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Abstract 

Rabbit hemorrhagic disease virus (RHDV) is a pathogenic lagovirus in the Caliciviridae 

family, which is associated with ongoing outbreaks in the US since 2020. Although vaccines are 

available, there is no specific treatment against RHDV. Lagovirus-encoded 3C-like protease 

(3CLpro) is a promising therapeutic target as it is critical for virus replication. In chapter 2, we 

identified 3CLpro inhibitors that are effective against pathogenic lagoviruses in vitro that could be 

developed into broad-spectrum antivirals to target multiple lagoviruses. 

Feline infectious peritonitis virus (FIPV) is a virulent feline coronavirus that causes a fatal 

systemic infection in cats. FIPV also encodes a 3CLpro, which is essential for the replication of 

the virus. We passaged FIPV in the presence of 3CLpro inhibitors to investigate the generation of 

antiviral resistance in chapter 4. Our results showed that mutant FIPV reduce the susceptibility to 

3CLpro inhibitors, which can be recovered by the addition of P-gp inhibitors in cell culture. 

Therefore, the role of P-gp activity in the generation of resistance to 3CLpro inhibitors in FIPV 

needs further investigations.  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of 

COVID-19 pandemic. In chapter 6, we studied the entry of SARS-CoV-2 in cell lines expressing 

angiotensin-converting enzyme 2 (ACE2) from different animal species using a pseudovirus 

system. We identified that all the tested animal ACE2 receptors supported the entry of 

pseudoviruses at various levels. Combinations of spike mutations found in variants had various 

effects on the entry of pseudoviruses into ACE2 expressing cells. This study contributes to the 

understanding of the SARS-CoV-2 host range and the effect of spike mutations on the entry of the 

virus into human and animal ACE2 expressing cells.   
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Chapter 1 - Review of Literature on rabbit hemorrhagic disease 

viruses 

 

 1.1 Lagoviruses 

Lagoviruses are a group of viruses that infect lagomorphs and belong to the family Caliciviridae. 

The name Caliciviridae derives from the cup-like (calyx) surface of the virions, and the family 

comprises of viruses that can cause a wide array of diseases in multiple animal species including 

mammals. However, no zoonotic transmission has been reported in caliciviruses so far. Notable 

caliciviruses include human noroviruses that cause gastroenteritis, murine noroviruses that causes 

encephalitis or gastroenteritis in mice, feline caliciviruses causing upper respiratory infections or 

systemic disease in cats, and lagoviruses infecting rabbits and hares. The lagovirus species include 

pathogenic and non-pathogenic lagoviruses. Rabbit hemorrhagic diseases viruses (RHDV) and 

European brown hare syndrome viruses (EBHSV) are pathogenic lagoviruses, whereas rabbit 

caliciviruses (RCV) and hare caliviruses (HaCV) are considered non-pathogenic lagoviruses.  

 

 1.2 Classification of lagoviruses 

The nomenclature of lagoviruses and the placement on the phylogenetic tree were based initially 

on the pathogenicity, antigenic properties, and the host of the virus strains. However, naming the 

same variants differently, frequent recombination between strains, cross-species infection, and the 

lack of a cell culture system for serotyping and neutralization assays further complicated this 

nomenclature schemes. This caused difficulty in distinguishing between subtypes. Thus, a new 

nomenclature system was proposed by Le Pendu and colleagues based on the gene sequences of 



2 

major capsid protein VP60 (1) (Fig. 1.1). According to this proposed nomenclature system, 

Lagovirus europaeus is the virus species within the Caliciviridae family that infects lagomorphs. 

There are two genogroups consisting of lagoviruses, GI and GII (1). GI group is sub-divided into 

genotypes indicated as GI.1, GI.2, etc. (1). Letters, such as GI.1a, denote the subgroups within 

genotypes. GII is subdivided into genotypes GII.1 and GII.2 consisting of HaCV (1). The new 

nomenclature system also proposed the strain name to be written in order of the genogroup, 

genotype, the Latin name of the species from which the virus was first detected, the country where 

it was first detected, year of isolation and the identification of the strain from the submitting 

laboratory (1). The given example for this would be as follows, Lagovirus europaeus/GI.1d/O 

cun/FR/2003/03–24 (1).  
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Figure 1.1 Classification of lagoviruses 

The proposed classification of lagoviruses according Le Pendu and colleagues (1). Lagovirus 

europaeus is the virus species within the Caliciviridae family that infects lagomorphs. Two main 

genogroups GI and GII further divide into several genotypes, and these genotypes subdivide into 

variants. GII.2 genotype consist of hare caliciviruses. 

 

 1.3 Genome organization of lagoviruses 

The characterization of lagovirus genome has been mainly investigated using GI.1/RHDV strains. 

Lagoviruses were initially categorized as a small, non-enveloped, single stranded RNA virus 

showing icosahedral symmetry with a diameter of 33-37nm (2–6). Later, it was further 

characterized as a calicivirus (2,4) with a 7-8 kb long RNA genome (7,8). Lagovirus genomes 

differ from other caliciviruses by its two open reading frames (ORFs), distinctly based on the 

ORF1 region that also contains the major capsid protein VP60 (Fig. 1.2). The ORF1 of the genome 
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encodes a single major polypeptide of 63 kDa (2,4) which is processed into non-structural proteins 

and the major capsid protein VP60 (7,9) by the virus 3C-like protease (3CLpro) (10). The ORF2 

encodes a small (10 kDa) minor capsid protein known as VP10 (11,12). VP10 interacts with VP60 

and viral RNA, thereby encapsidating the viral genome (12). The GI.1/RHDV genomic RNA and 

subgenomic RNA that encodes structural proteins are covalently linked to the viral protein VPg at 

the 5’ end (7). GI.2/RHDV2/b, EBHSV (13,14), RCV (15) and HaCV (16) also have the same 

genomic organization and characteristics as GI.1/RHDV.  

 

 

Figure 1.2 Genome organization of lagoviruses 

Lagoviruses contain an RNA genome composed of two ORFs: ORF1 that encodes a large 

polyprotein containing non-structural proteins and the major capsid protein, and ORF2 encoding 

the minor capsid protein. The polyprotein translated from ORF1 is proteolytically processed by 

3CLpro. The confirmed 3CLpro cleavage sites in the polyprotein encoded by ORF1 are indicated 

as red arrows, and 3CLpro is highlighted in black.  
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 1.4 3CLpro of lagoviruses 

A putative protease region was first identified upstream of the RNA polymerase region in the 

GI.1/RHDV genome (7,17). Further characterization showed that it is functionally similar to 

picornavirus 3C protease while its size correlated with that of picornavirus 2A protease (10). The 

GI.1/RHDV 3CLpro specifically cuts GI.1/RHDV polyprotein substrates both in cis and trans 

conformations (Fig. 1.2) (10). The predicted catalytic triad was confirmed as H27, D44 and C104, 

and these residues are crucial for lagovirus 3CLpro activity (10,18). Generally, GI.1/RHDV 

3CLpro shows a preference for E, Q or D at P1 site and G, A or S (larger side chain containing 

substrates) residues at P1’ of the polyprotein substrate (12,19,20). No experimental data exists 

regarding the ability of the EBHSV 3C-like protease to cleave the ORF1-encoded polyprotein. 

Nevertheless, comparison with GI.1/RHDV sequence indicated that multiple 3CLpro cleavage 

sites are conserved among EBSHV strains (13,14). Apart from polyprotein processing, 

GI.1/RHDV 3CLpro may also play a role in inhibition of IFN expression in host cells by cleaving 

the interferon promoter stimulated 1 (IPS-1) protein (21).  

 

 1.5 Rabbit hemorrhagic disease viruses 

 

 1.5.1 GI.1/Rabbit hemorrhagic disease virus (RHDV)  

The oldest record of GI.1/RHDV dates back to rabbit sera collected in 1955 from different regions 

in the UK (22). The first description of GI.1/RHDV was as a causative agent of acute viral hepatitis 

or viral hemorrhagic fever in rabbits (23). However, GI.1/RHDV became more recognized in 1984 

after the major outbreak in China which spread among Angora rabbits imported from Germany 

(3,22,24). Subsequent GI.1/RHDV outbreaks in rabbits (Oryctolagus sp.) were reported from 
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multiple continents across the world. GI.1/RHDV received more attention in the 1990s when the 

GI.1/RHDV strain Czech V351 virus  was used in Australia and New Zealand as a biocontrol agent 

(32–34). However, rabbits slowly became resistant to the virus and the virus eventually established 

in the Australian continent (32–34). In the US, GI.1/RHDV was first reported in a rabbit farm in 

Iowa in 2000 (35). 

 

GI.1/RHDV can be divided into several subtypes, from GI.1a to GI.1d (36–39). The genetic 

differences between these subtypes are mainly clustered within the major capsid protein VP60 

(40), where recombination between strains occur frequently (41). Recombination may also occur 

rarely in regions of non-structural genes, which could still impact evolution, epidemiology and 

diversity of GI.1/RHDV (42,43). High level of nucleotide homology (89-100%) within GI 

genotype has been reported for GI.1/RHDV (44,45), but the mortality and morbidity rates alter 

with the strains (46). 

 

Transmission of GI.1/RHDV occur predominantly during the breeding season of rabbits (47) and 

the virus spread through the fecal-oral route (30). Mosquitoes and insects such as fleas and bush 

flies were also suggested as mechanical vectors (11,48,49). Young rabbits (less than 8 weeks old) 

are rarely susceptible to the disease but can act as carriers (47). The virus infects both hepatocytes 

and macrophages, and macrophages are implicated in the systemic spread of infection (50). The 

GI.1/RHDV associated disease is known as rabbit hemorrhagic disease (RHD). An incubation 

period of 48-72 hours is followed by an infection period of up to 2 days where the infected animal 

remains either asymptomatic or show signs of epistaxis associated with the peracute form of RHD 

(3). The peracute form that leads to sudden death with no clinical signs is the predominant form 
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of RHD (51,52). The acute form of RHD is also common where rabbits may display signs of 

anorexia, respiratory distress, hemorrhage, and epistaxis before death (51,52). Necropsy studies 

have indicated hemorrhage mainly in the liver, spleen, epistaxis, digestive system and kidneys 

(3,28,29) as a result of terminal disseminated intravascular coagulopathy. Furthermore, the most 

common pathological finding in the infected and dead rabbits is acute liver necrosis (53). The less 

common subacute form results in similar but milder clinical signs than the acute form and the 

infected rabbits usually survive (51,52). During outbreaks, a low percentage of rabbits may 

experience the chronic form of RHD where they may show signs of severe jaundice, anorexia and 

lethargy for 1-2 weeks before death (54,55). Rabbits that survive subacute or chronic infections 

may develop antibodies that confer protection upon re-infection (51,54). Mortality and morbidity 

rates of natural infections could reach up to  80-99.5% in domestic rabbits (27,28) or around 45-

55% in wild rabbits (56,57). Experimental infection of the virus results in mortality rates of 60-

100% in infected rabbits within 27-96 hours post infection (5,27,58–60). Prior infection with 

antigenically similar non-pathogenic rabbit caliciviruses may also provide cross protection in 

rabbits against GI.1/RHDV infection (61,62).  

 

 

GI.1 tends to be highly species-specific and infects wild and domestic rabbits (Oryctolagus sp.). 

However, GI.1/RHDV and EBSHV antibodies have been detected in free ranging red foxes (63,64) 

and predators of rabbits such as feral cats (65). It is possible that this could be antigenic reactions 

after a meal. GI.1/RHDV strains were also identified in wood mice (A. sylvaticus), and Algerian 

mice (M. spretus) that were in the vicinity sharing habitats during GI.1/RHDV outbreaks in rabbits 

(66). Experimental inoculation of kiwis also generated serological response (67), while 4-6 week 

old piglets showed low level of RNA replication and low antibody titers (68). However, there are 
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no indications of natural GI.1/RHDV infections in these species. GI.1/RHDV does not infect or 

cause disease in humans (69). Yet, RHD is a model for acute fulminant liver disease in humans as 

RHDV related necrotic and apoptotic mechanisms can provide further insight in to pathogenesis 

of liver disease in humans and other species (70).  

 

 1.5.2 GI.2/RHDV2/b  

A new variant of GI.1/RHDV associated with high mortality rates in domestic and wild rabbit 

populations were first reported from France in 2010 (71). This new variant was classified as 

GI.2/RHDV2/b, and it quickly became dominant over GI.1/RHDV in multiple regions of the 

world, including Europe and Australia (72–77). The GI.2/RHDV2/b viruses are recombinants 

consisting of non-structural genes from pathogenic or benign GI strains and orphan capsid regions 

(78–81). 

 

GI.2/RHDV2/b causes fatal hepatitis in both wild and domestic rabbits similar to GI.1/RHDV 

associated RHD. The pathological findings resemble those of RHD and include epistaxis, necrosis 

or apoptosis, pulmonary congestion, edema, and acute renal tubular injury (82,83). Likewise, 

peracute form is seen most often where the affected rabbits die without any signs or display 

reduced appetite and lethargy for a short period immediately prior to death (83). The mortality 

rates associated with GI.2/RHDV2/b may vary depending on the virus isolate (76,84,85) and other 

associated factors. GI.2/RHDV2/b infections have been reported less in adult rabbits (76) in 

contrast to GI.1/RHDV where age plays a major role (86). However, unlike in GI.1 infections, 

young rabbits are highly susceptible to disease GI.2/RHDV2/b with high mortality (50%) 

especially in new born and baby rabbits (84,85). One underlying reason could be the inefficient 
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innate immune response against GI.2/RHDV2/b in young rabbits, that does not prevent the 

development of fatal necrotic hepatitis (85,87). However, the mechanism underlying the disease 

susceptibility between GI.1 vs GI.2 has not been understood.  

 

GI.2/RHDV2/b can be  introduced into rabbit populations during the annual breeding cycles where 

extensive replication occurs in young rabbits, causing increased shedding of the virus, clinical 

disease, and mortality (88). The virus laden carcasses further promote virus transmission leading 

to outbreaks and eventual removal of the susceptible rabbit populations (88). Experimental 

infection of GI.2/RHDV2/b has shown poor seroconversion, persistence of the virus, and shedding 

of infectious virus particles by asymptomatic rabbits (89), indicating another mode of virus 

transmission via carriers. GI.1 and GI.2 RHDVs are antigenically different, thus, GI.1/RHDV 

infected rabbits or rabbits receiving vaccination against GI.1/RHDV do not develop immunity 

against GI.1/RHDV2 (90). 

 

There are reports of GI.2/RHDV2/b infection in hare species. These hare species include mountain 

hares (Lepus timidus), Sardinian Cape hares (Lepus capensis mediterraneus), Italian hares (Lepus 

corsicanus) and European brown hares (61,91–94). The infected mountain hares (Lepus timidus) 

showed lesions and tissue distribution similar to EBHSV that infects hares (Lepus timidus) (85). 

Co-infection of EBHSV and GI.2/RHDV2/b has also been reported (93). Additionally, infectious 

GI.2/RHDV2/b virus was also detected in the carcasses of a Mediterranean pine vole (Microtus 

duodecimcostatus) and two white-toothed shrews (Crocidura russula), that were able to cause 

experimental infections in rabbits (95). GI.2/RHDV2/b has also been detected in a diseased Alpine 

musk deer (Moschussifanicus) that indicated signs of hemorrhage and peracute disease (96) and in 
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a Eurasian badger (Meles meles) (97). However, it is unknown if these animals may serve as 

reservoirs for the virus in the wild.  

