
A MODEL DRIVEN DATA GATHERING ALGORITHM

FOR WIRELESS SENSOR NETWORKS

by

DHINU JOHNSON KUNNAMKUMARATH

B.Tech., Cochin University of Science and Technology,

India, 2003

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department Of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2008

Approved by:

Major Professor
Dr. Gurdip Singh

Abstract

Wireless sensor networks are characterized by severe energy constraints, one to many

flows and low rate redundant data. Most of the routing algorithms for traditional networks

are address centric, and the ad hoc nature of wireless sensor network makes them unsuitable

for practical applications. Also the algorithms designed for mobile ad hoc networks are

unsuitable for wireless sensor networks due to severe energy constraints that require nodes to

perform for months with limited resources, as well as the low data rate which the constraint

implies.

This thesis examines a model driven data gathering algorithm framework for wireless

sensor networks. It was designed with a goal to decrease the overall cost in transmission

by lowering the number of messages transmitted in the network. A combination of data-

centric and address-centric approaches was used as guidelines during the design process. A

shortest path heuristic where intermediate nodes forward interest messages whenever it is

of lower cost is one of the heuristics used. Another heuristic used is the greedy incremental

approach to build a lower cost tree from a graph with various producers and consumers. A

cost division heuristic is used to divide cost of shared path into distinct paths as the path

forks in a tree.

This thesis analyzes the effects of these heuristics on the performance of the algorithm

and how it lowers the overall cost with the addition of each heuristic.

Table of Contents

Table of Contents iii

List of Figures v

List of Tables vi

List of Code vii

Acknowledgements viii

1 Introduction 1
1.1 Wireless Sensor Networks . 2
1.2 Data aggregation . 3

1.2.1 Optimal aggregation . 5
1.2.2 Suboptimal aggregation . 6

1.3 Applying heuristics . 6
1.3.1 Consumer Logic: . 8

1.4 Thesis Organization . 9

2 Background and Related Work 10
2.1 Diffusion algorithms . 10

2.1.1 Two-phase pull diffusion . 11
2.1.2 One-phase pull diffusion . 12

2.2 Observations on Diffusion Mechanism . 12
2.3 Development Tools . 14

2.3.1 Tiny Microthreading Operating System(TinyOS) 14
2.3.2 nesC . 15
2.3.3 TOSSIM . 15

3 A data gathering algorithm 17
3.1 Algorithm Design . 17

3.1.1 Introduction . 17
3.1.2 Interest propagation . 17
3.1.3 Data propagation . 19
3.1.4 Path maintenance . 20
3.1.5 Sink Logic . 21
3.1.6 Aggregation . 22

3.2 Implementation . 23

iii

3.2.1 Messages . 23
3.2.2 Tables . 25
3.2.3 Sink Node Algorithm . 26
3.2.4 Relay node algorithm . 29
3.2.5 Source node algorithm . 34
3.2.6 Message Transmission . 36
3.2.7 Heuristics . 36

4 Testing and Analysis 40
4.1 Introduction . 40

4.1.1 Test case assumptions . 40
4.1.2 Network topology . 40

4.2 Test cases for Sinks with And logic . 41
4.2.1 Effect of interest aggregation . 41
4.2.2 Effect of forwarding lower cost interests 44
4.2.3 Effect of cost division heuristics . 47

4.3 Test cases for Or logic . 48
4.4 Space complexity . 50

5 Conclusions 60
5.1 Future Work . 61

Bibliography 63

A Component declaration of Application 64

B Test Results 66

iv

List of Figures

1.1 A shortest path graph . 5
1.2 An optimal path graph . 5
1.3 Cost division . 8

2.1 Different aspects of diffusion . 11

3.1 Interest propagation . 18
3.2 Multiple data paths . 20
3.3 An example for data aggregation . 23
3.4 Cost division . 30

