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Abstract

Control theory is the study of feedback systems, and a methodology investigated by many

engineering students throughout most universities. Because of control theory’s broad and

interdisciplinary nature, it necessitates further study by application through experimental

learning and laboratory practice. Typically, the hardware used to connect the theoretical

aspects of controls to the practical can be expensive, big, and time consuming to the stu-

dents and instructors teaching on the equipment. Alternatively, using cheaper sensors and

hardware, such as encoders and motor drivers, can obfuscate the collected data in a way

that creates a disconnect between developed theoretical models and actual system results.

This disconnect can dissuade the idea that systems can and will follow a modeled behavior.

This thesis attempts to assess the feasibility of a piece of laboratory apparatus named

the NERMLAB. Multiple experiments will be conducted on the NERMLAB system and

compared against time-tested hardware to demonstrate the practicality of the NERMLAB

system in control theory application.
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Chapter 1

Introduction

Current research indicates a growing need for laboratory components for introductory con-

trol theory classes. However, many hurdles like budget, class size, and space limitations arise

when laboratories are appended to lectures in universities [1, 2, 12]. The New Earth Robotics

Motor Lab (NERMLAB) aims to address these concerns in reducing the overall cost imposed

on instructors and students, as well as, minimizing the foot print of the hardware to allow

students to take part in laboratories in a home environment. It is this home experimentation

that allows students to engage in experimental learning, which is a methodology that aims at

creating knowledge through wisdom, observation, and insight from experience. Experimen-

tal learning also provides an alternative learning mechanism for the traditional theoretical

components that make up a standard engineering curriculum. Most experimental learning

is achieved through a laboratory practicum that helps students connect the theoretical ideas

developed in lecture with what is done in practice [12]. As a result, students can gain further

insight into the theory that might have gone unresolved without experimental learning [2].

Unfortunately, classroom sizes continue to grow in universities, and, a direct result of

this, is increasing laboratory size. Since size means the cost per student increases due to the

limited amount of equipment available, there is a desire for more afforable hardware [3]. A

way to combat the issue would be to make laboratory hardware more portable, allowing for
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cheaper components, such as motors, motor drivers and the like to be used [2]. However,

utilzing cost-effective hardware in laboratory equipment can lead to poorly produced data,

which does not adhere to theoretical models developed in lecture. While it is true that

cheaper hardware does lead to less accurate data, it does allow greater access to students

because of its cost. The goal of NERMLAB is to give students access to affordable equipment

that can provide them with the experimental learning opportunities both in the classroom

and at home. In addition, it is the aspect of portability that is of importance because

students will be allowed to learn at their own pace, in a way that benefits them the most,

and still achieve the same learning objective as that of traditional on-campus laboratories

[2, 4]. Other studies, such as [12], also have compared more affordable laboratory apparatus

to their more expensive counterparts to determine exactly how learning objectives affected.

[12] concludes that even when cheaper and portable laboratory kits are used, the same

learning objectives are achieved.

This thesis will attempt to address the feasability of the cheaper NERMLAB alternative.

Multiple experiments will be conducted as they appear in Appendix C and results will be

compared to more expensive hardware, such as the Motorlab. Chapter 2 will describe the

NERMLAB system apparatus and the various components that comprise it, as well as,

comment on the differences between the NERMLAB and the older Motorlab system. Then,

Chapter 3 will discuss system identification and characterization, which produces things

such as the motor torque constant, inductance, and resistance. Chapter 4 will then develop

the necessary mathematical models that are necessary for the experiments that make up

Chapters 5-10.
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Chapter 2

Apparatus

This chapter will discuss two apparatus pieces used for conducting a series of five experi-

ments included in this thesis and will, in detail, describe the purpose, design, and creation

of the equipment. Section 2.1 will describe the NERMLAB, including the hardware im-

plementation, design of components, basic functionality, and use of the position sensor. In

comparison, section 2.2 will describe the Motorlab, the model currently being used in Kansas

State University’s engineering laboratories, and how it differs from NERMLAB.

2.1 NERMLAB

The NERMLAB is a reimplementation of older laboratory hardware created by Dr. Dale

Schinstock and Dr. Warren White for Control of Mechanical Systems I at Kansas State

University. This equipment allows users to connect the theoretical ideas of control theory

with those in practice.

2.1.1 NERMLAB Hardware

The NERMLAB consists of several key pieces of hardware, including: an STM32 Nucleo

development board, motor driver, and a Brushless DC (BLDC) motor (Figure 2.1). The

3



Figure 2.1: NERMLAB

STM32 Nucleo houses a STM32F401RE Microprocessor Unit (MPU), which is a 32-bit pro-

cessor with an 84 MHz clock speed and up to 512 Kbytes of flash memory. The STM32 Nucleo

also allows Arduino shields and other STM boards to be attached for added functionality.

A motor driver was required to drive a brushless DC motor. As a result, an X-Nucleo-

IHM07M1 (a three-phase brushless DC motor driver) was selected to be the primary driver

for the NERMLAB. The X-Nucleo has a nominal operating voltage of 8V-48 VDC with a

2.8 A peak current output, which is sufficient to drive a BLDC gimbal motor, such as the

RCTIMER GBM2804, which is the primary motor used in this thesis.

The RCTIMER GBM2804 is a 100 turn BLDC motor that has a hollow shaft, which

allows placement of a position sensor for feedback control purposes. Motor specifications

were not given by the manufacturer of this motor, so Chapter 3 details the experiments

that were conducted to find the various parameters needed to adequately model the entire

NERMLAB system.
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2.1.2 Position Sensor

The main purpose of the NERMLAB is to conduct control laboratory experiments. To

accomplish this, feedback via sensor readings is necessary, and the typical way to do position

and speed control is to use position feedback via an encoder. An encoder is a device that

converts angular position of a motor shaft to an analog or digital signal that can be processed

by an MPU. In the case of the NERMLAB, an on-axis magnetic encoder is used to do position

feedback. Special equipment had to be designed in order to use this type of encoder, and

will be detailed in Section 2.1.3.

The encoder that is being used consists of 14-bit on-axis magnetic rotary position sensor

chip, specifically the AS5047D by AMS 1. The position sensor chip provides high resolution

absolute angle measurements through a full 360 degree range 2. In addition to the fast abso-

lute angle measurement system that the position sensor provides, it also has Dynamic Angle

Error Compensation (DAEC) that provides position control systems with near 0 latency [5].

The AS5047D chip is a magnetic sensor that utilizes the Hall-effect. The chip works by

taking the Hall sensors and converting the perpendicular magnetic field on the surface of

the chip to a voltage. The voltage signals are filtered and amplified in order to calculate

the angle of the magnetic vector. In order for position measurements to be taken, a small

diametrically opposed magnet must be placed on the shaft of the equipment being measured.

The magnet and AS5047D are contactless, meaning there is a small air gap between the chip

and magnet. As the magnet rotates above the chip (Figure 2.2), angle measurements are

calculated and transmitted through the chip [5].

Sensor Output

The AS5047D has multiple input/output types that can be used for feedback and chip

programming. A Serial Peripheral Interface Bus (SPI) is the main input to the chip that

1AMS is an Austrian analog sensor and semi-conductor manufacturer
2These chips typically provide a maximum resolution of 2000 steps/revolution in decimal mode and 2048

steps/revolution in binary mode

5



Figure 2.2: Magnet and AS5047D [5]

allows a one time programming operation to be carried out. The chip also outputs an ABI

and Pulse Width Modulation (PWM) signal that can be used in feedback measurements. In

the case of the NERMLAB, the ABI output is the chosen signal type to be used for encoder

readings. The ABI is an incremental type signal that has two 90 degree offset signals that

indicate motor direction. To determine the motor’s position, one only needs to count the

number of pulses coming from the chip either from the leading or falling edge of the signal.

From there it is possible to use Equation 2.1 to come up with the position in radians, where

nresol is the resolution of the encoder output and ncount is the current encoder count.

θrad = 2π
ncount
nresol

(2.1)

PWM is also used on the NERMLAB, which provides absolute angle measurements

through a full 360 degree range. One PWM clock period on the AS5047D represents 0.088
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degrees, with a 12-bit resolution. However, for the purposes of control, the PWM signal is

not adequate, as the update rate is less than ten times the bandwidth of the system. Rather,

this signal is used to aid the motor commutation of the BLDC motor.

Sensor Noise
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Figure 2.3: Sensor Noise with Changing Speed

While the AS5047D does have a high resolution output in comparison to other cheap en-

coders, the chip does suffer from measurement inaccuracies. These inaccuracies could be a

result of the magnet’s rotation or the tolerance and fit of the magnet holder. It is when

doing speed control that these inaccuracies show up on the NERMLAB as superimposed

noise on the response. It was found through experimentation that the frequency of the noise

was proportional to the speed of the rotor. The NERMLAB was run at incremental speeds,

and the frequency of the noise was tabulated in Table 2.1. It is evident from Figure 2.3 that
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as the speed of the rotor is increased, the frequency of the noise increases proportionally, as

described by Equation 2.2.

f = 0.2741v (2.2)

Table 2.1: Noise Experiment

Average Speed (rad/s) Frequency (Hz) Input Voltage (V)

11.67 4.386 1.5
21.93 5.55 2.5
32.07 8.196 3.5
42.10 10.869 4.5
52.00 13.510 5.5
62.79 18.518 6.5

While the exact problem is not pinpointed in this thesis, the measurement inaccuracy

does not greatly affect the experimental results and is more so another feature that must be

realized when doing system analysis.
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2.1.3 NERMLAB Parts

Figure 2.4: Section View of Motorlab Assembly

Along with the hardware mentioned in Section 2.1.1, three components were needed to be

developed in order to bring the NERMLAB to fruition: a printed circuit board that houses

the on-axis magnetic rotary position sensor, a spacer to put distance between the circuit

board and the motor, and a magnet holder, which holds one diametrically opposed magnet 3.

Both the spacer and magnet holder, which can be seen in Figure 2.4, had to be 3D printed

in order to achieve the required specifications of the apparatus setup. Detailed drawings of

these two parts can be found in Appendix B, Figures B.1 and B.2, if reproduction is desired.

Along with the two 3D printed parts, a printed circuit board had to be designed to allow

the position sensor to communicate with the rest of the hardware.

Because of variability in resolution of current 3D printers, care was given to the design

3Diametrically opposed meaning the north and south poles of the magnet are in-plane as opposed to
top/bottom poles. Reference Figure 2.2 for further clarification
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of the magnet holder 4. A spline was used for both the shaft of the magnet holder and the

section that holds the magnet itself. The spline allowed for greater tolerances in the parts,

meaning the magnet holder could be easier to press fit into the motor, and likewise, allowed

easier removal of the diametrically opposed magnet.

2.1.4 NERMLAB Cost

Table 2.2 lists the components that make up the NERMLAB system and their associated

price at the writing of this thesis.

Table 2.2: Motorlab expenditure report

Component Brand/Manufacture Cost

BLDC Motor RCTIMER GBM2804 11.94 USD
Position Sensor AS5047D AMS 4.21 USD
ST32 Nucleo STMicroelectronics 10.12 USD
X-Nucleo-IHM07M1 STMicroelectronics 9.80 USD
Magnet - 3.00 USD
Printed Circuit Board - 30.00 USD

TOTAL COST 69.07 USD

4Because of this variability in resolution, the magnet holder was printed in iterations, varying the diameter.
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2.1.5 NERMLAB GUI

Figure 2.5: NERMLAB GUI

The NERMLAB GUI is an alternative way of interacting with the NERMLAB without

having to hardcode values and re-flashing every time an experiment needs to be run. The

user simply enters the desired settings into the GUI, which then triggers serial events in the

back-end. The GUI is coded in python 2.7, utilzing a variety of different libraries, such as the

PyQT4 framework that allows cross platform development of GUI applications, matplotlib

for plotting purposes, and variety of signal processing toolboxes for employing frequency

response and model responses.

JavaScript Object Notation (JSON) is the main communication protocol that is used to

allow back and forth communication between the NERMLAB and GUI interface. The GUI

sends out JSON messages whenever a user triggers an event, and the back-end code of the

NERMLAB then sees the object in its buffer, which is decoded into key-value pairings that
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can be processed.

Much of the NERMLAB GUI is still in development and is left as future work. Fea-

tures that still need implementation would include: flashing hex and binary files directly to

the NERMLAB system from the GUI, allowing python code to interact with the GUI/N-

ERMLAB system, and improving the plotting capabilities for instant data visualization.

2.2 Motorlab

Figure 2.6: Motorlab

The Motorlab has been in service at Kansas State University for over 15 years, and as

a result, is a time-tested piece of laboratory hardware that has proven to be reliable in

providing quality data. Additionally, the Motorlab’s hardware components were selected

to ensure a very clear translation of laboratory results, allowing the Motorlab to have a

much larger operating limit and bandwidth than students use in laboratory. As a result, the
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Motorlab represents a good base model to which to compare the results of the NERMLAB

apparatus in this thesis to.

2.2.1 Motorlab Hardware

Various hardware make up the Motorlab, namely, a BLDC motor, BLDC servo amplifier

by Copley Controls Corp., and a ST Discovery board 5. Typically the Motorlabs run a

cost of about 700 USD per lab station [3]; however, this estimate does not include things

like manufacturing, design and labor, as these processes were carried out at Kansas State

University. Appendix E, Figure E.2 hosts the system parameters that make up the Motorlab.

2.2.2 Motorlab GUI

Figure 2.7: Motorlab GUI in MATLAB

5The ST Discovery Board is a 32-bit micro controller development board
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The Motorlab interfaces with a Graphical User Interface (GUI) coded in MATLAB to allow

users to run various laboratory experiments on the hardware. It allows the selection of various

wave types, frequency, controller gains, and sample rate that get sent to the Motorlab. After

the parameters of the experiment are setup, the GUI can run the Motorlab, which in turn

sends the experimental data to the workspace of MATLAB in the form of a matrix. The

MATLAB GUI can be seen in Figure 2.7.
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Chapter 3

System Identification

Chapter 3 will be dedicated to developing the various parameters that make up the NERMLAB,

such as the motor torque constant, back electromotive force (back-emf), inductance, and max

voltage. Each section in Chapter 3 will detail the process of how the various parameters were

measured, calculated, and experimentally determined. Nomenclature for various constants

and parameters are detailed in Table 3.1.

Table 3.1: Motor Parameters Nomenclature

Parameter Description

V Motor Voltage
kt Motor Torque Constant in dq Reference Frame
kT Overall Motor Torque Constant
Ke Line-Line Back Electromotive Force Constant
KE Back Electromotive Force Constant in dq Reference Frame
Ke,p Back Electromotive Force Constant per Phase
J Lumped Mass Moment of Inertia (3Jw + Jr + 4Jb)
Jw Washer Mass Moment of Inertia
Jr Rotor Mass Moment of Inertia
Jb Bolt Mass Moment of Inertia
Js Solidworks Approximated Rotor Mass Moment of Inertia
Jm Mathematical Approximated Rotor Mass Moment of Inertia
L Motor Inductance
R Motor Phase Resistance
RLL Motor Line-Line Resistance
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3.1 Motor Resistance

Figure 3.1: Motor Connection Configuration

BLDC motors are typically connected in two wiring configurations: WYE (Y) or delta

(∆), which can be seen in Figure 3.1. The RCTIMER GBM2804 utilizes the WYE (Y)

configuration and will be analyzed as such. Due to the wiring of WYE systems, the neutral

connection is typically unavailable for measurement on most motors. As a result, it is

common to measure resistance by a line-line reading; however, in terms of motor control,

it is the phase resistance and not the line-line resistance that is of importance. Converting

between the phase and line-line resistance is quite simple and can be done by dividing the

line-line resistance by two (Equation 3.1).

R =
RLL

2
(3.1)

3.1.1 Resistance Estimation

In order to gather a good estimate for the phase resistance of the RCTIMER GBM2804

motor, the resistance was measured line-line across all three phases. Each set of motor

leads were hooked up to a digital multimeter, and the values were tabulated for each phase

component in Table 3.2. An average was then calculated between the different line-line

resistances to get the overall resistance of the motor.
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Table 3.2: Measured motor resistance

A-B A-C B-C

10.8 Ω 6.2 Ω 6.0 Ω

Average: 3.8 Ω

Using Equation 3.1, it is then possible to find the overall phase resistance of the motor.

R = 3.8Ω

3.2 Motor Torque Constant and Back EMF

The motor torque constant is a common parameter used in BLDC motors. It relates the

armature current to the torque produced by a motor: T = kT i. Many methods exist to

determine the torque constant, including relating the motor velocity constant kv, which is

inversely related to the torque constant by kT = 1
kv

, or by measuring the line-line back-

emf voltage per phase (Ke,p). Ke,p is the peak value of the back-emf per angular velocity

measured from line-neutral. However, since line-neutral is typically unavailable on most

BLDC motors, the back-emf constant is often represented as a line measurement, Ke. The

overall torque constant can then be related to the line measurement back-emf voltage for

sinusoidal type outputs by Equation 3.2 or for trapezoidal outputs by Equation 3.3. [6].

kT =

√
3

2
Ke (3.2)

kT = Ke (3.3)

However, with what will be shown in Chapter 4, in the mathematical model development

for the NERMLAB, a dq rotor reference frame is used for the formulations. This results in
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different motor torque and back emf constants, which both depend on the rotor flux linkage,

ψR. Equations 3.4 and 3.5 can be used to calculate these new constants [6–8], and should

be noted that an upper case E and lower case t are used, respectively, to denote the new dq

reference frame. Likewise, in Equation 3.4, P denotes the number of stator poles that exist

in the brushless motor, which is 12 in the case of the RCTIMER GBM2804. KE also has

units of Webers · turns, which is equivalent to the units of Ke,
V ·s
rad

, in a brushless motor [6].

kE = ψR =
2

P

√
2

3
Ke (3.4)

kt =
3

2
ψR =

3

2
KE (3.5)

Because Ke can be experimentally determined, it is possible to find all of the motor

constants for the RCTIMER GBM2804 using the above equations. One simply needs to

measure the line-line sinusoidal or trapezoidal back-emf voltage at various speeds to get a

good estimate of Ke. Care should be given when using the above approximations, 3.4 and

3.5, as these equations do not assume large current values [7].

3.2.1 Estimating the Back EMF Constant

In order to calculate the back-emf of the RCTIMER GBM2804 BLDC motor, an experiment

had to be set up to measure the voltage generated by the motor. Three pieces of equipment

were needed: an oscilloscope, the Motorlab, and a torque transmission shaft. The torque

transmission shaft was a 3D printed part1 that allowed the Motorlab to spin the RCTIMER

GBM2804 at a constant speed to generate a back voltage. A line-line voltage (peak) was

then read from the leads of the RCTIMER GBM2804 by an oscilloscope2. This set up was

run three times across the three motor phases to calculate an average back emf constant.

The averaged data collected are tabulated in table 3.3.

1Appendix B Figure B.3
2Appendix F Figure F.1
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Table 3.3: Measured back voltage

Average Speed ωm (rad/s) Average Peak Voltage (V)

36.47 1.87

43.56 2.24

50.84 2.54

65.66 3.36

72.93 3.68

There is a fairly linear relationship between the peak voltage and speed. Due to this fact,

Ke can be approximated from the slope of V
ωm

. The normal equation from the least-squares

method was employed to find the best fit for the data in Table 3.3. Two matrices were

constructed from the data, namely V and ωm.

Ke = (ωmωTm)−1ωmV T (3.6)

From Equation 3.6, the back-emf constant was found to be:

Ke = 0.05
V · s
rad

To verify that Ke was the best fit to that data, Ke was plotted against the collected data

in Figure 3.2.
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Figure 3.2: Measured Back EMF vs Speed

Using the equations developed in this section, the constants for the NERMLAB are

tabulated below:

kT = 0.04
N ·m
A

[Sinusoidal]

kT = 0.05
N ·m
A

[Trapezoidal]

KE = 0.007 Webers · turns

kt = 0.01
N ·m
A
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3.3 Mass Moment of Inertia Estimation

Mass moment of inertia (J) is the equivalent to mass in a rotational system (commonly

referred to as angular mass). More formally, is it defined as J =
∫
r2dm, where r is the

distance to a mass from an axis of rotation.

The angular mass of the NERMLAB will be determined in two ways: approximating J

through software modeling and approximating J through mathematical formulation.

Multiple inertias will be referenced throughout this thesis, one being the base load inertia

of the rotor, which is comprised of individual neodymium magnets held by an outer aluminum

casing, a second inertia being a simple steel washer, and finally, steel bolts that lock down

the washers to the rotor. Table 3.4 tabulates the various parameters that are referenced in

all mass moment of inertia calculations.

Table 3.4: Measured Inertia Parameters

Parameter Value

Magnet Thickness 0.002 m

Rotor Outer Radius 0.0164 m

Rotor Mass 0.018 kg

Washer Mass 0.045 kg

Washer Inner Radius 0.0105 m

Washer Outer Radius 0.0253 m

Bolt Mass 0.005 kg

Bolt Radius 0.0082 m

Bolt Off Center Dist. 0.0085 m
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3.3.1 Software Modeling of Mass Moment of Inertia

Computer Aided Design (CAD) software was utilized to construct a 3-D model of the

neodymium magnets and aluminum casing. CAD software like SolidWorks has the abil-

ity to determine complex mass moment of inertias via numerical methods. Knowing the

average density of neodymium (7.3 − 7.5 g
cm3 ) and aluminum (2.7 g

cm3 ), it is possible to

numerically find an inertia (Js) of the rotor.

Js = 4.0842× 10−6 kg ·m2

3.3.2 Mathematical Approximation of Mass Moment of Inertia

To simplify the mathematical analysis of the mass moment of inertia calculation of the

angular mass of the NERMLAB, an engineering assumption will be made that the angular

mass is a rotating ring mass. This assumption is valid for the particular motor used in this

thesis, due to the fact that most of the mass is concentrated around the outside perimeter

of the motor. The outside ring mass of the motor contributes the most to the inertial load,

so the mathematical formulation would result in the following equation:

Jz = mr2 (3.7)

Knowing the outer radius of the rotor, it is possible to find the mathematical approxi-

mation of the rotor’s inertia using equation 3.7.

Jm = 4.8413× 10−6 kg ·m2

Washer Inertia

Approximating the washer inertia is relatively straight forward as the geometry is simple to

measure. As stated in Section 3.3.2, the only dimensions that need measuring are the inner
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and outer radii, which are provided in table 3.4.

Jw =
m

2
(r2i + r2o) (3.8)

With the measured radii results and mass properties from Table 3.4, the washer inertia

can be easily approximated using Equation 3.8, which is the formula for a thick-walled

cylinder.

Jw = 1.7× 10−5 kg ·m2

Bolt Inertia

The bolt inertia is slightly more complex to calculate than the washer inertia since the bolts

lay off axis from the center of rotation. However this can be easily approximated using

the parallel axis theorem, Equation 3.9, where d is the distance to the center of rotation.

Likewise, the bolt will be approximated as a solid cylinder, as stated by Equation 3.10, where

Jb,o is the inertia at the origin.

J = J +md2 (3.9)

Jb,o =
1

2
mr2 (3.10)

Combining Equations 3.9 and 3.10 results in Equation 3.11, which can be used to calculate

the total inertia of the bolts.

Jb = Jb,o +md2 (3.11)

Jb = 5.3× 10−7
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3.3.3 Lumped Mass Moment of Inertia

Jr =
Jm + Js

2
(3.12)

Having two approximations for the inertia of the rotor, it is now possible to calculate an

average between the two. Using the results from Sections 3.3.2 and 3.3.1 and Equation 3.12,

the overall rotor inertia is found to be:

Jr = 4.5× 10−6 kg ·m2

For most of the experiments ran in this thesis, additional inertia is used to slow down

the response of the system to allow a better visualization of what is happening when looking

directly at the motor as it runs. For the total lumped inertia of the system, three steel

washers and four loading locking bolts are being used. Since all inertias in the system are

rotating about the same axis, the total lumped inertia of the system is described by Equation

3.13.

