e

23

The Implementation of Concurrent Pascal on the NCR8200
by
Donald Mounday

B. S., Fort Hays Kansas State College
Hays City, Kansas 1969

A MASTER’S REPORT

submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1978

Approved by:

Ma jor o fessor

I O e ¢ o 6 o 8 o o o o o
Wb+ [

Uy s b b WwWwwwwwhobhhn HE-
[]

6.

bt

w N -

w N+

o .
w N =

Table of Contents

INtrodUCtiON e coce ceseosscscsssssecscscssccssscsscscs

Origins of Concurrent Pascal..c.ccceccccccccccce

NCR8200 Concurrent Pascal Implementation.......
Implementation ApPpProach.cccececcececscscocscsscecas
Implementation OVerview. ceeecececececoccococcne
Transporting Concurrent Pascal to the NCR8200..
NCR8200 Hardware Architecture€..c.cceccecccccces
Problems O0f POrtinge.cccececccecccssoscocsesscssocce

Byte Address Simulation and Address Segmentation.
Io Buffers.....l‘......‘..................‘..‘l..

Floating=Point EmulatioON.c.ccecsecccecscecccccccnce
Portability EvaluatiONeecceccceecececosacccssese
Adapting the Concurrent Pascal Machine.........
AddresSSinNg.cecesecsssscsoscscsassesssssscssecssacsas
Virtual Code ModificationN.:.cceececscecccncnscsen
Adaptability EvaluatioN. .cccecececesscccvscscsosscns

A General IO Architecture for the Pascal Kernel.

Driver ClassificatioN.eccccccecsccccecsscacscscecnecs
Mapping Pascal IO to Existing Drivers...c..ccce.
IO Request Handlinge. eccceceeoecescccccccsccoscccsccsss

Smmary-.-.-.... ©® 68 ©0 00 06 00 006 0600 00 0O 0 0o e 00 00

R L OB TIC S s o s o s s s d s 6o 08 5s s 8 08 s w0 eessrereiteseossy
APpPENdiXee co oo ooossssscccscsscsssscsscsscsssescssvecessoasae

II.l
S
...4

Y.
...5

I.lo
.10
o1l
«el3

«el7

oell
eel7
.20
«e20
.28
«.34
s dD
« 38
.36
«.40
.42
«.45
.47

o abh b wwhoNoN

WNFWPpHEWNO-

-3
.
-

LN - L3
. L] -
(9]

g U

o

w N -

L]
e

0 -~} O

List of Figures

Concurrent Pascal TransportatioNeseccececscccsccscocnaese?
NCR8200 Concurrent Pascal ImplementatioN.....csseeees.8
Memory Allocation.e.ccaccasaneassncosssnsansscnsassnscnnsd
ADT I0 Bufferc.csccsseseossosssssossnsssessasssssssnensld
Byte Address Simulation and Address Segmentation.....l5
Pushing Data addressSesS.c.csscscescsssscsscasssnsasacsssslb
Push Character Array Element(byte addressable}.......23
Copy Character to Array Element(byte addressable)....25
Virtual Code for Character Array Operations

(byte addressable)..cecccessscscscscccassnssssslb
Stack Pictures of Array Element Copy

{byte addreBsAbl @) s oo s ey e m om san 5w un o 5 wa W@l
Virtual Code for Character Array Operations

(word addressable)..cccecccccascsccensssnsnsasldl
Push Character Array Element(word addressable).......31l
Copy Character to Array Element(word addressable)....32
Stack Pictures of Array Element Copy

(word addressable).ccescsesesessscscsassnnossnseeldd
IO Levels(Pascal to Hardware) c.ccecocensssossssnsvsseadd
IO Device StrucCtUreS.....cceceseasscncsssssassnsnsnss3d
IO Request Handling.seececececcncansaconsannsesnnsensassacil

List of Tables

Data Storage Requirements-.-t-t-t----o----.-----.--0-22
Summary of Development Efforte.ceccccccescesccncessssdd

ii

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

1. INTRODUCTION
Highly portable and adaptable software has long been a

desired goal[PW]. Concurrent Pascal[BHl] 4is a programming
language in which portable operating systems can be
constructed. Concurrent Pascal allows the construction of
operating systems with a hierarchical ordering of abstract
data types. New data types have been invented by Brinch
Hansen for the aﬁecification of processes and shared
variables, and for the sharing of common code. This report
contains descriptions of the transportation of Concurrent
Pascal to the NCR8200, the adaptation of the Pascal virtual
code to the addressing scheme of the 8200, and a generalized
I0 architecture to aid in the development of new peripheral
device drivers for the system.

This report is organized in the following manner: the
remainder of chapter one contains a description of the
evolution of the Concurrent Pascal system that was
implemented on the NCR8200. Chapter two contains a
description of the implementation of Concurrent Pascal on
the 8200. A description of portingicOncurrent Pascal to the
8200 is is presented in chapter three. The adaptation of the
virtual code to a word addressable architecture is described
in chapter four. Chapter five contains a description of a
generalized I0 driver architecture for the Concurrent Pascal
system. This paper concludes with a summary in chapter six

and the appendix contains the pseudo-code of the interpreter

for the adapted virtual code.

Much of this report is based heavily on work done by
Neal[DNl1l] in transporting Concurrent Pascal to the Interdata
8/32. This report assumes that the reader is . familiar with
Concurrent Pascal and its runtime support requirements.

l.1 Origins of Concurrent Pascal

Concurrent Pascal was invented by Per Brinch Hansen at
California Institude of Technology(cit). It was implemented
on a PDP1l1/45 and used to develop the single user operating
system, SOLO[BH2]. Two compilers, one for sequential Pascal
and one for Concurrent Pascal, and several utilities run
under the SOLO operating system. The compilers are written
in Sequential Pascal and generate a virtual-machine code
that can be executed efficiently with a machine language
interpreter.

The Concurrent Pascal machine is implemented with two
agsembly language programs, the.interpreter and kernel. The
interpreter executes the virtual code of concurrent and
sequential Pascal programs. The kernel provides the
interface to 10 devices, handles dévice interrupts, controls
access to shared variables, handles timer services, and
multiplexes the processor between the concurrent processes.

Kansas State University Department of Computer Science
personnel implemented Concurrent Pascal on the Interdata
8/32[DN2]. This implementation was done as a subsystem to

the 08/32=-MT operating asystem. However, the structure of

the kernel and interpréter was not changed significantly

from that defined by Brinch Hansen. Some .minor
modifications were made to the representation of strings and
sets to alleviate character string representation problems
inherent with the PDP/1l]1l addressing scheme. The I18/32
implementation required writing the kernel and interpreter
in CAL assembly[DHZj language and building the SOLO virtual
disk from the CIT distribution tape.

An image of the I8/32 SOLO virtual disk, containing the
ASCII sourcelfiles and virtual code for the SOLO system, was
the starting point of the NCR8200 Concurrent Pascal

implementation effort.

2. .HCR£200 CONCURRENT PASCAL IMPLEMENTATION

This chapter contains a description of the
implementation approach and an overview of the NCR8200
Concurrent Pascal implementation.

2.1 Implementation Approach

The implementation approach was c¢hosen with manpower,
the primary resource} in mind. Three development approaches
were availiable:

l) Implement the entire system on a bare machine.
2) Implement the interpreter and kernel on an
availiable general multitasking package with
drivers and memory management facilities.

