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CHAPTER 1

INTRODUCTION

In this era of the digital computer, scientists and

technologists are finding new ways to use the computer as a

problem-solving tool in their areas. This is especially

true of the engineering sciences. Engineering problems

involve enormous, somtimes tedious, calculations;

therefore, computers are exceptionally well-suited for

applications in this field.

The engineering design process is often one of trial

and error; however, computer simulation has done much to

reduce the human effort involved and to improve efficiency.

The simulation of a design is carried out with computer

software -- the so called simulator. Different simulators

are available with their own objectives. In general, a

simulator is a machine or program to which one feeds the

description of the system and obtains the response

characteristics of the system. The specific simulator

covered in this research is one for simulation of robotic

dynamics, both forward and inverse. The input to the

simulator will be the robot parameters such as the masses,

moments of inertia, and dimensions of each link, joint

types and locations, etc. For the forward dynamic



simulation, it also requires joint torques or forces,

initial positions and velocities of each link to find the

link positions, velocities, and accelerations at various

instants of time. In the inverse dynamic simulation, link

positions, velocities, and accelerations have to be

specified; as the simulation proceeds, it will find the

required joint torques or forces at each time interval.

Due to difference among manipulator designs, simulators

are often written for each specific design. When a

designer wants to change the basic layout of his design,

the simulator also needs to be changed. Even minor

modifications in the robot system could result in

significant modification of the simulator program. This is

felt most strongly when the simulator is being used in the

design of a robot, since it is likely that the robot will

undergo considerable modification during the design

process. This lack of versatility is a serious handicap

that provides the motivation for the development of more

flexible simulators. A good way to do this job is to write

an automatic simulator generator, as described in this

thesis, which can handle a wide variety of robot

manipulator systems. This is best done through symbolic

computation using an algebraic manipulation language, such

as MACSYMA or REDUCE-3.

There are several methods available for setting the

dynamic equations, for example. Lagrange [1,2,3], virtual



work [4], and Newton-Euler [5.6.7]. For the purpose of

control, it is desirable to obtain the solution in real-

time. To solve the dynamic equations efficiently, several

ideas have been presented in the literature. For example,

the recursive Lagrange formulation [8] was used to solve

the inverse dynamic problem, in which the generalized

forces were expressed in recurrence relations involving the

generalized coordinates, velocities, and accelerations. By

the recurrence of these quantities, it is possible to

reduce the number of multiplications and additions involved

from quartic to linear dependence on the number of links of

the system. There is also a recursive Newton-Euler

formulation [5,6,9], which uses a similar idea. Another

approach is the tabular solution look-up [10]. which

reduces computation but increases the input/output (I/O)

requirements. The inverse dynamics problem for specific

motions of a specific robot is solved once and all the

solutions are stored, then one can find the solution of

generalized forces at a certain instant by interpolation.

For specific robots, it is also possible to simplify

problems by dropping Coriolis and centrifugal terms [1,11].

This simplification can be made only after verifying that

these terms have insignificant contributions and that

certain presumptions apply.



Among these methods, the Lagrangian formulation was

chosen as being the most suitable for computer

implementation. One coordinate is assigned to each link,

thus we are dealing with the minimum set of generalized

coordinates. Trans lational joints and revolute joints are

modeled in a unified way; this streamlines the program

implementation. The same Lagrange equation formulation is

able to represent both forward and inverse dynamic

problems; some common terms have the same expressions in

both cases which in turn further simplifies the

implementation. The forces resulting from springs and

dampers, frictional forces, and other externally applied

forces are taken into account in the generalized force

term

.

As stated previously, the forward and inverse dynamic

problems are to be solved. For the inverse one, the

situation becomes straight forward since all the quantities

on the left hand side of the Lagrangian equation are known.

The unknown generalized force is found by plugging in

suitable values into the Lagrangian equation. For the

forward one. we are given the initial positions, velocities

and generalized forces. By certain techniques, which will

be described later, we can extract the unknown acceleration

terms and solve for them. The accelerations obtained are

then integrated to find new values of positions and

velocities. This step-wise procedure is continued until



the termination time is reached.

Related work in this area has been done in the

derivation of Lagrange's equations of motion using MACSYMA

[12]. The objective of the work was to find the dynamic

equations for any general robot and expand them into

symbolic form. The method used to describe the system

kinematics was the Denavi t-Har tenberg convention [13] with

homogeneous coordinate transformations. The dynamic

equations are set up following Paul's derivation [14]

which is basically a series of matrix and vector

multiplications. The matrix form of the dynamic equations

was then expanded symbolically using simple commands for

matrix multiplication provided by MACSYMA. To simplify the

expanded expressions, it was suggested that one use RATSIMP

for algebraic simplification, and TRIGREDUCE for

trigonometric simplification; one can also define one's own

simplifying functions by using the RATSUBST feature of

MACSYMA. The benefits of this approach are elimination of

the time-consuming and error-prone manual derivation

process and the generation of equations which are both

insightful and more computationally efficient. The force

components are derived individually as inertial, Coriolis,

and gravitational force terms. However, only the force

terms are derived as explicit functions of other

generalized quantities. [12] solves only the inverse



dynamic problem.

The research in this thesis develops a generalized

technique for generating simulators for serial open chain

robots using the symbolic algebraic manipulation language

REDUCE-3. Though the generality for different robots is

obtained through symbolic computing, it is also known that

the language is very slow in arithmetic. On the other

hand, FORTRAN is relatively strong in numeric computing but

ill-suited for symbolic computing, the combined use of both

languages is used in the implementation. Because of the

generality and flexibility, no assumptions, modifications,

or simplifications are imposed on the original Lagrangian

equation, and hence the solutions obtained from the

simulator are exact. Symbolic languages tend to expand all

expressions and considerable simplification is often

required before these expressions can be evaluated; this is

one of the difficulties encountered in [12]. In general,

we can not guarantee that all the possible simplifying

functions are defined in the simulator generator; further,

the simplification process often takes too much memory

space in computers. For certain very complicated problems,

it might just fail for lack of memory. To avoid

excessively lengthy expressions, the individual terms in

the Lagrangian equation are treated separately. By

expressing them as combinations of other basic quantities,

we can derive only these basic expressions symbolically and



set up FORTRAN loops to combine them. Once the lengthy

expressions are avoided, the generated FORTRAN simulators

are ready for compilation and execution, and no further

simplification is necessary. The sensitivity equations are

also derived so that the simulators may later be extended

to include design optimization capabilities.

The derivation of Lagrange's equations for the forward

and inverse dynamic problems are presented in Chapter 2 of

this thesis. The design sensitivity equations, which are

derived from the equations of motion, are developed in

Chapter 3; the potential use of these equations for

optimizing the design of new robots and the utilization of

existing ones is also discussed. Chapter 4 describes the

implementation of the simulator generator with emphasis on

the interaction between the symbolic and numerical parts of

the code generation/execution. In order to test the

efficiency of the simulator generator, several examples

were run for both the forward and inverse problems. some

of these examples, along with the verification tests that

were made to establish the correctness of the results, are

presented in Chapter 5. Finally, the conclusions drawn

from the present work and some recommendations for future

work in this area are discussed in Chapter 6.