J = 3Jw + Jr + 4Jb (3.13)

J = 5.762× 10−5 ≈ 5.8× 10−5 kg ·m2

3.4 Motor Inductance

The motor inductance is measured by building a simple circuit, which consists of a resistor

in series with one of the motor’s phase circuitry, as depicted in Figure 3.3.
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Figure 3.3: Inductance Measurement Circuit

A function generator is required for this experiment to generate a variable frequency sin

wave across the external resistor and motor. Knowing that Figure 3.3 is a simple voltage

divider, it is possible to arrive at Equation 3.14 using the relationship |Vmotor| = 1
2
|Vsource|,

where f is the driving frequency of the sinusoid. Then, the voltages of two outputs are

monitored on seperate channels on an oscilloscope, and the sinusoidal frequency is increased

until the motor output’s voltage reaches one half of that of the source voltage.

L =
R
√

3

2πf
(3.14)

3.4.1 Inductance Estimate

With the outlined procedure developed in the previous Section (3.4), three resistors were

measured, and the voltages across each junction were tabulated when an appropriate fre-

quency was reached. Table 3.5 hosts the experimental results, along with the calculated

average inductance that was found from Equation 3.14.
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Table 3.5: Inductance Experiment

Resistance (Ω) Vsource (V ) Vmotor (V ) Frequency (kHz) Inductance (H)

22 0.392 0.176 8.34 7.27× 10−4

98.4 1.04 0.507 34.4 7.88× 10−4

461 1.88 0.920 167.5 7.58× 10−4

Average: 7.58× 10−4

L = 7.58× 10−4 H

3.5 Viscous Friction

Section 3.5 will not detail the process conducted to determine the viscous friction of the

NERMLAB, as this will be discussed in Chapter 4, where a laboratory has already been

developed for students to estimate this coefficient. For the sake of completeness the result

will be provided below.

b = 3.0× 10−4 N ·m · s
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Chapter 4

Development of Mathematical Models

for NERMLAB

Chapter 4 will develop various mathematical models for the NERMLAB and Motorlab.

These models are used throughout this thesis to help compare, analyze, and develop effective

control solutions for motor controllers. Rather than have each experiment develop its own

model in the corresponding chapter, it will be done here to help simplify the content of

each experiment. Since the NERMLAB and Motorlab use different input sources 1, different

mathematical models will be developed for each system seperately.

4.1 Brushless Motor Theory

Section 4.1 briefly covers brushless motor theory in an aim to give a background to the

reader for the proceeding sections that use it in model development. Since this is a short

introduction to the topic, many aspects of the theory are not mentioned, as it is outside

the scope of this thesis, but the reader can reference an excellent masters report by James

Mevey at Kansas State University, Sensorless Field Oriented Control of Brushless Permanent

Magnet Synchronous Motors [6].

1Nermlab uses voltage control. Motorlab uses current control.
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Brushless motors differ from their counter parts, brushed DC motors, in the fact that

they require digital or electronic logic to control the motor current and voltage to produce

motor commutation. It is the commutation process that is complicated, as the models

and mathematical formulations tend to be fairly involved, and as a result, require special

transforms. The space vector is one such transform and is a linear transformation of three

phase variables [6]. It’s purpose is to analyze three-phase circuits, which gives it great use

in brushless motor theory. There are two ways at looking at the space vector, through a

stationary αβ reference frame, or a rotating syncrhonous dq frame. On the NERMLAB, the

rotating syncrhonous frame is used first as a voltage command from the controller. However,

in order to control the physical motor, it is necessary to transform from the rotating frame

back to the original three phase system. One way of carrying out this process is through

the use of the inverse Clarke and Park transforms, Equations 4.1 and 4.2 respectively. In

Equation 4.1, k is a scaling factor, which in the case of the NERMLAB is
√

2
3
, which yields

a power-invariant form, which is more formally known as the Concordia transform.

xαβ = P−1xdq ↔

xα
xβ

 =

cos(θ) −sin(θ)

sin(θ) cos(θ)


xd
xq

 (4.1)

xabc =
1

k
C−1xαβ ↔


xa

xb

xc

 =
1

k


2
3

0

−1
3

1√
3

0 0


xα
xβ

 (4.2)

28



4.2 Electrical Dynamics

Vq

R L iq

ωψRωLId J
b

θ T = kti

Figure 4.1: Electrical and Mechanical Diagram of NERMLAB

Figure 4.1 hosts an electro-mechanical model for the NERMLAB. Here, it is important to

note that this diagram only consists of the quadrature axis, q, of the dq model. This is a

result of the fact that the NERMLAB only uses the Vq voltage as its input to the motor (e.g.

Vd = 0), allowing for the model to be simplified [7].

Using Kirchoff’s voltage law, it is possible to find the dynamics of figure 4.1.

∑
V = 0

Vq(t) = Riq(t) + ωLId + L
diq
dt

+ ωψR (4.3)

Equation 4.3 can be simplified to produce a dynamic system that is easier transform into

the models that will be used in this thesis. Note that ω is the angular velocity of rotation,

and not the electrical angle rate of the motor. The following assumptions will be made:

1. Because the pole at -R
L

(6596.3 rad
s

) is ten times as large as the other dynamics of the

system, Ldiq
dt

can be ignored in the analysis process.

2. The term ωLId can be neglected as Vd = 0.

3. ψR = KE in equation 4.4 since ψR was calculated in Chapter 2 using Ke. Note that

ψR is the rotor flux linkage.
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With these simplifications, Equation 4.3 can then be reduced to Equation 4.4. Since the

derivations that take place in this thesis consist only of the quadrature axis, the subscripts

q will be dropped from the variables throughout the remainder of the text.

V (t) = Ri(t) + ω KE (4.4)

The torque the motor produces can be related to the supplied current from the motor

driver, iq, as in equation 4.5.

T = kti(t)⇔ i(t) =
T (t)

kt
(4.5)

Using equations 4.5 and 4.4, the motor torque and current Equations, 4.6 and 4.7, can

be derived respectively.

T (t) =
kt
R

(V (t)−KEω) (4.6)

i(t) =
V (t)−KEω

R
(4.7)

4.3 Combined Dynamics - Electrical and Mechanical

Section 4.3 will detail the model development for the various electro-mechanical models

that are used throughout this thesis. Sections 4.3.1 and 4.3.2 will derive mathematical

models for position and speed systems, respectively, with different input sources. For the

model derivations using current as an input source, the closed-loop current control system

is assumed to be much faster than the mechanical dynamics. As a result of this assumption,

only the mechanical dynamics and controller will be in the model development.
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4.3.1 Position Models

Current as Input Source

J

b

θ T

Figure 4.2: Position Model

The best way to start the formulation is to begin with a time domain differential equation

of the mechanical system. Because the system is composed of only an angular mass and

viscous friction (figure 4.2), a describing differential equation can be written as such.

T = kT i(t) = bθ̇(t) + Jθ̈(t) (4.8)

Taking the Laplace transform of equation 4.8:

kT I(s) = (bs+ Js2)θ(s) (4.9)

the transfer function can then be developed for Gm from equation 4.9.

Gm(s) =
θ(s)

I(s)
=

kT
Js2 + bs

(4.10)

Voltage as Input Source

Equation 4.10 adequately describes the system for the Motorlab because the electrical dy-

namics are much faster than the mechanical. However, in the case of the NERMLAB, voltage

control is used, and as a result, a different model must be developed.
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Starting with the differential equations of the electrical dynamics and mechanical dy-

namics, the following equations are found.

V (t) = Ri(t) + L
di

dt
+KE θ̇(t) (4.11)

T (t) = Jθ̈(t) + bθ̇(t) (4.12)

Taking the Laplace transform of equations 4.11 and 4.12.

V (s) = RI(s) + LsI(s) +KEsθ(s) (4.13)

T (s) = (Js2 + bs)θ(s) (4.14)

From section 4.2, the relationship between torque and current is known. Substituting

equation 4.5 into equation 4.14, an equation for current is found.

I(s) =
(Js2 + bs)

kt
θ(s) (4.15)

Subtituting equation 4.7 into equation 4.13, grouping and finding a common denominator

in the process, yields equation 4.16.

θ(s)

V (s)
=

kt
(Ls+R)(Js2 + bs) +KEkts

(4.16)

As stated in section 4.2, the electrical dynamics involving L are much larger than any

other dynamics in the system; therefore, L can be ignored, resulting in the final position

equation in terms of voltage as an input source.

θ(s)

V (s)
=

kt
RJs2 + (Rb+KEkt)s

(4.17)
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4.3.2 Speed Models

Current as Input Source

J

b

ω T

Figure 4.3: NERMLAB Speed Model

The position models just developed in section 4.3.1 can be used to help derive models for

speed. The process is a relatively straight forward one, with one simple substitution needed.

Knowing the relationship between speed and position, it is possible to write the following

equation.

θ(s) =
ω(s)

s
(4.18)

Substituting equation 4.18 into 4.10 simply cancels the free integrator, leaving the final

equation in terms of speed.

ω(s)

I(s)
=

kT
Js+ b

(4.19)

Voltage as Input Source

Just as in section 4.3.2, a simple substitution of equation 4.18 into 4.17 yields the final speed

model in terms of voltage.

ω(s)

V (s)
=

kt
RJs+ (Rb+KEkt)

(4.20)

33



4.3.3 Low-Pass Filter

A low-pass filter is utilized on the NERMLAB when a speed control system is used. This

low-pass filter is simply a second order system with a cut off frequency at 300 rad
s

, and

damping ratio of 1
3
, as seen in equation 4.21 and figure 4.4.

Ghf =
3002

s2 + 212s+ 3002
(4.21)
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Figure 4.4: 2nd order low-pass filter with a cutoff frequency of 300 rad
s

The low-pass filter on the NERMLAB is used to attenuate high frequency noise 2 that

occurs due to the quantization of the encoder readings when converting angular position

to speed, which is accomplished through taking a derivative. The low-pass filter assists in

smoothing the signal of the output (speed), to minimize this high frequency noise.

2Higher frequency noise than that of the cutoff frequency
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Chapter 5

Approximating Friction of a BLDC

Motor

One of the important aspects of control theory is predicting a systems behavior with math-

ematical models. Because of this fact, friction, in most circumstances, needs to be included

as a part of the developed model to accurately predict a systems response. In motor applica-

tions, there are various types of friction that come into play, such as: static, viscous, Stribeck,

and Coulombic friction. However, in the case of this experiment, and for the sake of model

simplicity, Stribeck and Coulombic friction are ignored, with focus geared towards static

and viscous friction. A fit will be made between these two types of friction forces, which

will help develop an overall friction coefficient (b) to be used in mathematical formulations

and control analysis. Results from this chapter will then be compared against the Motorlab.

The laboratory that students conduct in Control of Mechanical Systems I at Kansas State

University is outlined in Appendix C and will be the guideline for the experiment in Chapter

5.
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5.1 Friction Estimate

The NERMLAB makes use of a voltage controller for its input. Therefore, effects like

back-emf and motor resistance must be included in the model. Chapter 4 developed the

open-loop mathematical speed model for the NERMLAB and will be used in this section.

Equation 4.20, as well as, the describing differential equation of the mechanical model of the

NERMLAB (Equation 4.8) are restated below.

ω(s)

V (s)
=

kt
RJs+ (Rb+KEkt)

T = bθ̇(t) + Jθ̈(t)

What can be seen from equation 4.8 is that if a constant torque (voltage) is applied to

the NERMLAB and is allowed to achieve steady state (ω̈(t) = 0), then equation 4.8 reduces

to:

T (t) = bω̇(t) (5.1)

What this means is that in order to predict a friction coefficient for the NERMLAB, all

that needs to be done is to supply a voltage to the motor until steady state is achieved.

Then an average value for the recorded speed can be tabulated. There are two ways that

friction can be estimated with this set-up:

1. Plot Torque vs Speed and find a suitable best fit for the slope. This slope will accurately

estimate the friction coefficient. However, because voltage control is being used on

NERMLAB, equation 4.6 must be used to convert the voltage input and speed value

to a torque.

2. Plot Voltage vs Speed and find a suitable best fit for the slope. Unlike the first item,

the slope does not directly give the friction coefficient. Rather, the DC gain of equation
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4.20 must be found. From there, knowing that the DC gain is the best fit slope value,

solving equation 5.2 for b (eq. 5.3) can accurately estimate a friction coefficient. Here

KDC was found to be 12.2× 10−2, which results in a friction value of 3.0× 10−4 N ·m·s
rad

,

predicted by equation 5.3.

KDC =
kt

KEkt +Rb
(5.2)

b =
kt − (1/KDC)KEkt

(1/KDC)R
(5.3)
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Figure 5.1: Viscous friction estimate with voltage vs speed and torque vs speed

A condensed list of the results from the experiment are tabulated in Table 5.1, while the

full data set can be found in Appendix F, Table F.1. Both items listed above were carried out,
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and a friction coefficient for both experiments returned the same value of 3.0× 10−4 N ·m·s
rad

.

Table 5.1: Friction Experiment

Parameter

Voltage (V) -5 -3 -1 0 1 3 5
Speed (rad/s) -45.0 -25.2 -5.8 0 5.5 23.2 40.0
Torque (N·m/s) -0.0122 -0.0074 -0.0025 0 0.0025 0.0074 0.0099

5.2 Speed Decay

Now that a value for friction is found, it is possible to conduct an additional experiment

doing an initial condition response. The initial condition response is a good way of showing

how experimental data can follow simple theoretical models. A way of doing this on the

NERMLAB is to command a constant voltage so as to get a steady state speed on the rotor.

Then, the voltage on the motor is turned off, letting the motor’s speed decay to zero.

To find a describing differential equation of the speed decay, it is necessary to start with

equation 4.8. From equation 4.8, taking the Laplace transform with an inital speed condition

results in the following equation:

T (s) = 0 = Jsω(s) + bω(s)− Jω(0) (5.4)

Here, torque is set to zero since the motor was given an initial velocity, and the voltage

was set to zero at time zero. From equation 5.4, it is possible to simplify further, arriving

at:

ω(s) = ω0
J

Js+ b
(5.5)

From equation 5.5, performing the inverse Laplace will give a time domain solution that

can be used to compare the experimental results too.
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ω(t) = ω0e
− b

J
t (5.6)
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Figure 5.2: Speed decay of an initial condition (NERMLAB)

Here, Figure 5.2 shows a good fit to the theoretical model developed by equation 5.6.

At lower speeds, Figure 5.2 indicates that the higher coefficient of static friction starts to

dominate the dynamics of the system, resulting in quicker decay than predicted by the

theoretical model.

5.3 Motorlab Results

The friction experiment for the Motorlab is exactly the same as the one conducted for the

NERMLAB, with the only difference being that instead of commanding a voltage, the Mo-
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torlab uses current. A result of using current over voltage is that it simplifies the laboratory

a bit more. For the NERMLAB, the voltage needed to be converted to a torque using

equation 4.6, where as the Motorlab simply needs the commanded current to be multiplied

by the torque constant, kT , to obtain the corresponding torque. Referencing figure 5.3, it

can be seen that the Motorlab does a good job at demonstrating how a simple model can

adequately describe a resulting response, in this case an exponential decay. The Motorlab

does a better job at showing how static friction dominates at lower speeds, but both systems

show a good relationship between the theoretical models and the actual data.
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Figure 5.3: Speed decay of an initial condition (Motorlab)
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Chapter 6

Frequency of Oscillation of a Position

Control System

Chapter 6 will discuss an experiment with a position control system on the NERMLAB.

The main purpose of this experiment is not to develop a better position control system,

but rather, demonstrate the concept of changing pole locations and a characterization of

the responses to the changing gains and poles. In the case of both the NERMLAB and

Motorlab system, the closed-loop solution of equation 4.17 and 4.10, respectively, results

in two real poles in the s-plane , causing only increasing oscillation of the system with an

increasing gain. This idea will be reinforced by looking at the frequency and decay rate of

the oscillations in the various responses generated. Results produced by the NERMLAB

will then be compared against the Motorlab. The mathematical open-loop position system

was developed in chapter 4, equation 4.17. Since this experiment involves using a position

control system, it is necessary to derive a closed-loop solution from the open-loop equation

(eq. 4.17), which will be covered in the proceeding section 6.1. This experiment follows the

procedure outlined in Laboratory 5 in Appendix C.
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6.1 Mathematical Model of a Closed-Loop Position Con-

trol System

Figure 6.1 establishes a block diagram of the position control system used in this experiment.

Here, Gc refers to the controller, which in the case of this chapter, is a simple proportional

gain, Kp. Gm represents the plant model, which is comprised of the electromechanical

dynamics (equation 4.17 restated as equation 6.1, below).

Gc Gm

I(s)θc(s) E(s) θ
−

Figure 6.1: Closed Loop Control System

Gm =
θ(s)

V (s)
=

kt
RJs2 + (Rb+KEkt)s

(6.1)

To find the closed-loop system, the blocks in series ( Gc and Gm) must be reduced to a

single block through simple multiplication of Gc ·Gm, which results in the following equation:

G = Gc ·Gm =
Kpkt

RJs2 + (Rb+KEkt)s
(6.2)

Assuming unity feedback, the final closed-loop solution can be developed through a simple

feedback calculation, G
1+G

:

T =
θ(s)

θc(s)
=

G

1 +G
=

Kpkt
RJs2 + (Rb+KEkt)s+Kpkt

(6.3)
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Kpkt
RJs2+(Rb+KEkt)s+Kpkt

θc(s) θ(s)

Figure 6.2: Block Diagram Reduction of Figure 6.1

In the case of the Motorlab system, the process is similar to the one carried out above.

Using equation 4.10, the closed-loop position control system of the Motorlab is:

θ(s)

θc(s)
=

KpkT
Js2 + bs+KpkT

(6.4)

6.2 Experiment

Three different proportional gains will be used in this experiment, listed in table 6.1. A

commanded square wave will be the input voltage to the NERMLAB to simulate a step

input to the system. Note that the magnitude of the square wave values in table 6.1 are

different for each gain. This is a result of conducting experiments on real systems, as the

NERMLAB has a saturation voltage of 8V . Since the units of Kp are V
rad

, commanding a

larger gain while statically defining an input position will result in saturation of the motor

driver, resulting in inconsistent data that does not follow the developed model.

Table 6.1: Table of experimental gains to be used on the NERMLAB system

Gain ( V
rad

)
Magnitude of

Square Wave (rad)

0.9 8.8

2.5 3.2

25 0.32

As stated in the beginning of this chapter, increasing the gain of the NERMLAB in a
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position control mode should result only in increasing oscilllations of the system, without

improving the system’s settling time. This phenomena occurs because the system poles

only travel up and down, parallel to the jω axis (depicted in figure 6.3), which in the s-

plane causes a system’s response to become more oscillatory with an increasing frequency

of the imaginary part of the pole. This can be predicted by looking at the root locus of the

open-loop system (eq. 4.10).
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Figure 6.3: Root Locus of NERMLAB’s position control system

Experimental data was collected for a set of three gains listed in table 6.1. The period of

oscillations and the time constant were found graphically from the plotted data. In order to

caculate the period of oscillations for the model, it is simply 2π
ωd

, where ωd is the imaginary

portion of the pole, −ζωn ± ωdj. Likewise, the theoretical time constant can be directly

calculated from 1
ζωn

.

44



Table 6.2: NERMLAB results from the conducted experiment compared with a theoretical
model

Gain ( V
rad

)

Theoretical

CL Poles

( rad
s

)

Theoretical

Period of

Oscillations

(seconds)

Measured

Period of

Oscillations

(seconds)

Theoretical

Time

Constant

(seconds)

Measured

Time

Constant

(seconds)

0.9 −2.74±5.8j 1.1 0.95 0.365 0.365

2.5
−2.74±

10.4j
0.60 0.55 0.365 0.365

25
−2.74±

33.8j
0.18 0.17 0.365 0.365

From table 6.2 and figure 6.4 it can be seen that there is a good match between what

is observed in the real system with that of the model. Figures 6.4a and 6.4b show the step

responses for the model and experiment, respectively. The effects of non-linear friction can

be seen in figures 6.4c and 6.4d, as the oscillations damp out quicker than that predicted by

the model.
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Figure 6.4: Step responses that result from increasing proportional gain in a position control
system for NERMLAB

It is also useful to demonstrate the model’s validity by showing a larger range of gains.

This helps prove to students, as long as saturation effects are taken into account, that

developed models follow the same trends that the experimental results provide. In Figure

6.5, a lower gain of 0.2 is used show an overdamped response and how actual data compares

to it. Likewise, a much larger gain of 40 is used to show how the data has far more damping
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of the oscillations, due in part to friction, than the model predicts.
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Figure 6.5: Step responses that result from gains outside the range conducted in the exper-
iment, and how they compare to the developed models.

6.3 Motorlab Results

The Motorlab system performs slightly different than NERMLAB. From figure 6.6, the

effects of nonlinear friction and saturation show up more prominently than they do for the

NERMLAB. This causes the Motorlab to have more damped oscillations in its response, as

can be seen in figure 6.6c. However, when a gain outside that of the experiment (Kp = 40)

was used, these damped oscillations became more apparent on the NERMLAB. While it is

important for students to be aware of other unmodeled dynamics in a system, it is not of key

importance in this experiment. The main take away should be that as the gain of Motorlab

and NERMLAB are increased, the resulting responses should closely follow the model’s

prediction, which in this case, would be a more oscillatory response without a change in the

system’s time constant. Table 6.3 tabulates the data collected from the Motorlab for this

experiment.
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Figure 6.6: Step responses that result from increasing proportional gain in a position control
system for Motorlab
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Table 6.3: Motorlab results from the conducted experiment compared with a theoretical
model

Gain ( V
rad

)

Theoretical

CL Poles

( rad
s

)

Theoretical

Period of

Oscillations

(seconds)

Measured

Period of

Oscillations

(seconds)

Theoretical

Time

Constant

(seconds)

Measured

Time

Constant

(seconds)

0.0001 −1.2± 4.6j 1.37 1.32 0.86 0.86

0.001 −1.2±14.9j 0.42 0.41 0.86 0.86

0.01 −1.2±47.1j 0.13 0.13 0.86 0.86

49



Chapter 7

High Frequency Dynamics

Chapter 7 will cover the concept of ’high frequency dynamics’. High frequency dynamics in

this context are the faster dynamics in comparison to the mechanical models in the Motorlab

and NERMLAB systems. In chapter 7, the higher frequency, or faster dynamics, are a low

pass filter on the output speed from the nominal plant1.

The purpose of this experiment is to show that high frequency dynamics will effect

controller design. In this context, if the gains of the system, specifically proprortional gain,

are made to be too large, the closed-loop system poles will run into the high frequency

dynamics, invaliding the simplified model. The question is when is it valid to ignore these

higher frequency dynamics. In Control of Mechanical Systems I at Kansas State University,

this concept of ignoring system dynamics is handled using a rule of thumb:

”We can ignore open loop poles and zeros when they are more than 10 times

larger (in terms of magnitude, which is the distance from the origin of the s

plane) than the closed loop poles that result from ignoring them.”

This experiment will demonstrate this rule of thumb by running multiple control systems

with varying, increasing gains. It should demonstrate that, theoretically, when ignoring the

higher frequency dynamics, one could potentionally increase the gain of the system infinitely.

1Nominal plant being the combination of the mechanical dynamics and derivative, as seen in figure 7.2
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However, this does not play well on a real system. Care and due diligence should play a

part in the design of a control solution. Pushing the gains too far out could result in system

instability when the designer might not be aware of the higher frequency effects that are not

included in a system or simplified dynamic model.

7.1 Mathematical Models

Gc(s) Gp(s)
kdr300

2s
s2+212s+3002

I(s)ωc(s) E(s) θ(s) ω
−

Figure 7.1: Closed Loop Speed Control System

Gp(s) krds
3002

s2+212s+3002

Nominal Dynamics HighFreq′Dyn′

Mechanical

Dynamics
Derivative

Low Pass

F ilter

I(s) θ(s) ω(s) ωm(s)

Figure 7.2: Open Loop System from Figure 7.1

Section 7.1 will develop the describing equations that are used as models for this experiment.