3) Implement the interéreter and kernel nusing
EXECI[NCRl], a single user development system, for
10 driver support.

The first alternative was out of the guestion due to
the heavy manpower investment that is required to develop 10
drivers for the 8200.

The second alternative seemed more attractive but a
considerable effort was necessar& to map the Concurrent
Pascal machine task structure into the task structure of the
multitasking package. In addition the device drivers were
much too extensive in their capabilities for the Pascal
system. They provided such features as error 1logging,
power-fail recovery and peripheral diagnostics. The 6K words

of memory required for the drivers seemed too expensive in

comparision to the features provided by the second

alternative.

The third alternative was chosen because it provided
debug aids, simple file management capabilities, and a
virtual line printer and card reader. The major
disadvantage was the I0 driver architecture. Chapter five
contains a discussion of the problems in this area and a
general solution.

2.2 Implementation Overview

The procedures of transporting Concurrent Pascal to the
NCR8200 are depicted in figure 2.1. A magnetic tape image
of the.IB/32 SOLO wvirtual disk was copied directly to an
EXECI data file. The kernel and interpreter were coded in
the 8200°s assembly language and then 1linked and loaded by
the EXECI operating system.

The NCR8200 Concurrent Pascal implementation structure
is illustrated in figure 2.2. The kernel and interpreter
were implemented on top of the EXECI operating system. As
EXECI does not provide any multitasking support, processor
multiplexing was implemented totally within the kernel.
EXECI did provide 10 support for the SOLO‘devices and the
necessary development tools and debugging aids.

Memory allocation for the 8200 is illustrated in figure
2.3. The kernel does not contain constants for the maximum
number of process records or monitor gates. This memory is

allocated when requested from the bottom of the interpreter

toward the private date space of the processes. The private

data space for processes is allocated from the top of the
initial process and the common area in low core toward the
bottom of the process records and monitor gates. In
allowing memory to be allocated in this fashion the system
does not have to be reassembled and configured to change the
number of monitors or processes in a concurrent program.
More details regarding the implementation are presented

in chapter three on portability and chapter five on the 10

architecture.

I8/32 Tape virtual
SOLO Virtual Copy Disk
DIsk image

Concurrent
Pascal
Machine

EXECI

T

Loader
and
Link Editor

T

Assembler

Kernel

and
Interpreter
8200 Assembler

Source

Figure 2.1 Concurrent Pascal Transportation

concurrent | concurrent concurrent
process process process
1 2 n

kernel and interpreter

EXECI

|

Terminal Virtual Virtual Virtual Magnetic
Disk Printer Reader Tape

Figure 2.2 NCR8200 Concurrent Pascal Implementation

EXECI

Kernel

Interpreter

Monitor gates
and
Process records

free

Process n
Private
Data Space

Process 1
Private
Data Space

Initial Process
\ and
Common
Space

Figure 2.3 Memory Allocation

10

3. TRANSPORTING CONCURRENT PASCAL TO THE NCR8200

This chapter contains a discussion of the problems of
porting Concurrent Pascal to the 8200. Since the 8200 is not
a well known machine a few paragraphs are included that
describe it. The problems of porting are in general
distinct from the I8/32 implementation.

3.1 NCRB200 Hardware Architecture

The NCR8200 computer system is built around a 600
series processor[NCR2] which is used in a large number of
NCR products.

The processér is a word addressable, general purpose
register machine. The maximum addressable memory is 64K
words. The memory is organized in a linear address space of
0 to 65535 in which each address identifies a.sixteen bit
word. Utilizing one and two word instructions seven
permissible hardware addressing modes are availiable:

l) relative~direct
2) relative—-indirect
3) absolute

4) absolute~indirect
5) indexed

6) absolute~indirect, post~indexed
7) immediate.

Instruction operands are register~memory or
register-?egister. A memory-memory instruction is not
available, a fact that impacts interpreter performance.

The processor has sixteen registers. Eight registers
are used for 10, gubroutine linkage, and machine state

preservation during interrupts. The remaining eight

11

registers can be used for general programming, however, only
four of these may be used as index registers.

Two typea. of IO are possible with the 600 series
processors-~direct memory access(DMA), which is similiar to
most machines and transfers data directly between memory and
high-speed devices, and auto data transfer {(ADT), which is
used to transfer data to slow-speed devices. ADT devices
may require special data formats and interrupt service
routine linkage mus£ be maintained at the end of the data
buffer as shown in figure 3.1l.

3.2 Problems of Porting

The following sections contain a discussion of problems
of the implementation that are distinct from the Interdata
8/32 implementation. Many of the problems encountered by
the 18/32 implementators were not present in the NCR8200
implementation. Of the problems encountered, the largest was
the segmentation addressing inherited from the PDP/11
implementation. The problem exists because the SOLO
operating system is 72K bytes in size and data addresses are
limited to sixteen bits. The PDP/11 implementation solved
this with hardware segmentation registers which gave each
Concurrent Pascal process a 64K byte address space, part of
which was common with all other processes. The 8200
implementation solved the problem in a fashion similiar to
the 18/32 implementation as will be discussed in relation

to the byte address simulation.

data br isr

interrupt
service
routine
linkage

Pigure 3.1 ADT 10 Buffer

12

13

The problems £o be discussed in the following sections
are byte address simulation in conjunction with address
segmentation, the lack of floating-point and integer
multiply/divide hardware, and hardware requirements of IO
buffers.

3.2.1 Byte Addrqss Simulation and Address Mapping

i problem even more severe than the problem of addreas-
segmentation was the mapping of byte addresses onto a
machine with a word addressable architecture. Even though
the bytefto-word and word-to-byte conversions could be done
with a single shift instruction the impact on efficiency ias
obvious. Each time a data address 1s,puahe§ onto the stack
it must be converted to a byte address and each time an
address on the stack is used to access memory it must be
converted back to a word address. This conversion overhead
must also be added to the overhead of the software address
segmentation.

Figure 3.2 illustrates the operations involved in using
a data address that was removed from the stack to access
memory. A sixteen bit byte addreés is converted to a word
address. This address is then compared to the common top.
If the word address is greater than common top it is an
address of data imn the private segment ~of a process.
Therfore the displacement from the private segment base must
be added to form the real memory address. 1f the address |is

less than or equal to the common top it is an address in the

14

common segment.

The reverse of the above operation, pushing a data
address onto the stack is illustrated in figure 3.3. 1In
this case the absolute word address‘is mapped to the logical
address by subtracting the displacement off the private
segment base if it is greater than the common top. The
mapped address is then converted to a byte address that c¢an
be placed on the stack.

With performance in mind only data addresses are mapped
and pushed on the stack as byte addresses. Linkage
information, specifically the stack pointer, the global
base, the local base, and the virtual code pointer are
maintained as word addresses and are pushed on the stack as

unmapped word addresses.