 

The initial detection of GI.2/RHDV2/b in North America was in Canada in 2016 (98) followed by 

reports of sporadic infections in domestic and feral rabbits from Ohio in 2018 (99), and 

Washington State in 2019 (100). During the most recent outbreaks across the US, the virus was 

first detected in March 2020 in New Mexico and subsequently spread through Arizona, Texas, 

Colorado, Nevada, California, Utah, and eventually across the country. These most recent 

outbreaks starting from 2020 were the first time that the disease was detected in wild rabbits and 

hares in the United States. In addition to the rabbits of European origin (Oryctolagus cuniculus), 

desert cottontail rabbits (Sylvilagus audubonii), mountain cottontails (Sylvilagus nuttallii), black-

tailed jackrabbits (Lepus californicus), and antelope jackrabbits (Lepus alleni) are among the 

lagomorph species that were affected in the US (82).  

 

 1.6 GII.1/European brown hare syndrome virus (EBHSV)  

Hares are a minor pest species, and their economic and agricultural impacts are less well 

understood. However, the increasing population numbers have contributed to them being 

considered as an undesirable ‘sleeper species’ (61). EBHSV infect hare species and has been 

circulating in Europe since 1980s (101–103) eventually spreading into other countries. Virions of 

EBHSV show the typical morphological and genomic characteristics of the Caliciviridae family 

(13,14,54,101,103). The VP60 based homology within strains of EBHSV are high (92-100%), 

while the homology between G1.1/RHDV and EBHSV strains are 63-69.4% (13,45).  
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EBHSV is placed in a different branch within lagoviruses (101). Still, the clinical and pathological 

manifestations of European brown hare syndrome (EBHS) are remarkably similar to RHD despite 

the genetic and serological differences (104). EBHS is uncommon in young hares but common in 

adults (104) similar to GI.1/RHDV disease in rabbits. The infected hares usually display the 

peracute form of disease, where the animals show signs of lethargy and depression a few hours 

before sudden death (104). Histopathological changes of EBHS include necrotizing hepatitis in 

hares, however, disseminated intravascular coagulation or hemorrhage occur only rarely (105). 

EBHSV infects different hare species including mountain hares (Lepus timidus) and European 

brown hares (Lepus europaeus) (106,107). Although evidence of natural cross-infection of 

EBSHV between hares and rabbits is rare, cross-infection can be achieved experimentally (30) and 

has been detected in the field. One instance is the susceptibility of Eastern cottontail (Sylvilagus 

floridanus) rabbits to EBHSV. Eastern cottontails develop and EBHS-like disease, but is 

considered a dead-end host (108). 

 

 1.7 Non-pathogenic lagoviruses 

Rabbit calicivirus (RCV) is a non-pathogenic lagovirus (15) which may have played an important 

role in the evolution of  RHDV strains (54,109). The genomic organization of RCV is the same as  

RHDV (15) and is more homologous to GI.1/RHDV (~91.5% amino acid identity) than to EBHSV 

(~75% amino acid identity) (15). RCV infection is asymptomatic and does not result in 

histopathological lesions. Interestingly, the tissue tropism of RCV is in the intestines unlike in 

RHDV where the virus shows tropism towards liver or spleen (15,110,111). This tissue tropism is 

evident in classic RCV strains such as GI.3/06-11/RCV-E1 (71), Michigan rabbit calicivirus 

(MRCV) (110) and GI.4/ RCV-A1 (111). RCV and GI.1/RHDV also share similar antigenic 
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epitopes, thus, rabbits pre-exposed to RCV may develop protection against GI.1/RHDV (15). 

However, RCV infection does not seroconvert or protect hares from EBHSV infections (15). 

 

Hare calicivirus (HaCV) is another nonpathogenic lagovirus, which causes asymptomatic 

infections in hares. The main site of replication appears to be the intestine similar to RCV 

(112,113). The first full-genome sequence of a hare calicivirus shows the same genomic 

organization of other lagoviruses, and is highly homologous to EBHSV (~79% nucleotide identity) 

(16) indicating a possible role in the evolution of EBSHV.   

 

 1.8 Vaccines and therapeutics against lagovirus infections 

Vaccines for RHDV are licensed to use in European countries where the virus is endemic. 

Recently,  a  recombinant GI.2/RHDV2/b subunit vaccine was developed by Medgene in the US, 

which was authorized for emergency use by the United States Department of Agriculture (USDA) 

(114).  

 

Lagoviruses do not grow in cell culture and many of the attempts to culture the virus in primary 

rabbit kidney cells and primary rabbit hepatocytes have failed (5,115). This has greatly hindered 

the efforts to study RHDV in cell culture and the discovery of antivirals against RHDV. A few 

studies investigated the effect of antiviral compounds against RHDV. Non-nucleoside inhibitors 

(NNIs) such as JTK-109, TMC-647055, Beclabuvir, and PPNDS have been tested against 

recombinant lagovirus RdRp in vitro (116,117). A cocktail consisting of baicalin, linarin, icariin, 

and notoginsenoside R1 (BLIN) flavonoids was shown to improve survival and alleviate hepatic 

and oxidative injury in rabbits experimentally infected with G1.1/RHDV (118). Although 
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decreased RHDV capsid protein expression was observed in BLIN treated experimentally infected 

rabbits, direct antiviral activity of these compounds has not been tested so far (118). In summary, 

there are no licensed therapeutics for lagovirus diseases, and no previous reports are available on 

the effects of compounds targeting 3CLpro of RHDV so far.   
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Chapter 2 - Potent protease inhibitors of highly pathogenic 

lagoviruses: Rabbit hemorrhagic disease virus and European brown 

hare syndrome virus 

 

 2.1 Abstract 

Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are highly 

contagious diseases caused by lagoviruses in the Caliciviridae family. These infectious diseases 

are associated with high mortality and a serious threat to domesticated and wild rabbits and hares, 

including endangered species such as riparian brush rabbits (Sylvilagus bachmani riparius). In the 

United States (U.S.), only isolated cases of RHD had been reported until Spring 2020. However, 

RHD caused by GI.2/rabbit hemorrhagic disease virus (RHDV)2/b was unexpectedly reported in 

April 2020 in New Mexico and has subsequently spread to several U.S. states, infecting wild 

rabbits and hares and making it highly likely that RHD will become endemic in the U.S. Vaccines 

are available for RHD; however, there is no specific treatment for this disease. Lagoviruses encode 

a 3C-like protease (3CLpro), which is essential for virus replication and a promising target for 

antiviral drug development. We have previously generated focused small-molecule libraries of 

3CLpro inhibitors and demonstrated the in vitro potency and in vivo efficacy of some protease 

inhibitors against viruses encoding 3CLpro, including caliciviruses and coronaviruses. Here, we 

report the development of the enzyme and cell-based assays for the 3CLpro of GI.1c/RHDV, 

recombinant GI.3P-GI.2 (RHDV2/b), and GII.1/European brown hare syndrome virus (EBHSV) 

as well as the identification of potent lagovirus 3CLpro inhibitors, including GC376, a protease 

inhibitor being developed for feline infectious peritonitis. In addition, structure-activity 
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relationship study and homology modeling of the 3CLpro and inhibitors revealed that lagovirus 

3CLpro share similar structural requirements for inhibition with other calicivirus 3CLpro.  

 

This chapter is a published article (119) and can be accessed through the following links. 

  

Citation - Perera, K. D., Johnson, D., Lovell, S., Groutas, W. C., Chang, K.-O., & Kim, Y. (2022). 

Potent Protease Inhibitors of Highly Pathogenic Lagoviruses: Rabbit Hemorrhagic Disease Virus 

and European Brown Hare Syndrome Virus. Microbiology Spectrum, e0014222. DOI: 

https://doi.org/10.1128/spectrum.00142-22 

 

Other accessible links to this publication 

PMCID: PMC9430360  

https://journals.asm.org/doi/10.1128/spectrum.00142-22 
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Chapter 3 - Review of Literature on Coronaviruses 

 

 3.1 Classification of coronaviruses 

Coronaviruses are RNA viruses that infect a wide range of species. As members of the family 

Coronaviridae in the group Nidovirales, coronaviruses display the characteristic features of 

Nidoviruses. These features include large polyproteins (120) and characteristic nested sub-

genomic mRNAs that are produced during replication (121,122). Coronaviruses are further divided 

into four genera within the subfamily of Coronavirinae: alpha, beta, gamma and delta (Fig. 3.1). 

Of these genera, alpha and beta coronaviruses mainly consist of viruses that are known to infect 

humans. Alpha coronaviruses include human coronaviruses 229E and NL63, and viruses that 

infect animals such as feline coronavirus (FCoV), ferret coronavirus (FRCoV), mink coronavirus 

(MCoV), canine coronavirus (CCoV), porcine epidemic diarrhea virus (PEDV), transmissible 

gastroenteritis virus (TGEV) and many bat coronaviruses including HKU8, and HKU10. Beta 

coronaviruses that include severe acute respiratory syndrome coronaviruses (SARS-CoV) and 

SARS-CoV-2 received worldwide attention during the recent COVID-19 pandemic. Beta 

coronaviruses also include other human coronaviruses that infect the respiratory tract such as 

Middle East Respiratory Syndrome coronavirus (MERS-CoV), HKU1, and OC43, and animal 

coronaviruses such as murine hepatitis virus (MHV) and bat coronaviruses such as HKU4, HKU5 

and HKU9. A majority of gamma coronaviruses such as infectious bronchitis virus (IBV) infect 

avian species (123). Delta coronaviruses include a variety of avian coronaviruses (124) and porcine 

coronaviruses such as HKU15 (125), and some porcine delta coronavirus strains that may also 

infect humans (126).  
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Figure 3.1 Classification of coronaviruses 

Classification of the Coronaviridae family by the International Committee on Taxonomy of 

Viruses (127).  

 

 3.2 Genome organization of coronaviruses 

Coronaviruses are the largest among RNA viruses and the virions display a characteristic ‘corona’ 

with its spike proteins under the electron microscope (128–130). The ~ 30kb long positive sense, 

single stranded, non-segmented RNA genome of coronaviruses contains ~10 ORFs (131) (Fig. 

3.2). Of these, ORF1 is the largest and encodes a larger ORF1a and a comparatively smaller 

ORF1b. ORF1a encodes the polyprotein pp1a and ribosomal frameshifting between ORF1a and 

ORF1b results in a larger polyprotein pp1ab (128,132–134). The polyprotein ppla may contain 1-

11 non-structural proteins and pp1ab may consist of 1-16 non-structural proteins depending on the 

genera. These polyproteins are processed into non-structural proteins by endogenous virus 

proteases, papain-like protease (PLpro) and the main protease or 3C-like protease (3CLpro). The 

remaining ORFs encode the structural proteins, spike (S), envelope (E), membrane (M) and 
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nucleocapsid (N) (128,135). S protein of coronaviruses are trimeric glycoproteins on the virion 

surface that mediate entry into the host (136). The heavily phosphorylated N proteins form the 

nucleocapsid and binds to viral RNA, while the small M proteins interact with the N proteins 

(130,137,138). The E proteins form the envelope, and E protein of SARS-CoV is reported to have 

ion channel activity (139). The arrangement of accessory genes within the genome and their 

functions differs between virus genera (Fig. 3.2). 

 

 

 

Figure 3.2 Genome organization of coronaviruses 

In coronaviruses, ORF1 is translated into pp1a and pp1ab, which are subsequently processed by 

viral proteases to generate non-structural proteins. ORFs S, E, M and N generate structural proteins 

and ORFs encoding accessory proteins are in between the structural genes.  
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 3.3 Replication of coronaviruses 

Interaction of the coronavirus S protein with its cognate receptor on the host cells initiates the virus 

entry into the cell. Coronaviruses are known to utilize different receptors. These include 

angiotensin-converting enzyme 2 (ACE2) used by HCoV-NL63 and SARS-CoV and SARS-CoV-

2 (140–144), dipeptidyl peptidase 4 by MERS-CoV (145), and aminopeptidase N by TGEV, 

PEDV, HCoV-229E, and type II FCoV (146–148). The spike protein of coronaviruses is a class I 

fusion protein comprising of three domains: ectodomain, transmembrane domain and endodomain. 

The endodomain consists of S1 and S2 domains (136,149). The receptor-binding domain (RBD) 

is within the S1 domain, and the fusion peptide is contained within the S2 domain. Binding of the 

S protein to its receptor triggers a cascade of reactions. Subsequent cleavage between S1 and S2 

domains exposes the fusion peptide initiating membrane fusion and uncoating of the virus (150–

152).  

 

The RNA genome of the virus is translated within the host cell. PLpro and 3CLpro proteolytically 

process these translated polyproteins. PLpro processes 1-4 of the N terminal cleavage sites of the 

non-structural proteins while the remaining 8-11 sites are processed by 3CLpro (153) (Fig. 3.3). 

The assembly of these non-structural proteins forms a membrane attached replication-translation 

complex where genomic and subgenomic mRNAs are synthesized (154–158). Translation of 

subgenomic mRNA generates structural and accessory proteins. These structural proteins undergo 

maturation while transporting through the endoplasmic reticulum-associated secretory pathway 

(158,159). Subsequently, the assembled virions are transported and released at the cell surface. 
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 3.4 Coronavirus 3CLpro  

3CLpro is the main protease of coronaviruses, which cleaves a majority of the cleavage sites in 

the virus polyprotein (Fig. 3.3). 3CLpro is a chymotrypsin like serine protease that resembles the 

3C protease of the viruses in the picornavirus-like superfamily (160). The active 3CLpro is a dimer 

of monomers. Each monomer consists of three domains, I, II and III. The active site of coronavirus 

3CLpro is between domains I and II and is composed of a catalytic dyad consisting of residues 

Cys and His (160–164) (Fig. 3.5). During the processing of coronavirus polyprotein, a nucleophilic 

attack is initiated by nucleophilic Cys, while His functions as the proton acceptor (164,165). 

Domain III is important for the dimerization of 3CLpro (160,161,164–168). Coronavirus 3CLpro 

cleaves the polyprotein substrate at P2-P1-P1’ residues where cleavage occurs specifically 

between the P1 and P1’ residues. Thus, the amino acids in the locations P2, P1 and P1’ in the virus 

polyprotein are important for substrate specificity. In feline coronavirus 3CLpro, the preferred 

amino acids in the sites are as follows, Lys at P2, Gln at P1 and small aliphatic residue such as Ser 

or Ala at P1’ (153,165,169,170) (Fig. 3.4).  
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Figure 3.3 3CLpro cleavage sites of feline coronaviruses 

Schematic cleavage map of feline coronavirus polyproteins (adapted from (133)). Proteolytic 

processing of PP1a generates 1-11 non-structural proteins while pp1ab generates the non-structural 

proteins 1-10 and 12-16. The cleavage sites of PLpro (grey) and 3CLpro (red) are indicated in the 

map. The putative functions of several non-structural proteins are designated in the diagram 

(abbreviations: ADRP - ADP-ribose 1”-phosphatase; RdRp - RNA-dependent RNA polymerase; 

Hel - helicase; Exo. N – exonuclease; Endo. N – endoribonuclease; MT - 2’-O-methyltransferase). 

 

 

Figure 3.4 Substrate preferences of FIPV 3CLpro 

The amino acid specificity at the 3CLpro cleavage sites in the polyprotein are marked P5 to P4’ 

from the N to C termini (adapted from (170). Cleavage occurs between the residues P1 (Glutamine) 

and P1’ (Serine or Alanine) as indicated by a red arrow. 
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Figure 3.5 3CLpro crystal structure of FCoV (PDB accession 4ZRO)  

The 3CLpro monomer of FCoV consists of domains I, II and III. The catalytic residues His41 and 

Cys144 are indicated in red (zoomed in) at the catalytic center between domain I and II. An inter 

domain loop connects domains II and III. The active form of 3CLpro is a dimer, and dimerization 

requires interactions between the C terminal residues in domain III and the N terminal residues in 

domain I of two monomers. This is modified from the figure 1-4 of the MS dissertation chapter 1 

of Perera, 2018 (171).  

