29

A VDI DRIVER FOR SOLTEC PLOTTERS

by
EUGENE JANOVITZ

B.E., Pratt Institute of Brooklyn, 1973

A MASTER”S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE

Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

L
246¥
oy A11202 bb2192
i TABLE OF CONTENTS
Tzl
g, Z
Title Page
Table of Contents . . £ 2 s & & & P a % m 2 2 e a a4 » i

List of Flguresg « « & « s« « % % ¢ s« = o « &« % &« s 5 ¢ &« 1d
list of Tables T T T i

Acknowledgements . & o « 4 » o « 4+ » & & 4 o 2 & » o« e 1w

Chapter Page
ONE INTRODUCTION v & & « 5 o o o o 5 s & o o « 1
Overview . r e . . s . P T T} 1

Paper Organlzation« « + &« 4+ o o« & &

TWO GRAPHICS STANDARDS P T T T S P, 4
Brief Higtory . . o o o & o s s s o « o 4
CUETEAL Statiil w w ¢ ¢ @ o 3 % # + s w & 7
Future OQutlook .+ « « « 4 o o ¢ 2 s s & o &« 9

THREE GRAPHICS SYSTEMS W w Wl m e s i W e s s 11
The Graphics Xernel System ., . « « 4+ « & « 11
The Virtual Device Interface . « v o o + =« 20
Related Models . + « + & « « » o « o« s o« o« 23

FOUR THE SOLTEC PLOTTER 281 P& W OE & @ W 8 W W @ 28

Hardware Characteristics . . + ¢ &+ o o + & 28
Software Capabilities ., + . + + « « + « o+ 33

FIVE DRIVER IMPLEMENTATION e o ¥ owow oW 0w % oW w s 39

Driver Structure . « + &+ « + &+ ¢ a P S T 40
Project Results . . & 4 s &+ « o « « o« o « 48

Selected Bibliography s 2 s & & & & 4 & & s 4 5 2 & & » 50
APPENDIX A - Source Code Listings . . . + + « &+ « » « 54
Abstract Title Page

Abstract

LIST OF FIGURES

Figures Page

1. Graphics System Model at KSU . . . + « + « o+ 12
2. Layer Model of GKS . PR }] » ld

3. The Plotter Coordinate System {PCS) for The

SOLTEC 281 Plotter - L] L] L] - . - - a . - - L 32

4, A Sample Plot Genmerated With The SOLTEC 281

Plotfer « w« « & % » & W @ O T T T T I T T 42

LIST OF TABLES

Tables Page

1. Chronology of Significant Graphlics Standards

Development s e« B 8 s & & + & e s L Y 6

2. GSX Graphics Input OQutput System Operation

Codes P e OW F o R oW m do@mow owmoE % ow o ow 3owm 26

3. SOLTEC 281 Plotter Characteristics . . + +» o« . 30

- 314 =

ACEKNOWLEDGEMENTS :

In anticipation of the successful conclusion of the work
required to complete the Master”s degree in Computer
Sclience, the author wishes to express his gratitude to the

many people who helped him with this study.

His committee members, Dr. William J. Hankley, Dr, Virgil E.
Wallentine and Dr. Rodney M, Bates deserve praise for thelr
guidance, Dr, Hankley merits special thanks for his
patience, understanding, and encouragement while serving as

the principal advisor.

Many thanks go to Harvard Townsend, for helping the author
to learn the UNIX system {nitially, and his continued

support with the system thereafter. The Cole”s, Mary Beth
and Mick, for their always cheerful, and timely assistance

in the area of administrative support.

Finally, special thanks goes to his friend, Luz Suarez, for
her support &and for her patience Iin typing most of the

report.

CHAPTER ONE

INTRODUCTION

The growing importance of computer graphics in the
past decade has 1led to several proposals for graphics
standards. Two malin proposals are close to acceptance as
international and mnational standards: the Graphical Kernel
System (GKS) [IS80], which was developed originally by DIN
(Deutsches Institut fur Normung), the official standard body
of West Germany; and the Core System [Bailey], a de facto
standard created by the SIGGRAPH Graphics Standards Planning

Committee (GSPC) of the Associatfion for Computing Machinery.

The definition, and basic differences between GKS
and Core are given in Chapter Two. Another standard, the
Virtual Device Interface (VDI) [ANSI,Aug.27,1982], is being
developed in U.S5. by ANSI Subcommittee ~X3H33 of the X3H3
Computer Graphics Committee, The VDI, which functionally

complements GKS, is defined in Chapter Two.

Overview

Together, GKS and VDI provide functional
specifications for a device-independent graphics software

package, A device~independent graphics system is one that

works with any graphics output devices such as a raster
display, a directed beam display, an electrostatic plotter,
or a pen plotter without any changes to its requests for
graphics output services. A basic subset of a device-
independent graphics software system, shown in Figure 1, on
page 12, has been implemented at KSU during the Spring term

of 19B3.

In a typical device-independent system, an
application program calls on GKS a standardized set of
device-independent graphics functions (GKS5) which in turn
call on device drivers ("virtual'" graphics input and output
devices) through VDI which is an interface internal toc the

graphics support package.

Each device driver i1s dedicated to a particular
graphics dinput/output device,. A device driver accepts
virtual commands from the device-independent software
through VDI and translates them into a language the device

understands.

The Spring term implementation of GKS at KSU
supported only one device driver, namely the Chromatics
driver. During the five week of the 1983 summer term,
additional device drivers and enhancements have been
developed. One of these was the development of a VDI driver

for SOLTEC plotter, which is presented in this repert. The

SOLTEC driver software «compiled successfully, however,
testing was only partially completed due to the limited time

frame, as explained in chapter five,

Paper Organization

This paper i1s organized in five chapters, The first
chapter has summarized this project. 1In Chapter Two, the
history of the graphics standards, is briefly reviewed, and
the mailn differences between GKS and Core are discussed.
The current status of the related events are then presented,
and the future outlook of the state-of-the—art 1is evaluated.
Chapter Three begins by first defining and then 1introducing
the main features of GKS, Next, it continues by focusing on

VDI, and it concludes with a short discussion on two related

graphics models. Chapter Four, presents the SOLTEC
plotter”s hardware characteristics and its firmware
capabilities, In Chapter Five, the Driver structure is
presented and the design decisions made during the

implementation of the SOLTEC driver are evaluated. This
last chapter concludes by reporting the results of ¢this

project.

CREAPTER TWO

GRAPHICS STANDARDS

The earliest commonly used graphics standards were
created by a small number of manufacturers who produced
various successful graphices devices and thus established
dominance 1in the field. When these companies implemented
software for <control of thelr graphics devices, they
"established" the common graphlics 1language for similar

applications, Thus de facto standards were born.

Lack of graphics standards has forced <consumers ¢to
be locked 1{into one wvendor for total solutlon to their
graphics application needs. The high cost of such systems
have often prohibited the acquisition of graphics where
otherwise it would have been highly desirable. ©On the other
hand, few vendors can afford to fund development of graphics
projects which have no guarantee of meeting standards that
have not yet been established. Hence, an explosive
increase in graphics applications which has bheen expected

for a long time did not occur,

Brief Hietory.

As the need for graphies satandards became acute,

standards organizations have ©been formed to provide a
framework so that standards that represent a consensus c¢an
be developed and approved. A chronology of significant
graphics standards development [Bailey] is shown in Table 1,

on page 6.

Both GKS and Core grew out of the original proposal
efforts by the ACM/Siggraph. The two have branched apart in

significant ways, each with 1ts specific features and flaws.

Core is the older and better-known of the two., Core
addresses a greater range of issues and features of graphics
activity. However, Core is much more a set of
recommendations than specifics of implementation. Because
of this, many differing products have been developed which
are based on the Core recommendations, vet which differ in

slight or major ways from one another [Dern].

GKS addresses a smaller portion of the total
graphics <question but does so in greater detail. One major
concern with Core has been the use of "current position"
for cursor control, Core utilizes relative positioning of
the cursor. Any error, such as jostling a pen-plotter,
losing a «coordinate, a power splke altering a value, can
throw the cursor position off. This causes all subsequent
display output to be incorrect, until the cursor position

can be reset, GKS avoids this problem by using an absolute

Table 1: Chronology of Significant Graphics
Standards Development,

1974 The ACM SIGGRAPH Graphics Standards Planning
Committee (GSPC) is formed after a workshop
on machine-independent graphics at a Natilonal
Bureau of Standards meeting.

1976 An international workshop on methodology in
computer graphics is held in Seillac, France
{Seillac 1).

1977 GSPC Core system and DIN Graphical Kernel
System (GKS) specifications are published,

1979 GSPC Core system and GKS specifications are
revised; GKS 18 accepted as International Standards
Organization”s working draft.

Work begins on Virtual Device Interface (VDI) and
Virtual Device Metafile (VDM).

Canadian government approves Teldon {(videotex)
field trials,

1981 North American Presentation Level Proteocol
Syntax (NAPLPS) is announced by American
Telephone & Telegraph Co.

1982 GKS 1s registered as proposed IS50 standard; VDI,
VDM, and NAPLPS receive industry support,

1983 GKS was accepted as the official ISO
standard.

1984 NAPLPS, and VDM are expected to be
submitted as U.S5., standards.

technique for positioning.

While GKS includes only two-dimensional operations,
the viewing operation in the Core system can be two- or
three-dimensional., The three-dimensional operations project
the image into an X-Y-Z space with elther a perspective or a
parallel projection, Core”s complexity led to problems 1in
satisfying competing viewpoints. When Core was turned over
to the ANSI X3H3 Committee on Graphics Standards, it falled
to win approval as a national standard, and when 1t was

1

submitted to the Intermational Standards Organization in

1979, it was agaln not accepted.

Current Status

At the June 1982 meeting of IS0, GKS was unanimously
accepted by I50. This bring GKS to the status of DIS§ -~
Draft International Standard - where the technical <contents
are frozen, and only editorial clarifications and resulting

technical corrections will be made.

In the United States, standards are devel oped

1. IS0 (International Standards Organization) is the
international equivalent of ANSI, the American National
Standards Institute, IS0 is in charge of creating and
establishing standards for all sorts of things, of which
graphics programming languages is one.

jointly by representatives from industry, the government and
the affected wuser communities., Compliance, however, with

ANSI is voluntary.