CHAPTER 2

SYSTEM EQUATIONS

To analyze the response of a dynamic system, it is

necessary to formulate the equations of motion for the

system of interest. The equations of motion for a

mechanical system can be obtained either from Newtonian

mechanics [15] or from Lagrangian mechanics [12,16,17]. The

Lagrangian formulation is more popular because it gives a

straight forward way of treating constrained dynamic

systems; and most mechanical systems can be modelled in

terms of rigid bodies and constraints.

In this research, robots with a serial combination of

rigid links connected by joints are of interest; such a

robot would be completely described if the links and joints

are completely specified. In order to specify the relative

positions of the links, each link is associated with a

cartesian coordinate that is fixed to it; the homogeneous

transformation matrices between successive coordinates can

be found. These matrix transformations are of the form

Pi-l=Ai.iPi (2-1)

where

Aj_2 is a 4x4 transformation matrix,

Pj is the homogenious representation of a vector, p, in

8



the i-^^ coordinate system.

The function of a joint between two links is to provide

relative motion and is thus associated with the degree-of-

freedom of the system. Due to mechanical simplicity, the

construction of most practical robots is designed in such a

way that there are only single degree-of -f reedom joints

between the links. Two examples of single degree-of-

freedom links are the revolute joint and the translat ional

joint. The relative motion associated with revolute joints

is an angular rotation while that for trans lat ional joints

is a linear displacement. By introducing suitable

generalized coordinates in the Lagrangian formulation, we

can treat both joint types in a unified way. We can

construct a system generalized coordinate vector, q,

consisting of the joint coordinates; also, by

differentiating it with respect to time, we can define the

generalized velocity vector, q, and the generalized

acceleration vector, q.

To describe the links fully from the point of view of

dynamics, it is necessary to specify the position of the

center of mass of each link; and it is convenient to give

this specification in the corresponding local coordinate

system since this specification is invariant with respect

to motion of the system. We also need the mass of each body

and the moment of inertia of each body about the local

coordinate axis.



Once the above Information about the system is

provided, it is possible to express the Lagrangian of the

system in terms of these parameters. We are presently

interested in both the forward and inverse dynamics;

therefore, both sets of system equations are required for

the purpose of analysis. In deriving the system equations.

we must also ensure that they can be conveniently

implemented on the computer.

Lagrange's equation of motion can be written as

d dL dL— {— ) = Qj. j = 1.2 n (2-2)
dt dqj dqj

where

q -• is the generalized coordinate,

q- is the generalized velocity,

Q- is the generalized force,

n is the degree-of-f reedom of the system,

and L is the system Lagrangian defined by

L=T-V

where

T is the system kinetic energy,

and V is the system potential energy.

To construct the Lagrangian, the system kinetic and

potential energies should be expressed in terms of the

generalized coordinates, velocities, and link parameters.

10



We will first consider the potential energy. Since

spring forces are included in the generalized force term in

the equation, the only contribution to the potential energy

is the gravitational potential energy. Assume that the

base coordinate is established in a way that its y-axis is

along the vertical; therefore, the gravity acts in the

negative y direction and the potential energy of any link

is given by

Vi=migYi (2-3)

where

Yj is the y-coordinate of the center of mass of link,

i, as measured from the base coordinate,

mj is the mass of link, i,

and g is the gravitational acceleration.

Since the coordinates of the center of mass are given

with respect to the local coordinate, and the

transformation matrix transforms between two successive

frames, we can then use a series of transformation matrices

to find the coordinate as viewed from the base, given by

[Xi,Y..Zi]T = AiA2A3...Ai[Xi,yi.Zi]T (2-4)

where the terms within brackets on the left and right hand

side are the homogeneous coordinates of the center of mass

in the global and local coordinate systems respectively.

The A*s are 4x4 joint transformation matrices; their

products can be written in a simpler way, by defining

11



Tj=AiA2A3...Aj (2-5)

JJiTj is then the transformation matrix from i-**-"- local

coordinate to the base. The system potential energy would

be

V= I Vi= 2 m^gYi (2-6)
i 1

The motion of any link can have both trans lat ional and

rotational components; therefore, the kinetic energy term

is comprised of their respective contributions. It can be

writ ten as

T= —I [mi(v2^-Hvf +vfjMIixWfx+IiyWiy+Iiz*iz)]
2 i ' ^ ^

(2-7)

where

v and W are t rans la t i onal and rotational velocities

respectively .

subscripts x, y, and z denote the component along each

axis ,

i is the link number,

and the I's are the centroidal moments of inertia.

The translational velocity can be found by

differentiating Equation 2-4 with respect to time; noting

that Tj is an abbreviation for A2A2...Aj, we have

t^ix Viy Vj^ l]=[Ti][x^i y^i z^i 1] (2-8)

and from equation 4 we find

Tj=AjA2...Aj+AjA2...Aj + ...+AjA2...Aj (2-9)

12



For the rotational velocity terms, given the moments of

inertia in the local coordinates, it is desirable to find

the absolute angular velocities for each link expressed in

the local coordinate system of that link. It is clear that

the velocity of a link is not kinemat ical ly dependent on

the links that follow it, but only on preceding links and

itself; therefore, it involves only the transformation of

angular velocities from preceding links to the local frame

of interest. We compute the total angular velocity of link

,i . expressed in the i -^"- local coordinate system

recursively as follows:

Suppose the total angular velocity vector of link, i-1, is

known in its local i-1^-^ coordinate system, it can be

converted into the i^-^ coordinate system by premul t iply ing

this vector by a transformation matrix, given by

«i=Rr^*i-i) (2-10)

where

Rj contains only the rotational terms of Aj.

w^ is the contribution to angular velocity of link, i,

from the preceding links,

and Wj_j is the total angular velocity of link, i-1, given

by

Wi_i=Wi_i+Wi_i (2-11)

where

Wj_j is the angular velocity of link . i-1, itself.

13



— 1 TSince Rj Is an orthogonal matrix. Rj is just Rj which

is easy to construct symbolically. Thus for any link, i.

we can find the total angular velocity in the following

way. Starting from the first link, we find the total

angular velocity of link, 1, expressed in local coordinate

of link, 2. This is then added to the angular velocity due

to relative motion between link, 1 and 2, to obtain the

total angular velocity of link, 2. We proceed in the same

way until the total angular velocity of link, i, is found.

Note that for a t rans la t i onal joint, the relative

angular velocity between the connected bodies is zero.

Once the trans lat ional and rotational velocities are known,

it is easy to explicitly derive the system Lagrangian in

symbolic form by using simple loops in a REDUCE program.

However, this is not advisable because the velocity terms

may be quite complicated and squaring them could lead to

expressions that are too large to handle. What we need

presently are not the expressions for kinetic energy or the

Lagrangian; rather, we are interested in the derivatives of

the Lagrangian with respect to generalized coordinates and

velocities. We must therefore develop formulas for these

quantities which do not require the evaluation of

unreasonably large expressions.