 

 3.5 Feline coronavirus (FCoV)  

FCoVs infect felids and have the classic features of other coronaviruses. An interesting feature of 

FCoVs is the existence of two serotypes (I and II) and two biotypes (feline enteric coronavirus or 

FECV and feline infectious peritonitis virus or FIPV). The serotypes I and II are based on the S 

protein, where the S gene of type I is of feline origin and type II S gene is a recombinant of FCoV 
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with CCoV (172–174). Type I is the predominant serotype in the field (175–178). Occasional co-

infection of both serotypes has also been reported (175,176,178). The two serotypes use different 

cellular receptors. The receptor for type I is unknown, while type II FCoV uses feline 

aminopeptidase N (fAPN or CD13) (179,180). Type II FcoV  is reported to interact with feline 

cell-specific intracellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) to enhance entry 

into host cells (181,182). Type I FCoV does not grow well in cell culture, but cell culture systems 

have been established for type II FCoVs (183). Thus, laboratory-based research on FCoVs is 

mainly based on the type II FCoV strains. 

 

As mentioned in the above paragraph, there are two biotypes of FCoVs based on the clinical 

disease. Feline enteric coronavirus (FECVs) are FCoVs that cause mild enteritis or no symptoms. 

FECV infect enterocytes (183–185) causing villous atrophy (186,187), but mortality is rare. The 

infected cats often recover completely, however, may also show intermittent or persistent shedding 

of the virus for a prolonged time (187,188). This facilitates infections of naïve cats or re-infections 

in multi cat households, shelters and catteries via the oral-fecal route (188,189). Co-infection with 

different FECV strains has also been reported (188,190).  

 

 3.5.1 Feline infectious peritonitis virus (FIPV) 

Feline infectious peritonitis virus (FIPV) is the virulent biotype of FCoV and causes a fatal, 

systemic disease known as feline infectious peritonitis (FIP) in ~5% of infected cats (191). FIP is 

common in 6 months to 2 years old cats (192–197), and certain breeds such as Abyssinians, 

Bengals, Birmans, Himalayans, Ragdolls and Rexes (197–199) are genetically predisposed to FIP. 

Increased FIP prevalence is seen in sexually intact males, cats living in multi cat households, and 
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with stress and co-infections with feline leukemia virus or feline immunodeficiency virus 

(194,200,201). However, FIP rarely transmits between cats.  

 

Unlike FECV, FIPVs show a tropism towards macrophages (202,203), which could be a key 

feature leading to systemic infection or FIP (204). Two main clinical forms of FIP have been 

characterized based on the development of effusion in the body cavities. These are the wet/effusive 

form and the dry/non-effusive form. As the name suggests, dry form shows no to little effusion 

but can progress into the wet form, where protein and fibrin rich effusions accumulate in the chest 

and/or abdomen of the infected cats. The host immune response appears to play a major role in the 

development of FIP. The dry form results from a partial immune response, and poor cellular 

immune response is associated with  the wet form (204). Thus, a potent cellular immune response 

appears to be important for protection against FIP. Poorly neutralizing antibody response does not 

offer effective protection, and is associated with antibody dependent enhancement in vitro 

(194,205–209). In addition to effusions, FIP-associated lesions include characteristic 

granulomatous lesions (consisting of macrophages, neutrophils, lymphocytes and plasma cells), 

and vasculitis in multiple organs such as the liver, kidneys and the central nervous system 

(204,210–213).  

 

The mechanism of development of FIPV is not very clear. One of the proposed theories is that 

FIPV is circulating among cats, which is distinct from FECV (214). The other widely accepted 

‘internal mutations theory’ is that FIPV evolves from internal mutations in FECV that eventually 

acquire macrophage tropism in the infected cats (194,195,215–218). Accessory proteins have been 

studied to understand their involvement in the shift in tropism to macrophages and evolution of 
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FIPV. An intact 3c protein supports replication in intestinal cells while the truncated versions allow 

the switch into macrophages (195,216). The intact form of 7b protein is important for FIPV 

replication in macrophages (219) and deletions result in a loss of virulence (220). Nevertheless, 

the exact mechanism for internal mutation theory is still unclear.  

 

 3.6 Vaccines and therapeutics against FCoV infections  

Felocell FIP (Zoetis US) is available for FIPV but it is not licensed for young kittens (<16 weeks) 

(211,221), and is not effective against various field strains. Thus, it is not recommended by the 

American Association of Feline Practitioners (AAFP). Treatment options are currently limited to 

symptomatic care (213). Different antiviral compounds such as nucleoside analogs (222–229), 

small interfering RNA (siRNA) (230,231), synthetic peptides and monoclonal antibodies to inhibit 

attachment and membrane fusion (232–240) have been tested against multiple coronaviruses. Host 

factors have also been studied as targets to design inhibitors for coronaviruses (241). Still, none 

has received authorization for use for FIPV by FDA.  

 

 3.6.1 3CLpro inhibitors 

Protease inhibitors that target PLpro (242–245) and 3CLpro are attractive antiviral choices among 

the different inhibitors for coronaviruses. Of these two viral proteases, coronavirus 3CLpro has 

been studied extensively. The 3CLpro inhibitors reported include natural compounds (246–248), 

synthetic compounds such as metal conjugates (249–252), nucleoside analogs (253), keto-

glutamine analogues (254), and inorganic compounds and their derivatives (161,237,255–261).  
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Peptidomimetic inhibitors have also been developed as 3CLpro inhibitors. These peptidomimetic 

inhibitors target the active site and interact with the catalytic Cys residue by closely resembling 

the coronavirus polyprotein (164,170,262–270), or the dimeric interface to block dimerization of 

the 3CLpro (271,272). Our lab group has identified and characterized peptidomimetic 3CLpro 

inhibitors that target the active site of 3CLpro of different coronaviruses infecting humans as well 

as animals such as FIPV (263,268,273–278). GC376 is one such 3CLpro inhibitor that is highly 

potent against FIPV in experimental (279) as well as natural infections (280), which was the first 

demonstration of validity of coronavirus 3CLpro as a drug target in vivo, and is currently under 

clinical development. Furthermore, the efficacy of GC376 and its structural derivatives were also 

demonstrated against SARS-CoV-2 and multiple human coronaviruses (281–286). Among other 

tested 3CLpro inhibitors is Paxlovid (PF-00835231), which is a clinical antiviral drug combination 

of nirmatrelvir and ritonavir developed by Pfizer that shows potent inhibition of SARS-CoV-2 

(287,288). 

 

 3.7 Antiviral resistance to 3CLpro inhibitors 

Antiviral resistance is a global concern in antiviral therapy as it compromises the clinical efficacy 

of antiviral drugs, especially in treating RNA viruses. RNA viruses can evolve rapidly due to the 

general lack of intrinsic proof reading activity in the virus replicase protein, which generates 

genetic variants or quasispecies within a single host (289,290). Exposure to antivirals may select 

drug-resistant variants among quasispecies. De novo genetic variants can also arise in response to 

selective pressures such as exposure to antiviral treatment. Emergence of antiviral resistance is 

influenced by the potency and genetic barrier to resistance of a compound. Genetic barrier is the 

number and type of mutations that is required for the virus to develop resistance against an antiviral 
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compound while maintaining replicative fitness. Thus, antiviral compounds with a high genetic 

barrier are preferred. The resistant variants with a higher replication fitness may eventually 

establish as the dominant variant in the population leading to antiviral resistance (291,292). 

Emergence of antiviral resistance can also be enhanced by hosts (293,294). Failure to adhere to a 

treatment regime or prolonged treatment, or a compromised immune response are additional host 

derived factors that may increase the emergence of antiviral resistance (291,295). To mitigate 

emergence of antiviral resistance in antiviral treatment, combinations of antiviral drugs of different 

mechanisms have been used in some viral diseases such as HIV and HCV (293–297).  

 

Studying the mechanism of antiviral resistance expands our understanding on the molecular basis 

of resistance against antivirals and benefits the development and optimization of antiviral 

treatment. Unlike other RNA viruses, coronavirus has proof-reading function or unique 3′ to 5′ 

exonuclease activity in the nsp14 protein (298). Despite a lower error rate compared to other RNA 

viruses, the error rate of coronaviruses is still higher than that of DNA viruses (299). Six SARS-

CoV-2 lineages (C.37 Lambda, B.1.1.318, B.1.2, B.1.351 Beta, B.1.1.529 Omicron, P.2 Zeta) have 

naturally occurring changes within the 3CLpro gene (G15S, T21I, L89F, K90R, P132H, L205V) 

(300) compared to the parental SARS-CoV-2 strain. The 3CLpros carrying K90R, G15S and 

P132H showed comparatively similar activity as the 3CLpro of parental SARS-CoV-2 and 

remained susceptible to nirmatrelvir, a 3CLpro inhibitor in Paxlovid (300). Similar studies on the 

3CLpro of SARS-CoV-2 variants including alpha, beta, gamma, and omicron carrying 3CLpro 

mutations such as K90R, G15S and P132H showed comparatively similar susceptibility to 

nirmaltrelvir as the parental SARS-CoV-2 (301–304,304). Multiple studies conducted on the 

parental SARS-CoV-2 passaged in the cell culture in the presence of nirmatrelvir showed 
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mutations both close or distal to the nirmatrelvir binding site in the 3CLpro (305–307). These in 

vitro generated mutations were also identified in low levels among the circulating SARS-CoV-2 

isolates (305,306). Among these mutations, E166V mutation within the substrate binding site 

conferred a ~80-100-fold resistance to nirmatrelvir but showed low viral replicative fitness 

(306,307). However, combination of L50F and T21I with E166V rescued the replicative fitness of 

the E166V mutant virus (306). Still, these SARS-CoV-2 3CLpro mutant viruses were susceptible 

to remdesivir (306,307) suggesting the importance of combining antivirals targeting different viral 

proteins  to mitigate antiviral resistance. Nevertheless, SARS-CoV-2 resistance to nirmatrelvir in 

patients receiving Paxlovid has yet to be reported.   

 

Antiviral resistance has also been investigated for MHV, another beta coronavirus. MHV passaged 

in the presence of a 3CLpro inhibitor GRL-001 generated resistance within four passages resulting 

in variants containing single (T26I or D65G) and double (T26I/D65G, T26I/D65A, or 

T26I/A298D) mutations (308). The single and double mutants increased the 50% effective 

concentration (EC50) of GRL-001 against MHV by ~3 and ~6 folds, respectively. Among 

identified mutations in 3CLpro, T26I was particularly close to the active site (308).  Nevertheless, 

these mutants showed a delay in replication in vitro and an attenuated phenotype in vivo compared 

to the parental virus (308).  

 

Only a limited number of studies have been published on antiviral resistance of 3CLpro inhibitors 

against feline coronaviruses. Passaging FIPV in the presence of NPI52 increased the EC50 of 

NPI52 by 15 folds by 10 passages (279), and the resistant FIPV variant showed amino acid changes 

at S131C, which is located within domain II of 3CLpro (279). However , FIPV did not generate 
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resistance against GC376 even at 20 passages in cell culture (279). Nevertheless, N25S, A252S 

and K260N mutations were identified in the 3CLpro of FIPV sequenced from a feline FIP patient 

that received GC376 treatment for a prolonged period, but did not show clinical resistance (309). 

Among these mutations, N25S was close to the active site whereas A252S and K260 N were 

located in the domain III of 3CLpro (309). Only N25S containing recombinant 3CLpro conferred 

a slight increase in fold change (~1.68-fold increase in the 50% inhibitory concentration) in 

fluorescence resonance energy transfer (FRET) based enzyme assay (309). This suggests that these 

amino acid changes have minimal effect on the susceptibility of FIPV to GC376. Another recent 

study investigated mutations in FIPV in response to viral passaging with GC376 (310). The EC50 

of FIPV passaged 50 times with GC376 showed an 8-fold increase against GC376, and the 

genomes of the passaged viruses showed mutations at multiple sites: nsp2 (A403V, A431V), nsp3 

(Y891N), nsp4 (P384L, M476K), nsp8 (V159D), nsp12 (T421K, S925P), nsp14 (I262T), and 

nsp15 (N15V) (310). However, no mutation was observed in 3CLpro. Nsp12-S925P, one of the 

mutations identified, was partially responsible for conferring the increase in EC50 for both GC376 

and nirmatrelvir (310). The mutant containing nsp12-S925P were also able to replicate efficiently 

and reach high titers (10 fold increase) compared to the WT virus (310). The mutant FIPV with 

nsp12-S925P also showed reduced susceptibility to GC376 in experimentally infected cats (310). 

The authors reveal that serine to proline mutation causes tighter binding of 3CLpro and increased 

cleavage efficiency at nsp12-13 cleavage site, thereby, resulting in increased replication fitness of 

the mutant virus (310). This study indicates that non-target site mutations can affect virus 

replication and virulence. Thus, combination of multiple inhibitors such as 3CLpro and RdRp 

inhibitors (310) would be a more prudent and potent antiviral treatment approach against FIPV.   
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 3.8 The role of P-glycoprotein in antiviral resistance 

 

 3.8.1 P-glycoprotein 

The permeability glycoprotein (P-gp) is a host protein that contributes to multidrug and antibiotic 

resistance. The multidrug resistance protein (MDR1/ABCB1) or P-gp is an efflux transporter in 

the ATP-dependent transport protein superfamily (311). The highly polymorphic ATP binding 

cassette subfamily B (Abcb1) genes encode P-gp. Homologs of P-gp can be found in prokaryotes 

as well as eukaryotes (312), and many animal species express P-gp in multiple tissues including 

the liver, intestines, kidneys, and the blood-brain barrier, especially on the apical membrane of 

enterocytes, hepatocytes, and endothelial cells of the blood-brain barrier (313,314). P-gp on the 

plasma membrane typically interacts with hydrophobic and cationic compounds and has a broad 

substrate specificity that includes HIV protease inhibitors, calcium channel blockers and most 

importantly, many anticancer drugs (315,316). P-gp uses ATP hydrolysis to transport these 

interacting compounds back to extracellular domains (311). Therefore, P-gp functions as a natural 

barrier and causes multi drug resistance, especially in antiviral therapy and cancer chemotherapy. 

The expression level and activity of P-gp increases with age (317) and fluctuates in response to 

the cell type and hormone levels in different tissues (311). Genetic or extrinsic factors could also 

change the function of P-gp that could greatly affect its interactions with drugs, altering drug 

efficacy, safety, and toxicity.  

 

Still, it is unknown whether P-gp is indispensable for normal physiological responses in humans, 

and the role of P-gp may be species specific. Murine multiple drug resistance (mdr) gene, mdr1a 

is not essential for normal physiological responses in mice (318). However, the lack of mdr1a 
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results in increased susceptibility to severe, spontaneous intestinal inflammation that resembles 

inflammatory bowel disease in humans (319). This highlights its protective role in the GI tract. 

Interestingly, mdr1 gene deletion in collie dogs results in increased ivermectin sensitivity (320). 

Feline MDR1 gene is homologous to those of other species and show a similar distribution in cats 

as humans (314). A majority of feline cancers such as feline lymphoma display a strong expression 

of P-gp (321) and thus, show resistance to anti-cancer drugs (322,323). Feline P-gp expression 

level does not correlate with the prognosis of feline lymphoma (324), however, P-gp expression 

level is considered as a prognostic factor of certain human and canine cancers (325).  

 

 3.8.2 The role of P-gp in virus replication 

The influence of P-gp in virus replication has been widely studied in HIV infections. Expression 

of P-gp results in suboptimal penetration of anti-retroviral drugs, thus, limiting their therapeutic 

effects and creating sanctuaries such as in the brain and the testes for virus persistence (326). HIV-

1 infected patients show an increased number of CD4+ T cells expressing P-gp compared to 

healthy individuals, and progression of HIV-1 further enhances P-gp expressing cell populations 

(327). However, P-gp function appears to be defective in these cells despite the increased 

expression levels (327). Similarly, HIV infection also increased P-gp expression in H9 (T cell line) 

and U937 (monocytic cell line) cells that decreased the accumulation of antiretroviral agents 

compared to uninfected cells (328). However, HIV infection in human astrocytes, which are 

cellular reservoir of HIV-1, has a down regulatory effect on P-gp expression (329). Contrastingly, 

overexpression of P-gp in human CD4+ T-leukemic cells (without changes in the expression levels 

of HIV receptors CD4 or CXCR4) results in marked decrease of HIV replication (330). HIV may 

use glycolipid-enriched membrane domains that also harbor P-gp for entry and egress (331). Thus, 
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this observation could be due to the virus gp41 interacting with P-gp through the hydrophobic 

fusion domain instead of its cognate receptor, thereby restricting the entry into cells (330). 

