MULTILEVEL-CIRCUIT DESIGN USING LOGIC TREES

HARRY LEE PUETT
B. S., Kansas State University, 1969

A MASTER'S REPORT -
submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1970

Approved by:

LD
2668
e
1470
Pg 5

Vol
LIST OF TABLES v ¢ « o o o &

LIST OF FIGURES .« + « + «
INTRODUCTION + « .« &
APPLICATIONS OF LOGIC TREES

Standard Adaptive Array .

Standard Logic Circuit

Minimization of Boolean Functions

TREE MINIMIZATION PROGRAM .

COMPARISON OF MINIMIZATION METHODS

SUMMARY & ¢ & o o o ¢ & o &
ACKNOWLEDGMENTS . . . « « .
REFERENCES ¢ '« ¢ o ¢ » s o &
APPENDIGCES « « & ¢ o « o o &

CONTENTS

ii

Page
iii
iv

0 v o o ¥

11
17
22
2l
25
26

Table
1.

2.

LIST OF TABLES

The Canonical Sum-of-Products Expressions
for EaCh Fn » L] » - - L L] Ll L] - L] L L] a

Minimal Switching Functions Produced by the
Logic Tree Minimization Procedure and by
the Quine Minimization Procedure . . .

Page

iv
LIST OF FIGURES

Figure ' ' Page
1. The Implementation of Equation (1) . « . . . « + . L
2. The Logic Tree for Four Variables . . + « « + » » b
3. Conversion of AND-OR Tree to NAND Element Tree . . T

L. The Logic Tree Minimization of Function F
in Equation (6) L] L] L] [] L] L] . - L] [] L L L] L] [] 12

5., The Multilevel Solution of Function 7 13
6. An Example of the Process in LOOP2 16

INTRODUCTION

A number of different logic design aids have been devised
and have bgen used in the past few years. The constant need
for better and more economical logic circuits causes a never
ending search for better design methods. This paper reports
on the work of Green and Foulk (2) which deals with the uses
of logic trees in multilevel-circuit design. These logic trees
employ only 2-input 'AND! and 'OR' logic gates and are capable
of mechanizing any desired Boolean function. The logic tree
provides a standard adaptive-logic array for Boolean functions.
Computer aided design.procedures use the logic tree as a
standard circuit, and multilevel representations of Boolean
functions sre derived using the logic tree (2). An original
computer program which minimizes Boolean functions using the

logic tree procedure is included in this report.
THE DERIVATION OF LOGIC TREES

This section presents a general derivation of the basic
equations of the logic tree and the implementation of the basic
equations using logic gates.

Let F, represent a general Boolean function. F, has n inde
pendent variables X;, where 1 = 1, 2, 3, + « «, n. F, can be
expressed in canonical form as a sum of products. Since Fn can
be fepresented in this way, the general structure of F, can be
éxpressed as shown in Table 1. The X;' means 'not Xj', '+' 1is
the OR function, and '-' is the AND function. -The K; terms in

Table 1 are either zero or one. For an example, consider the

term Xp.X; in line (c) of Table 1. If the term X,.X; is not a
term in the canonical-sum-of—products,'the value of K3 is zero.
Thus the K; terms are coefficients in the minterm expansion of
the Boolean function being represented by F,. If the proper
choice of the values of the Ki variables is made, F, can
represent any Boolean fﬁnction which contains n of the Xi
variables (2).

The key to the logic tree is shown in equation (1). Fj%
is the same general functlion as Fj’ but Fj* and Fj have a dif-

ferent set of Ki coefficients.

Fpn=Xa'""Fp1 + Xn'Fne-"l (1)

The proof of equation (1) follows. Let line (b) in Table 1

Fpop = Fy = X1 0K + Xp0%y (2)
and

Fn%l = Fi = X1'-Kp + Xp-K3 » | (3)
Therefore

Fo = Xo'+(Xy':Kqg + Xp-Kq7) + Xp-(X3'-Kp + X5-Kq). (L)
If equation (L) is expanded,

F2 = XE"XI"KO + X2"X1'Kl + X2'Xll' Kz
+ Xg-xl-Kj (5)

which agrees with line (c) in Table 1. Thus equation (1) is

true. Figure 1 shows the implementation of equation (1) using

The

Table 1

Canonical Sum-of-Products Expressions for Each F,

(US)

Line

o
o
n

Ko

= Xl'.KO + xl.Kl
= XE'.xlchor-lh' xz‘-x1lK1 + X2oxl'-K2

(a)
(o)

(e)

at,
ki

" Fp-1

Fig. 1. The implementation of equation (1).
(Ref. 2.)

5

logic gates. The recursion of the F,'s in equation (1) and the
implementation shown in Fig. 1 are combined in order to build
up a general logic tree for n variables. The logic tree for L
variables is presented in Fig. 2. The implementation contains
only 2-input AND and OR gates. The circuits within the dashed
lines represent the logic trees for 1, 2, and 3 variables,
respectively. If a Boblean function has I independent variables,
the realization of the function is at the terminal marked out-
put in Fig. 2. . For functions with 1, 2, or 3 independent var-
iables, the output ig taken at the position marked Fy, Fp, or
F3, respectively (2).

The order of a Boolean funétion refers to the number of
independent variables in the function. The order of the vari-
ables in the logic tree refers to the order in which the inde-
pendent variables appear in the logic tree. For example in
Pig. 2, the order of the function is four, and the order of the
variables is Xy, X,, X3, and Xu.

