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I. INTRODUCTION

This thesis describes a simple normal coordinate analysis used to
study the frequency distribution of the internal vibrational modes of a water
molecule. The experimental information about the frequency distribution
comes from measurements in the infrared spectral region from about 1000 to
4000 cn” .

This introductory chapter is intended to give a brief sketch of
the history, the importance and the current status of information available
on the structure of water. Chapter II gives an overview of some recent
experiments on liquid water. Chapter III outlines a few of the theories of
water structure pertinent to our discussion.

Thales (ca 624- ca 565 B.C.) thought that the basic constituent of
this universe was water. It was one of the four Aristotelian elements.
Aristotle (384-322 B.C.), borrowing the view of Empedocles (ca 500- ca 430
B.C.), held that earth, air, fire, and water were the four elements from
which all the earthly things were made [67]. However, the ancient Greeks
seemed to be using the term water in a broader sense which implied the liquid
state and fluidity [68). This was in vogue until the late eighteenth century.
About 1770, Henry Cavendish burned hydrogen and obtained water, which indi-
cated that water was composed of hydrogen and oxygen. Soon after 1800, John
Dalton, the father of atomic theory, assigned the composition HO to water.
About 1815 Avagadro deduced the composition to be HZO' However, this was not
widely accepted by most chemists until about fifty years later [69]. The
composition H,0 was found to be correct after some period of confusion [70].

At the beginning of his book on water King [71] comments, "Of all

the substances that are necessary to life as we know it on earth, water is by



far the most important, the most familiar, and the most wonderful; yet most
people know very little about it," It appears to be nearly impossible to
describe the liquid water system by a calculation from first principles.

This is so, because of its wide array of unusual and anomalous properties.
However, ab initio calculations have been reported for water monomers [72]
and dimers [73]. Recently, Pulay [74, 75] has made ab initio calculations of
force constants and equilibrium geometries of polyatomic molecules in general
and of water in particular.

According to Eyring and Jhon [21], "Water is the most common
liquid on earth and yet its structure is not clearly understood." In the
past, a great number of qualitative and quantitative theories have been pro-
posed to account for its anomalous behaviour and explain its structure.
Unfortunately, none of them is completely adequate.

Biology is one of the fields needing a better understanding of
water structure. Water and life seem to be inseparable. Some organisms can
live without air but apparently none can exist without water. Henderson [77]
has emphasized the biological significance of water. Says Magat [103], "I
would appeal to the theoreticians to recognize that water is of paramount
importance--be it only for biology--and attempts should be made to attempt a
theoretical treatment of its structure and properties, even using oversimpli-
fied models for the charge distribution in the water molecule, as in the old
Bernal and Fowler model." Hechter [78] states that the fundamental problem
of biology is the elucidation of the state and structure of water in living
cells and that this has implications in such diverse fields as biochemistry,
genetics and cryobiology. For the understanding of macromolecular hydration
and of many biological reactions, an understanding of the structure of water

is fundamental.



This thesis includes the results of a theoretical study of the
vibrational frequency distribution of water. A simple model [66] is developed
for interpreting the observed frequency distribution by assuming that the
relative intensity of a Raman or infrared band at each frequency measures the
relative number of oscillators having that particular frequency at any
instant. Equations for potential and kinetic energies of a bent XYZ molecule
are developed. The effect of the nearest oxygen atom of the neighbouring
molecule on vibration is taken into account by assuming that it lies in line
with the 0-H bond. The parameters in the potential function are adjusted

such that they produce the vibrational frequencies of HDO, H,0, and D,O.

2 2



II. RECENT EXPERIMENTAL RESULTS

Several experiments shed light on the nature of the intermolecular
as well as intramolecular motions and hence on the structure of liquid water.
Among these mention may be made of infrared absorption, infrared reflection,
hyper-Raman scattering, inelastic neutron scattering, X-ray diffraction, and
Raman scattering. Some of the useful recent results will now be discussed.

