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Abstract 

The regal fritillary (Speyeria idalia) was once an abundant butterfly species of North 

American prairie communities.  Despite its once broad geographic distribution, populations have 

declined by ~99% in the prairie region for reasons that are poorly understood.  The rapid, range-

wide declines and persistent threats to extant populations from habitat loss and mismanagement 

prompted the U.S. Fish and Wildlife Service to initiate a species status review of the regal 

fritillary as a potential candidate for listing under the endangered species act in September 2015.  

Due to the uncertain status and contention regarding the effects of management practices (i.e., 

burning, grazing, and haying) on regal fritillary, my research objectives were to assess the effects 

of management practices and habitat features on the distribution and density of regal fritillary 

and their preferred larval host plant for the Midwest, prairie violet (Viola pedatifida).  I 

generated species distribution models (SDM) of prairie violet to readily identify potential areas 

across the landscape containing patches of host plants and subsequently facilitate the location of 

regal fritillary larvae.  The SDM produced maps of the probabilistic occurrence distribution of 

prairie violet throughout my study area and highlighted habitat features and management 

practices important to the occurrence of prairie violet.  The seven final variables used to create 

the SDM and identified as important to the occurrence of prairie violet were elevation, slope, 

hillshade, slope position, land cover type, soil type, and average fire frequency.  Using the SDM 

for prairie violet, I located eight areas to conduct surveys for regal fritillary larvae that were 

managed using various management (grazing and haying) regimes and fire-return intervals (low 

≥ 10 years, moderate 3-5 years, and high 1-2 years).  I used a binomial generalized linear model 

to determine the effects of management, host plant density, months since burn, and the 

interaction between months since burn and management on the occurrence distribution of regal 



  

fritillary larvae.  My results indicate that greater host plant density and short fire-return intervals 

are important to the occurrence of regal fritillary larvae and, despite current management 

recommendations, larvae may be negatively impacted by a lack of fire.  Finally, I surveyed tracts 

of prairie with my study area using a distance sampling approach along line transects stratified 

by overall management (burned, grazed, and hayed) and fire-return interval (low ≥10 years, 

moderate 3-5 years, and high 1-2 years) for adult regal fritillary.  My results indicated that adult 

density was at least 84% greater in areas that received moderate fire-return intervals and greatest 

in areas that were grazed and burned on a moderate fire-return interval.  However, density 

estimates of adult regal fritillary did not differ among overall management practices (i.e., burned 

grazed, hayed).  Additionally, adult density increased as percent cover of grass, litter, and prairie 

violets increased.  In contrast, adult density decreased as percent cover of woody vegetation and 

forbs increased.  These results support the use of prescribed fire in a shifting mosaic or patch-

burning practice as a viable management strategy for maintaining and conserving regal fritillary 

populations within the Flint Hills region. 
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Chapter 1 - Predicting the Occurrence of the Larval Host Plant for 

the Regal Fritillary in Tall-grass Prairie Using a Species Distribution 

Modeling Approach 
 

 Introduction 

The regal fritillary, Speyeria idalia (Drury, 1773) (Nymphalidae), a once abundant 

butterfly of North American prairie communities had an historic range that extended from 

Oklahoma, USA, to the border of Canada and east to the Atlantic coast (NatureServe 2005).  

Despite its once broad geographic distribution, populations have declined by approximately 99% 

(NatureServe 2005).  Both eastern and western populations have experienced dramatic declines, 

with S. idalia nearly extirpated from the eastern portion of its former range (Selby 2007).  S. 

idalia was listed as a Category II species under the United States Endangered Species Act (ESA) 

until this category was removed in 1996 (U.S. Fish and Wildlife Service 1996).  The rapid, 

range-wide decline of this species prompted the U.S. Fish and Wildlife Service to initiate a status 

review of S. idalia under the Endangered Species Act (ESA) in September 2015.  While the 

direct causes of local population declines of S. idalia are unclear, it appears the species decline is 

a result of habitat loss and fragmentation along with incompatible grassland management 

practices such as intensive grazing, frequent and intensive burning, and haying (Schultz and 

Crone 1998, Davies et al. 2005, Ferster and Vulinec 2010). 

S. idalia is an oligophagus butterfly species that consumes only violets (Viola spp.) 

during the immature stages (Klots 1951, Hammond 1974, Ferris and Brown 1981).  Although the 

species uses a variety of Viola species, immature S. idalia tend to be associated with specific 

Viola species in different parts of their range (Selby 2007).  Populations in the central Great 

Plains are reported to selectively feed on Viola pedatifida (Swengel 1997, Kelly and Debinski 
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1998, Dole 2004).  V. pedatifida is a small perennial plant characteristic of native tall-grass 

communities within Kansas, USA (Kopper et al. 2000).  It consists of a rosette of basal leaves, 

from which one or more flowering stems may emerge that are somewhat taller.  The basal leaves 

have a deeply lobed palmate structure, and are “fan” shape in appearance.  V. pedatifida typically 

blooms from mid- to late-spring, but it can also bloom during fall under favorable conditions 

(Figure 1.1). 

Large conspicuous adult butterflies such as S. idalia are difficult to miss as they search 

for nectar sources, mates, or oviposition locations.  Conversely, larvae are inconspicuous and 

cryptic, making them difficult to locate in the field (Scudder 1889, TNC 2001, Kopper et al. 

2001).  Consequently, assessments of habitat quality are often measured as the habitat features 

and resources associated with the presence and abundance of adults (Britten and Riley 1994, 

Smallidge et al. 1996, Grundel et al. 2000, Collinge et al. 2003).  However, resources used by 

adults may not adequately reflect requirements of immature stages, and assessments of habitat 

quality are generally improved if both adult and immature stages are included (Bergman 1999, 

Lane and Andow 2003, Albanese et al. 2008).  Challenges associated with detecting S. idalia 

larvae have limited the ability to study this ambiguous and precarious life-history stage.  The 

inability of Lepidoptera larvae to move great distances usually restricts them to the area in which 

they hatched (Tilmon 2008).  The distribution of S. idalia larvae across the landscape is 

restricted to the patchy distribution of its larval host plant V. pedatifida.  Therefore, the ability to 

readily locate patches of V. pedatifida should expedite discovery of S. idalia larvae in the field 

and facilitate research and conservation of this cryptic life-history stage. 

Predictive ability is fundamental for conservation planning and forecasting (Ferrier 2002, 

Funk and Richardson 2002, Rushton et al. 2004) and understanding relationships between spatial 
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pattern and process (Rosenzweig 1995, Brown and Lomolino 1998, Ricklefs 2004, Graham et al. 

2006).  Recently, prediction has seen an increased role in applied ecology largely due to the 

threats to biodiversity from global climate change (Clark et al. 2001).  However, the 

complexities of ecosystems such as historical legacies, nonlinearities, interactions, and feedback 

loops among other factors inhibit efforts directed at prediction (Levin 1998).  Thus, researchers 

are plagued by the need to understand and predict complex ecological processes and patterns 

(Olden et al. 2008). 

Species distribution models are numerical tools that relate observations of species 

occurrence or abundance with environmental predictor variables (Elith and Leathwick 2009).  

They are an innovative approach commonly used to overcome issues associated with prediction 

(i.e., nonlinearities) and explore diverse questions in ecology, evolution, and conservation (Elith 

et al. 2006).  For example, species distribution models have been employed to study relationships 

among predictor variables and species richness (Mac Nally and Fleishman 2004), invasive 

potential of non-native species (Peterson 2003, Goolsby 2004), historic species distribution 

(Hugall et al. 2002, Peterson et al. 2004), and future climates (Bakkenes et al. 2002, Skov and 

Svenning 2004, Araújo et al. 2004, Thomas et al. 2004, Thuiller et al. 2005). 

My objective was to construct probabilistic maps of the predicted distribution of V. 

pedatifida and identify the habitat features and management practices associated with V. 

pedatifida occurrence.  Specifically, I used four of the leading species distribution modeling 

techniques and V. pedatifida presence-absence data from my study area in northeastern Kansas to 

generate probabilistic maps of the potential distribution of V. pedatifida based on physical 

landscape attributes, environmental variables, and land management practices.  I used an 
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ensemble approach to combine probabilistic predictions from the top models produced by the 

four individual modeling techniques. 

 Methods 

 Study Area 

Surveys for V. pedatifida were conducted in northeastern Kansas, in Clay, Geary, Riley 

and Pottawatomie counties.  This study area is nestled within the Flint Hills, encompasses both 

the Fort Riley Military Reserve (FRMR) and Konza Prairie Biological Station (KPBS) and 

bisected by a number of drainages and flanked by two large reservoirs (Figure 1.2).  The Flint 

Hills are characterized by large rolling hills and rocky flint filled soils (Anderson and Fly 1955).  

The flint contained within the bedrock for which the region is named depressed erosion and left 

the Flint Hills higher than the surrounding areas, with an elevation relief of 91-152 m.  In 

addition to preventing soil erosion the underlying flint and limestone formations made this 

region undesirable for crop cultivation making this region home to the largest remaining 

contiguous tract of tall-grass prairie in North America (Reichman 1987).  Subsequently, the 

vegetative community is commonly associated with dominant grasses such as big bluestem 

(Andropogon geradii), indiangrass (Sorghastrum nutans), and switchgrass (Panicum virgatum), 

however, perennial grasses, woody species and a wide variety of native herbaceous forbs 

comprise the remainder of the plant community (Anderson and Fly 1955, Owensby and Smith 

1979).  The climate in this region is driven by its interior location and characterized by hot, dry 

summers and cold winters with temperatures ranging from -40° C to 49.44° C (Abrams and 

Hulbert 1987).  Precipitation varies drastically and droughts are common.  Average annual 

precipitation in this region is 83.82 cm (Abrams and Hulbert 1987).   
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The FRMR is located on the northern edge of the Flint Hills between the cities of 

Manhattan and Junction City.  The FRMR is one of the nation’s largest U.S. Army posts 

comprising of ~41,000 ha.  Approximately 29,000 ha are managed for a number of uses 

including conservation and outdoor recreation activities.  The FRMR is divided into training 

areas that are managed using a combination of burning and haying regimes.   

The KPBS is a 3,487 ha tract of tall-grass prairie co-owned and operated by the Division 

of Biology, Kansas State University and The Nature Conservancy.  The KPBS has been a part of 

the National Science Foundation Long-Term Ecological Research (LTER) network since 1981 

and experimentally managed with various grazing and burning regimes (Knapp et al. 1998).  

Grazing treatments are varied by native bison (Bison bison), cattle (Bos taurus), or no grazing.  

Prescribed burns occur on an annual to every 2, 4, and 20-year intervals. 

 Field Surveys for V. pedatifida 

V. pedatifida presence-absence data were obtained through field surveys.  Surveys were 

conducted in spring (March – May) during 2014 and 2015.  Each year of the study I generated 

~350 random points distributed throughout the study site using Environmental Systems Research 

Institute’s (ESRI) ArcMap 10.3.1 Geographic Information System (GIS) ArcMap 10.3.1 

software.  These randomly distributed points were used to survey for the presence-absence of V. 

pedatifida.  I used a Garmin 64s global positioning system (GPS) receiver and the survey points 

associated UTM coordinates to locate points in the field.  Once a survey point was reached, I 

created a 10-m X 10-m plot using marking flags, measuring tape, and compass.  I set the first 

marking flag at the initial survey point location.  From this point, I used the compass and 

measuring tape to set a second flag 10-m due north from the initial marking flag.  From the 

second marking flag, I used the compass and measuring tape to set a third flag 10-m due east 
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from the second marking flag.  Finally, from the third flag I used the compass and measuring 

tape to set a fourth and final flag 10-m due north from the third flag creating a 100-m2 survey 

plot.  After creating the survey plot, I systematically searched for V. pedatifida recording both 

presence and absence.  I also selected a random subset of 20 plots to resurvey each year to 

account for detection error. 

 Predictors 

I considered 16 predictor variables for predictive spatial modeling of V. pedatifida (Table 

1.1).  I obtained National Elevation Dataset (NED) data, ortho-National Agriculture Imagery 

Program (NAIP) images, and gridded Soil Survey Geographic (gSSURGO) data from the 

Geospatial Data Gateway (GDG) (http://datagateway.nrcs.gov).  I used GIS software to process, 

calculate, and derive the 16 predictor variables from the raw datasets obtained from the GDG. 

I derived 12 variables from the NED dataset using the spatial analyst and 

geomorphometry and gradients metrics toolboxes in ArcMap.  I derived aspect, compound 

topographic index, curvature, hillshade, heat load index, roughness, slope area ratio, slope, slope 

aspect cosine, mean slope, slope position, and topographic radiation aspect index.  The NAIP 

image was used to generate a fine resolution (1-m) land cover layer by performing a supervised 

classification in ArcMap on the NAIP image.  Using this method, I delineated five major land 

cover types: water, cropland, urban, forest, and grassland.  I reclassified the raw SSURGO data 

into 13 different soil classes using ArcMap.  The reclassified soil classes included sand, loamy 

sand, sandy loam, sandy clay loam, loam, clay loam, sandy clay, clay, silty clay, silty clay loam, 

silt loam, silt and complex soils.  Finally, I created an average fire frequency layer in ArcMap.  

This layer was produced by calculating the number of burns that took place over a 16 -year 

period (2001-2016).  The average fire frequencies for the FRMR and KPBS were calculated 

http://datagateway.nrcs.gov/
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using their respective records.  However, burn data for private lands in Kansas are not readily 

available.  Therefore, to estimate average fire frequency for the areas outside of the FRMR and 

KPBS, I used remotely sensed data obtained from Mohler and Goodin (2012 a,b). 

All predictors were resampled to a 10-m x 10-m spatial resolution.  This scale was 

selected because it was the size of a V. pedatifida survey plot.  In addition, any predictor 

variables that were not inherently continuous in nature (i.e., land cover type and soil type) were 

resampled using a 3-m x 3-m moving window analysis in an effort to create continuous variables 

from naturally categorical layers.  To avoid problems associated with multicollinearity, 

predictors were compared in a pairwise fashion to evaluate their correlation.  Correlation among 

variables was compared using the maximum of the Pearson, Spearman and Kendall coefficient.  

Variables that had a r ≥ |0.70| were considered highly correlated.  When two or more predictors 

were correlated, the choice of which variable to remove was somewhat subjective.  If one 

variable was outperforming another in terms of its percent deviance explained, then that variable 

was retained.  However, if variable performance was similar, I removed the variable that I felt 

was less interpretable.  Because correlated variables were essentially providing the same 

information to the predictive model, the somewhat subjective variable selection process should 

not influence model results. 

In addition to eliminating correlated variables, I also removed variables that were not 

contributing to the model.  Variable contribution was determined at the covariate selection stage 

and model fitting stage.  At the covariate selection stage, variables that had low percent 

explained deviance (< 1.0%) were removed.  At the model fitting stage, variable contribution 

was assessed by including and removing variables.  If a variable did not contribute to the model 
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(i.e., the inclusion of the variable had little to no effect on evaluation metrics such as Area Under 

the Curve) then the variable was removed from the model. 

 Statistical Modeling Methods 

The number of statistical modeling tools available to model a species distribution has 

rapidly increased over the last decade (Cushman et al. 2010).  Basic logistic regression was once 

the most common analytical tool (Guisan and Zimmermann 2000).  However, currently there are 

a broad range of analytical approaches (Cushman et al. 2010).  Recent model comparisons and 

applications in several ecological studies have indicated that boosted regression trees (BRT), 

generalized linear models (GLM), multivariate adaptive regression splines (MARS), and random 

forests are among the top performing species distribution modeling techniques (Elith et al. 2006, 

Guisan et al. 2007, Evangelista et al. 2008, among others).  I selected these species distribution 

modeling techniques based on their strong performance in other studies to predict the potential 

probabilistic distribution of V. pedatifida within my study area. 

While previous studies have demonstrated that these techniques perform quite well for 

modeling species distributions, each approach has associated strengths and weaknesses.  The 

GLM is a parametric technique that allow errors to be distributed following a number of 

distributional families including binomial, Poisson, or negative-binomial (Cushman et al. 2010).  

Unlike GLM, MARS is a non-parametric technique that models nonlinear relationships by 

combining regression and recursive partitioning methods (Friedman 1991, Elith et al. 2006).  

MARS is also an effective tool for assessing and describing specific interactions, a problem that 

plagues GLMs.  However, MARS models seem to weaken when used to predict outside the areas 

where response data were collected (F. Huettmann unpublished cited in Cushman et al. 2010).  

BRT and random forest approaches are both ensemble techniques, producing a final model that 
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is a combination of many different trees (Stohlgren et al. 2010).  Random forests have been 

proven useful for large-scale predictions and make a robust algorithm for projective modeling 

(Rehfeldt et al. 2006, Cushman et al. 2010). 

Selection of a modeling approach and ultimately a final model output may be based on a 

number of factors including the availability and resolution of predictor variables, cost, 

convenience, or species occurrence data (i.e., presence-absence versus presence-only or 

abundance) (Stohlgren et al. 2010).  However, model interpretation can be confused by the 

varying results produced by the different modeling approaches despite using the same set of 

response data and predictor variables (Stohlgren et al. 2010).  The inconsistent results from 

approach to approach could be due to differences in model assumptions or algorithms, or 

different data requirements (Stohlgren et al. 2010).  Discrepancies among the results from 

different modeling approaches led Araújo and New (2007) to suggest using ensembles of models 

for species distribution modeling, versus relying on model outputs from a single modeling 

approach.  Ensemble species distribution models combine the strengths of several modeling 

approaches, while minimizing the weaknesses of any one model (Stohlgren et al. 2010).  Despite 

claims of superiority for any one approach (Busby 1986, Walker and Cocks 1991, Lehmann et al. 

2003, among others), independent evaluations of models have been unable to demonstrate the 

dominance of any one technique (Araújo and New 2007).  Therefore, I generated individual 

probabilistic maps of potential V. pedatifida occurrence using four of the current leading 

individual modeling techniques BRT, GLM, MARS, and random forest and then combined the 

final outputs to create an ensemble model. 

I created the four individual models using Software for Assisted Habitat Modeling 

(SAHM) for VisTrails version 2.2.3 using the default settings established for each technique 
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(Talbert 2012).  The ensemble model was produced by combining the probabilistic maps from 

the four individual models and taking the mean value of the probability of potential V. pedatifida 

occurrence.  To identify which models best explained observed patterns among analyses, I used a 

multi-model inference approach where I compared alternative competing models (Johnson and 

Omland 2003).  Model performance was assessed for individual models by simultaneously 

applying both a 10-fold cross validation and 70/30 test training split.  In this case, only the 

training data (70%) were partitioned into folds.  I used six statistics - the area under the receiver-

operating curve (AUC), Cohen’s kappa, true skills statistic (TSS), sensitivity, specificity, and the 

percent correctly classified - to assess agreement between the presence-absence records and the 

predictions. 

The AUC is a measure of model fit commonly used in model comparison studies (Elith et 

al. 2006, Guisan et al. 2007, Evangelista et al. 2008, among others).  In general, AUC values > 

0.90 indicate high accuracy, values between 0.70-0.90 indicate good accuracy, and values ≤0.50 

(random) indicate low accuracy (Roura-Paseual et al. 2009).  The AUC values for the 10-fold 

cross-validation correspond to the mean of the AUC measures obtained following the 10-fold 

cross-validation methodology.  Cohen’s kappa is a measure that corrects the overall accuracy of 

model predictions by the accuracy expected to occur by chance.  The kappa statistic ranges from 

negative one to positive one, where positive one indicates perfect agreement and values of zero 

or less indicate a performance no better than random (Cohen 1960).  Similar to kappa, TSS 

accounts for both omission and commission errors and ranges from negative one to positive one, 

where positive one indicates perfect agreement and values of zero or less indicate a performance 

no better than random (Allouche et al. 2006).  Sensitivity quantifies the proportion of observed 

presences correctly predicted as presences.  Therefore, a poor sensitivity indicates high omission 
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error (i.e., incorrect true positive fraction).  Conversely, specificity is the measure of the 

proportion of observed absences correctly predicted as absence.  A low specificity indicates high 

commission error (i.e., incorrect predictions of presence) (Fielding and Bell 1997).  Finally, I 

used percent correctly classified to quantify the percentage of sites where the models correctly 

predicted the presence or absence of V. pedatifida. 