4.1 Results - 1P1C2DAnd . 42
4.2 Results - 1P1C1D Nodes vs Interests . 43
4.3 Results - 1P1C1D Nodes vs Links . 44
4.4 Results - 1P2C1D Nodes vs Interests . 45
4.5 Results - 1P2C1D Nodes vs Links . 46
4.6 Difference - Steiner tree and the result trees in percentages 47
4.7 Difference - Steiner tree and the result trees in percentages 48
4.8 Results - 1P4C1D Nodes vs Interests . 49
4.9 Results - 1P4C1D Nodes vs Links . 50
4.10 Results - 2P1C2DAnd Nodes vs Interests 51
4.11 Results - 2P1C2DAnd Nodes vs Links . 52
4.12 Results - 2P2C2DAnd Nodes vs Interests 52
4.13 Results - 2P2C2DAnd Nodes vs Links . 53
4.14 Results - 2P4C2DAnd Nodes vs Interests 53
4.15 Results - 2P4C2DAnd Nodes vs Links . 54
4.16 Results - 4P1C4DAnd Nodes vs Interests 54
4.17 Results - 4P1C4DAnd Nodes vs Links . 55
4.18 Results - 4P2C4DAnd Nodes vs Interests 55
4.19 Results - 4P2C4DAnd Nodes vs Links . 56
4.20 Results - 4P4C4DAnd Nodes vs Interests 56
4.21 Results - 4P4C4DAnd Nodes vs Links . 57
4.22 Results - 2P2COr Nodes vs Links . 57
4.23 Results - 2P4COr Nodes vs Links . 58
4.24 Results - 4P2COr Nodes vs Links . 58
4.25 Results - 4P4COr Nodes vs Links . 59

v

List of Tables

3.1 Data table format . 25
3.2 Interest table format . 26

4.1 Test cases for And logic . 41
4.2 Test cases for Or logic . 49

B.1 1P1C1DAnd - Interest . 66
B.2 1P1C1DAnd - Links . 67
B.3 1P2C1DAnd - Interest . 67
B.4 1P2C1DAnd - Link . 67
B.5 1P4C1DAnd - Interest . 68
B.6 1P4C1DAnd - Link . 68
B.7 2P1C2DAnd - Interest . 68
B.8 2P1C2DAnd - Link . 69
B.9 2P2C2DAnd - Interest . 69
B.10 2P2C2DAnd - Link . 69
B.11 2P4C2DAnd - Interest . 70
B.12 2P4C2DAnd - Link . 70
B.13 4P1C4DAnd - Interest . 70
B.14 4P1C4DAnd - Link . 71
B.15 4P2C4DAnd - Interest . 71
B.16 4P2C4DAnd - Link . 71
B.17 4P4C4DAnd - Interest . 72
B.18 4P4C4DAnd - Link . 72
B.19 2P2C2DOr - Link . 73
B.20 2P4C2DOr - Link . 73
B.21 4P2C4DOr - Link . 73
B.22 4P4C4DOr - Link . 74

vi

List of Code

3.1 Sink Algorithm - Broadcast interest . 26
3.2 Sink Algorithm - Reinforcement transmission 27
3.3 Sink Algorithm - Refresh Timer expiration 28
3.4 Relay Node Algorithm - Interest processing 30
3.5 Relay Node Algorithm - Data Message Processing 32
3.6 Relay Node Algorithm - Reinforcement Processing 33
3.7 Source Node Algorithm - Interest/Reinforcement Processing 34
3.8 Source Node Algorithm - Timer expiry . 34

vii

Acknowledgments

Here I express my sincere gratitude to my major adviser Dr Gurdip Singh. I also thank

Dr Howell and Dr Banerjee for serving in my committee; as well as Dr Andresen who

substituted for Dr Banerjee.

I also thank my friends from Kansas State. They have made my stay here in Manhattan

delightful. In particular, I have to express my gratitude to Stroade family who let me stay

with them this last year.

Last but not the least, I would thank my family who supported me through and through.

And to the One above all who has watched over and guided me.

viii

Chapter 1

Introduction

Since the invention of the first transistor at Bell Labs in 1947 by William Shockley, John

Bardeen and Walter Brattain, developments in modern electronics have progressed in a

rapid rate. Gordon Moore observed in 1965 that computing power doubled per unit cost

every two years. Results of this evolution in electronics are seen today in the plethora of

cost effective electronic devices equipped with wireless communication.