Figure 7.1 shows a pictorial representation of the system that will be used in this experiment.

Figure 7.2 is simply the another representation of the boxed section of figure 7.1, to emphasis

the fact that the low-pass filter is filtering the noise that the derivative in this system

produces.

The plant model for this experiment is simply a restatement of equation 4.20.
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G =
kt

RJs+ (Rb+KEkt)
(7.1)

Additionally, since high frequency dynamics in this system exist (the low-pass filter), a

transfer function of a low-pass filter (eq. 4.21) and derivative are needed:

Ghf =
3002s

s2 + 212s+ 3002
(7.2)

With Equations 7.1 and 7.2, it is possible to derive Equation 7.3, the final open loop

system, which is just a reduction of the blocks in series from Figure 7.2.

Gol =
Kpkt3002s

(RJs+Rb+KEkt)(s2 + 212s+ 3002)
(7.3)

From here it is possible to arrive at Equation 7.4, the closed loop transfer function of

equation 7.3:

Thf =
3002Kpkts

(RJs+Rb+KEkt)(s2 + 212s+ 3002) + 3002Kpkts
(7.4)

Likewise, the closed loop transfer function to the simplify model, Equation 7.1, is:

T =
Kpkt

RJs+ (Rb+KEkt) +Kpkt
(7.5)

Equations 7.4 and 7.5 will be the base models to compare experimental results to.

7.2 Experiment

For this experiment, data will be collected for a series of four gains, listed in Table 7.1. Care

has to be given when designing this experiment, because as you increase the proportional

gain of the system, you start to command higher voltages. Since the NERMLAB saturates at

8V , it is easy to command more voltage than the motor driver can output, causing collected
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data to not fit the models. In Table 7.1, the magnitude of the step is scaled with the gain to

avoid exactly this issue. Other issues with this experiment will be the fact that the encoder

does not have high accuracy, and results in undesired noisy data. This noisy data can further

complicate the lab for students, as it can obfuscate the results. However, it will be shown

that while the system is noisy, the higher frequency dynamics can be clearly seen from the

results as the proportional gain is increased.

Table 7.1: Table of experimental gains to be used on the NERMLAB system

Gain (V/(rad/s))

Magnitude of

Square Wave

(rad/s)

0.1 75

1.5 5.3

2.5 3.0

5 1.5

The NERMLAB is placed in speed control mode for this experiment, and a sample rate

of 500 Hz is used to ensure the system is given enough time to get to steady state. For the

final gain of 5, a special procedure is conducted to show the system as it grows to instability.

It should demonstrate that pushing the gain out to far will result in an unstable system

because of the higher frequency dynamics, which push the closed loop poles into the right

hand side of the s-plane. This final procedure demonstrates the concept of knowing when it

is ok to neglect certain dynamics in a simplified model.

53



0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

10.0

20.0

30.0

time (sec)

sp
ee

d
(r

p
m

)
Plot of CL step response for Kp=0.1

Model with nominal dynamics
Model with hi freq dynamics
Actual

(a) Closed Loop Step Response for Kp = 0.1

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.0

1.0

2.0

3.0

4.0

5.0

time (sec)

sp
ee

d
(r

p
m

)

Plot of CL step response for Kp=1.5

Model with nominal dynamics
Model with hi freq dynamics
Actual

(b) Closed Loop Step Response for Kp = 1.5

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.0

1.0

2.0

3.0

4.0

time (sec)

sp
ee

d
(r

p
m

)

Plot of CL step response for Kp=2.5

Model with nominal dynamics
Model with hi freq dynamics
Actual

(c) Closed Loop Step Response for Kp = 2.5

Figure 7.3: Step responses that result from increasing proportional gain in a speed control
system for NERMLAB. A comparison between the high frequency model, simplified model,
and the actual system response are show in these three figures.

Figure 7.3 shows the step responses for the first set of three gains. It can be seen that for

Kp = 0.1, that noise is on the output response, however, the system does not show any signs

of having higher frequency dynamics superimposed on the system, like the model predicts.

For the second gain of 1.5 in Figure 7.3, the system starts to run into the higher frequency

dynamics of the low pass filter. The model predicts superimposed oscillations on a first order
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system. The NERMLAB’s response seems to show that there is higher frequency effects in

the system, although the noise from the encoder accuracy doesn’t track the model as nicely

as the Motorlab, which will be seen in the next section.
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Figure 7.4: Step response shows how the NERMLAB system goes unstable when the pro-
portional gain is increased too far.

As for the unstable gain of five, the system grows to instability as the model predicts

(Figure 7.4a). In Figure 7.4b, the concept of a limit cycle is introduced, as the commanded

voltage to the motor saturates at ±8V and continues to cycle at that saturated voltage.

Theoretically, the voltage command should continue to grow grow infinitely, so this concept

of a limit cycle proves useful in instructing students about the physical limitations of a real

system.
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7.3 Motorlab Results
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Figure 7.5: Step responses that result from increasing proportional gain in a speed control
system for Motorlab. A comparison between the high frequency model, simplified model,
and the actual system response are show in these two figures.

The biggest difference between the NERMLAB and Motorlab for this experiment were the

encoder inaccuracies on the NERMLAB with speed control. This noise can cause students

issues in conducting the experiment if they are not formally aware the effect it has on the
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results. The experiment has to be carefully designed so that the higher frequency dynamics

are clearly seen above the noise of the sensor. The Motorlab does a better job of tracking

the actual model when comparing against the NERMLAB. However, as stated previously,

the point of this exercise is to demonstrate the differences between a simplified model and

the actual. Both systems do a good job of showing when higher frequency dynamics need

to be included in a model.

Table 7.2: Table of experimental gains to be used on the Motorlab system

Gain (A/RPM)

Magnitude of

Square Wave

(RPM)

0.0008 1000

0.0016 1000

0.008 50

The Motorlab had to use different gains and commanded values than the NERMLAB

(Table 7.2), and is due to the Motorlab running current control. Additionally, the Motorlab

could keep a constant magnitude in the command, as the NERMLAB suffered from satura-

tion as the gain of the system increased, and this is a result of the Motorlab having larger

operating limits. The final gain in Table 7.2 is used to show system instability at larger

gains, which can be seen in Figure 7.5c.

One important thing to note when conducting this experiment is steady state error,

which is the difference between commanded step size and the actual steady state response.

It should be pointed out that the responses in Figures 7.3, never reach the commanded values

in Table 7.1. This concept will be later explored in this thesis, but does not influence the

results presented in this chapter.
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Chapter 8

Frequency Response of a Position

Control System

Chapter 8 introduces the topic of frequency response of a position control system. This

experiment will follow the procedure outlined in laboratory 10 (Appendix C), with some

additions. The Motorlab apparatus that is used at Kansas State University utilizes a spring

coupled to the BLDC motor’s inertia to demonstrate to students the idea of a frequency

response of an actual system. The results are then compared to a developed model. Typically,

the Motorlab apparatus follows the developed model quite accurately; however, with this

laboratory, an improved model is generated to show more clearly what the real system

is doing and how the real system can vary slightly from the theoretical. Students are also

introduced to the concept of resonance and how to approximate it from the natural frequency

(ωn). The setup for the NERMLAB is different, and in the NERMLAB’s case, a second

order system is generated by looking at a closed loop position control loop. Students are to

collect data at five discrete points that characterize the overall system’s response at varying

frequencies. In the case of both the NERMLAB and Motorlab, this second order system

has a resonant peak and a 40 dB
decade

drop off at higher frequencies. In order to completely

characterize the frequency response, the natural frequency is used as a center frequency in
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a range of ωn

10
to 2ωn. This frequency range is used to capture the important features of the

frequency response for both systems.

8.1 Mathematical Model

Just like in chapter 6, a closed loop position control system is used and the formulation is

nearly the same, with one addition. In the case of this position control system, a static gain

of 20 is used, and must be included in the model development. Looking at equation 6.3, Kp

is the only value that needs to be substituted to complete the model. Substituting Kp into

equation 6.3 gives the result:

T =
20kt

RJs2 + (Rb+KEkt)s+ 20kt
(8.1)

8.2 Experiment

Four experiments were conducted to get an average value for the NERMLAB. It was found

through experimentation, by driving the NERMLAB at slightly smaller values than the

calculated natural frequency, that the NERMLAB has a resonant frequency of 4.6 Hz. This

frequency resulted in the nearest 90 degree phase shift, as seen in Figure 8.3, and largest

amplitude ratio between the commanded position and the actual output of the system. The

resonant frequency is slightly smaller than the predicted frequency of the model; however,

this new calculated value will be used to generate an improved frequency response of the

NERMLAB that better describes the actual system.

Table 8.1 hosts the averaged values for the four experiments conducted on the NERMLAB.

Each experiment varied the frequency slightly to get a broader range of data points for the

frequency response. Each of the averaged values for the all of the frequencies are plotted in

Figure 8.1, along with the improved model that the collected data followed.
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Table 8.1: Experimental Results for Position Control Frequency Response

Freq’ (Hz) ωn

10
0.75ωn ωn 1.25ωn 2ωn

Input (rad) 0.32 0.32 0.22 0.32 0.32

Freq’ (Hz) 2.80 21.67 28.90 36.14 57.81

Mag’ (dB) -0.66 3.75 9.00 4.00 -6.00

Phase Shift

(deg)
2.5 -27.57 -84.10 -141.52 -173.92
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Figure 8.1: Bode plot of a position control system. A model and an improved model, along
with collected data, and averaged data, can be seen in this figure.
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As expected, there were some fluctuations in the output phase and magnitudes of each

conducted experiment; however, both the averaged data and all four experiments seem to

follow both the improved and actual model well. The model predicted that at frequencies

lower than that of the natural frequency, the output phase and magnitude should track

relatively well, meaning the phase shift was zero degrees and the magnitude ratio is one.

At the natural frequency, a larger output amplitude, along with a 90 degree phase shift,

should be observed. At frequencies greater than that of the natural frequency, attenuation

should occur and the phase shift should be approaching 180 degrees as the frequency is

increased further. By all accounts, the NERMLAB demonstrated these observed model

trends adequately. The main difference between the two models is that the actual model

predicts a larger resonant peak at the resonant frequency. Comparing the two magnitudes,

the actual system predicts a 14.8dB peak, while the system presented a lower 9dB (averaged)

peak value, which could be a result of static friction.

20kT
RJ

s2 + (Rb+KekT )
RJ

s+ 20kT
RJ

=
KDCω

2
n

s2 + 2ζωns+ ω2
n

(8.2)

The above experiment that developed a frequency response for the NERMLAB can be

done by following the listed steps:

1. Calculate the natural frequency by comparing the developed model, Equation 8.11, to

a standard second order system, and solving for ωn, as seen in Equation 8.2.

ωn =

√
20kT
RJ

= 30.3
rad

s
or 4.82Hz

2. Use the calculated ωn that was found in step one to experimentally determine the

resonance of the NERMLAB by driving the system around this frequency, varying

the input frequency, until 90 degrees of phase shift occur. A smaller command signal

1This equation is in standard form

61



should be used when approaching the resonant frequency to minimize damage to the

system.

3. Once the resonance is known, drive the system at the frequencies tabulated in row

one of Table 8.1. From here, it is necessary to then use Equations 8.3 - 8.5 to find

the phase lag and magnitude ratio of the output. Figure 8.3 shows how the data for

the timelag at the resonant frequency was gathered to calculate the phase shift and

magnitude ratio. Figure 8.2 shows what the values in Figure 8.3 represent when using

Equation 8.3. The same process is carried out for the rest of the frequencies.

tlag =
|tpeak − tvalley|

2
− tcrossing (8.3)

φ = 360tlagfc (8.4)

Mag′ Rat′ =
yActualmax − yActualmin

yCommandmax − yCommandmin

(8.5)

4. Generate an improved model (Gnew) from the data. The new model can be developed

by using equation 8.6. Here, KDC is found by looking at the magnitude ratio at 1
10

the natural frequency. Likewise, ζ can be calculated by realizing that at the natural

frequency (s = jωn), the magnitude ratio is Mωn = KDC

2ζ
. Here ζ is simply KDC

Mωn
2

.

Gnew =
KDCω

2
n

s2 + 2ζωns+ ω2
n

(8.6)

Note that Equation 8.3 is the time lag of waveforms. It is the mean of the time values

of the peak and valley of the output waveform. Also tcrossing is simply when the time of

the input crosses 0 degrees. The magnitude ratio is calculated by finding the max and min

values of the output and input and dividing respectively.
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New Parameter Estimation

From the improved frequency response, new system parameters can be estimated by com-

paring the original starting model to that of a second order system, as seen in Equation

8.2. Here J,R,KE are assumed to be known values, as they can be directly measured and

approximated. From Equation 8.2, the following equations can be derived:


Kt = RJKDCω

2
n

20

b = 2RJζωn−RKEKt

R

(8.7)

Here, Kt for the improved model is found to be 0.009 N ·m
A

, giving 10 percent relative

difference from the actual value of Kt. Likewise, a new friction estimate can calculated using

Equations 8.7. b was found to be 4.87× 10−4, leading to a relative difference of 63 percent.

However, when the experiment was conducted on the Motorlab, the new estimate for the

friction value also lead to a similar relative difference of 63 percent. This can be accounted

for by the fact that the linear model has non-linear effects that are not accounted for when

the original estimate for friction was made. The relative difference for friction could also be

high due to the fact the improved model was generated from averaged values. For example,

ζ depends on the magnitude ratio at the resonant frequency. If the largest magnitude of

all four experiments conducted is used, which in this case is experiment three, the relative

difference of friction drops to 23 percent. These new estimates depend heavily upon how

accurate the results from the experiment are tabulated and collected.

8.3 Motorlab Results

While the two frequency response experiments differed in the way they were conducted,

the end objective of developing a frequency response on both systems was a success. Both

systems have the ability to translate the idea of resonance and generating improved models

based on collected data. One potential drawback of using the NERMLAB over the Motorlab
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is that the resonant frequency is not quite as obvious. When doing this experiment on the

Motorlab, once the resonant frequency is found, the system provides audible feedback via

the buzzing and humming of the spring, where as the NERMLAB, this audible feedback is

not present. In the NERMLAB’s case, due to the lack of additional experimental feedback

mechanisms, has to have the output plotted with each trial to ensure the system is getting

near 90 degrees of phase shift. Figure 8.4 shows the experiment conducted on the Motorlab.

Just like the NERMLAB, the data follows the improved model for the Motorlab accurately.

Table 8.2 shows the collected data for the Motorlab experiment.
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Table 8.2: Experimental Results for Position Control Frequency Response on Motorlab

Freq’ (Hz) ωn

10
0.75ωn ωn 1.25ωn 2ωn

Input

(Amp)
1 1 0.25 1 2

Freq’ (Hz) 2 16 21.15 26 42

Mag’ (dB) 21.9 28.8 48.6 29.1 13.6

Phase Shift

(deg)
-5 -8 -90 -176 -187

Equations 8.9 can be used to calculate the new system parameters for the improved

model for Motorlab. The previous section commented on these values, and the relative

difference that is generated from the actual system parameters. The new system parameters

are taken by comparing a second order system with the actual model, which in the case of

the Motorlab, includes a spring.

G =
kdrKT

Js2 + bs+Ks

(8.8)


Ks = Jω2

n = 0.2278

b = 2ζωnJ = 8.0256e− 05

Kt = KDCKs

kdr
= 0.0497

(8.9)

Actual values for the Motorlab system parameters can be found in Appendix E.
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Chapter 9

Effects of Integral Control on Steady

State Error

Chapter 9 introduces the concept of system type and its effect on steady state error. Steady

state error is the error between a commanded value and the value of the actual steady state

response. Where as system type is defined as the number of free integrators of the open

loop transfer function, which occur when one or more of the poles of the system is equal to

zero, e.g. sn = 0. System type changes based on input, and effects steady state error. For

example, if a system has a free integrator and a unit step is generated, the response will

have zero steady state error and will have a system type of one. Where as if a system is

type one, but a ramp input is generated, the steady state error will be non-zero, meaning

the response never makes it to the commanded value. Table 9.1 lists the stead state error

based on system type and input. This table is used in Control of Mechanical Systems I at

Kansas State University.
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Table 9.1: Steady State Error

Input Type: 0 1 2

Step Finite 0 0

Ramp ∞ Finite 0

Parabolic ∞ ∞ Finite

The idea of system type becomes clear when running speed controllers on both the

NERMLAB and Motorlab systems. In the experimental portion of Chapter 9, it will be seen

that when using strictly a proprotional controller with a step input, a finite steady state error

occurs because of the number of free integrators in the open loop transfer function (Equation

4.20). This effect was not observed in other experiments in this thesis involving a position

controller, because the system type in the case of both the NERMLAB and Motorlab is one.

The main point of this experiment will be to show that increasing the proportional gain of

the system leads to improvement of the steady state error, but never minimizes it to a non-

zero value. Later, it will be proven that by simply implementing a Proportional-Integral (PI)

controller, the steady state error should minimize to zero, as Table 9.1 predicts. This is due

to the fact that when adding integral action to a controller, a free integrator is added to the

open loop system and this will be shown in section 9.1.

9.1 Mathematical Model

Gc(s) Gs(s)
kdr300

2s
s2+212s+3002

I(s)ωc(s) E(s) ω(s) ωm
−

Figure 9.1: Closed Loop Speed Control System

68



In Figure 9.1, Gs is the plant speed model that was developed earlier in this thesis, and is

restated below:

ω(s)

V (s)
=

kT
RJs+ (Rb+KekT )

(9.1)

As has been the case for a majority of the experiments in this thesis, Gc, the controller,

is simply equal to Kp. This controller will be used for the first portion of the experiment.

However, since the purpose of this chapter is to show how to minimize steady state error,

a controller involving integral action must be developed. An integrator in the s-domain is

simply 1
s
, or in the case of the controller for this experiment, Ki

s
, where Ki is the integral

gain of the system. Adding the seperate integral and proportional controllers together gives

a PI controller, stated as equation 9.2.

Gc = Kp +
Ki

s
(9.2)

However, it is more convenient to place Equation 9.2 in Zero-Pole-Gain (ZPK) form, as it

is much easier to pull the exact location of the zero from the system in this form. Factoring

Equation 9.2 results in the following equation:

Gc =
Kp(s+ Ki

Kp
)

s
(9.3)

Where the zero, z, is equal to −Ki

Kp
.

Gc =
Kp(s+ z)

s
(9.4)

9.2 Experiment

Table 9.2 lists the various gains to be used in this experiment. The experiment starts with

a speed controller commanding a step size of 50 rad
s

, while the proportional gain is increased
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for a set of three gains: 0.1, 0.15, and 3. For the third row in Table 9.2, an integral gain,

Ki is set to 1 to add a zero to the system at -10 rad
s

, and likewise, add a free integrator. It

will be shown in this experiment that by adding this free integrator, the steady state error

will go to zero. Note that in Table 9.2, for the final gain of three, that the step size changes.

This is due to the fact that the NERMLAB saturates quickly when using a 50 rad
s

command.

The gain of three is used to show that simply increasing the proportional gain does not get

rid of the finite error in the system, but should improve it. It will also demonstrate that

higher frequency dynamics, such as the low pass filter, exist in the system, and result in

more oscillations of the response as the gain is increased further.

Table 9.2: Table of experimental gains to be used on the NERMLAB system

Kp Ki

Magnitude of Step

(rad/s)

0.1 0 50

0.15 0 50

0.1 1 50

3 0 2.6

Figure 9.2 shows the experimental results for the NERMLAB. In Figure 9.2a, as the

proportional gain was increased, the error between the commanded value and the actual

steady state response decreased; however, the system’s error never reduced to zero. Once

the PI controller was added, the steady state error became zero. The benefits are PI control in

this experiment are evident, as the proportional gain of the system can be reduced, meaning

the tracking of the system improves, fewer oscillations are produced, and the system achieves

a similar settling time as that of an increased proportional gain. Figures 9.2a - 9.2d show

how the NERMLAB tracked the individual models for each set of gains.

70



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

20

30

40

50

60

Time (sec)

A
m

p
li

tu
d

e
(r

ad
/s

)
Experimental Step Responses

Step Input
Kp = 0.1
Kp = 0.15
PI

(a)

0 5 · 10−20.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
−5

0

5

10

15

20

25

Time (s)

V
el

o
ci

ty
(r

ad
/s

)

Actual System and Model for Kp = 0.1

Actual
Model

(b)

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

Time (s)

V
el

o
ci

ty
(r

ad
/s

)

Actual System and Model for Kp = 0.15

Actual
Model

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

0

10

20

30

40

50

60

Time (s)

V
el

o
ci

ty
(r

ad
/s

)
Actual System and Model for PI control

Actual
Model

(d)

Figure 9.2: NERMLAB’s steady state error, showing how increasing the proportional gain
does not decrease the error until PI control is used.

What can be seen in Figure 9.3 is the system’s closed loop poles running into the larger

dynamics of the low pass filter, causing oscillations, which would continue to grow with an

increasing gain. While the error was reduced even further than that of the lower proportional

gains, the model still predicts a finite error between the command and response. The finite

error is harder to see from the actual system results because of the inaccuracy of the encoder,
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but concept is still effectively demonstrated when looking at the collected results in Table

9.3.
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Figure 9.3: Steady state error at a higher proportional gain of Kp = 3.

Table 9.3: Collected data from theoretical model and actual system for the NERMLAB

Gains Model Experiment

Kp Ki KDC SS Speed (rad/s) Poles Zeros SS Speed (rad/s)

0.1 0 0.45 22.62
−103.7± 279.8j,

−10.1
0 21.88

0.15 0 0.55 27.67
−102.5± 279.4j,

−12.5
0 26.75

0.1 1 1 50
−103.7± 279.8j,

−10.1, −5.0± 4.5j
-10 49.92

3 0 0.96 2.50
−30.7± 283.9j,

−156.2
0 2.44

Table 9.3 shows the collected data for the set of four gains. For the experimental steady

state speed seen in column seven, a mean had to be taken for the final seconds of the data

because of the noisy encoder. The NERMLAB follows the model adequately, as the difference
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between the predicted steady state speed of the model and the actual system is minimal.

Table 9.4 shows the steady state error of both the model and NERMLAB for the set of four

gains.

Table 9.4: Steady state error for each set of gains

Kp Ki

Steady State Error

(Model)

Steady State Error

(Experiment)

0.1 0 27.38 28.12

0.15 0 22.33 23.25

0.1 1 0 0.08

3 0 0.1 0.16

9.3 Motorlab Results

Both the NERMLAB and Motorlab demonstrate the concept of steady state error and system

type comparably. Figure 9.4 shows the results from the experiment carried out on the

Motorlab. It is evident that the Motorlab’s tracking of the model is more effective because

of the NERMLAB’s encoder noise. However, the NERMLAB’s results are more visual,

meaning the effects of steady state error are more apparent when only proportional gain is

used (Figure 9.2a).
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Figure 9.4: Motorlab’s steady state error, showing how increasing the proportional gain does
not decrease the error until PI control is used.

Table 9.5 lists the results found when the same experiment was conducted on the Motor-

lab. Note that because the Motorlab uses a current controller, the selected gains used are

different from that of the NERMLAB.
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Table 9.5: Collected data from theoretical model and actual system for the NERMLAB

Gains Model Experiment

Kp Ki KDC SS Speed (rad/s) Poles Zeros SS Speed (rad/s)

0.0015 0 0.960 960
−75± 274j,

−64
0 943

0.003 0 0.979 979
−43± 278j,

−128
0 976

0.0015 0.00405 1 1000
−75± 274j,

−62, −2.72
-2.7 1000
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Chapter 10

Derivative Action on a Position

Control System

Derivative control, or more specifically Proportional-Derivative (PD) control, is a powerful

tool in control design. However, one problem with derivative action in a controller is that it

saturates the controller output in physical systems. As a result, it is difficult to obtain step

responses that match their theoretical counterparts. Because of the saturation the derivative

creates, the energy of the model will be greater than the energy the system actually receives.

One way to combat this problem would be to use small command sizes. However, it is much

easier to capture the effects of a linear model on the actual system using a ramp or triangle

wave input.