The Lagrangian equation can be expanded term by term

in the following way:

14



dL d{T-V)

dqj aqj

dv. aw. dYj
= Z miVi — - + I liWj — - - Z m^g — (2-12)

i dqj i &qj i 3qj

and

d dL d a{T-V) d hT
__(___)= ____ = __(„__) (2-13)
dt 9q^ dt 3qj dt 3qj

The potential energy term is dropped from the above

equation because it is independent of velocities.

d dT 1 d d Z (m.vf+I.W?)
__(___) = |;__i

]

dt dq- 2 dt flq.

dv. dv. d dv. ^ dW. dW. d SW.
= I „,.,;__i ..i + vj -(--)] + I liC " + Wi -(---)]

1 dt dq^ dt dq • i dt 9q

•

dt dq^

(2-14)

Now we can find the Lagrangian equation by subtracting

Equation 2-12 from Equation 2-14 and setting it equal to

the generalized force. The Lagrangian equation is then in

a form that can be handled by REDUCE.

For the inverse dynamic problem, we want to find the

generalized forces required to satisfy prescribed

requirements on the displacements, velocities, and

accelerations. We see that the unknown generalized force

appears on the right hand side of Equation 2-2, and that

all the terms on the left are known quantities; thus the

evaluation of the forces is straight forward.

15



For the forward dynamic problem, we wish to calculate

the displacements, velocities, and accelerations given the

generalized forces and the initial displacements and

velocities. The unknown accelerations are solved

algebraically from the equations of motion, and then

integrated to obtain velocities and positions. However,

the accelerations for which we must solve are mixed with

dVi
other known quantities on the left side in the and

dt

dWi

dt
terms. Again, there is a perfect similarity between

trans lat ional and rotational accelerations, because of the

use of the generalized coordinates. Since the accelerations

are obtained from multiplication of three matrices and

there is only a first power of q. it follows that the

multiples are linear combination of accelerations. All the

terms containing accelerations are then extracted, while

the other known quantities are moved to the right hand

side. Once this is done, the resulting set of linear

equations can be solved for the accelerations. Finally,

the solved accelerations are integrated in a given time

interval to find the velocity and the displacement for the

next step by using the Runge-Kutta integration scheme.

Provided the generalized forces for the next step, the

process is repeated until the end of the simulation.

16



CHAPTER 3

DESIGN SENSITIVITY ANALYSIS

The utility of a simulator in the design process is

greatly enhanced if the simulator has the ability to

automatically optimize the system design. It is envisioned

that the methods developed in the preceding chapter for

analysis will be extended to include optimization

capabilities. This will enable the use of the simulator

for optimizing the design of new robots as well optimizing

task-planning for existing ones.

Symbolic computing is particularly useful in an

optimization environment because optimization problems are

generally more difficult to standardize; there can be a

wide variety of choices of design parameters and optimality

criteria. Thus, it is desirable to maintain the symbolic

computing approach while extending our analysis method into

the realm of optimization.

A method of performing this extension in a manner that

will permit convenient implementation in a symbolic

manipulation language will be developed in this chapter.

For the purpose of optimizing a design, the design

problem should be expressed in a standard format. The

standard problem is stated in the following manner.

17



Suppose the design of the system is specified by a

vector, b, of r design variables, i.e.

b=[bi.b2 bj.]"^ (3-1)

Find thedesign,b, which minimizes a specified cost

function, Fq, subject to constraints

Fj=0, 1 = 1.2 m
(3-2)

Fj^O. i = m+l.m + 2 n

The optimal design process solves this standard problem

by iterative improvement of the design vector, b. Each

iteration of this solution process consists of three

di s t inc t s teps

:

1. System analysis: The behavior of the system is analyzed

at the current design. The cost and constraint

function values are also computed.

2. Design sensitivity analysis: The derivatives of the

cost and constraint functions with respect to the

design variables are calculated in this step.

3. Optimization/design update: The cost and constraint

function values from the system analysis as well as the

derivatives obtained from design sensitivity are

supplied to an optimizing algorithm. The algorithm

computes the required change in design and proceeds to

the next iteration unless a predefined convergence

criterion is satisfied.

The system analysis is done by solving the system

equations developed in Chapter 2. The design sensitivity

18



analysis is discussed in this chapter for the future

purpose of optimizing and updating the design.

The system equations of motion derived in the preceding

chapter are dependent on the design vector, b. of the

system. The optimizing process is to choose suitable

values for the components of the design vector in order to

minimize a cost function, subject to the given constraints.

We assume that the cost and constraint functions. F^,

depend on time (t), position (q), velocity (q),

acceleration (q), joint generalized force(Q), and

design(b). That is, they are of the form

Fi=Fi(t.q,4.q.Q.b), i=0,l n (3-3)

Most optimization algorithms require the derivatives of

cost and constraint functions with respect to design. The

aim of first order design sensitivity analysis is to

evaluate these derivatives to first order. These

derivatives relate variations in cost/constraints function

values to those in the design parameters through the

equation

:

Sf = I'^Sb (3-4)

where 1 is the matrix (nxr) of design sensitivity

coef f icients .

In order to find the design sensitivity coefficients,

we have to take the variations of the F^'s. which are of

the form

19



dF dF dF dF dF
St = --Sb + --6q + --&q + --S*q + --8Q (3-5)

db dq dq dq dQ

Since state, velocity, acceleration and generalized force

are all implicit functions of the design, it follows that

dq dq dq dQ
dq = --Sb. dq = --db. Sq = --db. dQ = --8b (3-6)

db db db db

Equation 3-6 can be substituted into Equation 3-5 to obtain

dF dF dq dF dq
dF= — db+ -- --db + -- --db

db dq db dq db

dF dq dF dQ
+ — —6b + -- --6b (3-7)

dq db dQ db

comparing Equations 3-7 and 3-4, we conclude that

dF dF dq dF dq dF dq dF dQ
iT = -_ + __ __ +____+ __ __ + __ __ (3-8)

db dq db dq db dq db dQ db

As with the dynamics analysis, the sensitivity analysis

also has both forward and inverse cases. For the inverse

sensitivity analysis, the only unknown on the right hand

aq
side of Equation 3-8 is which can be found by

db

differentiating the Lagrange equation with respect to the

design, b. For the forward dynamics problem, we must have

dq dq dQ dQ
ini t ia 1 va lues of , . . and at each step.

db db db db

Then. by taking the first variation of the Lagrangian

equation, we can obtain a second order ordinary

20



differential equations in . which can be numerically
db

integrated along with the equations of motion. At any

dq dq dq
instant, the values of . , and thus obtained can

db db dh

be substituted into Equation 3-8 to obtain the design

sensi t ivi ty

.

dQ
We thus see that the unknown terms are, , for the

db
dq dq dq

inverseanaly s i s , and , , and for the forward
db db db

analysis. It is desirable to derive these terms so that

they are ready for implementation in a computer code. When

differentiating a series of matrices, followed by a vector,

with respect to another vector, it is possible to avoid

three dimensional tensors within the process by using the

mathematical technique described below.

Suppose we want to find

i— (3-9)
db

where

Aj is a two dimensional matrix,

and b and x are vectors.

The technique is given by

d{Aix) d(A,x) dx
i... = i___ + Aj (3-10)

db db db

21



The tilde (~) in Equation 3-10 means that the term

beneath it is treated as constant when doing

differentiation, but after the process, it is again

recognized as its original nature.

For a more complicated case, we can generalize the

procedure as follows.