 Results 

 Probabilistic Maps 

Throughout the course of this study I surveyed a total of 1,248 locations for the presence-

absence of V. pedatifida (Figure 1.3).  Of the 1,248 surveyed locations, 495 had V. pedatifida 

present while 795 had no V. pedatifida present.  I re-surveyed a sub-set of plots each year to 

determine my detectability of V. pedatifida.  I accurately detected the presence of V. pedatifida 

82.5% of the time.  Distributions from the four individual modeling techniques within the study 

area were used to display mapped probabilistic predictions of V. pedatifida occurrence and 

indicated that projection varied among modeling techniques (Figure 1.4a-d).  An ensemble 

model was created from the mean probabilistic values from the four individual techniques 

(Figure 1.4e).  The six evaluation metrics used to assess model performance and accuracy for 

both the 70/30 test training split and the 10-fold cross-validation indicated that performance 

among modeling techniques varied (Table 1.2).  The ensemble model was the most conservative 

in terms of predicting high probabilities of V. pedatifida occurrence while the GLM was the most 

generous.  The total hectares predicted by the ensemble, GLM, random forest, MARS and BRT 

models to have a probability of V. pedatifida occurrence >0.60 were 2,518, 3,929, 3,390, 3,809, 

and 2,852 respectively out of the 157,454 ha that comprise the study area. 



12 

 

 Predictor Variables 

The seven final predictor variables used to model the predicted occurrence of V. 

pedatifida were average fire frequency, elevation, hillshade, land cover type, slope, topographic 

radiation aspect index (TRASP), and soil type.  While variable importance differed across 

modeling techniques, due to variation in modeling algorithms, elevation was consistently the 

most important variable among models and had the greatest percent explained deviance among 

predictors (Table 1.3).  Elevations throughout the study area ranged from 298 – 447 m above sea 

level.  The presence of V. pedatifida was associated with elevations that ranged from 380 – 420 

m above sea level.  Average fire frequency was calculated as the number of burns occurring over 

a 16-year period (2001 – 2016).  V. pedatifida presence was associated with sites that had a 2-4 

year fire-return interval.  Hillshade is a metric that takes on values from 0 to 255, where values 

of 0 correspond to dark (lots of shade) and 255 corresponds to bright (lots of sun).  V. pedatifida 

presence was associated with hillshade values of 180 – 190.  Land cover type was classified into 

five cover classes: grassland, cropland, water, developed, and forest.  V. pedatifida presence was 

nearly exclusively in the grassland cover type.  Slope is a variable that can take on values from 

zero to essentially infinity, where a flat surface is 0%, a 45-degree surface is 100%, and as the 

surface becomes more vertical, the percent rise becomes increasingly larger.  V. pedatifida 

presence was associated with 0 – 10% slopes.  TRASP is a measure of slope direction that can 

take on values that range from zero to one.  Values of one correspond to south-southwest facing 

slopes while values of zero correspond to north-north east facing slopes.  V. pedatifida presence 

was most associated with north-northeast facing slopes.  Soil type was classified into 13 different 

soil classes: sand, loamy sand, sandy loam, sandy clay loam, loam, clay loam, sandy clay, clay, 

silty clay, silty clay loam, silt loam, silt, and complex soils.  V. pedatifida presence was 



13 

 

associated with silty clay loams and two complex soils, Benefield – Florence complex and 

Dwight – Irwin complex.  All three of these soil types are associated with well-drained uplands 

and gentle to moderate slopes.  The two complex soils often contain top soil layers consisting of 

silty clay loams. 

 Discussion 

 Ecological Implications 

The ability to find S. idalia and other cryptic Lepidoptera larvae is an issue that plagues 

research directed at this life history stage.  S. idalia larvae have been particularly difficult to 

locate in the field and efforts to find them have resulted in very small sample sizes and even 

failures (Barton 1995; TNC 2000, 2001).  Consequently, research and inferences regarding the 

larval stages of S. idalia and other species of Lepidoptera are often limited and lacking.  The 

ability to focus search efforts to areas that have a high probability of containing larvae would 

undoubtedly facilitate their location and enhance conservation and management 

recommendations. 

Larvae of Lepidoptera are often constrained to specific host plant species.  For example, 

S. idalia consume only Viola species as larvae while monarchs (Danaus plesippus) consume 

Asclepias species during the immature stages.  Without the presence of these specific host plant 

species, larvae of these Lepidoptera would be unable to survive.  In contrast to larvae, host plants 

are much easier to locate.  Thus, the ability to efficiently locate patches of host plants across the 

landscape should facilitate the location of larvae.  The probabilistic maps of the occurrence of V. 

pedatifida produced in this study can be used to more efficiently locate V. pedatifida and 

subsequently S. idalia larvae. 
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While the probabilistic maps produced in this study provide a visual depiction of the 

occurrence distribution of V. pedatifida within the study area, the seven final predictor variables 

used to generate models provide the specific habitat features and requirements of V. pedatifida.  

The predictor variables used here suggested that V. pedatifida is a prairie upland species that 

requires moderate fire disturbances and full sun to part shade.  These findings align with 

descriptions of V. pedatifida habitat requirements in the literature and supports their use and 

relevance in the final models.  Furthermore, it indicates that they could be valuable starting 

points if used to model the predicted occurrence distribution of V. pedatifida in other areas of the 

species range.  Although the specific variables used in this study performed well for describing 

the occurrence distribution of V. pedatifida in this region, extrapolation outside of the Flint Hills 

should consider the use of additional predictors that are biologically relevant to other study areas.  

For instance, climatic and remotely sensed variables have been shown to improve predictions 

and link underlying ecological relationships of species (Zimmermann et al. 2007).  However, 

these data are typically only available at large spatial resolutions (e.g., Daymet climate data has a 

1-km2 native spatial resolution).  Given the relatively small extent of the study area used here, I 

assumed that climate (i.e., precipitation, temperature, etc) would not vary greatly and elected not 

to use such variables.  However, if the occurrence distribution of V. pedatifida were to be 

modeled across a broader extent of its range where there is likely to be a precipitation and 

temperature gradient then inclusion of such variables would likely prove useful. 

 Model Limitations: Interpretation and Extrapolation 

There are a few important caveats that are worth discussing related to model 

interpretation.  The models produced in this study were generated based on the presence-absence 

of V. pedatifida and variables suspected to be relevant to V. pedatifida occurrence within the 
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study area.  For instance, elevation is a relative variable and undoubtedly differs across the range 

of V. pedatifida and other Viola host plant species of regal fritillary larvae.  Consequently, the 

elevation range that is associated with the presence of V. pedatifida in other parts of the species 

range or the elevation range that is associated with the presence of other Viola host plant species 

will likely differ from the elevations relevant to the presence of V. pedatifida in this study.  

Additionally, some of the variables used in this study may serve as proxies for one another.  For 

example, hillshade which quantifies shaded relief was correlated with variables such as aspect 

and slope aspect cosine which quantify slope direction.  Subsequently, these variables are likely 

proxies for one another and could be used interchangeably depending on their performance in the 

model (i.e, percent deviance explained).  Thus, variable interpretation should be done with 

respect to potential S. idalia larvae distribution and with careful consideration.   

I am making an assumption that because S. idalia rely heavily on violets as larvae to 

survive and their relative immobility restricts them to patches of V. pedatifida that a model of 

potential distribution of V. pedatifida will serve as a relevant and meaningful substitute for S. 

idalia distribution.  However, it is unrealistic to assume that all areas that contain V. pedatifida 

will also harbor S. idalia larvae or contain microhabitat conditions necessary for S. idalia growth 

and development.  Yet, all areas that support S. idalia larvae growth to adulthood contain violet 

species such as V. pedatifida.  Consequently, at some level, the requirements of both species 

overlap and therefore, support the use of potential distribution models of V. pedatifida as a 

suitable surrogate for S. idalia distribution in this region. 

The primary objective of this study was to capture a regional extent of V. pedatifida.  It 

was not my objective to produce models that predict the occurrence distribution of V. pedatifida 

across its entire range.  However, V. pedatifida occurs outside my area of interest, and restricting 
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the models to a portion of the overall species range may bias the models (Thuiller et al. 2004).  It 

is important to recognize that models created for various “areas of interest” may produce 

different results due to environmental layers used for prediction, additional occurrence points at 

larger extent, among other factors (Stohlgren et al. 2010).  Thus, models produced in this study 

are likely only relevant to the distribution of V. pedatifida and S. idalia larvae maximally within 

the Flint Hills region, but most certainly within the bounds of the study extent.  Furthermore, V. 

pedatifida was selected for this study because it is the preferred larval food plant for S. idalia 

larvae in this region (Swengel 1997, Kelly and Debinski 1998, Dole 2004).  If the study extent 

was increased or encompassed a different part of S. idalia’s range, then the host plant species 

being modeled should be taken into consideration.  For instance, S. idalia larvae of New England 

populations prefer V. sagittata (arrowleaf violet), V. pedata (birdfoot violet), and V. lanceolata 

(bog white violet) (Wagner et al. 1997).  Therefore, if Viola species were to be used as a 

surrogate in these areas for the potential distribution of S. idalia larvae, then models should be 

created based on the presence-absence of the preferred host species or modelers should consider 

combining models of multiple host species as warranted by availability and preference.   

Currently, the standard method for evaluating accuracy of species distribution models is 

the AUC.  It is generally thought that AUC values >0.90 indicate high accuracy, values 0.70 - 

0.90 indicate good accuracy, and values 0.50 – 0.70 indicate low accuracy (Swets 1988).  

However, Fielding and Bell (1997) have suggested that models with AUC >0.60 can be useful.  

While evaluation metrics such as AUC provide a quantitative measure of model accuracy and 

performance and should certainly be considered when assessing model performance, recent 

studies have questioned its reliability.  For example, AUC scores can be inflated simply by 

increasing the geographical extent of the study beyond the area where presence locations were 
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obtained (Lobo et al. 2007).  This led Lobo et al. (2007) to suggest reporting a suite of evaluation 

metrics such as sensitivity and specificity in concert with AUC values to make a robust 

assessment of model performance and accuracy.  Although a model comparison is beyond the 

scope of this study it is worth noting that the BRT technique was the most accurate and best 

performing modeling method while random forest was the weakest technique.  Nonetheless, the 

evaluation metrics suggested that all models performed well and better than random.  The AUC 

for all models were >0.70, which suggested that all models were useful.  The TSS and kappa 

values for all models were greater than zero (random) and percent specificity and sensitivity for 

all models were greater than 60%. 

 Conclusions 

The approach presented here demonstrates a unique method that facilitates the location of 

S. idalia larvae in the field by identifying the probabilistic distribution of their larval host plant.  

This approach constrains search efforts for host plants and ultimately larvae by concentrating 

searches to areas of high probability of host plant occurrence.  If we can more readily locate 

patches of host plants, we can subsequently spend more time locating and studying the cryptic 

larval stages of S. idalia.  While the maps and output presented here can guide conservation 

efforts, their inferences are limited to the Flint Hills.  To further guide conservation efforts and 

management recommendations, it would be of great value to adopt this technique and expand 

upon the models presented here into larger extents of S. idalia’s range.  Similarly, this approach 

could be applied to other species such as the monarch (Danaus plexippus) and facilitate 

conservation and management of other imperiled Lepidoptera species.  Conservation and 

management recommendations for S. idalia and Lepidoptera populations alike, will benefit from 

having a more comprehensive understanding of all life history stages.  
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Figure 1.1  Images of Viola pedatifida in native prairie within northeastern Kansas, USA, 2014.  

Image (a) displays the fan shape appearance and deeply lobed leaves of V. pedatifida and image 

(b) displays V. pedatifida flowers. 
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Figure 1.2  Illustration of the study area for Viola pedatifida surveys conducted during 2014 -

2015.  The Flint Hills are marked by the green region spanning across the eastern edge of 

Kansas, USA, while the black dot within the Flint Hills marks the study area.  The Fort Riley 

Military Reserve (FRMR) and Konza Prairie Biological Station (KPBS) are marked within the 

enlargement of the study area. 
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Figure 1.3  Point locations of the 1,248 locations surveyed during 2014 -2015 in northeastern 

Kansas, USA, for Viola pedatifida.  The black dots indicate the 1,248 locations surveyed for the 

presence-absence of Viola pedatifida.  The Fort Riley Military Reserve is marked on the western 

edge of the study area and Konza Prairie Biological Station is marked on the eastern edge of the 

study area. 
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Figure 1.4  Probabilistic maps of the distribution of Viola pedatifida in northeastern Kansas 

USA, using boosted regression tree (a), multivariate adaptive regression spines (b), generalized 

linear model (c), random forest (d), and ensemble (e) species distribution modeling approaches.  

Models a –d were generated using V. pedatifida presence-absence data collected in northeastern 

Kansas in 2014 -2015 as the response variable and a suite of seven predictors as the explanatory 

variables in the Software for Assisted Habitat Modeling for VisTrails.  The ensemble model (e) 

was created by taking the mean probabilistic values from each of the four individual techniques 

(a –d).  On maps, red correlates with values of one or high probability of V. pedatifida 

occurrence while blue correlates with values of zero or low probability of V. pedatifida 

occurrence. 

.
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Table 1.1.  Description of predictor variables considered for use in predictive distribution models of Viola pedatifida occurrence in 

northeastern Kansas, USA, 2014 – 2015 including native spatial resolution. 

Predictor Variable Description 
Native 

Resolution 

Elevation Height above sea level in meters 3m 

Soil Type A quantification of the thirteen soil types present within the study area 10m 

Land Cover Type A quantification of five land cover types present within the study area 1m 

Aspect Aspect identifies the downslope direction of the maximum rate of change in value from 

each cell to its neighbors.  Aspect can also be thought of as slope direction 

3m 

Average Fire Frequency A measure of the average fire frequency (# of burns/16yrs) for sites within the study 

area 

250m 

Compound Topographic 

Index 

A steady state wetness index that is strongly correlated with soil moisture 3m 

Curvature Surface curvature (concavity/convexity) is the second derivative of the surface, or the 

slope-of-the-slope 

3m 

Hillshade A measure of shaded relief 3m 

Heat Load Index Represents a slope/aspect interaction that is scaled to represent solar isolation 3m 

Roughness Surface roughness is a component of surface texture that is quantified by deviations.  

Essentially this is unscaled variance 

3m 

Slope Area Ratio Calculates the ratio of the slope to the specific contributing area 3m 

Slope Identifies the slope (gradient), also referred to as the percent slope 3m 

Slope Aspect Cosine A transformation of percent slopes that takes into account the effects of aspect 3m 

Mean Slope Takes the mean of the slope within a specified window 3m 

Slope Position A continuous variable that represents slope position of a given cell and its relative 

position between valley floor and ridgetop 

3m 

Topographic Radiation 

Aspect Index (TRASP) 

A linear transformation of the circular aspect variable that quantifies north-south facing 

slopes 

3m 
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Table 1.2  Evaluation statistics for the four individual modeling techniques used to predict Viola pedatifida occurrence in northeastern 

Kansas, USA, 2014–2015.  Evaluation statistics include results from both the 70/30 training split and the 10-fold cross-validation.  

The area under the curve (AUC) values from the cross-validation are the mean AUC values with the standard deviations in 

parenthesis. 

 
Evaluation Statistics Applied to Training Split  Evaluation Statistics Applied to Cross-Validation 

Method AUC % CC Sensitivity Specificity Kappa TSS 
 

AUC % CC Sensitivity Specificity Kappa TSS 

BRT 0.88 80.1 0.77 0.81 0.55 0.58 
 0.73 

(0.06) 

66.7 

(5.95) 

0.60 

(0.10) 

0.69 

(0.08) 

0.27 

(0.10) 

0.29 

(0.11) 

GLM 0.77 67.9 0.67 0.68 0.32 0.35 
 0.71 

(0.07) 

63.7 

(7.99) 

0.62 

(0.13) 

0.63 

(0.10) 

0.23 

(0.14) 

0.26 

(0.15) 

MARS 0.75 66.3 0.67 0.65 0.29 0.33 
 0.71 

(0.07) 

64.6 

(6.46) 

0.66 

(0.11) 

0.63 

(0.07) 

0.26 

(0.12) 

0.30 

(0.14) 

Random 

Forest 
0.71 63.3 0.64 0.62 0.23 0.27 

 0.69 

(0.07) 

73.3 

(6.51) 

0.47 

(0.09) 

0.84 

(0.09) 

0.34 

(0.12) 

0.32 

(0.11) 

*Percent correctly classified (% CC), True Skill Statistic (TSS), Area Under the Curve (AUC), Boosted Regression Tree (BRT), 

Generalized Linear Model (GLM), Multivariate Adaptive Regression Splines (MARS) 
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Table 1.3  Final predictor variables used to predict the probabilistic distribution of Viola 

pedatifida occurrence within northeastern Kansas, USA, 2014 – 2015, and deviance explained by 

each predictor. 

Variable Deviance Explained (%) 

Elevation 7.7% 

Hillshade 6% 

Land Cover Type 4.6% 

Soil Type 2.8% 

Slope 2.7% 

Topopgraphic Radiation Aspect Index (TRASP) 2% 

Average Fire Frequency 1.4% 
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Chapter 2 - Scale and the Impact of Disturbance on Regal Fritillary 

(Speyeria idalia) Larvae: Re-Thinking Regal Fritillary Conservation 

and Management. 
 

 Introduction 

Native prairie communities have become uncommon and fragmented in the Central Great 

Plains succumbing to development, plant succession, and invasion of exotic species among other 

factors (Samson and Knopf 1996).  For example, tall-grass prairie historically covered > 

68,796,559 hectares of the Great Plains, but only 3-5% remains (Samson and Knopf 1996).  

Factors associated with the loss of native prairie in the Central Great Plains are the leading cause 

of the decline and extirpation of several formally abundant and iconic butterfly species (Oates 

1995, Schlicht and Orwig 1998).  In particular, regal fritillary (Speyeria idalia) populations have 

declined by approximately 99% during the last few decades (NatureServe 2005) prompting the 

U.S. Fish and Wildlife Service to initiate a status review of S. idalia under the Endangered 

Species Act (ESA) in September 2015. 

Wide-spread pyric-herbivory was and still remains a key process to the development and 

the maintenance of the ecological structure and function of many of the world's largest grassland 

ecosystems including the Great Plains of North America (Fuhlendorf and Engle 2001).  The 

largest remaining contiguous expanse of North American tall-grass prairie is found within the 

Flint Hills region stretching from Kansas to Oklahoma, USA (Reichman 1987).  This region is 

dominated by rocky soils and rolling hills with unrestricted fire and grazing by large mammalian 

herbivores being key drivers of vegetation patterns for millennium (Milchunas et al. 1988).  

While other regions of the Great Plains were converted to croplands or developed, much of the 

Flint Hills region remains sparsely settled, unplowed, and predominately used for domesticate 
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cattle grazing.  The flint and limestone deposits underlying the Flint Hills coupled with its 

topography made this region largely undesirable for crop cultivation.  This helped preserve the 

region’s prairie ecosystem and facilitated continuous wide-spread occurrence of large herbivores 

coupled with fire as a grassland management tool.  Effects of current fire and grazing practices 

on this landscape undoubtedly differs from the historic disturbance regime in many important 

ways (Fuhlendorf and Engle 2001).  However, the ecological legacy of the processes of wide-

spread fires coupled with grazing by large, native herbivores is continued through grassland fire 

applied by land managers and cattle producers (Fuhlendorf and Engle 2001).  This has 

maintained landscape-scale, ecosystem structure and functions that were important in the 

evolution and thus, to the continued persistence of native flora and fauna populations that have 

been lost in other regions of the Great Plains (Fuhlendorf and Engle 2001).  For example, S. 

idalia have become uncommon throughout much of the Central Great Plains but relatively large, 

stable populations persist in the Flint Hills region (Selby 2007). 