It is interesting to observe that the original Internet Protocol suite was inspired by the

early packet radio systems of 1970s. Packet radio networks were one of the earliest wireless

ad hoc networks. Though most projects at that time were funded by DARPA for military

utility, the evolution of this field has become a significant influence in our everyday life.

Ad hoc network is a term used today to characterize networks that lack fixed infras-

tructure and pre-configuration, and have the capability to dynamically organize and com-

municate. The performance of conventional networks depends on continuous connectivity,

bandwidth, reliable power supply and static configuration and topology. An ad hoc network

does not rely on these supporting infrastructures. As suggested by Murphy in his paper

on formal reasoning for mobile communications1, an ad hoc network can be visualized as

a continuously changing graph. Communication depends not only on the distance between

nodes, but also on the willingness of individual nodes to collaborate and form a cohesive

transitory community. A wireless ad hoc network is formed on the fly, and changes as the

nodes enter, relocate or leave the network.

1

Mobile ad hoc network(MANET) is a type of self configuring ad hoc network consisting

of mobile routers and associated hosts. It became popular in 1990s with the widespread

usage of the IEEE 802.11 wireless communication standard and laptops. According to

Aggelou2, “A mobile Ad hoc network is a system of mobile wireless nodes that can freely

and dynamically self-organize in arbitrary and temporary network topologies without the

need of a wired backbone or a centralized administration.”

A Wireless Sensor Network(WSN) is also a type of ad hoc network. The network consists

of a large number of immobile nodes spanned in a large geographical area. These networks

are configured to perform a certain application specific task. Each node is equipped with a

sensor or/and an actuator. A sensor node has wireless communication capability and some

level of intelligence for signal processing and networking of the data.3

1.1 Wireless Sensor Networks

Wireless Sensor Networks are identified as one of the most important technologies of this

century.4 Advances in wireless communication and modern electronics have led to the de-

velopment of low-cost, low-power, multi-functional sensor nodes which are small sized and

can communicate short distances. Sensor nodes consist of components capable of sensing,

data processing and communication.5

A WSN has a large density of sensor nodes deployed in a geographical area. Each of

these node is equipped with a sensor that can sense the environment. But they can also be

equipped with an actuator. An actuator is a component that can be used to interact with

environment using a mechanical part based on inputs. The distribution of the nodes thus

forms a radio network inherently ad hoc. Hence WSN can be visualized as a graph that

connects nodes in a momentary and decentralized fashion.

The characteristics that distinguish a wireless sensor network from an ad hoc network

were listed in Akayildiz et al.5 They are as follows.

• Node density in a WSN has a higher magnitude than an ad hoc network.

2

• Number of nodes in a WSN is also of a magnitude several orders higher.

• Sensor nodes can fail often.

• Topology of WSN changes frequently due to node and link failures rather than rede-

ployment.

• Sensor nodes mainly use broadcast communication, where as other ad hoc networks

like MANET use point to point communication.

• Sensor nodes have limited resources such as power, memory and computational ca-

pacity.

The impact of these characteristics can be observed in WSN. There will be redundant

data sources, since the data collected by the sensors are from a common phenomenon.

The data are transmitted to a sink from the sensor nodes, thus making the path of data

transmission to data recipient a reverse multi-cast tree in most applications. Since most

of the sensors are immobile and required to operate for months without any intervention,

there is a severe constraint on energy consumption of sensor nodes. A sensor node consumes

power mainly during sensing, communication and data processing. Energy consumption can

be minimized by reducing the frequency of activities in WSN, thus suggesting that high data

rate transfers are not feasible. Besides in traditional networks, data are transmitted from

source to sink via the shortest route possible. This address centric approach is not suitable

for WSN applications as it can not eliminate the data redundancy occurring in most of the

cases. Because of these factors, most algorithms and protocols developed for MANETs are

unsuitable for wireless sensor networks.

1.2 Data aggregation

In order to conserve energy, a strategy to avoid redundant data and to aggregate data en

route must be used. This data centric approach may be better suited for wireless sensor

3

network applications. In this approach, contents of data packets en route are examined by

nodes on the path to perform some consolidation or elimination process to avoid redundancy

due to data originating from different sources. To understand the practicability of usage of

data aggregation, the context in which such techniques may be used needs to be analyzed.