The AND-OR tree shown in Fig. 2 is converted to a NAND
element tree as shown in Fig. 3. The NAND element tree may
be more economical to build than the AND-OR tree. The NAND
tree has the same output and the same properties as the AND-

OR tree. An explanation of the properties of the logic tree

is presanted-in the following section.

" K's are the control inputs

X's are variable inputs

—————— F_I_——_—- ———‘——-——--—--——-—l

Fy! F

Ko] | 3
x':D_ L% !

Qutput

S, -

j> —> OR gate :D —>» AND gate

Fig. 2. The logic tree for four variables (2).

I
\Y

iTI/

g

NAND gate

Fig. 3. Conversion of AND-OR tree to
NAND elesment tree.

APPLICATIONS OF LOGIC TREES

The logic tree provides s method of minimizing Boolean
functions as does the Karnaugh map method and the Quine- |
McCluskey method, but the logic tree provides design applica-

tions which other minimization methods do not provide.

Standard Adaptive Array

One application of the logic tree is as a standard adaptive-
logic array. The standard array may represent any Boolean
function by applying the K; coefficients of the minterm expan-
sion to the appropriate control inputs of the logic tree. If
the control inputs are fixed, the logic tree mechanizes the
appropriate function. For most Boolean functions, some of the
gates are redundant; therefore the operation of the logic tree
is maintained in spite of certain gate or component fallures.
iarge networks may be made by combining smaller logic tree
arrays. The size of the smaller array would be determined by
the design technology. A manufacturer could mass produce a
standard adaptive-logic array that is capable of representing
any desired Boolean function. The mass production of the same
circuit may have certain advantages. The logic array has become
increasingly important with the development of the large-scale
integration technology which affords special advantages for
circuit arrays like high packing density, high rellability,
high manufacturing yield, ease of error diagnosis, and flexi-

bility in performance (2).

Standard Logic Circuilt

Logic trees are useful in computer-aided design applica-
tions related to logic circuits. A computer-aided design
application determines whether or not a certain logic circuilt
will work as planned without building an actual workin circuit.
A computer program acceﬁts the design specifications of a logic
circuit and returns the value of the output of the circuit.
Logic trees, as shown in Fig. 2, provide a standard means of
displaying the circuit of a given logic function by relating
the canonical form directly to the logic connections. A
standard circuit is helpful in a computer-aided design procedure
A computer programmer is able to write a program that analyzes-
é standard logic circuit, but a program which analyzes any

given logic circuit is almost impossible to write (2)

Minimization of Boolean Functions

Another application of the logic tree is the minimization
of Boolean functions. The logic treé method of minimization
produces a multilevel realization. A miltilevel expression is
actually a factored form of & sum-of-products representation.
As an exasmple of the loglc tree minimizaetion procedure, a
Boolean function called function F is minimized. F is a func-
tion of order four whose sum-of-products canonical form in
decimal specification is

F=2(1,3, 4 5, 6, 7, 8 9, 10, 11, 12, 13, 14) (6]
Let A, B, C, and D be the independent variables of the Boolean
function. The logic tree minimization of function F is shown

in Fig. L. Starting from the canonical form, the coefficients

10

of the minterms are entered at the control inputs of the logic
tree appropriate to the chosen order of the independent vari-
ables. If the order of the variables is A, B, C, and D, the
control inputs are as shown in Fig. L. in the following dis-
cussion, let X; represent any given independent variable. The
first column of AND and OR gates in the logic tree are always
redundant, since the outputs of the first column of OR gates
are always either 0, 1, X;, or Xi‘; as can be seen from the

Boolean relationships

B =D , (7)

X;'.0 = Xy

xi; +1=X4 F1 = 1 (8)
Xj'el=Xg' + 0= X;' (9)
X;-1 =X; +0=2X; | (10)
Xg!eXy = 6 o (11)
X;' + X; =1 (12)

In Fig. L, the redundant gates are shaded (2).

The simple relationships in equations (7) through (12) can
eliminate some of the gates beyond the first column of OR gates,
but other gates may possibly be eliminated by using the Boolean

relationships.
X; + xi'-xj-= X; + xj (13)

xi.-xj + Xi'er = Xj . (14)

Lk

In Fig. 4, an arrow points to an OR gate which is eliminated
by applying the Boolean relationship in equation (14). The
multilevel solution is arrivéd at by removing the redundant
gates from the logic tree. The multilevel solution of function
F is shown in Fig. 5.

In some cases, the order of the independent variables may
be changed which may produce é more economical solution. A
reordering of the variable inputs i1s equivalent to factoring
the variables out in a different order by using Boolean algebra.
Thus one Boolean function may have several different multilevel
solutions. A computer brogram which performé the logic tree
minimization method is preéented in the next section. This
computer program allows the designer to investigate several

multilevel solutions of a Boolean function (2).
TREE MINIMIZATION PROGRAM

The computer program presented in this report is an original
program written by'the author of th;s report. The name of the
computer program is the Tree Minimization Program. The program
is written in PL/I (Programming Language One). The Tree Mini-
mization Program synthesizes any arbitrary switching function
using a minimum number of 2-input AND and OR gates, A listing
of the program is in Appendix 2 and a geheral flow chart of
the program is in Appendix 1.

For the purpose of explanation, the program is divided
into six sections. Each section is discussed in a general

manner. The easiest way to follow the discussion is to relate

1z

Eliminated bY using

/ equation (1l

C AC’

A+ B+ C7

Z(1, 3, b, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)
DI(A + C) + D(C' + (A" + B'))

F =

=
i

Fig. 4. The logic tree minimization of functlon F
in equation (6).