Insects are an extremely diverse animal phylum dominating terrestrial systems around the 

world in biomass and abundance (May 1988, Gaston 1991, Groombridge 1992).  The importance 

of insects makes them a necessary but often overlooked measure of ecosystem health because 

immense diversity and minute characteristics make efficient species-level identification difficult.  

Although a complete understanding of the ecological factors important to the successful 

conservation management of all of the life history stages of endangered vertebrate species is 

widely accepted, much basic life history and ecological information is often lacking during insect 

conservation efforts. 

Butterflies are readily identifiable to species in contrast to other insect groups making 

research on the status, population trends, and habitat requirements of butterflies a plausible 
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measure of ecosystem condition and sustainability for insects (New 1997, Oostermeijer and van 

Swaay 1998, Blair 1999, van Swaay et al. 2006).  The quality of a habitat to support butterfly 

populations is often characterized in terms of the presence and abundance of adults and resources 

adults use for foraging and reproduction (Britten and Riley 1994, Smallidge et al. 1996, Grundel 

et al. 2000, Collinge et al. 2003).  However, habitats and resources used by adults may not 

adequately reflect the requirements of the often longer but less mobile larval stages of these 

insects (Bergman 1999, Lane and Andow 2003, Albanese et al. 2007).  Consequently, 

conservation research studies directed at identifying ecological factors necessary to support 

persistent, wild butterfly populations should include those factors potentially important to the 

survivorship of larvae to adults.  Organisms function within a range of scales, especially within 

and among different life history stages (Addicott et al. 1987, Wiens 1989, Lindenmayer 2000, 

Moore 2000).  To understand species-habitat relationships, researchers must consider how 

species are affected by environmental patterns at different scales (Wiens 1989, Levin 1992, 

Turner 2005).  While the importance of understanding these factors is necessary to effectively 

guide conservation and management efforts, few field research studies collect data on the larval 

life history stage of S. idalia because unlike adults, larvae are cryptic and difficult to locate in the 

field (Scudder 1889, TNC 2001, Kopper et al. 2001; D. Debinski, Iowa State University, pers. 

com.).  Identifying resource patterns and scales at which larvae respond to these patterns will 

better facilitate butterfly conservation efforts.  In particular, knowledge of the spatial scale at 

which developing larvae utilize host plant resources will lead to more accurate and efficient 

census and research techniques and improved refuge design and management practices. 

Butterflies can be large, brightly colored, and vagile with several species even capable of 

intercontinental migration.  In contrast, larvae are immobile with a utilization distribution 
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typically restricted by a limited dispersal capacity to the location of egg deposition and 

surrounding host plants on which it must feed to survive (Bergman 1999, Lane and Andow 2003, 

Albanese et al. 2008).  Lepidoptera larvae are also relatively small and cryptic, making even 

larger larvae difficult to locate on known host plants.  Field mark/recapture studies on butterflies 

are labor intensive, time consuming, and difficult especially for larvae because direct 

observations and effective, development-wide, field marking techniques are limited (Singer and 

Wedlake 1981, Gall 1984, Murphy 1987, Mattoni et al. 2001, Haddad et al. 2005).  However, 

conceptual and technical advances in geographic information systems (GIS) and spatially 

explicit species distribution and gradient modeling offer new opportunities to more efficiently 

and effectively study this important life history stage in the field across broad-scale areas.  For 

example, the occurrence and survival of butterfly larvae depends on the presence of a host and 

the abundance of many species increases with host plant availability (Bourn and Thomas 1993, 

Bergman 1999, Lane and Andow 2003).  Species distribution models (SDMs) are particularly 

useful for mapping the probabilistic occurrence distribution of plant species even when 

referenced with sparse but appropriate data (Elith and Leathwick 2009, Chapter I).  Maps of the 

distribution of host plant species can be used to efficiently locate stands of host plants and thus 

larvae within broad-scale regions of a butterfly species range (Chapter I).  Additionally, the 

majority of Lepidoptera larvae activity is spent grazing or moving among food resources within 

their dispersal capacity and consumption and mobility increase with maturity.  If distinct 

evidence of the spatial distribution of feeding larvae can be identified, this may potentially serve 

as a surrogate of direct observations of larvae and their movement patterns (Albanese et al. 2007, 

Appendix A).  Maps of the occurrence distribution of late-instar larvae (i.e., butterfly larvae that 

have survived to the final stages of development before pupation) and their foraging locations 
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combined with further refined maps of the abundance distribution of potential host plants could 

be used to identify scale-dependent relationships between late-instar larvae and host plant 

availability without direct, repeated field observations. 

S. idalia butterflies are univoltine, non-migratory, and considered a North American 

prairie specialist (Kelly and Debinski 1998).  The species was once abundant across the prairie 

biome with a range that extended from the border of Canada to Oklahoma and east to the 

Atlantic coast (NatureServe 2005).  Populations declined rapidly with the widespread and 

dramatic loss of native prairie and are now restricted to remnant prairie tracts (Selby 2007, 

NatureServe 2005).  S. idalia butterflies begin to emerge each year in late spring (Klots 1951, 

Tilden and Smith 1986, Wagner et al. 1997).  This butterfly is a flower generalist and in early 

summer, adults forage among nectar rich flowers and mate (Klots 1951, Tilden and Smith 1986, 

Wagner et al. 1997, Selby 2007).  Adult females outlive males and begin to lay single eggs in 

proximity to host plants in late summer with some persisting until early fall (Scott 1986, Swengel 

and Swengel 2001).  Larvae hatch during fall but enter a winter diapause, with development 

resuming early the following spring when they begin feeding on freshly emerged host plants 

(Hammond 1974, Wagner et al. 1997).  Larvae then develop through six instars before pupating 

by late spring (Edwards 1879, Hammond 1974, Wagner et al. 1997).  Late-instar larvae 

veraciously consume and denude leaflets and leafs of their relatively small host plants, leaving 

only stems before moving on to locate and graze on a neighboring host plant cluster (Appendix 

A).  Larvae rest on the stems of host plants, nearby vegetation, and underneath litter and rocks 

when not foraging (Appendix A).  Larvae feed on different violet species (Viola spp.) throughout 

their range, but the violet species fed on by local populations tend to have distributions that are 

primarily restricted to remnant tracts of native grassland (Hammond and McCorkle 1983).  For 
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example, birdfoot (V. pedata) and prairie violet (V. pedatifida) are small perennial plants 

characteristic of native prairie and reported to be the preferred larval host plants of S. idalia 

populations in the Central Great Plains (Swengel 1997, Kelly and Debinski 1998, Dole 2004). 

Prairie fires can facilitate many important ecosystem functions and services that include 

among others increasing structural heterogeneity, forage production for large herbivores, and 

diversity among native small mammals, birds, and plants (Fuhlendorf and Engle 2001).  

Managed fire and grazing can, however, have negligible to negative effects on some native 

grassland species of flora and fauna (Fuhlendorf and Engle 2001).  It has been proposed that S. 

idalia populations are negatively affected by fire management practices that may reduce adult 

nectar sources, host plant abundance, or cause direct egg and larvae mortality (Hammond and 

McCorkle 1983, Royer and Marrone 1992, Dana 1997, Fritz 1997, Selby 2007).  Current habitat 

management recommendations have therefore favored low intensity grazing (NatureServe 2005) 

and mechanical cutting to maintain S. idalia habitat given limited information on the influence of 

fire and grazing relative to current S. idalia population trends (Swengel 1996).  The role of fire in 

ecology of S. idalia is contentious especially considering its close association with native tall-

grass prairie in which fire is a vital process (Dana 1991; Swengel 1996, 1998; Panzer 1998, 

2002; Schwartz 1998; Swengel and Swengel 1999, 2001).  This uncertainty is understandable 

especially considering that knowledge of the effects of land management regimes on insect 

population persistence and appropriate land management practices for restoring and maintaining 

habitat for insects are often lacking (Swengel and Swengel 2006).  This information may be 

especially important for native prairie and grassland butterfly conservation management efforts 

because relatively frequent disturbance is often necessary to suppress the growth and 

establishment of woody plants (Vogl 1974, Shuey 1997). 
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I used a combination of Environmental Systems Research Institute’s (ESRI) ArcMap 

10.3.1 Geographic Information System (GIS) software technologies, spatial modeling techniques 

and field surveys to assess effects of land management practices and prairie host plant density on 

late-instar S. idalia larvae.  Specifically, I used an ensemble of SDMs to map the spatial 

distribution of the S. idalia’s larval host plants across a large tract of native tall-grass prairie in 

northeastern Kansas, USA (Chapter I).  I used these maps to efficiently locate distinct larvae 

survey areas managed using different burn frequencies with cattle grazing or haying.  I then used 

field data collected during rapid host plant counts with spatial kriging models to further map the 

fine-scale density distribution of host plants within survey areas.  I surveyed each area for late-

instar S. idalia larvae and then compared models of the spatially explicit occurrence distribution 

of larvae across multiple scales of host plant density and between management treatments. 

 Methods 

 Study Area 

This study was conducted in northeastern Kansas, USA, at the Fort Riley Military 

Reserve (FRMR) (Geary and Riley counties) and Konza Prairie Biological Station (KPBS) 

(Geary County) (Figure 2.1).  Both areas were located in the northern portion of the Flint Hills 

region and less than 11 km separated the boundaries of the FRMR and KPBS, but the intervening 

land tract contained the Kansas River and a mosaic of developments and agricultural fields.  The 

climate in this region is dry (average total annual precipitation = 83.82 cm) and windy, but 

temperate (Abrams and Hulbert 1987).  Most precipitation occurs in spring and temperatures can 

range from -40 °C to 49.44 °C (Abrams and Hulbert 1987).  The landscape of the Flint Hills is 

characterized by large, remnant tracts of native tall-grass prairie with intensively-managed 

agricultural areas, grassland, small stands of shrub and forest, several large rivers and reservoirs, 
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and broadly distributed suburban and rural developments.  The vegetative community was 

commonly associated with dominant grasses such as big bluestem (Andropogon geradii), 

indiangrass (Sorghastrum nutans), and switchgrass (Panicum virgatum); however, other 

perennial grasses, woody species, and a wide variety of native herbaceous forbs comprise 

significant proportions of the plant community (Anderson and Fly 1955, Owensby and Smith 

1979). 

The FRMR included ~41,000 contiguous ha, making it the largest military reservation in 

the USA.  Approximately 29,000 ha were used for military training, wildlife management, 

hunting, conservation, and other outdoor recreational activities.  Land management was planned, 

prescribed to primarily control the establishment and spread of woody vegetation and included 

broad-scale regimes of applied fire and hay removal.  Fires were applied to large land units 

annually starting in late-winter and continuing through fall with the majority occurring in early 

spring.  Managed fire frequency within land units ranged from <1 to >20 years and the FRMR 

also experienced occasional wildfires throughout the year from lighting strikes and more 

frequent fires from the detonation of munitions during military training exercises.  Prairie hay 

was cut and removed mechanically from 15 July – 15 August. 

The KPBS is a 3,487 ha contiguous tract of tall-grass prairie co-owned and operated by 

the Division of Biology, Kansas State University, and The Nature Conservancy and part of the 

National Science Foundation's Long-Term Ecological Research Program (LTER).  The KPBS 

has been experimentally managed with a mixture of fire and large herbivore grazing regimes 

since 1981 with a mixture of prescribed burns and native bison (Bison bison) or cattle grazing 

(Bos taurus) applied annually to different land units within the KPBS (Knapp et al. 1998).  Land 
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units were either grazed or not and fire is typically ignited in the spring and applied on a one to 

twenty year return interval within land units. 

 Host Plant Distribution Maps 

I generated an ensemble SDM to predict the probabilistic occurrence distribution of S. 

idalia’s preferred larval food plant for this region, V. pedatifida (Chapter I; Figure 2.2).  I used 

the generated SDM as a tool to (1) effectively and efficiently locate patches of host plants within 

the FRMR and KPBS study sites and (2) facilitate the location of larvae survey areas within 

different treatments (grazing and haying) and fire-return intervals (low ≥10 years, moderate 3-5 

years, and high 1-2 years) within these sites.  I generated the SDM of V. pedatifida occurrence 

using four of the current leading individual modeling techniques: boosted regression tree, 

generalized linear model, multivariate adaptive regression splines, and random forest.  I created 

an ensemble model from these four individual techniques by taking the mean value of the 

probability of potential V. pedatifida across all four individual models. 

I obtained the V. pedatifida presence-absence data used to create the SDM through field 

surveys.  Over the course of my study, I surveyed 1,248 spatially balanced, random locations 

from March – May for the occurrence of V. pedatifida.  These randomly distributed locations 

were located in the field using a Garmin 64s global positioning system (GPS) receiver.  Once a 

survey point was located. I systematically surveyed for the presence or absence of V. pedatifida 

within a 10 m X 10 m plot.  In addition to these initial surveys, I selected a random subset of 20 

plots each year to re-survey to account for detection error, I accurately detected V. pedatifida 

82.5% of the time. 

Finally, I used GIS to process, calculate, and derive predictor variables hypothesized to 

be biologically relevant to the occurrence of V. pedatifida within the study area (Chapter II).  The 
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seven final predictor variables used to model the predicted probabilistic occurrence of V. 

pedatifida in the SDM model were average fire frequency, elevation, hillshade, land cover type, 

slope, topographic radiation aspect index and soil type. 

 Late-Instar S. idalia Surveys 

I used the ensemble SDM output of the predicted probabilistic occurrence of V. 

pedatifida to locate potential larval survey areas across the study area within different treatments 

and fire-return intervals.  Surveys for late-instar S. idalia larvae were conducted in April and 

May during 2014 and 2015.  Larval survey plots contained a gradient of violet density (Figure 

2.3) and stratified by management regime (grazing and haying), and fire-return interval (low ≥10 

years, moderate 3-5 years, and high 1-2 years; Table 2.1).  Each larval survey plot was 2500 m2 

and partitioned into grids of 100-m2 sub-plots.  After establishing the larval search plots and 

setting up the search grids, I randomly selected 15, 100-m2 sub-plots within the larger 2500-m2 

grids to count all of the Viola host plant species contained within the randomly selected sub-

plots.  I then used kriging models in GIS to estimate host plant density in the remaining 100-m2 

sub-plots not surveyed.  After obtaining estimates of host plant density within each larval survey 

site, I randomly selected a spatially balanced sample of 15, 100-m2 sub-plots from each of the 8. 

2500-m2 larval survey plots to survey for late-instar S. idalia larvae.  I searched for late-instar 

larvae by systematically examining each host plant located within the plot.  I also examined the 

surrounding vegetation and litter in search of late-instar S. idalia larvae.  In addition to searching 

for late-instar S. idalia larvae, I also surveyed host plants within each sub-plot for late-instar S. 

idalia larvae distinct feeding sign.  I used this distinct feeding sign as a surrogate in the analysis 

for the presence of late-instar S. idalia larvae even when one could not be detected within a sub-

plot (see Appendix A).  Lastly, I characterized habitat features within each randomly selected 
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sub-plot.  I used a module-nested plot method to estimate six cover variables within sub-plots 

selected to survey for late-instar S. idalia larvae (Table 2.2).  Cover was estimated using nine 

cover classes that were converted to mid-points in the analysis (cover classes: 0 – 1%, 1 – 2%, 2 

– 5%, 5 – 10%, 10 – 25%, 25 – 50%, 50 – 75%, 75 – 95%, >95%).  Cover classes and module-

nested plot methods were adopted from the North Carolina Vegetation survey (Peet et al. 1997), 

which is a variation of the more traditional, cover class scheme (e.g., Domin 1928, Braun-

Blanquet 1964, Daubenmire 1968). 

Spatial Scaling 

To determine the scale that best described the occurrence distribution of late-instar S. 

idalia larvae or their feeding sign, I created a 70 m X 70 m grid of 100-m2 cells in GIS for each 

of the eight larval search areas delineated in my study.  Although I only searched for larvae 

within a subset of 100-m2 plots in the “core” 50 m X 50 m or 2500-m2 grid a “boundary” on all 

sides of the larval search areas was required for the moving window analysis, spatial scaling 

technique to work properly, thus I made a 70 m X 70 m grid in GIS.  Additionally, during my 

counts of host plants within the 2500-m2 larval search areas, I also extended these counts outside 

of the “core” 2500-m2 areas into the 70 m X 70 m “boundary” area.  I then took the host plant 

count data and applied the number of violets counted within each 100-m2 sub-plot to GIS, this 

yielded the density (number of host plants/100-m2) of host plants within larval search areas.  

However, host plants were not counted in every 100-m2 sub-plot within the eight larval search 

areas (See Late-Instar S. idalia Surveys).  Therefore, to generate estimates of host plant density 

for the unsurveyed plots both within the “core” larval search area and within the “boundary”, I 

used kriging models in GIS to estimate host plant density for sub-plots with no host plant data 

collected.  The kriging models generated in GIS provided estimates of violet density for each 
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100-m2 sub-plot within each of the 8, 2500-m2 larval search areas.  These estimates of host plant 

density were then applied to the larvae search results for each 100-m2 sub-plot surveyed for late-

instar S. idalia larvae or their feeding sign.  I then used four different moving window sizes in 

GIS to calculate the density of host plants within larval search areas at different scales.  The four 

scales were (1) a larvae survey sub-plot or 100-m2 (2) a Von Nuemann 4-neighbor moving 

window or 500-m2 (3) a Moore 3 X 3 moving window or 900-m2 and (4) a larval search area or 

2500-m2. 

 Statistical Analysis 

All data were analyzed using R (version 3.3.1; R Development Core Team 2016).  To 

identify which models best explained observed patterns in the occurrence distribution of late-

instar S. idalia larvae or their feeding sign, I used an information-theoretic framework to 

compare and select the best fitting models (Burnham and Anderson 2002).  I used the second-

order variant of Akaike’s information criterion adjusted for small sample sizes (AICc) to 

compare the relative ability of alternative models to fit observed data.  I calculated Delta AICc 

(ΔAICc) and Akaike weights (wi), to evaluate the support for each model given the data 

(Burnham and Anderson 2002).  I used AICc to rank models and selected the best fitting models 

as those with the lowest AICc scores (Buckland et al. 2001).  I considered all models with a 

ΔAICc <2 to have support, but selected only models for which the AICc values was less than the 

AICc values of all the simpler models within which they were nested (Richards 2008). 

I first conducted an analysis using a generalized linear model (GLM) and classification 

tree model of the occurrence of late-instar S. idalia larvae or their feeding sign and host plant 

density at each of the four spatial scales (100-m2, 500-m2, 900-m2, and 2500-m2) to determine 

which scale best described the occurrence distribution of late-instar S. idalia larvae.  For each 
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model, I quantified and compared model relative fit statistics using different approaches to 

empirically estimate which scale best described the occurrence distribution of late-instar S. idalia 

larvae or their feeding sign.  The fit statistics used to compare models were Kappa, ΔAIC, 

percent deviance, and McFadden’s R2. 