--— (A1A2A3. . .A.x) (3-11)

(Nest)i^ = Dj^ {Nest)i^+j +

can be expressed into a form of a nest within another by

^{Dk_Bk)_

db

k=j.j-l 1 (3-12)

where

Dj^ is the dummy that represents transformation matrices

A's.

and Bj^ is the multiple from the k+1^^ matrix to the end in

(A1A2A3. . .AjX).

The iteration starts with k=j and ends with k=l and

(Nest)^ is the result of the derivation. To start the

iteration. (Nest)^^j^ must be given. Therefore, we define

dx
(3-13)(Nest)j^.i =

db

Equations 3-12 and 3-13 altogether is the solution of

Equation 3-11. Base on this, we can find the terms
db

22



and that are necessary for the forward and inverse
db

sensitivity analyses. The key to both terms, as stated

previously, is to start with taking the derivative of the

Lagrange equation with respect to the design variable.

d d dL aL
-[--{-:-) - (— )]
3b dt dqj ftqj

3m,. dv^ dv,- _ d dv ^ dv .. dv .- d dv
^

= 2 -'- -'- -'- + Z m, - {
-^

)
-^ + £ mj -^ - (

--'-
)

j db dt ^qj j db dt dq^ j dt db dq^

^ dm.. dY-. d dY.
+ Z — ^ g — ^ + Z THj g — (

— ^ )
(3-14)

j db dqj j db dq^

For the inverse sensitivity problem. Equation 3-14 is

dQ
just , the unknown. To evaluate 3-14, some of the terms

db
d dvj.

are seen to be very complicated, such as —

(

)

db dt
d dVj.

and --( ), from the experience in dealing with the
db d^i

dynamics analysis. The other terms are either quite simple

for REDUCE to handle or has been done in the dynamic

problem

.

Following the convention described in the second

dv
^

chapter, we can expand in the following manner.
dt

23



3 dv. d .. . .

__(__£) = --[(AjAg. . .Ajr+AjAg. . .Ajr+. . .+A1A2- • AjT)
9b dt dh

• • . • »

+(A2A2- • .A.r+AjA2. . •Ajr+. . .+AjA2. •
Ajf)

+ (A2A2- • .A.r+AjA2- • .A r+. . .+A2A2. • -Ar)]

(3-15)

Let's take every AjA2---A^r as a group. The previous

described technique can be applied to obtain the derivative

for each group. Then, by summing the derivatives for all

the n X n groups, we can find the solution.

dv
We can also expand similarly

d dv. d dk.
__(__J) = __{ ___ A2...Ajr
db bq^ dh dq^

dA2
+Ai --- ...Ajr

dqi

aA.
+A,A9. . .

— - r) (3-16)
dqi

Since q^ will exist in A- only when i=j, some of the

derivatives in Equation 3-16 are always zero and hence not

shown. Actually, the only non zero term in Equation 3-16

is the i^^ group. Again, the derivative can be evaluated

in the previous way.

24



Once these complicated terms are obtained, along with

simpler terms derived by REDUCE, we are ready to calculate

5Q
using Equation 3-14. It is then substituted back into

db
8F

Equation 3-8 to obtain which is the objective of the
5b

inverse sensitivity analysis.

For the forward sensitivity analysis, we also have to

follow Equation 3-14. This time, we are interested in

dq
isolating the unknown . From Equation 3-14. it is

dh
dq 9 dv •

apparent that is mixed with others in — (
) only, and

db db dt

hence we are to concentrate on this term.

The term, , can be expanded as in Equation 3-15. The
dt

q's exist only in the diagonal groups. Therefore, the

diagonal groups shoud be separated into two parts. One

with q and the other without, as follows.

[Ai]=[AA]q.+[AB] (3-17)

Accordingly, Equation 3-15 becomes the combination of

two , i.e.

d ..g . . . .— [(AjA2. . .A.r+AjA2. • •Ajr+. . .+A2A2.

•

-A-r)
^b . . . . .

+(AjA2. . .AjT+AjAg. . •Ajr+. . .+AjA2. • Ar)

+(AiA2. . .Ajr+AiA2. • •Ajr+. . .+A1A2. . A^r)] (3-18)
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and

ob
.Ajr

+AiAA...Ajr

+AiA2...A5r] (3-19)

Equation 3-18 is composed of constants and is to be

moved to the right hand side of the Lagrange equation. The

i^^ group in Equation 3-19 corresponds to the contribution

d dv
J,of —

{ ) to the coefficient of q^. i = l,2 j.

db dt

Equations 3-18 and 3-19 are evaluated by the previous

method again.

d dvj
After we go through every --( ), j = l,2 n, we can

db dt
dqj

set up a coefficient matrix for , while moving and
db

combining all the known quantities in Equation 3-14 with

the generalized force on the right side of the Lagrange

equation. We can solve the n simultaneous equations for

, 1 = 1,2 n. They are then substituted into Equation
db

5f dq
3-8 to obtain the sensitivity, . Note that are the

5b db

only unknowns in that equation.
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dq dq
Finally. and would be predicted by integrating

db db
dq

at this time, with updated values of generalized forces

db

and the state, velocity, and acceleration obtained from

dynamic analysis. We are able to resume the iteration for

dq
another until the end of the simulation.

db
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CHAPTER 4

IMPLEMENTATION

In the implementation of system equations, the symbolic

manipulation language was chosen for following benefits.

1. All the derivatives involved in the development of the

system equation are found automatically and then

calculated by the preprocessor so that no further user

effort is necessary. On the other hand, if an all-

FORTRAN program is used, the user must supply

subroutines for evaluating the required values.

2. Most of the errors that occur in the development and

use of software arise from mistakes made by either the

programmer or the user. By using computers to

symbolically derive the equations, the chance of

programmer error is greatly reduced. Furthermore, by

minimizing the input required from the user, the

probability of user error is also lowered. These two

factors make REDUCE based programs more reliable.

3. The FORTRAN subroutines generated by REDUCE are

p r ob 1 e m - d ep end en t because they are constructed

specifically for the problem that is being solved.

They are much more efficient than the general purpose

subroutines. Therefore, the regular trade-off between
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the generality and its efficiency does not apply to

REDUCE based software.

4. Explicit formulation of expressions can be obtained in

FORTRAN code. These could be of interest to the

analysts or designers and of help in understanding the

behavior of the system.

The system equations of motion have been derived for

both the forward and the inverse dynamic problem in Chapter

2. All the terms in these equations can be found by using

simple differentiation, and the four basic arithmetic

operations in REDUCE. The basic solution procedure to be

followed is to feed a system description to the REDUCE

program and have the program generate a FORTRAN simulator

tailored to the specific robot of interest. We can then

feed this FORTRAN program with a set of numeric data and

solve the equations of motion numerically. The two step

approach was used successfully in the automatic generation

of optimizing simulators for general constrained planar

mechanical systems [18]. The rationale for this approach

is that a symbolic manipulation language has a much higher

degree of generality and flexibility, but at the same time,

is very slow in arithmetic. To remedy this handicap, many

symbolic languages, including REDUCE, provide a facility

for writing out the expressions they generate in the form

of FORTRAN statements. This approach provides broad

generality and flexibility in the symbolic computing step
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while the resulting FORTRAN program reflects the efficiency

and problem specificity of a special purpose simulator.