-/

Gt

Al —]

Fig. 5. The multilevel solution of
function F.

1L

the explanation of the program to the flow chart and then to
relate the flow chart to the program listing.

In section 1, an array 'A' is initislized for later use in
the calculation of the control inputs of the logic tree. Data
that pertains to a given Boolean function is read from data
cards. The contents of-the data is the order of the Boolean
function, the decimal épecification of the canonical form of
the function, and the numerical order of the independent vari-
ables in the logic tree.. For an example of the data values,
refer to the function F represented by the logic tree in Fig. L.
The order of the functioﬁ F is four. The decimal specification
of the canonical form is 1, 3, u, 5, é6, 7, 8, 9, 10, 11, 12,
13, and 1. The order of the independent variables is A, B,

C, and D; therefore the decimai order of the variables that ié
placed on the data card is 0, 1, 2, and73. -After'the data is

read, the control inputs of the logic tree are calculated and

placed in the arrayASTACKl. After the execution of section 1,
section 2 is executed. |

In section 2 of tﬁe Tree Minimizatlion Program, the control
inputs in STACK1l are tested; and the appropriate results are
placed in the array STACK2. The elements in .STACKl are tested
in pairs. The first two elements.are tested, and the appro-
priate results are placed in the first element of STACK2. Then
the second two elements in STACKl are tested, and the appropri-
ate results are placed in the second element of STACK2, This
process continues untll all of the control inputs are tested.

The tests that are performed on the elements of STACKLl are

15

applications of the Boolean relationships in equations (7)
through (12). The process of applying the Boolean relation-
ships to the elements in STACK1l is equivalent to elimination of
the first column of AND and OR gates. Thus STACK2 contains the
outputs of the first column of OR gates., After all of the ele-
ments in STACKI are tested, execution of the program goes to
section 3. |

Section 3 contains two loops which are némed LOOP3 an&
LOOP2. LOOP2 is within LOOP3. In LOOP2, the elements in STACK2
are tested in pairs. The first two elements are tested, and
the appropriate results are placed in the first element of
STACK2. Then the second two .elements in.STACKE are tested and
the appropriate results are placed in the second eleﬁent of
STACK2. This process continues unfil all of'the elements in
STACK2 are tested. Once all the elements 1in STACK2 are tested,
LO0P2 is executed égain; and the new elements in STACKZ2 are |
tested., Thus the number of eleménts in STACK2 are decreased by
a factor of two each time LOOP2 is executed. The process of
executing LOOP2 continues until only one element is in the array
STACK2. This final element in*STACKQ_is-the maltilevel solu-
tion. The results are placed back into STACKZ2 in order to save i
computer storage space. The tests that are performed on the
elements of STACK2 are applications of the Boolean relationships
in equations (7) through (12) and of thé more complex Booiean
relationships in equations (13) and (14). For an example of the
process in LOOP2, refer to Fig. 6. When the multilevel solution

is found, LOOP3 is terminated, and execution passes to section L.

16

Tested
) elements
BI
STACK2(1) = 1 -_E>-' Appropriate
results

STACK2(1l) = A' + B!

aal B
\ STACK2(2) = A —D_

Fig. 6. An example of the process in LOOP2.

17

In section l, the multilevel solution is printed out. In
the computer print out,'the variables which are followed by a
zero represent primed variables; and the variables which are
followed by a one represent unprimed terms.

Section 5 of the program contains a subroutine nsmed TIMES.
When TIMES is called by.the main program, the quantity which has
the variable name QUAN is multiplied term by term by the
quantity which has the variable name MULP. The result of the
multiplication is placed in the variable named E-STRING.

When all of the data cards have been read, section 6 of
the program is executed. The statements in section 6 terminate
the program.

- The Tree Minimization Program can be used effectively in

a logic design procedure. With the aid of this prograﬁ, a
logic designer can investigate several different multilevel
circuit ﬁonfigurations of the same Boolean function. Since
many different logic design procedures are availabla for use by
the logid designer, a comparisoﬁ of the logic tree minimization
method to other methods of Boolean function minimization is

presented in the next section.
COMPARISON OF MINIMIZATION METHODS

The general problem of designing economical switching net-
works has been solved for some important subcases, but essen-
tially the problem is still an open one. Many different
approaches to the minimization problem have been developed. 1In
this section, the tree-minimization aigorithm is compared to

four other minimization procedures.

18

Two methods which ére used to obtain minimal sum-of-
products representations of Boolean functions are the Quine-
McCluskey procedure and the Karnaugh map method. The Karnaugh
map proves to be adequate if the number of independent variables
is five or less. If the order of the function is six or greater,
the analysis of the Karnaugh maps is unwieldly even if a
computer~driven analysis is used. On the other hand, the Quine-
McCluskey minimization procedure can be used effectively in a
computer-driven design procedure. The major différence between
the Quine-McCluskey minimization procedure and the logic tree
minimization procedure is that the Quine solution is a minimal
sum-of-products representation and that the logic tree solution
is a multilevel representation. A multilevel solution is usually
more economical to implement than a minimal sum-of-products solu-
tion for Boolean functions of order four or greater. More
economical means that the éircuit can be implemented with fewer
logic gates. Five functions of order four and two functions of
order five were minimized by using the Quiné procedure and by
using the logic tree procedure. The min;mal representations of
the seven Boolean functions are shown in Table 2. Table 2 shows.
that the minimal switching functions produced by the logic tree
algorithm required fewer logic gatas than the minimal switching
functions_produced by the Quine minimization procedure. Con-
sider the first Boolean function in Table 2 whose canonical

form is

Py = 2405 25 3, ks 6, 10, 11, X2, 13, 15) (15)