Since 1ts formation 1n 1977, the ANSI X3H3 committee
has been chaired by Dr. Peter Bono and now consists of
representatives from more than 40 organizations. Three
subtask groups are developing draft pfoposed American
National Standards., The subtask group writes a document
listing technical issues, possible resolutleons for each
issue, pro and con arguments and the recommended resolution
for each 1ssue. Once all of X3H3 agrees on the issue
resolution, the subtask group writes a draft standard, and
it 1s sent for review by X3H3, then X3, then the general
public. A each stage comments must be considered and either

incorporated or reasons provided for theilr rejection.

Expected acceptance of GKS by IS0 brings new
pressure to ANSI X3H3 to select GKS as the U.S. standard.
ANSI policy is to match world standards whenever possible.
"No good technical reasons not to accept GKS exist™ claims
Dr. Bono, who 1s the chairman of the U.S. delegation to the
150 proceedings as well. "My own personal view 1is that
enough changes have been made to GKS that we (ANSI) should
adopt 1t wunchanged as the American national standard"

[Dern] .

Future Outlook

In late 1983, GKS was accepted as an International
standard. This event will result in more vendor
development, more system purchases, more emphasls and
interest in graphiecs by new vendors and users, announcements
by major vendors of GKS compatible systems, and support for

GKS.,

The c¢reation of high-level standards plays an
important role 1n speeding efforts and reducing costs in
graphics applications programming, concurs Louis Doctor,
president of Raster Technologles, Inc., in Billerica, Mass
{Dern]. "A high-level dinterface means 1t”s possible to
design an intelligent graphics workstation which can take
over more of the =esophisticated caleculations involved 1in
complex graphics. Without the existence of these
interfaces, there wouldn”t be a place to take the process
from, And definition of standard graphics functions allows
creation of subroutine packages which, in turn, can provide
those functions from a host computer ~ and exlistence of such
packages lets programmers who aren”t graphics experts put

together graphics-using systems"” [Dern].

According to one industry watcher, it is most likely
that "Core 1In 1tself will fade away. Existing Core-hased

systems may Tremain, but will not grow. And vendors of Core

based systems will quickly announce support and
compatibility for GKS as well, as fast as the coding can be
done, and facilities to help convert existing applications
to fit into what will be the GKS maianstreamn. In other
words, Core itself may go away, but the vendors, the users,
the systems and the applications will stay and prosper"

[Deru].

In early summer of 1983, Dr., Bono reported that his
committee, 1in cooperation with international participants,
has been working on a "Rich/3D standard" containing as much

ags possible of both Core and GKS as proper subsets,

This Rich/3D standard would address many issues not
tackled fully by either Core or GKS., TFurthermore it would
provide an economically, politically and technically viable
solution to the need for additlional graphics standards for

applications programming.

CHAPTER THREE

GRAPHICS SYSTEMS

The intent of this chapter 18 to focus on the
Virtual Device Interface. However, before introducing it to
the reader, it 1is of beneflt to define and present GKS. To

complete the picture, two related models are also presented,

The Graphics Kernel System

Current standards efforts are aimed at the two main
interfaces 1n computer graphlcs systems: the appiication
programmer interface level, and the device interface level
(see Figure 1 on page 12)., At the programmer level, GKS
provides a standard 1interface Dbetween the application
program and the graphics utility programs. The VDI
standardizes the 1interface between graphics utilities and

device drivers.

GKS allows portability of graphics application
programs between different computer installations by
providing a conslstent interface implementable in high level
portable languages such as FORTRAN or PASCAL. This 1is
achieved by standardizing the way 1in which graphics

functions are accessed and by controlling the appearance of

Display
Terminal
!/
Future
\9 Application
Packages
Scanner
Programmer Interface Level Graphical Kernel System
Interface
v
Device Graphics
Independent Utildity
Code System
Device Interface Level Virtual Device Interface
v
f I | | |
v v Vv vV v
Metafile Chro Plotter MPC Future
Driver Driver Driver Driver Driver

Figure 1: Graphics System Model at KSU.

graphics primitives on a idealized virtual device,

GKS defines only a language independent nucleus of a
graphics system. For integration into a language, GKS is
embedded in a language dependent layer containing the
language conventions, for example, parameter and name
assignment, The layer model represented In Flgure 2, on
page 14 1llustrates the role of GKS in a graphical system,
Each layer may call the functions of the adjolning lower
layers. In general the application program uses the
application oriented 1layer, the language dependent laver,
other application dependent layers, and operating system
resources. All workstation [Encarnacao] capabilities that

can be addressed by GKS functions are used only via GKS.

GXS divides the output of graphics into two distinct
parts., The first produces ocutput on a virtual device space
called normalized device coordinates. The second allows
individual workstations to interpret this virtual space in a
way specified by the application program. The workstation
translates the normalized coordinates to real device
coordinates for display, A GKS workstatien 1s a single
display surface and one or more input devices [DIN].
Workstation types are similar to the faciliities that would
be avalilable at a plotter, storage tube, or refresh display.
An operator can have a number of GKS5 workstations under his

control at the same time, Different workstations may be set

- v oy T o A - S W R Tt e . s i i M B W LB WS e e e ey W e b i - o e AW .

Application Program

- e o - - T b b s S i i A W W WE v oy = A e e i —— —

Application Oriented Layer

vt . - e i A e T i b i b B id ke il WS S v wE W v em e m me

Language Dependent Layer

B T T S T S —

Graphical Kernel System

) S 8 b S T " o e —— o T . T e T R m 8 —m m v

i . - . wr A AR il e A T i A e A e e e A e ek Al R S W . M A LN S My v o m e s ek

Figure 2: Layer Model of GKS.

to view different parts of the <complete virtual picture,
Moving from one 1installation to another requires the
application program to redefine the workstation
definitions~an operation normally performed at the beginning

of a program rather than {n the main conttol flow.

The graphical output that Is generated by GKS 1is
built wup from two groups of basic elements called output
primitives and primitive attributes [Gallop]. The six
output primitives provided by GKS are: polyline, polymarker,
text, fill area, cell array, and generalized drawing
primitive (GDP). The first three form a basic drawing set.
The polyline primitive draws a sequence of vectors (straight
lines) between palrs of points that form a sequence
specified as an array. A single line is just a special case
of the polyline, defined by 1ts two endpoints. The
polymarker primitive generates marker symbols centered at
each specified point. The text primitive allows text
strings to be displayed at any position with any

orientation.

The remaining three primitives show the dincreasing
importance of raster devices which have fill and pixel-array
primitives, The fill operation paints the 1ianterior of a
closed polyline {polygon) with a specified color or pattern
{such as a crosshatch). The pixel-array primitive allows a

two-dimensional array of pixels of different colors, called

a cell, to be defined. The cell may then be repeated over
an arbitrary area simply by giving the desired boundariles.
The final primitive, GDP, is an escape function to allow
special geometric primitives such as curves, circular arcs,
and elliptic arcs to be defined. The objects are
characterized by an 4identifier, a set of points and

additional data.

Assocliated with each output primitive are attributes
that alter the object”s appearance, For example, the
polyline primitive has line-type (solid, dashed, etc.),
width, and color attributes., Polymarkers have attributes of
style, size, and color. Text differs from the other
primitives in splitting the attributes into two classes.
The first type controls the geometrliec aspects of the text.
These attributes are work station i1ndependent and are
expressed 1in world coordinates where appropriate. The
second type <controls the nongeometrlic aspects of text such
as front, precision, and color, The motivation
[Bono,July,1982] for this split 1s that the overall form and
shape of the text must fit with the graphic output on all

devices and so should be device-independent.

Graphical input functions provided by GKS <can be
grouped iInto five <classes: choice, locator, plick, string,
and valuator. This flexibhility allows GKS to support the

optimum input device for a particular workstation. All five

classes of input can be obhtained from a workstation by wuse
of three mechanisms. These three Iinput types are: request,
sample, and event.1 The result is versatility through which
the full potential of the graphics man/machine can be

reallzed.

To ensure the user”s view of the system 1is correct,
GKS allows the definition of multiple window/viewports, all
existing simultaneously. A picture 1s defined in the
application”s conceptual "world space,”" called world
coordinate {WC) space. A window-viewport transformation 1is
done by mapping the world coordinates into a normalized
device coordinate (NDC) space by defining a working regilon
(window), 1in world-coordinate space, and mapping it onto a
specified area of the normalized device coordinate space
(viewport). The normalization transformation iIncludes
translation and scaling. Although NDC space <conceptually
extends to infinity, the part of NDC space in which the
viewport must be located and that can be viewed at a
workstation 1is the <closed range [0.1]x[0.l] This space
appears 1dentical to all devices in the system, it acts as

an dintermedliary space between applications and devices. In

1. It is left to the reader to explore the various
combinations between input classes and types, Some of
the best sources on this found by the author are [IS0],
[DIN], and [Bono,July,1982].

the next step, the workstation transformation, the NDC space
is transformed 1into the device coordinates (DC) of the
workstation. When multiple workstations are used, each may
have a distinct view of the application by setting its own
workstation window. The last transformation allows the
workstation to set a viewport, which can be used for scaling
and translating the original picture. In this way it is
possible, e.g2. to use the full display space of an
interactive workstation and to have simultaneously a drawing

in correct scale on a plotter.

A final concept that deserves mentioning is the GKS
segment, In an interactive environment the complete plcture
frequently needs to be split into a number of objects or
segments that can be manipulated independentiy. One may
wish to highlight a particular part of the plcture, remove
it for some reason, or move parts of it around. This is
achieved through a2 segment transformation matrix, which may
be modified after the segment is defined, A plcture may be
defined on a refresh display, made up of segments, and then

when completed one may wish to copy it to a plotter,

This section is intended to give a flavor of the GKS
concepts and facllities. It does not cover all features,
and many of the facilitles are oversimplified. No attempt
has been made to describe the GKS level structure, which

allows only some of the functionality to be available 1in

particular implementation.

19

The Virtual Device Interface

The Virtual Device Interface has the following
definition, "The Virtual Device Interface (VDI) 1s a
standard functional and syntactical specification of the
control and data exchange between device-independent
graphics Boftware and one or more device- dependent graphics

device driver or conforming graphics devices.,"

VDI makes all devices appear as 1dentical virtual
graphics devices by defining a standard input/output
protocol, The wunlique <characteristics of the physical
graphics device are isolated In the device driver software

module. VDI includes the following concepts:

Data interface, not a procedural interface,
Partioned into required and nonrequired sets of
functions.