The type and dynamics of the data flowing in the wireless sensor network from the sources

may be considered6:

1. There is no data redundancy as all sources send completely different data.

2. There is complete data redundancy as all sources send identical information.

3. There is an intermediate level of redundancy in data transmitted by sources and data

is non-deterministic in nature.

When there is no redundancy, data aggregation is not possible. Hence, in this case

a data centric as well as an address centric algorithm can preform with same number of

data transmission in a sensor network. But when there is complete redundancy in data

transmitted by sources, an address centric approach can be modified to perform better

than an data centric approach. This can be observed when an address centric algorithm

is modified to request data only from one of the redundant data sources. In the last case,

the sink can not request some sources to merely shut down, due to the non deterministic

nature of data. So address centric algorithms can not be modified to work better than a

data centric approach. This case of wireless sensor networks is the subject of interest for

rest of the discussion contained here.

Data aggregation may be implemented in several ways, but duplicate suppression is the

simplest data aggregation function and is implemented in most wireless networks. As in

Krishnamachari et al6, for the modeling purposes the aggregation function is assumed to

transmit a single aggregate packet when it receives multiple input packets.

4

Figure 1.1: A shortest path graph

Figure 1.2: An optimal path graph

1.2.1 Optimal aggregation

In a network graph G = (V, E) where V is the set of nodes and E is the set of edges that

connect nodes which can communicate directly, let S1, S2..., Sk ∈ S be data sources and D

be a sink node. For optimal aggregation a minimal cost tree connecting nodes in S and

node D with minimal number of edges should be found. This is the Steiner Tree problem7

which is an NP-hard variant of the minimum spanning tree problem. At this point it is safe

to conclude that, the optimal number of transmissions in a data centric algorithm, where

5

there is only one sink is equal to the number of edges in the minimum Steiner tree of the

network which contains node set S ∪ D.

1.2.2 Suboptimal aggregation

Now that it is clear that an optimal aggregation can not be obtained, some heuristics may be

used to obtain suboptimal solutions to the data aggregation problem in the wireless sensor

network. A couple of heuristics are described here.

1 Shortest Path Tree: Here the source sends data to the sink node along the shortest path

between them. Wherever the paths overlap, they are combined to form the data

aggregation tree.

2 Greedy Incremental Tree. At first the tree consists of a shortest path between a sink and

its nearest source. To this tree, sequentially other nearest sources are added.

If there is more than one sink in the network, the complexity of data aggregation problem is

increased. Now the optimal solution can contain either a singly connected graph or a forest

of trees, where the number of trees is less than or equal to the number of sinks. Figure

1.2(a) a possible shortest path graph is shown. Figure 1.2(b) shows an optimal graph for

the same topology. In these figures nodes P1, P2, P3 generate same data and nodes C1,

C2, C3 consume them.

However, the nature of wireless sensor networks eliminates the possibility of finding these

suboptimal data aggregation solution in a centralized manner. A distributed solution to this

problem is discussed in this thesis.

1.3 Applying heuristics

A description of how I implemented the heuristics described in the previous section is given

here. In addition to that, another heuristic to distribute cost is given towards the end of

this section.

6

Applying the shortest path heuristics: One of the ways that is used in traditional

networks to find shortest path is by flooding a beacon through the network which will

cumulate the path information. Two key parts of the path information are cost and sequence

of links that form the actual path.

One way to implement the shortest path algorithm is to let a consumer initiate the

process of finding the shortest path by broadcasting a message indicating its interest in a

certain data type. This message will be flooded through out network. As the message is

propagated, at each intermediate node the cost information on the message is updated. In

addition the information regarding the sink and the neighbor from which the least cost packet

arrived is stored in the node. In the shortest path algorithm, if the actual shortest path is to

be determined by consumers, then intermediate nodes will require forwarding of duplicate

messages with lower costs. The producer can send data, addressing it to consumer and

this scheme avoids flooding of data through the network. This is an example of traditional

address-centric approach.