The number of additions and multiplications associated

with the Lagrange dynamic formulation exhibits quartic

variation with respect to the degrees of freedom of the

system. If we write the system Equations explicitly as

symbolic languages usually do. one can imagine how

cumbersome the expressions would be for a system with

several degrees of freedom. Further, by expanding all

terms, we are placing too many computational demands on the

resulting FORTRAN program since the expansions are rarely

computationally efficient. To avoid both the huge

expressions and the redundant evaluations, we can write

out only the frequently used basic terms. Evaluate them

once and keep them in memory, then we can use FORTRAN loops

to do the multiplications and additions on these known

quantities. In the progress of this research, it was found

that most of these terms are quite short and can reasonably

be handled by the FORTRAN program with every term expanded.

dv 3v d dv
Only certain terms such as , , and --(

) ,need
dt dq dt dq

special treatment.

It can be seen that the velocity plays an important

role in complicating the problem; therefore, it is

desirable to express the velocity term in a way that can be
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handled by FORTRAN loops. The velocity of the center of

mass of link i is obtained by differentiation of the

position of the center of mass with respect to time, i.e.

Vi=Ri . i = 1.2 n (4-1)

Note that Vj and Rj are measured in the base frame.

The position of the center of mass is given in Equation 2-4

by

Ri=AiA2...Ai[ri]'r (4-2)

The velocity of the center of mass is then

d

Vi=— {AiA2...Ai[ri]T^} (4-3)
dt

Note that [r^] is constant in the local frame

Vi=[AiA2. . .Ai+AjAg. . .Ai+. ..+A1A2. . .AjJCrj]

(4-4)

now we want to find the time derivative of Vj.

dvj .. . . . .

= [(A2A2. . . AJ+A2A2- • AJ+A2A2. • • Aj)
dt

+(AiA2. . .Ai+AiA2.

-

.A^+A^k2. -Aj)

+(AiA2. . .A^+AjAg. . .AJ+A1A2. - •Ai)][ri]

.1 = 1.2 n (4-5)

The Equation 4-5 is now in a form that is suitable for

programming in FORTRAN loops. The key is to identify which

matrices should be used in the different matrix products.

If we view the terms in Equation 4-5 as consisting of

distinct groups, it is clear that it is made up of ixi
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groups, while each group consists of 1 transformation

matrices. We can Index the group by means of two Indices,

namely 1 and m. and the term number within each group by k.

Once each term has been Indexed In this manner, the

following logic holds:

when l=m

if k=l then we take Aj^,

for other k, we take Aj^.

when l^m

if k=l or m then we take A-^.

for other k, we take k^.

Similarly for , we can write

dv^ dAj dA2
--- = (

--- Aa-.-A^r + Ai
--

dq dq
k^T+.. .+A1A2.

uAi
_ "^2

+( Ag.-A^r+Aj ...Ajr+
dqj dqj

+A1A2

SA,
r)

r)
aqj.

dAi
. ^^2 • ^^i

+( A2- • A^r+Aj . . . A^r+. . . +AjA2- • • r)

aqj dqj. 9qj.

(4-6)

Since Aj contains only the local generalized coordinate

q^, we can further simplify the Equation by setting the

3Aj^ dk^
or terms equal to zero for kiij. It is easily seen

dqj aqj.
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that only the j-"^ column of groups are non-zero for

Using the same indexing scheme for 1, m, and k as before,

the logic for evaluating this term is as follows:

For any fixed j, only m=j is considered

when l=m

if k=l then we take

for other k, we take Ai^.

when l^m

if k = m then we take
dqy

if k=l then we take Ai

for other k, we take Ai

d 9vj
--{ ) can be expanded as
d t dq .

d dvj d dAj
__(___) = __( ___ Ag.-.Ajr

dAo

dt dq. dt dq

.

J J

+Ai --- ...Ajr
dqj.

6A,
+A1A2... — - r) (4-7)

aq,

Note that the terms are dropped because they are
dqj
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always zero. The remaining terms are not zero only

^^i th
when k = j: therefore, corresponds to the j-*"*^ group in

Equation 4-7.

A further differentiation with respect to time yields

d dAj dAj
.

dAj

[— ( ) Ag-.-A^rH- Ag. . . Ajr+. . .+ --- A2..-Ajr]
dt dq

dA.

8qj

d dAg

OCj

bAc

+[Aj --- ...A^r+Aj —(-7-) . . .Ajr+. . .+Ai --- ...A^r]
dq dt dq . 2>q

dAj
.

dAj d ftAj

+[AjA2... r+AjAg ... r+ . . . +A jA2 • .
.
— (-7-)r]

dq

d dv.

dq dt hq

(4-8)

Now, for --( ), the only non zero terms correspond to

dt 8q .

the j-"^ row of groups. With 1, m, and k defined as before,

we have the following logic.

For any fixed j, j = l,2 n, only l = j need be considered

when m = l

d dk^
if k=m then we take --( )

dt dctj .

for other k, we take Aj^.

when m^l

dAj^

if k=l then we take
dqj.
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if k = m then we take Aj^,

for other k, we take Aj^.

Studying these above expressions, we see that the

repeatedly appearing basic terms are the A's, A's, A's,

dAj^ dAj^ d bk^ bky.

— ( ), and . These expressions are
dqj 3qj dt aqj dqj

reasonably short and can be explicitly written out in the

first part of the FORTRAN program. The matrix

multiplication and the logic for evaluating the appropriate

matrix products are then programmed in FORTRAN do loops

that are also generated by the symbolic language. The

other terms in the system equations can also be expanded in

the same way; however, it seems to be unnecessary since

many elements in the matrices are zero. It would be easier

to write them explicitly then to do multiplications on lots

of zeros.

As stated in previous chapters, the simulator developed

can simulate both forward and inverse dynamics of robot

manipulators; therefore , there are two separate programs for

the two different purposes.

For the inverse dynamics problem, the FORTRAN program

starts by reading in the dimensions and specifications of

the robot by calling an input subroutine. Next, we call a

subroutine to initialize the joint coordinates, velocities,

and accelerations. After this, suitable loops are set up
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to obtain the basic terms described earlier and combine

them to obtain the required generalized forces.

The basic layout of the forward dynamic simulation is

pretty close to the inverse one, except that the big loop

now goes into a subroutine and becomes a function. The

function in turn is required by DVERK. a subroutine in the

IMSL library, that does integration using RUNGE-KUTTA

method. Also, what we are interested now is the

dv
accelerations; therefore, the term developed for the

dt

inverse problem is no longer necessary. It is almost

impossible to extract the coefficients of the accelerations

numerically, fortunately, the REDUCE provides powerful

commands that enables us to seperate the terms with and

without accelerations. The coefficients are further

extracted from the terms with accelerations to form an nxn

matrix with known quantities, while all the terms without

accelerations are moved to the right hand side to be

substracted from the generalized forces. These terms then

form a vector with known quantities. The unknown

acceleration vector is also established, then the problem

becomes solving an n-variable simultaneous equations. This

is easily done by calling LEQT2F, another IMSL subroutine.

Once the accelerations of links subjected to the

corresponding joint force are solved, they are then

integrated within specific time step to find new velocities
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and positions at next step. The generalized forces are

updated before loop for the next step.
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CHAPTER 5

NUMERICAL EXAMPLES

The techniques for forward and inverse dynamics that

were described in Chapter 2 were implemented in a REDUCE

program and this code was used to generate simulators for

several example problems. These simulators were then

compiled and run to obtain the system response.