Device-independence for both output and input.
Functionally compatible with the Virtual Device
Metafile {(VDM) standard.

Conslistent with the Open System Interconnection

{051I) model.

The VDM is defined in this section three paragraphs
below. The Virtual Device Interface functions are divided
into two sets: a lean set required to be supported by all

device drivers or devices; and a rich set which is not

required to be provided by device drivers or devices. The
application package wusing the VDI can use the lean set of
functione without inquiry. Use of the functions in the rich
set should be preceding by an inquiry to determine whether
the funetion is supported or not. If the function 1s not
supported, the application can emulate the function using
avalilable supported functions. This scheme allows for
device-independence while providing access to the richer

functions of more powerful (intelligent) devices.

Consistent with GKS, VDI“s functional «capabilities
include, graphical output primitives, assoclated primitive
attributes, segmentation, and input, In addition, VDI
control functions include virtual device initialization and
termination, virtual device status, coordinate space
specification, and addressabllity selection. For each
virtual device a single physical device 18 required, but the
mechanism for directing the processing for multiple devices

is 1left as a responsibility of the application.

To aid the programmer, VDI provides an inquire2
capability, which falls into the nonrequired category. Such
an inquiry must always return a '"not avallable" response for

any such function that is not Iimplemented in the VDI,

2. This is a GKS capability as well

Similar to the GKS concept of a workstation
viewport, the VDI supports a "display surface™ viewport,
The display surface can be thought of as a reglom with {(0,0)
located at the lower left corner of the display surface and
(1,1) located in the wupper right corner of the display
surface, The display surface viewport is then specified by
two coordinates that represent the lower left and upper
right corners of the viewport. The range of logical device
units can be gpecified by the VDI user. Logical device
units are mapped onto the display surface viewport. Logical
device units may have an aspect ratio (which is 1implied by
the Logical Device Coordimates range) that is different from

the display surface viewport.

The Virtual Device Metafile (VDM) [ANSI,Aug.13,1982]
is a way to transport the definition of a pleture in a
device~independent representation over space and/or time.
The metafile consist of the required set of VDI functions
and a fixed selection of the nonrequired VDI functions.

The metafile virtual device driver sits below the VDI.

Often, the <capabllities specified by the VDI
standard are mnot provided by a particular graphics device,
In s8some cases the device-driver software emulates the
required function. For example, four 1line s8tyles are
specified by VDI: solid, dashed, dotted, and dashed-dotted.

If a graphics device does not have the ability to produce

these directly, thelr automatic generation 1is emulated 1in
software. For example, if a dotted line canmnot be produced
by a device, the required 1ine style may be produced by
generating a serles of short solid lines with intervening

spaces.,

It is likely that most systems built on top of the
VDI will not have the concept of current position at the
ptogrammer s interface, However, the VDI document
[ANSI,Aug.27,1982] =states that the VDI will support devices
that have an inherent current position capability.
Therefore, it 1s natural that the VDI be a current position
interface. There are demonstrated benefits to this approach
which 1include the following advantages: c¢ompactness of
display commands, minimization of data flow across the VDI,
and consistency with the many devigces that have an Inherent
curtvrent position. TIf the VDI did not include the concept of
current position and a higher level curreant position based
package, such as Core, was built on top of the VDI, the use
of current position on a physical device supporting current

position would be impossible.

Related Models

North American Presentation Level Protocol Syntax
(NAPLPS) or simply videotex, 1s at the same functional level

as the VDI. It was developed by & team at Bell Laboratoriles

as an extension of graphics developuments in the Canadian
Telidon videotex system [Fleming)]. NAPLPS (pronounced '"nap
lips") has been adopted by AT&T as a standard for
transmitting text and graphics over telecommunication lines,
Videotex differs from the work of X3H3 in several ways.
First, it is application-specific to videotex, an
information distribution system which employs raster
displays, i.e., TV sets; second, although graphic capability
is part of the videotex repertolre, only the most
rudimentary input capability is provided, Finally, it is a

data stream definition rather than a programming (software)

interface.

The videotex proposal has been standardized by ARSI
X3L2, which deals with character set codes, and relies
heavily on the Picture Description Instructions produced by
the Canadian Telecommunication Research Center. In some
computer-graphics implementations, NAPLPS probably will "sit

below" the more general device interface VDI,

A graphiecs extension to CP/M called GSX, for
Graphics System Extension (developed Jointly by Digital
Research Inc.,, and Graphics Software Systems), provides
device-independent graphics based on the Virtual Device
Interface [Perry]. The GSX architecture consists of two
principal components: the Graphlecs Device Operating System

(GD0S) and the Graphics I/0 System (GI0S). The GDOS the

device-independent portlion of GSX-is analogous to the basic
disk operating system {(BDOS) of CP/M. GDOS recognlzes and

responds to graphics service requests.

The GIOS 1s analogous to the Basic I/0 System (BIOS)
in standard CP/M. This device-dependent portion contains
the dedicated drivers that match speciflic devices to the
Virtual Device Interface. All graphics capabilities of the
devices are accessed through the drivers. A complete
specification of the Virtual Device Interface explaining the
operation and requirements of each of the 33 operation codes

{see Table 2, on page 26) is part of GSX documentation.

Table 2: GSX Graphics Input Output System

Opcode

Lllie JRV- e |

- et

i2
i3
14

Operation Codes,

Description

Open Workstation-initialize a graphics device
(load driver if necessary)
Close Workstation~stop graphics output to
this work station
Clear Workstation=~clear display device
Update Workstation-display all pending
graphics on work station
Escape-enable special device-dependent
operatlon
Polyline-put out a polyline (a graphics primitive
composed of one or more connected line
segments, or vectors)
Polymarker-issue markers
Text-issue text starting at specified position
Filled Area-display and fill a polygon
Cell Array-display a cell (pixel) array
Generallzed Drawing Primitive-display a
generalized drawing primitive
ID 1 Bar
2 Arc
3 Pie Slice
4 Cirele
5 Print Graphilic Characters
6-7 Reserved (for future use)
8-10 Unused (and available)
Set Character Helght-set text size
Set Character Up Vector-set text direction
Set Color Representatlon-define the color
associated with a color index

{continued on next page)

Table 2: (continued)

Opcode

15

16
17

18

19
20

21
22
23

24
25
26

27

28
29
3o
31
32

33

Description

Set Polyline Linetype-set line style
for polylines
Set Polyline Linewidth-set width of lines
Set Polyline Color Index-set color
for polylines
Set Polymarker Type-set marker type
for polymarkers (a graphics primitive composed
of one or more markers)
Set Polymarker Scale-set size for polymarkers
Set Ponlymarker Calor Index-set color
for polymarkers
Set Text Front-set device-dependent text style
Set Text Color Index—-set color of text
Set Fill Interior Style-set interior style for
polygon fill
Set Fill Style Index-set fill style for polygons
Set Fill Color Index-set color for polygon fi11
Inquire Color Representation-return color
representation values of index
Inquire Cell Array-return definition
af cell array
Input Locator-return value of locator
Input Valuator-return value of valuator
Input Choice-return value of choice device
Input String-return character string
Set Writting Mode-set current writing mode
{replace, overstrike, complement, erase)
Set Input Mode-set input mode
(request or sample)

CHAPTER FOUR

THE SOLTEC 281 PLOTTER

The SOLTEC 281 Plotter, looks like a simple table
plotter which can hold up to elght different pens at a time,
but when one picks up the approximately 230 pages of ¢the
Users Manual, the first thought is that it must be overly
documented. Actually, the documentation would be complete
1f the intent of the manufacturer was to provide a reference
manual only. Otherwise, {t would benefit from additional
detailed explanations and examples, especially in Part II.
Needless to say, this plotter comes equipped with an

extensive set of firmware functions,

Hardware Characteristics

The SOLTEC 28] Plotter is an Iinteractive intelligent
digital plotter built arocund the ZILOG Z 80 microprocessor.
It performs four basic operations: printing of alphanumeric
characters, vector generation {(linear interpolation)
circular interpolation and point digitizing. The
Programmable Pen Select feature offers multicolor plets plus
various line thicknesses, The accessible plotting size 1is
338 by 280 nmm. The plotting 1is also programmable and is

continuously checked by the mlicroprocessor to provide

coordinate value transmission. The graph paper 1s standard
DIN A3 format. The major firmware <characteristics and
performance specifications of interest are shown in Table 3,

on page 30.

The origin of the rectangular Plotter Coordinate
System (PCS) is fixed to its mechanical Zero located at the
lower left of the platen (see Figure 3, on page 32). All
possible <coordinate pairs are restricted to positive values
between 0 and 2800. The unit within this system is 0.1 mm
for ©both ¢the X and Y directions. Any programmed plotting
action 1is transformed to this system and therefore 1its
characteristics cannot be altered under program control ot

locally at the front panel.

The 281 Plotter offers the possibility to shift the
origin of a drawing across the physical plotting area and
even outside of it, Additionally the plotting units can be
set by the user locally at the front panel, This system of
coordinates that provides for an alteration of its
characteristics by the user 1s called the "Users Coordinate
System" (UCS). The UCS can be shifted =either 1locally (at

the front panel) by user interaction, or program controlled.

The plotter has three basic plotting modes: vector

generation, positioning, and digitizing.

Table 3: SOLTEC 281 Plotter Characteristics

* Characteristics:

Microprocessor ZILOG Z 80

Up to 8 pens

800 byte input buffer

}

Electrostatic paper holddown

* Parformance Specificatlions:
~ Plotting area: x—axls 338 mm, Y-axis 280 mnm
- Linearity: better than +0.1%

- Repeatability: +0,1 mm same pen,
+0.3 mm different pens

- Line plotting speed: maximum 30 cm/s

-~ Pen lift: 30 actions/s

The most important feature of a plotter 1s the
firmware vector generation that performs a linear
interpolation between two points 1n order to produce a
straight line. All drafting plotter actions, regardless of
complexity, are finally made up by linear interpolations and
thus c¢an be traced back to the vector generator. Vector
generation is restricted to drawing plotter movemants (with
pen down) because any other movement is classified as

positioning, An exception 1is incremental pleotting with pen

up.