Since end-to-end schemes are not practicable for wireless sensor networks, only some of

the techniques used in shortest path algorithm is used in the design of this algorithm. When

the consumer sends out requests for data it may be propagated through the network, as the

consumer does not have any information on data sources. Whether or not to propagate

the lower cost duplicate messages at intermediate nodes is a design choice. Data that are

transmitted by producers are not addressed to consumers, but rather they make a path

through the network following the least cost request at intermediate nodes.

Translating the greedy incremental approach: In this heuristic, a shortest path

needs to be found between a consumer and a producer. Then other nearest consumers and

producers are attached to the graph incrementally. In other words, if there is already a

path between a source and a sink, and an intermediate node on this path receives a message

requesting a data which is available, then the node just need to reply with data.

Cost division approach: This is another heuristic that may be used to give preference

7

Figure 1.3: Cost division

to a shared path. In Figure 1.3 nodes P1 and P2 generate same type of data and nodes

C1 and C2 are consumers of this data. Path 1 is a shortest path between producer P2 and

consumer C2, where as path 3 is the shortest path between producer P1 and consumer C1.

The overall cost of transmitting data through these two paths are higher than the shared

path 2(here cost is simply the number of hops). C1 and C2 can be made to select path

through node 6, if it has lower cost than paths 3 and 1 respectively. This can be made

possible by cost division approach. If the cost(which is 2) of data path from node 4 to 6 is

distributed into branches, then the cost(which is 2/2 + 1) of path through node 6 will be

lower than that of path 1 and 3(which is 3 each).

1.3.1 Consumer Logic:

In a typical sensor network application there will be more than one node which collects data

and process them. The case might be that, such consumers might require more than one

data item that are produced by various nodes in the network. There are four different cases,

one can consider:

1. Simple: Consumer node requires only one kind of data.

2. And Logic: Consumer node requires more than one data item, and require to collect

8

all of them.

3. Or Logic: Consumer requires only one of the data items of the many data it might

possibly request.

4. Combination Logic: Consumer requires more than one data item and uses a combina-

tion of both logics among various data sets it requests.

This thesis considers the study of first three cases only, with the application of heuristics

discussed before.

1.4 Thesis Organization

An outline of this thesis is as follows: A related work, directed diffusion paradigm and some

algorithms implemented in this paradigm are discussed in Chapter 2. A brief overview of

TinyOS platform and the tool TOSSIM and nesC compiler used in development and testing

is also given in that chapter. Chapter 3 discusses the design of the algorithm as well as its

implementation. Analysis of the algorithm is discussed in Chapter 4. Chapter 5 discusses

the conclusions and some future work that may be done.

9

Chapter 2

Background and Related Work

A sensor network may be viewed as a distributed event-based systems. Data is usually

collected or processed information of a physical phenomenon. So data can be an event

which is a short description of phenomenon sensed by the wireless sensor network. Nodes

that generate or publish information are sources, while sinks are nodes that consume or

subscribe this information.

A data centric approach for designing wireless sensor network applications is discussed

in Intanagoniwat et al8. Directed diffusion is described in this paper as a paradigm for

communication in distributed wireless sensor network applications. Here every sensor node

data is named with an attribute-value pair. Sinks express interest in named data by gen-

erating interests. Matching data is then “drawn” towards the sink. Data can be cached,

transformed or aggregated as part of in-network processing. Based on cached data, inter-

ests may be directed by intermediate nodes. Localized interactions between a node and its

neighbors can be used to determine data and interest propagation as well as aggregation.

2.1 Diffusion algorithms

Data dissemination algorithms that do in-network data processing to move data from sources

to sinks are called diffusion algorithms9. Two-phase pull diffusion was an algorithm used

in initial work with directed diffusion8. The other algorithm discussed is one-phase pull

diffusion9.

10

Figure 2.1: Different aspects of diffusion

2.1.1 Two-phase pull diffusion

Data used in this algorithm consists of named attribute-value pairs. Sinks use a set of

attributes to identify data. This information is contained in interest message which is

by default flooded through the network. Figure 2.1(a) shows a sink broadcasting an in-

terest message and further propagation of interest messages and establishment of gradients

throughout the network. Each gradient consists of a value and direction(the direction points

to the neighbor from which the interest came). As a result of flooding every neighboring

node pair will have gradients set up towards each other.