A derivative controller adds a zero to the open loop system, as will be seen in the next

section. For the NERMLAB and Motorlab system, this zero acts as a magnet, dragging the

closed loop poles towards the left hand side of the s-plane, as seen in Figure 10.1. It was

shown throughout this thesis that when using strictly a proportional controller, the system

only becomes more oscillatory as the gain is increased. However, with a PD controller, the

system remains oscillatory for a brief period before the closed loop poles merge onto the

real axis as the gain is increased further. One pole of the system is captured by the zero,
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Figure 10.1: Root locus of the open loop plant and PD controller. Here the ’x’ are the poles
and ’o’ the zeros.

while the other travels off further into the left hand plane, decreasing the settling time. This

makes PD useful as a controller because the system can be made faster by moving the pole

further out, i.e. increasing the gain of the system.

10.1 Mathematical Model Development

The same position model plant that has been used throughout this thesis will be used in

this experiment, it is restated below:

θ(s)

V (s)
=

kt
RJs2 + (Rb+KEkt)s

(10.1)
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Gc Gm

I(s)θc(s) E(s) θ
−

Figure 10.2: Closed Loop Control System

Gc changes in this experiment to a PD controller, meaning a derivative gain (Kd) is added

with a proportional gain, as in Equation 10.2.

Gc = Kp +Kds (10.2)

It is possible to simplify Equation 10.2 further, reducing it to more convenient ZPK

format.

Gc = Kd(s+
Kp

Kd

) = Kd(s+ z) (10.3)

In Equation 10.3, the ’z’ is the zero of the system, which is simply equal to Kp

Kd
, or in the

case of this experiment, 15 rad
s

.

10.2 Experiment

Table 10.1: List of gains to be used in PD control experiment

Kp Kd

Magnitude of

Ramp (rad)

7.0 0.0 3.0

3.0 0.2 3.0

9.0 0.8 3.0
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Table 10.1 lists the gains that will be used in this experiment. For the triangle wave input, a

magnitude of 3 rads will be used for all controllers. Likewise, a wave frequency and a sample

frequency of 0.5 Hz and 303 Hz, respectively, will be used to generate a triangle wave with

one full period.

Figure 10.3 shows the experimental results, along with the theoretical step responses

for the set of three gains. While the the results from the experiment can not be directly

compared to the step responses of the theoretical model, things like the period of oscillation

can be predicted. For the first gain of seven, the model indicates that the oscillation period

should be 0.35 seconds, where as the actual response results in a oscillation period of 0.32

seconds. This result can be found by looking at where the waveform of the actual response

crosses the command signal, as in Figure 10.4. Then, it can be compared with the calculated

period of oscillation (0.35 seconds), 2π
ωd

, by looking at the imaginary portion of the poles of

the closed loop transfer function.
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Figure 10.3: NERMLAB PD Controller Experimental Results.
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Figure 10.4: Period of Osccillation Calculation

One thing the model does not predict in this experiment is the steady state error. Recall

the fact, that from Table 9.1, a step input for a type one system will produce zero error.

Equation 10.1 has exactly one free integrator, and as a result, zero steady state error. How-

ever, for this experiment a ramp input is being used, which predicts a finite error that can

not be seen in Figure 10.3a, but clearly visible in Figure 10.3c. Theoretically, by increasing

the gain of the system, a reduction of this steady state error should occur. This can be easily

verified by looking at a plot of the angular error vs time, as in Figure 10.5. With the inclu-

sion of the higher gain, Kd, the magnitude of the error decreases from 0.24 rad to 0.08 rad,

from the set of two Kd gains. The reduction in steady state error predicts better tracking

for the third system and is a result of increasing the low frequency gain in the frequency

response, as seen in Figure 10.6. Figure 10.3d demonstrates how simply increasing the gain

of the system reduces steady state error, and in return, improves the tracking ability of the

system.
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Figure 10.5: Angle Error that results in using PD control on NERMLAB.
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Figure 10.6: Steady state error at a higher proportional gain of Kp = 3.
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10.3 Motorlab Results

Figure 10.7 shows the results from the experiment conducted on the Motorlab. The procedure

was exactly the same as conducted in the experiment portion of this chapter. Since Motorlab

uses a current controller, a different set of gains are used, which are tabulated in Table 10.2.

The Motorlab does a good job of demonstrating to students the effect derivative action has

on a system’s response. Unlike the NERMLAB, the Motorlab has higher operating limits,

which allows the gains to be increased further, allowing for quicker responses, like of that

depicted in Figure 10.7d. The NERMLAB had issues with saturation when the gains were

increased to far, which limits the amount of derivative action that can be composed in

the system, and in turn, the results in slower outputs than the Motorlab. However, both

machines do demonstrate the effect derivative has in control systems.

Table 10.2: List of gains to be used in Motorlab’s PD control experiment

Kp z (rad/s)
Magnitude of

Ramp (deg)

0.001 none 2000

0.00007 10 2000

0.001 10 2000
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Figure 10.7: Motorlab PD Controller Experimental Results.
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Chapter 11

Conclusion

Several experiments were explored on the NERMLAB to demonstrate its feasibility as lab-

oratory hardware in control theory application. The feasibility was assessed by conducting

similar procedures and experiments that are carried out in Control of Mechanical Systems at

Kansas State University. The results of the experiments were compared to the results of lab-

oratory hardware known as ”Motorlab”. This thesis addressed the concerns and limitations

that arise when using more economical hardware for laboratory outcomes.

Chapter 5 demonstrated how a linear estimate of friction could be approximated on a

motor. Additionally, it allows students to come up with model parameters for their own

hardware and show how it compares to a theoretical model, such as a simple speed decay,

which was demonstrated in this chapter. Chapter 6 modeled and experimented with a

position control system. It effectively showed how simply changing the proportional gain of

a system will not lead to system improvement, such as decreasing the settling time. Lastly,

Chapters 7 and 9 attempted to address the concepts of high frequency dynamics and steady

state error, respectively. These experiments suffered from encoder noise; however, in both

cases, successfully demonstrated the overall concept that was introduced in each chapter.

The developed models in these chapters were slightly more complicated than the models for

the Motorlab system, but still simple enough that it would not overly complicate a student’s
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ability to understand and conduct experiments on the NERMLAB.

Inexpensive hardware did have drawbacks when comparing it to more expensive alterna-

tives. For example, lower operating limits restricted the gain range a system could experience.

Additionally, having noisy encoder output when doing speed control experiments obfuscate

the learning objectives of the laboratory. However, these things certainly do lessen the im-

pact on learning objectives achieved when comparing to the Motorlab; but, more economical

hardware just means different objectives need to be considered when conducting experimen-

tation. It provides institutions and instructors with new ideas and concepts to instruct upon,

in addition to the theories, that rarely make it into textbooks.
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“Motorlab” Dynamics and Controls System 
 

Mechanical           
System       

Detail

Microcontroller
Board

Power
Supply

Motor
Amplifier

Load
Encoder

Motor
Encoder

Brushless
Motor

Load
Inertia Load

Locking Screw
Spring
Coupling

“Motorlab”
Apparatus

USB

 
System Description 
 
 Below is a schematic representation of the Motorlab system in a closed-loop position or speed control 
configuration.  There are two position sensors on the apparatus, a motor encoder and a load encoder.  The speeds of 
the two inertias are measured by numerically differentiating the position signals in the computer controlling the 
system (microcontroller).  The motor amplifier has a control loop that measures and controls the electric current in 
the motor windings.  This results in what is commonly known as a “torque controlled” motor, since the magnetic 
torque is proportional to the current in the windings.  The microcontroller is interfaced to the motor amplifier 
through a +/-10V analog signal. By varying the magnitude of this voltage the microcontroller can change the current 
in the motor.  This voltage, which is proportional to the controlled current, serves as a current command (desired 
current) for the current control loop in the amplifier.  An additional sensor, not shown below, is the current sensor in 
the amplifier used to implement the current control.  The signal from this sensor is also read by the microcontroller, 
using an analog to digital converter.  Although this signal is not used in the control loops on the microcontroller, it is 
recorded for data analysis. 
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 Several different configurations of the system can be utilized in experiments.  Either sensor, the motor or load 
encoder, can be used for the feedback of the control loop.  The selection is made in the software interface.  The 
motor encoder is known as a “collocated” sensor since it is co-located with the input to the mechanical system, the 
motor torque.  The load sensor is separated from the input to the system by a spring and is therefore known as a 
“non-collocated” sensor.  In addition to varying which sensor is used, the mechanical system can be changed with 
the lock down screw and the spring coupling.  Also, a choice can be made between velocity control or position 
control by selecting the appropriate control program.  Any of the following mechanical models may be realized 
using the Motorlab hardware and software. 
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Software 
 
 The software for the system can be found in the “c:\Motorlab” directory on the laboratory machines.  All the 
needed Matlab functions can be found there.  The software that is on the microcontroller is included in this directory 
in the motorlabRepo.zip file.  This program is burned into the flash memory of the microcontroller and runs on 
power up.  The software that runs on the PC is a GUI written in Matlab ("motorlabGUI.m").  There are additional 
m-files in the "Motorlab" directory that can be used to plot data from the system. 
  
User Interface 
 To run the Motorlab GUI you must open Matlab and add the “c:\Motorlab” directory to the Matlab path or set 
this directory as the current directory. Normally you will add it to the path and set the current directory to the 
location where you are storing your files. The microcontroller should be plugged into USB. In the Matlab command 
window type "motorlabGUI."  The opening dialog (below) asks you to select the communication port for the 
microcontroller.  If more than one port is listed you should be able to detect which is the Motorlab by unplugging 
the USB or powering it down and then clicking the "Refresh List" button. The GUI should open after selecting the 
com port. 

 
Connection Dialog 
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Motorlab GUI 

 
Data Acquisition 
 The microcontroller stores data in a circular buffer that is 2048 data samples in length with 9 variables in each 
sample.  After 2048 sample periods the buffer begins to be overwritten with the more recent data. At any time the 
buffer contains the most recent 2048 samples.  Pressing the "Save Data Buffer to Workspace" button will write this 
data to a 2048x9 matrix in the Matlab workspace.  Pressing the "Run Wave AutoSave" button starts the wave type 
selected and then writes the data to the Matlab workspace once the buffer has filled with new data.  The time length 
of the data depends on the sample rate. If for example the sample rate is set to 500 Hz, then the last 4.096 seconds 
(2048/500) of data will be saved in the buffer. 
 The data matrix saved in the Matlab workspace contains 9 variables (columns).  The ninth column is reserved.  
The other eight are listed below.  Note that the variable in the second column changes.  It depends on the "Controller 
Mode" chosen at the time of the data storage. 
 

Column 1 2 3 4 5 6 7 8 
Description Time Command Motor 

Encoder 
Load 

Encoder 
Motor 
Speed 

Load 
Speed 

Current 
Command 

Motor 
Current 

Variable t (sec) c (deg), 

c (rpm), 

ci (Amp) 

1 (deg) 2 (deg) 1 (rpm) 2 (rpm) ci (Amp) i (Amp) 

 
M-files for plotting 
There are m-files provided in the "c:\Motorlab" directory that can be used to plot the data from the Motorlab.  
Although you will frequently want the access the data with your own m-files, these files are useful for quickly 
viewing the data after acquiring it.  There is one file for each of the "Controller Mode" settings. 
 
File: mlolplots.m   function:  mlolplots(data,Iscale);   Uses data generated by the Motorlab in  open loop control. If 
an "Iscale" argument is supplied then the commanded current values are scaled by the Iscale value in the plots. 
example: mlolplots(data);  Does not scale the current command. 
example: mlolplots(data,Iscale);  Multiplies commanded current values by Iscale. 
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File: mlposplots.m   function: mlposplots(data);   Uses data generated by the Motorlab position control mode. 
example: mlposplots(data); 
 
File: mlspeedplots.m   function: mlspeedplots(data);   Uses data generated by the Motorlab velocity control mode. 
example: mlvelplots(data); 
 
File: trapprof.m   function: [x,v,t] =trapprof(DX,Vmax,Amax,DT)   Trapezoidal-velocity motion profile generation 
Outputs:  x=position vector, v=trapezoidal velocity vector, t=time vector 
Inputs:  DX=distance to move, Vmax=maximum velocity, Amax=maximum acceleration, DT=time step for outputs 
example: [x,v,t] =trapprof(DX,Vmax,Amax,DT) 
 
 

Hardware Specifications 
 
Important Scaling Considerations 
 Motor Amplifier Scaling = 1 Amp/Volt. Therefore, one Volt output from the microcontroller corresponds to a 

one Amp command to the current control loop in the motor amplifier.  The plotting routines provided take this 
scaling into consideration. 

 Position is measured in degrees and velocity is measured in RPM.  The output of the control algorithm in the 
microcontroller is measured in Volts.  Therefore, for example, the units of the proportional and derivate gains in 
the position controller would be Volts/deg and Volts*sec/deg, respectively.  When multiplied by the amplifier 
scaling (1 Amp/Volt) these gains become Amp/deg and Amp*sec/deg.  The units of the proportional gain in the 
velocity controller would be Volts/RPM (or Amp/RPM if amplifier scaling is included). 

 
Inertias 

 
 
A Few Other Details 
 Max Data Acquisition Sample Rate = 10 kHz (the control update rate of the microcontroller software) 
 Motor Encoder Resolution = 360 deg/1600 counts = 0.225 deg/count 
 Load Encoder Resolution = 360 deg/2000 counts = 0.18 deg/count 
 Max motor velocity with the 24 Volt power supply is about 4000 rpm 
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Speed Measurement 
The two speeds measured by the Motorlab system are found using a discrete time approximation (i.e. computer 
code) of a derivative with a low pass filter.  The continuous time transfer function for this filter is given below.  It 
uses the encoder position measurement for input.  Note the free s in the numerator performs the differentiation and 
the filter with a cutoff frequency of 300 rad/s helps to filter spikes in the speed measurement caused by 
differentiating the discrete steps inherent in an encoder position measurement. 
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Specs from Motor Manufacturer’s Data Sheet 
 
 

 
Current Control Loop Model 
 The motor amplifier has a current control loop.  As configured in the Motorlab apparatus this loop has a 
bandwidth of approximately 400 Hz.  Using data acquired from step and sinusoidal responses the following two 
closed loop transfer functions have been identified as approximate models for the closed-loop current control 
dynamics. 
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Two of the models above contain a time delay while the other does not.  One model with the time delay uses the 
exponential (exact) representation with the delay, while the other uses a second order Pade' approximation of the 

LA052-040E Motor Dynamic Specs From Shinano Kenshi 
 UNITS Value 

RATED POWER W 40 
RATED VOLTAGE VDC 24 

RATED SPEED rpm 3,000 
RATED TORQUE N-cm 12.7 

kgf-cm 1.3 
RATED CURRENT A 2.5 

TORQUE CONSTANT N-cm/A 5.0 
kgf-cm/A 0.51 

BACK EMF CONSTANT V/krpm 5.2 
PHASE RESISTANCE Ohm 1.18 

PHASE INDUCTANCE mH 4.4 
INSTANTANEOUS PEAK TORQUE N-cm 38.2 

MAX SPEED rpm 5,000 
ROTOR INERTIA g-cm2 110 

POWER RATE kW/s 1.48 
MECHANICAL TIME CONSTANT ms 5.2 

ELECTRICAL TIME CONSTANT ms 3.7 
MASS kg 0.6 



 6

delay.  In the following two figures the responses of these two models are compared with actual data acquired from 
one of the Motorlab systems.  Both the step response and the frequency response models are shown. 
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FEATURES
• CE Compliance to

89/336/EEC

• Recognized Component
to UL 508C

• Complete torque ( current ) mode
functional block

• Drives motor with
60° or 120° Halls

• Single supply voltage
18-55VDC

• 5A continuous, 10A peak more
than double the power output of
servo chip sets

• Fault protected
Short-circuits from output to
output, output to ground
Over/under voltage
Over temperature
Self-reset or latch-off

• 2.5kHz bandwidth

• Wide load inductance range
0.2 to 40 mH.

• +5, +15V Hall power

• Separate continuous, peak, and
peak-time current limits

• Surface mount technology

APPLICATIONS

• X-Y stages
• Robotics
• Automated assembly machinery
• Component insertion machines

THE OEM ADVANTAGE
• NO POTS: Internal component

header configures amplifier for
applications

• Conservative design for high
MTBF

• Low cost solution for small
brushless motors to 1/3 HP

PRODUCT DESCRIPTION

Model 503 is a complete pwm servoamplifier for applications using DC
brushless motors in torque ( current ) mode. It provides six-step commu-
tation of three-phase DC brushless motors using 60° or 120° Hall
sensors on the motor, and provides a full complement of features for
motor control. These include remote inhibit/enable, directional enable
inputs for connection to limit switches, and protection for both motor and
amplifier.
The /Enable input has selectable active level ( +5V or gnd ) to interface
with most control cards.
/Pos and /Neg enable inputs use fail-safe (ground to enable) logic.
Power delivery is four-quadrant for
bi-directional acceleration and deceleration of motors.
Model 503 features 500W peak power output in a compact package
using surface mount technology.
An internal header socket holds components which configure the various
gain and current limit settings to customize the 503 for different loads and
applications.

Separate peak and continuous current limits allow high acceleration
without sacrificing protection against continuous overloads. Peak current
time limit is settable to match amplifier to motor thermal limits.
Header components permit compensation over a wide range of load
inductances to maximize bandwidth with different motors.
Package design places all connectors along one edge for easy connec-
tion and adjustment while minimizing footprint inside enclosures.
High quality components and conservative ratings insure long service life
and high reliability in industrial installations.
A differential amplifier buffers the reference voltage input to reject
common-mode noise resulting from potential differences between
controller and amplifier grounds.
Output short circuits and heatplate overtemperature cause the amplifier
to latch into shutdown. Grounding the reset input will enable an auto-
reset from such conditions when this feature is desired.

Model 503
DC Brushless Servo Amplifier
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FUNCTIONAL DIAGRAM

TYPICAL CONNECTIONS
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APPLICATION INFORMATION

To use the model 503 set up the internal header with the
components that configure the transconductance, current
limits, and load inductance. Current-limits and load
inductance set up the amplifier for your particular motor,
and the transconductance defines the amplifiers overall
response in amps/volt that is required by your system.

COMPONENT HEADER SETTINGS

Use the tables provided to select values for your load and
system. We recommend that you use these values as
starting points, adjusting them later based on tests of the
amplifier in your application.

LOAD INDUCTANCE (RH1,CH2)

Maximizes the bandwidth with your motor and supply
voltage. First replace CH2 with a jumper (short). Adjust the
value of RH1 using a step of 1A or less so as not to
experience large signal slew-rate limiting. Select RH1 for
the best transient response ( lowest risetime with minimal
overshoot). Once RH1 has been set. choose the smallest
value of CH2 that does not cause additional overshoot or
degradation of the step response.

TRANSCONDUCTANCE (RH6,7)

The transconductance of the 503 is the ratio of output
current to input voltage. It is equal to 10kΩ/RH6 (Amps/
Volt). RH6,and RH7 should be the same value and should
be 1% tolerance metal film type for good common-mode
noise rejection.

CURRENT LIMITS (RH3, 4, & 5)

The amplifier operates at the 5A continuous, 10A peak
limits as delivered. To reduce the limit settings, choose
values from the tables as starting points, and test with your
motor to determine final values. Limit action can be seen
on current monitor when output current no longer changes
in response to input signals. Separate control over peak,
continuous, and peak time limits provides protection for
motors, while permitting higher currents for acceleration.

SETUP BASICS

1. Set RH1 and CH2 for motor load inductance (see
following section).

2. Set RH3, 4, & 5 if current limits below standard values is
required.

3. Ground the /Enable (/Enable Pol open), /Pos Enable,
and /Neg Enable inputs to signal ground.

4. Connect the motor Hall sensors to J2 based on the
manufacturers suggested signal names. Note that
different manufacturers may use
A-B-C, R-S-T, or U-V-W to name their Halls. Use the
required Hall supply voltage (+5 or +15V). Note that
there is a 30 mA limit at +5V. Encoders that put-out Hall
signals typically consume 200-300 mA, so if these are
used, then they must be powered from an external
power supply.

5. Connect J1-4,5 to a transformer-isolated source of DC
power,
+18-55V. Ground the amplifier and power supply with an
additional wire from J1-5 to a central ground point.

6. With the motor windings disconnected, apply power and
slowly rotate the motor shaft. Observe the Normal (green)
led. If the lamp blinks while turning then the 60/120°
setting is incorrect. If J2-2 is open, then ground it and
repeat the test. In order to insure proper operation, the
correct Hall phasing of 60° or 120° must be made.

6.Turn off the amplifier and connect the motor leads to
J1-1,2,3 in U-V-W order. Power up the unit. Apply a
sinusoidal reference signal of about 1 Hz. and 1Vrms
between
Ref(+) and Ref(-), J2-10,11.

7. Observe the operation of the motor as the current monitor
signal passes through zero. When phasing is correct the
speed will be smooth at zero crossing and at low speeds. If
it is not, then power-down and re-connect the motor.
There are six possible ways to connect the motor windings,
and only one of these will result in proper motor operation.
The six combinations are listed in the table below. Incorrect
phasing will result in erratic operation, and the motor may
not rotate. When the correct combination is found, record
your settings.

J1-1 J1-2 J1-3
#1 U V W
#2 V W U
#3 W U V
#4 U W V
#5 W V U
#6 V U W

GROUNDING & POWER SUPPLIES

Power ground and signal ground are common ( internally
connected ) in this amplifier. These grounds are isolated
from the amplifier case which can then be grounded for best
shielding while not affecting the power circuits.
Currents flowing in the power supply connections will create
noise that can appear on the amplifier grounds.
This noise will be rejected by the differential amplifier at the
reference input, but will appear at the digital inputs. While
these are filtered, the lowest noise system will result when
the power-supply capacitor is left floating, and each ampli-
fier is grounded at its power ground terminal ( J1-5 ). In
multiple amplifier configurations, always use separate
cables to each amplifier, twisting these together for lowest
noise emission. Twisting motor leads will also reduce
radiated noise from pwm outputs. If amplifiers are more than
1m. from power supply capacitor, use a small (500-1000µF.)
capacitor across power inputs for local bypassing.

Model 503
DC Brushless Servo Amplifier
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APPLICATION INFORMATION (CONT’D)

COMPONENT HEADER

CONTINUOUS CURRENT LIMIT (RH3)

Icont (A) RH3 (Ω)
5   open *
4 20k
3 8.2k
2 3.9k
1 1.5k

INPUT TO OUTPUT GAIN SETTING ( RH6, RH7 )

 Note 1

Example: Standard value of RH6 is 10kΩ, thus G = 1 A/V

PEAK CURRENT LIMIT (RH5) Note 3

Ipeak (A) RH5 (Ω)
10   open *
8 12k
6 4.7k
4 2k
2 750

LOAD INDUCTANCE SETTING (RH1 & CH2) Note 2

Load (mH) RH1 CH2
0.2 49.9 k 1.5 nF
1 150 k 1.5 nF
3 499 k   1.5 nF *
10 499 k 3.3 nF
33 499 k 6.8 nF
40 499 k 10 nF

Notes:* Standard values installed at factory are shown in italics.

1. RH6 & RH7 should be 1% resistors of same value.

2. Bandwidth and values of RH1, CH2 are affected by supply voltage and load inductance. Final selection should be
based on customer tests using actual motor at nominal supply voltage.

3. Peak current setting should always be greater than continuous current setting.

4. Peak times will double when current changes polarity. Peak times decrease as continuous current increases.

J1

J2

LEDS

HEADER LOCATION
( COVER
REMOVED )

RH7

RH6

RH5

RH4

RH3

CH2

RH1

NOTE: Components in dotted lines are

LOAD INDUCTANCE SETTING

CONTINUOUS CURRENT LIMIT

PEAK CURRENT TIME LIMIT

PEAK CURRENT LIMIT

REFERENCE GAIN SETTING

 not installed at factory

WARNING!
DISCONNECT POWER WHEN CHANGING HEADER
COMPONENTS. REPLACE COVER BEFORE APPLYING
POWER TO PREVENT CONTACT WITH LIVE PARTS.