Originally, the motivation for the present work came from the
report of the Raman spectral studies of HDO in H,0 by Walrafen [6] and the
infrared transmittance studies of Falk and Ford [7]. Figs. 1-3, taken from
Falk and Ford's paper, show the nature of transmittance as a function of fre-
quency at a high and a low temperature. We know, that water has three funda-
mental vibrational bands. One of the main advantages of the study of HDO

over that of Hzo or D,0 is that in HDO the three fundamentals and many of the

2
overtone and combination bands are widely separated and thus preclude the
possibility of Fermi resonance.

Figs. 4 and 5 show the photoelectric Raman spectra obtained by use
20 in H20 at
25°+1°C. The OD stretching contours [8] occurring within the frequency

of 4880-A° argon-ion-laser excitation for a 6.2 M solution of D

region of 2100-2900 cm'1 are seen to be markedly asymmetric. The frequency
of the OD stretching contour corresponding to maximum Raman intensity is
2515 £ 5 cm-l. However, a pronounced high frequency shoulder is claimed [6]
near 2660 + 20 cm .

Fig. 6 shows Raman intensities as functions of frequency transfer-
red to horizontal baselines from mercury-excited Raman spectra of the OD

stretching contour for several temperatures of 32.2 to 93.0°C. Here again

marked asymmetry is evident in all of the (mercury excited) contours. Also,






FIG. 1. Compensated double-beam spectra of the stretching band, Vas of HDO

recorded by Falk and Ford [7] at a high and a low temperature.
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FIG. 2. Compensated double-beam spectra of the bending band, Vys of HDO

recorded by Falk and Ford [7] at a high and a low temperature.
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FIG. 3. Compensated double-beam spectra of the stretching band, vy of HDO

recorded by Falk and Ford [7] at a high and a low temperature.
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FIG. 4. Repeated Photoelectric Raman tracings from a 6.2 M solution of D20

in H,0 at 25° C obtained with Argon-ion-laser excitation. Amplifi-

cation of upper tracing is twice that of lower tracing [6].
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FIG. 5. Argon-ion laser Raman spectra of a 6.2 M solution of D20 in H20 at

(25 £ 1)° C, as reported by Walrafen [6].
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FIG. 6. Effect of temperature on the 0-D uncoupled stretching band as
reported by Walrafen [6]. The dashed vertical line indicates the
isosbestic point near 2570 * 10 cm'l. These spectra were obtained
with conventional mercury excitation and a narrow (15 cm-}‘) slit

width.
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these mercury-excited spectra are reported [6] to exhibit a "well defined
isosbestic point" at 2570 = 5 cm_l. The total contour intensity decreases by
about 17% from 32.2° to 93.0°C.

Fig. 7 shows the Raman and infrared band envelopes as reported in
Wyss and Falk's paper [86].

Some of the important pieces of information asbout water structure
come from diffraction studies. X-ray diffraction experiments have been
reported by Narten, Danford, and Levy [9, 10] for water at various tempera-
tures. From these diffraction data a radial distribution function is deduced.
This function represents the average local density of molecules at a distance
from the centre of an arbitrarily chosen molecule in the fluid. This func-
tion may be used for obtaining a pair correlation function, which according
to Widom [106], describes the correlating effect of the presence of any one
molecule on the position of a second molecule. Thus, it is a measure of the
probability per unit volume of finding molecules at a distance between r and
r + dr from a particular molecule. Fig. 8 shows the time correlation func-
tions (i.e., cosine transforms), C (t), of the O-H and 0-D stretching
infrared bands of dilute HDO in liquid water [12]. The infrared and Raman
correlation functions are generally similar in size and shape. Since this is
expected only if both the experiments are looking at the same rotational-
vibrétional manifold, the "bumps' noted by Wall [11] in the Raman correla-
tions are probably an artifact [12]. Infrared curves are derived from less
noisy spectra.