The results obtained for some of these examples are

presented in this chapter. All the examples were verified

by two independent methods:

1) Work-energy balance: A running total of the cumulative

work done on the system and the total energy of the

system is computed. This information is used to check

whether the results obtained are consistent with the

work-energy balance equation that must hold for the

system. This check is performed independently for the

forward and inverse dynamics problems. The trapezoid

approach is used to find the work done on each joint.

Though it is not the precise solution, just enough for

the purpose of checking the results. In all the

examples that were run, the check was satisfied within

the limits of acceptable numerical error.
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2) Cross-check between forward and inverse dynamics: For

every system that was considered, a known force input

is supplied to the forward dynamics problem and the

resulting accelerations, velocities, and positions are

obtained. These results are then used as inputs to the

inverse dynamics problem for the same system and the

forces required to produce this motion are computed.

These can then be checked against the original forces

that were input to the forward dynamics problem.

Ideally, we should obtain exactly the same forces in

the two cases; in practice, it was found that they

agreed quite accurately, i.e. within the limits of

numerical error.

In all the examples presented on the following pages,

the results of the work-energy balance and the cross check

are presented along with the system response that was

obtained by running the simulator.
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FXAMPT F 1 : 3-R RQRQT

The initial position or home position and coordinate

systems are shown in figrue 1. The only load is the self-

weight of the members; the simulation time is from 0.00 to

0.18 second

.

The input data is given below, and all units are in

MKS.

Lengths

:

Li=1.5: L2=1.0; L3=0.75:

Masses

:

mi=45; m2=30; m2=25;

Moments of Inertia^

ly

l2x=0: l2y=0

l3x=0: l3y=0

Il^=8.4375:

Il^=2.5:

l3^=1.17:

Center s nf mass:

ri^=0.75: riy=0: ri^=0:

r2x=0-50; r9„=0:

r3^=0.375:

2y

3y

2z =0;

=0; 3z =0:
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(1-1) Forward dynamir prnblem:

Initial rnndit.inns:

qj=0; q2=0: ^3=0:

4^=0.2094; q2="013^^: q3=-0.0698;

GpnaraliTied fnrc f fimrtinn at each instant:

Qj= lO.Oxt^^^+e.O;

Q2= 8.0Ht^/2+5.0;

Q3= 6.0«t^'^2+4.0:

where t is the simulation time.

RfLSH Irs:

Fnr link 1

:

t ^1 ^1

0.00 O.OOOOe+00 0.2094

0.02 0.4200e-02 0.2106

0.04 0.8424e-02 0.2118

0.06 0.1267e-01 0.2131

0.08 0. 1695e-01 0.2145

0. 10 0.2125e-01 0.2159

0. 12 0.2559e-01 0.2174

0. 14 0.2995e-01 0.2188

0. 16 0.3434e-01 0.2203

0. 18 0.3876e-01 0.2217

^1

0.5179e-01

0.6123e-01

0.6494e-01

0.6764e-01

0.6974e-01

0.7135e-01

0.7249e-01

0.7313e-01

0.7318e-01

0.7254e-01
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For link ?.:

t <12 ^2

0.00 O.OOOOe+00 -0. 1396

0.02 -0.2919e-02 -0. 1526

0.04 -0.6114e-02 -0. 1670

0.06 -0.9604e-02 -0, 1822

0.08 -0. 1341e-01 -0.
, 1980

0. 10 -0. 1753e-01 -0.,2144

0. 12 -0.2198e-01 -0 .2313

0. 14 -0.2678e-01 -0 .2485

0. 16 -0.3193e-01 -0 .2660

0. 18 -0.3742e-01 -0 .2838

^12

-0.5845

-0.6994

-0.7462

-0.7815

-0.8104

-0.8348

-0.8554

-0.8724

-0.8855

-0.8945

For link 3:

t ^3 ^3 '^3

0.00 O.OOOOe+00 -0.6981e--01 2.2970

0.02 -0.8966e-03 -0.1862e--01 2.7667

0.04 -0.7056e-03 0.3828e--01 2.9602

0.06 0.6595e-03 0.9864e--01 3. 1076

0.08 0.3260e-02 0.1617 3.2305

0. 10 0.7146e-02 0.2272 3.3368

0. 12 0. 1236e-01 0.2946 3.4303

0. 14 0. 1894e-01 0.3638 3.5125

0. 16 0.2693e-01 0.4346 3.5839

0.18 0.3634e-01 0.5067 3.6444
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Wnrk-ftnergy halanrp r.hftrk:

t d(KE) d{W)

0.00 O.OOOOe+00 O.OOOOe+00

0.02 0.8104e-02 0.9018e-02

0.04 0.2120e-01 0.2326e-01

0.06 0.3968e-01 0.4301e-01

0.08 0.6401e-01 0.6873e-01

0.10 0.9464e-01 0.1009

0.12 0.1320 0.1398

0.14 0.1765 0.1860

0.16 0.2285 0.2397

0.18 0.2884 0.3015

where

d(KE) is increase in kenetic energy,

and d(W) is the work done on the system.
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(1-2) Tnverse dynamirs problem:

T n 1 1- i a 1 cnndl tions =

q2=0.0000e+00: q2=0.2094: qj=0 . 5179e-01

;

q2=0.0000e + 00: q2=-0.1396; q2="0-^^'^^:

q3=0.0000e+00: q3=-0 . 6981e-01 ; q3=2 . 2970

:

Generalized coordinates, velocities, and accelerations

at each instant are specified by the output from the

forward dynamic problem.

Resu Its:

t Qi Q2 Q3

0..00 0..6000e+01 0.. 5000e+01 0,. 4000e+01

0..02 0,.7414e+01 0,.6131e+01 0,.4849e+01

0,.04 0,.8000e+01 0,. 6600e + 01 0..5200e+01

0..06 0..8449e+01 0,.6960e+01 0,. 5470e + 01

0.,08 0..8828e+01 0..7263e+01 0.. 5697e+01

0. 10 0,,9162e+01 0.,7530e+01 0.,5897e+01

0. 12 0.,9464e+01 0,.7771e+01 0.,6078e+01

0. 14 0..9742e+01 0..7993e+01 0..6245e+01

0. 16 0.. lOOOe+02 0.. 8200e+01 0,, 6400e+01

0. 18 0. 1024e+02 0. 8394e+01 0., 6546e+01
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t Qi Q2 Q3

0. 00 0. 6000E+01 0. 5000E+01 0. 4000e+01

0. 02 0. 7414e+01 0. 6131e+01 0. 4849e+01

0. 04 0. 8000e+01 0. 6600e+01 0..5200e+01

0. 06 0,.8450e+01 0..6960e+01 0., 5470e+01

0.,08 0.. 8828e+01 0.. 7263e+01 0.. 5697e+01

0.. 10 0,.9162e+01 0,. 7530e+01 0..5897e+01

0,. 12 .9464e+01 .7771e+01 0..6078e+01

0,. 14 . 9742e+01 . 7993e+01 .6245e+01

0,. 16 . lOOOe +02 . 8200e+01 .6400e+01

.18 . 1024e+02 .8394e+01 .6546e+01
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rigora 1
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F.XAMPI.F. 9: 4-T.TNK ROBOT

The initial position or home position and coordinate

systems are shown in figrue 2. The only load is the self-

weight of the members; the simulation time is from 0.00 to

0.18 second

.