Model 503
DC Brushless Servo Amplifier

PEAK CURRENT TIME-LIMIT (RH4) Note 4

Tpeak (s) RH4 (Ω)
0.5   open *
0.4 10 M
0.2 3.3 M
0.1 1 M

Times shown are for 10A step from 0A
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TECHNICAL SPECIFICATIONS
Typical specifications @ 25°C ambient, +HV = +55VDC. Load = 200µH. in series with 1 ohm unless otherwise specified.

OUTPUT POWER
Peak power

Unidirectional ±10A @ 50V for 0.5 second, 500W
After direction change ±10A @ 50V for 1 second, 500W

Continuous power ±5A @ 50V, 250W

OUTPUT VOLTAGE Vout = 0.97HV -(0.4)(Iout)

MAXIMUM CONTINUOUS OUTPUT CURRENT
Convection cooled, no conductive cooling ±2A @ 35°C ambient
Mounted on narrow edge, on steel plate, fan-cooled 400 ft/min ±5A @ 55°C

LOAD INDUCTANCE
Selectable with components on header socket 200 µH to 40mH (Nominal, for higher inductances consult factory)

BANDWIDTH
Small signal -3dB @ 2.5kHz with 200µH load
Note: actual bandwidth will depend on supply voltage, load inductance, and header component selection

PWM SWITCHING FREQUENCY
25kHz

ANALOG INPUT CHARACTERISTICS
Reference Differential, 20K between inputs with standard header values

GAINS
Input differential amplifier X1 as delivered. Adjustable via header components RH6, RH7
PWM transconductance stage 1 A/V ( output vs. input to current limit stage )

OFFSET
Output offset current ( 0 V at inputs ) 20 mA max. ( 0.2% of full-scale )
Input offset voltage 20 mV max ( for 0 output current, RH6,7 = 10kΩ )

LOGIC INPUTS
Logic threshold voltage HI: ≥ 2.5V , LO: ≤1.0V, +5V Max on all logic inputs
/Enable LO enables amplifier (/Enable Pol open) , HI inhibits; 50 ms turn-on delay
/POS enable, /NEG enable LO enables positive and negative output currents, HI inhibits
/Reset LO resets latching fault condition, ground for self-reset every 50 ms.
/Enable Pol (Enable Polarity) LO reverses logic of /Enable input only (HI enables unit, LO inhibits)

LOGIC OUTPUTS
+Normal HI when unit operating normally, LO if overtemp, output short, disabled,  or power supply (+HV) out of tolerance

HI output voltage = 2.4V min at -3.2 mA max., LO output voltage = 0.5V max at 2 mA max.
Note: Do not connect +Normal output to devices that operate > +5V

INDICATORS (LED’s)
Normal (green) ON = Amplifier enabled, no shorts or overtemp, power within limits
Power fault (red) ON = Power fault: +HV <18V OR +HV > 55V
Short/Overtemp (red) ON = Output short-circuit or over-temperature condition

CURRENT MONITOR OUTPUT ±5V @ ±10A (2A/volt), 10kΩ, 3.3nF R-C filter

DC POWER OUTPUTS

+5VDC 30mA (Includes power for Hall sensors)
+15VDC 10mA

Total power from all outputs not to exceed 200mW.

PROTECTION

Output short circuit (output to output, output to ground) Latches unit OFF (self-reset if /RESET input grounded)
Overtemperature Shutdown at 70°C on heatplate (Latches unit OFF)
Power supply voltage too low (Undervoltage) Shutdown at +HV < 18VDC (operation resumes when power >18VDC)
Power supply voltage too high (Overvoltage) Shutdown at +HV > 55VDC (operation resumes when power <55VDC)

POWER REQUIREMENTS

DC power (+HV) +18-55 VDC @ 10A peak.
Minimum power consumption 2.5 W
Power dissipation at 5A output, 55VDC supply 10W
Power dissipation at 10A output, 55VDC supply 40W

THERMAL REQUIREMENTS

Storage temperature range -30 to +85°C
Operating temperature range 0 to 70°C baseplate temperature

MECHANICAL

Size 3.27 x 4.75 x 1.28 in. (83 x 121 x 33mm)
Weight 0.52 lb (0.24 kg.)

CONNECTORS

Power & motor Weidmuller: BL-125946; Phoenix: MSTB 2.5/5-ST-5.08
Signal & Halls Molex: 22-01-3167 housing with 08-50-0114 pins

Model 503
DC Brushless Servo Amplifier
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OUTLINE DIMENSIONS

Dimensions in inches (mm.)

ORDERING GUIDE

Model 503 5A Continuous, 10A Peak, +18-55VDC Brushless Servoamplifier

OTHER BRUSHLESS AMPLIFIERS

Model 505 Same power output as 503. Adds Hall / Encoder tachometer feature for velocity loop
operation.

5001 Series Six models covering +24-225VDC operation, 5-15A continuous, 10-30A peak.
With optional Hall / Encoder tachometer, and brushless tachometer features.

Model 513R Resolver interface for trapezoidal-drivemotors. Outputs A/B quadrature encoder signals
and analog tachometer signal for velocity loop operation. +24-180VDC operation, 13A
continuous, 26A peak.

(83.1)

(120.7)

(50.8)

(114.3)

1.28
(32.5)

4.50

3.272.00

4.75

0.75

0.55

(14)

(19.1)

0.17

(3.0)
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STM32F4DISCOVERY
STM32F4 high-performance discovery board

Introduction
The STM32F4DISCOVERY helps you to discover the STM32F4 high-performance features 
and to develop your applications. It is based on an STM32F407VGT6 and includes an ST-
LINK/V2 embedded debug tool interface, ST MEMS digital accelerometer, ST MEMS digital 
microphone, audio DAC with integrated class D speaker driver, LEDs, pushbuttons and an 
USB OTG micro-AB connector.

Figure 1. STM32F4DISCOVERY

www.st.com



Hardware and layout STM32F4DISCOVERY 
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Figure 6. STM32F407VGT6 block diagram 



  

 
 
 
 
 
 
 
 
 
 

 
Wiring for the “Motorlab” Apparatus  



  

Hardware Wire Color Function STM32f4 Discovery

Black 1 Black Motor Encoder Ground 1 Black GND

Red 2 Red +5V Power 2 Brown Voltage Regulator

Yellow 3 Yellow Motor Encoder Channel A 3 Red PE9 (TIM1‐Ch1)

Blue 4 Blue Motor Encoder Channel B 4 Orange PE11 (TIM1‐Ch2)

Curr Mon 9 White 5 White Current Monitor 5 Yellow PB0 (ADC1‐Ch8)  thru resistor network

Black 6 Black Inertia Encoder Ground 6 Green GND

Red 7 Red +5V Power 7 Blue Voltage Regulator

Orange 8 Orange Inertia Encoder Index 8 Purple ‐‐

Yellow 9 White Inertia Encoder Channel A 9 Gray PA15 (TIM2‐Ch1)

Blue 10 Green Inertia Encoder Channel B 10 White PA1 (TIM2‐Ch2)

GND 12 Black 11 Orange Amp Signal Ground 11 Pink GND

Enable 6 Green 12 Green Amp Signal (Amp Enable) 12 Light Green PB11 (Digital Out)

Ref+ 11 Red 13 Red Current Command + 13 Black‐White PB4 (TIM3‐Ch1)

Ref‐ 10 Orange 14 Black Current Command ‐ 14 Brown‐White PB5 (TIM3‐Ch2)

GND 12 Black 15 Orange GND 15 Red‐White ‐‐

15pin CableAmp J2 15pin Connector

15 Pin Microcontroller Connections

 
 

Wiring Diagram 

 



  

 
STM32F4Discovery Host Board 
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Figure B.1: Standoff for NERMLAB [mm]
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Figure B.2: Magnet holder for NERMLAB [mm]
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Figure B.3: Torque Transmission Shaft for NERMLAB [mm]
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Appendix C

Laboratory Procedures

Appendix C includes the laboratory procedures that students carry out in Control of Me-

chanical Systems at Kansas State University.
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Laboratory  #2 
 

In this lab you are to experimentally determine an approximation for 

the viscous friction coefficient for the motor of the Motorlab.  Then 

you are to use this coefficient to predict the response of the dynamic 

system to an initial condition (initial velocity) and compare this to 

the actual I.C. response.   If the spring coupling is removed from the 

Motorlab apparatus then we are left with the dynamic system 

described by the equations and schematic model to the right.  This is 

the dynamic system studied in this laboratory.  Also in this lab you 

will be continue to learn to use MATLAB. 

 

ONE REPORT is due from each group, but you all are responsible 

for understanding what is in the report and how it was generated. 

 

You are to set the “Controller Mode” in the motorlab GUI to “Open Loop” to acquire experimental data for this lab.  

This program does not implement closed-loop control of the Motorlab mechanical hardware.  It allows you to 

manipulate the input to the mechanical system, the motor current (torque), and acquire data. 

 

You are also to complete the MATLAB m-file that will generate the plots required for this lab.  You are given most 

of the m-file code on the following page.  You may copy this code out of this document and past it into an m-file to 

modify it.  You should use the help in MATLAB and your instructor to continue to learn the language. 

 

Estimating the Viscous Friction Coefficient 
Looking at the differential equation in the model it can be seen that if a constant torque (current) is input then in 

steady state, where ,0)( t  )()( tbtT  .  Therefore we should be able to estimate the viscous friction coefficient 

by obtaining steady state velocity and current data.  Change the motor current command using the jog buttons then 

save the data to the workspace after sufficient time for the buffer to fill.  Use the following two commands in the 

command window to get the average current and speed: 
mean(data(:,8)) 

mean(data(:,5)) 

Fill in the table below.  In this lab you will probably discover that friction is often a hard thing to model and that the 

linear, viscous friction, model is not completely accurate in some cases.  We are attempting to find an "engineering 

estimate" that might be used in closed loop control where completely accurate models are not necessary.  

 

Current 

Command (A) 

-0.14 -0.12 -0.10 -0.08 -0.06 -0.03 0 0.03 0.06 0.08 0.10 0.12 0.14 

Avg. Current (A)              

Avg. Speed (rpm)              

 

Using the data from the table above obtain a plot of torque vs. angular velocity.  On this same plot, draw the “best 

fit” line through the data by playing with the slope of the line described by estimatebT  .  Generate this plot by 

completing the top of the m-file provided and running it with successive guesses at estimateb . 

 

Comparing Theoretical and Experimental IC Responses 
Now that you have an estimate of b  YOU ARE TO USE IT TO SOLVE THE DESCRIBING DIFFERENTIAL 

EQUATION given that 0)( tT  and given that the initial condition (IC) is 0)0(  t .  Do this by hand, paying 

close attention to units.  You are also to obtain data for the IC response from the actual system, and then compare 

this with the theoretical responses on the same plot.  To obtain the response to an IC use a current of  0.15 A to 

generate an initial velocity.  Using a sample frequency of 500 Hz  do the following: 

1. Jog the current to the desired level, or type it into the command window, and allow the velocity to settle, 

and wait at least four seconds for the data buffer to fill. 

2. Hit the “Turn Off Motor Amp” button to turn off the current – count to 3 seconds – then immediately hit 

the “Save Data Buffer to Workspace” button.  This should give data with about one second of initial 

velocity and 3 seconds of IC response. 

T 

b

J

speedangular )(

currentmotor )(

torque)(

/5constant uemotor torq

tcoefficienfriction 

129inertia

)()(

)()()(

2

















t

ti

tT

AcmNk

b

cmgJ

tiktT

tbtJtT

t

t





?????


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3. In MATLAB and view the data with “mlolplots()”. In figure (2) of MATLAB you should see the IC 

response.  Zoom in and use the cursor to find your actual initial velocity and a time at which the torque was 

set to zero. 

4. Complete the bottom part of the m-file provided so that it generates the experimental response and the 

theoretical response on the same graph. 

 

 

Things to Turn In 

• You should have two different plots: 1) torque vs. angular velocity, 2) IC response  

• You should have code for the m-file completed. 

• Hand development of the solution to the differential equation with the I.C. 

• Fill in the blanks below.  (This must be turned into your instructor before they leave the lab or other 

arrangements made with them.  Attach another copy, which may be different/corrected, to your report). 

 

Fill In The Blanks: All answers should have units where appropriate.  This is your chance to learn.  So think about 

your answers, find as many connections as you can, and try to extrapolate.  You should copy this out of the 
given word file and fill in the blanks with BOLD face type and underlined. 

 
Lab #2 QUESTIONS   Names 

In the first plot we can see the relationship between motor speed and the friction torque.  With a constant motor 

current, the motor   ??????    is constant, and the speed settles to a fairly constant value where the input torque 

balances with the ??????   torque.   Our typical model of friction for control design is ??????,  with the friction 

torque being proportional to velocity.  However, the data points in the plot show that the actual friction has a ?????? 

component along with the linear component, resulting in a zero velocity with small values of constant torque.  Our 

estimate of the viscous (linear) coefficient of friction roughly capturing both of these effects is ??????(units). 

In the second plot we see the actual initial condition response along with one from the model, which was found 

from the solution of the ??????  equation with an initial condition.  The time constant the linear model can be found 

with the mass moment of inertia and our estimate of the friction coefficient.  It has a numerical value of 

??????(units).   At one time constant the linear is model is at exactly ??????(rpm) (ignoring roundoff), which is 

37% of the initial value.  The actual data from system is at a value of ??????(rpm) at the time constant.  The major 

difference between the linear model and the actual system is at ??????  speed where the model significantly 

underestimates the friction torque.  It can be seen that as the motor slows down the velocity decay is much faster 

than predicted by the ??????.  
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Starting m-file code 
 

% lab 2 starting file 

i=[-0.14 -0.12 -0.10 -0.08 -0.06 -0.03 0 0.03 0.06 0.08 0.10 0.12 0.14]; % YOU SHOULD CHANGE THIS 

                                                                         % TO THE AVERAGE VALUES 

rpm=[????]  %vector of velocity data 

  

kt = ????; 

T=kt*i;          % convert current data to torque data 

w=(????)*rpm      % convert rpm to rad/s 

  

west=(2*pi/60)*[-3500 3500]; 

best = ????;     % play with this to get the straight line to approximate the data 

Test=best*west; 

  

plot(w,T,west,Test); 

ylabel('Friction Torque (????)'); 

xlabel('Angular Velocity (rad/s)'); 

title('Input Torque vs. Angular Velocity with Estimated Straight Line Fit'); 

  

% icresponse part of the file requires "data" to be present in the workspace 

% uncomment the lines below to complete the ic response plot 

  

% dataTime=data(:,1);  %extract the first column of the data matrix 

% dataRPM=data(:,5); 

%  

% to=????;  %time at which torque was shut off in original data 

% dataTime=dataTime-to;  %shift the time vector of the data to zero at IC 

%  

% J=1.29e-5; 

% tau=J/best;  %using your units for J and best is tau in seconds? check it 

% Wo=????;  %Initial velocity (rpm) 

%  

% theoryTime=0:0.01:3;   %WHAT DOES THIS DO? TRY IT IN THE COMMAND WINDOW. ALSO TYPE HELP COLON 

% theoryRPM=Wo*exp(-theoryTime/tau);   

%  

% figure(2); 

% plot(dataTime,????,????,theoryRPM); 

% ylabel('Angular Velocty (????)'); 

% xlabel('Time (sec)'); 

% title('Actual and Theoretical Response to and IC of ????? rpm'); 
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Laboratory  #5 
 
In this lab you are to experiment 
with the position control system 
of the “Motorlab” apparatus.  
Also, you are to use a model of 
the closed-loop position control 
system to predict the response.  
You will compare the theoretical 
step response with the actual 
response obtained experimentally 
from the Motorlab.  You will 
compare the responses for three 
different proportional controller 
gains.   You should also make 
connections between pole 
locations and characteristics of 
the response such as the 
frequency of oscillation and the 
decay rate of the oscillations. 
 
Work To Be Done Prior To Lab 
 
a) Assuming the transfer function of the closed loop current control system, )(sTi , is one obtain a symbolic 

representation of the CLTF  )(/)( ss cθθ .   
 
b) From a) write an equation for the closed-loop poles of the system. 
 
c) From b) determine an equation for pK  where the response of the system becomes oscillatory (i.e. where the 

poles become complex rather than real). 
 
d) Plug in the numbers and determine the value of pK  for part c).  
 
e) Plug the numbers and the following three gains into your equation for part b) to find the oscillation frequency, 

and time constant for the decay rate of the oscillations, for each gain. ?)(0001.0,001.0,01.0 unitsKp =  
 
Obtaining Data From The Motorlab 
In this lab you are using a position control system.  Therefore you should run the Motorlab control program in 
position  control mode.  For this part of the lab you need to collect experimental data for the step response of the 
closed-loop system for the three different proportional gains given above.  You will have to change the gains and 
you will have to play with the sample frequency and wave frequency to obtain appropriate data that shows the entire 
step response.  Use the following wave magnitudes for the responses and save the data into the matrix name given.  
Hint: you should have at least 3 seconds of data on the positive portion of the square wave. 
 

PAY ATTENTION TO THE ORDER! 
 

Gain, 
pK  

(units?) 

Magnitude of 
Square Wave 

(degrees) 

Name MATLAB workspace  
matrix for data. 

 

0.01 200 data3 
0.001 1000 data2 

0.0001 10000 data1 
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Immediately after importing the data to the workspace, plot the data using the “mlposplots(datai)” command inside 
of the MATLAB command window.  Check the appropriateness of your sample frequency and wave frequency.  
Also, use the data cursors to measure the period of oscillation for the table below. 
 
Obtaining the required plots and data 
By completing the given m-file code you should generate the required plots for this lab.  You should also fill in the 
table below.  Some of the data for this table is generated in the m-file.  Other data can be found with the data cursors 
available in the plots generated with “mlposplots.m”. 
 

Gain, 
pK  

(units?) 

Theoretical 
CLTF poles, 

dn jωςω ±−  
(rad/s) 

Theoretical Period 
of Oscillations, 

dωπ /2  
(seconds) 

Measured Period 
of Oscillations, 

 T 
(seconds) 

Theoretical Time 
Constant of Envelope, 

nςω/1  
(seconds) 

Measured Time 
Constant of Envelope, 
τ  (estimate one for all 

three gains) 
(seconds) 

0.01      
0.001      

0.0001      
 
Things to turn in 
• You should have three different plots (with axis labels including units, titles, and legends):  1) simulated unit 

step response for all three gains, 2) experimental normalized step responses for all three gains, and 3) simulated 
and experimental response for Kp=0.01. 

• The completed table. 
• Hand development of parts a) thru e). 
• The answers to the fill in the blanks below (bold and underlined). 
 
Fill in the blanks (Turn in by end of lab) 
 
1. In the theoretical model, as the proportional gain is increased beyond the value where the closed loop response 
becomes oscillatory, the damped frequency of oscillation ________ and the time constant for the envelope of the 
oscillations ____________.  This captures the behavior of the actual system pretty well, although the envelope does 
change a little.  This might be explained by the nonlinear friction and saturations. 
 
2.  As we increase the proportional controller gain beyond 0.001 some aspects of the controller get better while 
others get much worse.  If we try to turn the shaft with our fingers the higher gain system deflects much _________ 
than the lower gain (try it).  This indicates _________ disturbance rejection.  However, the damping of oscillations 
in the step response becomes much ________.  This indicates the system is nearly unstable.  This is one reason we 
often add “dynamics” to the controller rather than just the proportional gain which has no integrals or __________. 
 
3. If we keep turning the proportional gain up the system actually becomes ________ (try it).   The theoretical 
model we used doesn’t predict this.  There are always more dynamics out there at higher frequency that we haven’t 
modeled (we’ll look at some in the next lab).  For example, by assuming the current controller in the amplifier had a 
TF of 1, we assumed that it responds _________ fast. 
 
4. Using mlposplots to plot the data in the "data1" matrix we see in the fourth plot, which compares the  _______ 
with the  ________ command, that early in the response the current does not actually track the commanded current.  
As we simulated in the previous lab real systems sometimes have saturations that can affect the response.  Looking 
at the other plots we can see in plot number _________ that the _________ seems to saturate during this period, as 
can be seen by it reaching a high value and staying constant at that value for a short period.  We asked our instructor 
(do this J) and they explained that this is actually due to the limited voltage of the power supply and the _________ 
constant of the motor.  The motor actually generates a voltage as it spins that is proportional to the _________. 
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Starting m-file code  
 
% lab5.m file 
% Requires that the square-wave-response data files 
% have been imported into data1, data2, and data3. 
  
kt = ???;  % N-m/A 
J=???;     % kg-m^2 or N-m-s^2/rad 
b= ???;    % N-m-s/rad 
kdr=???;   % deg/rad 
  
Gm=tf(???); 
  
kp=0.0001; 
Gol=kp*Gm; 
T1=feedback(Gol,1); 
[th1,t1]=step(T1); 
[p1,z1]=pzmap(T1) 
  
kp=0.001; 
Gol=kp*Gm; 
T2=feedback(Gol,1); 
[th2,t2]=step(T2); 
[p2,z2]=pzmap(T2) 
  
kp=0.01; 
Gol=kp*Gm; 
T3=feedback(Gol,1); 
[th3,t3]=step(T3); 
[p3,z3]=pzmap(T3) 
  
dt1=data1(:,1);   %extract the time column of the data matrix 
dth1=data1(:,3);  %extract the first angle column of the data matrix 
dth1=dth1/10000;  %scale the response to a unit step response 
  
dt2=data2(:,1);   %extract the time column of the data matrix 
dth2=data2(:,3);  %extract the first angle column of the data matrix 
dth2=dth2/2000;   %scale the response to a unit step response 
  
dt3=data3(:,1);   %extract the time column of the data matrix 
dth3=data3(:,3);  %extract the first angle column of the data matrix 
dth3=dth3/200;    %scale the response to a unit step response 
  
figure(1);              %Theoretical for all three gains 
plot(???) 
  
figure(2)               %Experimental for all three gains 
plot(???) 
  
figure(3)               %Experimental and Theoretical for Kp=0.01 
plot(???) 
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Introduction 
 In this lab we will use the velocity 
control system in the Motorlab to look at 
the concept of "higher frequency 
dyanamics."  This lab should illustrate 
there are always some higher frequency 
dynamics that will affect you if you "turn 
up the gains" too much.  We can ignore 
them to a point, but they are there.  Often 
we do not have a good model for them, 
or even know for sure what is causing 
them, but they are there. 
 We have a rule of thumb: We can 
ignore open loop poles and zeros when 
they are more than 10 times larger (in 
terms of magnitude, which is the distance 
from the origin of the s plane) than the 
closed loop poles that result from 
ignoring them.  You should note it refers 
to the effect of open loop poles on the 
closed loop system.  This is typical in 
control system design.  We are usually 
trying make predictions or calculations 
for the closed loop system using open 
loop models. 
 
Collecting Data 
 You should collect data for at least 
three gains, listed in the table below. Use a sample rate of 1000 Hz for all the data. For the first two gains you should collect 
a step response.  For the last gain we want to capture the unstable growth of the response.  
 
 

Gain, 

pK  
(units?) 

Square Wave 
(rpm) 

Name of MATLAB 
workspace  matrix for data 

0.0008 1000 data1 
0.0016 1000 data2 
0.008 Use Special 

Procedure below 
data3 

Table 1: Information for Acquiring Data 
 

Special Procedure:   
1.Turn off the amplifier. 
2.Set the gain to 0.008. 
3.Change the rpm to 50 rpm in the manual command window. 
4.Turn on the amplifier.   Then wait one second and save the data to the workspace. 
5.Use mlspeedplots to plot the data and zoom in on the exponential growth in both speed and current plots. 
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Things to Turn In 
• Include the two plots the measured and calculated step response when for pK = 0.0008 and pK = 0.0016.  These should 

include separate responses, one measured and the two models of the closed loop system. 
• Include a documented copy of your MATLAB code (complete the comments). 
• Include the narrative below with the blanks filled in with bold underlined answers.  Hint: to find the open loop poles of 

the two systems use “damp (Gs)” and “damp (Gs*???)” in MATLAB. 
 