The similarity between infrared and Raman correlation functions
~for HDO suggesfs [12] that the observed band is caused by vibrational modula-

tion.
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FIG. 7. Comparison of infrared band envelopes (Wyss and Falk [86]) with

Raman band envelopes for v The dashed lines represent the

3

infrared band envelope.
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FIG. 8. Time correlation functions or cosine transforms, C(t), of the O-H
(3450 cm-l) and 0-D (2500 cm-l) stretching infrared bands of dilute
HDO in liquid water. Data of 710 and 630 points, respectively,

points at 10 cm'1 intervals. Also shown are the Raman-derived

curves of Wall [11].
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Gordon reports [13], that, if rotational motion is responsible for
an observed bandwidth, the infrared transform measures decay in the dipole
transition moment vector, with cos time dependence, while the Raman transform
measures scattering tensor asymmetry decay (the depolarization ratio, @< 0.1,
and this is an upper limit set by analyzer polaroid leakage [42]), with
(cos)2 time dependence. The observed similarity speaks strongly against
broadening of the rotational band. Vibrational modulation, however, is a
consequence of varying hydrogen bond strengths in liquid water [12]. Because
of the highly polarized scattering, vibrational perturbations alone account
for most of the breadth of the Raman band. The observed stretching bands in
HDO can be envisaged as the envelope of many overlapping molecular oscillator
bands, distributed densely across the observed width [12].

Thus, the rotational decay discussion of Wall [11] seems to be
"naive." The temperature dependence of the infrared correlation function is
consistent [12] with a bandwidth caused by vibrational perturbations and also
with the simple expectation of easier rotation along with faster decay at
higher temperatures.

The Raman scattering results may be summarized as follows: The
Raman spectra of HDO in water show shoulders at 3640 and 2660 cm-l, i.e., on

the high-frequency side of the v_, and vy bands. These shoulders, however,

3

are not to be seen in the infrared spectra. Increasing temperature will

shift the band maxima of v, and v, towards the high frequency side while that

1 3

of vy shifts toward the lower one. Also, the mercury-excited Raman spectra

exhibit a "well-defined isosbestic point."
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ITI. SOME MODELS FOR WATER

We discuss only a few of the many models proposed for water struc-
ture. Other reviews on the theories of water structure may be found else-
where [14-27].

The common agreement for all the models proposed to date is, that
they are on the whole consistent with the X-ray diffraction pattern of water.
Of late, there have been formed two leading groups, one advocating the
"Mixture'" model while the other advocates the "Continuum" model.

The mixture models [26, 28, 29, 30-46] describe liquid water as an

equilibrium mixture of molecular species with different numbers of hydrogen
bonds per molecule. A species, in the terminology of Eisenberg and Kauzmann

[82], is a local V-structure. In one type of mixture models two species of

water molecules are supposed to be present at any given instant: molecules in
clusters and monomeric, non-hydrogen-bonded molecules. The ones in clusters
are hydrogen-bonded to four neighbouring molecules. At any temperature, the
proportion of disruption of hydrogen bonds is well defined. Table II gives
some of the estimates of the percentage of broken hydrogen bonds in water.
The concentration of non-hydrogen-bonded molecules is, according to Nemethy
and Scheraga's [26, 41] ideas, increased by a rise in temperature.

Mixture models have, as a special class, the interstitial models.
According to these, one species of water molecule is supposed to form a
hydrogen-bonded frame work containing cavities in which the other species
reside [46, 49, 83].

Pople [48] has developed a model, termed the "Distorted hydrogen-

bond model', and Bernal [85] has suggested a "Random network model" for the
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V-Structure [82] of water. The discussion of these models is outside the
scope of this thesis.

There exists very convincing evidence that the hydrogen bonds in
liquid water form an extensive three-dimensional '"network" [47, 50, 52];
however, this network may be short lived. The continuum models [7, 47-51,
86] hold liquid water as a complete hydrogen-bonded network. According to
these, the average strength of hydrogen bonds in water is weaker than in ice
because of "irregular distortion and elongation, both of which increase with
temperature" [7].

While the experimental controversy has remained unsolved, it
interested us to investigate the infrared and Raman spectra of liquid water
from the theoretical point of view by setting up theoretical expressions for
kinetic and potential energy of a general bent XYZ molecule, hydrogen bonded
according to one or another of the liquid models and then solving the secular
equation. This leads to the three fundamental frequencies of vibration. The
probability distribution of every one of these three frequencies can then be

calculated as will be shown in detail in the next chapter.
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IV. THE NORMAL COORDINATE ANALYSIS

The normal coordinate analysis has been a very useful tool for
describing the vibrations of a molecule. Here each atom is treated as a
point mass. The force fields acting on the atoms are treated in first
approximation like mechanical springs and are expressed through appropriate
force constants. Thanks to the relatively simple molecular configuration and
small number of vibrational models, triatomic molecules provide an encourag-
ing field of study. Several authors [34, 53] have treated the normal modes
and frequencies of vibration of the bent symmetrical XYz model for small
vibrations. The linear symmetrical XY2 type molecule has been treated by
Adel and Dennison [57] and a linear XYZ type by Nielsen [58]. Libby [59] has
studied the purely vibrational part of the problem including anharmonic
terms. The bent XYZ model has been treated by Shaffer and Schuman [S5] along
the same lines as Shaffer and Nielson [4] for the bent XY, model.