Collectively, these observations indicate the possible existence of cell populations that overexpress 

P-gp and resist HIV infections (330). Still, the effects of P-gp expression on the clinical outcome 

of HIV are unknown and requires further investigations using larger study groups. Therefore, 

differential expression of P-gp in different cell subsets and the use of P-gp expression as a marker 

of HIV-1 progression requires more extensive studies (327,332). 

 

P-gp is known to affect the metabolism/clearance of some antiviral drugs for  HIV and hepatitis C 

virus (HCV) infections (333,334). For instance, HIV protease inhibitors amprenavir, and indinavir 

are recognized as substrates of P-gp, increasing drug clearance (335). P-gp levels can be induced 

by antiretorviral therapy (ART) as HIV patients on ART show enhanced levels of P-gp expression 

compared to ART-naïve group (336). Thus, targeted inhibition of P-gp using highly specified and 

potent agents may improve the efficacy of antiviral therapeutics (333,335). 

 

 3.8.3 P-gp inhibitors 

P-gp inhibitors modulate P-gp function by competitive or no-competitive inhibition. Competitive 

inhibitors bind P-gp and block the transport of the drug, while non-competitive inhibitors bind 

either the drug interaction site or another modulator binding site on P-gp causing allosteric changes 

(reviewed by (337)). There are three groups of P-gp inhibitors or modulators. The first group of 

inhibitors are therapeutic agents but could be toxic as high concentrations are required for efficacy. 

The second group of P-gp modulators are analogues of the first group of modulators, but they are 
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less toxic than the first group. The third group of modulators are developed and targeted against 

specific MDR mechanisms.  

 

Inhibition of P-gp with compounds such as verapamil, ritonavir, cyclosporine, PSC833 and 

ivermectin, and the concomitant usage with the drugs that are P-gp substrates could greatly 

improve their bioavailability and tissue penetration, especially in cancer therapy (313,338–340). 

Inhibition of P-gp expression with P-gp inhibitors could also increase the bioavailability of HIV 

protease inhibitors (333,341). Furthermore, P-gp inhibitors could inhibit replication of several 

viruses. CP100356 hydrochloride (CP100356) is one such P-gp inhibitor that can moderately 

suppress lassa virus (LASV) and lymphocytic coriomeningitis virus (LCMV) infections by 

inhibiting low-pH-dependent membrane fusion with minimal cytotoxicity (342). Thus, CP100356 

could be used as  an effective virus entry inhibitor for LASV and other highly pathogenic 

mammarenaviruses (342). Apart from the applications in cancer therapy and virus replication, P-

gp inhibitors could also alleviate antibiotic resistance (343). 
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Chapter 4 - In vitro studies of viral resistance to FIPV protease 

inhibitors 

 

 4.1 Abstract  

Feline infectious peritonitis virus (FIPV) is a virulent feline coronavirus that causes a fatal 

systemic infection known as feline infectious peritonitis (FIP) in cats. 3C-like protease (3CLpro) 

is a virus-encoded protein, which is essential for the replication of viruses within the picornavirus-

like superfamily. We have previously developed small molecule inhibitors against 3C-like 

protease (3CLpro) of multiple coronaviruses including SARS-CoV-2 and FIPV, and GC376 is a 

clinical candidate for FIP. Here, we passaged FIPV WSU 79-1146 in CRFK cells in the presence 

of GC376, or its structural derivative GC1003. After eight or twenty passages, we observed a 

reduction in the susceptibility of passaged FIPV to GC1003 and GC376, respectively, FIPV 

passaged in GC376 showed no mutations in the 3CLpro region, however, mutations in 3CLpro 

(G23V and G298S) were identified in FIPV passaged with GC1003. Both passaged viruses also 

showed mutations in other genomic locations. The 3CLpro with G23V and G298S moderately 

affected the effectiveness of GC376 and GC1003 against FIPV in fluorescence resonance energy 

transfer (FRET) assay. Interestingly, incubating the mutant FIPV infected cells with inhibitors of 

P-glycoprotein (P-gp), a drug efflux pump, restored the susceptibility of mutant FIPV to GC376. 

In summary, our results showed that passaging FIPV in GC376 and GC1003 led to the 

identification of mutations outside or within the 3CLpro region, which reduces the susceptibility 

to 3CLpro inhibitors in cell culture. The effectiveness of 3CLpro inhibitors against the mutant 

FIPV can be recovered by the addition of P-gp inhibitors in cell culture. Therefore, it is important 
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to investigate the effect of P-gp activity in the generation of resistance of FIPV to 3CLpro 

inhibitors. 

 

 4.2 Introduction 

Feline infectious peritonitis virus (FIPV) is the virulent biotype of feline coronavirus that causes 

highly fatal systemic disease known as feline infectious peritonitis (FIP) in cats (202). Kittens are 

more susceptible to FIP and the incidence increases in multi cat households (194,200). Despite the 

high fatality, there are no commercially available effective vaccines or antiviral drugs for FIP. 

However, multiple efforts have been made to identify antiviral targets and develop antiviral drugs 

against FIPV. Virus-encoded 3C-like protease or 3CLpro is one of these targets for developing 

antivirals against FIPV as well as human coronaviruses including SARS-CoV-2 and MERS-CoV. 

3CLpro is the main protease of coronaviruses and plays an essential role in processing the virus 

polyproteins to release non-structural proteins for virus replication. Our group has reported the 

efficacy of peptidomimetic 3CLpro inhibitors against multiple coronaviruses including SARS-

CoV-2 (281,282,285) and FIPV (273–275,279). GC376 is one such highly potent 3CLpro 

inhibitor, that has shown efficacy against FIPV in experimentally (279) and naturally infected cats 

(280) and is a clinical drug candidate for FIPV.  

 

The error-prone replication of RNA viruses contributes to emergence of antiviral resistance which 

may reduce the efficacy of antiviral drugs and treatment strategies. Although the mutation rate of 

coronaviruses is comparatively lower than many other RNA viruses owing to the inherent proof-

reading activity (344,345), the single-stranded, positive-sense RNA genome of coronaviruses 

generate virus variants. This was quite evident during the COVID-19 pandemic where multiple 
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SARS-CoV-2 variants with different transmission, virulence and immune evasion features have 

emerged. Therefore, it is important to investigate the generation of antiviral resistance in FIPV 

against 3CLpro inhibitors. Our previous studies have shown that passaging FIPV up to 20  

passages in the presence of GC376 did not generate mutations in the 3CLpro region nor antiviral 

resistance in cell culture (279). Still, mutations were identified in the 3CLpro of FIPV isolated 

from a feline FIP patient that received GC376 as treatment for a prolonged time although no signs 

of clinical resistance were identified (280,309). Another recent study identified mutations in 

multiple sites of the FIPV genome except in 3CLpro region in response to passaging the virus with 

GC376 for up to 50 passages. In that study,  a mutation in nsp12 increased the viral replication in 

cell culture and virulence in experimentally infected cats (310).  

 

In this study, we passaged FIPV in the presence of GC376 and its structural derivative GC1003, 

to investigate the generation of antiviral resistance in FIPV. Passaging FIPV in GC376 for 8 times 

(P8 GC376) resulted in reduced viral susceptibility to GC376 and GC1003 with increased EC50s 

of GC376 and GC1003 by 13.2 and 3.2-folds, respectively. P8 GC376 had mutations in nsp12 and 

spike protein but none in the 3CLpro region. Similarly, passaging FIPV in GC1003 for 20 times 

(P20 GC1003) also reduced susceptibility to both GC1003 and GC376 by increasing the EC50s by 

5.6 or 30.2-folds, respectively. P20 GC1003 showed multiple mutations within the genome 

including the 3CLpro region, and the mutations on the 3CLpro only moderately affected the 

inhibitory activity of GC1003 in the FRET assay. Because P-glycoprotein (P-gp or ABCB1) plays 

crucial roles in maintaining intracellular concentrations of antivirals, we examined if P-gp 

inhibitors could influence antiviral activities of GC376 or GC1003 and/or restore the inhibitory 

activities of GC376 or GC1003 against P8 GC376 and P20 GC1003 viruses. First, we found that, 
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in the presence of P-gp inhibitor (Elacridar or CP100356), EC50s of GC376 were not changed, but 

those of GC1003 and remdesivir were significantly reduced against FIPV in CRFK cells. 

Interestingly, the antiviral effects of GC376 against P8 GC376 and P20 GC1003 were restored to 

the levels comparable to the parental virus. These results show that multiple factors are involved 

in the resistance of FIPV against 3CLpro inhibitors, which includes the involvement of P-gp.  

 

 4.3 Materials and methods 

 

 4.3.1 Compounds 

Synthesis of GC376 (273) and GC1003 were previously described and were synthesized in the 

laboratory of W. C. Groutas (Department of Chemistry, Wichita State University). Remdesivir 

was included for comparison purposes. P-glycoprotein inhibitors Elacridar and CP 100356 

hydrochloride were purchased from Sigma-Aldrich (St Louis, MO).  

 

 4.3.2 Viruses and Cells 

Crandell Rees feline kidney (CRFK) cells were maintained in modified Eagle’s medium (MEM) 

supplemented with 5% heat-inactivated fetal bovine serum (FBS), 1% penicillin-streptomycin, and 

1% glutamine. FIPV WSU-79-1146 strain was propagated in CRFK cells.  

 

 4.3.3 Cytotoxicity assay 

To investigate the cytotoxicity of each inhibitor, CRFK cells were treated with each inhibitor at 

different concentrations up to 150 μM and the cells were left at 37 °C for 36hrs. Then the cell 

cytotoxicity was measured using the CytoTox 96 nonradioactive cytotoxicity assay kit following 
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the manufacturer's protocol (Promega, Madison, WI). The 50% cytotoxic concentration (CC50) of 

each compound was determined using non-linear regression analysis in GraphPad Prism software.    

 

 4.3.4 In vitro selection of FIPV variants and genetic analysis 

To determine the generation of resistance, FIPV WSU 9-1146 was passaged in CRFK cells with 

gradually increasing concentrations of 3CLpro inhibitors: GC376 or GC1003. Briefly, confluent 

cells were infected with virus at 0.01-0.1 MOI with the inhibitors at EC90, simultaneously. The 

infected cells were incubated up to 48hrs at 37 °C.  The cells were freeze-thawed after 100% CPE 

development was observed, centrifuged to remove debris, and kept at -80 °C or passaged into fresh 

CRFK cells in the presence of increased inhibitor concentration. At each passage, the 50% 

effective concentration (EC50) for each compound was determined by 50% tissue culture infective 

dose (TCID50) method (346), and the EC50s were compared with that of the mock passaged virus 

(Mock) and parental strain (PA). EC50 is the concentration of the inhibitor required to decrease the 

virus titer by 50% in cell culture. At passages eight (P8) or 20 (P20) in the presence of GC376 or 

GC1003, respectively, the virus mRNA was isolated using Qiagen RNeasy kit and the whole 

genome sequences of the passaged viruses and PA were determined using NextGen RNAseq. In 

parallel with the virus passages in the presence of each compound, viruses were also passaged 

without any compound (Mock) for eight (P8 Mock) and 20 times (P20 Mock). These Mock 

passaged viruses were used for some experiments as controls.    

 

To investigate the replication of the passaged viruses, CRFK cells were infected with FIPV 

(passaged viruses or PA) at 1 MOI and incubated at 37 °C for 1hr. Then the media was replaced 

followed by further incubation, and cell lysates were collected at different time points. RNA were 
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extracted from these cell lysates using Qiagen RNeasy kit according to the manufacturer’s protocol 

and the RNA were amplified using qRT-PCR. The TCID50s of the virus at each time point were 

determined using a previously established standard curve for FIPV replication.  

 

 4.3.5 Inhibition assay of FIPV replication 

The EC50s of 3CLpro inhibitors against the PA or passaged viruses were determined as follows. 

Serial dilutions of 3CLpro inhibitors or Remdesivir in the presence/absence of P-glycoprotein 

inhibitors were added to confluent CRFK cells and the cells were simultaneously infected with 

FIPV at a MOI of 0.01-0.1. Then the cells were incubated at 37 °C until extensive CPE were 

observed. Next, the cells were freeze-thawed and the virus titers were determined using TCID50 

method. Briefly, 10-fold serial dilutions were prepared from each well and the dilutions were 

added to confluent CRFK cells in 96 well plates followed by incubation at 37 °C until no CPE 

progression was observed. Then, TCID50 was calculated using the standard TCID50 method 

(346). The EC50 was determined using non-linear regression analysis in GraphPad Prism software 

version 6 (GraphPad Software, La Jolla, CA).  

 

 4.3.6 Multiple amino acid sequence alignment and structural models of passaged 

FIPV 3CLpro  

The amino acid sequences of the FIPV whole genome sequences were aligned using Clustal 

Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/ ) (347). Additionally, 66 feline coronavirus 

strains that include 3CLpro sequences were also obtained from genbank for comparison of the 

amino acid sequences and their conservation.  

 

https://www.ebi.ac.uk/Tools/msa/clustalo/
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3D homology models of 3CLpros of the passaged viruses were generated by using FIPV crystal 

structures (PDB accessions 4ZRO and 5EU8), and TGEV-GC376 crystal structure (PDB accession 

4F49) as templates in SWISS-Model program (https://swissmodel.expasy.org/) (348). The 

generated models and crystal structures were visualized in PyMol or Chimera.   

 

 4.3.7 Recombinant 3CLpro and protein purification  

In order to determine the effect of the amino acid changes identified in 3CLpro on the 3CLpro 

activity and response to the inhibitors, we generated recombinant mutant 3CLpros. 3CLpro regions 

from the P20 viruses including the mock and PA were amplified using RT-PCR and cloned into 

pET-28a+ vector (GenScript, Piscataway, NJ). The presence of the amino acid changes in the 

clones were confirmed by Sanger sequencing. The recombinant 3CLpros were expressed with an 

N-terminus 6His tag in BL21-DE3 (Invitrogen, Carlsbad, CA) cells and purified according to a 

previously established protocol by our lab group (273).  

 

 4.3.8 Fluorescence resonance energy transfer (FRET) assay  

The activity of each recombinant 3CLpro was investigated using FRET assay following a standard 

procedure previously described by our group (273,349). Briefly, each recombinant 3CLpro was 

diluted in assay buffer consisting of 120 mM NaCl, 4 mM DTT, 50 mM HEPES and 30% Glycerol 

at pH 6.0. Next, these mixtures were incubated with a fluorogenic substrate consisting of the 

coronavirus 3CLpro cleavage site FAM-SAVLQ/SG-QXL520 (AnaSpec, Fremont, CA) for 30min 

at RT. Following this incubation, fluorescence readings were measured on a fluorescence 

microplate reader (FLx800, Biotek, Winnooski, VT) at an excitation and an emission wavelength 

of 485 nm and 516 nm, respectively. The 50% inhibitory concentration (IC50) was calculated for 

https://swissmodel.expasy.org/
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each 3CLpro using non-linear regression analysis in GraphPad Prism software version 6 

(GraphPad Software, La Jolla, CA). For inhibition assays, serial dilutions of each 3CLpro inhibitor 

were prepared in DMSO and added into the enzyme-buffer mixture and incubated for 30min at RT 

before the addition of the fluorogenic substrate.  