19
In Table 2, the minimal sum-of-products solution of Fl is
ABD + B'CD + A'D' + BC! (16)

In this form, the solution requires six 2-input AND gates and
three 2-input OR gates, or a total of nine logic gates. Of
course, the solution can be factored. One of the factored forms

of equation (16) that was found is
(AB + B'C)D + A'D' + BC' (17)

This form of the solution requires five 2-input AND gates and
three 2-input OR gates, or a total of elght logic gates.
Equation (17) is .an economical expression for the switching
function F;, but the factoring of the solution was not a
straightforward process. A trial-and-error method must be used
to factor equation (16). The factorization of a minimal sum-
of-products representation-becomes more difficult as the order
of the Boolean function increases. The factorization of solu-
tions of functions which are of order eight‘or greater is
almost an impossibility. On the other hand, the logic tree

multilevel solution of Fq shown in Table 2 is
A'D' + BC' + (AD + A'B')C (18)

Equation (18) does not require any factoring. The implementa-
tion of equation (18) réquires five 2-input AND gates and three
2-input OR gates. The implémentation of the logic tree soclution
of function F1 and the implementation_of the factored Quine

solution of function F; both required eight logic gates. Thus

20

(g + V) + v (1 @i0 + 1€)

a(iv + ¢0) + .ag)

a(od + 10v) + a@(ov + . 0d)
miofala + 1v) + €v]+ av(@ + o)

zlo(ag + v) + av] +
yILio0id + 9+ V)

Q.0 + 9 + V) + .Q(d + V)

O(veEy YV + AV) + 40d + LV

VLT R DV + @OV

v+ D + ,dd

aogg + €0V + ddV + 1 diDd
MA,y 0V + LoV + d9v + 09V

({9 +
qJaod + don Vo + @DV + HOV

Qo + a9 + 0V + dv

09+ LV 4+ J0.dg + adv

(sTfcrfer‘gfi‘efo)
(tfzTtror6°g L9 c‘e)
Amﬁqjﬁnﬁﬁ.w.w.m.mnmu

(TE€“Le oz izfEe g1 aT IT L)

(T€0L ‘62 ce
.ﬁmnmﬂ.ﬁﬁnﬁﬁnOH“m“mqmqﬂ“ov

AIJHnm.aﬁnm.ﬁn.ﬂ.ﬁnQHn@n@nN»ﬁanq.:nmp.Hv

(arferferitrot 9 Ee o)

UOTANTOS 98.4] 21307

uotgupog uItnd

WIOg TBOTUOURD

DINPOD0JLI UOTHBZTWIUT oulnd syjz Lq pus

9INPO00Id UOTFIBZTWTUTH od] oTZoT oyz £q poonpodd suotTioung SUTUolTME TBWTUTH

¢ O9T4BlL

21

a designer can investigate several economical multilevel repre-
sentations of a Boolean function just by examining the output
of the Tree Minimization Proéram.

Other minimization techniques which produce multilevel solu-
tions have been developed in past years. One approach to the
problem of designing multilevel realizations is the decomposi~-
tion chart of Ashenhurst (l1). Ashenhurst introduced the decom-
position procedure in 1959. One disadvantage of Ashenhurat's
'procedure-is that the technique is applicable only to a
restricted class of functions. Another disadvantage is that the
procedure requires the testing of 2% - n - 2-Karnaugh maps,
where n is the number of independent input variables of a
Boolean function, A recent modification of Ashenhurst’s decom-
position chart technique was introduced by Shen and McKellar
(4). This modified procedure requires the testing of only
(n - 1)n/2 Karnsugh maps, but the procedure is applicable only
to a restricted class of functions; The logic tree minimization
procedure is applicable to all Boolean functions.r

A minimizatioh method that was presented by Mukhopadhyay
and Schmitz (3) is a technique which minimizes EXCLUSIVE OR and
LOGICAL EQUIVALENCE switching functions. Mukhopadhyay and
Schmitz have written a program which performs this minimization
procedure. The program accepts the deciﬁal gspecification of a
switching and transforms the function to an EXCLUSIVE OR func-
tion or a LOGICAL EQUIVALENCE function. After the transforma-
tion, the program minimizes the transformed function and returns

the solution as an EXCLUSIVE OR function or as a LOGICAL

22

EQUIVALENCE function. These solutions are economical switching
functions, but a minimal cascade realization is not guaranteed.
Algorithms which will guarantee minimal cascade realizations
are currently under study by Mukhopadhyay and Schmitz.

The logic tree minimization procedure has one disadvantage
that the minimization pfocedures mentioned above do not have.
This disadvantage is that the tree minimization method can be
used to minimize only functions of single output networks.
Other minimization methods cén be applied to multiple output
networks. If only functions of single output networks are being
considered in a logic network design, the Tree Minimization
Program can be used efficiently to produce economical multi-
level switching circuits without incurring any of the disadvan-

tages that other minimization methods have.
SUMMARY

The logic tree hés three major applications. The logic
tree can be used as a standard adaptive-logic array for Boolean
functions, as a standard circuilt in computer-aided design appli-
cations, or as a minimization algorithm for Boolean functions.
The latter of these applications was givén the most attention
in this report. A computer program that applies the minimiza-
tion algorithm is presented in Appendix 2. Efficient multilevel
logic circuits are obtained from the logic tree minimization
proéadure by using only the Boolean'relationships in equations
(7) through (14). Other minimization methods were discussed.