After the analyses to determine the scale at which the relationship between host plant 

density and the occurrence of late-instar larvae or their feeding sign was greatest using the 

moving window, scaling technique, I then ran an analysis on late-instar S. idalia larvae 

occurrence or their feeding sign and the full set of predictor variables using a GLM with logit 

link function.  Late-instar S. idalia larvae occurrence was considered the occurrence of late-instar 

S. idalia larvae in combination with their feeding sign in a sub-plot or just the occurrence of 

feeding sign but no actual detection of a late-instar S. idalia larvae within a sub-plot.  Predictor 

variables used to explain the response or occurrence of late-instar S. idalia larvae or their feeding 

sign were host plant density at the key scale identified by the moving window analysis, months 

since burn, management regime (grazed or hayed), and interaction between management regime 

and months since burn.  I first ran this analysis using a Quasi binomial distribution to account for 

zero inflation (Welsh et al. 1996, Ridout et al. 1998, Cunningham and Lindenmayer 2005, 

Martin et al. 2005); however, I also analyzed these data using the same methods but with a 

simpler binomial distribution as this technique is robust to the violation of the unequal sample 

size assumption and the AIC results are reliable.  The simpler binomial distribution results were 

the same as the Quasi binomial distribution, validating the use of the simpler binomial modeling 

technique. 

Estimating the abundance, occurrence, and distribution of organisms is of great interest to 

ecologists and a central goal in ecology, conservation, and management (Royle and Dorazio 
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2008).  Unfortunately, logistical constraints and the cryptic nature of many species make 

complete censuses or counts virtually impossible (MacKenzie et al. 2005).  However, imperfect 

detection of organisms can confuse measures of abundance, occupancy, and distribution (Bayley 

and Peterson 2001, Mackenzie et al. 2002, Gu and Swihart 2004), and failure to account for 

organisms present but not detected can result in biased estimation and erroneous conclusions 

(Kellner and Swihart 2014).  Moreover, detection is seldom perfect or constant due to a number 

of reasons that include observer error (Nichols et al. 2000), species rarity (Dettmers et al. 1999), 

or because detection varies with confounding variables such as environmental conditions (Gu 

and Swihart 2004).  Subsequently, numerous methods exist to account for counts of organisms 

when detection is imperfect, including distance sampling (Buckland et al. 2001, Johnson et al. 

2001), time removal (Farnsworth et al. 2002, Etterson et al. 2009), repeated counts (Royle and 

Nichols 2003, Royle 2004), double observer (Cook and Jacobson 1979, Nichols et al. 2000), 

mark-recapture (Laake et al. 2011), double sampling (Bart and Earnst 2002), among others. 

While these more traditional methods of accounting for differing detection probability 

have worked well for addressing the detection dilemma, these techniques were either impossible 

or unrealistic to execute in this study.  For instance, mark-recapture techniques were not well 

suited in this case because every few days S. idalia larvae molt and shed their exoskeleton where 

a tag would be attached.  Furthermore, the short time period I had to detect late-instar S. idalia 

larvae within selected sub-plots and the amount of time it took to thoroughly search sub-plots 

made repeated surveys of sub-plots in a season unrealistic to accomplish.  Despite the inability to 

employ some of the more traditional techniques that have been developed to deal with imperfect 

detection probability, I was able to overcome this limitation by determining a distinct and 

reliable feeding sign exhibited by late-instar S. idalia larvae that queued me to their presence 
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within sub-plots even when a larva could not actually be detected (see Appendix A).  Other 

studies have demonstrated that a distinctive and consistent feeding sign can be beneficial in 

detecting the presence of a larva on a host plant and used as a surrogate for direct observations of 

larvae during research on rare and cryptic Lepidoptera (Swengel 1995, Smith et al. 2002, 

Albanese et al. 2008).  Using this approach, I was able to calculate detection probability as the 

difference between sub-plots with larvae and feeding sign and sub-plots where only feeding sign 

was detected but not larvae. 

The detection probability of occupancy or occurrence can be influenced by features of the 

local habitat or surrounding landscape (Nupp and Swihart 1996, Mancke and Gavin 2000, Odell 

and Knight 2001).  Subsequently, non-detection is more likely to happen when population sizes 

are small and habitat features interfere with the detection of species (Gu and Swihart 2004).  For 

example, variation in vegetation structure among patches, even when patches contain similar 

densities can cause variability in detection probability (Gu and Swihart 2004).  Therefore, I 

determined if detection probability varied among the larvae survey areas, observers, years and 

between 100-m2 sub-plots with differing percent cover of the habitat variables measured.  

Preliminary analyses revealed detection probability remained relatively constant and did not 

differ significantly between these comparisons.  The greatest difference among all detection 

probabilities compared was <0.09.  Thus, I elected not to conduct more logistically challenging 

repeated larvae surveys and more data hungry modeling techniques to account for detection 

probability in my analysis.  Additionally, my examination indicates that if there were detection 

bias in my sample, it was consistent across time and space and therefore, should not be 

problematic (Buckland et al. 2001).  I also integrated these detection probability estimates as 

prior probabilities into random forest and classification tree models.  These techniques again 
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yielded the same results as the much simpler binomial GLM, further validating the use of the 

simpler technique. 

 Results 

Over the course of this study, I surveyed 208, 100-m2 sub-plots for late-instar S. idalia 

larvae or their feeding sign.  Of these surveyed plots, 47 (22%) contained late-instar larvae with 

feeding sign or just their feeding sign, while 161 (77%) had no feeding sign or larvae.  All plots 

that contained late-instar S. idalia larvae had their accompanying feeding sign.  The difference 

between sub-plots with late-instar S. idalia larvae and their feeding sign and sub-plots with just 

feeding sign or detection probability was 0.42. 

Host plant density at the 500-m2 scale best described the occurrence distribution of late-

instar S. idalia larvae (Figure 2.4).  Subsequently, models including host plant density as a 

predictor variable was host plant density at this key 500-m2 scale.  The global model included the 

occurrence of late-instar S. idalia larvae or their feeding sign as the response variable and host 

plant density at the 500-m2 scale, months since last burn, management regime (grazed and 

hayed), and the interaction between management regime and months since burn.  I ran all 

combinations of the global model, which resulted in 25 total alternate models including a null 

model.  The top model included the predictor variables months since last burn and host plant 

density at the 500-m2 scale (Table 2.3). 

The top model coefficients revealed that there was a positive relationship between the 

occurrence of late-instar S. idalia larvae or their feeding sign and host plant density at the 500-m2 

scale (β = 0.11, SE 0.02; Figure 2.5).  There was a negative relationship between months since 

last burn and the occurrence of late-instar S. idalia larvae or their feeding sign (β = -0.04, SE 

0.01; Figure 2.6).  The coefficient 95% confidence intervals (95% CI) were (0.08 – 0.16) for host 
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plant density at the 500-m2 scale and (-0.07 – - 0.02) for months since last burn.  Although the 

95% CI’s did not include zero for these variables, the 95% CI’s for management regime (-3.6 – 

0.17) and interaction term months since last burn x management regime (-0.01 – 0.17) both 

included zero.  Additionally, I converted these beta coefficients to odds.  The host plant density 

odds at the 500-m2 scale were 1.12 and the months since last burn were 0.95.  These results 

reveal that for a unit increase in host plant density at the 500-m2 scale the odds of the occurrence 

of late-instar S. idalia larvae or their feeding sign increased by 0.12 or 12% and for a unit 

increase in months since last burn the odds of the occurrence of late-instar S. idalia larvae or 

their feeding sign decreased by 0.05 or 5%.  Finally, the percent deviance for the top models was 

0.39 and the r2 for logistic regression (adjusted McFadden or pseudo r2) was 0.64. 

 Discussion 

Scudder (1889) first noted our lack of knowledge regarding the larval stages of S. idalia.  

Yet, over a century later, very few studies conducted on S. idalia have focused on this life history 

stage.  One of the likely reasons is that S. idalia larvae are extremely cryptic hindering field 

identification and location (Scudder 1889, TNC 2001, Kopper et al. 2001; Chapter I, Appendix 

A).  This study is one of very few focused on the larval stages of S. idalia and the first to 

examine the spatially explicit occurrence distribution of larvae across multiple scales of host 

plant density and between common grassland management treatments. 

 S. idalia Larvae and Management 

Numerous studies suggest that one of the reasons S. idalia are absent from recently 

burned sites is that the larvae are killed in the fire (Kelly and Debinski 1998, Swengel 1998, 

Huebschman and Bragg 2000, Swengel and Swengel 2001, Powell et al. 2007, Moranz et al. 

2014, among others).  In contrast, my results directly contradict these assumptions and indicate 
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that S. idalia larvae can in fact survive fire and demonstrate that the probability of late-instar S. 

idalia larvae occurrence actually decreases as months since burn increases (Figure 2.6).  One of 

the potential reasons it is presumed that fire kills S. idalia larvae is that studies have shown that 

S. idalia and other grassland-obligate insects are greatly reduced or even eliminated from sites 

immediately following a burn (Swengel 1996, 2001, 2004; Swengel and Swengel 2001; Powell 

et al. 2007; Moranz et al. 2014).  However, these studies focused on adult S. idalia not larvae, 

with the absence of adults in recently burned sites leading to the assumption or hypothesis that 

the burn eradicated the larvae from the sites as well as adults. 

Previous studies have shown that high-intensity grazing may be a threat to populations of 

S. idalia (Hammond and McCorkle 1983; Royer and Marrone 1992; Dana 1997; Selby 2003, 

2004, 2006) by removing essential nectar sources for adults (Moranz et al. 2014), with potential 

trampling of eggs and larvae as additional factors (Dana 1997, Fritz 1997).  However, less 

intensive grazing may by “highly favorable” to S. idalia and their larval host plants (NatureServe 

2005), which have been demonstrated to be more abundant in grazed areas (Mello 1989).  It is 

speculated that the eradication of grazing throughout the New England states may have played a 

role in the loss and degradation of grassland habitats and subsequently led to the elimination of 

S. idalia from these states (Dunwiddie and Sferra 1991). 

Haying or mowing area also processes that have aided in the preservation of prairie 

remnants by preventing excessive litter and depressing woody encroachment (Selby 2007).  

These processes also appear to favor prairie-specialist species, such as S. idalia (McCabe 1981, 

Swengel 1996).  Nonetheless, haying or mowing can still be a threat to populations of S. idalia.  

For example, haying during mid-July is likely to eliminate nectar sources when they are needed 

by adults and mowing an area too short could leave the delicate overwintering larvae exposed to 
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harsh winter conditions (Selby 2007).  Although haying and grazing are suspected to be 

important processes that effect the occurrence and distribution of populations of S. idalia, the 

results of my study indicated that neither haying or grazing significantly influenced the 

occurrence distribution of late-instar S. idalia larvae. 

It is well documented that many of the world’s grasslands butterfly species are sensitive 

to disturbance (Akite 2008, Kubo et al. 2009, Oates 1995, Swengel 1996).  In continental North 

America, some species sensitive to disturbance, such as S. idalia, are confined in terms of their 

distribution to prairies, which rely heavily on disturbances such as fire, grazing, and haying to 

maintain their open structure and depress woody encroachment (Anderson 2006, Moranz et al. 

2014).  The sensitivity of butterflies to the disturbances that maintain their habitat is often 

referred to as the “prairie butterfly paradox” (Moranz et al. 2014).  The apparent sensitivity of 

prairie-obligate butterflies has led to the suggestion that processes such as fire was an infrequent 

occurrence as these species evolved (Schlicht and Orwig 1998, Nekola 2002, Swengel et al. 

2011).  Yet, the overwhelming amount of evidence suggests that fire has been an essential 

process in maintaining and shaping prairies for many decades (e.g., Sauer 1950, Wright and 

Bailey 1982, Axelrod 1985, Collins and Steinauer 1998, Briggs et al. 2002, Anderson 2006).  In 

fact, studies have indicated that since European settlement in North America, frequency of fire 

has actually decreased (Steinauer and Collins 1996, Samson et al. 2004).  Furthermore, given the 

evidence that fire, grazing, and pyric herbivory were common disturbances in tall-grass prairie 

during most of prehistory, it would make sense that grassland-dependent butterflies such as S. 

idalia evolved with these disturbances as primary selective forces and subsequently have 

developed mechanisms for dealing with such disturbances (Moranz et al. 2014). 
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The discovery of S. idalia larvae in sites burned ≤61 days prior to their detection suggests 

that S. idalia larvae have developed mechanisms to survive fire and supports the hypothesis that 

S. idalia have evolved with processes like pyric herbivory (Appendix A).  Additionally, greater 

density of Viola species in sites that have been recently burned (Debinski and Kelly 1998, 

Latham et al. 2007) further support the conclusion that S. idalia, specifically S. idalia larvae are 

fire adapted and evolved with this process.  The inconsistencies when it comes to determining 

the effects of fire on S. idalia are likely due to a number of factors among which is the timing of 

the observation (Latham et al. 2007, Moranz et al. 2014; Chapter III).  For example, Moranz et 

al. (2014) found a complex population response of adult S. idalia that was facilitated by the 

interaction of time since fire with grazing and timing of sample period.  Unlike other studies, 

Moranz et al. (2014) found that S. idalia abundance in sites that were burned recovered within a 

few months post-burn.  They hypothesized that either (1) fire did not kill S. idalia larvae or (2) 

recolonization of the burned sites occurred much faster than reported in other studies.  They 

suggested the latter explanation was correct because others had concluded S. idalia larvae were 

destroyed by fire (Swengel 1996, 1998) and fires left few unburned microsites.  Conversely, the 

results of my study indicate that fire may have not killed all of the S. idalia larvae and the 

depressed abundance or absence of adult S. idalia from the sites immediately following the burn 

was not because larvae were destroyed but for alternative reasons.  Timing of observations of 

adults within sites can make a difference in terms of adult S. idalia abundance (Moranz et al. 

2014).  Most studies find that adult S. idalia are either absent or their abundance is greatly 

reduced during surveys of burned sites early in the adult flight.  However, studies that have 

continued surveys for adult S. idalia beyond one sample bout following a fire and surveyed 

throughout the adult flight found that the burned sites had recolonized to pre-fire abundance 
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levels a few months post-burn (Moranz et al. 2014).  This is likely due to the eventual 

replenishment of nectar sources to the burned sites as the time since fire increases and also to the 

enhanced blooming of preferred nectar sources in these sites (Moranz et al. 2014).  

Consequently, the timing of the observations could be one possible alternative explanation for 

why similar studies find adult S. idalia abundance to be depressed or non-existent in sites 

following burns and subsequently propagates the assumption that S. idalia larvae are incapable 

of surviving fire.  These results highlight the importance of survey timing.  Sampling during a 

small window of the overall flight period may lead to inaccurate conclusions regarding treatment 

effects on adult density.  Moreover, sampling only one life history stage (e.g., adult) and 

extrapolating the findings of the effects of management on adults to larvae could also result in 

inaccurate conclusions regarding the effects of management. 

 S. idalia Larvae and Host Plant Density 

Habitat requirements of adult butterflies differ from immature stages and habitat features 

and resources necessary for adults may not adequately reflect the requirements of the immature 

larval stages (Bergman 1999, Lane and Andow 2003).  Viola host plant species are an essential 

component of habitat availability for populations of S. idalia, especially during the immature 

stages when it is their sole source of food (Klots 1951, Hammond 1974, Ferris and Brown 1981, 

Selby 2007).  However, the decline or absence of S. idalia in an area is not always related to the 

absence of Viola host plants (Bliss and Schweitzer 1987, Ferge 1990, Huebschman 1998, Ferster 

2005, Selby 2007).  At the Fort Indiantown Gap National Guard Training Center in 

Pennsylvania, USA, density of arrow leaf violets (V. sagittata) did not differ between areas 

where adult S. idalia were present and areas where adult S. idalia were not present (Zercher et al. 

2002, Ferster 2005).  Similarly, Swengel (1997) found there was no significant correlation 
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between V. pedatifida and adult S. idalia in prairies surveyed in the Midwest.  Contrary to these 

studies, I found a positive relationship with S. idalia and Viola host plant density, where the 

probability of late-instar S. idalia larvae occurrence increased with increasing Viola host plant 

density.  My results likely differ from other studies because I evaluated the relationship between 

Viola host plants species and S. idalia larvae, not the relationship between Viola host plants and 

adult S. idalia.  After S. idalia larvae pupate into adults they no longer require Viola species to 

persist, instead their “food” needs shift to nectar sources (Latham et al. 2007).  This shift in 

“food” requirements is likely why studies investigating the effects of Viola density on adult S. 

idalia find little to no relationships (Chapter III).  It is probable that until female S. idalia begin 

oviposition in the fall, Viola are no longer an important habitat features for S. idalia and whether 

an area contains Viola or not has no significant influence on adult S. idalia habitat selection at 

this stage in their life history.  Although Viola host plants appear to be less important to S. idalia 

adults they are nevertheless essential for larvae and my results indicate that late-instar S. idalia 

larvae require areas ~≥40 host plants per 500-m2.  Subsequently, conservation and management 

should aim to conserve, maintain, and create areas that contain high densities of Viola host plants 

through the implementation of management practices such as prescribed burning and light to 

moderate grazing which have been shown to facilitate the growth and establishment of Viola host 

plants (Mello 1989, Latham et al. 2007). 

 Spatial Scaling 

Understanding the response of organisms to spatial pattern across scales is arguably one 

of the central goals in ecology (Levin 1992, Turner et al. 2001, Turner 2005).  However, applied 

challenges, such as assessing habitat features and management practices that influence the 

occurrence and distribution of a rare grassland butterfly at different life history stages (i.e., larval 
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and adult), require the interfacing of phenomena that occur on very different spatial and temporal 

scales.  Because patterns are organism and scale dependent, it is therefore preferable to assess 

ecological patterns across multiple scales (Wu and Loucks 1995).  The ability to identify points 

where processes and patterns change along a continuous scale could aid in the identification of 

key shifts in ecological processes and biologically relevant research scales (Wiens 1989).  In this 

study, I demonstrated that the ability to predict the occurrence distribution of late-instar S. idalia 

larvae within patches of host plants depends on the scale at which host plant density is measured.  

When I quantified and modeled host plant density and the occurrence of late-instar S. idalia 

larvae at four scales, I found that the occurrence distribution of late-instar S. idalia larvae was 

best described by the four-neighbor moving window form or 500-m2 scale.  This suggests that 

the 500-m2 scale represents the grain of resource configuration (i.e., host plant density) at which 

late-instar S. idalia interact with the landscape structure when searching for host plants and 

necessary resources for surviving this precarious life history stage.  Subsequently, when I 

assessed the relationship of the occurrence distribution of late-instar S. idalia larvae and host 

plant density, I used the key 500-m2 scale.  I found that the probability of late-instar S. idalia 

larvae occurrence increased as host plant density increased at this scale. 

Although evidence of spatial dependence of late-instar S. idalia larvae and their host 

plant density is interesting, other unmeasured factors certainly contributed to the occurrence 

patterns of late-instar S. idalia larvae in sites where they were found and should also be 

investigated.  Other studies have shown that the restricted distribution of numerous imperiled 

butterflies is the result of factors other than host plant distribution (Quinn et al. 1998, Dennis et 

al. 2003, Konvicka et al. 2003).  While butterfly abundance is commonly associated with the 

quantity of host plants, studies have demonstrated that butterfly abundance is often related to the 
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number of host plants growing under certain microhabitat conditions rather than overall host 

plant abundance (Bourn and Thomas 1993, Bergman 1999, Lane and Andow 2003).  Therefore, 

the determination of the microhabitat conditions appropriate for larval development is also key to 

conserving rare and threatened butterfly populations (Albanese et al. 2008). 

A number of factors can contribute to the quality of microhabitats for the larval stages of 

Lepidoptera, including: microenvironmental features, climatic conditions, and their interactions 

(Singer 1972, Ehrlich et al. 1980, Dobkin et al. 1987, Ravenscroft 1994), number and quality of 

host plants (Gilbert and Singer 1975, Rausher 1981, Zangerl and Berenbaum 1992, Grundel et al. 

1998), effect of predators and parasites (Sato and Ohsaki 1987, Ohsaki and Sato 1994), and 

occurrence of associating ants (Thomas 1984, Baylis and Pierce 1991, Hochberg et al. 1994, 

Wagner and Kurina 1997).  Furthermore, these features may be especially important for single 

generation Lepidoptera that are oligophagous and have restricted host plant species options and a 

narrow window for larval development (Albanese et al. 2008). 