Once the source receives an interest, it starts sending data. The first data transmitted

is exploratory, as it will be forwarded to all neighbors that have matching gradients. This

results in flooding of data, as every neighboring node pair has gradients set up towards each

other due to flooding of interest messages.

Figure 2.1(b) shows the establishment of reinforced gradients, once a sink receives ex-

ploratory data. The sink reinforces a neighbor, and a reinforced gradient is established to

itself at the neighbor and this process repeats resulting in a graph of reinforced gradients

from all sinks to sources. After this phase data messages are not marked exploratory and

are transmitted only on reinforced gradients. Figure 2.1(c) shows the flow of data along the

established reinforced gradients from multiple sources to a sink and Figure 2.1(d) shows the

flow of data along the established reinforced gradients from one source to multiple sinks.

The gradients in the network are managed as soft-state. Interests and exploratory data

11

are propagated periodically to refresh gradients. Periodic transmission of reinforcement

messages is required to maintain reinforced gradients. Figure 2.1(e) shows the use of negative

reinforcements in this algorithm to correct routes. When a node receives data that is no

longer relevant to it(for example, due to a topology change), the node no longer sends

reinforcement to the node that delivered irrelevant data. This will cause gradients to time

out and the data path will cease to exist. Another way to do this, would be to transmit

negative reinforcement messages to the node that delivered irrelevant data.

2.1.2 One-phase pull diffusion

This is an improvement over two-phase pull diffusion, as it eliminates one of the search

phases. Similar to two-phase pull, sinks generate interest messages that are diffused through

the network resulting in gradient establishment. The next search phase of transmitting

exploratory data is not present in one-phase pull, but instead data is transmitted only to

the lowest latency gradient that corresponds to each sink. To identify various sinks, each

sink needs to maintain a unique identifier, either formed from its MAC address or by using

probabilistic approaches.

2.2 Observations on Diffusion Mechanism

1. There is a periodic interest propagation phase. The initial interest message can be

considered exploratory as it tries to find a source for the data. The sink periodically

refreshes the interest which is a soft state. Refreshing is a necessity as it is not possible

to transmit interest reliably across the network. The refresh rate is a protocol design

parameter. The interest may be propagated by flooding or by directional propagation

based on previously cached data.

2. Each distinct interest is stored in a cache at each node. Interest aggregation is possible

when a similar interest reaches the node from a different sink, as the cache does not

store the sink information. An entry in the cache has various fields that corresponds

12

to the message fields. When a node receives an interest, first it checks if the interest

exists in the cache. An interest entry is created if no matching entry exists. A received

interest message is used to instantiate the parameters of the entry. This new entry

will have a gradient towards the node that sent the interest. If another interest with

same parameters is received by the node from a different neighbor, no new entries are

made, but a gradient is set up in the direction of neighbor from which it received the

latest interest. A gradient is removed from its interest entry, when it expires. An

interest can be removed from the cache when all its gradients have expired.

3. Interest propagation phase is followed by data propagation phase. A source sends data

as a unicast message to its neighbors that have a gradient entry in its interest cache.

4. Data will be cached at intermediate nodes. The receiving node of a data message

compares parameters of the data message to its entries in interest cache. If no match

is found, the data packet is silently dropped. If there is a match, data cache of the

node is checked for its associated match. The data cache keeps track of recently sent

data messages and it can also be used for loop prevention. A received data message

will be dropped if it has a matching data cache entry. Otherwise, a new entry is made

in the data cache and the data message is re-sent to node’s neighbors. Duplicate

suppression is the simplest form of data aggregation.

5. Once the sink receives exploratory data transmitted by a source, it sends out reinforce-

ment messages to select the low latency path. If at a later point, another datum with

lower latency than the current data path arrives at the sink, the sink may reinforce

that path. With the usage of negative reinforcement the sink may cancel the existing

path or by timing out of soft state(gradients) the extra data path may be removed.

6. Diffusion can be considered an on demand routing technique. It does not make an effort

to construct a loop free path, but rather multiple data paths are set up. Reinforcement

is used to reduce the multiplicity of data paths. And in order to avoid loops, caching

13

is used to keep track of recent messages.