 

 4.3.9 Analysis of P-glycoprotein expression and function 

To investigate the mRNA expression levels of P-glycoprotein in cells, CRFK cells were infected 

with passaged, mock or PA FIPV at 10 MOI with or without 3CLpro inhibitors or remdesivir at 

concentrations >10-fold higher than EC50s. Remdesivir was used for inhibiting virus replication 

in some experiments. Then the cells were incubated at 37 °C for 1hr. Following incubation, the 

media was replaced with or without inhibitors and the cells were further incubated for 12hrs at 

37 °C. After 12hrs, RNA was extracted by Qiagen RNeasy kit, and amplified in qRT PCR with 

primers and probe for feline P-gp (to amplify the Felis catus ATP binding cassette subfamily B 

member 1 or ABCB1 - forward 5'-CACAGATGGCATGGTCAGTAT, reverse 5'-

GTGGCAAACAACACAGGTTC, and the probe 5'-TCGGGAAATCATTGGTGTGGTGAGT).  

To determine the function of P-glycoprotein, CRFK cells were similarly treated and further 

incubated up to 24hrs following the media replacement. Function of P-gp was determined using 

the multidrug efflux transporter P glycoprotein (MDR1/P-gp) ligand screening kit (abcam, MA, 

USA- ab284553) according to the manufacturer’s protocol.  

 

 4.3.10 Statistical analysis 

Data from at least three independent experiments were used to compare statistical significance. 

Statistical analysis of data using one-way analysis of variance (ANOVA) with Tukey’s post hoc 
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test or two-tailed student’s t-test was performed using GraphPad Prism Software version 6 

(GraphPad Software, La Jolla, CA).   

 

 4.4 Results 

 

 4.4.1 Identification of mutations in 3CLpro coding regions of FIPV passaged in the 

presence of 3CLpro inhibitors. 

FIPV was passaged in the presence of 3CLpro inhibitors GC376 and GC1003, which is a structural 

derivative of GC376 (Fig. 4.1). The concentration of each inhibitor was increased gradually at 

each passage to induce the generation of antiviral resistance. Then the fold changes in the EC50 for 

each inhibitor was compared to PA at selected passages to determine the presence of resistance 

(Table 4-2). At the eighth passage, FIPV passaged in GC376 (P8 GC376) increased the EC50 of 

GC376 by 13.2-folds and the EC50 of GC1003 by 3.2-folds (Fig. 4.2) compared to PA. Both P8 

Mock and P8 GC376 replicated more efficiently and showed slightly increased virus titers 

compared to PA at 24hpi (Fig. 4.3A). Although the virus titer of P8 GC376 increased during 6-

12hpi compared to P8 Mock, it was apparent that P8 GC376 does not show marked replication 

efficiency over P8 Mock or PA. Sequencing of the entire genome of P8 GC376 revealed no 

mutations in the 3CLpro region. However, nsp12 RNA-dependent RNA polymerase had a 

mutation at T926I (T4949I in polyprotein), which is close to the nsp12/13 cleavage site by 3CLpro. 

Another mutation was identified in the C terminus of spike protein (I1301T).  

 

FIPV passaged in GC1003 (P20 GC1003) caused a 5.6-fold increase in EC50 of GC1003 at 20 

passages (Fig. 4.2 and Table 4-2) compared PA. P20 GC1003 also substantially increased the EC50 



43 

of GC376 by 30.2-folds (Fig. 4.2 and Table 4-2). While P20 GC1003 and P20 Mock viruses 

replicated efficiently than PA, the titers of P20 GC1003 was only slightly higher than PA but less 

than P20 Mock virus after 24hpi (Fig. 4.3B). Whole genome sequences of P20 viruses showed 

multiple mutations in regions including 3CLpro, compared to PA (Table 4-1). A majority of these 

mutations were within ORF1 that encodes the polyprotein, while the structural proteins also 

showed mutations (Table 4-1). P20 GC1003 contained two mutations, G23V close to the active 

site and G298S in the C terminus of domain III (Fig. 4.4). P20 Mock virus also showed a mutation 

of F58S in 3CLpro. Multiple sequence analysis of 3CLpro sequences of 66 feline coronavirus 

strains available in Genbank showed that the 3CLpro residues G23, S58 and G298 are highly 

conserved among feline coronaviruses.  

 

 

 

Figure 4.1 Structures of GC376 and GC1003. 

Both GC376 and GC1003 share the same backbone with a glutamine surrogate at the P1 position 

and bisulfite adduct warhead that interacts with the cysteine residue (C104) at the catalytic site. 

The cap moiety (marked as X) differs between these inhibitors.   
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Figure 4.2 EC50s of FIPV passaged in GC376 or GC1003 in CRFK cells. 

The EC50s of each inhibitor was determined in CRFK cells using the standard TCID50 method. 

Statistical significance comparing the EC50s of passaged viruses against PA is indicated with an 

asterisk (*); P < 0.05. Error bars represent standard error of the mean (SEM).   
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Figure 4.3 Growth kinetics of passaged FIPV. 

The replication of (A) P8 viruses and (B) P20 viruses in CRFK cells up to 24hpi is indicated in 

terms of TCID50/ml compared to parental and mock passaged viruses. Error bars represent 

standard error of the mean (SEM). Statistical significance in virus titers compared to the mock 

passaged virus is indicated with an asterisk (*); P < 0.05. 
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Figure 4.4 The locations of mutations G23V and G298S in the 3CLpro.  

The 3CLpro homology model of P20 GC1003 was superposed with the FIPV 3CLpro crystal 

structure (PDB accession 4ZRO) to investigate the locations of mutations within 3CLpro. The 

active site of FIPV 3CLpro consists of H41 and C144. GC376 is also shown to indicate the 

interactions with the active site residues. The P20 GC1003 showed two mutations in 3CLpro, 

G23V in domain I close to the active site and G298S in domain III.  
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Table 4-1: Mutations in the genome sequence of P20 GC1003 virus compared to PA.  

 

Passaged 

virus 

Mutation Location in 

the 

polyprotein 

Location in the 

genome 

P20 

GC1003 

G23V G2926V 
3CLpro 

G298S G3201S 

H112N H232N 
Nsp2 

S288A S398A 

G183E G1062E 

Nsp3 

L482F L1361F 

S519N S1398N 

E701K E1580K 

G765D G1644D 

A788D A1667D 

H1051Y H1930Y 

M410K M2823K Nsp4 

L138F L3720F Nsp8 

D431E D4454E 
Nsp12/RdRp  

D823G D4846G 

I208M I6278M Nsp15 

119,120 YI insertion (S1 domain) 

Spike 

 

T773I (RBD) 

D1341N (HR2) 

N1374T (HR2) 

C74Y Envelope 

A22V Membrane protein 

R66Q Nucleocapsid 

* The 3CLpro mutations are highlighted in black. The mutations shared with the P20 Mock are 

shown in grey. 

 

 4.4.2 The effects of mutations in FIPV 3CLpro against 3CLpro inhibitors in enzyme 

assay. 

We investigated the 3CLpro mutations that were present in P20 GC1003 by generating 

recombinant 3CLpro bearing these amino acid changes. Recombinant 3CLpro of PA and P20 

Mock were also generated for comparison. All the generated recombinant 3CLpro were active in 
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FRET assay and showed an increase in percent activity over time following a similar trend (Fig. 

4.5A). The recombinant 3CLpro of P20 GC1003 increased the IC50s of GC1003 and GC376 by 

3.4-folds and 2-fold, respectively (Fig. 4.5B). The presence of G23V and G298S in P20 GC1003 

3CLpro appears to marginally reduce the inhibitory activities of GC376 and GC1003 in FRET 

assay, still, these fold changes in IC50s were comparatively less than that observed in CRFK cells. 

These results show that the tested 3CLpro inhibitors are still moderately effective against the 

recombinant mutant 3CLpro of P20 GC1003 in FRET assay.    

 

 

Figure 4.5 The effect of 3CLpro mutations in FRET assay. 

(A) The percent activities of recombinant 3CLpro in FRET assay. (B) The fold changes in IC50 

of the 3CLpro inhibitors against the recombinant 3CLpro in FRET assay. Error bars represent 

standard error of the mean (SEM). Statistical significance in IC50s compared to PA is indicated 

with an asterisk (*); P < 0.05. 
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 4.4.3 The effect of P-glycoprotein on FIPV and antiviral resistance. 

Because P-glycoprotein (P-gp or ABCB1) plays crucial roles in maintaining intracellular 

concentrations of antivirals, we examined if P-gp inhibitors could influence antiviral activities of 

GC376 or GC1003 and/or restore the inhibitory activities of GC376 or GC1003 against P8 GC376 

and P20 GC1003 viruses. We used Elacridar and CP100356 in the virus replication assay as P-gp 

inhibitors. These P-gp inhibitors were added at concentrations that showed minimal cytotoxicity 

and did not affect virus replication compared to the virus infected untreated cells. Addition of 

Elacridar did not change the EC50 of GC376 against PA but decreased the EC50s for GC1003 or 

remdesivir by 16.5 and 6.5-folds, respectively (Table 4-2). Importantly, treating P8 GC376 

infected CRFK cells with Elacridar markedly reduced the EC50s of GC376 (5.5-folds) (Table 4-2), 

to a level comparable to PA. Similarly, when P20 GC1003 infected CRFK cells were treated with 

Elacridar, substantial decrease in the EC50 of GC376 (12.6-folds) was observed (Table 4-2). In the 

presence of Elacridar, the EC50s of GC1003 reduced against P8 GC376 or P20 GC1003 by 7.5- or 

4.1-folds, respectively, compared to EC50s against the untreated mutant FIPV. Similar results were 

observed when CP100356 was used as a P-gp inhibitor.  
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Table 4-2: The effect of P-gp efflux on the inhibitory activity of 3CLpro inhibitors against 

FIPV. 

 

FIPV  

EC50 (µM) 

GC376 GC1003 Remdesivir  

PA 0.05±0.01 0.33±0.04 0.13±0.02 

P8 GC376 0.66±0.20 1.06±0.30 NT 

P20 GC1003 1.51±0.29 1.86±0.28 NT 

PA + Elacridar 0.03±0.01 0.02±0.01 0.02±0.01 

P8 GC376 + Elacridar 0.12±0.02 0.14±0.04 NT 

P20 GC1003 + Elacridar 0.12±0.02 0.45±0.13 NT 

*NT- Not tested. 

 

We examined if the expression of viral proteins changes P-gp expression in the infection with PA 

and the passaged viruses. We infected CRFK cells with PA or the passaged viruses (P8 GC376 

and P20 GC1003) at 10 MOI with or without remdesivir to study the effect of virus replication on 

P-gp RNA expression. Subsequent treatment of the infected cells with GC376 to block the 

processing of non-structural proteins did not markedly change the RNA expression of P-gp even 

at 12hpi compared to the untreated, virus only control (Fig. 4.6A). Furthermore, we investigated 

the changes in the activity of P-gp in CRFK cells infected with PA or passaged viruses at 10 MOI. 

Still, P-gp activity did not show marked changes in the virus infected cells at 24hpi compared to 

the control (Fig. 4.6B). These observations suggest that neither PA nor the passaged viruses alter 

RNA expression or the activity of P-gp in CRFK cells upon infection.   

 



51 

 

Figure 4.6 The changes in RNA expression of P-gp and percent activity of P-gp in response 

to FIPV infection in CRFK cells.   

(A) Feline P-gp expression in CRFK cells in response to FIPV infection at 10 MOI with or 

without the treatment of remdesivir or GC376 after 12hpi. Statistical significance in fold change 

compared to the cells-only control is indicated with an asterisk (*); P < 0.05. (B) The percent 

activity of P-gp in CRFK cells in response to FIPV infection at 10 MOI after 24hpi. Remdesivir 

is also indicated as R. Error bars represent standard error of the mean (SEM).  

 

 4.5 Discussion 

The 3CLpro of coronaviruses is an attractive target to develop antiviral drugs for coronaviruses. 

Recently, nirmatrelvir, a 3CLpro inhibitors combined with ritonavir (Paxlovid; Pfizer) received  

emergency use authorization for the treatment of COVID-19 in eligible patients (350) marking an 

important milestone for 3CLpro targeted antivirals. Study of molecular basis of antiviral resistance 

in coronaviruses greatly benefit the development of antiviral drugs that have a high genetic barrier 
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to resistance. This information is also crucial to understand the evolutionary dynamics of 

coronaviruses that would further improve preventive and therapeutic measures to control highly 

pathogenic coronaviruses. Therefore, we investigated the generation of resistance of FIPV to 

3CLpro inhibitors GC376 and GC1003 in this study. 

 

Passaging FIPV in the presence of GC376 reduced the susceptibility of FIPV (at P8) against both 

GC376 and GC1003 in cell culture in the absence of mutations in 3CLpro. This observation is 

consistent with recent studies on passaging FIPV in cell culture in the presence of GC376, where 

no mutation was observed in 3CLpro (279,310). Jiao et al reported mutations at non-3CLpro 

locations including nsp12- S925P, which is highly conserved among feline coronaviruses (310). 

Jiao et al reported that the mutant FIPV carrying nsp12-S925P showed reduced susceptibility to 

GC376 in cells and increased virulence and decreased response to GC376 in experimentally 

infected cats (310). The amino acids 925-926 in nsp12 are located close to the 3CLpro cleavage 

site between nsp12/13. Thus, it can be speculated that T926I, which we identified in our study, 

may contribute to the reduced 3CLpro inhibitory activity against P8 GC376 in cell culture. 

However, further investigations are necessary to study the exact role of nsp12-T926I in the 

generation of antiviral resistance.   

 

Similarly, passaging FIPV in GC1003 reduced the susceptibility of the passaged virus (P20) to 

GC1003 as well as GC376 in cell culture. P20 GC1003 had mutations in 3CLpro and in other 

regions of the genome, some of which are shared with the mock passaged virus. The 3CLpro 

mutations (G23V and G298S) are in close proximity to 3CLpro mutations identified in our 

previous study (N25S, A252S, K260N) (280,309). In our previous study, FRET assay showed that 



53 

the presence of N25S, which was near the active site, slightly lowers the inhibitory activity of 

GC376, while A252S or K260N had no effect (309). The proteolytic activity of recombinant P20 

GC1003 3CLpro carrying G23V and G298S mutations appeared unaffected in FRET assay. The 

combination of G23V and G298S in the recombinant mutant 3CLpro of P20 GC1003 moderately 

decreased the activity of 3CLpro inhibitors in FRET assay (<3.5-folds in IC50s for GC376, 

GC1003). Because these IC50 fold changes were comparatively lower than observed EC50 fold 

changes in cells (30.2- or 5.6-fold for GC376 or GC1003, respectively), the mutations in 3CLpro 

alone could not explain the reduced susceptibility of P20 GC1003 to the inhibitors in cell culture. 

Further studies are needed to understand how these multiple mutations throughout the genome 

affect the resistance as well as virus replication and pathogenicity.    

 

One of the key findings in this study is the effect of inhibiting host P-gp on the activity of 3CLpro 

inhibitors in cells. P-gp is a multi-drug resistant efflux transporter protein (311,312) that is 

expressed in multiple tissues including the liver, intestines, kidneys, and the blood-brain barrier 

(313,314). P-gp functions as a natural barrier that transports toxic substances as well as antiviral 

(333–335) and anticancer drugs back to extracellular domains (311,315,316). Thus, elevated P-gp 

activity could greatly affect drug efficacy, safety, and toxicity. P-gp is known to limit the 

therapeutic efficacy of anticancer drugs, and cause suboptimal penetration of many anti-retroviral 

drugs creating sanctuaries for virus persistence (326). Therefore, simultaneous inhibition of P-gp 

with compounds such as verapamil could greatly improve the bioavailability and tissue penetration 

of therapeutics (313,338–340) including antivirals such as HIV protease inhibitors (333,341). 