The firmware generates a "straight" 1line from one
polnt with Xc,Yc coordinates - the current position - to a
final point Xf,Yf by alternately incrementing or
decrementing the X or Y coordinate, using the smallest
incremental unit it can., Exception iIs of course the drawing
of a line where either X or Y is equal in both coordinate
pairse, A dashed line would result if the recording system
would not be bandwidth 1limited, Due to the fairly low
bandwidth of the system the stalrcase funection 1s actually

smoothed out and the human eye qualifies it as straight.

In a plot program it happens frequently that the
drawing tool must be directed to some point without
performing a drawing. Normally one wishes to start a
drawing or part of it at this point, This plotting action 1s

called "positioning"™ and the corresponding plot instructions

—_—

f (3380/280005c |

200

W WA WA W W W W

338

Figure 3: The Plotter Coordinate System {(PCS)
for the SOLTEC 28] Plotter.

- 37 -

are "move absolute'" or "move relative"

The 281 Plotter 18 not an Incremental plotter,
however 1t has an additional feature to move the pen -
lifted or lowered ~ in the same manner as an Incremental
plotter does. Note that the length of a plotting unit in
the X or ¥ directions (positive or negative) is 0.1, while
in any of the other four in-between directions 1its length

is 2*(square root of 2)*0.1 .

Software Capabilities

Based on the vector generation mode, the 281 Plotter
has an impressive alphanumerics feature, which provides
printing of text on the plot without requiring software
supported character generation by a host computer. The
firmware character generator offers five fonts of standard
characters: standard ASCII, German, Spanish, Swedish or
Finnish, Danish or Norvegian. Additionally, the
characteristics of alphanvumerics can be modified under
program control. This 1is performed by two dInstructions
only, One instruction sets the helght and width and the
printing plane of characters, the other one sets the
character gelant to 90 or 75 degrees, respectively. The
shape of the characters 1s predetermined by a 77 dot

matrix that also provides for the spacing of characters.l

The 281 Plotter not only accepts printing characters but
also responds to some <control characters for convenient

formating of text on the plot,

0f special interest 1s the unusual implementation of
circular interpolation, also based on the vector generation
mode. The firmware routine provides for arc and circle
generation with programmable radius and optionally the
starting and final angles, Clrcles and arcs are drawn
counter clockwise (as a default direction) rather than
clockwise, as one might expect. Furthermore the current
position, becomes the starting point on the circle or arec,

rather than the point of origin.

Five special graphic symbols can be plotted with
programmable Theight, width, printing plane and slant. The
current pen position is the center and starting point of the
mark. These "mark" characters are: X, Y, +, an equilateral
triangle, and a square. The last two have a line connectiag

the point of origin to one of thelr corners,

Also wvarious types of dashed lines with a

programmable length c¢an be selected., The 281 Plotter is

l. For details refer to the SOLTEC 281 Plotter Users
Manual pp 26~-30, 37 of Part I, and pp 25-43 of Part II,
showing character height, width, line separation,
spacing, and angle of rotation.

able to perform on output to the host computer contalining
information on the coordinates of the current and/or actual
pen position. This feature of point coordinate transmission
to the host is known as "digitizing." Two different forms
of digitizing are supported: interactive digitizing and

immediate digitizing.

When the plotter 1s set 1into the interactive
digitizing mode (under ©program control only) the user is
requested to move the digitizing sight to the desired point

on the platen and to validate data if satisfied.

The Plotter outputs (in ASCII) numeric values for
the polint coordinates of the actual position in the PCS. X
value 1is transmitted first and separated from Y value by a
blank. The X and Y coordinates are represented by 6 bytes

each.

Contrary to interactive digitizing this mode does
not require user interaction. When the plotter receives the
instruction to digitize immediately, it transmits the
coordinate values of the current pen position in the UCS,
It should be noted that the current pen position not
necessarily coincides with the actual (physical) position of
the pen because it can be outside the physical plotting area

(off scale).

If the application software does not keep track of
the current pen position an attempt could be made to direct
the pen to a2 polint outside the physical plotting area,
Tracking the current pen position 1in the host”s progran
could be quite cumbersome especlally in the —cases were
plotting functions such as «cirele and arc generation and
alphanumerics are wused extensively. Therefore, the 281
Plotter provides for off scale data handling that makes it
unnecessary to track the current pen position in the host
computer and simultaneously avoids misleading results and

undesired portions of a plot.

Whenever a plotting leads to off scale data-points
the pen 18 1ifted automatically (if down) at the intercept
with the mechanical boundary or graphic limit. As soon as
on scale data points are reached again plotting 1s resumed

correctly with the pen status as programmed.

The instructions (input) ¢to the 281 Plotter are
buffered in a 800 byte Input Buffer., The handling of this
buffer information is different for the types of interface
in use. Buffer messages may be requested by the host or may
be transmitted to the host automatically; they are also
dependent on the ¢type of interface. Buffer messages are
presented in the form of one byte, and they include status
codes such as "Full" or "Empty." How to perform buffer

control is described in Part IIT of the Users Manual "I/0

Programming and Interfacing."

In general the simplest format of the d1anstruction
set of the 281 Plotter consists of only one ASCII-character
(one byte) that defines the ¢type of command (one byte
instructions). Other, more advanced plotting actions of the
plotter are made up by an ASClI-character defining the type
of command followed by additional characters representing
parameters. (two or more byte instructions). When two or
more parameters are present they must be separated by at

least one blank.

Let“s 1look at some examples. The one byte
instructions "K" and "J" are move absolute and move
relative, respectively, and are normally preceded by the X
and Y «coordinate pair. The instructions "I" and "H" are
equivalent to pen down and pen up, respectively. The syntax
for plotting a circle or an arc is: "Or a b," where "r" 1is
the radius, "a" is the starting angle, and "b" is the final
angle, When "r" 1is positive the are 1Is drawn counter
clockwise, otherwise clockwise. To draw a circle for

example the following set of instructions would be used:

800/2000KI0300 0 360H

Assuming that the pen was up prior to this instruction, the

result 1s a c¢ircle with radius of 3 cm and its origin at

500,2000. Note that if "0-300 0 360" had been specified,
the same c¢ircle would have been drawn, but with 1ts origin

at 1100,2000.

For a complete list and description of each command
in the {instruction set, the reader 1s referred to the Part

IT of the SQLTEC 281 Plotter Users Manual.

To take advantage of as many hardware (firmware)
device features as possible, the "optimal" virtual device
interface accepts a virtual 'vocabulary" representing the
capabilities available on graphics devices. Examining the
list of capabilities in such a vocabulary [Warner] one finds
that the SOLTEC 281 Plotter does not have capabilities such
as: polygon fill, device-level segment display file,
selective erase, highlighting, background color, or color
lookup table. The polygon fill capability for 1nstance,
could be emulated 1in the application software controlling

the plotter, namely the device driver.

CHAPTER FIVE

DRIVER IMPLEMENTATION

In the spring semester of 1983, the Kansas State
University”s Department of Computer Science began a project
to study and then implement subsets of GKS. The
implementation of a GKS subset at KSU reflects the efforts
of many students, guided by Dr. William J. Hankley, over a
period of several semesters. The major goal of the GKS
project was to provide 1ts participants with a valueable

educational experience.

Based on the "GKS8 Functional Description, Draft
International Standard I1S0/DIS 7942" J[1s0] and other
available literature, the spring semester students developed
a skeleton representing the heart of the GKS system, defined
most of the basic data structures, and implemented a minimum
set of (line and marker) primitive capabllitles on one
workstation. Using the framework developed by the spring
semester plus the GKS [IS80], the VDI [ANSI, Aug.27,1982],
and the VDM [ANSI, Aug.13,1982] documents as a base, each
Western Electric "Summer~On-Campus" student had to study the
overall GKS system, and then foeus on a specific
implementation, The 1983 fall semester students had the

task of consolidating everyones work and adding enhancements

to GKS.

As mentioned iIn the Overview section of Chapter One,
the author“s individual project was the development of a VDI

driver for the SOLTEC 281 Plotter.

Driver Structure

The GKS system was implemented on an Interdata 3220
host minicomputer, under a UNIX1 operating system, The
Pascal programming language was mainly used for writing the
main GKS source code and the data structures, plus the
components developed by the 1983 summer semester students.
The UNIX Shell, and the C languages were used however to
write those programs which required "executive"

capabilities.

In order to become familiar with the plotter, it was
first necessary to establish an {interface between the
minicomputer and the plotter. Through such an interface, a
file which contains a set of valid commands for the ploter,
can then be downloaded from the minicomputer 1into the
plotter, The "plttst"™ program, shown in the Appendix on

page 55, 1s written In Shell and 1ts function 1s to download

1. UNIX is a trademark of AT&T Bell Laboratories.

a file to device tty25, which 18 the address of the plotter.

One example of the many test files written through
the course of that term is "plt.tst.l," shown in the
Appendix on page 56, 1In this file, some of the GKS and VDI
output primitives, such as polyline, polymarker, and
polytext, plus some circles and arcs which are part of the

generalized drawing primitives (GDP), are tested out.

For the remainder of this paper, when referring to
these output primitives the "poly" prefix will be dropped,
and references to them will be simply stated as the 1l1ine,

the marker, the text, and so on.,

The plot generated by the BSOLTEC 281 Plotter,
resul ting from the interpretation of the 1instructions
contained in the "plt.tst,l1"” file, 1s shown in Figure 4, on
page 42. The orliginal plot is Iin eight different colors,
however due to reproduction limitations the «copy 1in this
paper 1is only 1In black and white, To wunderstand the
relationship between the vresulting plot and the set of
corresponding instructions, let us examine this file line by

line.

The plotter 1s assumed to be turned on, initialized,
and each slot holding a pen, 1n our example each of
different color. The first line iInstructs the plotter to

select pen 1in slot number 1, Note that the selection of

A line of straight text ...

pens is dependent on thelir physical location rather than
their color. Therefore, in order to ensure consistency of
color for all Primitives on all output devices, 1t 1is
necessary to standardize the color attributes at the VDI
level. 1In other words, if the «color unit number 4 produces
red on this plotter, the same unit should produce the same
color for all primitives on any other device, even If the

metaflile is ported to another GKS system.

The s8econd 1line specifies that all subsequent
characters will be plotted with a 90 degree slant. This is
the default setting for text plotting on the SOLTEC, and it
is equivalent to the GKS Character Upvector (0.0,1.0). The

GES text alignment value here defaults to (normal,normal).