The input data is given below, and all units are in

MKS.

Lengths

:

Li=1.5; L2=1.0; L3=0.75: L4=0.25;

Masses

:

mj=50; m2=30; m3=20; m4=15;

Mnments nf ineT-tia:

Ilj^=9.375: Iiy=1.0; 1-^^=9.31^;

l2x=0.15: l2y=2.5: Ii^=2.5:

l3x=01: l3y=0.9375: 13^=0.9375;

l4x=0.075; l4y=0.8; l4z=0.8;

Centers nf mass:

ri^=0; riy=0.75; ri^=0;

r2x=0.50: r2y=0; v^^^O;

r3^=0.375: r3y=0; r3^=0;

^4x=-015: r4y=0; r42:=0:
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(2-1) Forward Hynamir problem:

Tni tial cnndi tinns :

qj=0; q2=0: ^3=0: ^4=0:

Ql=0.3491: q2=0-2618; q3=-0.2618; 44=0.08727

GenerallT-ftd fn rr.p fimrt.ion at each

—

instant :

Qj= 10.0»*t^^2+6.0;

Q2= 8.0*«t^/2+5 0;

Q3= 6.0»*t^^2+4.0:

Q^= 4.0»tt^''2+3.0;

where t is the simulation time.

Rfisu Us:

For linV 1

:

t ^1 ^1

0.00 O.OOOOe+00 0.3491

0.02 -0.6928e-02 0.3436

0.04 0. 1374e-01 0.3376

0.06 0.2043e-01 0.3314

0.08 0.2699e-01 0.3249

0. 10 0.3343e-01 0.3182

0. 12 0.3972e-01 0.3114

0.14 0.4588e-01 0.3045

0. 16 0.5190e-01 0.2974

0. 18 0.5778e-01 0.2903

^1

-0.2486

-0.2920

-0.3086

-0.3206

-0.3302

-0.3382

-0.3450

-0.3508

-0.3560

-0.3604
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Fnr link 2:

t ^2 ^2

0.00 O.OOOOe+00 0.,2618

0.02 0.5246e-02 0.,2628

0.04 0. 1051e-01 0. 2640

0.06 0. 1580e-01 0.,2652

0.08 0.2112e-01 0..2664

0. 10 0.2646e-01 0,,2676

0. 12 0.3183e-01 .2689

0. 14 0.3722e-01 .2702

0. 16 0.4263e-01 .2715

0. 18 0.4808e-01 .2727

"^2

0.4438e-01

0.5564e-01

0.5920e-01

0.6136e-01

0.6275e-01

0.6361e-01

0.6405e-01

0.6417e-01

0.6400e-01

0.6361e-01

Fnr link 3:

t "^3 ^3
• •

^3

0.00 O.OOOOe+00 -0.2618 .0492

0.02 -0.5009e-02 -0.2386 .2471

0.04 -0.9527e-02 -0.2130 .3221

0.06 -0. 1352e-01 -0. 1862 .3749

0.08 -0.1697e-01 -0.1584 .4151

0. 10 -0. 1985e-01 -0. 1299 .4466

0. 12 -0.2216e-01 -0. 1008 .4711

0. 14 -0.2388e-01 -0.7130e--01 .4900

0. 16 -0.2501e-01 -0.4144e--01 ,5038

0. 18 -0.2554e-01 -0. 1135 ,5130
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Fnr link 4=

t ^4 ^4 ^'4

0.00 O.OOOOe+00 0.8727e--01 0.4361

0.02 0. 1836e-02 0.9639e--01 0.4716

0.04 0.3858e-02 0.1059 0.4854

0.06 0.6075e-02 0.1157 0.4964

0.08 0.8489e-02 0. 1257 0.5062

0. 10 O.lllOe-01 0.1359 0.5157

0. 12 0.1393e-01 0. 1463 0.5253

0. 14 0.1696e-01 0.1569 0.5352

0. 16 0.2020e-01 0.1677 0.5457

0. 18 0.2367e-01 0. 1787 0.5568

Wnrk-energy balance check:

t d(KE)

0.00 O.OOOOe+00

0.02 0.6028e-01

0.04 0.1306

0.06 0.2083

0.08 0.2930

0.10 0.3842

0.12 0.4819

0.14 0.5861

0.16 0.6967

0.18 0.8137

d(W)

O.OOOOe+00

0.6137e-01

0.1329

0.2119

0.2977

0.3901

0.4890

0.5944

0.7062

0.8244
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where

d(KE) is increase in kenetic energy,

and d(W) is the work done on the system.

51



(2-2) TnvRrsft dynamics problem:

Initial rnndi t i nns

:

qi=0.3491: qj=-0.2486;

q2=0.2618; q2=0. 04438;

q3=:-0.2618; q3=1.0492;

q4=0. 08727; q4=0.4361

Generalized coordinates, velocities, and accelerations

at each instant are specified by the output from the

forward dynamic problem.

qi=0.0000

q2=0.0000

q3=0.0000

q4=0.0000

Resu 1 t s

:

t Qi

0.00 0.6000e+01

0.02 0.7414e+01

0.04 0.7999e+01

0.06 0.8448e+01

0.08 0.8827e+01

0.10 0.9160e+01

0.12 0.9462e+01

0.14 0.9739e+01

0.16 0.9997e+01

0.18 0.1024e+02

Q2

0.5000e+01

0.6131e+01

0.6600e+01

0.6960e+01

0.7263e+01

0.7530e+01

0.7772e+01

0.7994e+01

0.8201e+01

0.8395e+01

Q3

0.4000e+01

0.4848e+01

0.5200e+01

0.5469e+01

0.5696e+01

0.5897e+01

0.6078e+01

0.6244e+01

0.6399e+01

0.6545e+01

Q4

0.3000e+01

0.3566e+01

0.3800e+01

0.3980e+01

0.4131e+01

0.4265e+01

0.4386e+01

0.4497e+01

0.4600e+01

0.4697e+01
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Thf. ftvart values as givpn by T.hfi functions

0.00 0.6000E+01

0.02 0.7414e+01

0.04 0.8000e+01

0.06 0.8450e+01

0.08 0.8828e+01

0.10 0.9162e+01

0. 12 0.9464e+01

0.14 0.9742e+01

0.16 O.lOOOe+02

0.18 0.1024e+02

Q2

0.5000E+01

0.6131e+01

0.6600e+01

0.6960e+01

0.7263e+01

0.7530e+01

0.7771e+01

0.7993e+01

0.8200e+01

0.8394e+01

Q3

0.4000e+01

0.4849e+01

0.5200e+01

0.5470e+01

0.5697e+01

0.5897e+01

0.6078e+01

0.6245e+01

0.6400e+01

0.6546e+01

Q4

0.3000e+01

0.3566e+01

0.3800e+01

0.3980e+01

0.4131e+01

0.4265e+01

0.4386e+01

0.4497e+01

0.4600e+01

0.4697e+01
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CHAPTER 6

CONCLUSIONS

The major objective of this research was to develop an

automated simulator generator for general serial-link open-

chain robots by using the symbolic language REDUCE-3. The

simulator, based on the Lagrangian formulation, can solve

both the forward and the inverse dynamic problems of any

robot specified by the user, provided only revolute and

translat ional joints are used.