A comparison of the different ninimization methods showed that

23

the logic tree minimization procedure provided an economical
single output switching function without having any of the
disadvantages that the other minimization methods had. It is
concluded that the 1ogic tree is a useful aid in logic design

procedures.

ACKNOWLEDGMENTS

I would like to thank Professor Leo A. Wirtz for his
counsel and encouragement in the preparation of this report,
and I am grateful for the invaluable assistance of

Dr. Paul Fisher.

2l

25
REFERENCES

1. R. L. Ashenhurst, "The Decompositions of Switching Functions,"”
Proc. Internatl. Symp. on the Theory of Switching,
Vol. 29 in Annals of Computation Lab. Cambridge, Mass.:
Harverd University, 1959, PP. (L-110.

2. D. H., Green and P, W. Foulk, "Adaptive-Logic Trees for
Use in Multilevel-Circuit Design," Electronics Letters,
March 6, 1969, Vol. 5, No. 5, pp. 1-2.

3. Amar Mukhopadhyay and Greg Schmitz, "Minimization of
EXCLUSIVE OR and LOGICAL EQUIVALENCE Switching Circuits,”
IEEE Transactions on Computers, February, 1970, Vol. C-19,
Ne. 2, pp. 132-1]0.

L. V. Yun-Shen Shen and Archie C. McKellar, "An Algorithm
for the Disjunctive Decomposition of Switching Punctions,"
IEEE Transactions on Computers, March, 1970, Veol. C-19,
EO. s pp- 23;_27150

APPENDICES

26

APPENDIX 1

A GENERAL FLOW CHART OF THE TREE
MINIMIZATION PROGRAM

Section 1

Initialize array A.
Read Data (N, FNUM, ORDER).
N = order of function
FNUM = decimal specification of the canonical
. form of the Boolean function
ORDER = order of independent variables
The values of the control inputs are determined
and placed in the array STACKI.

Section 2

0

Do I = 1 TO 2%%N

Jd=Jd+1

Test STACK1(I) and STACK1(I + 1) and place
the appropriste results in STACK2(J).

'END of LOOP1

g oy

es |1

-
o
o

Section 3

N1 =X
LOOP3: If N1 = 1 then go to Section L
Nl =N1-1
Initislize wvariables
Jd =0 ,
Start LOOP 2
Do I =1 TO (2#%N1) BY 2
J=J + 1
Test STACK2(I) and STACK2(I+1) using the
Boolean relationships in equations %7)
through (1) and place the appropriate
results in STACK2(J). .
END of LOOPZ2 .
END of LOQCE3

27

Section L

Print out multilevel solution which is in
STACK2(1).

Read Data and go to Section 1. If the end of
data file is reached, go to Section 6.

Section 5

Subroutine TIMES _

E-STRING = (QUAN)MULP

The multiplication is term by term.
RETURN)

Section 6

Print out the statement Normel Termination.
END of the Tree Minimization Program

28

APPENDIX 2 29
T_M_P: PROGCECURE UGPTIGNS (NMAIN);
’*....‘IQUII-IQHTREE MINIMIZATICN PRCGRAH.‘......-'...'II*(

Cin ENCFILE(SYSIN)Y GC TC TERWM;

/% DECLARATIGN CF VARIABLES IS FGR FUNCTIUNS GF CRNDER 5 OR LESS. */
CTCL (1eMyJslEsLCW,LP,IS +LSyIC,SUBL,yJFyNLyFUN,FUNL, TABLE,
CH&R11CHAR2'ChﬁRS'CHARL,CHARL1,REPLACE'PlyP'PSyPLU57PSLgpA|PSAl,pSA21
EAP,LENA,LENE +STyIM,,LENF,LENE) FIXELC, LETTER CHAR(1), (LONG,LCNGE,
SHORT ENDS,ENDL2STACKZ_I_1,STACK2_I+STRINGA,FACTCR,PARTS)

CRAR(10C) VARYING, (TWC(5), A(32,5), FNUM(32)) FIXED,

(CRDER(5) ,CRUERLI(5),STACK(32)) FIXED (1,0}, (LETR,

 LFTQA,LET1A,LETL,LETS,PARTA,PARTAZ,MULT) CHAR{2), (LETCP,LETLP)

CHAR(3), STACK1(32) CKAR(1l), STACK2(16é) CHAR(1CC) VARYING,
ALPHA(S) CHAR(1) INITIAL('A®',*B','C*,'C'y'E");

I*"-'..‘-‘..-I......".SECTIUN 1 ’..................'..'*/

/% INITIALIZE ARRAY A %/
CC J =1 70 5;

IS = €3

LE = C;3

CC WHILE (LE < 32);
LCw = 1+IS;
LP = 2##(J-1)+1IS;5

CC I = LCW TC LP;
AlI.«J) = Q;°

ENC3

LS

2%%(J=-1)+1+153
LE 2F*J+[S55
IS LES
CC I = L& TC LES

AlI,Jd) =13
ENC;
ENG

END S

GET LIST(FUN);

FUN1 = FUN;