The Lagrangian for a vibrating molecule is L = T - V, where T and
V denote the kinetic and potential energies of the system. The set of equa-
tions to be solved are the Lagrange's equations of motion, viz., gf{%éia

= EEL-, where qk and q, are the generalized velocities and the displacements

8q
of the constituent atoms, respectively. Assuming the constraints to be
scleronomous and the generalized coordinates not to be explicitly dependent
on time and that T is a homogeneous quadratic fumction of the velocities, we
have

1 .
T=3 Vi % %

k,i=1

Similarly, the potential energy has a Taylor series expansion of

the form
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° 4= \3g 2! izy B_fkaa.
2,9 . L322

All the q = 0 at the equilibrium position, so that-%%—} = 0.
k
]

That is, F = - 9V = (0, at equilibrium. Since the choice of the zero of
potential energy is arbitrary, the Vo term can be chosen so that V = 0 at the

equilibrium position. Thus,

The Langrange's equations of motion are

F(2) - f-ff - 2§ E rudf

and form a system of coupled nonlinear second order differential equationms.
Differentiation and linearization of the system yields
3 - 3

P L
This truncation of the Taylor series is justified only by the smallness of
vibrations, since the higher order terms become important only for large
displacements. This trumcation gives T{&} = - V{q}. V and T are symmetric
matrices, not necessarily diagonal. A matrix R is chosen such that R“TR = I,
where R” is the transpose of R, and I is the identity matrix (see Appendix

III for details). If R°VR = A, the above equation becomes {a} = - A{ql.
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Seeking a periodic solution of the form {q(t)} = {q(o)}elmt, we get

w2 {q(o)}eimt - A{q(o)}eiwt

If we multiply by e'lmt, the eigenvalue equation becomes

Aq(®3 = ? (g1

Thus, when we diagonalize A, we get mlz, mzz, msz.

The secular equation problem was solved on a computer using a
diagonalization procedure due to Jacobi [65]. The Jacobi method annihilates
step by step the off diagonal elements of A by performing generalized coor-
dinate rotations. It is an iterative scheme and converges to the diagonal-
ized matrix to a specified degree of accuracy. The results give both the
eigenvalues and the eigenvectors. As is shown in the outline of the program
the eigenvectors are normalized to wnity (cf. Appendix IV). Bryan [66] has
indicated that the small oscillations treatment may be used with justifica-
tion.

Our treatment differs a little from that of Shaffer and Schuman
[S] in that we have taken the OD and OH distances to be different, and hence
that ko # 5t That is, we have relaxed the assumption that HDO has the same
equilibrium configuration as H20 and DZO‘ The kinetic energy of vibration of

bent XYZ molecule is (cf. Appendix II for definitions of coordinates and

algebraic details)
.2 "] " . .« ..
,e'zl-[ﬂ”u +/'§.z” -f-/-sa&l‘-f'&./}zuvi-z};sz +2ffsua:_;_
The harmonic potential energy function is
Qv = £6,%' % c %% e p? c,{(v'r’ c, v/
¥ = 22 7 G338 1 G T RGL(RTR)+AGL %]

2 2 2
= ky U+ kg H K 20 # 2K+ 2 025+ 2K s



28

where

4y = $4 )G, (B8IC+ € G g+ (ARG +(G+B)E]
X C -+ (-d +@-ﬂf) }

The force constants, C's, were chosen as follows: To start with,

C,, and C,. were taken to be the same and called kH. Varshni [61], has made

12 13
a comparative study of most of the potential energy functions for diatomic
molecules. He reports that the Lippincott-Schroeder equation gives the most

accurate value of 0 X« We have chosen the kH value from Lippincott and

Schroeder's paper [62, 63]. In particular, in the equation
= (22 )[ xpl 28] [ %% n L (rmp?]
# —
+ (,e..r)s D% exp)- L it ")J/Z[ nter-y )1(.2?-7#’*) _]

4(2—:’)
we put 2
V=Y =097 x;a"gcm) 7 = 9./8x o cm‘ﬂ
# 2T o=l
and set nD=Kky =777D. This gives D = 0+8/99x/0 "kecal. [fmole,
and 7%= 1339 x008% cwi?