On the third 1line, three more text primitive
attributes are specified, namely: character height = 8on,

text path = right, and character width (expansion factor and

gspacing) = 5mm, iIn that order,. Actually, the second
parameter of this {instruction specifies the angle of
rotation for each character, thus defining the path

attribute, Interestingly, the "Z" instruction bundles these
three attributes together, and they cannot be specified
separately. An other text attribute, the text font, not

having been specified, here defaults to ASCII.

The fourth line contains three 1instructions: raise

pen, move absolute to coordinate 50,2600 (which 18 claose to
the upper left corner of the viewport), and then enable text
plotting. The plotting of the text is emabled by the "B
instruction, and it continues wuntil a <carriage return
character 1s encountered. The two blank spaces following

the "H" instruction are ignored.

The instructions In the fifth through the seventh
lines are &essentially a repeat of the previous set of
instructions, and as it can be seen from the resulting plot,
the text 1s larger, slanted 75 degrees, and each character

is rotated 15 degrees.

In the next four lines, the objective is to draw six
different marker primitives, connecting the first two pairs
with a stralght line, The "M" dinstruction plots the

markers, and the single digit integer following it

determines the type of marker, Because the markers are
treated similarly to text, they are subject to all
transformations valld for character ©plotting. Thus the

marker primitives for the SOLTEC 281 Plotter have the same

attributes as the text primitives.

Lines twelve through twentyone demonstrate how the
SOLTEC 2B1 Plotter handles the general drawling primitives,
All these instructions generate clrecles, except for the last

two instructions, which plot arcs. Note that the first four

circles have the same "starting point" coordinates at
(1000,1500). The rest of the circles and arcs also share
their coordinates at (1100,720), nevertheless, all of then

have different centers of origin.

The VDI document states that "a circle of a given

radius 1s drawn at the specified coordinate," and "the

' One can infer that such a

current position 1s not changed,’
circle will have {ts origin at the specified coordinate,
with the given radius. The SOLTEC Driver must therefore
calculate the "starting point" for a cirecle, by increasing

the X component of the coordinate with the wvalue of the

radius, and then draw the circle with a positive radius.

Having decided to use the Pascal language, the next
logical step 1in the development of the VDI Driver software
for the SOLTEC 281 Plotter, was to write the parameter type
definitions for this device. This code, was placed in a

file called "soltectypes.i," and is shown in the Appendix on
page 57, Its structure accommodates the rich set of
primitives with their respective attributes, and allows for

future exzpansion of the driver code.

The variable declarations for the driver are in the
file "soltecvar,.,i," shown in the Appendix on page 60. The
file "mainvar.i" in the Appendix on page &1, «contains the

variable declarations for the test program. The

"Pas32/progheading.1" as well as the "progelosing.i"™ had to
be modified to provide for the "plotdev" device. Only the

“"progclosing.i" file i1s shown in the Appendix on page 62.

The subroutines which are called by the Driver are
in the ‘"soltecsubs.i" file, listed in the Appendix on page
63, The most often called wupon subroutine is the
"writecoord" oprocedure, 1its function being as 1ts name
implies, to write a coordinate to the ©plotter whenever

requested to do so.

Briefly, the ‘'"getpen" and "returnpen" procedures
pick up the pen in slot one and deposit it, respectively,
The pen in slot one 18 always picked up as a default or as
the initial pen. The "pendown" and "penup" procedures lower
and ralse the pen, respectively, The "setcolor" procedure
tells the pen holder to pick up an other pen from a specific
slot. The '"setlinetype," "setcharh,"” and '"soltecupdate"
proceduras do just that, set the 1line type, set the
character height, and wupdate the device by <closing 1it,
respectively. The ‘"movepen" procedure writes a coordinate

pair and tells the plotter to move to that absolute address.

In the same file, the remaining code are procedures
which c¢call the above mentioned subroutines, and are in turn
directly called by the SOLTEC VDI Driver. Procedure

"soltecclear" resets the current coordinate palr to (0,0).

Procedure "soltecmarker” plots any one of the five markers.
Here, resetting the character gize and slant remalins to be
done., The "soltectext" procedure outputs a string of
characters to the plotter, setting first the height,

direction, and width of the characters.

The "scaletext”™ and "scaletosoltec” procedures
perform the necessary scaling transformatioms, Finally, the
"initsoltec" procedure initializes the required primitive

attributes for the plotter.

The "solteedriver.,i" file <containse the "soltec"
procedure, listed 1in the Appendix on page 68, This
procedure is the actual VDI Driver for the SOLTEC 281
Plotter, and 1is executed from the GKS through that part
which at KSU was named the "Distributor." The following VDI
commands were Implemented in this procedure: vdiopen,
vdiclose, vdiclear, vdiupdate, vdiline, vdimark, wvditext,
vdilinecolor, vdimarktype, vdimarkcolor, and vditextcolor,.
The rest remain to be 1lmplemented by perhaps future KSU

students.

The main, or rather the test program for the Driver,
"main.i," 1s 1listed 1n the Appendix on page 71. In this
test program the vdiopen, vdiclear, vdimarkcolor,
vdilinecolor, vditextcolor, vdiline, vdimarktype, and

vdiupdate commands are exercised.

Now, to pull all this code together, the "pascomp"
Shell, 1listed 1in the Appendix on page 73, is invoked with
the "comp" parameter. The Shell reads the "comp.c" file,
shown 1in the Appendix on page 75, which contains all the
names of the GKS files plus the files which make wup the
SOLTEC Driver. To run GKS, the "rungks" Shell, shown in the
Appendix on page 74, must be executed with a valid device
name specified as a runtime parameter. In the case of the

SOLTEC Driver, the device name 1s “plot."

Project Results

The major goal of the GKS project, providing 1its
participants with a wvaluable educatlional experience: a
general knowledge of the state-of-the—-art of the graphics
standards, plus an in depth knowledge of GKS, VDI and VDM,
wag definitely achieved, With respect to the lmplementation
portion of this ©project, the objective was not so much to
produce "delliverable" software, but to learn even more about

GKS and to leave behind "readable'" code,.

The VDI driver for the SOLTEC 281 plotter compiled
successfully. However, there was insufficient time left to
test the GKS system with the driver software 1ncluded. It
i3 the author”s belief however, that the test would have
been successful when applied ¢to the version of the GKS

system as it existed at the end of the 1983 summer term.

Since there were other capabllities being developed
concurrent with this effort, the GKS5 code has gone through
several changes afterwards. As of this time, the following
GKS files are known to this participant ¢to have been

modified since then:

fusr/src/gks/gks.c
fusr/src/gks/GKS/initws,1
fusr/srefgks/Gks/initgks.i
Jusr/src/gks/Scanner/interpreter.i
/usr/src/gks/Scanner/Interpreter/testparms.i
/usr/src/gks/Scanner/Interpreter/prtrcallinf.i
fusr/src/gks/Glob/gkstype.l

Also, all occurrences of index (type) need to be changed to

sindex (type).

Had there been more time avallable, it would have
been quite rewarding to complete the plotter”s driver code,
implement it, and then fully test it., During this five week
long semester, each participant in the GKS project was also
taking an advanced graduate course, and had to prepare and
deliver the "final orals" exam. In this participant”s case,
due to the hardware dependency of the SOLTEC 281 plotter
driver code, it was not possible to continue the
implementation part of the project after leaving the KSU

campus.

SELECTED BIBLIOGRAPHY

ANSI., "Proposal for an ANSI X3 Standards Project for the
Computer Graphics Virtual Device Interface," Aug.
27, 1982,

ANSTI, "Draft Proposed American National Standard for the
Virtual Device Metafile,” Aug. 13, 1982,

Ansell, TIan 0. "A Practical Introduction to Computer
Graphics," John Wiley & Son , New York, 1981,

Bailey, Chris, "Graphics Standards are emerging slowly but
surely,” Electronic Design, pp. 103-110,January 20,
1983,

Bono, Peter R. et. al. "GKS- The First Graphles Standard,"
Computer Graphics and Applications, Vel. 2, No.5,
PP 9-23, July, 1982.

Bono, Peter R. "The GKS Impact on Graphics
Standardization," Computer Graphics World, Vol. 5,
No.9, p. 47, Sept., 1982.

Borufka, H, G,, and Pfaff, G, "The Design of a General
-Purpose Command Interpreter for Graphical Man-

Machine Communication," Man-Machine Communicatioas
in CAD/CAM, North-Holl and Publishing Co., pp. 161~
175, 1981.

Brown, Marlene, "Graphics Standards Advancing on Many
Fronts," Software News, Vol. 3, No.6, pp. 28-36,
June 1983.

Bruns, Bob., and Warmer, James R. "A Discussion of Software

Standards,”" Computer Graphics World, pp. 60-63,
Aug., 1982,

Buttuls, P. "Some Criticisms of the Graphics Kernal System
(GKS)," COMPUTER GRAPHICS, VOL, 15, NO. 4, PP. 302-
305, DEC. 1981.

Card, Chuck., Prigge, Donald R., Walkowicz, Josephine L.,
Hill, Marjorie F, '"The World of Standards," BYTE,
pp. 130-142, Feb., 1983.

Caruthers, L. C. et. al. Stand-Alone and Satellite
Graphics," pp. 112-119.

DIN. "“The Graphical Kernal System (GKS). The Standard for
Computer Graphics Proposed by the German Institute
for Standardization (DIN)," Erlangen-Nurnberg Univ.,
Germany, Computer Graphics, State of The Art Report,
pp. 219-248, 19B80.

Dern, Daniel P, "Graphics Boom Relies on Standards,"
Software News, Veol, 3, No.6, pp. 24-27, June, 1983.

Encarnacao, J., Enderle, G., Kansy, Koy Nees, G.,
Schlechtendahl, E. G., Weiss, J., and Wibkirchen, P.
"The workstation concept of GKS and the resulting
conceptual differences to the GSPC core system,”
Proceedings of SIGGRAPH"80 1in Computer Graphics,
Vol. 14, No.2, pp. 226-230, July 1980,

Gallop, J. R. "Graphical Qutput facllities of GKs,"
Rutherford Applenton Laboratory.