L L 1

/% REALC CATA */
/% N = ORCER GF FUNCTIOGN =/
BECIN: GET LISTINYS
GET LISTU(JF) S
PUT PAGE;)
PUT LIST('NEW FUNCTICN');
LT SKIP(2)5 A
PUT EDIT ('FUNCTION KAS ORCER',N) (AF(2))3
pPUT SKIP(2);3 -
PUT LIST ('CANCNICAL FCRM OF FUNCTICN IS');5
PLT SKIP; _
/% FHNUM = DECIMAL SPECIFICATICA CF THE CANUONICAL
FCRM OF THE BCOLEAN FUNCTICN #/
pc I = 1. 70 JF;s

X
WV ') (F(2),A)3

GET LIST(FNUM(I)
PUT ELIT (FNUMII)
END 3 : .
PUT SKIP(2)3

FNUM(JF+1l) =03

J=15

BO I = 1 TO- 2%%N;
IF FNUM(J) = I-1 THEN
00: . _
STACK(I] =
J = J + 13
ENG;

is

ELSE
STACKI(I) = 03
. END; S
CVER: N1 = N;
PUT SKIP(2)3
PUT LIST('ORDER CF VARIABLES IN TREE'};

PUT SKIP;
PUT LIST(Y'AND OPFOSITE CRDER QF FACTORING THE SGLUTION');
__PUT SKIP;_

/% ORDER = URDER OF INDEPENDENT VARIABLES #*/
DL = L TO N5

GET LIST(URCER(I))3
OABERLI(I) = CRDER{I) +1;

PUT ECIT {(ALPHA(CRDERL(IN),?*y") _(A,A);
Twi(1) = 2**(CRDER(I);

END 3
_PUT _SKIP;.

/% THE VALUES OF THE CONTROL INPUTS ARE DETERMINED
~___AND PLACED IN THE ARRAY STACK1l */
DO I = 1 TO 2%%N;
TABLE = QO3
_nuJd=1TONy
TABLE = TABLE + A(I,J) * TWO{J)s
END S
) = TABLE #_13
IF STACK{J) = 1
THEN STACKL{I) = "1°%;
ELSE STACKI(I) = ;

END;

-/#...."-..‘l-..‘.‘..‘.-S-ECVTIDNiz ..I'..'...“...l...-..'*l

o T 7% STACKL(I) AND STACKL(I+1) ARE TESTED, AWND THE
APPRUPRIATE RESULTS ARE PLACED IN STACK2(J). =/
o= 0
DO I = 1 TO 2%%N BY 23
J = J+l;
 IF_STACKL(I) = STACK1(I+1) THEN_
DO;
STACK2(J) = STACKL(I);:
GO _TC LCOPL; . ; e

END S

[F STACKL{I)
THEN STACK2{J)
ELSE STACK2(J)

1
Ij_l

o

LOCPl: END;:

ALPHA{GRDERI(I))IE'O';-
ALPHA(CRUERL{LYI] I Lt

,*..-.........‘.l.'.....sECTiON

3..I...I'............II..*/

NL = N;
o IC =15
/% START UF LCOP3 %/
__ 100P3: IF Nl =1 THEN
' GO 7O OUTPUT;
N1l = Ni-13
IC = 1C + 1;

/% INITIALIZE VARIABLES

®/

Y3

LETTER = ALPHA(URDERL1U(IC)
LETGP = *+v||LETTER] 10"
LETLIP = *+¢}|LETTER|]|"1";
LETCA = LETTER]|'0";
LETIA = LETTER]}|*1l';
Jw= B .

/% START GF LOCPZ */
DC I = 1 TO (2%#\1) BY 23
ENEEENTS

/% STACK2(I) AND STACKZ(I
BOOLEZAN RELATIONSHIPS

STACKZ (I

STACKZ2_I_1

STACKZ2_1 =

IF StTalKz_1I
Bas

STACK2(J)
GO TC LOGP2Z;
END;
IF STACK2_I__~= 'G'_
STACKZ2_I_1 "o
THEN GO TO CHECK;
IF _STACKZ2_1 = '0'
THEN
DOo;
STACK2({J)=
GO TC LCOP2;
END;)
—_IE BTACKR2 L.
THEN
D0s
__ STACK2{J) =
GO TC LCOPZ;
END;
__1F STACK2_1_ =

—=

L A

AND THE APPROPRIATE RESULTS ARE PLACED IN STACK2(J). */

- STACK2(1); _
STACKZ_I_1
STACKZ2_I 3
& STACKZ_1
£ STACK2_[_1
LETI1AS
& STACK2_1_1 ='0"

LETOAS

1' THEN

+1) ARE TESTED USING THE
IN EQUATIGONS 7 THRU 12,

+11}3

THEN

~= 11" &

B STALK2 1.1 B

- =

Ill

32

DO;

STACK2(J) = STACKZ2_I 1IILETOP.
e e B GO TC LCOPZ;
END 3
IF STAaCK2_I_1 = '1' THEN
BUs_ ;

STACK2(J) = STACK2_IlILETLP;
GO TC LOCOP2:
. _ENDs; _.__

IF STACK2_1 = '0' THEN
003
MULT = LETI1A;_

CALL TIMES(STACKZ2_I_1,MULT, STACKZ(Jl}a
GO TC LCOPZ;
. END;
IF STACK2_I_1 = '0" THEN
Das

MULT = LETOA;

CALL TIMES(STACKZ2_I+MULT,STACKZ{J));
GO TC LCGPZ2;