The value of k H obtained by setting XK=< zxmd
- : ~ . 5 -/
Ay = Y-% =0 IS, ){H_ 7 TR/I3 X0 Jgn&é Cin

The constant kH determined by setting R = « implies that it is an
equilibrium constant determined in absence of the effects of neighbouring
oxygen atoms, and is thus the O-H stretching force constant for an isolated
L C3 and C4 was
by and large a trial and error procedure. Help was sought of equations

(vapour) water molecule. The fixing of the constants Cl, C
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I1I-109 through II-118 of Herzberg [64], and from the articles listed in
References 56, 76, 84, 87, 88, and 90. The resulting force constant values,
adjusted so as to conform with the form of the potential energy function and

in agreement with the infrared and Raman frequency maxima for liquid water,

are:
k, = 7.7213 x 10° dem
C, = 0.2010 x 10°
C; = 0.3877 x 10°
Cq = -0.0794 x 10° "

Since the centre of mass of the whole molecule is very close to
the O atom and since the contributions from the rotational molecular motions
involve mostly H atoms, the contributions from the rotational molecular
motions were omitted. The X-rays do not scatter appreciably from the H atoms
having a single electron so that the pair correlation function measures pre-
dominantly the position correlations of an "oxygen lattice.'" For transla-
tional motions the O atoms are displaced more and therefore their transla-
tions were assumed to contributé to the pair correlation function.

From the work of Narten, Danford, and Levy [9], a pair correlation
function may be obtained. Fig. 9 shows a portion of the pair correlation
curve represented by open circles. The first maximum at an 0-O distance of
about 2.85 A° represents the contribution of the nearest neighbours., The
upper limit of the nearest neighbour distribution was arbitrarily fixed by a
straight line drawn tangent to the curve at the inflection point slightly to
the right of the first maximum of the pair correlation function. The area
enclosed by the line through the open circles and bounded by the straight

tangent line was assumed to represent the distribution of nearest neighbour
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FIG. 9. The pair correlation function for liquid water at 25° C vs. the‘)
0-0 distance is denoted by circles. The nearest neighbor coﬁtri%
bution was assumed to be represented by the skewed Gaussian- .
shaped curve. This was obtained from the work of Narten, Danford,r

and Levy [9].
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0-0 distances including vibrations. The approximate unfolding of the vibra-
tions was accomplished as follows: The classical turning points were matched
with upper and lower limits of the nearest neighbour distribution. These
were computed using the potential function of Lippincott and Schroeder [62,
63], and are shown in the Figs. 9 and 10. This gave the corresponding upper
(RFLMX) and lower (RFLMN) equilibrium distances. The 0-0 equilibrium dis-
tance distribution was then approximated by a triangle peaked at the maximum
(RFLCR) of the pair correlation function curve and passing through these
points. The area of this triangle was chosen to be equal to the area repre-
senting the nearest neighbours including vibrations and is called here the
corrected nearest neighbour pair correlation function. Later this distribu-
tion was used as the basis for a monte carlo calculation.

The X-ray diffraction experiments give evidence that there is a
distribution of 0-0 distances in liquid water. The Lippincott and Schroeder
potential function indicates that the strength of the hydrogen bond variesA
rapidly with this 0-0 distance. This implies that there is a distribution
of vibrational frequencies in liquid water. This distributioﬁ of frequencies
was calculated using the following procedure: The RFLMN, RFLMX and RFLCR in
the computational program were determined from X-ray data [9, 66]. The range
(RFLMX-RFLMN) was divided into one hundred equal parts. By assigning the
hydrogen bonds random lengths the corresponding values of the 0-0 distance,
RFL, and 0-H force constant, kH, were determined. These lengths were chosen
by selecting two two-digit random numbers generated with the help of a com-
puter. The set of random numbers generated has been tested by Dhingra [79]
by frequency test and serial test and the numbers have been found to be ran-

dom to the 95% confidence level. Each two digit number represents a
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FIG. 10. Potential energy curves for a hydrogen bond at three equilibrium
distances are shown as a function of 0-0 distance. The solid
curves were calculated from the Lippincott and Schroeder potential
function. The dotted curves are those published by Lippincott and