 
The “damp” command in MATLAB prints out the poles of a TF in both Cartesian form and 
polar form.  The Cartesian form gives the real and  A  parts, while the polar form gives the 
damping ratio and the magnitude.  The angle in polar form is directly related to the   B . 
 
The nominal system model is the one without the higher frequency dynamics (i.e. without the 
low pass filter on speed).  The nominal  C  TF has one pole and the nominal closed loop TF 
has  D  pole(s).  With the higher frequency dynamics the open loop TF has  E  poles and the 
closed loop TF has  F  poles.  Closing the loop  G   change the number of poles.  It changes 
the   H    of the poles (i.e. they move in the s-plane). 
 
One of the open loop poles in the system with the higher frequency dynamics has the same 
value as the nominal open loop pole.  This pole is much   I   in magnitude than the other two 
poles.  The magnitude of the other open loop poles in the model with the high frequency 
dynamics is  J  rad/s, which is their natural frequency.  Therefore according to our rule of 
thumb, when the   K   loop poles of the nominal system approach a magnitude of   L   rad/s 
we might expect the accuracy of the nominal model to be questionable.   
 
At a gain of Kp=0.0008  M  the magnitude of the closed loop pole of the nominal model is   N    
rad/s and is close to the pole at   O   rad/s in the closed loop model with the higher frequency 
dynamics.  At this gain we are very close to our rule of thumb, and although there are slight 
differences, the step responses from the two models and from the actual system all look very 
similar. The other two closed loop poles in the model with the filter have complex values of    
P  rad/s, which have a magnitude of   Q     rad/s.  This magnitude is much larger than the 
magnitude of the real pole and therefore these poles  R  affect the response much.  
 
At a gain of 0.0016  S  the magnitude of the closed loop pole of the nominal model is  T  
rad/s, so it is  U  than the magnitude predicted by our rule of thumb where we will start to see 
significant differences between the two models. At this gain the real closed loop pole of the 
higher order model has a value of -68.8 rad/s, so we might expect similar behavior from the 
two models. However, the other two closed loop poles in the model with the filter have 
complex values of  V  rad/s, which have a magnitude of  W  rad/s.  At this gain the magnitude 
of the real pole and the complex poles are closer together than for the lower gain and we 
begin to see the effects of the complex poles with some   X   in the responses of the higher 
order model and in the actual system.  
 
At a gain of 0.008   Y  the closed loop pole of the nominal model is at  Z  rad/s, which 
predicts a fast, first order, stable response.  However the higher order model and the actual 
system are  AA , as predicted by the positive real parts of the two closed loop poles at   BB 
rad/s. Although the oscillations in the actual response from the Motorlab do not grow to 
infinity, they do begin grow and then reach a    CC       cycle after a few oscillations. It can be 
seen in plot of the motor current that it saturates at   DD    Amps.

A.____________________ 
B.____________________ 
 
 
C.____________________ 
D.____________________ 
E.____________________ 
F.____________________ 
G.  does/does not                                  
H.____________________ 
 
 
I.____________________ 
J.____________________ 
K.____________________ 
L.____________________ 
 
 
M.   (units)                          
N.____________________ 
O.____________________ 
P.               +/-               j     
Q.___________________ 
R.       do/do not                  
 
S.   (units)                          
T.                                        
U.    larger/smaller              
V.               +/-               j    
W.                                       
X.____________________ 
 
 
 
Y.   (units)                          
Z.____________________ 
AA.__________________ 
BB.            +/-               j     
CC.__________________ 
DD.__________________ 
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% High Frequency Dynamics Lab 
  
kt   = 0.05;     % N-m/A 
J    = 1.29e-5;  % kg-m^2 or N-m-s^2/rad 
b    = 3e-5;     % N-m-s/rad 
kdr  = 180/pi;   % deg/rad 
krd  = 1/6;      % rpm/(deg/s) 
  
Gs   = tf([kt*kdr*krd],[J b]); 
  
wn  = ;       % Low pass filter in velocity measurement 
zwn = ; 
Ghf = tf(wn^2,[1 2*zwn wn^2]); 
  
% WHEREEVER YOU SEE ????? IN THE COMMENTS YOU NEED TO COMPLETE 
kp=[ 0.0008 0.0016 0.008];                % array of kp gains used 
for i=1:length(kp)                        % cycle through the gains 
    Tnominal(i) = feedback(kp(i)*Gs,1);   % ????? TF for nominal model 
    Thf(i) = feedback(kp(i)*Ghf*Gs,1);    % CL TF for higher order model 
    display(kp(i));                       % display the current kp value 
    damp(Tnominal(i))                     % show the poles in polar form 
    damp(Thf(i))                          %     "" 
    [p1,z1]=pzmap(Tnominal(i));   % CL loop poles and zeros of ????? model 
    [p2,z2]=pzmap(Thf(i));        % CL loop poles and zeros of ????? model 
    p1= sort(p1);                         % order the poles small to ????? 
    p2 = sort(p2);                        %   "" 
    pnominal(:,i) = p1;                   % add poles for this gain to list 
    phf(:,i) = p2;                        %   "" 
end 
  
figure(1);              % Plot the closed loop poles for each of the gains 
hold on; 
for i=1:length(kp) 
    plot(real(pnominal(:,i)),imag(pnominal(:,i)), '+'); % Nominal model 
    plot(real(phf(:,i)),imag(phf(:,i)), 'x');           % Higher order model 
end 
hold off; 
axis equal; 
s=sprintf('Poles of nominal CL system, + \n'); 
s=[s sprintf('and higher order CL system, x \n')]; 
s=[s sprintf('for three gains \n')]; 
title(s);  
axis equal; 
  
tfinal = .3; 
[speedN,timeN]=step(1000*Tnominal(1), tfinal); % step response of nominal model 
[speedHF,timeHF]=step(1000*Thf(1), tfinal);    %     ""   of higher order model 
speed= data1(:,5);    %extract the first speed column of the data matrix 
time=data1(:,1);      %extract the time column of the data matrix 
  
figure(2); 
plot(timeN,speedN,timeHF,speedHF,time,speed);   % step response plot kp=0.0008 
title('Plot of CL step response for Kp=0.0008'); 
legend('model with nominal dynamics','model with hi freq dynamics','actual'); 
xlabel('time (sec)'); ylabel('speed (rpm)'); 
  
tfinal = .15; 
[speedN,timeN]=step(1000*Tnominal(2), tfinal); % step response of nominal model 
[speedHF,timeHF]=step(1000*Thf(2), tfinal);    %     ""   of higher order model 
speed= data2(:,5);    %extract the first speed column of the data matrix 
time=data2(:,1);      %extract the time column of the data matrix 
  
figure(3); 
plot(timeN,speedN,timeHF,speedHF,time,speed);   % step response plot kp=0.0016 
title('Plot of CL step response for Kp=0.0016'); 
legend('model with nominal dynamics','model with hi freq dynamics','actual'); 
xlabel('time (sec)'); ylabel('speed (rpm)'); 
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Laboratory  #8 
 

In this lab you are to experiment with the 

velocity control system of the “Motorlab” 

apparatus.  You are to compare proportional 

control to PI control, understand the concept 

of “system type”, and relate the step responses 

to the poles of the closed loop transfer 

functions. 

 

“System Type” Background (See pdf) 
“System type” for a unity-feedback closed 

loop system is defined as the number of free 

integrators in the open loop transfer function. 

It can be related to steady state errors for 

different commands (e.g. steps, ramps, 

parabolas) to the closed loop system.  

 

Velocity Measurement in The Motorlab 
 To measure velocity in the Motorlab system a filter is used on the position output from the encoder. This filter takes a 

derivative, and also uses a second order low pass filter to smooth the discrete pulses coming from the encoder, which would 

cause larger spikes in the derivative.  With a cutoff frequency of 300 rad/s, this filter is the higher frequency dynamics that 

limit the size of the proportional gain.   

 

Obtaining data 
You should obtain the step response from the motor lab for three separate controllers:  two proportional controllers and one 

PI controller. 

 

Gain, pK  

(units?) 

Gain, iK  

(units?) 

Magnitude 

of Step 

(rpm) 

Matrix name when saved into 

the MATLAB workspace   

 

0.0015 0 1000 data1 

0.003 0 1000 data2 

0.0015 0.00405 1000 data3 

 

 

Things to Turn In 

• A single plot showing the experimental step responses obtained for the three sets of controller gains. 

• The completed table below 

• Include the narrative below with the blanks filled in with bold underlined answers. 

 

 

Controller Gains Model Experimental data 

Gain, 

pK  

(units?) 

Gain, iK  

(units?) 

DC Gain, 

dcK  

(rpm/rpm) 

Step 

Response 

SS Speed 

(rpm) 

CLTF poles 

 (rad/s) 

CLTF zeros 

 (rad/s) 

Step Response 

SS Speed 

(rpm) 

0.0015 0    none  

0.003 0    none  

0.0015       
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Narrative 

In the table and the plots we find that the experimental responses are very, very similar to the response from the models.  So 

we will use the models for detailed discussion. 

 

 

With a step input of 1000 RPM, the steady state speeds for the two systems with the 

proportional controllers are   A RPM and    B  RPM.  Using the friction coefficient we can 

calculate that the input torques required to balance with the friction torque at these two speeds 

are   C   N-m and   D  N-m, respectively.   Using the torque constant we can calculate that 

these two torques correspond to motor currents of   E   Amps and   F Amps.  Now, we can 

look at this from another direction.  The output of a proportional controller is the gain 

multiplied by the error.  We find that the steady state outputs of the two controllers should be   

G  (Amps/RPM)*40 (RPM)  =   H  Amps,  and   I  (Amps/RPM)*  J  ( RPM)  =   K   

Amps.  Therefore, we see that the outputs of the controllers in steady state are balancing with 

the   L   torques (currents).  And, since a steady state torque (current) is required to maintain 

speed in this system, there must be a steady state error if we only use   M   control. 

 

When the integral gain is included, we see that the steady state speed is    N   RPM, because 

the DC gain of the CLTF is   O  .  The integral part of the controller continues to grow, by 

integrating the error, until the steady state error   P  .  With only proportional control we can 

only decrease the steady state error by   Q   the gain, which we see causes the system to 

become more oscillatory and less   R  .  However, we can drive the steady state error to zero 

with the smaller proportional gain when we include the integral control action, and still 

maintain a relatively stable closed loop system. 

 

The behavior discussed above can be abstracted to other systems and to other inputs to a 

closed loop control system.  We can use “system type” in this abstraction. We see that the DC 

gain of the closed loop system is   S   (i.e. the steady state error for a constant input is   T  ) if 

the open loop TF has a   U  .  In this lab the open loop transfer function has   V   free 

integrators with proportional control, and is therefore type   W  .  It has   X   free integrator 

with the PI controller, and is therefore type   Y  .  However, if we put a ramp command into a 

closed loop system that is type one, it would have a steady state error. A type two system 

would track a ramp command with zero steady state error. In general we can increase the 

ability of the closed loop system to track more quickly changing commands by increasing the 

system type (i.e. by using   Z   control).   

 

On a different subject, we can relate the transient part (not steady state) of step responses of 

the three systems to closed loop poles and zeros.  The first system is dominated by the real 

pole at   AA   rad/s, with the underdamped poles causing   BB   superimposed on top of the 

first order response.  The real pole gives a time constant of   CC   seconds, which can be seen 

in both the step response of the model and the actual system.  The second system has a set of 

complex poles and a real pole, neither of which are   DD  .  The step response looks like a 

second order response except the first couple of oscillations are not quite symmetric about the 

steady state value.  The first order pole causes them to shade   EE  .  The third system is very 

similar to the first except it has very near   FF  at -2.7 rad/s.

A.____________________ 

B.____________________ 

C.____________________ 

D.____________________ 

E.____________________ 

F.____________________ 

G.                                                         

H.____________________ 

I.____________________ 

J.____________________ 

K.____________________ 

L.____________________ 

M.                                        

 

N.____________________ 

O.____________________ 

P.                                          

Q._____  ______________ 

R.                                         

 

 

S.                                        

T.                                        

U.                                        

V.                                         

W.                                       

X.____________________ 

Y.                                        

Z.____________________ 

 

 

 

AA.__________________ 

BB.                                     

CC.__________________ 

DD.__________________ 

EE.__________________ 

FF._____   ______  _____ 
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Starting m-file code 
% lab8 m-file 
% Requires that the square-wave-response data files 
% have been imported into data1, data2, and data3. 

  
kt = 0.05;   % N-m/A 
J=1.29e-5;   % kg-m^2 or N-m-s^2/rad 
b= 3e-5;     % N-m-s/rad 
kdr=180/pi;  % deg/rad 
krd=1/6;     % rpm/(deg/s) 

  
Gs=tf(kt*kdr*krd,[J b]);           % mechanical dyn' with speed output 
wn=300; zeta = 0.707/2; 
Gvf=tf(wn^2,[1 2*wn*zeta wn^2]);   % low pass part of the velocity filter 
Gp=Gs*Gvf; 

  
Gc=0.0015; 
T1=feedback(Gc*Gp,1); 
[p1,z1]=pzmap(T1) 
SSspeed = dcgain(T1)*1000 

  
Gc=0.003; 
T2=feedback(Gc*Gp,1); 
[p2,z2]=pzmap(T2) 
SSspeed = dcgain(T2)*1000 

  
Gc = tf(0.0015*[1 2.7],[1 0]); 
T3=feedback(Gc*Gp,1); 
[p3,z3]=pzmap(T3) 
SSspeed = dcgain(T3)*1000 

  
input=data1(:,2); 
t1=data1(:,1);     
rpm1=data1(:,5);  %extract the first speed column of the data matrix 

  
t2=data2(:,1);     
rpm2=data2(:,5);  %extract the first speed column of the data matrix 

  
t3=data3(:,1);     
rpm3=data3(:,5);  %extract the first speed column of the data matrix 

      

  
figure(1)                       %Experimental for all three gains 
plot(t1,input,t1,rpm1,'b',t2,rpm2,'g',t3,rpm3,'r') 
legend('StepInput','kp=0.0015','kp=0.003','kp=0.0015,ki=0.0041') 
xlabel('Time (s)') 
ylabel('Speed Response (rpm)') 
title('Step Response of Speed Control with Three Sets of Gains') 

  
[vm1,tm1]=step(1000*T1); 
figure(2); plot(t1,rpm1,tm1,vm1) 
title('Step responses from actual system and model for kp=0.0015') 

  
[vm2,tm2]=step(1000*T2); 
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figure(3); plot(t2,rpm2,tm2,vm2) 
title('Step responses from actual system and model for kp=0.003') 

  
[vm3,tm3]=step(1000*T3); 
figure(4); plot(t3,rpm3,tm3,vm3) 
title('Step responses from actual system and model for PI control') 
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Laboratory  #9 
 

In previous labs you experimented with 

a proportional (P) controller for 

position control in the Motorlab.  We 

found that as we raised the gain of the 

P controller that we could obtain 

somewhat better control of the system, 

but that the improvement was limited.  

We could only raise the gain so much 

before the response became very 

oscillatory.  Furthermore the settling 

time could not be improved.  Now you 

are to compare the proportional 

controller to a proportional-derivative 

(PD) controller.  The PD controller 

adds a zero to the open-loop TF, 

changing the shape of the root locus.  

To obtain experimental data you 

should use the following three 

controllers.  

 

 

Three controllers for experimental 

data 

1. P controller, Amp/deg 001.0pK  

2. PD controller, rad/s 10  s/deg,Amp 00007.0  zKd   

3. PD controller,  rad/s 10  s/deg,Amp 001.0  zKd  

 

Obtaining Data From The Motorlab 
One problem with real systems (rather than mathematical models) is saturation.  When we use a derivative term in the 

controller, a step input will saturate the output of the controller in a real system.  Therefore, we often do not get a good match 

between experimental results and theoretical models for a step response when derivative control is used.  We will discuss this 

in the lab preparation.  DO NOT LET THIS DISCOURAGE YOU FROM USING DERIVATIVE CONTROL.  It can 

be very important in obtaining an optimal closed-loop system.  Remember that step inputs are usually used as test signals – 

not as the actual commands in the operation of real systems such as machine tools, aircraft, etc.  Because of this problem we 

will be using a triangle wave for the test command in this lab.  You should obtain the triangle wave response for the three 

different position control systems.  Use a triangle wave with amplitude of 2000 degrees and a wave frequency of 0.5 

Hz.  You should obtain three different plots. 

 

Using MATLAB 
Using the “Sisotool” you should play with the systems to get a feel for the responses as the gains change.  You should also 

use the Sisotool to get a feel for root locus.  We will do an introduction to the Sisotool in lab. 

Another related MATLAB function is “rlocus” – try it. 

 

• In the Sisotool, in the MATLAB workspace, or in the m-file, you should find the closed-loop poles and zeros of each of 

the three systems. 

• Outside of the Sisotool, you should also obtain a single step response plot with the response of all three systems. 

 

By hand, using the basic rules, you should draw two root locus plots. 

• One plot should be for the P controller. 

• The other should be for the PD controller with the zero at -10. 

• On the plots clearly indicate the closed loop poles for the three different systems. (i.e. Where on the root locus are you?)  

 

+
_

Controller

TF

Mechanical

Dynamics
Position

Command

)(sc )(sGc

)(sIc )(sI

Motor

Current

(Torque)

)(sGm
)(s

Angular

Position

Motor

Current

Command

Computer

Closed

Loop Current

Control System

)(sTi
)(sE

Position

Error

)()/(

controller PD ,)(

and

controller alproportion ,)(

)(

)(
)(

2

zsKKKsK

sKKsG

KsG

bsJs

kk

sI

s
sG

ddpd

dpc

pc

drt
m












problem) for this degreesin  (measuredposition angular 

zero controller of magnitude  /z

controller ofgain  derivative

controller ofgain  alproportion

)fast"" assumed (amplifier  1)(

conversionunit postion angular )(180

handout) labmotor  (fromconstant   uemotor torq

s/rad)mN 103 be  to(estimated coeficientfriction  viscous

handout) labmotor  (fromcollar  and inertiamotor 

5





















θ(t)

KK

K

K

sT

radk

k

b

J

dp

d

p

i

dr

t



ikT t 

b

J



i
1bk
+

_

R L

V
24 V Supply,

and Motor

Amp with

Current Control

ci

Micro-

controller

GUI



Laboratory 9 ME 570 Labs pg 2 

Things to Turn In 

• A plot with all three step responses from the models. 

• The triangle wave responses (use mlposplots or add code to the m-file). 

• The root locus plots (by hand). 

• Closed-loop poles and zeros for all three systems. 

• M-file with comments 

• Fill in the blanks (a copy due to instructor before you leave) 

 

Fill in the blanks. 

The step responses from the models obviously show that the  A  set of gains give the fastest 

response and the triangle wave response from the actual system tracks the best with this set of 

gains.  This can be seen in the  B   for the three systems.  The first system has a pair of complex 

poles, with a time constant for the envelope of  C  seconds, and  D  zeros.  The second system has 

a pair of complex poles with a time constant for the envelope of  E  seconds, and a zero at  F .  

The third system has  G  at -10 and a real pole with a time constant of  H  seconds, which should 

obviously give the fastest response. 

 

With only proportional control the time constant for the envelope of the resulting complex poles ? 

I .  We cannot  J  the settling time with proportional control.  By adding a  K  to the controller 

with PD control we can pull the poles into the left hand plane. 

 

We can see that the model for the first set of gains can be used to predict aspects of the triangle 

wave response.  The imaginary part of the poles is  L  rad/s, predicting an oscillation period of  M  

seconds, and we see this in the step response from the model. Also, the period of oscillation from 

the actual triangle wave response is  N  seconds (hint: use the two crossings of the response with 

the command). 

 

With a PD controller and the mechanical plant the system type is  O , predicting a  P  steady state 

error for a ramp input.  Using “mlposplots” for the two triangle wave responses with the PD 

controllers we see in figure 3 that the error settles to a steady state value after each change in 

direction.  This shows up as a  Q  portion in the error plot.  The steady state value for the error 

with the second set of gains is about  R  degrees, and for the third set of gains it is about  S  

degrees.  We will see in frequency response design that the “open-loop” gain for the third system 

is much higher, predicting better tracking. 

A.________________ 

B.________________ 

C.________________ 

D.________________ 

E.________________ 

F._________________ 

G._______-_________ 

H.________________ 

 

I.____ ______ ______ 

J._________________ 

K.________________ 

 

L.________________ 

M.________________ 

N.________________ 

 

 

 

O.________________ 

P._________________ 

Q.________________ 

R.________________ 

S.                                   

 

 

 

Starting m-file code  on the ME 570 website 
% lab9.m file 

 

kt = 0.05;  % N-m/A 

J=1.29e-5;   % kg-m^2 or N-m-s^2/rad 

b= 3e-5;    % N-m-s/rad 

kdr=180/pi; % deg/rad 

 

Gm=tf(kt*kdr,[J b 0]); 

 

% system with just proportional control 

kp = 0.001; Gc1 = kp; 

T1=feedback(Gc1*Gm,1); 

[th1,t1]=step(T1,1); 

 

kd=0.00007; kp=????; Gc2=tf(????); 

T2=feedback(????); 

[th2,t2]=step(T2,1); 

 

kd=0.001; kp=????; Gc3=tf(?????); 

T3=feedback(?????); 

[th3,t3]=step(T3,1); 

 

plot(t1,th1,t2,th2,t3,th3) 

 

% Related MATLAB tools: rlocus(G), sisotool 
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Example C function for PID control 
float simple_PID_controller(float error, float delta_time) 

{ 

  float output, Kp=1, Ki=2, Kd=3, max_output=100; 

  static float integral, last_error;                   // static vars for memory 

   

  integral = integral + Ki*error*delta_time;           // numerical integration 

  if (integral < -max_output) integral = -max_ouput;   // anti-integral windup 

  if (integral >  max_output) integral =  max_ouput;   // anti-integral windup 

 

  output = Kp*error + integral + Kd*(error-error_last)/delta_time;      //PID 

   

  error_last = error;                                  // remember for next call 

   

  return(output); 

}  
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Laboratory #10 
 In this lab you are to experimentally determine five data points 

for the frequency response of the motor-and-spring configuration of 

the Motorlab.  Then you are to estimate all parameters of the model 

except J  and drk .  We assume we know these two parameters 

accurately. 

 You are to use sine waves ("Run Wave Autosave ") for the input 

current on the Motorlab, since the input to the TF of interest is 

current.  You should use a magnitude of 0.25 Amp for sine wave 

frequencies near the natural frequency (~resonance).  This will 

hopefully prevent fatigue failures of the spring.  Be careful near the 

resonance.  It is easy to break the spring with the resonance.  For 

the other input frequencies you are given and input amplitude to use. 

 To begin the lab you should experiment to find the actual natural 

frequency.  You should find natural frequency by finding a frequency 

where the phase lag is very near 90 degrees.  If you find a phase lag 

between 80 and 100 degrees that is sufficient to estimate the natural 

frequency given that the phase transition is very sharp for this lightly 

damped system. But try to do your best.  Once you have found the 

natural frequency, then you should fill in the data table.  Note that the 

frequencies you use for data collection are dependent on the natural 

frequency you find.  You may round these other frequencies to the 

nearest Hz. 

  

Plotting The Responses to Input Sine Waves 
You should use the mlolplots(data,Iscale) function.  You may 

have to include the Iscale argument for the current to be visible 

on the same plot as the position. 

 

Some Related MATLAB Functions 
Helpful MATLAB functions: 

log10() – log base 10 

bode() – generates the bode (freq’ response) plot of a tf – note 

you can change the freq’ units to Hz by right clicking on the 

figure and choosing ‘properties’ 

[m,p,w]=bode() – generates the data for a freq’ response plot of 

a tf – note the mag (m) is a ratio not dB 

loglog() – plotting routine for a log-log scale 

semilogx() – plotting routine for a log scale on the x-axis 

 

Taking data for the table and searching for the natural frequency. 
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Use mlolplots() to plot the data.