Importantly, ritonavir in the combination of nirmatrelvir and ritonavir (Paxlovid; Pfizer) that target 
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3CLpro of SARS-CoV-2 is also known to inhibit P-gp (351,352), and is a pharmacokinetic booster 

used in HIV and HCV treatments. 

 

The results of P-gp inhibitors suggest that GC376 is not susceptible to the P-gp efflux activity, 

while the effectiveness of GC1003 and remdesivir are influenced by the P-gp efflux system in 

CRFK cells (Table 4-2). The inhibitory effects of both GC1003 and remdesivir significantly 

increased against PA in the presence of P-gp inhibitors (Table 4-2). On the other hand, there was 

no difference on the EC50s of GC376 against PA with or without the P-gp inhibitor (Table 4-2). 

Because the antiviral effects of GC376 against P8 GC376 and P20 GC1003 were restored to the 

levels comparable to the parental virus in the presence of P-gp inhibitors (Table 4-2), the P-pg 

efflux system is involved in the resistant phenomenon against GC376 in P8 GC376 and P20 

GC1003. For GC1003, the EC50s were reduced in the presence of the P-gp inhibitor against P8 

GC376 and P20 GC1003 at similar (or lower) levels against PA (Table 4-2). Since P8 GC376 did 

not show mutations in 3CLpro, this decrease in EC50 with P-gp inhibitor may be explained by the 

involvement of P-gp system in the resistant phenomenon of this mutant virus. It is possible that 

both 3CLpro mutations and P-gp system contribute to the resistant phenomenon observed with the 

P20 GC1003.  

 

When the RNA expression or activity of P-gp in response to the infection with PA, P8 GC376 or 

P20 GC1003 in CRFK cells was examined, we did not observe significant changes. Neither FIPV 

replication nor virus non-structural proteins resulted in different P-gp activity or expression at 

RNA level in CRFK cells. A previous study indicates that CP100356 can moderately suppress 

virus replication by inhibiting low-pH-dependent membrane fusion with minimal cytotoxicity 



55 

(342). We did not observe marked changes in virus replication in the presence of Elacridar or CP 

100356 at the tested concentrations. Overall, these results show that P-gp expression or activity 

was not related to the P-gp inhibitor-mediated restoration of inhibitory activity of GC376 against 

P8 GC376 and P20 GC1003. The cellular efflux system is complicated with multiple systems 

composed of several proteins (Reviewed by (353,354)), and it is possible that the 3CLpro 

inhibitors influence other efflux proteins than P-gp. These results suggest that multiple factors are 

involved in the resistance of FIPV against 3CLpro inhibitors, which includes the involvement of 

P-gp. Further investigation is important in understanding the function of efflux system in 

coronavirus replication and antiviral resistance.  
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Chapter 5 - Review of Literature on SARS-Coronavirus-2  

 

 5.1 SARS-Coronavirus-2  

A novel human coronavirus was first identified in Wuhan, China in December 2019 with 

epidemiological ties to the Huanan seafood market in Wuhan (355). Based on its similarity of 

symptoms and severe respiratory illness as SARS-CoV (356) as well as the sequence similarity, 

the causative coronavirus was named as SARS-Coronavirus-2 (SARS-CoV-2),  and the associated 

disease was named as COVID-19. Subsequently, efficient person-to-person transmission (357) of 

SARS-CoV-2 led to a global pandemic. It has claimed the lives of ~10 million individuals across 

the world since 2020 (358), and is still ongoing at the time of writing this dissertation. The 

declaration of the COVID-19 pandemic resulted in the implementation of strict control measures 

including mandatory facemasks and national lockdowns in many countries. Multiple vaccines 

were rapidly developed and authorized for use, and the use of new mRNA technologies was a 

breakthrough in vaccine development. Immunocompromised individuals and individuals with 

underlying diseases are more susceptible to severe SARS-CoV-2 infections, while acute SARS-

CoV-2 infection causes minimal complications and is often cleared by the immune system in 

healthy individuals. Some SARS-CoV-2 infected individuals can experience long-term effects that 

include a wide range of health problems including general symptoms such as fatigue to digestive, 

respiratory, and neurological symptoms.    

 

 5.2 Origin of SARS-CoV-2 

SARS-CoV-2 is classified as a sarbecovirus within the beta coronavirus genus in the family 

Coronaviridae (359). As other beta coronaviruses, SARS-CoV-2 also encodes large polyproteins 
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containing non-structural proteins from ORF1 (360) followed by ORFs that encode the structural 

proteins and six accessory proteins (361,362) (Fig. 3.2). The genome identity between SARS-CoV 

and SARS-CoV-2 is 79.6% (144), and there is a notable difference in the antigenicity between 

SARS-CoV and SARS-CoV-2 (143).  

 

SARS-CoV-2 may have originated from bat coronaviruses and eventually transmitted into humans 

via an intermediate host. This stems from studies that revealed the high sequence similarity 

between SARS-CoV-2 and some bat coronaviruses, including RmYN02, bat-SL-CoVZC45 and 

bat-SL-CoVZXC21(355,363–365).  

 

 5.3 Spike protein of SARS-CoV-2   

SARS-CoV-2 S glycoprotein is a type I viral fusion protein (366) which comprises the receptor 

binding S1 subunit (143) and the S2 subunit that contains the fusion domain (Fig. 5.1). Interactions 

of coronavirus S protein and the cellular receptor is dependent on the receptor-binding domain 

(RBD) in S1. The RBD of SARS-CoV-2 is composed of five-stranded antiparallel β sheets with 

short helices and loops that form the core. The receptor-binding motif (RBM) is contained within 

the RBD. It is composed of four pairs of disulfide bonds that stabilize the structure and other 

residues that bind the receptor (367). The overall structure of the SARS-CoV-2 RBD is similar to 

that of the SARS-CoV RBD (363,367). SARS-CoV-2 utilizes the same receptor, ACE2, as SARS-

CoV (142–144) (Fig. 5.2). However, RBD of SARS-CoV-2 S protein has a higher binding affinity 

to human ACE2 (368), and shows more atomic interactions compared to SARS-CoV (143). 

Neuropilin-1 (NRP1) (369,370) and Tyrosine-protein kinase receptor UFO (AXL) (371) could be 

additional host factors involved in the entry of SARS-CoV-2. For example, NRP1 is expressed 
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abundantly in the respiratory and olfactory epithelium, and co-expression of ACE2, TMPRSS2 

and NRP1 could even further potentiate infection of SARS-CoV-2 (369,370). 

 

In contrast to SARS-CoV, SARS-CoV-2 S contains a polybasic cleavage site at the S1/S2 

boundary (142,372), which may enhance the efficiency of entry into host cells and infectivity 

(373,374). Proteolytic processing of the polybasic cleavage site at S1/S2 and S2’ by cellular 

proteases including transmembrane protease, serine 2 (TMPRSS2) triggers membrane fusion and 

SARS-CoV-2 virus entry into the host cell (368,375–379).  

 

 

Figure 5.1 Schematic diagram of the SARS-CoV-2 spike protein  

The domains within the SARS-CoV-2 spike protein are indicated in different colors. SS - signal 

sequence; NTD - N-terminal domain; RBD - receptor-binding domain (333-527) that contain the 

receptor binding motif (RBM) within residues 438-506; SD1 - subdomain 1; SD2 - subdomain 2; 

S1/S2 - the protease cleavage site; S2’- protease cleavage site; FP - fusion peptide; HR1 - heptad 

repeat 1; CH - central helix; CD - connector domain; HR2 - heptad repeat 2; TM - transmembrane 

domain; CT - cytoplasmic tail. The protease cleavage sites are indicated by black arrows. [The 

figure was adapted from (367,380)].  
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Figure 5.2 Interaction of SARS-CoV-2 spike protein with human ACE2 

Image credit: Davian Ho for the Innovative Genomics Institute. (Creative commons license) 

 

 5.3.1 SARS-CoV-2 spike variants 

New SARS-CoV-2 variants with altered antigenic properties and transmissibility have surfaced as 

the pandemic progressed. Some variants quickly became predominant over others, and some of 

these were classified as variants of concern based on the impact on public health. D614G 

substitution rapidly became dominant among the circulating SARS-CoV-2 strains. The D614G 

substitution reduces the shedding of S1 and increases the ability of RBD to remain in open 

conformation and to bind to ACE2 (379). Moreover, pseudoviruses bearing D164G grow to high 

https://innovativegenomics.org/free-covid-19-illustrations/


60 

titers in cells, which might correlate with increased viral transmission observed in individuals 

infected with the virus carrying this mutation (381).  

 

The ‘Alpha’ (UK/ B.1.1.7 variant) variant contained eight mutations in the S protein including 

N501Y, D614G, and P681H near the S1/S2 cleavage site, and appeared to be evade a few RBD 

and N-terminal domain targeting monoclonal antibodies against the SARS-CoV-2 S protein (382). 

However, convalescent plasma from patients infected with the parental SARS-CoV-2 were able to 

neutralize the Alpha variant (382,383) suggesting that the protective efficacy of the vaccines or 

sera were intact against this variant. The ‘Beta’ (B.1.351/ South African variant or 501Y.V2) 

variant emerged with eight mutations in the S protein, and three of these (K417N, E484K and 

N501Y) were within ACE2 binding region of the RBD (384). Some Beta variant  isolates also had 

an additional substitution (A701V) near the S1/S2 cleavage site (382). Due to the number of 

mutations within the S gene, most importantly E484K, Beta variants were resistant against multiple 

monoclonal antibodies developed for SARS-CoV-2 that recognize the multiple regions of the 

SARS-CoV-2 S protein including the N terminal domain and RBM (382,385). Furthermore, Beta 

variants also showed poor neutralization by convalescent plasma and sera from vaccinated 

individuals (382). The subsequent ‘Gamma’ variant (P.1) contained 10 spike mutations along with 

K417N, E484K and N501Y (386) in the RBD and H655Y close to the S1/S2 cleavage site. Similar 

to Beta, the presence of E484K in the Gamma variant contributed to resistance against multiple 

RBD-directed neutralizing mAbs developed for SARS-CoV-2, convalescent plasma and sera from 

vaccinated individuals (387).  
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Studies on Alpha, Beta and Gamma variants highlight how a combination of three spike mutations, 

K417N/T, E484K, and N501Y could alter the neutralizing landscape of SARS-CoV-2 (385,388). 

E484K, K417N and N501Y in combination causes substantial changes in the conformation of 

RBD in the S protein, which could affect interactions with human ACE2. Specifically, E484K 

adjusts the conformation of the flexible loop region of RBD and further increases the interactions 

with ACE2 in combination with N501Y (389). This enhanced affinity of RBD containing E484K, 

K417N and N501Y to human ACE2 maybe the underlying cause of increased transmissibility of 

these variants (389). Importantly, variants with N501Y also displayed the ability to bind mouse 

and mink ACE2 which could potentially expand the SARS-CoV-2 host range (383,390). The 

neutralization resistance hierarchy of the variants at this point (Beta was the most resistant 

followed by Gamma and Alpha) was speculated to be dependent on the Y144del and 242–244del 

mutations in the N-terminal domain in addition to K417N/T, E484K, and N501Y mutations (383). 

 

The subsequent ‘Delta’ variant (B.1.617.2) contained L452R and T478 K on the RBD and was 

associated with more severe disease in unvaccinated individuals than previous variants (391). 

Additionally, the P681R mutation in the Delta variant slightly increased the pathogenicity of the 

virus by enhancing fusogenicity (392). The delta variant showed poor neutralization by vaccine 

induced or convalescent sera from previous Beta or Gamma infections (393,394). The next 

‘Omicron’ (B.1.1.529) variant carried up to 36 mutations within the spike protein, with multiple 

deletions and insertions in the S1-RBD/S2 domains (15 mutations in RBD including G339D, 

S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, 

N501Y, and Y505H). The new variant quickly became dominant over the Delta variant and 

showed higher viral loads, increased rates of transmissibility, infectivity and re-infection (395–
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397). Despite the efficacy in neutralization of the Delta variant, Omicron variant responded poorly 

to neutralizing sera from vaccinated individuals (398,399). However, primary immunization with 

two doses of COVID-19 vaccines appeared to prevent severe disease and provided sufficient 

protection against the omicron variant (400).  

 

 5.4 Susceptibility of other species to SARS-CoV-2 infection 

Differences in the use of receptors and residues within the ACE2 receptors between animal species 

could change the susceptibility to SARS-CoV-2. An intense, multidisciplinary computational 

analysis of ACE2 sequences of different species within vertebrates proposed the potential broad 

host range of SARS-CoV-2 (401–403). However, whether these predicted animals could become 

infected, the epidemiological significance and their potential of becoming animal reservoirs 

require more in-depth surveillance, thorough investigations and experimental infections. 

Subsequently, SARS-CoV-2 infections have been reported in multiple animal species.  

 

Early during the pandemic, multiple SARS-CoV-2 outbreaks were reported in mink farms in the 

Netherlands (404,405) and Denmark (406), where the infected animals often showed acute 

interstitial pneumonia. The possible source of infection was human contact and the virus was able 

to transmit between minks (405). Subsequent SARS-CoV-2 outbreaks in mink farms were also 

reported in multiple European countries and North America with incidences of human-to-mink 

and mink-to-human transmission (407–409). These outbreaks reveal that minks could serve as a 

potential animal reservoir of SARS-CoV-2.  SARS-CoV-2 was also detected in feral cats and dogs 

that were near the infected mink farms (410). The viruses isolated from these infected cats 

clustered with the mink derived SARS-CoV-2 sequences, suggesting mink-to-cat transmission of 
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the virus (410). These infected cats also shed infectious virus and showed cat-to-cat transmission 

(411,412). Several other reports mentioned SARS-CoV-2 infection in domestic cats with possible 

human-cat and cat-cat transmissions (413,414). As mentioned above, dogs can also get infected 

with SARS-CoV-2, show seroconversion, and may also show signs of disease (411,412,415,416). 

Syrian hamsters can be naturally infected with SARS-CoV-2 and also transmit the virus to humans 

(417). Among domesticated animals, SARS-CoV-2 has shown no or low levels of replication in 

pigs, chicken and ducks (412,415). Infecting cattle with SARS-CoV-2 results in virus replication 

and seroconversion, however, the infected animals do not appear to transmit the virus to the 

uninfected and no reports exist about natural infection in cattle (418,419). Horses do not appear to 

support virus replication but can become seroconverted following close contact with humans 

infected with SARS-CoV-2 (418,420). No reports exist on natural infection of SARS-CoV-2 in 

camels. Overall, domesticated animals cannot be considered as highly susceptible hosts for SARS-

CoV-2 that contribute to virus transmission. 

 

White-tailed deer in North America shows possibility of becoming animal reservoirs of SARS-

CoV-2. These animals were shown to be susceptible to SARS-CoV-2 (421) and the experimentally 

infected fawns showed efficient deer-to-deer transmission as well as spillover to humans (422). 

This observation raises a threat as white tailed deer that live close to humans could be established 

as an animal reservoir of SARS-CoV-2 (421,422). Red foxes (Vulpes vulpes) have also shown the 

presence of SARS-CoV-2 in oral and respiratory secretions (423). Interestingly, fruit bats showed 

transient infection of SARS-CoV-2 with clinical signs resembling subclinical infection in humans, 

and viral replication in the respiratory tract as well as transmission to direct contacts (415).  
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 5.4.1 Animal models for SARS-CoV-2 

Preclinical evaluation of antiviral agents and vaccines as well as studies on virus pathogenesis 

heavily rely on animal models. Different animal models have been established to study SARS-

CoV-2 infection and disease progression. Mice show poor susceptibility as SARS-CoV-2 has low 

affinity to bind to mouse ACE2. To circumvent this issue, mouse-adapted SARS-CoV-2 has been 

engineered based on the interaction between SARS-CoV-2 spike protein and mouse ACE2 

(390,424–426). However, this raised concerns on virus virulence and applicability of the results in 

humans. The other approach was generating transgenic mice expressing human ACE2 (427–432). 