16 bit byte

address

convert to
word address

compare
address >
to

common

add

private
base i

private
process
data

common
and
permanent
data

Memory

15

base n

base n-1

base i

common
top

Figure 3.2 Byte Address Simulation and Address Segmentation

16 bit word

address

compare

address subtract
to > private

common > base i
top t

1A

l

‘convert
to ‘ 16 bit byte
- byte addr address

Figure 3.3 Pushing Data Addresses

. R

3.2.2 10 Buffers

The hardware requirement of two words of interrupt
linkage following each ADT data buffer prevents IO from
being performed directly in the user’s program space.
Fortunately only the slower devices that use the ADT type IO
require this expanded Dbuffer. I0 is performed in the
kernel’ s address space and the data is copied to or from the
user s program space.
3.2.3 Floating=point Emulation

A minor problem was the absence of floating-point and
integer multiply/divide hardware on the 8200. Although this
presented no conceptually difficult problems, a considerable
amount of time had to be invested in developing software to
make up for hardware defficiencies. While integer
multiply/routines were readily adapted from existing
software, the floating—point routines had to be implemented
from scratch. Only the short form floating-point similar to
the IBM/360 form was implemented. The accuracy of these
routines is at best minimal but no problems have been found
with the compilers of other SOLb utilities that use real
numbers.
3.3 portability Evaluation

The implementation of Concurrent Pascal on an 8200 is
significant from a portability viewpoint. The first
implementation was on a machine with byte addressable memory

and hardware support for simulating a stack architecture.

18

Stack operations on the PDP/l]l are facilitated by the use of
autodecrementing an& autoincrementing register modes|[DEC].
The virtual code of the PDP/1l implementation with only the
minor modifications made by the I8/32 implementors was
transported to a machine with word addressable memory and no
support for the stack architecture. Although‘ accurate
performance statistics are not available the system has
performed sufficiently for prototype development work.

The resulting system and the manpower investment
required to implement it speak well of the portability of
the system. | The system was implemented in approximately
three - man-months. The porting process was aided
significantly by the availability of documentation. The
logic of the kernel- was documented by the Pascal like
pseudo=-code included as comments in the PDP/ll kernel and
the intermediate level documentation of the I8/32 kernel.
The 18/32 documentation included a module level functiocnal
description and the description of the module interface
conventions. A very high level description of the
Concurrent Pascal machine was brovided by [BH3]. The
“Concurrent Pascal Implementation Notes " [BH4] provided
supplemental information to the interpreter and kernel
descriptions. The availability of a wide range of

documentation allowed the non-input/output portion of the

kernel to be coded in less than a week. Even more

significant is that after correcting a few clerical errors

19

during early development the system has been used several

months without detecting any errors attributed to the
kernel.

The worst implementation problem was the byte address
gimulation in the interpteterf Converting data addresses
between bytes and words and maintaining the linkage
information in words caused many confusing moments in coding
and debugging the interpreter. These problems have been
eliminated by adapting the Pascal virtual code to the word
addressable architecture of the 8200.

The largest manpower investment was in the IO portion
of the kernel. Even though the decision was made to use
existing drivers, the heterogenecus interface requirements

of the drivers resulted in a significant amount of work.

20

4. ADAPTING THE CONCURRENT PASCAL MACHINE TO THE NCR8200

The most noted architectural difference between Brinch
Hansen"s Concurrent Pascal machine and the 8200 is the
difference 1in addressing. This chapter contains a
description of the addressing requirements of the data
manipulation instructions in the byte addressable Pascal
machine. Furthermore, the modifications that were made to
allow more efficient interpretation of the virtual code by
the 8200 are presented. The modifications redefine the
Concurrent Pascal machine from a byte addressable machine
into a word addressable machine.
4.1 Addressing

The PDP/11 implementation is based on a sixteen bit
machine word for storage of addresses and data. An
exception in the case o0f character strings allows the
addressing of an individual character. Table 4.1 summarizes
the storage requirements for the Pascal data types. The
interpreter for the PDP/ll uses word 1level addressing
instructions for manipulating integer, real, set, and
character data types. Byte instructions are used only for
manipulating individual characters in an array of
characters. The only virtual instructions which access data
on the byte level are COPYBYTE and PUSHBYTE.

The low order bit of the sixteen bit address is onlyl

significant for operations on character arrays. All other

operations are performed on data that is aligned on word

21

boundaries. This alignment 1s required by the PDP/11
architecture(DEC]. A program exception occurrs if a word

operation is attempted on data located at an odd byte
addressf

The byte addresasing Pascal machiﬂe manipulates
character arrays as described below. Two basic operations
are performed on a stack machine, pushing data onto the
stack and copying data from the stack.

Pushing an element of a character array onto the stack
is illustrated in figure 4.1. The source array address is
pushed onto the stack with the LOCALADDR or GLOBALADDR
virtuval instruction. The subscript value is then pushed
onto the stack by a PUSHLOCAL or PUSHGLOBAL or left on the
stack as the result of an expression evaluation. The INDEX
virtual instruction then calculates the source byte address
by multiplying the subscript value times the array component
length=~ one in the case of character arrays-~and adds the
result to the source array address. The source byte address
is left on the stack and used by the PUSHBYTE instruction to
address the character array element. During the source byte
address calculation the INDEX instruction validates the

subscript value.

Common Pascal Data Types

Integer 1 word
Real 2 words
Set 8 words
Char 1 word
Array{l. .n] of Char n/2 words

{n must be even)

Table 4.1 Data Storage Reguirements

22

a)

LOCAL/GLOBAL ADDR

b)

PUSH LOCAL/GLOBAL

c)

INDEX

d)

PUSHBYTE

Figure 4.1 Push Character Array Element

array address

array address |
subscript

element address

character

(byte addressable)

o

-

w<-

23

24

Copying a character to a character array element is
illustrated in figure 4.2. This operation is similiar to
the push operatioﬁ with the INDEX instruction calculating
the destination byte address. Figure 4.3 illustrates the
virtual code for a Pascal statement that copies an element
of a character array to a character variable.

The virtual code and stack operations are shown in
figure 4;4 for copying an element of a character array to a
character variable. § is the stack pointer and B is the
local base pointer. The number on the virtual instruction
corresponds to the picture of the stack taken after
execution of the instruction. The numbers on the left of
the stack pictures are arbitrary memory addresses and the

labels on the right are variable names.

a)
LOCAL/GLOBAL ADDR array address
b)

array address
PUSH LOCAL/GLOBAL subscript
c)
INDEX element address
d)

element address
PUSH LOCAL/GLOBAL character
e)
COPYBYTE

Figure 4.2 Copy Character to Array Element

(byte addressable)

-

G-

25

26

Pascal statements

var text : array(l..6] of char;
var c¢:char: .

text:="pascal”’;

c:= text([2]:

Virtual Code for c:=text[2]:

Instruction Arguments
1l LOCALADDR -4 “ow
2 LOCALADDR =10 "text"
3 PUSHCONST 2
4 INDEX 1,5,1
5 PUSHBYTE
6 COPYBYTE

Figure 4.3 virtual Code for Character Array Operations
(byte addressable}

After execution of instructions

1’ 2"

as follows:

1,2,3

B =>110
.108
106
104
102
100

4 INDEX

§ =>

|

106
100

=4
[-}] L]

101

and 3 the stack appears

text

“c
~“text

~c
“text+l

5 PUSHBYTE
106

S=> a

6 COPYWORD
B=>110

108

106 a

104 a 1

102) C

text

100 text
e I%

Figure 4.4 Stack Pictures of Array Element Copy
{byte addressable)

27

28

4.2 virtual code modification

The adaptation of the virtual code for more efficient
addressing was a relatively simple procedure once the first
implementation was running and the compilers were avaiable.
A pass was added to the existing sequential and concurrent
compilers to effect the necessary code modifications. Then
SOLO and its utilities were recompiled. Once this was
completed the necessary interpreter changes were made and
the new system was working.