Green, Mark. "A Catalogue of Graphical Interaction
Techniques," Computer Graphics. Vol. 17, No. 1, pp.
46~52, Jan.,, 1983,

Fleming, Jim. "NAPLPS: A New Standard for Text and
Graphics," “"Part 1: Introduction, History, and
Structure," BYTE, pp. 203-254, Feb., 1983, "Part 2:
Basic Features," BYTE, pp. 152~188, March, 1983
"part 3: Advanced Features," BYTE, pp. 190-206,
April, 1983 YPart 4: More Advanced Features and
Conclusions," BYTE, pp. 272-284, May, 1983,

Foley, James D., and Van Dam, Andries. "Fundamentals of
Interactive Computer Graphics," Addison-Wesley
Publishing Co., Reading, Mass,, 1982,

Hatfield, Lansing., and Herzog, Bertram, '"Graphics Software
- from Techniques to Principles," IEEE Computer
Graphics and Applicationms, pp. 59-80, Jan., 1982,

I80. "Graphics Kermnal System (GKS) Functional Description,
Draft Intermational Standard ISO/DIS 7942," Nov. 14,
1982.

Langhorst, Fred E., and Clarkson III, Thomas B. "Realizing
Graphics Standards for Microcomputers,”" BYTE, pp.
256-268, Feb.,, 1983,

Mudur, S, P, et, al. "Environmental Independence in a
Graphics Programming System," Proceedings of the
International Conference on Technliques 1in Computer
Aided Design, pp. 241-248, Sept., 1978,

Newman, William M., and Sproull, Robert ©F. "Principles of
Interactive Computer Graphics,”"” 2nd Ed., McGraw-
Hill, Inec., New York. Chap 27: Device-Independent
Graphics Systems, 1979.

Perry, Burt. "Graphics frees itself from device-dependence,"
Electronic Design, pp. 167-173, January 20, 1983.

Puk, Richard F, "The Background of Computer Graphics
Standardization,”" Computer Graphics, Vol., 12, No.
1-2 , pp. 2-6, June, 1978.

Reed, Theodore N. "4 Metafile for Efficient Sequential and
Random Display of Graphics," Proceedings of
SIGGRAPH"82 in Computer Graphies, Vol. 16, Neo. 3,
PP. 39-43, July, 1982.

Reed, John 8. “Computer Graphlies," Mini-Micro Systems, Vol,
15, No . 12, pp. 210-221, Dec. , 1982.

Rosenthal , David S. H., et. al. "The Detailed Semantics of
Graphics Imput Devices," Proceedings of SIGGRAPH 82
in Computer Graphicecs, Vol. 16, No. 3, pp. 33-38,
July ,1982.

Rosenthal, David S.,H. "Managing Graphical Resources,"
Computer Graphics, pp. 38-45, January 1983,

Sonderegger, Elaine L. "Recent ANSI X3H3 (Computer
Graphics) Activity," Computer Graphiecs, Vol. 16, No,
4, pp. 246~248, Dec., 1982,

Sonderegger, El aine L. "Report of the SIGGRAPH
Representative to ANSI X3H3 Computer Graphies,"
Computer Graphics, Vol. 15, No. 4 PP, 276=-277,
Dec., 1981.

Vinberg, Anders., '"Device 1ntelligence 1is part of the
plcture,” Data Management, Vol. 21, No.5, pp. 18-24,
May 1983,

Warner, James R., and Kiefhaber, Nikolaus J., "Implementing
standard device - independent graphics," Mini-Micro,
pp.201-208, July 1982,

Weller, D, L., et, al. "Software Architecture for Graphical
Interaction,™ IBM Systems Journal, Vol. 19, No. 3,
pp. 314-330, 19B0.

Wisskirchen, Peter et, al. "Implementation of the Core
Graphics System GKS din a Distributed Graphics

Environment," Proceedings of the International
Conference on Interactive Technique 1n Computer
Alided Design, pp. 249-234, 1978.

APPENDIX A

SOURCE CODE LISTING

Jul 18 16:24 1983

plttst Page 1

(hRR IR EI R KIR AR IKI IR IR IR AR RARIIRI R IR R kAR A R R ARk ke Ak kkdh)
To TEST THE SOLTEC

{* SHELL

(*
(*
(*
(*
(*
(*
(*
(*

Purpose:

Written by: Gene Janovitz

Date:

June 1983

PLOTTER

Download a file from the Interdata 3220
into the SOLTEC 281 Plotter,
The /dev/tty25 is the plotter”s address,

*)
*)
*)
*)
)
&)
A
*)
*)

(*****i***i**********)

echo "Downloading file $1 to the SOLTEC 28! Plotter,
echo "please stand hy ...

cat $1 > /dev/tty25

1f test §7
then echo "File $]1 downloaded successfully"”

else acho "Warning: file §1 may not have downloaded successfully"

fi

-aq 0

55

Jul 18 16:24 1983 plet.tst.l Page |

Fl1
%0

Z80 0 50

H 50/2600KBA line of straight text ...
F2

Z180 15 110

H50/2000K%1BSlanted text

%0210 0 10

H1400/2000KIM1l 1600/2000KM2
H1400/1800KIM3 1600/2000KM4
H1400/1500KM0 1600/2000KM2M3

F3

H1000/1500KI0D180

F4

H1000/1500KI0250

F5

HI0360

Fé6

HIO&40

FTH1106/720KI0300F80200F10-300 180 180F20-200 180 9
HF4KIOLID0 180 315H

Jul 18 16:24 1983 soltectypes.i Page 1

(**)

(* PARAMETER TYPE DEFINITIONS FOR SOLTEC VDI DRIVERS
((Frhhdkkkhhrhhhhkhkhhhhhkhhdhhhhhhhhrhhhhhhhhhahahhhhk bk hhhhhkis)

{(* proc soltec{ cmd: vdicmdtype;
parm: vdiparm
var oparm: vdioutparm) *)

;type vdicmdtype =

{ vdiopen, (*
vdiclose, (*
vdiclear, (*
vdiupdate, (*
vdiescape, (*
vdiline, (%
vdimark, (*
vditext, (*
vdiarea, (*
vdigdp, (*
vdicharh, (*
vdicharupv, (*

vdilinetype, (*
vdilinewidth, (*
vdilinecolor, (%
vdimarktype, (*
vdimarkslize, (*
vdimarkcolor, (*
vditextfont, (*
vditextcolor, (*
vdifillecolor, (*
vditextpath, (*
yvdiinlocator, (*
vdiinvaluator ,(*
vdiincholce, (%
vdiinstring, (*

vdiinmode)

;type vdiparm = record

(*

f1
£2
£3
£4
f5
fé
£7
£8
£9
fll

f12
f13
f15
f16
£f17
f18
f19
£20
£21
f22
£25
feu
£28
f29
£30
f3i
£33

case cmdcode: vdicmdtype

vdiopen,
vdiclose,
vdiupdate,
vdiclear
vdiescape

()

Open Workstation #*)
Close Workstation *)
Clear Workstation *)
Update Workstation *)
Escape *)

Polyline *)

Polymarker *)

Text *)

Filled Area ¥)
Generalized Drawing
Primitive *)

Set Character Helght *)
Set Character Up Vector #)
Set Line Type *)

Set Line Width #*)

Set Line Color *)

Set Marker Type *)

Set Marker Size *)

Set Marker Color *)

Set Text Font *)

Set Text Color *)

Set Fill Color *)

Set Text Path *)

Input Locator #*)

Input Valuator *)

Input Choice *)

Input String *)

Set Input Mode *)

of

:{msg:tstring);

*)

Jul 18 16:24 1983 soltectypes.i Page 2

vdiline,
vdimark,
vdiarea t{numpts : polntsrange;
pts : upoints);
vditext t(textpos: ipoint;
numchar : textcharrange ;
string: tstring);
vdigdp :(gdpemd tindex;
numgdppts: polntsrange;
gdppts : upoints)

vdicharh:{ helght:integer);
vdicharupv :{upvec:{ipoint);
vdilinetype,vdimarktype,vdlitextfont
t(kind:index); (* l=deflt .. maxkind *)
vdilinecolor,vdimarkcolor,vditextecolor,vdifillcolor
t{color:unit);(* 0,.7 = blk,blu,grn,cyan,
red ,magenta,yel,
white;
>7 =other*)
vdilinewidth,vdimarksize
i(size:integer);
vditextpath :{path:ipoint);
vdiinlocator:{locdev :index; (*1=dflt, 2=cursor,
3=tab, 4=joystk,
5=1tpen, 6=pltter,
7=mouse, 8=ball
»8 = other %)
locpos:ipoint);(* initial pos*)
vdiinvaluator:(valdev:index);
vdlinchoice :{chdev:index); (*1=dflt, 2=funkey,
>2=other*)
vdiinstring :(strdev:index; (* l=keybd #*)
strlen:textcharrange);{* max length#*)
vdiinmode :(indev:index; (* 1=loc, 2=val, 3=cholc,
4=gtrng*)
mode:index) (* l=request (driver waits
for indev)
2edefault, sampled *)

end (* vdiparm *)
ttype vdioutparm = record

status:unit; (* O=no l=ok %)
case cmdcode: vdicmdtype of

Jul 18 16:24 1983 soltectypes.i Page 3

vdiinlocator :{ locpos:ipoint);
vdiinchoice choice:integer);
vdiinstring :{ len:textcharrange;
strong:tstring);
vdiinvaluator : (value:real)
end (* vdioutparm *)

s ¥s ®
Pt

(RA AR I IR A AR ARA I IR AR AR AR R KA AR AR R R AR R AR AR R I KA AR AR AR AR R R Ak h A kL)
(* END OF SOLTEC VDI TYPE DEFINITIONS *)
((Rkahkhkhhhhhhhhhhhhhhhhhhhhkdhhhhhhhhhhdhhhhkhhrrdkhkhhhhkhhhknk)

Jul 18 16:24 1983 soltecvar,.,i Page 1

(**)

(* SOLTEC VARIABLE DECLARATIONS *)
(Fhkhhhhhhhhhh kA khhhk ke hhhh Ak kAR kAR AR AR Rk Rk hhhkhdhhhhihhdk)

;tl, t2 : ipoint
stelem @ vdiparm
stwielem : upoints
3ii: integer
splotison : boolean
;8olteccolor,
solteclinetype,
soltecchrh,
soltecchrdir,
soltecchrw,
soltecchrslant,
soltecfont,
currlinecolor,
currtextceolor,
currmarkercolor,
typeofmark: integer

(**#*****************)

(* END OF SOLTEC VARIABLE DECLARATIONS *)
(Rkhkkhrhkkhkhhhhhhrhkhkhhhhhkhhhhhhkxrhhhrhhhh ek ukhhhkdkkhhhkkhnn)

Jul 18 16:24 1983 malnvar.i Page !