C57BL/6 (B6) transgenic mice that express human ACE2 from the human cytokeratin 18 promoter 

(K18 hACE2) (430,432) shows features that correspond to severe COVID-19 upon SARS-CoV-2 

infection. Still, whether these models accurately display the ACE2 distribution, tropism, 

pathogenesis of SARS-CoV-2 or age dependency and histopathological changes of severe 

COVID-19 related acute respiratory distress syndrome (ARDS) as observed in humans need to be 

investigated. 

 

Ferrets also succumb to SARS-CoV-2 infection (412) similar to their susceptibility to experimental 

infection and transmission of SARS-CoV (433). Infection of 8 month old female ferrets with 

SARS-CoV-2 showed the presence of viral RNA in the respiratory tract in absence significant 

clinical signs (434). However, in 12- to 20- month old ferrets, SARS-CoV-2 infection resulted in 

virus replication, and shedding associated with fever, and acute bronchiolitis (435,436). These 

infected ferrets were also able to transmit the virus to other ferrets that were in direct contact (435). 

Overall, these studies suggest that SARS-CoV-2 infection in ferrets resembles the subclinical 

infection in humans with an efficient transmission pattern (436). Ferrets are established animal 
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models for multiple zoonotic pathogens. Therefore, these observations highlight their applicability 

to study vaccines or antivirals for SARS-CoV-2  (415). However, reproducibility of the infection 

and clinical signs in ferrets is questionable.   

 

Similarly, infected golden (Syrian) hamsters show clinical signs that correlate with mild SARS-

CoV-2 infections in humans and were also able to transmit the virus into naïve hamsters (437,438). 

However, intranasal infection of low doses of low-passage SARS-CoV-2 results in more severe 

signs of intranasal infection in hamsters compared to ferrets (436). Although mortality is rare, 

hamsters with intact immune systems show consistent development of severe respiratory infection 

following SARS-CoV-2 infection. This highlights their importance in the use as an animal model 

to study SARS-CoV-2 pathogenesis over the mouse model, where the mouse or the virus need to 

be altered (439). The relatively small size of hamsters, ease of handling and the cost effectiveness 

further contribute to this suggestion.  

 

Rhesus macaques are non-human primates that are widely used as animal models. Infection of 

SARS-CoV-2 in rhesus macaques result in interstitial pneumonia and systemic viral dissemination 

predominantly in the respiratory and GI tracts (440). When the animals were re-infected, higher 

levels of neutralizing antibodies were detected with no signs of disease or viral dissemination, 

suggesting prior infection may protect from re-infection (440).  

 

Overall, it is impossible to study disease pathology and transmission of SARS-CoV-2, and 

therapeutic approaches for COVID-19 using a single animal model due to the inherent differences 

among these animals. Therefore, a combination of data from different animal models is required 
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to fill the knowledge gaps on SARS-CoV-2. However, detailed animal studies provide valuable 

information especially for the development of vaccines and therapeutics.  
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Chapter 6 - Effects of spike mutations in SARS-CoV-2 variants of 

concern on human or animal ACE2-mediated virus entry and 

neutralization 

  

 6.1 Abstract 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic agent capable of 

infecting humans and a wide range of animal species. Over the duration of the pandemic, mutations 

in the SARS-CoV-2 spike (S) protein have arisen, culminating in the spread of several variants of 

concern (VOCs) with various degrees of altered virulence, transmissibility, and neutralizing 

antibody escape. In this study, we used pseudoviruses that express specific SARS-CoV-2 S protein 

substitutions and cell lines that express angiotensin-converting enzyme 2 (ACE2) from nine 

different animal species to gain insights into the effects of VOC mutations on viral entry and 

antibody neutralization capability. All animal ACE2 receptors tested, except mink, support viral 

cell entry for pseudoviruses expressing the ancestral prototype S at levels comparable to human 

ACE2. Most single S substitutions did not significantly change virus entry, although 614G and 

484K resulted in a decreased efficiency. Conversely, combinatorial VOC substitutions in the S 

protein were associated with increased entry of pseudoviruses. Neutralizing titers in sera from 

various animal species were significantly reduced against pseudoviruses expressing the S proteins 

of Beta, Delta, or Omicron VOCs compared to the parental S protein. Especially, substitutions in 

the S protein of the Omicron variant significantly reduced the neutralizing titers of the sera. This 

study reveals important insights into the host range of SARS-CoV-2 and the effect of recently 
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emergent S protein substitutions on viral entry, virus replication, and antibody-mediated viral 

neutralization.  

 

 

This chapter is an excerpt from the published article (441), which can be accessed through the 

following links. 
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 6.2 Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of 

coronavirus disease 2019 (COVID-19), unexpectedly emerged in late 2019 and has spread 

throughout the world, infecting over 517 million people worldwide and causing over 6.2 million 

deaths as of May 2022-update (https://covid19.who.int/). The zoonotic origin and intermediate 

hosts of SARS-CoV-2 are still unclear, although bats are considered a likely source based on 

numerous SARS-CoV-2-related bat coronaviruses found in Southeast Asia (144,365,442). It is 

now increasingly apparent that SARS-CoV-2 has the capacity to infect several animal species 

besides humans, increasing concerns that domestic and wild animals may become secondary 

reservoirs of the virus (443–445). Outbreaks of SARS-CoV-2 in hundreds of mink farms in the 

European Union (405), where identification of human-to-mink and mink-to-human virus 

transmissions (406,446) as well as mink-associated variants led to the culling of over 20 million 

minks in Denmark, underscored the importance of identifying and assessing the risks associated 

with this pandemic for animal and human health (407–409,447). Other animal species, including 

cats, dogs, ferrets, hamsters, nonhuman primates, white-tailed deer, mice, cattle, pigs, tree shrews, 

rabbits, raccoon dogs, and fruit bats, have been investigated for their susceptibility to SARS-CoV-

2 infection (448). Reports from natural and experimental infection studies determined a wide range 

of susceptibility of several domesticated (farm or companion) animals or wildlife to SARS-CoV-

2 infection, including white-tailed deer (401–403,405,406,411,412,416,422,449,449–451). 

 

SARS-CoV-2 is an enveloped, positive-sense RNA virus that belongs to the family Coronaviridae. 

RNA viruses are prone to high mutation rates, giving rise to new variants, although the mutation 

rate of coronaviruses is lower than that of many other RNA viruses due to proofreading activity of 

https://covid19.who.int/


70 

their replicative complex (344,345). Some virus variants possess notable changes in virus 

transmissibility, virulence, or other characteristics that are important in host defense, such as 

immune evasion. Since the emergence of COVID-19, multiple variants of SARS-CoV-2 have been 

identified and have largely replaced the prototype SARS-CoV-2 strain (Wuhan-Hu-1) (452,453). 

Currently, the World Health Organization designated Alpha (lineage B.1.1.7), Beta (B.1.351, 

B.1.351.2, and B.1.351.3), Gamma (P.1, P.1.1, and P.1.2), Delta (B.1.617.2, AY.1, and AY.2), and 

Omicron (B.1.1.529) SARS-CoV-2 viruses as variants of concern (VOCs) (449,454), as they are 

associated with increased risks to global public health. These variants contain multiple amino acid 

substitutions in the spike (S) protein, some of which have received special attention as they span 

the receptor-binding domain (RBD) or the S1/S2 junction. Entry of SARS-CoV-2 into the target 

cells is mediated by the interaction of the S protein with its receptor angiotensin-converting 

enzyme 2 (ACE2) on the host cell membrane (365,368,455). The RBD in the S protein is located 

on residues 319 to 541 and interacts with 25 conserved residues on human ACE2 (hACE2) 

(368,456). Cleavage of the S1/S2 junction (residues 613 to 705) of SARS-CoV-2 S protein by 

cellular proteases triggers fusion and viral entry into host cells (377,457). Due to its involvement 

in receptor binding, most neutralizing antibodies are directed against the RBD (458). Mutations 

affecting the S protein, including the RBD, are of particular concern because they may enhance 

virus transmissibility and reduce neutralizing antibody binding and immune protection, thus 

compromising vaccine and therapeutic antibody efficacies (452). In addition, the interaction 

between the cellular receptor and virus, leading to virus entry into host cells, is one of the critical 

factors that determine host susceptibility to virus infection. With the recently emerged virus 

variants, it is also critical to understand the impact and significance of such mutations on virus 

neutralization, which has wide-reaching implications on vaccine efficacy; and on animal 
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susceptibility to SARS-CoV-2 in order to identify and manage risks of zoonotic/reverse zoonotic 

infections. Some of the key mutations found in SARS-CoV-2 VOCs have been studied using 

pseudotyped viruses or recombinant viruses carrying mutant SARS-CoV-2 S proteins (459); 

however, only limited information on the role of these mutations for a broad range of animal 

species, as well as humans, is available so far. 

 

Small animal models, such as mice and Syrian Golden hamsters, are available to study various 

aspects of SARS-CoV-2 infection and pathogenesis (460). Parental (Wuhan-like) SARS-CoV-2 

viruses can infect genetically engineered mice that express hACE2, although unmodified mice are 

only permissive to mouse-adapted SARS-CoV-2 (424,425), with the exception of SARS-CoV-2 

variants containing the N501Y polymorphism in their S protein (461). Hamsters are highly 

permissive to SARS-CoV-2 infection, and efficient virus replication and moderate to severe lung 

pathology are observed following virus replication, usually accompanied by weight loss and other 

clinical signs during acute infection (438,462–464). Small animal models for COVID-19 have 

been used to study viral transmission, pathogenesis, and immunity as well as to evaluate vaccines 

and therapeutic drugs and are also suitable models for investigating virulence and infectivity of 

SARS-CoV-2 variants (222). 

 

In this study, we investigated the characteristics of key mutations found in Alpha, Beta, Gamma, 

and Delta VOCs (single or combinations of 614G, 501Y, 484K, 452R, and 478K mutations). Using 

lentivirus-based pseudotyped virus assays, the effects of key substitutions on virus entry into 

human and various animal ACE2-expressing cells and on the neutralizing activities of antisera 

from humans, cats, and rabbits were determined. In addition, we generated key substitutions 
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(501Y, 484A, 417N, 446S, 440K, 477N, 478K, 493R, and 498R) found in the Omicron VOC and 

examined the effects of these substitutions on the neutralizing activities of the respective antisera.  

 

The presented results provide important insights into the impact of S protein mutations found in 

emerging SARS-CoV-2 variants on cell entry in human and other animal species and on virus 

replication and virus neutralization.  

 

 6.3 Materials and Methods 

 

 6.3.1 Cells and plasmids. 

HEK293, Crandell-Rees feline kidney (CRFK), and Calu-3 cells were purchased from American 

Type Culture Collection (ATCC; Manassas, VA). Vero E6 cells expressing human TMPRSS2 

(Vero-TMPRSS2) were obtained from Creative Biogene (Shirley, NY) (465). Cells were 

maintained with either Dulbecco’s modified Eagle medium (DMEM) or Eagle’s minimal essential 

medium (MEM), both supplemented with 5% fetal bovine serum (FBS), 100 U/mL penicillin, and 

100 μg/mL streptomycin. The codon-optimized cDNAs of the open reading frame (ORF) of the 

human or animal ACE2 gene with FLAG tag were synthesized by Integrated DNA Technologies 

(Coralville, IA) and cloned into pIRES-Neo3 (TaKaRa Bio, Mountain View, CA). For the ACE2 

gene of white-tailed deer, because only a partial ORF is available, the full ORF was constructed 

with the human ACE2 gene. These plasmids were then designated pIRES-Neo-(species) ACE2-

FLAG. The animal species from which ACE2 gene sequences (listed in Table S1 in the 

supplemental material) were derived are cat, dog, Arabian camel, European mink, horse, rabbit, 

cattle, Syrian golden hamster, and white-tailed deer. Pseudotyped viruses expressing SARS-CoV-
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2 S protein were generated by synthesizing the S gene, which was truncated by 26 amino acids at 

the C terminus, fused with a hemagglutinin (HA) tag by Integrated DNA Technologies, and cloned 

into plasmid pAbVec1 (Addgene, Watertown, MA), and designated pAbVec-SARS2-S. The 

parental S gene sequence was the prototype SARS-CoV-2 S gene from Wuhan (GenBank ID 

YP_009724390.1). This clone was then used to generate single or multiple mutations in the RBD 

of the S gene with a site-directed mutagenesis kit (Agilent, Santa Clara, CA) using primers listed 

in Table S2 and designated pAbVec-SARS2-S (mutant). Single mutations in the RBD include 

N501Y (Alpha variant), E484K, K417N, T478K, and L452R, and multiple mutations include 

N501Y + E484K (Gamma variant), L452R + E484K (Delta variant), L478K + L452R (Delta 

variant), N501Y + E484K + K417N (Beta variant), D614G + N501Y + E484K + K417N (Beta 

variant), and D614G + N501Y + E484A + K417N + G446S + N440K + S477N + T478K + Q493R 

+ Q498R (Omicron variant). Each mutation was confirmed by Sanger sequencing analysis. 

  

 6.3.2 Generation of CRFK cells stably expressing human or animal ACE2. 

CRFK cells, plated the previous day, were transfected with pIRES-Neo-human (or cat, dog, cattle, 

horse, camel, hamster, rabbit, mink, or white-tailed deer) ACE2-FLAG. The transfected cells were 

then subsequently selected in the presence of 1 mg/mL G418. Expression of the ACE2 receptor of 

each animal species in the cells was confirmed by Western blotting using antibody against human 

ACE2 (Abcam, Waltham, MA). Parental CRFK cells served as a control (mock). 

 

 6.3.3 Generation of SARS-CoV-2 S pseudotyped viruses. 

The second-generation lentiviral packaging plasmid psPAX2 (Addgene), a reporter plasmid 

pUCGFP-Luc (Addgene), and parental or mutant pAbVec-SARS2-S were transfected into 
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HEK293 cells to produce pseudotyped viruses. Briefly, cells plated in 6-well plates the previous 

day were transfected with three plasmids (1 μg each per well) using Lipofectamine 2000 (Thermo 

Fisher, Waltham, MA). Following overnight incubation, medium was replaced with fresh medium 

containing 5% FBS, and the cells were further incubated for 48 h. Supernatants were collected, 

and cell debris was removed by centrifugation at 400 × g for 10 min. Quantitation of pseudotyped 

viruses was performed using an HIV p24 assay kit (TaKaRa Bio) or ELISA for SARS-CoV-2 S 

(Sino Biological, Wayne, PA) before storing at –80°C. 

 

 6.3.4 Pseudotyped virus entry assays. 

To study the entry efficiency of parental or mutant S in cells expressing human or animal ACE2, 

HEK293 cells or CRFK cells expressing human or animal ACE2 were infected with pseudotyped 

virus carrying parental or mutant S protein. Briefly, cells plated the previous day were infected 

with each pseudotyped virus at a multiplicity of infection (MOI) of approximately 1 based on the 

p24 ELISA for pseudotyped virus preparation. Cell lysates were prepared at 48 h after infection, 

and firefly luciferase activity was measured on a luminometer (GloMax 20/20, Promega, Madison, 

WI). Fold change over the parental pseudotyped viruses was calculated for each mutant 

pseudotyped virus. 

 

 6.3.5 Statistical analysis. 

Statistical analysis was performed using GraphPad Prism software version 6 (San Diego, CA). A 

one-way analysis of variance (ANOVA) followed by a Tukey post hoc test on the log10-

transformed firefly luminescent units or neutralization titers was used to compare the parental and 

mutant pseudotyped viruses. To identify significant differences between ACE2-expressing cell 
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cultures or hamsters infected with the different SARS-CoV-2 strains, virus titer data were first 

log10 transformed, and raw means and standard deviations were calculated. The data were then 

analyzed by two-way ANOVA, followed by a Tukey’s multiple-comparison test; statistical 

differences are indicated with an asterisk (*) representing a P value of <0.05. Data are 

representative of at least two independent experiments.  