Figure 4.5 shows how the c¢ode in figure 4.3 appears
after modification. Any instruction érgumenta which were not
previously specified in words were divided by two. This had
no impact on the instructions which operated at the word
level. Only the COPYBYTE, PUSHBYTE, and INDEX instructions
had to be interpreted differently to retain byte level
accessibility for character arrays. The psuedo-code for the
interpreter is included in the Appendix.

Figures 4.6 and 4.7 show how pushing and copying of an
element of a character array is implemented with word level
addressing. The length argument for the INDEX instruction
is now the length of the array element in words. In the
case of character arrays this argument is zero. If the
arqument is zero the INDEX instruction does not calculate
the element address, instead it calculates the zero relative
offset of the character element and performs the necessary

subscript range checks. This results in the array address

29

and the validated byte offset of the desired array element

on the top of the stack. The interpretation of the PUSHBYTE
and COPYBYTE instructions has been changed t¢ perform the
array element address calculation. The wvirtual code and
stack pi&turas for copying a character array element to a
character variable(figure 4.3) with word level addressing is
shown in figure 4.8.

A minor problem was encountered in changing the
interpretation of the COPYBYTE and INDEX instructions. The
copying operation pushes one more word on the stack than the
byte level addressing implementation. This extra word may
cause the temporary stack requirements for a procedure to be
one word greater than that calculated by the complier. The
temporary variable space is allocated by the procedure entry
instructions. The more aesthetically pleasing solution would
be to change the compiler to allow for this extra word.
. However, due to the amount of time available for this
project the interpreter allows one more word than asked for

by the procedure entry instructions.

30

Virtual Code

Instructions Arguments
1 LOCALADDR -2 "
2 LOCALADDR =5 "text"
3 PUSHCONST 2
4 INDEX 1,5,0
5 PUSHBYTE
6 COPYWORD

Figure 4.5 Virtual Code for Character Array Operations
{word addressable)

a)

LOCAL/GLOBAL ADDR

b}

PUSH LOCAL/GLOBAL

c)

INDEX

d}

PUSHBYTE

Figure 4.6 Push Character Array Element

array address

array address

subscript

array address
;te offset

character

{(word addressable)

o

o

o -

31

a)

LOCAL/GLOBAL ADDR
b)

PUSH LOCAL/GLOBAL
c)

INDEX

d)

PUSH LOCAL/GLOBAL

e)
COPYBYTE

Figure 4.7 Copy Character to Array Element

array address

array address
subacrIpt

array address

bgte offgset

array address

QIPE offset

character

{word addressable)

G

K=

=

L4]

L]

32

After execution of instructions
l, 2, and 3 the stack appears
as follows:

1,2,3

B=> 55
54
53
52
51
50

S=>

4 INDEX

Figure 4.8 Stack Pictures of Array

a2 1
-1 c
g a

53

50

| A
53
1

S PUSHBYTE.
c e e P sty
il ¥ €
S=> a_ |
text
~“c & COPYWORD
“text
B=> 55
54
“c 51 |8 ¢
of fset 50 a text
e #

(word Addressable)

Element Copy

33

34

4,3 gdaptability Evaluation

The changes necessary to adapt the virtual code to a
word addressable architecture were suprisingly simple. 1It
is doubtful that Hansen designed the system to be adapted in
this fashion so one might conclude that the high
adaptapility is a result of the high portability.

The change to word level addressing in the virtual code
simplified the interpreter by allowing the removal of the
shift instructions which implemented the word-to-byte and
byte=to-word address conversions. An even greater
improvement was the elimination of the need for software
address segmentation. Since the entire memory of the 8200
can be addressed with a sixteen bit address, which can be
pushed onto the stack, there is no regquirement for
segmentation. The removal of the address conversion code
and the software segmentation code has resulted in an

approxmate fifteen percent performance improvement.

35

5. A GENERAL 10 ARCHITECTURE FOR THE PASCAL KERNEL

This chapter describes a general 0 architecture for

the Pascal kernel. A general architecture was necessary for

the development of the system primarily because of the

dificulity of implementing drivers for the 8200. In
determining the implementation approach for the system it
was decided that as many existing drivers as possible should
be utilized. This decision introduced the problem of
interfacing the Pascal devices to existing "off the shelf"
drivers with heterogeneous interfaces and system
requirements. A solution to this problem is the general 10
architecture described in this chapter.
5.1 Driver Classification
After a survey of the available drivers they were
grouped into the following three classifications based on
the driver’'s method of handling I0 initiation and
completion:
1) Drivers which initiate the I0 operation and set
a status cell in a parameter block busy before
returning control. The ériver‘s interrupt service
routine sets the status cell with the completed
status and restores the interrupted state,
2) Drivers which initiate the IO operation and
return control. The driver must be polled for the
device’s completion status. The polling is often

a requirement of device design.

36

3) Drivers which initiate . the 10 operation and
return control. The interrupt service routine
schedules a user defined completion routine after
handling device dependent functions.

5.2 Mapping Pascal IO to Existing Devices

An interface routine was written for each driver to map
the Pascal IO device to the driver. Figure 5.1 illustrates
the 1levels an IO request passes through. The driver
interface raufines map the requirements of the Pascal
-devices to the "off the shelf" driver for which they were
written. In most cases these routines are only a few lines
of code that map the Pascal IOPARAM block to the parameter
block fo;_ the driver and the translation of completion
statuses into Pascal statuses.

The 10 request class in the kernel is driven by the IO
device structures illustrated in figure 65.2. The Pascal
virtual device table c¢ontains an entry for each device in
the order in which they were enumerated in the concurrent
program. Each of these entries point to a device control
block which contains information about that particular
device type. The device control block contains the
addresses of the open routine which initializes the device
when the system is loaded, the request initiation routine,
the device profile which describes some attributes of the
device, énd addresses of one or more unit control blocks.

The device profile indicates to the system configuration

37

procedures if buffers are to be allocated in the kernel’s
address space for ADT type IO and if the device must be
polled. Only‘,one device control block exists for each
device type. A unit control block{(UCB), of which there is
one corresponding to each unit of a device type, contains
driver dependent information. The ‘'only system information
is the status and the user, the coﬁcurrent Pascal process
that is using the driver. The use of a UCB for each device

unit enables a driver t¢ control more than a single unit.

Kernel IO
Initiation

Driver
Dependent
Paramenters

Figure 5.1 I0 Levels(Pascal to Hardware)

Pascal
Machine

;

Pascal
+o
Driver
Interface

"off the
Shelf"®
Driver

H

hardware

38

Pascal
Virtual

DEvice
"Table

n

Device 0

Device 1

e —
(T ———————

LDevice nl

Device Control
Block

—-logen rtn. addr

init. rtn. addr

device profile
of units

UCB addr unit Gi

UCB addr unit n

Unit Contrel
Block

device and
driver

dependent

Figure 5.2 I0 Device Structures

40

5.3 10 Request Handling

The initiation, interrupt handling, and completion of
an 10 request are diagrammed in figure 5.3. After the 10
activity is initiated class one{l) and ¢two(2) driver
requesis are placed on the poll gqueue. The kernel polling
routines, which are driven by an interval timer, administer
the poll queue. For class one drivers the kernel polling
routines check the UCB status cell and schedule the
completion routines when the status is complete. For class
two drivers the kernel polling routines call the driver’s
polling routine, which tests and returns the device status.
The time interval on the poll gueue is determined by the
device’s speed. The scheduling of the completion routine for
class three(3) drivers is performed by the device interrupt

gservice routine upon an device interrupt.