Make three data cursors: one for a zero crossing of

the current command, and two the peak and valley of the

corresponding crossing of the output.  Right click on

one of the cursors and choose “Export Cursor Data to

Workspace.”  Then run, for example,
calc_mag_phase(cursors,26,2).  

Here the cursor data was saved to a variable named

cursors, the input frequency was 26 Hz, and the input 

amplitude was 2 Amp.  Also, in this example the phase

lag was about 180 degrees.
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The sample frequency should be chosen so it small enough that there is sufficient time for the response to settle in to 

steady state oscillations but large enough so that it is at least 10 times larger than the input sine wave frequency.  

The data should be taken from the steady state oscillations. 

 

 
 

 

 DATA TABLE 

Freq’ (Hz) nw  10/nw  nw*75.0  nw*25.1  nw*2  

Input Amplitude (Amp) 0.25 1 1 1 2 

Freq’ Value (Hz)      

Mag’ Ratio (deg/Amp)      

Mag’ Ratio (dB)      

Phase Shift (deg)      

 

 

Improve your theoretical model 
Use data from the table to find all the coefficients for the standard 2nd order form.  The magnitude ratio at one 

tenth of the natural frequency should give you the DC gain.  The damping ratio can be found by symbolically 

calculating the magnitude of the standard 2nd order form at the natural frequency and using then using the actual 

magnitude at the natural frequency from the data. 

Then you should equate the two forms of the model to determine the physical parameters ( bkk st ,, ) of the 

model. 

 

 

Things to Turn In 

• The Data Table and  new estimates for bkk st ,, . (a copy turned in to your instructor before you leave). 

• Five experimental plots (from mlolplots() like on the previous page ) of the input and output showing the data 

cursors used for the "calc_mag_phase()" function.  

• A final Bode plot showing the initial model, the improved model, and  the magnitude and phase data. 

• One set of hand-written calculations that duplicate the work done "calc_mag_phase()."  This should be for the 

natural frequency and use the data shown in the data cursors. 

• A hand development of the magnitude of the standard 2nd order form at the natural frequency. 

• Your completed lab 10 m-file. 
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% lab10.m file 

  
% initial model 

kt = 0.05;             % N-m/A 
kdr = ???;             % deg/rad 
J=???;                 % kg-m^2 or N-m-s^2/rad 
b=???;                 % N-m-s/rad 
ks = ???;              % N-m/rad 

  
G=tf(????);               % model from initial estimates 
figure(1); bode(G)        % generate initial estimate of bode plot 
[m,p,w] = bode(G);        % get magnitude, phase, and freq data 
m=squeeze(m);             % make m two dimensional 
m=20*log10(m);            % convert to dB 
p=squeeze(p); 

  
fdata=[????];     % Example - [2 16 21.15 26 42]   
wdata=fdata*2*pi; 
magdata=[?????];        % Example - [21.9 28.8 48.6 29.1 13.6]   
phdata=[?????];   % Example - [-5 -8 -90 -176 -187]    

  
figure(2); 
subplot(2,1,1); semilogx(w,m,wdata,magdata,'*') 
title('Bode Plot'); ylabel('magnitude (dB)'); xlabel('freq (rad/s)') 
subplot(2,1,2); semilogx(w,p,wdata,phdata,'*') 
ylabel('phase (deg)'); xlabel('freq (rad/s)') 

  
%%%%%%%%  system id - come up with improved model 
wn = ????*2*pi;    % natural freq from data (rad/s) 
Kdc = ????;         % dc gain from data 
Mwn = ????;          % magnitude ratio at wn from data 
zeta = Kdc/Mwn/2;   % calculate damping ratio using Mwn and Kdc 
Gnew = ????; 

  
[mnew,pnew,wnew] = bode(Gnew); % get magnitude, phase, and freq data 
mnew=squeeze(mnew); 
mnew=20*log10(mnew); 
pnew=squeeze(pnew); 

  
%plot two models and data together 
figure(3); 
subplot(2,1,1); 

????? 

  
ksnew = ???     % N-m/rad 
bnew = ???      % N-m-s/rad 
ktnew = ???     % N-m/A 
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% calc_mag_phase function file - should not need modification 
 
function calc_mag_phase(cursors,freq,inputmag) 

  

  ymin = 1e200; ymax = -1e200; crossing=0; 

  for i=1:3 

      xval = cursors(1,i).Position(1); 

      yval = cursors(1,i).Position(2); 

      if ((yval > -0.5)&&(yval < 0.5)) 

          tcrossing = xval; 

          crossing = i; 

      end 

      if (yval > ymax) 

          peak = i; 

          ymax = yval; 

          tpeak = xval; 

      end 

      if (yval < ymin) 

          valley = i; 

          ymin = yval; 

          tvalley = xval; 

      end 

  end 

  dtPeakValley = abs(tpeak-tvalley); 

  outfreq=1/2/dtPeakValley; 

  if ((crossing==0)||(valley==peak)) 

    display('Innacurate cursors or freq!') 

    return 

  end 

  if ((abs(outfreq-freq)/freq > 0.05)||(crossing==valley)||(crossing==peak)) 

      display('Innacurate cursors or freq!') 

      return 

  end 

   

  timelag=mean([tpeak tvalley])-tcrossing; 

  phaselag = 360*timelag*freq 

  magratio=(ymax-ymin)/2/inputmag 

  dB=20*log10(magratio) 

   

end 
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MATLAB

%{
AUTHOR: Derek Black
TOPIC: Noise Charac t e r i z a t i on
DESCRIPTION: Show that s enso r no i s e f requency i s p ropo r t i ona l to r o to r
speed
%}

%% Extract data
% Time data
time1 = no i s e1 ( : , 1 ) ;
time2 = no i s e2 ( : , 1 ) ;
time3 = no i s e3 ( : , 1 ) ;
time4 = no i s e4 ( : , 1 ) ;
time5 = no i s e5 ( : , 1 ) ;
time6 = no i s e6 ( : , 1 ) ;

% Speed data − Sca led
speed1 = no i s e1 ( : , 5 ) /mean( no i s e1 ( : , 5 ) ) ;
speed2 = no i s e2 ( : , 5 ) /mean( no i s e2 ( : , 5 ) ) ;
speed3 = no i s e3 ( : , 5 ) /mean( no i s e3 ( : , 5 ) ) ;
speed4 = no i s e4 ( : , 5 ) /mean( no i s e4 ( : , 5 ) ) ;
speed5 = no i s e5 ( : , 5 ) /mean( no i s e5 ( : , 5 ) ) ;
speed6 = no i s e6 ( : , 5 ) /mean( no i s e6 ( : , 5 ) ) ;

% Calcu la ted Frequency
f = [ 4 . 3 8 6 5 .55 8 .1967 10.8696 13 .51 1 8 . 5 1 8 5 ] ;
% Speed
s = [mean( no i s e1 ( : , 5 ) ) mean( no i s e2 ( : , 5 ) ) mean( no i s e3 ( : , 5 ) ) . . .

mean( no i s e4 ( : , 5 ) ) mean( no i s e5 ( : , 5 ) ) mean( no i s e6 ( : , 5 ) ) ] ;

% Fit data
x = [0 7 0 ] ;
b = inv ( s ∗ s ’ ) ∗ s ∗ f ’ ;
y = b∗x ;

%% Comparison f i g u r e
figure (1 )
subplot ( 2 , 1 , 1 )
plot ( time1 , speed1 , ’ k−− ’ )
hold on ;
plot ( time3 , speed3 , ’ k : ’ , ’ l i n ew id th ’ , 1 . 2 ) ;
hold on ;
plot ( time6 , speed6 , ’ k ’ ) ;
xl im ( [ 0 0 . 5 ] ) ;
yl im ( [ 0 . 9 1 . 1 4 ] ) ;
xlabel ( ’Time ( Sec ) ’ ) ;
ylabel ( ’ Normalized Speed ( rad/ s ) ’ ) ;
t i t l e ( ’ Sensor Noise Frequency ’ ) ;
legend ( ’ 12 rad/ s ’ , ’ 32 rad/ s ’ , ’ 63 rad/ s ’ ) ;
grid on ;

subplot ( 2 , 1 , 2 )
plot (x , y , ’ k−− ’ , s , f , ’ x ’ , ’ MarkerSize ’ , 5 . 3 ) ;
xlabel ( ’ Frequency (Hz) ’ ) ;
ylabel ( ’ Average Speed ( rad/ s ) ’ ) ;
legend ( ’ P r opo r t i ona l i t y ’ , ’Data ’ , ’ Locat ion ’ , ’ southeas t ’ ) ;
grid on ;

Figure D.1: Encoder Noise Experiment
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%{
AUTHOR: Derek Black
TOPIC: Back EMF est imate
%}

% Extract c o l l e c t e d speed data
speedAB = [mean( dataAB1 ( : , 5 ) ) mean( dataAB2 ( : , 5 ) ) mean( dataAB3 ( : , 5 ) ) . . .

mean( dataAB4 ( : , 5 ) ) mean( dataAB5 ( : , 5 ) ) ] ∗ 2 ∗ pi /60 ;
speedBC = [mean( dataBC1 ( : , 5 ) ) mean( dataBC2 ( : , 5 ) ) mean( dataBC3 ( : , 5 ) ) . . .

mean( dataBC4 ( : , 5 ) ) mean( dataBC5 ( : , 5 ) ) ] ∗ 2 ∗ pi /60 ;
speedAC = [mean(dataAC1 ( : , 5 ) ) mean(dataAC2 ( : , 5 ) ) mean(dataAC3 ( : , 5 ) ) . . .

mean(dataAC4 ( : , 5 ) ) mean(dataAC5 ( : , 5 ) ) ] ∗ 2 ∗ pi /60 ;

vab = [3/2 3 .44/2 4 .2/2 5 .32/2 6/2 ]/ sqrt ( 2 ) ;
vbc = [ 5 . 2 / 2 6 .44/2 7 .48/2 9 .48/2 10 . 1/2 ] / sqrt ( 2 ) ;
vac = [ 3 . 0 4/2 3 .6/2 4 .2/2 5 .4/2 6/2 ]/ sqrt ( 2 ) ;

% Calcu la t e back emf cons tant s
Kab = inv ( speedAB∗speedAB ’ ) ∗ speedAB∗vab ’ ;
Kbc = inv ( speedBC∗speedBC ’ ) ∗ speedBC∗vbc ’ ;
Kac = inv ( speedAC∗speedAC ’ ) ∗ speedAC∗vac ’ ;
Kavg = (Kab+Kbc+Kac ) /3 ;

speed = mean ( [ speedAB ; speedBC ; speedAC ] ) ;
v = mean ( [ vab ; vbc ; vac ] ) ;

x = [30 speed (5 )+3 ] ;
y = Kavg∗x ;

% Plot
figure (1 )
plot ( speed , v , ’ x ’ , ’ l i n ew id th ’ , 1 . 5 , ’ MarkerSize ’ , 5 . 5 ) ;
hold on ;
plot (x , y , ’ k−− ’ ) ;
grid on ;
set (gca , ’ g r i d l i n e s t y l e ’ , ’ : ’ ) ;
xlabel ( ’Motor Speed ( rad/ s ) ’ ) ; xl im ( [ 3 0 7 5 ] ) ;
ylabel ( ’Measured Voltage (V) ’ )
t i t l e ( ’Back EMF Constant Estimate ’ )
legend ( ’ Averaged Data ’ , ’Ke Estimate ’ , ’ Locat ion ’ , ’ Southeast ’ ) ;

Figure D.2: Back-EMF Plotter
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%{
AUTHOR: Derek Black
TOPIC: F r i c t i on Estimate
DESCRIPTION: Estimate the f r i c t i o n o f the NERMLAB in open−loop vo l tage mode
%}
%% Co l l e c t ed Data
vo l tage = [−5 −4 −3 −2 −1 −0.5 0 0 .5 1 2 3 4 5 ] ;
speed = [mean( sppedn5 ( : , 5 ) ) mean( sppedn4 ( : , 5 ) ) mean( sppedn3 ( : , 5 ) ) . . .

mean( sppedn2 ( : , 5 ) ) mean( sppedn1 ( : , 5 ) ) mean( sppedn0p5 ( : , 5 ) ) . . .
0 mean( spped0p5 ( : , 5 ) ) mean( spped1 ( : , 5 ) ) . . .
mean( spped2 ( : , 5 ) ) mean( spped3 ( : , 5 ) ) mean( spped4 ( : , 5 ) ) . . .
mean( spped5 ( : , 5 ) ) ]

%% Parameters
kt = 0 . 0 1 ; R = 3 . 8 ; Ke = 0 . 0 0 7 ;
b = 3e−4; J = 5 .8 e−5;

%% Estimate Fr i c t i on − Torque
torque = ( kt /R)∗ ( vo l tage−Ke∗ speed ) ;
e s t imate = [−50 5 0 ] ;
y = b∗ es t imate ;

%% Estimate Fr i c t i on − Voltage
Kdc = 12 .2 e−2; % V/( rad/s )
yv = Kdc∗ es t imate ;
bv = ( kt−(1/Kdc)∗Ke∗kt )/ ( (1/Kdc)∗R) ; % Convert Kdc to ( rad/s )/V

%% Decay
tau = J/b ;
w0 = 30 ; % rad/s
t0 = −1.7;
theoryTime = 0 : 0 . 0 1 : 3 . 5 ;
theoryRAD = w0∗exp(−theoryTime/ tau ) ;
dataTime = decay ( : , 1 ) − t0 ;
dataRAD = decay ( : , 5 ) ;

%% Plot − Torque vs Speed
figure ( 1 ) ;
subplot ( 2 , 1 , 1 ) ; plot ( speed , torque , ’ x ’ , ’ markers i ze ’ , 3 . 5 ) ;
hold on ; plot ( est imate , y , ’ k−− ’ ) ;
t i t l e ( ’ Torque vs Speed ’ ) ; ylabel ( ’ Torque (N\cdotm) ’ ) ;
legend ( ’Data ’ , ’ F r i c t i on Estimate ’ , ’ Locat ion ’ , ’ southeas t ’ ) ;
grid on ; set (gca , ’ Gr idLineSty le ’ , ’ : ’ ) ;

%% Plot − Voltage vs Speed
subplot ( 2 , 1 , 2 ) ; plot ( speed , vo l tage , ’mx ’ , ’ markers i ze ’ , 3 . 5 ) ;
hold on ; plot ( est imate , yv , ’ k−− ’ ) ;
t i t l e ( ’ Voltage vs Speed ’ ) ; xlabel ( ’ Speed ( rad/ s ) ’ ) ; ylabel ( ’ Voltage (V) ’ ) ;
legend ( ’Data ’ , ’ F r i c t i on Estimate ’ , ’ Locat ion ’ , ’ southeas t ’ ) ;
yl im ([−5 5 ] ) ; grid on ; set (gca , ’ Gr idLineSty le ’ , ’ : ’ ) ;

%% Plot − Decay
figure ( 2 ) ; plot ( dataTime , dataRAD , ’ k ’ , ’ l i n ew id th ’ , 1 . 5 ) ;
hold on ; plot ( theoryTime , theoryRAD , ’k−− ’ ) ;
t i t l e ( ’ Theo r e t i c a l /Experimental Response to I n i t i a l Condit ion ’ ) ;
xl im ([−0.15 1 ] ) ; xlabel ( ’Time ( s ) ’ ) ; ylabel ( ’ Speed ( rad/ s ) ’ ) ;
legend ( ’Data ’ , ’ Theo r e t i c a l ’ ) ; grid on ; set (gca , ’ Gr idLineSty le ’ , ’ : ’ ) ;

Figure D.3: Friction Laboratory
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%{
AUTHOR: Derek Black
DESCRIPTION: Plot root−l o cu s o f the open loop system for a po s i t i o n
c o n t r o l l e r .
%}

%% Constants
kt = 0 . 0 3 4 ; Ke = 0 . 0 4 ; R = 5 ;
J = 9 .5 e−05; b= 4e−4;

%% Models f o r th ree sepera t e ga ins
Gm=t f ( kt , [R∗J (R∗b+Ke∗kt ) 0 ] ) ;
kp=25; Gol=kp∗Gm; T1=feedback (Gol , 1 ) ;
[ th1 , t1 ]= step (T1 ) ; [ p1 , z1 ]=pzmap(T1 ) ;

kp= 2 . 5 ; Gol=kp∗Gm; T2=feedback (Gol , 1 ) ;
[ th2 , t2 ]= step (T2 ) ; [ p2 , z2 ]=pzmap(T2 ) ;

kp=0.9 ; Gol=kp∗Gm;
T3=feedback (Gol , 1 ) ;
[ th3 , t3 ]= step (T3 ) ; [ p3 , z3 ]=pzmap(T3 ) ;

[ p , z ] = pzmap(Gm) ;
[ r , k ] = r l o cu s (Gm) ;

r ea lPa r t = [ real (p ( 1 ) ) real (p ( 2 ) ) real ( p1 ( 1 ) ) real ( p1 ( 2 ) ) . . .
real ( p2 ( 1 ) ) real ( p2 ( 2 ) ) real ( p3 ( 1 ) ) real ( p3 ( 2 ) ) ] ;

imagPart = [ imag(p ( 1 ) ) imag(p ( 2 ) ) imag( p1 ( 1 ) ) imag( p1 ( 2 ) ) . . .
imag( p2 ( 1 ) ) imag( p2 ( 2 ) ) imag( p3 ( 1 ) ) imag( p3 ( 2 ) ) ] ;

xax i s = [−8 1 ] ; xax i sy = [0 0 ] ;
yax i s = [−50 5 0 ] ; yax i sx = [0 0 ] ;
names = [ ’Open−Loop Poles ’ , ’Kp = 0 .9 ’ , ’Kp = 2 .5 ’ , ’Kp = 25 ’ ] ; h = [ ] ;
figure ( 1 ) ;
l i n e S t y l e s = d i s t i n g u i s h a b l e c o l o r s (50 , ’w ’ ) ;
yl im ([−50 50 ] )
xlim ([−8 1 ] )
for i = 3 : 2 : ( length ( r ea lPa r t ) )

l i n e s t y l e = l i n e S t y l e s ( i +38 , : ) ;
hold on
h( i ) = [ plot ( r ea lPa r t ( i ) , imagPart ( i ) , ’ x ’ , ’ Color ’ , l i n e s t y l e , ’ markers ’ , 9 ) ] ;
hold on
plot ( r ea lPa r t ( i +1) , imagPart ( i +1) , ’ x ’ , ’ Color ’ , l i n e s t y l e , ’ markers ’ , 9 ) ;

end
hold on ; h (1 ) = [ plot ( r ea lPa r t ( 1 ) , imagPart ( 1 ) , ’ x ’ , ’ Color ’ , ’ red ’ , ’ markers ’ , 9 ) ] ;
hold on ; plot ( r ea lPa r t ( 2 ) , imagPart ( 2 ) , ’ x ’ , ’ Color ’ , ’ red ’ , ’ markers ’ , 9 ) ;
hold on
plot ( xaxis , xaxisy , ’ k : ’ , yaxisx , yaxis , ’ k : ’ , ’ l i n ew id th ’ , 0 . 5 ) ;
hold on ;
plot ( real ( r ) , imag( r ) , ’ Color ’ , l i n e S t y l e s ( 2 4 , : ) , ’ l i n ew id th ’ , 1 ) ;
legend ( [ h (1 ) h (3 ) h (5 ) h ( 7 ) ] , { ’Open−Loop Poles ’ , ’Kp = 25 ’ , . . .

’Kp = 2 .5 ’ , ’Kp = 0 .9 ’ } , ’ Locat ion ’ , ’ southwest ’ ) ;
hold on ;
t i t l e ( ’ Root Locus ’ ) ; xlabel ( ’ Real Axis ( seconds ˆ{−1}) ’ ) ;
ylabel ( ’ Imaginary Axis ( seconds ˆ{−1}) ’ ) ;
set (gca , ’ y t i c k ’ ,[−50 −40 −30 −20 −10 0 10 20 30 40 5 0 ] ) ;
grid on ; set (gca , ’ g r i d l i n e s t y l e ’ , ’ : ’ ) ; box on ;

Figure D.4: Root Locus Plotter
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%{
AUTHOR: Derek Black
TOPIC: System Cha r a c t e r i s t i c s o f Po s i t i on Control System
DESCRIPTION: In c r ea s e Kp to observe the behavor o f the system .
%}
%% Constants
Ke = 0 . 0 0 7 ; kt = 0 . 0 1 ; R = 3 . 8 ;
J = 5 .8 e−5; b = 3e−4;

%% Models f o r th ree sepera t e ga ins
Gm=t f ( kt , [R∗J (R∗b+Ke∗kt ) 0 ] ) ;
kp = 25 ; Gol=kp∗Gm; T1=feedback (Gol , 1 ) ;
[ th1 , t1 ]= step (T1 ) ; [ p1 , z1 ]=pzmap(T1 ) ;

kp = 2 . 5 ; Gol=kp∗Gm; T2=feedback (Gol , 1 ) ;
[ th2 , t2 ]= step (T2 ) ; [ p2 , z2 ]=pzmap(T2 ) ;

kp = 0 . 9 ; Gol=kp∗Gm;
T3=feedback (Gol , 1 ) ;
[ th3 , t3 ]= step (T3 ) ; [ p3 , z3 ]=pzmap(T3 ) ;

tau = 0 . 3 6 5 ; Ge=t f (1/ tau , [ 1 1/ tau ] ) ; [ the , te ] = step (Ge ) ; % Theory
Ge= −t f (1/ tau , [ 1 1/ tau ] ) ; [ invthe , i nv t e ] = step (Ge+2); % Inv Theory
tau = 0 . 3 6 5 ; Ge=t f (1/ tau , [ 1 1/ tau ] ) ; [ thee , t e e ] = step (Ge ) ; % Experiment
Ge= −t f (1/ tau , [ 1 1/ tau ] ) ; [ invthee , i nv t e e ] = step (Ge+2); % Inv Exp .
%% Extrac t Data
dt1 = data1 ( : , 1 ) ; dth1 = data1 ( : , 3 ) ; dth1 = dth1 /0 . 2 7 ;
dt2 = data2 ( : , 1 ) ; dth2 = data2 ( : , 3 ) ; dth2 = dth2 /3 . 2 2 ;
dt3 = data3 ( : , 1 ) ; dth3 = data3 ( : , 3 ) ; dth3 = dth3 /8 . 6 65 ;

%% Plot f i g u r e s
l i n e S t y l e s = d i s t i n g u i s h a b l e c o l o r s ( 2 0 ) ;
figure ( 1 ) ;
plot ( t1 , th1 , ’ k ’ ) ;
hold on ; plot ( t2 , th2 , ’ k−. ’ , ’ l i n ew id th ’ , 2 ) ;
hold on ; plot ( t3 , th3 , ’ k ’ , ’ l i n ew id th ’ , 2 ) ;
hold on ; plot ( te , the , ’ k : ’ , invte , invthe , ’ k : ’ ) ;
legend ( ’Kp=25 ’ , ’Kp=2.5 ’ , ’Kp=0.9 ’ , ’ Evelope ’ ) ;
xlabel ( ’Time ( sec ) ’ ) ; ylabel ( ’ \ theta ( normal ized ) ’ ) ;
t i t l e ( ’ Theo r e t i c a l Step Responses ’ ) ; xl im ( [ 0 1 . 3 ] ) ;

figure ( 2 ) ;
plot ( dt1 , dth1 , ’ k ’ ) ;
hold on ; plot ( dt2 , dth2 , ’ k−. ’ , ’ l i n ew id th ’ , 2 ) ;
hold on ; plot ( dt3 , dth3 , ’ k ’ , ’ l i n ew id th ’ , 2 ) ;
hold on ; plot ( tee , thee , ’ k : ’ , invtee , invthee , ’ k : ’ ) ;
legend ( ’Kp=25 ’ , ’Kp=2.5 ’ , ’Kp=0.9 ’ , ’ Envelope ’ ) ; xlabel ( ’Time ( sec ) ’ ) ;
ylabel ( ’ \ theta ( normal ized ) ’ ) ;
t i t l e ( ’ Experimental Step Responses ’ ) ;
xl im ( [ 0 1 . 3 ] ) ; yl im ( [ 0 2 ] ) ;

figure ( 3 ) ; plot ( dt2 , dth2 , ’ k ’ , t2 , th2 , ’ k−− ’ , ’ l i n ew id th ’ , 0 . 8 ) ;
legend ( ’ Experimental ’ , ’Model ’ ) ; xlabel ( ’Time ( sec ) ’ ) ; ylabel ( ’ \ theta ( normal ized ) ’ ) ;
t i t l e ( ’ Experimental vs Theo r e t i c a l Step Response (Kp=2.5) ’ ) ;
xl im ( [ 0 1 . 3 ] ) ; grid on ; set (gca , ’ g r i d l i n e s t y l e ’ , ’ : ’ ) ;

figure ( 4 ) ; plot ( dt1 , dth1 , ’ k ’ , t1 , th1 , ’ k−− ’ , ’ l i n ew id th ’ , 0 . 8 ) ;
legend ( ’ Experimental ’ , ’Model ’ ) ; xlabel ( ’ time ( sec ) ’ ) ; ylabel ( ’ \ theta ( normal ized ) ’ ) ;
t i t l e ( ’ Experimental vs Theo r e t i c a l Step Response (Kp=25) ’ ) ;
xl im ( [ 0 1 . 3 ] ) ; grid on ; set (gca , ’ g r i d l i n e s t y l e ’ , ’ : ’ ) ;