7. A mechanism not requiring information on network topology is beneficial, because as

far as a node is concerned, the message it receives comes from its neighbor. Because of

these localized interactions, global topology changes are not required to be propagated

through out the network. Also in-network aggregation can be used to improve energy

efficiency of the algorithms.

2.3 Development Tools

2.3.1 Tiny Microthreading Operating System(TinyOS)

TinyOS consists of a tiny scheduler and a graph of components. “A component has four

interrelated parts: a set of command handlers, a set of event handlers, an encapsulated fixed

size frame and a bundle of simple tasks.”10 Tasks and handlers execute in the context of a

frame and operate on its state.

A tinyOS application normally consists of a number of components wired together. Each

component may use other components. Higher level components issue commands to lower

level components and lower level components signal higher level components. The topmost

level component of the application is not used by any other component, where as the other

components may interact with each other using interfaces.

TinyOS uses static memory allocation, and requires every component to declare the

commands it uses and events it signals, so that the memory requirements of components

are known at compile time.

Commands are non-blocking requests and are required to return status to their caller.

Hardware events directly or indirectly invoke event handlers. A hardware interrupt can

thus trigger a series of events that do upward processing and downward processing through

commands.

The majority of the work is performed by tasks. Tasks are atomic with respect to one

another but can be preempted by events. They are scheduled by the tinyOS scheduler in a

14

FIFO manner.

2.3.2 nesC

nesC11 is a static language and is an extension of C. It performs whole program analysis

during compilation. In order to support this analysis, every component, whether a module

or a configuration, has to declare all the interfaces it uses and provides. Each component is

accessible only through these interfaces given in its declaration.

Configuration files are used to wire other components together, connecting interfaces used

by a component with that of one provided by another component. All nesC applications have

a top level configuration which connects all the components used. Modules are components

that provide an implementation of commands for the interfaces it provides and events for

the interfaces it uses.

Concurrency is provided through tasks and events. Events are asynchronous code, as

they are triggered by hardware interrupts. The communication layer of TinyOS is not

designed to be executed as asynchronous code. The nesC compiler is capable of determining

race related issues during compile time.

An example of a top level component of an application that wires components together

is listed in Appendix A. This is a component declaration of the simulator application which

runs one of the heuristic algorithms. The code snippets with in Chapter 3 are nesC listings.

2.3.3 TOSSIM

TOSSIM12,13 is a discrete event simulator for TinyOS applications written in nesC. The

nesC compiler uses a PC option to compile TinyOS application into a TOSSIM application.

TOSSIM is capable of simulating up to a thousand nodes, by replacing some low level

components with hardware abstraction components.

TOSSIM compiles the nesC code, and generates a discrete event queue from TinyOS

component graphs. It runs the same code that runs on the sensor network hardware. The

simulator event queue generates discrete events that are equivalent to hardware interrupts

15

to drive the simulation. The remainder of the TinyOS code runs unchanged.

The simulator models a network as a directed graph. Each edge has a bit error probability

that indicates the fidelity of transmission between nodes, which are represented by vertexes.

This abstraction allows testing with various error rates. Network topology along with error

rates can be provided as input to the simulation in a file.

TOSSIM also supports mechanisms for extensible radio and ADC models as well as

communication services to external programs that can interact with a simulation. TinyViz,

a Java based graphical user interface is one such external program.

In the next chapter, the algorithm design and implementation is discussed. The al-

gorithm tries to adopt some of the diffusion mechanisms discussed in Section 2.2, while

incorporating heuristics. The implementation of the algorithm was done for the TinyOS

platform and was tested on TOSSIM.

16

Chapter 3

A data gathering algorithm

3.1 Algorithm Design

3.1.1 Introduction

In a wireless sensor network application, nodes that sense and generate data are called

sources. Nodes in the wireless sensor network that require data for processing are called

sinks. The nodes that do not perform either of these functions can be used as relays

and hence are called relays. A sink generates a message that identifies its requirement.

This message is called interest, and is propagated throughout the network. The source

transmits data message for the interest messages it receives. The transmitted data causes

the formation of one or more data paths in the wireless sensor network. The sink may

choose to reinforce only one of these paths. The sink may transmit reinforcement message

along only one data path to reinforce it.