S. idalia do not begin oviposition behavior until late August to early September (Scott 

1986, Wagner et al. 1997, Zercher et al. 2002).  Oviposition behavior seems to be casual with 

eggs deposited singly near, but rarely on the Viola host plants themselves (Scott 1986, Swengel 

and Swengel 2001).  In fact, females tend to deposit eggs on the underside of dead vegetation 

near the ground in shady areas, rather than placing eggs on the actual host plants (Kopper et al. 

2000, Appendix A).  This oviposition site-selection strategy displayed by females is speculated 

to be influenced by the need for larvae to survive extreme circumstances such as harsh winter 

conditions rather than by any benefits of depositing eggs directly on host plants (Kopper et al. 

2000).  Thus, a multi-scale assessment of the relative importance of the occurrence distribution 

of S. idalia larvae compared to potential determinants of their occupancy other than host plant 
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density would provide further insights into the influence of habitat features on S. idalia larvae 

and assist in the refinement of conservation and management recommendations. 

 Conclusions 

Conservation and management efforts may be futile if one life history stage is examined 

but another is ignored (Ferster and Vulinec 2010).  To preserve populations of S. idalia and their 

habitat it is imperative that research be conducted on both the immature and adult stages to make 

robust and informed conservation and management recommendations.  Moreover, it is important 

to recognize the importance of both spatial and temporal dynamics within and among patches of 

S. idalia larvae habitat and identify scales that are relevant to this species at this perilous life 

history stage.  My findings suggest that S. idalia larvae can endure fire and indicate that late-

instar larvae are perhaps negatively impacted by a lack of fire.  These results support the 

hypothesis that S. idalia have evolved with processes such as fire and pyric herbivory and 

developed adaptations to deal with fire disturbances, which have been a part of the legacy of the 

Flint Hills region.  Further supporting this conclusion is the positive response of S. idalia’s larval 

host plant to disturbances such as fire (Latham et al. 2007) and grazing (Mello 1989).  Although, 

S. idalia larvae seem to respond positively to fire, adults have different requirements that are 

affected by fire (i.e., nectar sources) and thus, require nearby areas that have remained unburned 

(Chapter III).  Therefore, conservation and management for S. idalia should aim to implement 

fire using a patch-burn framework.  This framework ensures that only a portion of the landscape 

is burned, which maintains the grassland and promotes the growth of Viola host plants; however, 

other portions of the landscape remains unburned providing the necessary resources (e.g., nectar 

sources) to S. idalia as they transition from larvae to adult butterflies.  Although haying and 

grazing did not positively affect the occurrence distribution of late-instar S. idalia larvae, these 
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processes also did not negatively affect the occurrence distribution of late-instar S. idalia larvae.  

Suggesting patch-burn grazing or patch-burning in concert with haying are also suitable 

management strategies when implemented with caution and with respect to timing, frequency 

and intensity.  Finally, conservation and management strategies should aim to conserve high 

density patches of host plants (~>40 plants) at the 500-m2 scale to promote the development of S. 

idalia larvae into the late-instar stages and subsequently to adulthood. 
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Figure 2.1  Illustration of the study area for late-instar Speyeria idalia larvae surveys conducted 

during 2014 -2015.  The Flint Hills are marked by the green region spanning across the eastern 

edge of Kansas, USA, while the black dot within the Flint Hills marks the study area.  The Fort 

Riley Military Reserve (FRMR) and Konza Prairie Biological Station (KPBS) are marked within 

the enlargement of the study area.  The X’s within the FRMR and KPBS mark the locations of 

the eight late-instar S. idalia larvae survey plots. 



70 

 
Figure 2.2  Probabilistic map of the occurrence distribution of Viola pedatifida in northeastern 

Kansas USA, using an ensemble species distribution modeling technique.  The map was 

generated using V. pedatifida presence-absence data collected in northeastern Kansas in 2014 -

2015 as the response variable and a suite of seven predictors as the explanatory variables in the 

Software for Assisted Habitat Modeling for VisTrails.  The ensemble model was created by 

taking the mean probabilistic values from four individual techniques: boosted regression tree, 

random forest, multivariate adaptive regression splines, and generalized linear model.  On the 

map, red correlates with values of one or high probability of V. pedatifida occurrence while blue 

correlates with values of zero or low probability of V. pedatifida occurrence.  The Fort Riley 

Military Reserve (FRMR) is the larger region outlined on the western edge of the map while 

Konza Prairie Biological Station (KPBS) is the smaller region outlined on the eastern edge of the 

map. 
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Figure 2.3  Illustration of one of the eight larval search areas selected to survey for the 

occurrence of late-instar Speyeria idalia larvae in northeastern Kansas, USA, at the Fort Riley 

Military Reserve and Konza Prairie Biological Station during 2014 – 2015.  The image displays 

the gradient of S. idalia larvae host plant density within the 2500-m2 search plot ranging from 

high violet density (red) and low violet density (blue).  Host plant density was obtained through 

counts of host plants in a sub-set of 15, 10 m X 10 m plots within the search area.  Host plant 

density for the remaining unsurveyed plots was estimated using kriging modeling in Geographic 

Information System (GIS) software.  The yellow dots within the larval search plot mark the 

boundaries of 100-m2 sub-plots.  The numbers accompanying each dot are unique identification 

codes for the individual sub-plots. 
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Figure 2.4  Illustration of the four moving window forms used to quantify and model the 

occurrence distribution of late-instar Speyeria idalia larvae and their larval host plant density 

from data collected in northeastern, Kansas, USA, at the Fort Riley Military Reserve and Konza 

Prairie Biological Station during 2014 -2015.  Models were compared using delta AICc (ΔAICc), 

Deviance, Kappa, and McFadden R2.  The scale that best described the occurrence distribution of 

late-instar S. idalia larvae is indicated in bold. 
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Figure 2.5  Relationship between the probability of occurrence of late-instar Speyeria idalia 

larvae and host plant density at the 500-m2 scale with fitted generalized linear model line.  The y-

axis displays the probability of late-instar S. idalia larvae occurrence (or their feeding sign) and 

the x-axis displays host plant density at the key 500-m2 scale.  The black dots above and below 

the fitted line represent observations of late-instar S. idalia larvae or their feeding sign along the 

gradient of host plant density at the 500-m2 scale.  Surveys for late-instar S. idalia larvae were 

conducted within northeastern Kansas, USA, at the Fort Riley Military Reserve and Konza 

Prairie Biological Station during 2014 -2015. 
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Figure 2.6  Relationship between the probability of late-instar Speyeria idalia larvae occurrence 

and months since last burn with fitted generalized linear model line.  The y-axis displays the 

probability of late-instar S. idalia larvae or occurrence (or their feeding sign) and the x-axis 

displays the months since last burn.  The black dots within the figure represent the larval search 

areas surveyed for late-instar S. idalia larvae.  Surveys were conducted within northeastern 

Kansas, USA, at the Fort Riley Military Reserve and Konza Prairie Biological Station during 

2014 -2015. 
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Table 2.1  The location of the eight larval search plots selected to survey for the occurrence of 

late-instar Speyeria idalia larvae in northeastern Kansas, USA, at the Fort Riley Military Reserve 

(FRMR) and Konza Prairie Biological Station (KPBS) during 2014 – 2015.  Included is the 

management regime (grazed or hayed) and the fire-return interval (low ≥10 years, moderate 3-5 

years, and high 1-2 years) received by each of the larval search areas. 

Larval Search Plot Location Management Fire-Return Interval 

1  FRMR Hayed High 

2  FRMR Hayed Moderate 

3  FRMR Hayed Moderate 

4  FRMR -* Low 

5  FRMR -* High 

6  KPBS Grazed High 

7  KPBS Grazed Moderate 

8  KPBS Grazed High 

* Indicates that a larval search area did not receive either grazing or haying management and the 

only treatment of the area was fire-return interval at one of the intervals low, moderate or high 
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Table 2.2  Description of the habitat variables measured in the late-instar Speyeria idalia study 

at the Fort Riley Military Reserve and Konza Prairie Biological Station in northeastern, Kansas, 

USA, 2014 – 2015. 

Habitat Variable Plot Size* Description 

Tree Cover 100 m2 % Total woody plant canopy cover greater than 2.5 m in height 

Shrub Cover  10 m2 % Total woody plant cover less than 2.5m in height 

Herb Cover 1 m2 % Total herbaceous plant cover 

Forb and Fern Cover  % Total herbaceous plant cover excluding graminoids  

Bare Ground Cover  % Total exposed soils and rock cover 

Litter Cover  % Total dead vegetative litter cover 

*Data were collected within nested vegetation sampling modules within each randomly selected 100-m2 

late-instar S. idalia larvae survey sub-plot 
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Table 2.3  The top four models generated in program R using a generalized linear model 

approach testing the effect of predictor variables: months since burn, management regime 

(grazed or hayed), and host plant density (500-m2 scale) on the occurrence distribution of late-

instar Speyeria idalia larvae.  Late-instar S. idalia larvae were surveyed in eight different larval 

search areas located at the Fort Riley Military Reserve and Konza Prairie Biological Station in 

northeastern, Kansas, USA, during 2014-2015.  Included are the degrees of freedom (df), second 

order variant of Akaike’s information criterion (AICc), the difference in AICc (ΔAICc) and 

Akaike model weights (wi) for each model.  The top model is indicated in bold. 

Model df AICc ΔAICc wi 

Months Since Burn + Host Plant Density 3 85.3 0.00 0.999 

Host Plant Density 2 100.1 14.75 0.001 

Months Since Burn 2 217.8 132.54 0.000 

Null 1 224.3 139.01 0.000 
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Chapter 3 - Effects of Management Regime and Habitat 

Characteristics on the Abundance of the Regal Fritillary (Speyeria 

idalia) in Tall-grass Prairie 
 

 Introduction 

The regal fritillary, Speyeria idalia (Drury, 1773) (Nymphalidae), is a large, showy and 

non-migratory butterfly that was once a common inhabitant of North American grassland 

ecosystems (Powell et al. 2007).  S. idalia are univolitine, having a single generation per year 

with an adult flight from approximately late May – early October (Klots 1951, Tilden and Smith 

1986, Wagner et al. 1997).  Females emerge one to two weeks after males and mate soon after 

they emerge but oviposition is delayed until late August to September (Wagner et al 1997, 

Kopper et al. 2001, NatureServe 2005).  Oviposition behavior is somewhat haphazard with eggs 

laid singly near, but not necessarily on the host plants themselves (Scott 1986, Swengel and 

Swengel 2001a).  S. idalia is an oligophagous butterfly species that consumes only violets (Viola 

spp.) during the immature stages.  While they are able to use a variety of violet species, S. idalia 

tend to be associated with specific Viola species in different parts of their range (Selby 2007).  

Birdfoot and prairie violet (V. pedata, V. pedatifida) are thought to be the preferred larval food 

plants throughout the Midwest and Great Plains (Swengel 1997, Kelly and Debinski 1998, Dole 

2004). 

The historic range of S. idalia extended from Oklahoma to the border of Canada and east 

to the Atlantic coast (NatureServe 2005).  Despite its once broad geographic distribution, 

populations have declined drastically (NatureServe 2005).  For reasons that are not well 

understood, eastern populations crashed during the early 1960s – 1990s (Powell et al. 2007).  

Currently, there are only two extant populations remaining east of Illinois: Fort Indiantown Gap, 
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Pennsylvania, and Radford Army Ammunition Plant in Virginia (Debinski and Kelly 1998, 

Swengel and Swengel 2001a, Williams 2002, NatureServe 2005).  However, there are locally 

abundant populations west of Illinois, with the species considered “apparently secure” in Kansas 

(Ely et al. 1986, Marrone 2002, Selby 2007).  S. idalia was listed as a Category II species under 

the United States Endangered Species Act (ESA) until this category was removed in 1996 (U.S. 

Fish and Wildlife Service 1996).  The rapid, range-wide declines and ongoing threats to extant 

populations from habitat loss and mismanagement prompted the U.S. Fish and Wildlife Service 

to initiate a species status review in September 2015 of S. idalia as a potential candidate for 

listing under the ESA. 

The greatest ongoing threats to populations of S. idalia appear to be habitat loss and 

fragmentation through grassland conversion to cropland along with inappropriate land 

management practices such as high-intensity grazing, frequent and intensive burning, and haying 

(Schultz and Crone 1998, Davies et al. 2005, Ferster and Vulinec 2010).  It was estimated that 

the Great Plains region has lost 70% of its grasslands and tall-grass prairie is ~3-5% of its 

historic extent (Samson et al. 2004).  Although the Flint Hills represents the largest remaining 

contiguous tract of tall-grass prairie, it has still suffered drastic losses with tall-grass prairie in 

retaining as little as 37% of the historic extent in the Flint Hills/Osage Plains region (Samson et 

al. 2004).  Native tall-grass prairie communities have succumbed to anthropogenic land 

conversion, development, invasive herbaceous and woody plant species, and plant community 

succession (Samson and Knopf 1996).  Historically, unrestricted grazing by native herbivores 

and wildfire played important roles in the maintenance of prairie ecosystems in the Great Plains 

(Fuhlendorf and Engle 2001).  However, in the absence of these ecological drivers, most 
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remaining tracts of remnant prairie are often maintained by prescribed land management (Vogl 

1974, Shuey 1997). 

Fire, grazing, and haying play critical roles in maintaining and shaping prairie remnants, 

and a complete lack of these processes can pose a serious threat to the extent and quality of 

remaining prairie remnants (Selby 2007).  Depending on their timing and intensity, these 

management strategies can also constitute threats to S. idalia populations (Selby 2007).  Several 

studies have suggested that fire is harmful to S. idalia and likely depresses prairie-specialist 

butterfly populations especially when applied aggressively at short return-intervals (Swengel 

1996, 2001b, 2004; Swengel and Swengel 2001b, among others).  While light to moderate 

intensity grazing may be “highly favorable” to S. idalia, high intensity grazing can be a threat 

(Hammond and McCorkle 1983, Royer and Marrone 1992, Dana 1997, among others).  Haying 

and mowing have helped preserve prairie remnants by preventing excessive litter and woody 

encroachment (Selby 2007).  These practices also appear to favor prairie-specialist butterflies 

(Swengel 1996).  However, haying or mowing can still have negative effects on S. idalia by 

eliminating essential nectar sources when needed by adults and development of eggs and larvae 

can be negatively affected if an area is mowed too short (Selby 2007). 

Despite the numerous studies examining the effects of fire on prairie butterflies and 

invertebrates, it remains a subject of great controversy (Dana 1991; Swengel 1996, 1998; Panzer 

1998, 2002; Schwartz 1998; Swengel and Swengel 1999, 2001b).  Information pertaining to the 

effects of fire on prairie specialist butterflies such as S. idalia would provide valuable insight and 

help guide conservation and management recommendations.  Furthermore, there is a lack of 

information regarding the effect of the interaction of fire and other management practices such as 

grazing and haying on S. idalia (Selby 2007).  Given the necessity of processes such as fire, 
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grazing, and haying to the persistence of prairie remnants and lack of knowledge regarding these 

processes and their effects on prairie obligate invertebrates, such as S. idalia, my objectives were 

to (1) quantify the effects of prairie management, particularly fire, grazing, and haying on adult 

S. idalia density and (2) determine the relative influence of habitat characteristics created by 

these management regimes on adult S. idalia density. 

 Methods 

 Study Area 

This study was conducted in northeastern Kansas, United States, at the Fort Riley 

Military Reserve (FRMR) (Geary and Riley counties) and Konza Prairie Biological Station 

(KPBS) (Geary County) (Figure 3.1).  Both the FRMR and KPBS are nestled within the northern 

portion of the Flint Hills.  The surrounding landscape of the FRMR and KPBS encompasses 

numerous drainages, two large reservoirs and broadly distributed urban and rural developments.  

More generally, the Flint Hills are characterized by large rolling hills and rocky flint-filled soils 

(Anderson and Fly 1955).  The flint contained within the bedrock for which the region is named 

depressed erosion and left the Flint Hills higher than the surrounding areas, with an elevation 

relief of 91-152 m.  In addition to preventing soil erosion, underlying flint and limestone deposits 

made this region undesirable for crop cultivation making it home to the largest remaining 

contiguous tract of tall-grass prairie in North America (Reichman 1987).  Subsequently, the 

vegetative community is commonly associated with dominant grasses such as big bluestem 

(Andropogon geradii), indiangrass (Sorghastrum nutans), and switchgrass (Panicum virgatum) 

(Anderson and Fly 1955, Owensby and Smith 1979).  The remainder of the plant community is 

comprised of perennial grasses, woody species, and a wide variety of native herbaceous forbs 

(Anderson and Fly 1955, Owensby and Smith 1979).  The climate in this region is driven by its 
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interior location and characterized by hot, dry summers and cold winters with temperatures 

ranging from -40° C to 49.44° C (Abrams and Hulbert 1987).  Annual precipitation varies 

drastically (average annual precipitation = 83.82 cm) and droughts are common (Abrams and 

Hulbert 1987). 

The FRMR is one of the nation’s largest army posts comprising ~41,000 ha.  

Approximately 29,000 ha are managed for multiple uses including conservation and outdoor 

recreation activities such as: military training, hunting, hiking, biking, and bird watching, among 

others.  The FRMR is divided into training areas that are managed using a combination of 

burning and haying regimes.  Prescribed burns at the FRMR are typically conducted during the 

spring and fall, but occasional wildfires from live fire military training do occur throughout the 

year.  Haying at the FRMR is strictly regimented and must occur between 15 July – 15 August.  

The FRMR was partitioned into four study locations due to its large size and varying 

management regimes (Figure 3.1). 

The KPBS is a 3,487 ha tract of tall-grass prairie co-owned and operated by the Division 

of Biology, Kansas State University, and The Nature Conservancy.  The KPBS has been a part of 

the National Science Foundation Long-Term Ecological Research (LTER) network since 1981 

and experimentally managed with various grazing and burning regimes (Knapp et al. 1998).  

Grazing treatments are varied by native bison (Bison bison), cattle (Bos taurus), or no grazing.  

Prescribed burns occur on an annual to every 2, 4, and 20-year intervals with most ignited during 

the spring.  The KPBS was treated as a single study location (Figure 3.1). 

 Adult Surveys 

During the annual flight period (late May – early August) in 2012, 2014, 2015, and 2016, 

I surveyed transects (n = 44) distributed throughout the five study locations for adult S. idalia 
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(Table 3.1).  Transects were 500 m to >1 km in length and stratified by management regime (fire, 

grazing, or haying) and fire-return interval (low - ≥10 years, moderate – 3-5 years, and high – 1-

2 years) (Table 3.2).  Transects were surveyed twice in 2012, three times in 2014, and six times 

in 2015 and 2016.  Successive survey bouts did not begin until all transects for the current bout 

had been surveyed.  Surveys were conducted largely within the parameters of the British 

Butterfly Monitoring Scheme (Pollard and Yates 1993).  All surveys were conducted between 

0830 and 1830 CST, under sunny and warm conditions, when temperatures were ≥17° C if there 

was overcast, and winds <20km/h on the Beaufort scale.  Surveys were conducted by walking 

transect centerlines and recording the perpendicular distance from the transect centerline to each 

individual adult S. idalia within ≤30 m either side of the transect centerline.  Distances to each 

individual adult S. idalia from the transect centerline were estimated in intervals of 0-5 m, >5 m-

10 m, >10 m-20 m, and >20 m-30 m. 