Schroeder [62, 63].
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particular 0-0 distance. The height of the corrected nearest neighbor pair
correlation function represents the probability that an 0-H....0 bond has the
corresponding 0-0 length at equilibrium. The hydrogen bond lengths in a
configuration with two hydrogen bonds are assumed to be all independent and
hence the product of the two separate 0-O length probabilities gives the
probability of finding that particular configuration. From the 0-0 distance,
the appropriate force constants were evaluated. This random number sampling
technique was preferred si:ce the consideration of all 100 configurations

4

would require (102)2 = 10 calculations to cover the entire population of

possible configurations. The frequency was analyzed in steps of 15 cm'l.

An example of one calculation will be oﬁtiined Héée iﬁ-order to
indicate the procedure more clearly. This represents a sinélé configuration
in the random number procedure. Assume that two sefs afrfandgmkdigits 65 and
71 are generated. These specify the two boxes corresponding to 0-0 distances
RFL (65) and RFL (71) in the 0-0 distance distribution. The height of the
corrected nearest neighbor pair correlation function represents the relative
probability, H (RFL), for an 0-0 bond, having that particular length RFL (i).
The relative probability of the configuration is PHT = H(65) H(71). Corre-
sponding O-H distances R(i) and the associated kH values are automatically
determined through the Lippincott and Schroeder potential function (see the
computer program, Appendix IV). Thus, the set of random digits determines
values for kH (65), kH (71), RFL (65), RFL (71), R(65), R(71), H (65), and
H (71). These, along with other geometrical and mass constants, serve as
input parameters which determine the elements in the (3X3) matrix A, which is
then diagonalized. The eigenvalues obtained from the diagonalization, Al,
12, and AS’ are related to the frequencies in cm'1 by the relationship,



v, = { L

3 S c)(hi)l/z » Where c is the speed of light. The results from the

Random number calculations yield the frequency distributions shown in Figs.

11-17.
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FIG. 11. A histogram of frequency distribution for the stretching band,

v,, at 25° C.
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FIG. 12.

Theoretical frequency distribution for the stretching band, Vas

as a function of temperature.
These curves and the remainder of the results presented repre-
sent a smooth curve drawn through a computed histogram as in Fig.

11 and may be considered to be uncertain in abscissa to * 20 cm-l.
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FIG. 13. Theoretical frequency distribution for the stretching band, Vis

as a function of temperature.



RELATIVE INTENSITY

=e=— 25° C
--= 100° C
1 1 '] | - 1 i
2150 2300 2400 2500 2600 2700 (CM~ 1)

FIGURE

13

4



43



FIG. 14. Theoretical frequency distribution for the bending band, v,, as

2}
a function of temperature.
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FIG. 15. Effect of temperature on the O-D uncoupled stretching band, Vs S
~given by this theory. The isosbestic point is at 2560 * 15 cml.
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FIG. 16. Comparison of theoretical and experimental curves for the stretch-

ing band, v The experimental curve is due to Wyss and Falk [86].
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FIG. 17. Comparison of theoretical and experimental curves for the stretch-

band, v The experimental curve is due to Walrafen [6].
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V. DISCUSSION

On the Choice between Mixture and Continuum Models:

A look at the Figures 5, 7, and 18 shows that each of the funda-

mental bands of HDO shows a single maximum with Vg and v, having shoulders in

1
the Raman Spectra at 3640 * 10 cm-l, and 2560 + 10 cm-l, respectively.

Increase of temperature causes a uniform shift of the whole band, being to

higher frequencies for the stretching modes of vibration, v, and vy and

3

toward lower frequencies for the bending mode, vy The half-widths of Vg

2!
Vi» and vy are 255 + 10, 17