The system equations are set up for user-specified

robot and solved without any modifications or

simplifications so that exact simulations (within round-

off) can be obtained, the solution of the system equations

is done in a way that avoids excessively large explicit

expressions and greatly reduces the computing time. A more

efficient way of using symbolic languages was also

developed through the compromise between REDUCE and FORTRAN

languages, as suggested in [18].

Several advantages come with the use of symbolic

processing in this application. First of all, it

eliminates the time-consuming and tedious manual derivation

process. Secondly, the simulators generated would be very

reliable since the possibility of programmer error is
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minimized. Another benefit is the remarkable flexibility

of the simulator generation program, because this program

computes all quantities symbolically rather than

numerically, it can handle a wide variety of problems

without modification. This become important when attempting

to extend the scope of the simulators to include controls

and optimization.

The work presented in this thesis offers wide scope for

future development. The techniques used to express and

solve the Lagrangian equation can be applied to various

mechanical systems. since most real-world mechanical

dynamics problem can be described by the Lagrangian.

The method for describing the geometry of robots can be

improved and standardized by adopting the widely used

Denav i t-Har t enbe rg convention. The schemes used for

calculating complicated terms in the system equation could

be further improved by treating the matrices in a more

efficient way and by finding a better trade-off between

computing time and memory space. Due to the presumption

that only one degree of freedom, or one generalized

coordinate is associated with each link, the simulators

generated becomes clumsy when simulating a multi-degree of

freedom link, in which case a single link must be treated

as several artificial links. Improvements on this defect

can result in better, more efficient simulation of wrist

joints and other higher order pairs.
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In the context of on-line dynamic control, it was

suggested in [19] that the canonical formulation has

advantages over Lagrange's equations of motion, since it

avoids taking time derivatives, which in turn results in

simpler expressions in the equations of motion. Also, the

use of super computers, array processors, or parallel

processing computers would help in obtaining numeric

solutions within the sampling time.

There is ample scope for development in computer-

related areas as well. Computer graphics can be used to

display the results of dynamic analysis. Interactive

commands could also be developed to make the program more

user- f r i end 1 y and to give the user more control over the

design process. An expert system for design purposes could

be included in the preprocessor to determine the basic

profile and mechanical requirements of robots according to

their uses.

Since it is nearly impossible to standardize problems

in the design of mechanical systems. Automatic simulator

generators are extremely attractive as tools for the

simulation, analysis, design , and optimization of robot

manipulators; they are also a valuable aid in planning the

efficient utilization of these manipulators for specific

tasks. This is certainly an area worthy of more research

work and the one which will become increasingly popular in

the near future.
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APPENDIX A

The input to the REDUCE based simulator generator for

both examples are given below.

For the 3-R ROBOT in example 1:

NUML:=3:

L(1):=RL(1); L(2):=RL(2): L(3):=RL(3);

CM{1 , 1):=XCM(1) : CM(1.2):=0: CM(1,3):=0: CM(1.4)=1:

CM{2. 1) :=XCM(2); CM(2,2):=0; CM(2.3):=0: CM(2,4)=1:

CM(3. 1) :=XCM(3); CM(3.2):=0: CM(3,3):=0: CM(3.4)=1;

MAS{1):=RM{1) : MAS(2) : =RM(2) ; MAS{3) : =RM(3)

;

MI{1.1):=RMI(1. 1): MI{1.2):=RMI(1.2): MI ( 1 . 3) : =RMI ( 1 . 3)

MI(2, 1):=RMI(2. 1) : MI (2 . 2) : =RMI (2 . 2) : MI (2 , 3) : =RMI (2 . 3)

MI(3. 1):=RMI{3, 1) ; MI (3 . 2) : =RMI (3 . 2) : MI (3 . 3) : =RMI (3 , 3

)

DIRECT(l) :=X: DIRECT( 2) : =X : DIRECT{3) : =X:

JOINT(l) :=REV: J0INT(2) : =REV ; J0INT(3) : =REV

;

AXIS{1):=Z; AXIS{2):=Z; AXIS{3):=Z: -.END;
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For the 4-LINK ROBOT In example 2:

NUML:=4:

L{1):=RL(1): L(2):=RL(2); L(3):=RL(3): L(4):=RL(4):

CM(1.1):=0; CM( 1 . 2) : =YCM{ 1 ) ; CM(1.3

CM(2.1):=XCM{2) : CM(2.2):=0; CM(2.3

CM(3.1):=XCM(3) : CM(3.2):=0: CM(3.3

CM(4.1):=XCM(4): CM(4.2):=0; CM{4.3

MAS(l) :=RM{1): MAS( 2) : =RM(2) ; MAS{3

MI{1 . 1):=RMI{1. 1)

MI(2. 1):=RMI(2. 1)

MI(3. 1) :=RMI(3. 1)

MI(4. 1) :=RMI(4,1)

MI(1.2) :=RMI(1.2

MI(2.2):=RMI(2.2

MI(3.2) :=RMI(3,2

:=0: CM{1.4)=1:

:=0: CM(2.4)=1:

:=0: CM(3.4)=1:

:=0: CM(4.4)=1;

:=RM(3); MAS(4) : =RM(4)

;

; MI(1.3) :=RMI{1 ,3)

: MI(2.3) :=RMI(2.3)

; MI(3.3):=RMI(3.3)

; MI{4.3) :=RMI(4.3)MI(4.2):=RMI(4.2;

DIRECT(1):=Y; DIRECT(2) : =X ; DIRECT{3) : =X ; DIRECT(4) : =X

;

J0INT{1) :=REV; J0INT(2) : =REV : J0INT(3) : =REV ; J0INT(4) : =TRAN

AXIS(1):=Y: AXIS(2):=Z: AXIS{3):=Y; ;END;
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APPENDIX B

The meaning of all the variables in APPENDIX A is given

in this section as follows.

NUML : the number of links

L : the length of the link

CM : the location of the center of mass of the link

MAS : the mass of the link

MI : the moment of inertia of the link

DIRECT : the direction in which the link is pointing

JOINT : the joint type

AXIS : the axis of rotation of the link
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ABSTRACT

This thesis presents a generalized technique for

generating simulators for serial, open-chain robot

manipulators using symbolic computing. These simulators

can handle both direct dynamics problem as well as the

inverse dynamics problem. In both cases. the general

governing equations are derived using joint coordinates and

the principles of Lagrangian mechanics. These equations

are then recast into a form that is better suited for

implementation in the symbolic processing language REDUCE.

A symbolic processor, written in REDUCE, has been set up to

evaluate all the required expressions in these equations

and to write these out in the form of a complete FORTRAN

simulation program; this FORTRAN simulator is then executed

to obtain the system response. Numerical examples are

presented to demonstrate the efficiency of the method and

to establish the feasibility of the proposed technique of

generating simulators automatically.

The detail of design sensitivity analysis is developed

so that it is ready for implementing to the symbolic

computing language. Combining the sensitivity and dynamics

analysis, the simulator generated is then able to be

extended to include the design optimization/update part for

improved designs.


