81	 0.92	 0.9	

2015	Heat	Trial	14	 0.9	 0.6	 0.74	 0.91	 0.86	 0.96	 0.81	 0.96	 0.86	

2015	Heat	Trial	15	 0.95	 0.87	 0.86	 0.82	 0.73	 0.96	 0.81	 0.98	 0.92	

2015	Heat	Trial	16	 0.73	 0.79	 0.8	 0.82	 0.77	 0.89	 0.75	 0.96	 0.92	

2015	Heat	Trial	17	 0.87	 0.43	 0.59	 0.65	 0.42	 0.9	 0.57	 0.96	 0.87	

2015	Heat	Trial	18	 0.91	 0.63	 0.56	 0.71	 0.58	 0.82	 0.62	 0.96	 0.77	

2015	Heat	Trial	19	 0.94	 0.72	 0.57	 0.71	 0.72	 0.92	 0.77	 0.97	 0.77	

2015	Heat	Trial	20	 0.92	 0.67	 0.74	 0.79	 0.83	 0.88	 0.84	 0.97	 0.82	

2015	Heat	Trial	21	 0.93	 0.46	 0.7	 0.86	 0.81	 0.93	 0.87	 0.98	 0.86	

2015	Heat	Trial	22	 0.87	 0.43	 0.39	 0.72	 0.73	 0.92	 0.6	 0.98	 0.78	

2015	Heat	Trial	23	 0.97	 0.79	 0.53	 0.93	 0.79	 0.94	 0.59	 0.97	 0.79	

2015	Heat	Trial	24	 0.87	 0.55	 0.71	 0.84	 0.78	 0.87	 0.76	 0.96	 0.89	

2015	Heat	Trial	25	 0.72	 0.66	 0.52	 0.81	 0.53	 0.86	 0.56	 0.93	 0.78	

2015	Heat	Trial	26	 0.79	 0.66	 0.63	 0.76	 0.46	 0.78	 0.56	 0.9	 0.61	

2015	Heat	Trial	27	 0.78	 0.76	 0.77	 0.88	 0.61	 0.91	 0.57	 0.97	 0.87	

2015	Heat	Trial	28	 0.86	 0.72	 0.67	 0.67	 0.7	 0.88	 0.63	 0.95	 0.78	

2015	Heat	Trial	29	 0.81	 0.61	 0.47	 0.56	 0.39	 0.81	 0.57	 0.97	 0.78	

2015	Heat	Trial	30	 0.88	 0.43	 0.57	 0.72	 0.32	 0.79	 0.69	 0.95	 0.87	

2015	Heat	Trial	31	 0.89	 0.68	 0.51	 0.9	 0.76	 0.95	 0.66	 0.97	 0.86	

2015	Heat	Trial	32	 0.88	 0.71	 0.65	 0.71	 0.6	 0.9	 0.6	 0.97	 0.82	

2015	Heat	Trial	33	 0.84	 0.79	 0.67	 0.84	 0.23	 0.9	 0.59	 0.96	 0.8	

2015	Heat	Trial	34	 0.84	 0.79	 0.61	 0.91	 0.5	 0.94	 0.77	 0.97	 0.8	

2015	Heat	Trial	35	 0.89	 0.88	 0.63	 0.94	 0.77	 0.92	 0.75	 0.93	 0.86	

2015	Heat	Trial	36	 0.85	 0.65	 0.67	 0.75	 0.59	 0.84	 0.47	 0.86	 0.75	

2015	Heat	Trial	37	 0.88	 0.79	 0.57	 0.88	 0.31	 0.9	 0.68	 0.91	 0.8	

2015	Heat	Trial	38	 0.7	 0.77	 0.56	 0.89	 0.33	 0.92	 0.68	 0.97	 0.89	

2015	Heat	Trial	39	 0.7	 0.58	 0.62	 0.86	 0.71	 0.93	 0.73	 0.96	 0.9	

	
	