 Vegetation Surveys 

To characterize habitat features along transects, I used a module-nested plot method to 

sample vegetation data.  Each module consisted of one 100-m2 plot with two 10-m2 and two 1-

m2 embedded sub-plots.  I measured one density and six cover variables during field surveys 

(Table 3.3).  Cover was estimated using nine cover classes that were converted to mid-points in 

the analysis (cover classes: 0 – 1%, 1 – 2%, 2 – 5%, 5 – 10%, 10 – 25%, 25 – 50%, 50 – 75%, 75 

– 95%, >95%).  The cover classes and module-nested plot methods were adopted from the North 

Carolina Vegetation survey (Peet et al. 1997), which is a variation of the more traditional, cover 

class scheme (e.g., Domin 1928, Braun-Blanquet 1964, Daubenmire 1968).  Vegetation data 

were collected every 100-m along adult survey transects in 2014 – 2016.  At each vegetation 



84 

survey point along a transect, I surveyed two module vegetation plots.  Modules were placed at a 

90° angle from the transect on both sides of the transect centerline. 

 Statistical Analysis 

Distance sampling is a wildlife sampling technique that is commonly employed to 

estimate the size or density of a population (Chandler 2013).  Distance sampling methods have 

demonstrated to be effective for sampling a wide variety of taxa, from butterflies (Brown and 

Boyce 1998, Powell et al. 2007) and birds (Catt et al. 1998, Oliveira et al. 1999) to desert 

tortoises (Gopherus agassizii; Swann et al. 2002) and badgers (Meles meles; Hounsome et al. 

2005).  To accurately estimate and model density, it is often necessary to account for individuals 

present but not detected (Chandler 2013).  While conventional methods of analysis do not allow 

for explicit modeling of both density and detection probability, the function distsamp in program 

R employs the multinomial-Poisson mixture model of Royle et al. (2004), which was developed 

to overcome this limitation (Chandler 2013). 

There are numerous options that exist for analyzing distance sampling data (Chandler 

2013).  I used Unmarked: An R package for fitting hierarchical models of wildlife occurrence 

and abundance (R Development Core Team 2010, Fiske and Chandler 2011) to estimate adult S. 

idalia densities following the model of Royle et al. (2004), which assumes that multiple transects 

have been surveyed and distance data are recorded in discrete intervals.  Package Unmarked, like 

other distance sampling software, provides a selection of candidate functions to describe the 

probability of detection and estimates the associated parameters using maximum likelihood 

estimation (Miller et al. 2016).  I compared models using the key functions: uniform, half-

normal, and hazard-rate.  To identify which models best explained observed patterns in adult S. 

idalia density, I used an information-theoretic framework to compare and select the best fitting 
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models (Burnham and Anderson 2002).  I used the second-order variant of Akaike’s information 

criterion adjusted for small sample sizes (AICc) to compare the relative ability of alternative 

models to fit observed data.  I calculated Delta AICc (ΔAICc) and Akaike weights (wi), to 

evaluate the support for each model given the data (Burnham and Anderson 2002).  I used AICc 

to rank models and selected the best fitting models as those with the lowest AICc scores 

(Buckland et al. 2001).  I considered all models with a ΔAICc < 2 to have support.  Exploratory 

analysis revealed that the hazard-rate detection function consistently best fit the data according to 

accompanying AICc values (Table 3.4); subsequently, all data were modeled with the hazard-rate 

detection function.  Model results include the number of AICc units from the top ranked model 

(ΔAICc), number of model parameters (K), and model AIC weight (wi). 

To evaluate the effects of fire-return interval and management on adult S. idalia density I 

developed four ecologically relevant models: null (no effect), global (fire-return 

interval+management), fire-return interval only, and management only.  In the global model 

adult S. idalia density was estimated in the three levels of fire-return interval (low, moderate, 

high) and management (grazed, hayed, or burned).  The resulting model estimated adult S. idalia 

density in nine possible treatment categories that included: grazed+high fire-return interval, 

grazed+moderate fire-return interval, grazed+low fire-return interval, hayed+high fire-return 

interval, hayed+moderate fire-return interval, hayed+low fire-return interval, and finally burned 

high fire-return interval, burned moderate-fire-return interval, and burned low fire-return 

interval.  In the fire-return interval only model, management other than fire (i.e., grazing or 

haying) was ignored and adult S. idalia density was estimated in the three levels of fire-return 

interval (low, moderate, and high).  Similarly, in the management-only model, fire-return 
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interval was ignored and adult S. idalia density was estimated in the three management 

treatments (grazed, hayed, burned). 

Finally, I tested the relative influence of the seven measured habitat variables on adult S. 

idalia densities.  Prior to testing the influence of the habitat variables on adult S. idalia density I 

employed Pearson’s correlation coefficient to test for statistical correlation among the variables.  

Correlated pair-wise variables (r > 0.60) were not included in the same models.  Following the 

removal of models with correlated variables, I constructed all possible combinations of additive 

models to test the effect of the habitat variables on adult S. idalia density.  Additionally, I tested 

for differences for the seven habitat measurements among fire-return interval (low, moderate, 

high) and management practices (fire, grazed, hayed) using a randomized block design analysis 

of variance (ANOVA; Statistix version 8.0).  I used survey transect as the experimental unit.  

Year was treated as a block and considered a nuisance variable in this analysis.  Independent 

variables in the analyses were presence of S. idalia (detected or not), fire-return interval or 

management practice, and their respective interaction.  Following a significant ANOVA (P < 

0.05), I used a least significant difference test to separate levels of independent variables. 

 Results 

 Effects of Management and Fire-Return Interval on S. idalia Density 

The highest ranked model among model sets testing the effect of fire-return interval and 

management on adult S. idalia density was fire-return interval+management (AICc 1668.12, K = 

7, wi = 0.98).  The other models were ranked as follows: fire-return interval (AICc 1675.53, 

ΔAICc 7.41, K = 5, wi = 0.02), management (AICc 1761.8, ΔAICc 93.65, K=2, wi = 0.00), and 

the null model (AICc 1763.0, ΔAICc 94.87, K=4, wi = 0.00).  The highest ranked model revealed 

that adult S. idalia densities were greatest in areas that were grazed and burned on a moderate 
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fire-return interval (Table 3.5).  Although the density estimate in this treatment category had 

95% confidence intervals that overlapped with the hayed+moderate fire and moderate fire only 

categories, the density estimate was at least ~30% greater in the grazed and moderate fire-return 

interval (Table 3.5).  Density estimates of adult S. idalia did not differ among management type, 

revealing that S. idalia adults responded similarly to disturbance type in tall-grass prairie (Table 

3.6).  Because the top two ranked models both included fire-return interval, I estimated adult S. 

idalia densities for each categorized fire-return interval.  Adult S. idalia density was at least 84% 

greater in areas that received a moderate fire-return interval versus areas that received high fire-

return intervals and low fire-return intervals (Table 3.7). 

 Effects of Vegetation Characteristics on S. idalia Density and Occurrence 

The Pearson’s correlation coefficient test indicated that among the habitat variables 

measured, percent grass and bare ground were negatively correlated (r = -0.69).  Therefore, I did 

not consider models that included both grass and bare ground as candidates for further analysis.  

Tree and shrub cover were also negatively correlated (r = -0.64).  However, instead of 

eliminating one of the variables from subsequent models, I combined these two variables into 

one variable labeled woody vegetation.  This combined variable quantified the total average 

percent woody vegetation cover.  Following these adjustments, I tested all possible combinations 

of additive models using the revised habitat variables.  The model that best fit these data was the 

global model (Table 3.8).  Among the variables included in the top model, grass had the greatest 

effect on adult S. idalia density (β = 0.389 ± 0.126 [SE]); as average percent grass cover 

increased the estimated density of adult S. idalia also increased (Figure 3.2a).  Average percent 

litter cover also had a positive effect on adult S. idalia density (β = 0.297 ± 0.089), increasing 

with the estimated density of adult S. idalia (Figure 3.2b).  While the effect size was relatively 
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small (β = 0.128 ± 0.075), average density of V. pedatifida also had a positive effect on adult S. 

idalia density (Figure 3.2c).  Conversely, both average percent woody cover and average percent 

forb cover had negative effects on adult S. idalia density (β = -0.284 ± 0.141, β = -0.278 ± 

0.126).  As average percent woody and percent forb cover increased, the estimated density of 

adult S. idalia decreased (Figure 3.2d, e). 

 Effects of Management and Fire-Return Interval on Habitat Characteristics 

The presence of adult S. idalia did not interact with fire-return interval; however, there 

was a significant interaction between the presence of adult S. idalia and management for woody 

vegetation only (Table 3.9).  When the habitat variables were grouped by fire-return interval 

average bare ground cover differed between transects with and without adult S. idalia (Table 

3.10).  Average woody cover, average litter cover, average forb cover, average grass cover, and 

violet density did not differ between transects where S. idalia was detected versus those where S. 

idalia was not detected (Table 3.10).  When the habitat variables were grouped by overall 

management, there were no differences between transects with and without adult S. idalia for 

any of the habitat variables measured (Table 3.10). 

Vegetation composition varied little among overall management treatments.  Average 

percent woody cover differed among management treatments; however, all other vegetation 

characteristics were similar among management treatments (Table 3.11).  Vegetation 

composition did vary among fire-return intervals.  Average forb, grass, litter, and woody cover 

differed among fire-return intervals (Table 3.12).  Average forb cover was at least 1.5 times 

greater in sites that received a high fire-return interval compared to sites that received low or 

moderate fire-return intervals (Table 3.12).  Average grass cover was greatest in sites burned on 

a moderate fire-return interval and at least 1.2 times greater than sites burned with low or high 
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fire-return intervals (Table 3.12).  Average litter cover was nearly 2 times greater in sites that 

received a low fire-return interval compared to sites burned on a high or moderate fire-return-

interval (Table 3.12).  Finally, average woody vegetation cover was 4.5 times greater in sites that 

received a low fire-return interval (Table 3.12).   There was no effect of fire-return interval on 

average bare ground and violet density (Table 3.12). 

 Discussion 

 Management, Fire-Return Interval and the Effect on S. idalia Density 

My results suggest that adult S. idalia require some form of disturbance to maintain and 

conserve populations and the open native prairie habitat they exclusively inhabit.  The greatest 

response was to fire as a disturbance, with additional positive responses when fire and managed 

grazing were applied in combination with one another.  Among fire-return intervals, adult S. 

idalia density was greatest in sites that had a moderate (3 – 5 year) fire-return interval.  This 

finding concurs with a large majority of the S. idalia literature, which suggests that less 

aggressive and more moderate fire regimes are favorable to adult S. idalia and other prairie-

specialist species (Swengel 1996, 2001a, 2004; Huebschman and Bragg 2000; Swengel and 

Swengel 2001b; Wright et al. 2003; Powell et al. 2007).  While the effect of grazing in concert 

with a moderate fire-return interval had 95% confidence intervals that overlapped with haying 

combined with a moderate fire-return interval and moderate fire only, these results nonetheless 

indicated that managed grazing along with a moderate fire-return interval supported the greatest 

densities of adult S. idalia. 

Unlike the findings of Swengel (1996), which indicated that adult S. idalia and other 

prairie-specialists were more abundant in hayed rather than burned prairies, I found adult S. 

idalia density to be similar among management treatments – grazed, hayed, and burned.  



90 

Although I found these three management treatments to contain similar densities of adult S. 

idalia, it is important to consider that all study sites received some level of fire management at 

either the low, moderate or high fire-return intervals; however, for the initial analysis, sites were 

grouped based on overall management (burned only, grazed+burned, hayed+burned) regardless 

of fire-return interval.  The lack of a difference in densities of adult S. idalia among the overall 

management treatments (grazed, hayed, burned) and the inclusion of fire-return interval in the 

top two ranked models further supports the conclusion that the most important driver of adult S. 

idalia density among sites was fire-return interval. 

Results from previous studies regarding the effect of fire on prairie-specialist butterfly 

populations have been somewhat mixed but are often positive (Swengel 2001a, Panzer 2002).  

For example, Huebschman and Bragg (2000) also found that burning on a 3– to 4–year 

frequency while leaving contiguous areas unburned was a viable and realistic long-term 

management plan for S. idalia populations present at the Nine–mile Prairie in Nebraska.  

Conversely, Swengel (1997) determined that adult S. idalia was most abundant in larger prairie 

remnants managed by haying or grazing versus burning.  I suggest two factors that explain such 

inconsistencies when it comes to determining the effects of fire on populations of S. idalia.  First 

is the scale of the observation and second is the timing of the observation (Latham et al. 2007, 

Moranz et al. 2014).  Due to the extensive conversion and fragmentation of the grassland 

ecosystems, it is common for research conducted on populations of adult S. idalia to be done 

within very small remnant patches of prairie.  For instance, surveys conducted by Powell et al. 

(2007) investigating the effects of management, particularly prescribed burning, on adult S. 

idalia densities in northeastern Kansas were in prairie remnants that ranged in sizes from only 

0.9-53 ha with a mean survey site of 7.1 ha.  Similarly, the study site size at the Nine-mile Prairie 
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in Nebraska, where Huebschman and Bragg (2000) conducted their study on the effects of spring 

burning on adult S. idalia densities, was only 97 ha.  While both studies indicated that adult S. 

idalia abundance declined drastically or were absent from areas directly affected by a burn, sites 

that were managed with patch-burning were reported to have the highest densities of adult S. 

idalia among burned sites (Huebschman and Bragg 2000, Powell et al. 2007).  Therefore, it 

would be beneficial to integrate observations across a much larger scale where just a portion of 

the overall habitat is burned in a given year, successive fires occur in a patch-burn mosaic, and 

several years elapse between fires (Latham et al. 2007).  In this scenario, the immediate decline 

following the fire would likely prove to be only a small fraction of the total population (Latham 

et al. 2007). 

The second explanation for discrepancies regarding the effect of fire on adult S. idalia is 

the timing of the observations.  Similar, to most other studies conducted on adult S. idalia 

Moranz et al. (2014) found that adult S. idalia abundance was negatively affected immediately 

following a burn.  However, within five months of burning, the burned units had been 

recolonized and had large adult S. idalia populations (Moranz et al. 2014).  These results are in 

contrast to the findings of Swengel (1996) who sampled adult S. idalia in the same region as 

Moranz et al. (2014) but earlier in the adult S. idalia flight period.  While Swengel (1996) only 

sampled once from 14 June – 19 June, Moranz et al. (2014) sampled adult S. idalia populations 

during three periods – early June, late June and late July.  The early sampling period of Swengel 

(1996) may not have provided adult S. idalia with enough time to recolonize the burned sites and 

also prohibited observations of adult S. idalia’s positive response to fire of late-season nectar 

sources (Moranz et al. 2014).  Thus, sampling during a single portion of the flight period might 

lead to inaccurate conclusions regarding treatment effects on butterfly densities. 



92 

The problem with burning appears to arise when small relatively unconnected remnants 

are burned in their entirety and adult S. idalia abundance declines or they disappear from such 

sites (Swengel et al. 2011).  Although a burn promotes the growth of grass and depresses woody 

encroachment, which are habitat features selected by adult S. idalia, immediately following the 

burn, the site has not had the chance to rejuvenate all vegetative features required by adult S. 

idalia and likely lacks the necessary nectar resources and heterogeneity that the species requires 

at this life history stage (Moranz et al. 2014).  Presumably they abandon the site in search of sites 

that contain the needed resources.  Although adult S. idalia are strong flyers and have the ability 

to disperse >7 km (Zercher et al 2002), they are not readily equipped to survive in the heavily 

developed matrix of urban developments and croplands that commonly surround remaining 

prairie remnants (Selby 2007).  Consequently, the probability of successfully reaching distant 

prairie remnants and repopulating them is unlikely (Selby 2007).  Therefore, small satellite 

populations of S. idalia are most vulnerable to disturbances that might have been overcome in 

the historic prairie landscape (Selby 2007).  However, both Huebschman and Bragg (2000) and 

Powell et al. (2007) found that even among the relatively small prairie remnants surveyed in their 

studies, patch-burning was a feasible management strategy.  These results suggest that as long as 

unburned areas are in close proximity adult S. idalia are able to recolonize the burned areas 

(Moranz et al. 2014).  Nonetheless, management such as prescribed burning, grazing, and haying 

need to be implemented with caution and the timing, intensity, and extent should be altered to 

ensure the security of vulnerable populations (Selby 2007). 

 Habitat Characteristics and the Effect on S. idalia Density 

I found that average percent grass cover had the greatest positive effect on adult S. idalia 

densities while average percent woody cover had the greatest negative effect on adult S. idalia 
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densities.  These relationships are relatively unsurprising given the descriptions of S. idalia 

habitat in the literature.  It is common for S. idalia to be described as a “prairie-specialist” 

dependent on grasslands (Swengel 1996), thus my results support previous descriptions that adult 

S. idalia habitats are profoundly defined by the presence and cover of grass and trees.  Dole 

(2004) described S. idalia habitat in the Great Plains region as “pristine tallgrass prairie”.  In 

fact, S. idalia have been identified as an indicator species of native tall-grass prairie (Hammond 

and McCorkle 1983).  Although adult S. idalia can occur in sites that contain trees, studies have 

suggested that they are sensitive to habitat edges or boundaries, such as trees (Ries and Debinski 

2001) and areas that contain dense tree cover are avoided (NatureServe 2005).  These results 

elucidate the necessity of management such as fire, grazing, and haying to maintain the openness 

of prairie habitats and depress woody encroachment.  Despite requiring some disturbance to 

maintain its openness and prairie flora, the positive relationship between average litter cover and 

adult S. idalia densities suggests that adult S. idalia do in fact select areas that have not been 

recently disturbed, particularly by prescribed fire.  Powell et al. (2007) noted a similar 

relationship with adult S. idalia densities and litter accumulation.  Powell et al. (2007) reported 

that sites that had greater densities of S. idalia typically had dense litter, which suggested that 

they had not been recently burned.  The combination of these findings highlight that burning an 

entire site homogenously on an annual basis is not an appropriate management strategy for 

populations of S. idalia.  Burning annually decreases the accumulation of litter, and likely 

depresses the variety and abundance of nectar sources.  Alternatively, not burning or a lack of 

any management at all is also not recommended for conserving and managing populations of S. 

idalia because the lack of management would facilitate woody encroachment.  Thus, burning 
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contiguous tracts of prairie in a shifting mosaic is likely a suitable management strategy for 

promoting and maintaining both populations of S. idalia and the prairie habitat they depend on. 

It has been suggested that the availability of “suitable” nectar sources during adult flight 

is as critical to an areas ability to support populations of certain butterfly species as the presence 

of larval host plants (Opler and Krizek 1984).  This habitat requirement is particularly important 

for long-lived butterflies such as S. idalia (Selby 2007), which not only utilize nectar sources for 

energy, but also likely use these food sources for the production of eggs (Opler and Krizek 

1984).  Due to the importance of nectar sources suggested by the S. idalia literature, I a priori 

hypothesized that forb cover would be an important habitat feature in describing adult S. idalia 

densities.  While average percent forb cover was one of the variables included in the top model, 

the negative relationship between S. idalia density and average forb cover was surprising.  

However, this result is likely due to the “broad” measurement of forbs in this study.  I measured 

average percent forb cover as percent total herbaceous cover excluding graminoids.  

Accordingly, the resulting average percent forb cover estimates include all forbs including those 

forbs that are not selected or unusable by adult S. idalia.  Although, adult S. idalia use a number 

of plant species as nectar sources, studies have indicated that the species has strong preferences 

for specific nectar plants.  In observations of 1,058 individuals from across several states, 

Swengel (1993) found that adult S. idalia “strongly preferred” thistles; plants with pink flowers 

were selected as nectar sources 85% of the time.  Throughout S. idalia’s range, milkweeds 

(Ascelpias spp.) also appear to be a commonly preferred nectar source (NatureServe 2005, 

Heitzman and Heitzman 1987, Fritz 1997, Royer 2004, Marrone 2002).  Previous studies have 

indicated that milkweeds accounted for ≥50% of nectar plants used (Huebschman 1998, Nagel et 

al. 1991).  Other important nectar sources include: thistles (Cirsium spp.), coneflowers 



95 

(Echinacea spp.), blazing-stars (Liatris spp), bergamots (Mondarda spp.), goldenrods (Solidago 

spp.), clovers (Trifolium spp.), and ironweeds (Vernonia spp.) (NatureServe 2005).  The negative 

relationship between adult S. idalia density and average forb cover in my results is likely due to 

adult S. idalia’s strong propensity for specific nectar sources and illustrates the need for a finer 

scale measurement of forbs in future studies. 