41

Initiate
Routine

Class 1 & 2
Drivers

Class 3
Drivers

Timer Queue

Interrupts

Kernel
Polling

Routines

Driver
Interrupt
~ Service Class 1
Routine Driver
Clags 2
Driver [.
Polling
Routine

Completion
Routine

Figure 5.3 I0 Request Handling

42

6. SUMMARY

Two implementations of Concurrent Pascal on the NCR8200
are described in this report. The first was a pure porting
of Concurrent Pascal to the 8200 With no modifications to
the wvirtual code. The second implementation involved
adapting the virtual code to the word addressable
architecture of the 8200. The only éignificant difference
between the ¢two implementations- is the interpreter. The
first interpreter was the most difficult to implement as it
had to deal with byte address simﬁlation and address
segmentation. The second implementation of the interpreter
is similiar to the PDPll interpreter and easy to understand.
This simpler implementation resulted in an approximate
fifteen percent performance improvement over the first
implementation. The implementation on the 8200, which is
architecturally a much different machine than the PDPll,
illustrates the high portability and high adaptability of
the Concurrent Pascal machine.

The general 10 architecture of the Pascal kernel has
been a successful undertaking. Two drivers have been added
to the system with less than two days of effort for each.
One of these, which is a diagnostic driver for a new
peripheral, allowed the use of the device in a version of
SOLO before the device was functioning.

Table 6.0 summarizes the development effort for the

8200 system. The man hours column reflects the importance

43

of good documentation to a system implementation. The IO
Kernel was the only portion of the implementation that
required extensive design, and it required the largest
amount of time per line of c¢ode. Time was not available to
undertake an extensive system test. However, the system has
been used for several months to make changes to SOLO and
develop several Sequential Pascal programs without
uncovering any errors.

The implementation of the Concurrent Pascal system was
a rewarding and informative experience. The system has
proven valuable for prototype development work on a Data
Base Management System by providing, at a low man-power
cost, a high-level systems language on a machine which

previously had none.

Lines of
New Code

Interpreter 1400
Floating~Point Routines 375
Integer Math Rouintes

Kernel 1150
10 Kernel ' 200
Interface Routines 662
Drivers

Totals 3778

44

(

Lines of Estimated
Existing Man Hours(*)
Code
160
40
50
40
80
100
1640
1690 420

(*) Number includes coding and debug time.

Table 6.0 Summary of Development Effort

[BH1]

[BH2]

[BH3]

[DEC]

[DN1]

[DN2]

[NCR1]

[NCR2]

[PW]

45

References

Brinch Hansen, P., The Programming Language
Concﬁrrent Pascal. 1EEE Transactions on Software
Engineering, vVol. 1, No. 2 (June 1975), pp. 199=207.

=== The Architecture of Concurrent Programming.
Prentice=Hall Inc., Englewood Clifts, RBJ, 1977.

ey Concurrent Pascal Implementation Notes.
Information science, California Institute of
Technology, January 1976.

Digital Equipment Corp. PDPll/45 Processor Handbook,
1973.

Neal, David, An Architectural Base for Concurrent
Pascal. (M.S. Thesis). Kansas State University
Department of Computer Science, Technical report <CS
76=19, January, 1977.

Neal, David, et. al., KSU Implementation of
Concurrent Pascal-- A Referance Manual. Kansas State
University Department of Cbmputer Science, Technical
report CS 76-16, January, 1977.

NCR Corp. Programmer’'s Reference Manual--=NCR605 EXECI
Operating System. 1975.

’ NCR605 Reference Manual. Stock Number

ST=9417-01, 1975.

Poole, P. C., and Waite, N, M., Portability and

.46

Adaptability. in Bauer, F. L., Advanced Course on

Software Engineering, Springer-verlag, 1973.

47

Appendix

Pseudo~Code of Concurrent Pascal Interpreter
for a Word Addressable Architecture

The pseudo~code procedures in this appendix define the
virtual instructions for the Concurrent Pascal Machine.
These procedures were copied £from the interpreter for the
PDP1ll system and modified for a word addressable
architecture. The notation s:+1 means s:=s+l1 and st(s)
means store(s).

= gtack pointer
= global base
= local base
- virtual code pointer

Qo0 0

procedure constaddr{displ):
begin
test st{job):
if zero _
then g:-1; st(s):=st{constaddr) "system"
else s:~1; st(s):=st(g+5): "job"
- st(s):+st{qg): qg:+1:
end;

procedure localaddr{displ):
begin
g:=1: st(s):=b;
st{s):+st(q); q:+1:
end:

procedure globaladdr(displ):
begin
s:=1; st((s):=g;
st(s):+st{q); q:+1;
end;

procedure pushconst(value):
begin
g:=1: st{s):=st(q): q:+1; .
end:

procedure pushlocal(displ):
begin
w:=Db;
w:+st(qg): q:+1;
g:=1; st{s):=st(w}:

end:

procedure pushglobal(displ):
begin
wi=g:;
w:tst(q):; q:+1:
i=1: st(s) :=gt(w):;
end:

procedure pushind;
begin
st(s):=st({st(s)):
end’
.
procedure pushbyte;
begin
w:=at{a): s:+1;
wx: shift 1:
w:+at(s):
z:=st(w):
x testbit &8000:
if bitzero then
z: shift 8
else
z: and &0Off:
st(s):=2z;
end:;

procedure pushreal:
begin
wi=at(s): s:+1;
wit2:
wi=l: g:=1; st(s):=st(w):-
wi=1l; s:=1; st(s):=st{w):
end:

procedure pushset:

begin
wi:=gt{s); s:+1;
w:+8;
wi=l; s:=1; st(s):=gt(w):
wi=l; g:=1;: st(s):=st(w):
wi=l; s:=1; st(s):=st(w):;
wie=l: g:=1; st((s):=at(w);
wi=l; g:=1; st{s}:=st(w);-
w:=1l: g:=1; st(s):=st(w);
wiel: gs:=1; st(g):=st(w):
wi=l; s:=1; st(s) :=st{w)}:

end;

procédure field{displ)}:

begin
st(s) :+st(q): q:+1;
end:

S

procedure index{min,max-min,length}:
begin
x:=st(s):;
x:=st{q): g:+1;
if less then
goto rangeerror:
x compare st(g):; qg:+1:;
if greater then
goto rangeerror
test st{qg): q:+1;
if not zero then
begin
x:*st(g-1l):
s:+1;
st(s) :+x:
end
. else
st{s):=x;
end:

procedure pointer:
begin
test st(s):
if zero then
goto pointererror;
end;

procedure variant(displ, tagset)

begin
wi=l:
x:=gtis): “y=record addr”
x:+st(qg): g:+1: "y=tag addr"
w: shift st({x): =1 ghift tagvalue”

st{g) testbit w; q:+1:
if bitzero then
goto varianterror:
end:

procedure rangef{min,max):
begin
st(s) compare st(qg):r q:+1;
if less then
goto rangeerroOr:
st{s) compare st{qg); qg:+1:
if greater then
goto rangeerror:’
end:

49

procedure copybyte:’
begin
w:=gt(s+1l):
wx: shift 1:
wi+gt(s+l)}:
z:=gt(w):
y:=st(s}:
x bittest &8000;
if bitzero then
begin
y: shift 8:
z: and &00fE;
end
else
z: and &E£f00:
z: or y:
st(w):=2;
s:+3;
end;

procedure copyword:
begin
st(st(s+l)):=st(s): s:+2:
end:

procedure copyreal:;
begin
w:=gt(s+2):
st{w):=st(s); wi:+l; s:+1;
gst{w):=st{s): w:+l; s:+1;
test st{s); a:+1;
end:

procedure copyset:;

begin
w:=sgst(s+8)};
st{w) :=st(s): w:i+l; s:+1l:
st{w):=st{s); w:+l; s:+1l;,
st{w):=st(s); w:+l; s:+1l:
st{w) :=st(s); w:+l; s:+1;
st{w) :=st(s); w:+l; s:+1:
st(w):=st(s); w:+l; s:+l;
st{w):=8t(s):; w:+l: s:+1l;
st(w) :=st(s); w:+l; s:+1;
test st{s): s:+1;

end:

procedure copytagf{length):

begin "lenath>0"
st(st{s+1l)):=st(s); s:+1:
wi:=at(q); g:+1; "w=length"

x:=st{s) s:+1; "y=tag addr"

51

test st{x); x:+1:
iterate w times
clear st(x);: x:+1:
end:

procedure copystruc{length):

begin
wi=gt{q}): gq:+1; "w=1length"
x:=s8t(s); s:+1; "x=gource addr"”
y:=st({s): s:+1; "y=dest addxr"

iterate w times

st(y):=st(x): y:+1; x:+1:;
end:’

procedure new(stacklength+length,length};
begin
X:=Db;
x:=-gt{heaptop):
x compare st(g): q:+1;
if less<unsigned> then
goto heaplimit;
st(st(s)):=st(heaptop): s:+1;
stt(heaptop) :+st(qg): qg:+1;
end:;

procedure newinit(stacklength+length, length}:
begin "length>0"
X:=b ’
x:~st{heaptop) :
x compare st(qg): g:+1:
if less<unsigned> then
goto heaplimit;
st(st(s)):=st{heaptop);: s:+1:
wi=st(qg); q:+l:
st{heaptop) :+w:
x:=gt (heaptop):
iterate w times
xi=1l; clear st{(x):
end:

procedure not:
begin
at(s):==at{{s):
increment st(s):
end:

procedure andword:
begin
w:=gt(s); s:+1;
wi=not w;
st{s}:andnot w;
end:

procedure andset:
begin
w:=8;
iterate w times
begin
st(s):=not st(s):
st(s+8):andnot st(s); s:+l;
end:

end:;

procedure orword:
begin
st(s+l):or st(s); s:+1:;
end’

procedure orset:
begin
w:=8: ‘
iterate w times
st(s+8B):or st(s);: s:+1;
end:

procedure negword:
begin
gt{s):==gt(s)
if overflow then
goto overflowerror:
end:

procedure negreal:
begin
st(a) :=<real>=st{s);
end:

procedure addword:
begin
st(s+l):+st(s);: s:+1;
if overflow then
goto overflowerror:
end’

procedure addreal:
begin
wi:=<real>st(s):; s:+2:
w:+<real>st(a):
st{s):=<real>w:
end;

procedure subword:
begin

st(s+l):-at(s): s:+1
if overflow then
goto overflowerror:
end:;

procedure subreal;
begin
wi=<real>st(s); s:+2;
i=<real>st{s);
X:i=<real>w:
st(s) :=<real>x:
end:

procedure subset:;
begin
w:=2:
iterate w times
st(s+8):andnot st{s
end:

procedure mulword:

begin
x:=gt(s); s:+1;
carry:=false;
x:*st(sg):;
if carry then

goto overflowerror:;

st(s):=x:

end;

procedure mulreal:;
begin
wi:=<real>st{s): s:+2:
w:*<real>st(s):
st(s) :=<real>w;
end;

procedure divword:

begin
x:=8t(g+l);
extendsign w;
wx:/st(s): s:+1;
if overflow then

goto overflowerror:

st{s):=w;

end;

procedure divreal:
begin
w:=<real>st(s+2):
w:/<real>st(s); s:+2:
gt{s):=<real>w;

-
s

-8

s:+1:;

53

end:’

procedure modword:;

begin
x:=gt({s+1):;
extendsign w;
wx:/st{s); s:+1;
if overflow then

goto overflowerror:;

st(s):=x:

end;

procedure buildset:
begin

wi:=gt({s): s:+1;

if w<0 then goto rangeerror:

w compare 127:
if greater then
goto rangeerror:
Xi=w;
w:mod
x:div
x:+8;
y:=1:
y:shift w;
st(x):or y:
end:;

procedure inset:;
begin
w:=gt(s+8);

"x=member"
"w=member mod 16"

"x=get byte adr®
bit"

"y=gset byte

if w<0 then goto rangeerror;

w compare 127:
if greater then
goto rangeerror;

X:=w;
w:mod 16:;
x:div 16;
X:+8:
y:= st(x):
WiE=w;
y:shift w:
y:mod 1:;
g:+8:;
st(s) :=y:

end:

procedure lsword:
begin
Clear w:
st{s) compare st(s+1l)
if greater then

*x=member"
"w=member mod 16"

"x=get byte adr"
"y=get byte”

"y=get bit"

: 8g:+1;

increment w:;
st(s) :=w;
end;

procedure egqword:
begin
clear w;

st(s) compare st(s+l);

if equal then
increment w:
st(s) :=w;
end:

procedure grword:;
begin
clear w;

st{s) compare st{s+1l}:

if less then
increment w:
st(g):=w:
end:;

procedure nlword:
begin
Cclear w;

st(s) compare st{s+l):

if notgreater then
increment w;
st{s) :=w:
end:;

procedure neword:
begin
clear w:

st(s) compare st{s+l):

if notequal then
increment w:
gt (s) :=w;
end:

procedure ngword:
begin
clear w:

st(s) compare st(s+l):

if notless then
increment w:
st{s) :=w;
end;

procedure lsreal:
begin
clear w:

.

i+l

55

x:=<real>st(s): s:+2:
at{s) compare x; 8:+2;
copyconditions;
if less then
increment w;
g:=1;: st{sg):=w;
end;

procedure eqreal:;
begin
¢clear w;
xX:=<real>st(s): s:+2;
st(s) compare x; s:+2:
copyconditions;
if equal then
increment w;
i=1; st(s):=w;
end;

procedure grreal

begin
clear w;
X:=<real>st(s); s:+2;
st(s) compare x; s:+2;
copyconditions;
if greater then

increment w;

g:=1; st(s):=w;

end:

procedure nlreal

begin
clear w;
x:=<real>st{s): s:+2;
st (s) compare x: 9:+2;
copyconditions:
if notless then

increment w:

g:=1: st(s):=w;

end:

procedure nereal:

begin
clear w;
x:=<real>st(s); s:+2:;
st(s) compare x; sg:+2;
copyconditions:
if notequal then

increment w;

s:=1; st(s):=w;

end:;

procedure ngreal

begin
clear w;
X:=<real>st(s); s:+2;
st{s) compare x; s:+2;
copyconditions;
if notgreater then

increment w; -

g:=1;: st{s):=w;

end;

procedure egset;
begin
clear w:
xX:=8;
y:=8;
repeat
st(x+8) compare st(x); x:+1:
yi~1l:
until (y=0) or notegqual:
if equal then increment w:;
g:+15;
st{g):=w;
end:;

procedure nlaet;
begin
clear w:
xX:=8:
y:=8:
repeat
st{x):andnot st(x+8): x:+1;
y:~1:
until (y=0) or notzero:
if zero then increment w;
g:+15;
gt({s) :=w:
end;

procedure neset;
begin
w:=1l:;
X:=8;
y:=8;
repeat
st{x+8) compare st{x): x:+1:
y:=1:
until (y=0) or notequal;
if equal then clear w;
s:+15;
st{s):=w;
end:;

procedure ngset;
begin
clear w:
X:i=g;
y:=8;
repeat
st{x+8):andnot st{x): x:+1;
y:=1:
until (y=0)}) or notzero:
if zero then increment w;
g:+15;
st{s):=w:
end:;

procedure lsstruct{length)}:
begin
wi=gt({q): q:+1l:

*w=length"
x:=8t(g); s:+1; "yx=gource addr"
y:=3t(s); *y=dest addr”
clear st(s):
repeat

st{y) compare st{x):; y:+1; x:+1:
wi=1l;
until {w=0) or notegual:
if less then
increment st(s):
end;
procedure egstruct{length):
begin
wi=gt(q): q:+1: "w=length”
x:=st(g); a:+1; sx=gource addr"”
y:=s8t{s): "y=dest addr"
clear st(s):
repeat
st(y) compare st{x); y:+1l: x:+1l;
w:=1;)

until (w=0) or notequal:
if equal then increment st(s}:;
end;

procedure grstruct(length);
begin
w:=gt{g): g:+1;

"w=length"
x:=st({8): s:+1; "y=gource addr"
y:=st(s): "y=dest addr"

clear st(s):
repeat

st(y) compare st(x); y:+l: x:+1l:
w:=1:;
until (w=0) or notequal:
if greater then
increment st(s);
end;

procedure nlstruct(length);
begin
wi=st(q): q:+1;

"w=length®
x:=st(s);: s:+1; "x=gource addr"
y:=st(s); *y=dest addr"
clear st(s):
repeat

st(y) compare st(x); y:+1; x:+1:
wi=1:
until (w=0) or notequal:;
if notless then
increment st(s):
end:;

procedure nestruct{length):
begin
w:=gt(qg):; g:+1: "w=length"
x:=stf{sg) s:+1; "x=gource addr"
y:=st(s): "y=dest addr"
st(s):=1:
repeat
st(y) compare st(x):; y:+1l; x:+1l:
w:=1:
until (w=0} or notequal:
if equal then clear st(s}:
end:

procedure ngstruct(length):
begin
wi=st(g): q:+1:

"w=length"
x:=gt(s); s:+1; "x=gource addr
y:=st(s): "y=dest addr"®
clear st(s):
repeat

st{y) compare st(x): y:+1l: x:+1:
w:=1;
until {w=0) or notegqual;
if not greater then
increment st(s):
end;

procedure funcvalue{kind}:

59

begin
case kind of
simpleword: LA
begin
s:=1; clear st{s)}:
end:
*filler"
simplereal: o
begin
g:=2:
end:;
*filler"
classword: wgn
begin
wi=st{s):
clear st(s):
g:~1l: st{s):=w;
end;
classreal: “i2"
begin
w:=gt{sa):
g8:=2:
st{s):=w;
end;
end:
end:

procedure jump(distance):
begin
q:+st{q):
end:;

procedure falsejump(distance):

begin

if (st{continue) = 0)

&
(st(job) <> 0)

then goto exception

else

begin

test st(s): s:+1; “continue=1"

if zero

then qg:+st{qg)
else qg:+1:

end

end:

procedure casejump{min,max-min,distances):
begin
wi=gt({s): s:+1;
wi=st(q): q:+l:
if less then goto rangeerror:

60

w compare stf{g); g:+1l:
if greater then
goto rangeerror:
qg:+w;
q:+st{q):
end:;

procedure initvar({length):
begin
w:=sgt{q): q:+1;
xX:=8;
iterate w times
clear st{x): x:+1:
end:;

procedure call{distance):
begin
wi=q;
w:+st(q): q:+1;
s:=1; st(s):=q:
gi=w;
end:;

procedure callsys({entry-1l):

begin
wi=gt(g+l): "51d s before program call”

w:+st{g): g:+1l; "w = entry point addr"
s:=1;: st{s):=q:
g:=st(w)}:

end;

€1

"activation record:

<heap>
heaptop: <free space>
s: <temporaries>
<variables>
b (or g): <line>
+ 1 <old s>
+ 2 <old b>
+ 3 <old ag>
+ 4 <old g>
+ 5 <parameters>

(<function result>)
monitor variable:
<variables>
g: <gate address>
<parameters>
stacklength = varlength + templength + 5
poeplength = paramlength + 4"

procedure enter (stacklength,poplength,line,
varlength) ;

begin
X:=s:
x:=st(heaptop):
x compare st{q): q:+1:; "error message
if less<unsigned> then will refer to
goto stacklimit: line of call"”

g:=1; st(s):=g;
s:~1: stf{s):=b:

HB

st(s):=s;
st(s):+st(q): q:+1;
s:=1: st(s):=st{q); q:+1;
b:=s;
s:=st(qg): gq:+1;
end:

procedure exit:

begin
8:=Db;
test at(s);: s:+1:;
wi=st(s): s:+1;
b:=st(s); s:+1;
g:=st(s); s:+1;
q:=st(s); s:+1:
g:=w;

end:;

procedure enterprog(poplength,line,stacklength,

62

63

varlength);
begin

increment st(job):
g:=1;: st(s):=g;
s:~1l: st(s):=b;

t=1;

st(s) :=s;

st{g):+sti{q): q:+1;

t=1: st{s):=gt{q): qg:+1:;

b:=s:
g:=b;
Xx:=g;
x:~-st(heaptop):
x compare sti{g): g:+1: “arror message
if less<unsigned> then will refer to
goto stacklimit; line 1 of user
s:=st{qg): q:+1; program”
end; '

procedure exitprog;
begin
test st{continue):
if zero
then goto exception
else goto terminated:
end:

procedure beginclass{stacklength, 5,line,0):

begin
X:=8;
x:-at(heaptop);
X compare st{g): g:+1: "error message
if less<unsigned> then will refer to
goto stacklimit: line of call”

g:~1; st{s):=qg;
s:=1; st(s) :=b;
g:=1:

st(s):=s;
st(s):+st(q); q:+1;
s:=~1l; st(s):=st{q): q:+1:
b:=s;
s:-st{q): q:+1;
wi=gt(b+l);
g:=st(w=1};

end:;

procedure endclass:
begin
"game as exit"
end:

procedure enterclassf{stacklength,poplength,

line,varlength):

begin
"same as beginclass"
end:

procedure exitclass:
begin
"same as exit"
end;

procedure beginmon{stacklength,
begin
x:=g;
x:~st(heaptop):
X compare st{q): g:+1l:
if less<unsigned> then
goto stacklimit:
s:~1: st(s):=g:
g:=1; st(s) :=b;
s:=1;
st({s):=s;
st(s):+st(qg); gq:+1;
g:~1: st(s):=st(qg):; qg:+1;
b:=g;
s:=-st(g): qg:+1;
w:=gt (b+l):
g:=st{w=1l):
st{kernelop) :=initgatel;
st(kernelargl) :=qg:
kernelcall:
end;

procedure endmon;

begin
st{kernelop) :=leavegatel:
st(kernelarqgl) :=st(qa):
kernelcall;
s:=b;
test st(s): s:+1;
w:=st(s); s:+1:
b:=gt{sg): s:+1;
g:=st(s); s:+1;
g:=st(s); s:+1:;
g:=w;

end:;

procedure entermon{stacklength,

line, varlength):

begin
X:=8;
x:=st(heaptop):
X compare st{qg): qg:+1;