Figure D.5: Frequency of Oscillation Position Control Code
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%{
AUTHOR: Derek Black
TOPIC: Frequency Response o f a Pos i t i on Cont r o l l e r on NERMLAB
DESCRIPTION: Charac te r i z e the NERMLAB system by gene ra t ing a f requency
response .
%}

%% Constants
Ke = 0 . 0 0 7 ; kt = 0 . 0 1 ; R = 3 . 8 ;
J = 5 .8 e−5; b = 3e−4; Kp = 20 ;

Gm=t f ( kt , [R∗J (R∗b+Ke∗kt ) 0 ] ) ; T = feedback (Kp∗Gm, 1 ) ;
figure ( 1 ) ; bode (T)
[m, p ,w] = bode (T) ;
m=squeeze (m) ; m=20∗log10 (m) ; p=squeeze (p ) ;

f exp1 = [ 0 . 4 2 3 .43 4 .4 5 .73 9 . 0 ]∗2∗ pi ; f exp2 = [ 0 . 4 4 3 .45 4 .6 5 .75 9 . 2 ]∗2∗ pi ;
f exp3 = [ 0 . 4 8 3 .47 4 .8 5 .78 9 . 4 ]∗2∗ pi ; f exp4 = [ 0 . 4 4 3 .45 4 .6 5 .75 9 . 2 ]∗2∗ pi ;
m exp1 = [−0.74 3 .7 6 .5 4 −5 .3 ] ; m exp2 = [−0.56 3 .8 7 .88 2 .32 −6 .5 ] ;
m exp3 = [−0.69 3 .8 11 .2 4 .5 −7]; m exp4 = [−0.65 3 .7 10 5 .1 −4.96 ] ;
p exp1 = [ 3 . 3 −18.5 −66.3 −141.1 −171 .8 ] ; p exp2 = [ 3 . 3 −31.2 −80.6 −142.4 −176 .6 ] ;
p exp3 = [ 3 . 4 −32 −99.4 −141.1 −176 .6 ] ; p exp4 = [0 −28.6 −90 −141.5 −170 .68 ] ;
f avg = [ ] ; m avg = [ ] ; p avg = [ ] ;

for i =1: length ( f exp1 )
f avg ( i ) = [mean ( [ f exp1 ( i ) f exp2 ( i ) f exp3 ( i ) f exp4 ( i ) ] ) ] ;
m avg ( i ) = [mean ( [ m exp1 ( i ) m exp2 ( i ) m exp3 ( i ) m exp4 ( i ) ] ) ] ;
p avg ( i ) = [mean ( [ p exp1 ( i ) p exp2 ( i ) p exp3 ( i ) p exp4 ( i ) ] ) ] ;

end

%%%%%%%% system id − come up with improved model
wn = 4.6∗2∗ pi ; % natura l f r e q from data ( rad/s )
Kdc = db2mag(m avg ( 1 ) ) ; % dc gain from data
Mwn = db2mag(m avg ( 3 ) ) ; % magnitude r a t i o at wn from data
zeta = Kdc/Mwn/2 ; % ca l c u l a t e damping r a t i o us ing Mwn and Kdc
Gnew = t f (Kdc∗wnˆ2 , [ 1 2∗ ze ta ∗wn wnˆ 2 ] ) ;

[mnew, pnew ,wnew ] = bode (Gnew ) ; % ge t magnitude , phase , and f r e q data
mnew=squeeze (mnew) ; mnew=20∗log10 (mnew) ; pnew=squeeze (pnew ) ;

l i s t = get (gca , ’ c o l o r o r d e r ’ ) ;
figure ( 1 ) ;
set ( gcf , ’ DefaultAxesColorOrder ’ , ’ remove ’ ) ;
subplot ( 2 , 1 , 1 ) ;
semilogx (w,m, ’−− ’ , ’ l i n ew id th ’ , 2 ) ; hold on ;
semilogx (wnew ,mnew, ’ l i n ew id th ’ , 2 ) ; hold on ;
semilogx ( f exp1 , m exp1 , ’ x ’ , ’ markers ’ , 9 ) ; hold on ;
semilogx ( f exp2 , m exp2 , ’ ∗ ’ , ’ markers ’ , 9 ) ; hold on ;
semilogx ( f exp3 , m exp3 , ’ o ’ , ’ markers ’ , 9 ) ; hold on ;
semilogx ( f exp4 , m exp4 , ’+ ’ , ’ markers ’ , 9 ) ; hold on ;
semilogx ( f avg , m avg , ’ s ’ , ’ markers ’ , 9 ) ; hold on ;
ylabel ( ’ magnitude (dB) ’ ) ; grid on ; t i t l e ( ’Bode Plot ’ ) ;
legend ( ’Model ’ , ’ Improved Model ’ , ’ Experiment 1 ’ , ’ Experiment 2 ’ , ’ Experiment 3 ’ , ’ Experiment 4 ’ , . . .

’ Average ’ , ’ Averaged Model ’ ) ;

subplot ( 2 , 1 , 2 ) ;
semilogx (w, p , ’−− ’ , ’ l i n ew id th ’ ,1 , ’ Color ’ , l i s t ( 1 , : ) , ’ l i n ew id th ’ , 2 ) ; hold on ;
semilogx (wnew , pnew , ’ Color ’ , l i s t ( 2 , : ) , ’ l i n ew id th ’ , 2 ) ; hold on ;
semilogx ( f exp1 , p exp1 , ’ x ’ , ’ Color ’ , l i s t ( 3 , : ) , ’ markers ’ , 9 ) ; hold on ;
semilogx ( f exp2 , p exp2 , ’ ∗ ’ , ’ Color ’ , l i s t ( 4 , : ) , ’ markers ’ , 9 ) ; hold on ;
semilogx ( f exp3 , p exp3 , ’ o ’ , ’ Color ’ , l i s t ( 5 , : ) , ’ markers ’ , 9 ) ; hold on ;
semilogx ( f exp4 , p exp4 , ’+ ’ , ’ Color ’ , l i s t ( 6 , : ) , ’ markers ’ , 9 ) ; hold on ;
semilogx ( f avg , p avg , ’ s ’ , ’ Color ’ , l i s t ( 7 , : ) , ’ markers ’ , 9 ) ;
ylabel ( ’ phase ( deg ) ’ ) ; xlabel ( ’ f r e q ( rad/ s ) ’ ) ; grid on ;

Figure D.6: Frequency Response of a Position Control System Code
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%{
AUTHOR: Derek Black
TOPIC: Steady State Error
%}

Ke = 0 . 0 0 7 ; kt = 0 . 0 1 ; R = 3 . 8 ; % E l e c t r i c a l
J = 5 .8 e−5; b = 3e−4; % Mechanical
G = t f ( kt , [R∗J (R∗b+Ke∗kt ) ] ) ;
wn=300; ze ta = 0 . 707/2 ; Gvf=t f (wnˆ2 , [ 1 2∗wn∗ ze ta wnˆ 2 ] ) ;
Gp=G∗Gvf ;

s t epS i z e = 50 ; s t epS i z eF i na l = 2 . 6 ;
Gc = [ 0 . 1 0 .15 3 ] ; Ki = 1 ;

T1=feedback (Gc(1)∗Gp, 1 ) ; [ p1 , z1 ]=pzmap(T1)
SSspeed = dcgain (T1)∗ s t epS i z e ; [ vm1 , tm1]= step ( s t epS i z e ∗T1 ) ;

T2=feedback (Gc(2)∗Gp, 1 ) ; [ p2 , z2 ]=pzmap(T2 ) ;
SSspeed = dcgain (T2)∗ s t epS i z e ; [ vm2 , tm2]= step ( s t epS i z e ∗T2 ) ;

T4=feedback (Gc(3)∗Gp, 1 ) ; [ p4 , z4 ]=pzmap(T4 ) ;
SSspeed = dcgain (T4)∗ s t epS i z eF i na l ; [ vm4 , tm4]= step ( s t epS i z eF i na l ∗T4 ) ;

Gc = t f (Gc ( 1 )∗ [ 1 Ki/Gc ( 1 ) ] , [ 1 0 ] ) ;
T3=feedback (Gc∗Gp, 1 ) ; [ p3 , z3 ]=pzmap(T3 ) ;
SSspeed = dcgain (T3)∗ s t epS i z e ; [ vm3 , tm3]= step ( s t epS i z e ∗T3 ) ;

% Extract Data
t1 = data1 ( : , 1 ) ; t2 = data2 ( : , 1 ) ; t3 = data3 ( : , 1 ) ; t4 = data6 ( : , 1 ) ;
s1 = data1 ( : , 5 ) ; s2 = data2 ( : , 5 ) ; s3 = data3 ( : , 5 ) ; s4 = data6 ( : , 5 ) ;
input1 = data1 ( : , 2 ) ; input2 = data6 ( : , 2 ) ;

figure ( 1 ) ; plot ( t1 , input1 , t1 , s1 , ’ k : ’ , t2 , s2 , ’ k−− ’ , t3 , s3 , ’ k ’ )
t i t l e ( ’ Experimental Step Responses ’ )
legend ( ’ Step Input ’ , ’Kp = 0 .1 ’ , ’Kp = 0.15 ’ , ’ PI ’ , ’ l o c a t i o n ’ , ’ s outheas t ’ ) ;
xlabel ( ’Time ( sec ) ’ ) ; ylabel ( ’ Amplitude ( rad/ s ) ’ ) ; xl im ( [ 0 0 . 8 ] ) ;

figure ( 2 ) ; plot ( t1 , s1 , ’ k ’ , tm1 , vm1 , ’k−− ’ )
t i t l e ( ’ Actual System and Model f o r Kp = 0 .1 ’ )
legend ( ’ Actual ’ , ’Model ’ , ’ l o c a t i o n ’ , ’ s outheas t ’ )
xlabel ( ’Time ( s ) ’ ) ; xl im ( [ 0 0 . 6 ] ) ; ylabel ( ’ Ve loc i ty (RPM) ’ ) ;

figure ( 3 ) ; plot ( t2 , s2 , ’ k ’ , tm2 , vm2 , ’k−− ’ )
t i t l e ( ’ Actual System and Model f o r Kp = 0.15 ’ )
legend ( ’ Actual ’ , ’Model ’ , ’ l o c a t i o n ’ , ’ s outheas t ’ )
xlabel ( ’Time ( s ) ’ ) ; ylabel ( ’ Ve loc i ty (RPM) ’ ) ; xl im ( [ 0 0 . 5 ] ) ;

figure ( 4 ) ; plot ( t3 , s3 , ’ k ’ , tm3 , vm3 , ’k−− ’ )
t i t l e ( ’ Actual System and Model f o r PI c on t r o l ’ )
legend ( ’ Actual ’ , ’Model ’ , ’ l o c a t i o n ’ , ’ s outheas t ’ )
xlabel ( ’Time ( s ) ’ ) ; xl im ( [ 0 0 . 8 ] ) ; ylabel ( ’ Ve loc i ty (RPM) ’ ) ;

figure ( 5 ) ; plot ( t4 , input2 , t4 , s4 , ’ k ’ , tm4 , vm4 , ’k−− ’ ) ;
t i t l e ( ’ Actual System and Model f o r Kp = 3 ’ )
legend ( ’ Step Input ’ , ’ Actual ’ , ’Model ’ , ’ l o c a t i o n ’ , ’ s outheas t ’ )
xlabel ( ’Time ( s ) ’ ) ; ylabel ( ’ Ve loc i ty (RPM) ’ ) ; xl im ( [ 0 0 . 1 7 ] ) ;

Figure D.7: Steady State Error Code
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MATLAB

%{
AUTHOR: Derek Black
TOPIC: Proport iona l−Der iva t i ve Control
%}

%% Constants
Ke = 0 . 0 0 7 ; kt = 0 . 0 1 ; R = 3 . 8 ;
J = 5 .8 e−5; b = 3e−4; z = 25 ;

%% Model
Gm=t f ( kt , [R∗J (R∗b+Ke∗kt ) 0 ] ) ;

kp = 7 ; Gc1 = kp ;
T1=feedback (Gc1∗Gm, 1 ) ;
[ th1 , t1 ]= step (T1 , 1 ) ;
[ p1 , z1 ] = pzmap(T1)

kd = 0 . 2 ; kp = 3
Gc2=t f ( [ kd kp ] , 1 ) ;
T2=feedback (Gc2∗Gm, 1 ) ;
[ th2 , t2 ]= step (T2 , 1 ) ;
[ p2 , z2 ] = pzmap(T2)

kd = 0 . 6 ; kp = 9 ;
Gc3=t f ( [ kd kp ] , 1 ) ;
T3=feedback (Gc3∗Gm, 1 ) ;
[ th3 , t3 ]= step (T3 , 1 ) ;
[ p3 , z3 ] = pzmap(T3)

figure ( 1 ) ; plot ( t1 , th1 , ’ k ’ , t2 , th2 , ’ k−− ’ , t3 , th3 , ’ k : ’ )
t i t l e ( ’ Step Response o f the Three Models ’ )
xlabel ( ’Time ( sec ) ’ ) , ylabel ( ’ Amplitude ( rad ) ’ )
legend ( ’Kp = 7 ’ , ’Kd = 0 . 2 , z = 15 ’ , ’Kd = 0 . 8 , z=15 ’ )

% Extract data
t1 = data1 ( : , 1 ) ; t2 = data4 ( : , 1 ) ; t3 = data3 ( : , 1 ) ;
y1 = data1 ( : , 3 ) ; y2 = data4 ( : , 3 ) ; y3 = data3 ( : , 3 ) ;
i 1 = data1 ( : , 2 ) ; i 2 = data4 ( : , 2 ) ; i 3 = data3 ( : , 2 ) ;

figure ( 2 ) ; plot ( t1 , i1 , ’ k−− ’ , t1 , y1 , ’ k ’ ) ;
xlabel ( ’Time ( sec ) ’ ) ; ylabel ( ’ Amplitude ( rad ) ’ ) ; t i t l e ( ’Kp = 7 ’ ) ;
legend ( ’ Input ’ , ’ Actual ’ ) ; xl im ( [ 0 3 . 2 ] ) ; yl im ([−3.2 3 . 2 ] ) ;

figure ( 3 ) ; plot ( t2 , i2 , ’ k−− ’ , t2 , y2 , ’ k ’ ) ;
xlabel ( ’Time ( sec ) ’ ) ; ylabel ( ’ Amplitude ( rad ) ’ ) ; t i t l e ( ’Kp = 3 Kd = 0.2 ’ ) ;
legend ( ’ Input ’ , ’ Actual ’ ) ; xl im ( [ 0 3 . 2 ] ) ; yl im ([−3.2 3 . 2 ] ) ;

figure ( 4 ) ; plot ( t3 , i3 , ’ k−− ’ , t3 , y3 , ’ k ’ ) ;
xlabel ( ’Time ( sec ) ’ ) ; ylabel ( ’ Amplitude ( rad ) ’ ) ; t i t l e ( ’Kp = 9 Kd = 0.8 ’ ) ;
legend ( ’ Input ’ , ’ Actual ’ ) ; xl im ( [ 0 3 . 2 ] ) ; yl im ([−3.2 3 . 2 ] ) ;

Figure D.8: Proportional-Derivative Experiment Code
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Appendix E

System Specifications

Table E.1: NERMLAB Parameters

Parameter Description Value Units

J
Lumped Inertia
(3Jw + Jr + 4Jb)

5.8× 10−5 kg ·m2

Jw Washer Inertia 1.7× 10−5 kg ·m2

Jr Rotor Inertia 4.5× 10−6 kg ·m2

b Viscous Friction 3.0× 10−4 N ·m·s
rad

kt
Motor Torque

Constant
0.01 N ·m

A

L
Motor

Inductance
7.58× 10−4 H

R
Motor Phase
Resistance

3.8 Ω

KE
Back-EMF
Constant

0.007 V ·s
rad
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Table E.2: Motorlab Parameters

Parameter Description Value Units

Inertia
Single Shaft

Collar
15 g · cm2

Inertia
Double Shaft

Collar
19 g · cm2

Inertia Rotor 110 g · cm2

b Viscous Friction 3× 10−5 N ·m·s
rad

kT
Motor Torque

Constant
5 N ·cm

A

L
Motor

Inductance
4.4 mH

R
Motor Phase
Resistance

1.18 Ω

Ke
Back-EMF
Constant

5.2 V
krpm
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Appendix F

Experiment Documentation

Table F.1: Viscous Friction Full Experimental Results

Voltage (V) Speed (rad/s)

-5 -45.0
-4 -35.0
-3 -25.2
-2 -15.5
-1 -5.8

-0.5 0
0 0

0.5 0
1 5.5
2 14.5
3 23.2
4 31.7
5 40.0
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(a) 200 RPM (b) 300 RPM

(c) 400 RPM (d) 500 RPM

(e) 600 RPM (f) 850 RPM

Figure F.1: Back emf at various motor speeds
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Appendix G

Additional Models

Appendix G hosts additional models that were not used in the making of this thesis. They

serve as models for either future experiments, or for readers wishing to conduct additional

experiments.

G.1 Pendulum Model

The pendulum model is a mathematical formulation for NERMLAB that is used to help

find the resonant frequency. It should be noted that the dynamic equations for this setup

are non-linear in nature, and as a result, the small angle approximation (sin(θ) ≈ θ) must

be used in order to transform the time dependent system into the frequency domain. The

small angle approximation is only valid for angles that are smaller than 0.244 radians, as the

relative error between sin(θ) and θ exceeds 1 percent at this value. This will be taken into

account when running experiments on the NERMLAB system.

147



x

y

θ

l cos θ
l sin θ

mg
θ

Jθ̈

bθ̇

Tinput

Figure G.1: NERMLAB Pendulum Model

The best way to start the derivation is to find the describing differential equations for

both the mechanical and electrical system. In the case of the pendulum setup, the electrical

dynamics are simply the torque the motor provides the pendulum with, which was found in

section 4.2, equation 4.6.

Jθ̈(t) = −mglθ(t)− bθ̇(t) + Tinput (G.1)

Substituting the electrical motor torque (eq. 4.6), into equation G.1.

Jθ̈(t) = −mglθ(t)− bθ̇(t) +
kT
R

(V (t)−Keθ̇(t)) (G.2)

Jθ̈(t) +mglθ(t) + bθ̇(t) +
kTKe

R
θ̇(t) =

kT
R
V (t)

Taking the Laplace transform of the above equation yields:

(Js2 +mgl + bs+
kTKe

R
s)θ(s) =

kT
R
V (s)
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JRs2 +mglR + bRs+ kTKes

R
θ(s) =

kT
R
V (s)

θ(s)

V (s)
=

kT
JRs2 + (bR + kTKe)s+mglR

(G.3)

Putting equation G.3 into a standard second order form yields:

θ(s)

V (s)
=

kT
JR

s2 + ( b
J

+ kTKe

JR
)s+ mgl

J

(G.4)

To further simplify the model, lumped coefficients for friction and the trailing term of

equation G.4 will be made since they are comprised of statically defined variables.

bl =
b

J
+
kTKe

JR
(G.5)

ωp =
mgl

J
(G.6)

kT,l =
kT
JR

(G.7)

θ(s)

V (s)
=

kT,l
s2 + bls+ ωp

(G.8)

It should be noted that J is the pendulum’s inertia and not the rotors in equation G.8;

likewise, l is the distance to the center of mass of the pendulum.

G.2 State Space Models

Section G.2 will develop state space models for the open loop position and speed models.

Additionally, the closed loop state space models for the position and speed control will be
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developed as well. Here, u will represent the input to the system, and in the case of the

NERMLAB, is voltage V (t). State space models can be written compactly with formulas

G.9, where q̇ and y are the state equation and output equation, respectively. In all cases in

this thesis, D is assumed to be zero.


q̇ = Aq + Bu

y = Cq +Du

(G.9)

G.2.1 Position Models

Open Loop

To start the derivation of the state space models for open loop position, it is easiest to start

with the time domain differential equation, Equation G.10, which was described in Chapter

4.

Jθ̈(t) + (
ktKE

R
+ b)θ̇(t) =

kt
R
V (t) (G.10)

From here it is possible to define the states of the differential equation (Equation G.10):


q1 = θ

q2 = q̇1 = θ̇

q3 = q̇2 = θ̈

(G.11)

Rearranging Equation G.10, substituting in States G.11 and solving for q3:

q3 = q̇2 = θ̈ = −(
ktKE

RJ
+
b

J
)q2 +

kt
RJ

u (G.12)

It is now possible to rewrite the starting differential equation as two first order equations:
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
q̇1 = q2 = θ̇

q̇2 = q3 = θ̈ = −(ktKE

RJ
+ b

J
)q2 + kt

RJ
u

(G.13)

Using the equation forms G.9, it is possible to write the following state space represen-

tation of an open loop position system.



A =

0 1

0 −ktKE

RJ
− b

J



B =

 0

kt
RJ



C =

[
1 0

]

D = 0

(G.14)

Closed Loop

For the closed loop position control model, the only variable that changes is A, which in the

closed loop system becomes Acl by the relationship:

Acl = A−BK (G.15)

Here A and B are still defined as they were in Equations G.14. K is the gain matrix:

K =

[
K1 K2

]
(G.16)

Therefore, with Equation G.15, it is possible to define the closed loop position control
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state space representation as:



Acl =

 0 1

−K1kt
RJ

−(ktKE

RJ
+ b

J
+ K2kt

RJ
)



B =

 0

kt
RJ



C =

[
1 0

]

D = 0

(G.17)

A unique results appears when setting K =

[
1 0

]
, which causes the system to have

unity feedback.



Acl =

 0 1

−K1kt
RJ

−(ktKE

RJ
+ b

J
)



B =

 0

kt
RJ



C =

[
1 0

]

D = 0

(G.18)
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G.2.2 Speed Models

Open Loop

The derivation for the open loop speed model is nearly identical to the one developed in the

previous section. Only the describing differential equation changes, which results in equation

G.19.

Jω̇(t) + (
ktKE

R
+ b)ω(t) =

kt
R
V (t) (G.19)

Here the states of the system can be written as:


q1 = ω

q2 = q̇1 = ω̇

(G.20)

Since it only requires one state to describe the state space, since q̇1 = ω̇, the result is

rather trivial and the representation will be directly described below in Equations G.21.



A =

[
−(ktKE

RJ
+ b

J
)

]

B =

[
kt
RJ

]

C =

[
1

]

D = 0

(G.21)
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Closed Loop 

Acl =

[
−(ktKE

RJ
+ b

J
+ Kkt

RJ
)

]

B =

[
kt
RJ

]

C =

[
1

]

D = 0

(G.22)
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