S END; . L . —
PUT LIST ('SCMETHING WRONG*);
GO 10 TERM;,

CHECK: CHAR] = LENGTH(STACKZ{I)},

CHARZ = LENGTHUISTALKZ2{1I+1));
IF CHAR1 <= CHARZ TFEN

005 o R
LONG = STACK2{I+1);
SHORT = STACK2{I);
CHARL = CHARZ2S
CHARS = CHARL;
LETL = LETIA;
_LETS = LETOA;
ENG;
ELSE
Dos

LONG = STACK2{I);

SHORT = STACK2(I+1)3
CHARL = CHARL;
CHARS = CHAR2;
LETL = LETOA;
_LETS = LETIAj
END;

REPLACE =03
LONG = *+*']ILONG]]? +':

FACTOR = * ' 3
ENDS = ' '3
Pl = 1;

/% STACKZ(1) AND STACK2(I+1) ARE TESTED USING THE
_ BCOLEAN RELATIONSHIPS IN EQUATIONS 12 AND_13,_

AND THE APPRUPRIATE RESULTS ARE -PLACED IN STACKZ(J). */
P_LOGPL: PS5 = INDEX(SLBSTR(SHDRT Pll:'+'i-
_IF_PS 0O THEN ___ _

STRINGA = SUBSTR(SHORT,P1);
ELSE STRINGA = SUBSTR(SHORT,Pl,P5-1)3
- LENA = \ENGIR{STRINGAYS

33

Pl = PL+P&3
BINPEX: P = [NU‘X[LL\u,ST{[\Uﬂ):
: IF B = ¢ & CFARS = 2 THEM
La;
CHARL = LENCGTRILENGYI=-23
LUNG = SUBNTIR(LENG,2+CHARL)
GU T'C nLAhYdr
BN
ir @ = « Then
S TO ReFEAT S
[F SUUSTR{LUAG,P+LCENA,L1] = '+ &
SUBSTRILUNG,P=1,1) = "+' ThHeN
D,
FACTUR = FACTOR||STRINGAL|"+1;
CHFARL = LEZNCTH(LONG]) S
IF LENA = CFARL-Z TrEN
L3s
LUNG = '++23
Gu TQ PLTEST
END S
LUNG = SUBSTR{LCNG 1.P=L) 1 ISUBSTRILONGyP+LENA+L) S
IF LENA = CFARS TkREN
£Gs _
EnNCS = ' '3
CCRARL = LENCTH{LONG)-23
LCNG = SUBRSTR(LONG,2,CHARLI);
CC TC REALCY3;

IfF PL LENA+2 ThEXN

SECRT SUBSTRISFCRT,PL):
P1 = 1;

GC 10 PSCRECKS

cND 3

IF P C TFEN

= lhn

C

SECRT = SLJSTR‘ShURTQL’hkAFS LEMA=1)3

GC 1L PSCREeCKS
ENDS :
SrPRT = SUBSTRISKFORT,1,P1-LENA-=2)}SUBSTR(SHEORT 21}
Pl = P1-8§; ' :
GG TC PSCRECK;:

L]
S -
BACKT [F SUBSTRILUANGyP=PLLSs1l) == '+' TEHEN

PLUS = PLUSHZ;
LC TL BACK;

3

([
=

TRILONG, P}, ' +')5
FSUSSTRILUNG,P=PLUSH+1,PLUS+PSL=2)]]"+"*;3
O B

PePSL = CHARL+l THEN

. i
—
g
A
Lam |
I -
)
1T

A

o
o B S

U
L 3

2P

— 1 T T
moT
z

b Ol i R

r~ i
[
L re
1]

LONG = f4473
GO TC PSCHECK;
END S

3L

IF #=PLUS = | THEWN
LENG = '+'i}SUJSTR(LC\u,P+PSL),
CELSE
LUNG = SLESTR{LCHNGyL»P-PLUS— 131 SUBSTRILUNG,P+P5SL-1);
GL TQ PINDEXS
REPEAT: ST = 13
PARTA = SUBSTRISTHIANGA,L.21
KEPFAT2: PA = INLFK(SL3S|%{Ll“b,5T),PARTA).
I PA = & THEN
Gl 10 PSCHECK-
A 5T+|-‘\ Ll
ST PA+L
PsAaL =13
BACK?2: IF SUBSTR(LCUNG,PA=-pPSAL,1) == *+' THEN

[N
[’

C')'.ﬂ

PSAL = PSAL+2S
GC 70 BACKZ;
R .)
PSa2 = INCEX{SUBSTHILUGNG,PAY "+)3
PARTE = SUBSTRILCAG,PA-PSAL+L1,PSAL+PSAZ=2);
Leds = LENGTHIPARTLY S
IF LENA = LB TFEN

CC TG REFEATZ;

C3ACK3: PARTAZ2 = SUSSTRISTRINGA,.IM,2)5
PaP = INCEX(FARTE,PARTA2);

I¥ € LENA THEN

SC TO 5ACK3;

FACTCR = FACTOR]IPARTBI]'+15

LEKG = SUBSTR{LONGy1.PA-PSAL) | |SUBSTRILONG,2A*P5A2) 3§

ST = i3 :

SO TG REPEATZS

CrARS = LENGTHISFURT);

CEABL = LENGTHILCANG)S

IF CRARL Z2 THEN

LCs S o
CALL TIMES{SFORT,LETS,CNDS)S
STACK2(J) = SUBSTR{FACTGR,2)[|ENDSS
GO TC LCCPzZs

x
v
(!
b
I
(!
-
(1]