Viola species are a critical habitat feature for populations of S. idalia, particularly during 

the immature stages when Viola species are the sole food plant of S. idalia larvae (Klots 1951, 

Hammond 1974, Ferris and Brown 1981; Chapter I).  Several studies have shown a positive 

correlation between the abundance of Viola species and adult S. idalia (Swengel 1997, Debinski 

and Kelly 1998).  Although the relationship was slight, I also found a positive relationship 

between adult S. idalia density and density of its preferred larval host plant for this region, V. 

pedatifida.  While adult S. idalia do not necessarily “require” Viola species unlike the larval 

stages, Nagel et al. (1991) suggested that adult S. idalia males tend to remain near their natal 

areas where Viola species are expected to be more abundant to be in the “right place” at the right 

time when females emerge a couple weeks after the males.  However, their high mobility, 

propensity to “wander” (Selby 2007), and shifting requirement for resources besides Viola 

species at this stage in their life might explain the relatively “weak” relationship that I found 

between adult S. idalia and V. pedatifida. 

 Survey-Wide Adult S. idalia Density 

I found S. idalia to be a common inhabitant of both the FRMR and KPBS occurring at 41 

of 44 (95%) transects surveyed throughout the course of this study.  Survey-wide density 

estimates produced in package unmarked in R for the FRMR and KPBS reported adult S. idalia 

density to be ~0.60 individuals per ha at the FRMR and ~0.51 individuals per ha at the KPBS.  
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These estimates are lower than estimates produced in other studies.  The species’ survey-wide 

density estimate in a study conducted in northeastern Kansas by Powell et al. (2007) was 7.6 

individuals per ha.  Kelly and Debinski (1998) had density estimates ranging from 1.1 

individuals per ha to 15.7 individuals per ha in prairies surveyed throughout Iowa, Kansas, and 

the Dakotas. 

One of the causes for the stark contrast in density estimates from this study to others is 

the size and connectedness of the sites surveyed.  The mean size of the tall-grass prairie study 

sites described as small tracts mixed among agricultural and other development surveyed in 

Powell et al. (2007) was 7.1 ha with the smallest site surveyed being 0.9 ha and largest being 53 

ha.  In contrast, the smallest site surveyed in this study was 12 ha and the largest was 636 ha with 

a mean survey site size of 207 ha.  Moreover, the tall-grass prairie areas surveyed in this study 

were highly connected, facilitating movement of adult S. idalia between sites.  While adult S. 

idalia are robust flyers (NatureServe 2005), they strongly avoid prairie edges, such as row crop 

agriculture (Ries and Debinski 2001).  Consequently, the relatively small isolated patches of 

prairie surveyed in Powell et al. (2007) could have restricted the adult S. idalia to these small 

areas and prohibited movement out of these sites resulting in greater density estimates.  Another 

potential factor that could have inflated density estimates in these studies is the placement of 

transects in close proximity to one another.  The transects in Powell et al. (2007) consisted of 

two parallel segments located >60 m apart.  Presumably these parallel segments were surveyed 

on the same day and placed >60 m apart to avoid double counting.  However, adult S. idalia can 

readily fly distances >1 km (Nagel et al. 1991, Selby 1992, Zercher et al. 2002, Barton 1993, 

1994).  Subsequently, it is plausible that individuals were double counted, despite efforts to 

avoid this issue and densities were overestimated. 
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Conclusions 

The results of this study elucidate the need for disturbance applied at a landscape scale to 

maintain and conserve populations of S. idalia and their habitat.  I found that adult S. idalia 

densities were greatest in sites that were burned on moderate (3-5 year) fire-return intervals 

regardless of other management applied to the site (i.e., haying or grazing).  However, densities 

were slightly greater for sites that were grazed and burned on a moderate fire-return interval 

compared to sites that were just treated with fire on a moderate return-interval and sites that were 

hayed and burned on a moderate fire-return-interval.  These results suggest patch-burning, patch-

burn grazing, and patch-burning in concert with haying as viable long-term management plans 

for the maintenance and conservation of populations of S. idalia.  Furthermore, the increasing 

densities of adult S. idalia in habitats that contained high grass cover, minimal woody cover, 

some litter accumulation and the presence of V. pedatifida demonstrated that the habitat features 

created by the implementation of these management regimes are favorable to adult S. idalia.  

Therefore, conservation management of adult S. idalia should aim to implement prescribed fire 

in a patch-burn mosaic thereby increasing grass cover, promoting V. pedatifida density, 

depressing woody vegetation, and allowing litter accumulation in unburned patches.  Although 

patch-burning has been applied to relatively small, isolated prairie remnants with success 

(Huebschman and Bragg 2000, Powell et al. 2007) implementation should be done with caution 

and with respect to timing, intensity and frequency (Selby 2007).  Comparable research should 

be conducted in other parts of S. idalia’s range to assist in the refinement of these management 

recommendations.  Future research of adult S. idalia ecology should aim to be conducted on 

large scales (e.g., landscape) and respect to timing to fully assess the effects of processes such 

fire, grazing and haying on populations of S. idalia.  Determining how close patches of remnant 
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prairie should be for successful dispersal and recolonization would also be beneficial.  My results 

highlight the need for further research on how adult S. idalia respond to sites that are managed 

with patch-burning versus sites that are managed exclusively with haying or mowing, which in 

previous studies have been suggested to be more favorable.  Additionally, knowledge of how 

habitat characteristics important to adult S. idalia especially grass, forbs, Viola species and 

woody vegetation respond to different management treatments would be valuable. 
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Figure 3.1  The study area for adult Speyeria idalia surveys conducted during 2012, 2014-2016.  

The Flint Hills are marked by the green region spanning across the eastern edge of Kansas, USA, 

while the black dot within the Flint Hills marks the study area.  The Fort Riley Military Reserve 

(FRMR) and Konza Prairie Biological Station (KPBS) are marked within the enlargement of the 

study area.  The cross-hatched sections within the FRMR and KPBS indicate the sites within 

each where adult survey transects were located. 
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Figure 3.2  Relative influence of the habitat features contained in the top vegetation model on 

Speyeria idalia density.  The habitat features were measured using a module-nested plot method 

every 100-m along adult S. idalia survey transects located at the Fort Riley Military Reserve and 

Konza Prairie Biological Station in northeastern Kansas, USA, 2014 – 2016.  All habitat 

variables were estimated as average percent cover except for Viola pedatifida, which was 

estimated as average density of V. pedatifda (V. pedatifida/m2).  Adult S. idalia density was 

estimated in package Unmarked in R and displayed on the y – axis.  The average percent cover 

of the habitat features for panels a, b, d, and e are displayed on the x –axis.  The x-axis on panel c 

displays the average density of Viola pedatifida. 
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Table 3.1  Number of transects surveyed for adult Speyeria idalia and total number of adult S. 

idalia observed each year at the Fort Riley Military Reserve (FRMR) and Konza Prairie 

Biological Station (KPBS) in northeastern Kansas, USA during 2012, 2014–2016. 

 No. Transects Surveyed  

Year FRMR KPBS Total No. S. idalia 

2012 0 12 80 

2014 23 3 142 

2015 28 10 274 

2016 16 7 36 

  



108 

Table 3.2  The number of transects surveyed in each treatment for adult Speyeria idalia at the 

Fort Riley Military Reserve and Konza Prairie Biological Station in northeastern, Kansas, USA, 

2012, 2014 – 2016.  Included in the table is the total area in each treatment group and the total 

number of S. idalia observed in each treatment group. 

Treatment No. Transects Total Area (ha) Total No. S. Idalia 

Fire High 7 876 34 

Fire Moderate 8 1856 116 

Fire Low 2 60 2 

Grazed + High 4 398 71 

Grazed + Moderate 1 135 17 

Grazed + Low 1 84 10 

Hayed + High 8 2431 58 

Hayed + Moderate 12 3063 217 

Hayed + Low 1 191 7 
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Table 3.3  Description of the habitat variables measured in the adult Speyeria idalia study at the 

Fort Riley Military Reserve and Konza Prairie Biological Station in northeastern, Kansas, USA, 

2014 – 2016. 

Habitat Variable Plot Size* Description 

Viola pedatifida Density 100 m2 Number of V. pedatifida  

Tree Cover  % Total woody plant canopy cover greater than 2.5 m in height 

Shrub  10 m2 % Total woody plant cover less than 2.5m in height 

Herb Cover 1 m2 % Total herbaceous plant cover 

Forb and Fern Cover  % Total herbaceous plant cover excluding graminoids  

Bare Ground Cover  % Total exposed soils and rock cover 

Litter Cover  % Total dead vegetative litter cover 

*Data were collected within nested vegetation sampling modules every 100-m along transects surveyed 

for adult S. idalia. 
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Table 3.4  Exploratory models developed in package Unmarked in R evaluating the fit of key 

detection functions tested (hazard-rate, half-normal, uniform) to candidate models.  Models were 

built to estimate adult Speyeria idalia density in northeastern Kansas, USA, at the Fort Riley 

Military Reserve and Konza Prairie Biological Station during 2012, 2014 –2016.  The second-

order variant of Akaike’s Information Criterion (AICc) was used to rank models. 

Model Detection Function K AICc ΔAICc wi 

Fire-Return Interval Hazard-Rate 5 1675.53 0.00 1 

 Half-Normal 4 1706.93 31.40 0 

 Uniform 3 1807.24 131.71 0 

Management Hazard-Rate 5 1761.77 0.00 1 

 Half-Normal 4 1793.17 31.40 0 

 Uniform 3 1893.48 131.71 0 

Fire-Return Interval + Management Hazard-Rate 7 1668.12 0.00 1 

 Half-Normal 6 1699.42 31.30 0 

 Uniform 5 1799.64 131.51 0 

Null Hazard-Rate 3 1763.00 0.00 1 

 Half-Normal 2 1794.49 31.49 0 

 Uniform 1 1894.89 131.89 0 

The detection function that best fit the data for each candidate set of models is indicated in bold. 

K-The number of estimated parameters for each model in the candidate model set. 

AICc-Second order derivative of Akaike’s Information Criterion that accounts for small sample sizes. 

ΔAICc -The difference in AICc among models in the candidate set. 

wi-The Akaike weights. 
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Table 3.5  Density estimates of adult Speyeria idalia grouped by fire-return interval (low ≥ 10 

years, moderate 3-5 years, and high 1-2 years) and management treatment (grazed, hayed, 

burned) from surveys during 2012, 2014–2016 at the Fort Riley Military Reserve and Konza 

Prairie Biological Station in northeastern Kansas, USA.  Density estimates were calculated using 

package Unmarked in R.  Estimates were weighted by transect length (i.e., survey effort) and 

accompanied by their respective standard errors (SE) and 95% confidence intervals (95% CI). 

Fire-Return Interval + Management Unmarked Density Estimates 

 Density SE 95% CI 

Fire High 0.41 0.06 0.31 – 0.54 

Fire Moderate 0.82 0.10 0.64 – 1.05 

Fire Low 0.16 0.04 0.09 – 0.27 

Grazed + Fire High 0.55 0.08 0.40 – 0.74 

Grazed + Fire Moderate  1.1 0.18 0.80 – 1.51 

Grazed + Fire Low 0.21 0.05 0.13 – 0.36 

Hayed + Fire High 0.34 0.05 0.25 – 0.46 

Hayed + Fire Moderate 0.69 0.09 0.53 – 0.90 

Hayed + Fire Low 0.41 0.03 0.08 – 0.22 
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Table 3.6  Density estimates of adult Speyeria idalia grouped by overall management from 

surveys during 2012, 2014–2016 at the Fort Riley Military Reserve and Konza Prairie Biological 

Station in northeastern Kansas, USA.  Density estimates were calculated using package 

Unmarked in R.  Estimates were weighted by transect length (i.e., survey effort) and 

accompanied by their respective standard errors (SE) and 95% confidence intervals (95% CI). 

Management Unmarked Density Estimates 

 Density SE 95% CI 

Grazed 0.55 0.08 0.41 – 0.73 

Hayed 0.62 0.07 0.49 – 0.79 

Burned 0.49 0.06 0.38 – 0.64 
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Table 3.7  Density estimates of adult Speyeria idalia grouped by fire-return interval from 

surveys during 2012, 2014–2016 at the Fort Riley Military Reserve and Konza Prairie Biological 

Station in northeastern Kansas, USA.  Density estimates were calculated using package 

Unmarked in R.  Estimates were weighted by transect length (i.e., survey effort) and 

accompanied by their respective standard errors (SE) and 95% confidence intervals (95% CI). 

Fire-Return Interval Unmarked Density Estimates 

 Density SE 95% CI 

High (1-2 years) 0.43 0.06 0.33 – 0.55 

Moderate (3-5 years) 0.79 0.09 0.63 – 1.00 

Low (≥10 years) 0.17 0.04 0.10 – 0.28 
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Table 3.8  The top ten highest ranking models generated in package Unmarked in R testing the 

effect of habitat variables measured and their relative influence on adult Speyeria idalia density.  

The habitat variables were collected using a module-nested plot method every 100-m along adult 

S. idalia survey transects located at the Fort Riley Military Reserve and Konza Prairie Biological 

Station in northeastern, Kansas, USA, and collected during 2014–2016.  Habitat variables 

considered in models included average percent cover of: grass, forb, woody vegetation, litter, 

bare ground, and average violet density (Viola pedatifida/m2). 

Model K AICc ΔAICc wi 

Forb+Grass+Woody+Violet+Litter 8 1330.76 0.00 0.98 

Forb+Grass+Woody+Litter 7 1338.20 7.44 0.02 

Grass+Woody+Violet+Litter 7 1346.72 15.95 0.00 

Forb+Grass+Litter+Violet 7 1347.38 16.62 0.00 

Grass+Woody+Litter 6 1347.46 16.69 0.00 

Forb+Grass+Litter 6 1353.79 23.03 0.00 

Forb+Bare+Woody+Violet+Litter 8 1355.71 24.95 0.00 

Litter+Grass+Violet 6 1364.55 33.79 0.00 

Grass+Litter 5 1364.61 33.85 0.00 

Forb+Grass+Woody+Violet 7 1366.26 35.50 0.00 

The top model is indicated in bold. 

K-The number of estimated parameters for each model in the candidate model set. 

AICc-Second order derivative of Akaike’s Information Criterion that accounts for small sample 

sizes. 

ΔAICc -The difference in AICc among models in the candidate set. 

wi-The Akaike weights. 
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Table 3.9  Interaction between the presence of adult Speyeria idalia and habitat variables 

grouped by fire-return interval (low ≥10 years, moderate 3-5 years, and high 1-2 years) and 

overall management (grazed, hayed, and burned).  Habitat variables were recorded in module-

nested plots every 100-m along adult S. idalia survey transects located at the Fort Riley Military 

Reserve and Konza Prairie Biological Station in northeastern, Kansas, USA, during 2014–2016.  

Bare ground, grass, forbs, litter, and woody vegetation were estimated in plots as average percent 

cover while Viola pedatifida was estimated as average V. pedatifida density (V. pedatifida/m2). 

Habitat Variable 

S. idalia*Fire-Return Interval  S. idalia*Management 

F2,79 P  F2,79 P 

Avg. % Bare Ground 0.12 0.89  1.45 0.24 

Avg. % Forb 1.31 0.28  0.65 0.53 

Avg. % Grass 2.74 0.07  0.43 0.65 

Avg. % Litter 0.47 0.63  0.31 0.74 

Avg. % Woody 0.59 0.56  4.15 0.02 

Avg. Viola pedatifida density  

(V. pedatifida/m2) 
0.30 0.74 

 
1.20 0.31 

S. idalia*Fire-Return Interval-Analysis of variance results testing the interaction of adult S. idalia 

presence and habitat variables grouped by fire-return interval. 

S. idalia*Management-Analysis of variance results testing the interaction of adult S. idalia 

presence and habitat variables grouped by management. 
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Table 3.10  Mean and standard errors of habitat variables along transects with and without adult 

Speyeria idalia.  Included are results from the factorial analysis of variance testing the 

occupancy of Speyeria idalia against habitat variables grouped by fire-return interval (low  ≥10 

years, moderate 3-5 years, and high 1-2 years) and overall management (grazed, hayed, and 

burned).  Habitat variables were measured every 100-m along adult S. idalia transects located at 

the Fort Riley Military Reserve and Konza Prairie Biological Station in northeastern Kansas, 

USA, during 2014-2016.  Habitat variables were estimated using a module-nested plot method.  

Bare ground, grass, forbs, litter, and woody vegetation were estimated in plots as average percent 

cover while Viola pedatifida was estimated as average V. pedatifida density (V. pedatifida/m2). 

 S. idalia Occupancy1     

Habitat Variable 0 1  F2
1,79 P F3

1,79 P 

Avg. % Bare Ground 19.5 (2.47) 14.9 (1.23) 5.01 0.03 2.54 0.12 

Avg. % Forb 19.4 (2.45) 24.2 (1.86) 9.31 0.75 0.86 0.36 

Avg. % Grass 44.1 (2.97) 49.1 (1.94) 0.34 0.56 1.84 0.18 

Avg. % Woody 6.06 (1.52) 6.41 (1.09) 0.08 0.78 0.72 0.40 

Avg. % Litter 11.28 (1.89) 14.48 (1.50) 0.49 0.49 0.25 0.62 

Avg. Viola pedatifida 

Density (V.pedatifdia/m2) 
0.0026 (0.0010) 0.010 (0.0024) 3.25 0.08 4.13 0.05 

Habitat variables that differed significantly among transects with and without adult S. idalia are indicated 

in bold. 
10-Mean of habitat variable along transects without adult S. idalia with standard error in parenthesis; 1-

Mean of habitat variable along transects with adult S. idalia with standard error in parenthesis. 
2Results from the factorial analysis of variance testing adult S. idalia occupancy against habitat variables 

grouped by fire-return interval. 
3Results from the factorial analysis of variance testing adult S. idalia occupancy against habitat variables 

grouped by overall management. 
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Table 3.11  Mean and standard error (SE) of the habitat variables collected along adult Speyeria 

idalia survey transects at the Fort Riley Military Reserve and Konza Prairie Biological Station in 

northeastern Kansas, USA, 2014 – 2016.  Habitat variables were measured using a module-

nested plot method every 100-m along adult S. idalia transects.  Habitat variables were estimated 

as average percent cover for bare ground, forb, litter, grass and woody vegetation.  Viola 

pedatifida were measured as average V. pedatifida density (V. pedatifida/m2).  Habitat variables 

are grouped by their mean percent cover/density in each management treatment (grazed, hayed, 

and burned). 