(**)

(* S 0LTESC T EST PROGRAM VARTIABTLES *)
(Frkkkk kR Rk kR AR AR R AR AR KRR RR R R Ak Ak ek kA bk hkhhkkkkx)

;ip ivdiparm
;op :vdioutparm
;iii1i :integer

(**)

Jul 18 16:24 1983 progclosing.i Page 1

; procedure programclosing
; begin (* program closing *)

{(* close output *) close (output)
i (* close error %) close (driver3)
;7 (* close segment *) close (segment)
s (* close plotdev *) close (plotdev)
end (* programclosing *)

Jul 18 16:24 19

do v Kk J e ok ok e e ek ok Ak

SOLTEC VDI D

Purpose:

Written by:

(
*
*
*
*
*
%
*
*
*
*
s
®
* Date: July 1
%

*

iprocedure writ
var thousands
hundreds,
tens,
coord,
ones @ 1in
ch i ch

begin
coord = c¢co
if coord >
begin
thousand
coord :=
ch := ¢h
writecha
end
else writec
if coord >
begin
hundreds
coord :!=
ch t= ch
writecha
end
else writec
i1f coord >
begin

83 soltecsubs.i Page 1

GRAPHICS KERNAL SYSTEM kdkkkddikkhitkhsi

river Subroutines

This set of procedures provide the
necessary subroutines to be called
from the SOLTEC VDI Driver.

Al so, the SOLTEC VDI Primitives
procedures are included, which call
these subroutines, and are in turn
called by the SOLTEC VDI Driver.

Gene Janovitz
983

AhkdkhkhkrhkhkhkhhhkrhhkhhkhhhkhdArhhhbhhhdhr bk hhhdhhbhbhhhkkhkdhhhkdx

ecoord (coordinate : integer);

teger;
ar;

ordinate;
999 then

8 := coord div 1000;

coord - (thousands * 1000);
r{thousands+48);
r {(plotdev,ch)

har (plotdev, 07);
99 then

1= coord div 100;

coord - {hundreds * 100);
r(hundreds+48);
r (plotdev,ch)

har {(plotdev, 07);
9 then

St N W N kN N N N X A K N %

Jul 18 16:24 1983 soltecsubs.l Page 2

tens := coord div 10;
coord := coord - (tens * 10);
ch := chr(tens+48);
writechar (plotdev,ch)
end
elge writechar (plotdev,”07);
if coord < 10 then
writechar {plotdev,chr{coord +48))
end ;

procedure pendown;
begin
writechar{plotdev, 17);
plotison = true
end; (* pendown *)

procedure penup;
begin
writechar (plotdev,”H");
plotison := false
end; (* openup *)

procedure returnpen;
begin
writechar (plotdev,
writechar (plotdev,
writechar (plotdev,
plotizson != false
end; (* returnpen *)

19
< = om
LY
(R]
s s w

procedure getpen;
begin
writechar (plotdev ,”H");
writechar (plotdev,”F7};
writechar (plotdev,”17);
plotison := false
end; (* pgetpen *#*)

procedure setcolor (colornum : integer);
begin
writechar{plotdev, F");
writechar(plotdev,chr{(colornum + 1 + ord(-07)));
solteccolor := colornun
end; {(* setcolor *)

Jul 18 16:24 19B3 soltecsubs.l Page 3

procedure setlinetype {(linetpnum : integer);
begin
writechar{plotdev, L")
writechar{plotdev,chr{linetpnum - 1 + ord(-07)));
solteclinetype := linetpnum
end; (* setlinetype *)

procedure setcharh {charhnum : integer);
begin
writechar(plotdev,”57);
writechar(plotdev,”07);
(* writechar(plotdev ,chr{charhoum - 1 + ord(-07)));
*)
soltecchrh := charhnum
end; (* setcharh *#*)

procedure soltecupdate (eomchr : char);
begin
writechar(plotdev ,eomchr)
(* writeline(plotdev) L]
end; (* soltecupdate %)

procedure movepen (xycoords: ipoint);
begin
writecoord (xycoords.ix)};
writechar{plotdev,”/");
writecoord (xycoords.iy);
writechar{plotdev, K7);
end; (* movepen *)

(**#**)

(* SOLTEC VDI PRIMITIVES *)
(Fhdkhhkhkhhhhkhhhhhhhkhhhhhdkhhhhhkhhhhdhhhhhhhkhhhmhhhkhhkhhhhihkdk)

procedure soltecclear;

begin
writecoord(0):
writechar(plotdev,” /7");
writecoord(0);

end (* soltecclear %) ;

procedure soltecmarker;

Jul 18 16:24 1983 soltecsubs.l Page 4

begin
(* Set the character size and slant *)
case typeofmark of
1: writechar (plotdev,” .);
2: writechar (plotdev, +7);
3: writechar (plotdev,”*7);
4: writechar (plotdev, 07);
5: writechar {(plotdev, x”)
end (* case typeofmark #*)
(* Reset the character size and slant *)
end ; (* soltecmarker *)

procedure soltectext {nofchars: integer;string: tstring);
var
i: integer;
begin
writechar({plotdev,”Z
writechar{plotdev,”5
writechar(plotdev, 0
writechar(plotdev,” ~
writechar(plotdev, (0~
writechar(plotdev, 37);
writechar(plotdev,”07);
for i := 1 to nofchars do
writechar {plotdev ,stringf{i])
end ; (* goltectext #*)

procedure scaletosoltec (num: integer;xyin: upolnts;var xyout:
upoints);

const
scalefactor = 12 (% 2800/32000=0.0875 or 1/11.428571 *) ;

var
i,n: integer;
begin
for 1t= | to num do begin
xyout[i].ix := xyin[i].1x div scalefactor;
gxyout[i] .1y := xyin[i].iy div scalefactor
end (* for 1 *)
end; (* scaletosoltec *)

procedure scaletext { xyin: ipoint;var xyout: ipecint);

const

Jul 18 16:24 1983 soltecsubs.i Page 5

scalefactor = 12 (% 2800/32000=0.0875 or 1/11.428571 *) ;
begin

xyout.,ix := xyin.ix div scalefactor;

xyout,ly := xyin.1ly div scalefactor
end; (* scaletext *)

(RhKEI IR IR IRk ARIA KR RR IR AR KRR AR ARk Rk Ak hhh Ak hhkkhhkkhXhkhkk)
(* INIT ROUTINE FOR THE SOLTEC VDI DRIVER *)
(RAK kTR RA KK IR IR R IR Rk Rk Ak ko khkhhhhhkkhhRhhkhhhkkhhkkhhhhkkk)
procedure initsoltec;
var
color: colorset;
begin
getpen;
penup;
soltecclear;
setcolor (Q);
setlinetype (1);
currlinecolor := 0
currtextcolor := 0}
currmarkercolor :=
typeofmark := 1 ;
soltecchrh := 50;
saltecchrdir := 0;
soltecchrw := 30;
soltecchrslant := 0;
gsoltecfont := 0

0;

end ; (* initsoltec *)

(***********************************i***************************)

(* END OF SOLTEC VDI PRIMITIVES AND SUBROUTINES *)
(hkhhFkhhhhakhhkkhhhhhkhhhhhrhhhhhhh bk khahhrhhhhdhhrhkhkhhhkhkn)

Jul 18 16:24 1983 soltecdriver.i Page 1

Rkkkkhkhhhokhkkk GRAPHICS KERNAL SYSTEM Ahkkhhkkr xR R RRAXEERK

procedure soltec

Purpose: This procedure is the VDI Driver for the SOLTEC
table PLOTTER 281, This procedure is executed
from the GKS through the Distributor.

(

*

*

*

*

*

*

*

*

* Input Parameters: cmd - VDI Command
* parm - The record of input parameters
* associated with the VDI command
*

*

*

*

*

*

*

*

%

*

*

Qutput Parameters: oparm - The record of output values
requested by the VDI command.

Procedure Calls:

Written by: Gene Janovitz
Date: July 1983

S ¥ N N O F ¥ N % N N N N N N o X N X N %

kkdhkkhhkhkhkhkhhhhhrhhhhhhhh kb hhhhhhbhhhbhhhhhdrhhhhrhkhhrhhid

procedure soltec («c¢md: vdicmdtype;
parm: vdiparm;
var oparm: vdioutparm);

const
nl = “(:10:)°
£ff = “(:12:)°
er = “{:13:}° ;
em = “(:25:)"
var

i, xcrd, yerd : integer;
icoord : ipoint;
ucoords: upolnts;

begin (* driver *)
with parm do
begin

case cmdcode of
vdiopen : begin getpen end;

Jul

18 16:24 1983 soltecdriver.l Page 2

vdiclose : begin returnpen end;
vdiclear : hegin soltecclear end;

vdiupdate : begin
gsoltecupdate (em)
end ;

vdiescape : begin (* not implemented *) end;

vdiline : begin
i1f plotison then penup;
if currmarkercolor <> solteccolor
then setcolor {currmarkercolor);
scaletosoltec (numpts, pts, ucoords);
movepen (ucoords{l1]);
pendown;
for 1 := 2 to numpts do
begin
movepen (ucoords([1]);
soltecmarker;
penup
end (* for 1 *)
end ; (* vdiline %)

vdimark : begin
if plotison then penup;
1f currmarkercolor <> solteccolor
then setcolor {(currmarkercolor);
scaletosoltec (numpts, pts, ucoords);
for 1 (=] to numpts do
begin
movepen {ucoords[i]);
sol tecmarker
end (* for 1 *)
end ; (* vdimark *)

vditext : begin
if plotison then penup;
i1f currtextcolor <> sBolteccolor
then setcolor (currtextcolor);
xerd := parm.textpos.ix;

Jul 18 16:24 1983 soltecdriver.i Page 3

yerd := parm.textpos.iy;
scaletext (textpos, lcoord);
movepen {(icoord);
soltectext {numchar, string)
end; (* vditext *)
vdigdp : begin (* not implemented *) end;
vdicharh : begin (* not implemented *) end;
vdicharupv : begin (* not implemented *) end;
vdilinetype : begin (* not implemented *) end;
vdilinewidth : begin (* not implemented *) eand;
vdilinecolor : begin
currlinecolor := color
end; (* vdilinecolor #*)
vdimarktype : begin
typeofmark := kind
end; (* vdimarktype *)
vdimarksize : begin (* not implemented *) end;
vdimarkcolor : begin
currmarkercolor := color
end; (* vdimarkcolor *)
vditextfont : begin (* not implemented *) end;
vditextcolor : begin
currtextcolor := color

end; (* vditextcolor *)

vditextpath : begin (* not implemented *) end;

vdiinlocator : begin (* not implemented #*) end;
end ; (* case cmdcode *)
end ;
end ; (* soltec *)