1

Ly
iF PSS ~= { Trek
] JU T P_LOCPL
IF REPLACE = 1 TFEN
GU TC READYL;

YEPLACE = 13 , _ B
CHEARLYL = LENCGTHILUNG)-23

LCWNGE = SEGRTS

SEUAT = SUBSTRILCAG,2CHARLL)S

LCHG = "+ LLLONGEL '+

CEARL = CrARS+2;

CiiaS = CHARLL:)
LETR = LETL;

LETL = LETS;

LETS = LETR;

Pl = 13
SO OTG P_LOOPT;
REAEYL: CFARL = LENGTH{LONG)-23

Lunsi = SHURT;

SFURT = SUBSTRILONG,27CHARL) S
LONG = LUNGES

LETR = L¥TL;

LeTe = LETS;

' LETs = bETRS
READY2: CALL TINES(SEORTHLETS,ENES)S
QEANY3: CALL TIMESILONG,LCTL,ENDLY S
LEar = LENGTHIFACTGRY S
LeNg = LERGTHLENDS) S
[F LENF = 1 & LENE = 1 THEN
0 O
STACKZ2UJ)

= ENDL;
Gu TC LCOP2; ‘

STACK?2(J) = SUBSTRIFACTOR,2) 1 {ENDLS
GO TE LCCPZs : :

chND;

F = 1 THEN

STACK2tJ) = ENCSI|*+']1ENELS
ol TU LGCPZ23
ENC;
STAUKZ(J) = SUBSTR{FACTOR,Z}I1ENDSHI Y+] | ENDLS

{0 COF LCOP2 %/

/% EN

LCAP2: ENC;
/% ENBG UF LCOP3 %/
GO TC LCCP3;

,tl‘..'.l.ll‘.I.'O‘I...ISECTIGP\ '{" ..dil'ul'-.l.“c.'....'*/

CUTPUT: PUT LIST {('SCLLTICN') SKIP:

/% PRINT CUT THC MULTILEVEL SCLUTICON % STACK2(1). =/
PUT LIST (STACK2(1}) SKiP;

PLT SKIP; ~

SUT LIST ('THE ZERNUS REPRESENT PRIMeD TERMS ANR') SKIPS
BUT LIST ('THE CNES REPRESENT UNPRIMED TERMS') SKIP;
DUT SKIPL2)3 '

C DATA AND GO TU SECTIGN 1. IF THE END CF Tt
LATA FILE IS REACKELD, GO TC TERM IN SECTION 6. #/
GET LIST {FUNL);
[F FUNL = FUN THEN
_ GO ID OVERG
FUNV = FUNL;
GC TO BEGIN;

36

/¥ e eennennnonnennnenseSECTIUN D venencesessscscnvesnaana/

FE SUARCUTING TIMES #/
FTIMES: PACCENLRAE(WUAN,,MULP yE_STRING) ;
ECL (QUAY,S_STRING,STRINGP)Y CFAR(LLZ) VARYING, MULP? CHLR(Z2],
[:rh-.i\,H.i‘{C) FIXEL S

o= ITANDcX{QUAN, Y+)3

IF L. THEN

1

Dl.-v E
Z_STRING = GLANTIMULP;
RETURNG
£l ;
gl = Iy
STRINGP = SUBSTRIQUAN,1.G—=1)] |FULP] Y403
PLCCP2: ©1 = £148%
G = THOEX{SUBSTRIGQUAN,GL) '+)
IF & == ¢ THEN

STRINGP = STRINGP]ISUBSTRIGUAN,GQL,u=2)11HULP] Y+
GC TC P_LGOP2;
EnG s
CHEARDS = LENCTE{CLAN)Y
T STRIAG = STRINCPIISUBSTRIGUAN,CL,CFARG=CI+1)1|MULPS
BETURN;

v TIFESS

/n::‘..-‘l.ll‘.-..‘.....IsECTIGI\b .ll.l'...’..............fr—/
CTERMT BUT SKIV{Z)s
PUT SKIP LIST{vNurMAL TURMINATIUN'T

/% ENL CF TREE MIMIFKIZATICN PRLCGRAM %/
END To# P35

MULTILEVEL-CIRCUIT DESIGN USING LOGIC TREES
i

HARRY LEE PUETT
B. S., Kansas State University, 1969

AN ABSTRAGT OF A MASTER'S REPORT
submitted in partigl fulfillmert of the
requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE. UNIVERSITY
Manhattan, Kansas

1970

The logic tree described in this report is uséful in
multilevel-circuit design procedures. This logic tree employs
only 2-input AND and OR gates and can mechanize any given
Boolean function., The logic tree was derived from a recursion
of the canonical sum-of-products form of general Boolean func-
tions. The 1bgic tree can répresent a fixed Boolean function,
or it can vary adaptively by adjusting the control inputs.

This logic tree provides a standard circuit for computer-aided
logic design applications and a structure for the minimization
of Boolean functions.

The logic tree minimization ﬁrocedure produces an econom-
ical multilevel representation of a Boolean function directly
from the canonical form of a function. The application of a
set of simple Boolean relationships is all that the logic tree
minimization procedure requires to operate effectively.

A computer program which performs the logic tree minimiza-
tion procedures is presented in the report. Other switching
function minimization procedures are compared to the logic tree
minimization procedure. The comparison of the minimization
methods showed that the logic tree procedure'doea not have any

of the disadvantages that the other methods have.