   Grazed Hayed Burned 

Variable F2,79 P Mean SE Mean SE Mean SE 

Avg. Viola pedatifida  

Density 
0.20 0.82 0.017A

 0.0097 0.009A
 0.0021 0.005A

 0.0021 

Avg. % Woody  5.94 0.004 16.18A 5.34 3.58B 0.45 7.74A 1.50 

Avg. % Bare Ground  0.27 0.76 21.86A
 3.62 15.42A

 1.32 15.28A
 2.33 

Avg. % Forb  1.61 0.21 27.44A
 4.38 20.62A

 2.16 25.66A
 2.27 

Avg. % Litter  1.59 0.21 11.30A
 1.93 15.59A

 1.78 10.87A
 1.89 

Avg. % Grass  1.10 0.34 37.18A
 5.32 49.38A

 2.04 48.75A
 2.92 

Habitat variables that differed significantly between overall management treatments are indicated 

in bold. 
A,BHabitat variables with means that have the same capital letter (A or B) as a superscript indicate 

the means did not differ for that variable among overall management treatments.  Habitat variables 

that have different capital letter superscripts indicate that the means differed between that habitat 

variable and overall management. 
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Table 3.12  Mean and standard error (SE) of the habitat variables collected along adult Speyeria 

idalia survey transects at the Fort Riley Military Reserve and Konza Prairie Biological Station in 

northeastern Kansas, USA, 2014 – 2016.  Habitat variables were measured using a module-

nested plot method every 100-m along adult S. idalia transects.  Habitat variables were estimated 

as average percent cover for bare ground, forb, litter, grass and woody vegetation.  Viola 

pedatifida were measured as average V. pedatifida density (V. pedatifida/m2).  Habitat variables 

are grouped by their mean percent cover/density in each fire-return interval (low, moderate, and 

high). 

   Low  

(≥ 10 years) 

Moderate  

(3 – 5 years) 

High  

(1 – 2 years) 

Variable F2,79 P Mean SE Mean SE Mean SE 

Viola pedatifida  

Density 
0.12 0.89 0.0032A 0.004 0.0083A 0.002 0.0075A 0.003 

Avg. % Woody  22.35 <0.01 22.12A 5.84 4.69B 0.63 4.23B 0.51 

Avg. % Bare 

Ground  
0.42 0.655 15.86A 3.45 14.68A 1.59 18.14A 1.81 

Avg. % Forb  8.98 0.01 23.95B 3.66 17.94B 1.84 29.56A 2.60 

Avg. % Litter  6.59 0.002 24.16A 4.61 13.93A 1.70 10.36A 1.50 

Avg. % Grass  3.85 0.025 35.45B 4.74 53.07A 2.13 43.94B 2.43 

Habitat variables that differed among managements are indicated in bold. 
A,BHabitat variables with means that have the same capital letter (A or B) as a superscript indicate 

the means did not differ for that variable among fire-return intervals.  Habitat variables that have 

different capital letter superscripts indicate that the means differed between that habitat variable 

and fire-return interval. 
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Appendix A - Fire Adaptations, Larval Feeding Behavior and Host 

Plant Use in the Regal Fritillary Butterfly (Speyeria idalia): Novel 

Observations from the Central Great Plains 
 

 Introduction 

The regal fritillary, Speyeria idalia (Drury, 1773) (Nymphalidae), is a large univolitine 

and non-migratory butterfly.  Adult S. idalia flight begins with the emergence of males in late 

May and continues through September when females begin to oviposit (Klots 1951, Tilden and 

Smith 1986, Wagner et al. 1997).  S. idalia mate shortly after they emerge in late May – early 

June, however, females postpone oviposition until late August to early September (Scott 1986, 

Wagner et al. 1997, Zercher et al. 2002).  Oviposition site selection appears to be somewhat 

casual with eggs deposited near, but rarely on the host plants themselves (Scott 1986, Kopper et 

al. 2000, Swengel and Swengel 2001).  Because most host plant species are senesced when 

females begin oviposition it is generally suspected that they cue on factors other than the 

presence of host plants when determining oviposition locations (Wagner et al. 1997, Kopper et 

al. 2000). 

After oviposition, S. idalia eggs hatch in approximately 25 days and the 1st instar larvae 

emerge, consume the chorion, and enter a winter larval diapause.  Larval development resumes 

in early spring with the emergence of host plants.  There are six larval instars followed by a 

pupal stage that lasts 2.5 to 4 weeks (Edwards 1879, Hammond 1974, Wagner et al. 1997).  

Throughout their life cycle, all S. idalia larvae are oligophagous and feed on a variety of violet 

(Viola spp.) host plant species (Klots 1951, Hammond 1974, Ferris and Brown 1981).  Local 

populations are often associated with specific violet species and larvae in the central Great Plains 

are reported to preferentially feed on birdfoot (V. pedata) or prairie violet (V. pedatifida) 

(Swengel 1997, Kelly and Debinski 1998, Dole 2004). 
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The historic range of this once abundant butterfly of North American prairie communities 

extended from Oklahoma to the border of Canada and east to the Atlantic coast.  Despite its once 

broad geographic distribution, populations have declined by approximately 99%.  Both eastern 

and western populations have experienced dramatic declines and S. idalia are nearly extirpated 

from the eastern portion of their former range (NatureServe 2005).  However, there are some 

locally abundant populations in the west and the species is considered stable in Kansas (Ely et al. 

1986, Marrone 2002).  S. idalia was listed as a Category II species under the United States 

Endangered Species Act (ESA) until this category was removed in 1996 (U.S. Fish and Wildlife 

Service 1996).  The rapid, range-wide declines of this species prompted the U.S. Fish and 

Wildlife Service to initiate a status review of S. idalia under the ESA in September 2015. 

While the direct causes of local population declines of S. idalia are unclear it appears 

their decline is a result of habitat loss and fragmentation along with inappropriate land 

management practices such as heavy grazing, frequent and intensive burning, and haying 

(Schultz and Crone 1998, Davies et al. 2005, Ferster and Vulinec 2010).  It is estimated that the 

Great Plains region has lost 70% of its grasslands, with tallgrass prairie in the Flint Hills of 

Kansas retaining as little as 37% of the historic extent (Samson et al. 2004).  Native tall-grass 

prairie communities have succumbed to anthropogenic land conversion, development, invasive 

weeds, and plant succession (Samson and Knopf 1996).  Historically, unrestricted grazing by 

herbivores and wildfire played important roles in the maintenance of prairie ecosystems in the 

Great Plains (Fuhlendorf and Engle 2001).  However, in the absence of these ecological drivers, 

remnant tracts of prairie that remain are often maintained by prescribed land management (Vogl 

1974, Shuey 1997).  Prescribed fire is considered one of the primary tools used to maintain the 

openness of grasslands by controlling invasive species and woody encroachment (Sauer 1950, 



121 

Stewart 1956, Vogl 1974, Nuzzo 1986).  Prescribed management is crucial to maintaining 

grassland ecosystems and a lack of management can threaten the persistence of remaining prairie 

remnants along with S. idalia populations (Vogl 1974, Shuey 1997). 

The effect of fire on prairie insects is a contentious subject.  Several studies suggest that 

prescribed fire benefits many prairie specialist butterflies (Selby 2007) while others argue that it 

is harmful (Swengel 1996, 2001, 2004; Swengel and Swengel 2001).  It is thought that regular 

extensive burning likely depresses prairie specialist butterfly populations (Swengel 1996, 2004; 

Swengel and Swengel 2001, among others).  In particular, S. idalia literature often reports that 

fires reduce or even eliminate the species from sites by directly or indirectly killing larvae (Kelly 

and Debinski 1998, Swengel and Swengel 2001, Powell et al. 2007, among others).  Therefore, 

management recommendations for populations of S. idalia suggest greater reliance on alternative 

management such as mowing, haying, light grazing, and the implementation of permanent non-

fire refugia (Schlicht and Orwig 1992, Swengel 1996, Schlicht 2001, among others). 

The uncertainty of the effects of fire on S. idalia populations is likely facilitated by the 

lack of information on the immature stages.  S. idalia larvae are inconspicuous and cryptic, 

making them difficult to locate in the field (Scudder 1889, TNC 2001, Kopper et al. 2001, 

Debinski pers. com).  The challenges associated with detecting S. idalia larvae have limited our 

ability to study this ambiguous and precarious life history stage.  Consequently, assessments of 

habitat quality are often measured as the habitat features and resources associated with the 

presence and abundance of adults (Britten and Riley 1994, Smallidge et al. 1996, Grundel et al. 

2000, Collinge et al. 2003).  However, adult mobility can confound assessments of how a 

management practice affects presence and abundance (Swengel 1996).  Adults can readily move 

in or out of areas as resources and conditions change.  In contrast, larvae are restricted to the area 
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and microhabitat in which they hatched; thus, habitat features and resources used by adults may 

not reflect the requirements of the immature stages (Bergman 1999, Lane and Andow 2003, 

Albanese et al. 2008). 

The goal of my study was to investigate the effects of management practices and habitat 

features on the presence and abundance of S. idalia larvae and adults.  During the course of this 

study, I made several novel observations of late-instar larvae and post-diapause females.  The 

observations I present and discuss here include: a distinct and reliable feeding sign exhibited by 

late-instar larvae, the use of an alternative host species V. sororia by post-diapause females and 

late-instar larvae, cathemeral larval activity, and finally the observation of numerous late-instar 

larvae in sites that had been recently burned.  The findings I present in this paper provide insight 

to S. idalia ecology and behavior that contribute to our understanding and conservation efforts of 

populations of this imperiled species. 

 Methods 

 Study Area 

I conducted field and laboratory studies from 2014 through 2015 at the Fort Riley 

Military Reserve (FRMR) and the Konza Prairie Biological Station (KPBS), in Geary and Riley 

counties within northeastern Kansas, USA.  Both sites are nested within the Flint Hills, which is 

characterized by rolling hills stretching from Kansas to Oklahoma, rocky soil, and large tracts of 

tall-grass prairie (Anderson and Fly 1955, Reichman 1987). 

 Late-Instar Larvae Surveys 

Late-instar larvae surveys were conducted in April and May during 2014 and 2015.  The 

8 larval survey plots were stratified by management regime (fire, grazing, and haying), and fire-

return interval (low ≥ 10 years, moderate 3-5 years, and high 1-2 years).  Five of the larval 
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survey plots were located at the FRMR and three were located at the KPBS.  Each larval survey 

plot was 2500-m2 and partitioned into grids of 100-m2 sub-plots.  The 100-m2 sub-plots included 

a gradient of violet density.  I randomly selected 15 100-m2 sub-plots to be searched in each of 

the 10 2500-m2 larval survey plots.  I searched for late-instar larvae or their feeding sign in each 

of the 100-m2 subplots by systematically examining each host plant located within the plot.  

Additionally, I examined the surrounding vegetation and litter in search of larvae.  I use the 

terms early-and late-instar larvae to describe larvae when the exact instar was not determined.  

Relative to the six larval instars of S. idalia, early-instar refers to first through third instar and 

late instar refers to fourth through sixth instar. 

Surveys for ovipositing females were conducted from late August to early October during 

2014 and 2015.  I surveyed 44 transects for ovipositing females.  Each transect was at least 500 

m to >1 km in length and stratified by management regime (fire, grazing, and haying), violet 

density, and fire-return interval (low, moderate, and high).  I surveyed the standardized transects 

using a repeated modified Pollard walk method when weather conditions were appropriate for 

adult flight.  The observer ceased the Pollard walk when a ovipsitioning female was located and 

followed the female recording all oviposition locations. 

 Results 

 Larvae and Fire 

I surveyed a total of 208 100-m2 subplots for late-instar S. idalia larvae and their feeding 

sign during this study.  Among the 208 plots surveyed, 46 were located in sites that had 

undergone a spring management burn.  I detected late-instar larvae or their feeding sign in 10 

(22%) of the 100-m2 subplots that were located in the areas that had undergone spring 

management burns.  A total of 20 late-instar S. idalia larvae were detected during this study.  
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Eleven (55%) of the larvae were observed in areas that had been burned ≤61 days prior to the 

detection.  Six of these larvae were observed at the FRMR and five at the KPBS study sites. 

 Larvae Feeding Behavior 

I collected a total of five S. idalia larvae from the field for observations.  In 2014, I 

collected two late-instar S. idalia larvae on 19 April and a third on 19 May.  In 2015, I collected 

two late-instar S. idalia larvae on 19 April.  The larvae were reared on both V. pedatifida and V. 

sororia leaves.  All five larvae produced a unique strip-style feeding sign on both host plant 

species.  The larvae defoliated stems by consuming the leaves of host plant species in a “type-

writer” fashion, feeding back and forth on a single leaf until all that remained was a small portion 

of the leaf and the stem (Figure A1).  When larvae were not feeding, they spent most of their 

time resting either in the curls of dead vegetation provided or at the bottom of the enclosure near 

the base of vegetation.  Contrary to previous reports, larvae were active during both day and 

night.  This feeding behavior and combination of both diurnal and nocturnal activity was not 

unique to lab-reared larvae.  Late-instar S. idalia larvae produced a distinctive and detectable 

feeding sign on host plants, and exhibited cathemerality in the field.  I observed 17 larvae during 

daylight, two during twilight and one during night.  These larvae displayed behaviors from 

actively feeding to resting.  Feeding sign observed in the field was similar to that of captive-

reared larvae.  Late-instar larvae in the field defoliated host plants by stripping away and 

consuming the leaves, leaving only the stem of the host plant (Figure A2).  This strip-style 

feeding sign was detected in each of the 100-m2 sub-plots where larvae were found. 

 S. idalia and V. sororia 

Among the 8 2500-m2 larval survey plots, four contained both V. pedatifida and V. 

sororia, and one plot contained only V. sororia.  Late-instar S. idalia feeding sign and larvae 
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were detected on V. sororia at three of these sites.  The feeding sign exhibited on V. sororia 

plants resembled that of the feeding sign on V. pedatifida and was typical of late-instar S. idalia 

larvae (Figure A3).  Additionally, I observed three post-diapause females oviposit in proximity 

to V. sororia during oviposition surveys (Figure A4).  All females flew low to the ground and 

frequently dropped down into the vegetation.  Upon landing, females maneuvered through the 

vegetation, tasting with their feet, and dragging their abdomens probing various substrates in 

search of oviposition sites.  Eggs were deposited on the underside of dead vegetation or detritus 

near V. sororia plants.  In two out of the three observations, the only host plant species within ≥ 

2500-m2 of the oviposition site was V. sororia. 

 Conclusions 

Previous studies conducted on S. idalia larvae have resulted in very small sample sizes 

(Barton 1995, n=9; Kopper et al. 2001, n=12; TNC 2000, 2001 n=0).  The unique feeding sign I 

observed was a reliable sign of the presence of late-instar larvae and greatly improved my ability 

to detect this species within patches of V. pedatifida and V. sororia.  Although it is known that S. 

idalia larvae are able to feed on a variety of Viola host plants direct field observations of feeding 

on V. sororia is not well documented for this region.  Additionally, the selection of oviposition 

sites by adult females near V. sororia further stresses its potential importance and influence on S. 

idalia ecology and behavior.  Among Viola species in the United States V. sororia is arguably 

the most common and is often considered a weed (Solbrig et al. 1980).  While invasive, weedy 

species are often detrimental to Lepidoptera the spread of such plants are not always entirely 

damaging (Ferge 2008).  The wild indigo duskywing (Erynnis batisiae) has been reported to 

switch from its native host plant, wild indigo (Baptisia spp.) to the invasive crown vetch 

(Securigera varia) (Opler and Malikul 1992).  Consequently, E. baptisiae is expanding its once 
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restricted range by utilizing S. varia along roadways and railroads (Ferge 2008).  As global 

climate change, invasive species spread, and habitat loss and fragmentation continue to strain the 

persistence of native prairie fauna, more generalist species are certain to become more common.  

Thus, perhaps the use of V. sororia, a more generalist species of Viola than V. pedatifida by S. 

idalia is in response to V. sororia’s increasing availability throughout this region. 

Adult S. idalia have been reported to be negatively affected by fire (Swengel 1996, 

Powell et al. 2007).  However, these previous conservation recommendations were made based 

on research of the response of adult populations to fire, with the assumption that fire was fatal to 

S. idalia larvae (Royer pers. com. Cited in Moffat & McPhillips 1993, Kelly & Debinski 1998, 

Swengel 1998, Huebschman & Bragg 2000, among others).  The response of many species 

particularly invertebrates, to fire is complex and inconsistent and driven by a number of different 

factors (Warchola et al. 2015).  For instance, studies conducted on the Fender’s blue butterfly 

(Icaricia icarioides fenderi) have shown that fire increases ant-tending of larvae and this 

mutualistic relationship actually increased larval survival in the year following the burn 

(Warchola et al. 2015).  Additionally, studies have demonstrated that semi-fossorial behavior can 

facilitate the evasion of fire by larvae.  Research conducted on the atala hairstreak (Eumaeus 

atala) and the frosted elfin (Callophrys irus), two species commonly faced with fire during the 

immatures stages were both found to survive fire when they were at least 1.75 cm below the 

surface (Thom et al. 2015).  Our detection of late-instar S. idalia larvae at recently burned sites 

directly contradict this assumption about this species’ ability to survive fire.  Therefore, I 

hypothesize that S. idalia larvae have developed either physiological or behavioral mechanisms 

or perhaps a combination of both that facilitate their survival of low to moderate intensity surface 

fires.  While in my study I did not observe any associations of S. idalia larvae with ants I did 
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observe larvae resting in dense ground cover and even underneath rocks.  Perhaps the heat put 

off by the fire triggers a responsive behavior in S. idalia larvae to seek refuge under structures or 

even underground during fires.  While semi-fossorial behavior may be one possible explanation 

for how S. idalia larvae evade direct mortality due to the burns the exact mechanisms S. idalia 

larvae employ to endure fire are still unclear. 

If we want to understand and conserve populations of S. idalia and other rare 

Lepidoptera, their behavior and ecology at all life history stages must be investigated.  The ready 

use of any Viola host plant species available and the numerous larvae found in sites shortly after 

burns suggest a dynamic relationship between S. idalia and their environment.  Throughout 

prehistory S. idalia and their larval host plant have evolved in the Flint Hills with processes such 

as fire which have been a part of the legacy of this region for millennium.  The ability of larvae 

to withstand fire supports the idea that this species has evolved with fire as a primary selective 

force and indicates that the relationship between fire and S. idalia larvae is not as simple as 

previously thought.  The observation of S. idalia larvae shortly after a fire was previously 

undescribed and highlights the need for additional research directed at this life history stage.  

Furthermore, S. idalia conservation efforts would benefit from a mechanistic understanding of 

how larvae survive fire.  Additionally, the documentation of a distinctive feeding sign exhibited 

by late-instar S. idalia larvae is not described in the literature and provides a unique tool that can 

facilitate the location of larvae and research on the cryptic immature stages of S. idalia.  

Although, the use of V. sororia by S. idalia has been documented it is often described as 

secondary to V. pedatifida in this region.  However, in the face of stresses such as global climate 

change and the continued loss and fragmentation of prairie habitat the use of V. pedatifida, a 

prairie-obligate species may give way to increased use of V. sororia, which is a more common 
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generalist species of Viola.  Therefore, widespread documentation of host plant species use and 

feeding sign exhibited by S. idalia larvae on host plants throughout S. idalia’s range would be 

informative.  Moreover, laboratory experiments examining tradeoffs or consequences to the use 

of one host species over another would also provide valuable insight.  Given the conservation 

concern for S. idalia throughout its range, our observations provide valuable knowledge to the 

life history of the species, which may facilitate future research and conservation management 

efforts directed towards populations of S. idalia, especially at the precarious larval stages. 
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Figure A.1  Late-instar Speyeria idalia larva feeding on Viola pedatifida leaves in the Flint Hills 

of northeastern, Kansas, USA, 2015. 
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Figure A.2  Characteristic feeding sign exhibited by late-instar Speyeria idalia larvae on Viola 

pedatifida in the Flint Hills of northeastern Kansas, USA, 2014-2015.  On the left is a V. 

pedatifida before being consumed and on the right is what remains of V. pedatifida after a late-

instar larva strips away the leaves and leaves only a small portion of leaf and stem. 
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Figure A.3  Late-instar Speyeria idalia larva beginning to feed on the leaves of Viola sororia in 

the Flint Hills of northeastern, Kansas, USA, 2015. 
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Figure A.4  Adult Speyeria idalia female dragging her abdomen and probing various substrates 

in search of oviposition locations in the Flint Hills of northeastern, Kansas, USA, 2014.  The 

broad-leaf plant in the picture is Viola sororia. 
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