(**)

(* END OF THE SOLTEC VDI DRIVER *)
[REHAARRIK KKK RRA KRR I AR R IRk A AR Rk k ke hkA Ak hk ok hkhkhhrk)

Jul 18 16:24 1983 main,.i Page 1

begin (* main *)
programheading;
(Kkhmkhihnkhhdkhhhhhhrhhhhhhhhdhdhhhrdhhhkhkhhhhhhkhnhhhhanhdkhhkdkkkokd)

(* TEST ROUTINE FOR THE SOLTEC VDI DRIVER *)
(hhkkkhdkhkkhhdhkhhhhhhrhrhhhhhhhhkhhhhkhhhhhhhhhhhhhhhhhkhkhhhrhk)

soltec{vdiopen,ip,op); (* Open Worksctation *)
soltec(vdiclear ,ip,op); (* Clear Display *)

ip.color := 7; (* White *)
soltec(vdimarkcolor,ip,op);
soltec(vdilinecolor,ip,op);
soltec{vditextcolor,ip,op);
ip.color := 4; (% Red *)

ip.size := 160;
ip.height := 160;

ip.upvec.ix := 0;
ip.upvec.iy := 1

ip.path.ix := 1;
ip.path.iy := 0;
ip.indev :=
ip.mode :

ip.numpts := 3;

i11i := Q;

repeat

begin

ip.ptsfl].ix := 111i1i;
ip.pts[l].1ly 0;
ip.pts[2].ix := 11i1;
ip.pts[2].iy 1= 1111
ip.pts[3].ix := 0;
ip.pts[3).1iy := iiii'
soltec(vdiline sip,op);
ii{i1f := 144141 + 100

end

until {114ii > 2800;
soltec(vdiupdate,ip,op);

soltec{vdiclear,ip,op);

Jul 18 16:24 1983 main.il Page 2
ip.kind := 1;
soltec(vdimarktype,ip,op);

L e SR LR ST)
programclosing

end (* main %)

Jul 18 16:24 1983 pascomp Page 1

case §# in
1y 1€ /bin/test -f $l.c
then echo
el se
echo "File “$l1.c¢” not found, in this directory "
exit 1
fi
echo “* processing includes
ce =P =I"/usr/srec/gks" $l.c
mv $1.1 $1.p
echo “* processing includes complete
echo “* compiling -
fusr/src/gks/Tool/pas32 $1 SO > list
mv a.out $1.out
grep "PASS" list
pasxref $§l.p > $§l.xref
echo “* compile complete”;;

*) echo “incorrect number of parameters
echo “R%kkdddddkhkhhhhdddhhhddhdhkikhddddkkn”

-

-

-

echo “* pascomp fnl L
echo "*==ms=s=sssszzzsss=zzzsszassss=zzak”
echo “* fnl - file to compile, *
echo 7% must be fnl.c extension *~
echo 7% *

echo “* outputs listing to file "ldist"™ *~
echo “kXhhkkhkhkkhhkhbkhhhdk kR ok hhhhkkhhhkh ~

- -

echo 53
esac

Jul 18 16:24 1983 rungks Page 1

dev="tey"
filesg="-f1 $dev "
if /bin/test $# -eq 0]
then
aceho “Rkkk kR kX hahAAAhr AR ARRARAAA KKK ARARARA LA~

echo “* rungks devl] dev2 dev3 filel fille2 *~
echo “%kkkkdkhhkhhhhhhkkhhhhhk kAR hhkhkkhhhkk~

echo “* to run the gks system at this time *~

echo “* you must speclfy the devices and *
echo “* files to be used. Following is a L
echo “* list of the devices that are *
echo "% defined: L
echo 7* wis - for output wis to screen *~
echo 7% chro - output graphics to the *~
echo “%* chromatics * -
echo 7% plot - output graphics to the *°
echo “%* SOLTEC plotter *
ccho “XAkFhARAAARk kR AR KA KRR AR AR AR KR A Ak kk <
exit 1

fi

flag=1

while /bin/test $lw != w
do

case 51 in
wis);;
chro) files="§files -£f3 /dev/ttyl9" ;;
plot) files="§files —-f4 fdev/tty25" ;
-mo) shift;files="$files -£f5 §1";
-mi) shift;files="¢§files -f6 S$1":
pcl) files="§files -f7 /dev/ttyl9" ;;
pe2) files="8files -f8 /dev/ttyls" ;:
tvirl) files="§files -f9 /dev/tty28" :;
tvir2) files="8files ~-fl0 /dev/ttyl7" ;;
*) echo "unknown device: $1"; exit 1;;

we
ws

ws

esac
shift
done
comp.out -k190k S$files

Jul 18 16:24 1983 comp.c Page 1

& U
begin prefix definition

_______________________________ *)

#include "Pas32/preprogram.i™

N S ——
begin constdeclarations

_______________________________ *)

#include "Pas32/preconst.i”

#include "Glob/gksconst.i"

#include "Scanner/scancounst.i”

f*#include "meta.const.i"*/

(¥ e e e
begin type declarations

_______________________________ *)

#include "Pas32/pretype.i"

#include "Glob/gkstype.il"

#include "Scanner/scantype.i"

{(* finclude "vtypes.i" *)

#include "soltectypes,.i”

R
begin variable declarations

_______________________________ *)

#include "Pas32/prevar.i”

#include "Glob/gksvar.i"

#include "Scanner/scanvar.i"

(* finclude "Chro/chrovar,.i" #*)

#include "soltecvar.i"

#include "mainvar.i"

/*#include '"wmeta,var.,i"*/

Lo s o i s e
begin pas32 1o routines

_______________________________ *)

#include "Pagl3l2/get.i"

#inelude “"Pas32/put.i"

#include "Pas32/eaf.i"

#include "Pas32/eoln.i"

#include "Pas32/writechar.i"

#include "Pas3d2/writeline.i"”

#1nclude "Pas32/shortmsg.i"

ffinclude "Pas32/longmsg.i"

#ineclude "Pas32/regularumsg.i”

#include "Pas32/writeint.i"

#include "Pag32/writereal ,i"

#include "Pas32/readchar.i”

#include "Pas32/readline.i”

Jul 18 16:24 1983

#include
ffinclude
#ineclude
#finclude

(*

comp.c Page 2

"Pas32/open.i"
"Pas32/close.i"
"Pas32/progheading.i"
"progclosing.i"

— e = s e = —— e —n -

gks functions and procedures

e e e

Global GKS procedures

(*#include
(*#include

(*

{(*#include
(*#include

(*

(*#include
(*#include
(*#include
(*ffinclude
(*#include

(*

(*#finclude
(*#include
(*#include
(*#include
(*#include

(*

(*#include
(*#include
(*#include
(*#include
(*#include
(*finclude
(*#include
(*#include
(*#include
(*#include

Wi procedures

Line

Marker

View/Window

*)
*)

——

"Gks/clipit.i"*)
"Gks/errorhandler.i'"*)

*)

"Gks/Wis/wiline.1"*)
"Gks/Wis/wimarker.,i1'"#%*)

*)

"Gks/Line/drawline.i"*)
"Gks/Line/defline.i"*)
“"Gks/Lline/ingline.i"#*)
"Gks/Line/setline.,i"*)
"Gks/Line/qryline,i"*)

*)

"Gks/Marker/drawmarker ,i"%*)
"Gks/Marker/defmarker ,1i"%)
"Gks/Marker/inqmarker .i"*)
"Gks/Marker/setmarker.1"*)
"Gks/Marker/qrymarker .,i"*)

*)

"Gke/View/fstoview.i"*)
"Gks/View/stowindow.i"*)
"Gks/View/stoview.i"#*)
"Gks/View/setwindowind .1i"%)
"Gks/View/qrywindow.1"*)
"Gks/View/qrywindowind .1"*)
"Gks/View/qryview.1"%*)
"Gks/View/fdefwsview.i"*)
"Gks/View/defwswindow.i"*)
"Gks/View/defwsview,i'"*)

Jul 18 16:24 1983 comp.c Page 3

(*#include "Gks/View/inqwswindow.i"*)
(*#include "Gks/View/ingwsview.i"*)

(* drivers *)
[*#include "chrodriver.i"*/

(* 1nit gks and ws procedures *)

(*#include "Gks/initws.,i"*)
(*#include "Gks/initgks,i"#*)
/*#include "metafile.i"*/
[/*#include "distdriver.i"*/
/*#include "Gks/distributor.i1"*/
/*#include "interpret,i"*/
#include "soltecsubs.1"

#include "solteedriver.i"

(B e ce e m e m s e s e m————
begin scanner definition

_______________________________ %)

/*#include "scanner,i'"*/

(% —— e e e e
begin main program

_______________________________ *)

#finclude "main.i"

Jul 18 16:24 1983 gksmalin.i Page 1

; begin {* main ¥)
programheading
inltwstables
initgkstables
inlitmetaocut(mofile)

nd (* main *)

D ws ws wse

A VDI DRIVER FOR SOLTEC PLOTTERS

by
EUGENE JANOVITZ

B.E,, Pratt Institute of Brooklyn, 1973

AN ABSTRACT OF A MASTER”"S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Sclence

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Abstract

The Graphical Kernel System (GKS) provides a set of
functional specifications for cemputer graphics programming
which can be used by the majority of applications that
produce computer generated plctures. A graphies device
driver represents that portion of the graphics systenm
software which translates commands and data from the
device~independent Virtual Device Interface (VDI) into a

form required by a particular input/output medium.

Expansion and further definition of these two
international standards, GKS and VDI, i1s an ongoling
activity., Ambiguity and some inconsistencies present in
both standard documents, remain to be worked out. This
paper, after introducing the existing graphics standards,
discusses the GKS and the VDI standards on which this

project is based on.

Each device driver is dependent on the respective
physical device, hence the hardware and software
capabilities of the SOLTEC 281 Plotter are then discussed
rather in detail, Finally, the design decisions made by the
author, as problems were encountered during implementation
of this driver, are presented. In conclusion, the author

presents the results of this project.