 

 6.4 Results 

 

 6.4.1 Entry of pseudotyped virus with SARS-CoV-2 S into HEK293T or Crandell-

Rees feline kidney (CRFK) cells expressing human or animal ACE2. 

Expression of ACE2 in human kidney-derived HEK293T or CRFK cells that were stably 

transfected with a plasmid encoding the ACE2 protein from humans and various animal species 

was confirmed by Western blotting (Fig. 6.1A). Entry of pseudotyped viruses, measured by firefly 

luciferase, was comparable between HEK293T and CRFK cells expressing the same ACE2 

construct. However, CRFK cells yielded more robust and consistent results than HEK293T cells; 

therefore, CRFK cells were subsequently used for pseudotyped virus entry assays. The results of 

the virus entry assays are shown in Fig. 6.1B and C. Importantly, native CRFK cells that do not 

express exogenous ACE2, only inherent feline ACE2 (mock), yielded negligible virus entry (Fig. 

6.1B), indicating that CRFK cells are suitable to determine the effects of exogenous heterologous 

ACE2 on viral entry. Expression of various animal ACE2 receptors in CRFK cells led to greatly 

enhanced entry of pseudotyped viruses expressing the parental SARS-CoV-2 S protein (Fig. 6.1B), 

except for mink ACE2, which did not show the marked increase in virus entry compared to the 

other animal ACE2s; however, mink ACE2 had a 31-fold increase over nontransfected cells. 
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Cellular entry of pseudotyped viruses in the presence of ACE2 receptors from various animal 

species ranged from an approximately 1,200-fold (horse/cat) to 3,000-fold (rabbit) increase in 

cellular entry compared to the mock control (no ACE2 transfection). Figure 6.1C shows a 

summary of the virus entry results using cells expressing different animal ACE2 receptors 

compared to cells expressing human ACE2. Virus entry levels for each ACE2 species were 

considered high, medium, or low when greater than 80%, 10 to 80%, or 1 to 10% of virus entry in 

ACE2-expressing cells (compared to hACE2-expressing cells) was observed, respectively, based 

on the criteria suggested by Damas et al. (403). High levels of virus entry were observed in cells 

expressing ACE2 from human, dog, cow, hamster, or rabbit (Fig. 6.1B and C), while medium 

levels of virus entry were seen in cells expressing ACE2 from cat, horse, camel, and white-tailed 

deer. Expression of mink ACE2 resulted in low virus entry. The overall trend of virus entry in cells 

expressing various animal ACE2 receptors was similar to the in silico predictions by Damas et al. 

(403) (Fig. 6.1C). 
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Figure 6.1 Effects of various ACE2 constructs on the entry of pseudotyped viruses carrying 

SARS-CoV-2 S into CRFK cells stably expressing ACE2 from various animal species. 

(A) Western blot of CRFK cells stably expressing various ACE2 receptors or mock cells (no ACE2 

transfection). Cell lysates were collected and probed using anti-ACE2 receptor or β-actin 

antibodies. (B) CRFK cells stably expressing various ACE2 receptors or mock cells (no ACE2 
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transfection) were infected with pseudotyped virus carrying the parental SARS-CoV-2 S protein. 

Following incubation of the cells with the pseudotyped virus for 48 h, cells were lysed, and 

luminescence units were measured. Each bar indicates the mean and the standard error of the 

means. (C) Summary of the results from the pseudotyped virus entry assay in B. Virus entry levels 

were considered high, medium, or low when greater than 80%, 10 to 80%, or 1 to 10% of virus 

entry in ACE2-expressing cells (compared to human ACE2 cells) was observed, respectively, 

based on the criteria suggested by Damas et al. (403). The asterisk (*) indicates in silico predictions 

by Damas et al. (403). 

 

 6.4.2 Entry of pseudotyped virus expressing SARS-CoV-2 parental or mutant S in 

human ACE2-expressing CRFK cells. 

The pseudotyped virus preparations carrying single or multiple amino acid substitutions in S were 

quantitated and normalized by enzyme-linked immunosorbent assay (ELISA) p24 lentivirus 

antigen measurement or by SARS-CoV-2 S protein expression after transduction of the cells. Virus 

entry of each pseudotyped virus carrying single or multiple substitutions of 417N, 452R, 478K, 

484K, 501Y, or 614G on the RBD of the S protein was compared to that of parental pseudotyped 

viruses (no substitution in S gene) in cells expressing human ACE2 or native CRFK cells (no 

human ACE2 expression). In CRFK cells expressing no exogenous ACEs (native feline ACE2-

expressing CRFK cells), a significant decrease or increase in pseudotyped virus entry was 

observed with the 614G single mutation or the 614G-501Y-484K-417N quadruple mutation, 

respectively (Fig. 6.2A). However, the overall magnitude of pseudotyped virus entry in 

nontransfected CRFK cells was very low regardless of the presence or absence of S protein 

mutations, which confirms that nontransfected CRFK cells are poorly supportive of SARS-CoV-

2 S-pseudotyped virus entry. However, expression of human ACE2 markedly enhanced viral entry 
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compared to native CRFK cells (Fig. 6.2B). In these cells, single substitutions of 501Y, 452R, or 

478K did not lead to a statistically significant difference in virus entry compared to parental virus 

(Fig. 6.2B) except for 614G or 484K, which showed significantly reduced virus entry compared 

to the parental pseudotyped virus. Among the double substitutions (i.e., 614G-501Y, 501Y-484K, 

452R-484K, or 452R-478K), only the 501Y-484K combination significantly increased 

pseudotyped virus entry compared to the parental pseudotyped virus. The addition of substitution 

417N or 614G to the 501Y-484K combination, however, did not further increase the virus entry 

efficiency of pseudotyped virus compared to the 501Y-484K double substitution unless both 417N 

and 614G were combined with 501Y-484K in a quadruple combination (417N-484K-501Y-

614G). Interestingly, when 501Y was combined with 614G (614G-501Y double substitution), an 

increase of virus entry was observed similar to the level of parental virus and the single 501Y 

virus. Virus entry capacity was further enhanced by the addition of 484K (614G-501Y-484K) or 

484K-417N (614G-501Y-484K-417N). Similarly, the combination of 501Y and 484K led to 

significantly increased virus entry compared to the parental virus, suggesting that the 501Y 

substitution is important in negating the suppressive effects of the 484K and 614G single mutations 

(Fig. 6.2B). The reduced virus entry due to the 484K substitution was also restored to the level of 

the parental virus entry when combined with the 452R substitution (Fig. 6.2B). However, the 

452R-478K double mutation did not lead to enhanced virus entry compared to the 452R or 478K 

single mutations. 
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Figure 6.2 Entry of pseudotyped viruses carrying SARS-CoV-2 S with single or multiple 

substitutions on the RBD site into nontransfected CRFK or CRFK cells stably expressing 

human ACE2. 

No human ACE2-expressing CRFK cells (A) or human ACE2-expressing CRFK cells (B) were 

infected with pseudotyped viruses with single or multiple RBD substitutions. Following incubation 

of the cells for 48 h, luminescence units were measured. Each bar indicates the mean and the 
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standard error of the means. PA indicates parental pseudotyped virus (no mutation in the S protein). 

One-way ANOVAs on the log10-transformed raw relative luminescence units were used to 

compare the parental (PA) group and other groups. Statistical differences between mutation and 

the parental virus groups are indicated with an asterisk (*, P < 0.05). 

 

 6.4.3 Entry of pseudotyped virus carrying SARS-CoV-2 parental or mutant S 

proteins in various ACE2-expressing CRFK cells. 

In this experiment, we compared the entry of pseudotyped viruses with parental or mutant S into 

cells expressing ACE2 from various animal species, including humans. Overall, the trend of 

change in virus entry among various pseudotyped viruses was similar in all tested cells expressing 

various animal ACE2 receptors (Fig. 6.3). In general, the quadruple 614G-501Y-484K-417N 

substitution showed the highest fold increase compared to the parental S (no mutation), followed 

by the triple combination 614G-501Y-484K. The 501Y-484K and 501Y-484K-417N substitutions 

led to moderately increased virus entry compared to the parental S but without a statistically 

significant difference. The 614G single mutation led to a decrease in virus entry in cells expressing 

human and animal ACE2 (Fig. 6.2A and Fig. 6.3). Notably, even in mink ACE2-expressing cells, 

which support limited virus entry compared to other ACE2s, a similar trend was observed with 

pseudotyped viruses with single and multiple substitutions (Fig. 6.3). Interestingly, relatively little 

change was observed in virus entry among parental and mutant pseudotyped viruses in horse 

ACE2-expressing cells (Fig. 6.3). These results suggest that the effects of these mutations in the 

RBD region of the S protein for virus entry are shared among a wide range of animal ACE2 

receptors. 
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Figure 6.3 Entry of pseudotyped viruses carrying SARS-CoV-2 S with single or multiple 

mutations on the RBD site of S protein into CRFK cells expressing ACE2 of various 

species. 

CRFK cells expressing ACE2 from different animal species were infected with pseudotyped 

viruses expressing single or multiple S protein substitutions. Following incubation of the cells for 

48 h, cells were lysed, and relative luminescence units were measured. Each mutant pseudotyped 
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virus was compared with the parental pseudotyped virus (PA), and data are presented as the fold 

change to PA. One-way ANOVAs on the log10-transformed raw relative fluorescence units were 

used to compare the parental group and other groups. Statistical differences between mutation and 

the parental virus groups are indicated with an asterisk (*, P < 0.05). Red square: human data. 

 

 6.5 Discussion 

Since the unexpected emergence of SARS-CoV-2 in human populations, extensive efforts have 

been directed toward both elucidating the risks associated with emerging virus variants and 

identifying susceptible animal species to better understand the zoonotic/reverse zoonotic 

implications of the pandemic. In our study, we used pseudotyped virus assays to elucidate the roles 

of ACE2 from various animal species, including humans, in viral entry, which is a central event 

determining host susceptibility to SARS-CoV-2 infection. Using the S protein from the ancestral 

prototype (parental) SARS-CoV-2 strain (Wuhan-Hu-1), we found that several animal ACE2 

receptors can efficiently interact with SARS-CoV-2 S protein to allow virus entry into cells. The 

efficiencies of virus entry among animal ACE2 receptors tested are not remarkably different from 

that of human ACE2, except for mink ACE2, which was consistently associated with 

comparatively low virus entry efficacy. Many animal species have been reported to be susceptible 

to SARS-CoV-2 infection either in experimental studies or by natural infection, as evidenced by 

clinical disease, viral replication in the respiratory tract and other organs, viral 

shedding/transmission, or seroconversion; these include domestic and large captive cats, dogs, 

cattle, mink, ferrets, otters, fruit bats, nonhuman primates, New Zealand White rabbits, hamsters, 

deer mice, bushy-tailed woodrats, striped skunks, and white-tailed deer (419,466–469). Other 

animal species either have not been tested or showed no consistent evidence of active viral 
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infection. Among them, cats and dogs have been of particular interest due to their proximity to 

humans. These companion animals can be infected by SARS-CoV-2 in natural and experimental 

settings and usually remain asymptomatic, although some develop mild respiratory disease 

(411,470–472). Overall, our pseudotyped virus entry results are consistent with previous animal 

susceptibility studies with most of the animal ACE2 receptors (human, cat, dog, cattle, camel, 

hamster, rabbit, mink, and white-tailed deer) tested in this report for virus entry (419,466–469). 

Although there are currently no or few reports of natural or experimental infection in horses (418) 

and camels, there have been concerns that SARS-CoV-2 may infect these animals, based on 

predictions from structural in silico analyses or cell-to-cell fusion assays using pseudotyped virus 

(401–403). Our results regarding the horse and camel ACE2 receptors and pseudotyped viruses 

provide a further impetus to study viral susceptibility in these animal species; however, our 

structural modeling (Fig. 4 in this research article – not included in this chapter) coupled with 

previous experimental evidence (473) indicates that the horse ACE2 Y41H substitution may confer 

resistance to RBD binding of both parental and mutated S proteins. Recent reports showed no 

evidence of virus replication in a horse experimentally infected with SARS-CoV-2 (418), although 

this requires further confirmation. An experimental infection study of cattle revealed that SARS-

CoV-2 infection in this species may occur but does not appear to be robust, which seems to support 

the results of pseudotyped virus assays conducted by us and others (402,474). Interestingly, mink 

ACE2 was predicted to have a weak interaction with S protein in a previous in silico analysis study 

(403); similarly, our pseudotyped virus entry assay showed that mink ACE2 allowed viral entry, 

although at a relatively lower level than that observed with ACE2 from other animals or humans. 

This is somewhat surprising because mink are highly susceptible to SARS-CoV-2 infection, 

leading to a significant number of outbreaks of COVID-19 in mink farms with high 
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morbidity/mortality (405,406). It is likely that an unknown disparity exists between virus entry 

mediated by pseudotyped viruses and native cell-virus interaction for mink. Structural models were 

generated to gain insight into the interaction between the S protein and selected animal ACE2 with 

a focus on the residues interacting with K417, E484, and N501 on the S protein (Fig. 4 in this 

research article – not included in this chapter). The respective ACE2 residues are mostly conserved 

with minor variations among human and animal ACE2s, which is in line with the pseudotyped 

virus assay results obtained in this study. 

 

We also examined the effects of various mutations (417N, 452R, 478K, 484K, and 501Y) in the 

RBD, found in the Alpha (614G-501Y), Beta (614G-501Y-484K-417N), or Delta variants (452R-

478K or 452R-484K), on virus entry in cells expressing human or animal ACE2 receptors using 

pseudotyped viruses. SARS-CoV-2 variants carrying 614G have replaced the prototype 614D 

virus and now are part of all major variants (475,476), most likely because 614G is associated with 

enhanced fitness in susceptible cells, including human airway cells (476,477). The 614G virus was 

also shown to enhance replication in the upper respiratory tract and transmission in infected 

hamsters (477,478), although this was not observed in hACE2 transgenic mice (477). In human 

ACE2-expressing 293T cells, pseudotyped viruses carrying 614G alone have been reported to 

either increase (476,479–482) or cause no change (459) in viral cell entry. In contrast to previous 

findings showing an increase in 614G cell entry in cells expressing human, cat, or dog ACE2 

orthologs (476), pseudoviruses carrying the 614G mutation alone consistently showed decreased 

cell entry across all species in our assays. Structural studies have indicated that 614G does not 

result in a higher affinity toward ACE2 but instead results in allosteric changes conducive toward 

a more open conformation of the RBD in which it is better positioned to interact with the ACE2 
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receptor (476). The entry efficiency of the 484K single mutation alone has not yet been well 

studied. In our study using human ACE2-expressing cells, entry of the 614G or 484K mutant 

pseudotyped viruses was significantly decreased compared to the parental virus. In contrast, the 

614G-501Y-484K (found in the Beta VOC) and 614G-501Y-484K-417N (found in Beta and 

Gamma VOCs) mutations in the S protein increased virus entry compared to the parental 

pseudotyped virus. In a previous report (474), pseudoviruses with these mutations did not change 

virus entry in cells expressing human and various animal ACE2 receptors, with the exception of 

murine ACE2-expressing cells (474). This observed difference in virus entry may be due to the 

different assay system, including cell types, variance of assays, or other factors. 

 

In summary, our results obtained from a lentivirus-based pseudovirus system and hamster infection 

studies showed that a wide range of animal ACE2s support pseudotyped virus entry, and the key 

mutations found in the VOCs affect pseudotyped virus entry in cells expressing human or animal 

ACE2 as well as neutralizing activity of sera from humans, cats, and rabbits. The hamster infection 

study suggest a replicative advantage of the Beta variant over the parental and Alpha variant. The 

findings of this study highlight the importance of elucidating the roles of S mutations in detail and 

monitoring for evolving SARS-CoV-2 variants to assess their public health implications.   
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