5,1line,0):

"error message
will refer to
line of call"

peplength,

"error message

64

if less<unsigned> then will refer to
goto stacklimit: line of call"
g:=1; st{s):=g;
s:~1l; st(s):=b:
gs:=1:
st(s) :=s:
st{s):+st(g): q:+1:
s:=1; st(s):=st{q): q:+1;
b:=s’
g:-st(g): g:+1;
w:=gt (b+l):
g:=gt{w=1}:
st(kernelop) :=entergatel:
st{kernelargl) :=st{g}:
kernelcall;
end:

procedure exitmon:
begin
"same as endmon"
end;

procedure beginproc{(line):
-begin
st(b) :=st{q): q:+1:
end:

procedure endproc:

begin
st(kernelop) :=endprocessl;
kernelcall;

end:

procedure enterproc(stacklength,poplength,
line,varlength):

begin
xX:=8;
x:=gt{heaptop):
x compare st{qg): g:+1: ' "error message
if less<unsiagned> then will refer to
goto stacklimit; line of c¢all"

s:=1; st(s):=qg:
s:=1l;: st(s):=b;
s:~1;

st{s):=s;
st(s):+st(qg): qg:+1l:
s:~1;: st{s):=st{q): q:+1;
b:=s:
s:=st{q): q:+1;
g:=st{g+3):
clear st{job):

end:;

procedure exitproc:
begin
8:=b;
test st(s); s:+1:;
wi=st(s): s:+1:
b:=gt(s): s:+1;
g:=gt(s): s:+1;
g:=st(s): s:+1:;
g:=w;
increment gt (job):
end:

procedure pop{length):;
begin
s:+st(q): q:+1:
end:

procedure newline(number):;
begin
st(b):=s8t(q): q:+l;
end:

procedure incrword:
begin
increment st{st(s)): s:+1:;
end: S—

procedure decrword:;
begin
decrement st(st(s)):; s:+1:;
end’

procedure initclass(paramlength,distance):

begin
wi=st{qg):; qg:+1;
if nonzero then
begin
x:=8;
x:+w:
x:i=gt(x}:
test st(x): x:+1;
iterate w times
st{x):=st(s);: x:+1:
end:
wi=q:
wi+st(g): q:+1:
s:=1; st(s):=q:
g:i=w;
end:

procedure initmon(paramlength,

"w=paramlength"”

"x=s+paramlength"

"x=class addr+1l"

s:+1;

distance):;

66

begin
"same as initclass”
end;

procedure initproc(paramlength,varlength,
stacklength,distance):

begin '
st{kernelop) :=initprocessl:
st{kernelargl):=st(q); q:+1;
st(kernelargl):=st(q): q:+1:
st(kernelargl):=st{q); q:+1;
st{kernelarg2):=q:;
st{kernelarg2):+st(q); qg:+1;
kernelcall:
test st(s): s:+1:

end;

procedure pushlabel(distance):
begin
8:~1; st(s):=q:
st(s) :+st{q): q:+1:
end:

procedure callprog:

begin
wi=gq;s "w=o0ld q"
qg:=st(s): "g=code addr"
test st(qg): q:+1:
st(s):=at{q); q:+1;: "st{s)=codeleng”
q:+2; *g=codeaddr+4"
st(s):+q: “st(s)=constadr"
g:=1; st(s) :=w; "push({old q}"
end;

procedure truncreal:
begin
w:=<real> st(s): s:+2:
:=1; st(s):=trunc(w):
if overflow then
goto overflowerror:;
end:

procedure absword:
begin
test st(s):
if negative then
begin
st{g):==gt(sg):
if overflow then
goto overflowerror:;
end:;
end;

67

procedure absreal:
begin
st:=abs<real>(st(s)):
end;

procedure succword:
begin
increment st(s):
end:

procedure predword:
begin
decrement st(s):
end:

procedure convword;
begin
w:=conv{st(s)): s:+1:;
g:=2; st{s):=<real>w;
end:;

procedure empty:
begin
clear w;
test st{s):
if zero then
increment w;
at(s):=w;
end:

procedure attribute:
begin
w:=st(s):
st(s):=st{w+thead):
end:

procedure realtime;
begin
st{kernelop) :=realtimel:
kernelcall:
i=1l: st(s):=st(kernelargl}:
end;

procedure delay;
begin
st{kernelop) :=delaygatel:
st{kernelarqgl) :=st{g):
st{kernelargl):=st(s): s:+1;
kernelcall;
end;

68

procedure continue:

begin
st(kernelop) :=contgatel;
st{kernelargl) :=st(g):
st (kernelargl):=st(s);: s:+1:;
kernelcall:
gs:=b;
test st(s);: s:+1;
wi:=gt(g): s:+1;
b:=st(s): s:+1;
g:=st(a); s:+1;
q:=st({s):; s:+1;
s:=w;

end:;

procedure io:

begin
st(kernelop) :=iol;
st(kernelargl) :=st(s); s:+1;
st(kernelargl):=st{s); s:+1;
st{kernelargl) :=st(g):; s:+1;
kernelcall;

end:;

pProcedure start:
begin '
st{continue) :=1;
end;

procedure stop;
begin
st(kernelop} :=stopjobl:
st{kernelargl) :=st(s): s:+l:
st(kernelargl):=st(s): s:+1:
kernelcall:
end:

procedure setheap:
begin
st{heaptop) :=st{s); s:+1:
end;

procedure wait:
begin ;
st{(kernelop) :=waitl:
kernelcall:
end;

terminated:
st (result) :=0;
goto exception:
overflowerror:

€69

st (result) :=1:
goto exception:
pointererror:
st{result):=2;
goto exception:
rangeerror:
st(result):=3;
goto exception:
varianterror:
st(result) :=4;
goto exception;
heaplimit:
st(result):=5;
goto exception:
stacklimit:
st{result) :=6:
goto exception;
exception:
st(line):=s¢(b):
test st(job):
if zero then "insystem”
begin
st(kernelop) :=systemerror:
kernelcall:
end
else "in job"
begin
b:=g:
g:=hb:;
test st({s): s:+1;
w:=gst{s): s:+1;
b:=st(s); s:+1;
g:=st{s); s:+1;
g:=st(s): s:+1;
g:=w;
clear st{job):
end;

70

The Implementation of Concurrent Pascal on the NCR8200
by
.Donald Mounday

B. S., Fort Hays Kansas State College
Hays City, Kansas 1969

- ey Sty Sy Gy s

AN ABSTRACT OFlA MASTER”S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1978

ABSTRACT

The programming language Concurrent Pascal has been
implemented on varions computers since its invention. The
subject of this report is the implementation of Concurrent
Pascal on the NCR8200. The process of transporting the
Interdata 8/32 implementation to the NCR8200 is described
along with a discussion of the problems encountered.
Improvements to the NCR8200 A implementation are also
presented. These are the adaptation of the Pascal virtual
code to a word addressable architecture and the development

of a generalized IO architecture for the Concurrent Pascal

kernel.