A data message can be identified by its source and the type of data. An interest message

generated by a sink will contain the data type which it requires.

3.1.2 Interest propagation

When a sink transmits the first interest message, it does not have any information on the

availability of data. So the simplest choice for sink is to broadcast interest message to all

its neighbors. Interest message is an exploratory message and is broadcast throughout the

17

Figure 3.1: Interest propagation

network. Figure 3.1 shows propagation of interest message through the network.

Some of the features of the shortest path heuristic can be applied in interest propaga-

tion. As interest message diffuses through the network, it accumulates path information.

An interest message uses a cost field to hold a simple cost indicator which is a hop count.

Whenever a node receives an interest message, it will look up in its interest table for the re-

ceived interest message. An interest table has only one entry per data type from a particular

sink.

Consider the interest table of node 5 shown if Fig 3.1. If node 9 delivers the first

interest message(generated by sink 7), a new entry is made in the table with its parameters

instantiated from the interest message. Interest message is then relayed on by another

broadcast. Later when node 6 delivers the interest message with lower cost(cost being

number of hops), it is considered a duplicate as there is a matching entry in the table. There

are two possible actions that node 5 can perform in response. One is to drop the packet,

and the other is to forward it. If the node forwards the lower cost interest message, then

algorithm is incorporating the shortest path heuristic. When node 2 delivers the interest

message to node 6, it is treated as a duplicate and can be ignored, as its cost is higher than

or equal to that of the existing entry.

The table is periodically refreshed to remove expired entries. The refresh period is a

design issue depending on application and size of network.

18

3.1.3 Data propagation

As in the case of relays, a source also maintains an interest table. When a source receives an

interest message, the source replies with a data message to the neighbor that transmitted

the interest message for two cases:

1. Interest message is the first request from a particular sink for the data.

2. Interest message is not a first request from a sink, but has a lower cost.

In Figure 3.1, if source 4 receives the first interest message from node 8, then the source

will reply with data. If node 1 delivers the interest message after node 8, then that interest

message will be ignored by the source. But when node 5 delivers interest message, the

source will reply with data as it is of lower cost. Thereafter, the source will send data

message periodically against each distinct interest message that is reinforced. If more than

one reinforced interest entry came from the same neighbor of the same data type, only one

data message is transmitted to that neighbor to prevent duplicates being transmitted to the

neighbor from source. As data message propagates through the network, it also accumulates

a cost value, which, in this case, is number of hops the data message has traveled.

A data table is maintained at each relay. The table keeps track of the most recent

messages. When a relay receives a data message, it checks whether data exists in the table

by comparing parameters of the message with that of the table entries. Data message is

duplicate if it is from the same source, has the same type and has the same sequence number

(the sequence number or count is also used to identify the newness of a message). If it is

duplicate data, then it is ignored. If it is new data, then the table is updated and the data

message is forwarded. When data from a different source arrives at the relay, an entry is

made in the table only if the cost of data message is lower than the current entries for the

data type; otherwise it is ignored. Whenever an entry is made/updated in the table, it is

assigned a time stamp. A table entry is removed only at its expiry.

19

Figure 3.2: Multiple data paths

If a data message received at a relay is first of its type, then it is forwarded to all neighbors

that have entries in its interest table. But if the data is not the first of its type, then it

is forwarded to its neighbors whose entries are reinforced in its interest table. Another

case that requires forwarding of a data message is when data exists in the table and a new

interest message for data is received. In this case, data message will be transmitted against

the interest message and the cost of the data message may be distributed over an existing

path (reinforced path) as well as the would-be paths.

3.1.4 Path maintenance

When a sink receives a data message it has requested, it sends reinforcement messages to

confirm the path for data delivery. If a sink confirms the first path that delivered data, then

it may be a lower delay path rather than a lower cost path.

Figure 3.2 shows data paths P1 and P2. Although the path P2 has less number of hops

than the path P1 between the nodes 4 and 7, the messages transmitted through the path P1

may reach node 7 earlier than the messages transmitted through the path P2. This delay

can be caused by extra communication or processing load on nodes 5 and 6 in the path P2.

Thus the path P1 can become a lower delay path, and the path P2 a lower cost path.

Data with lower cost can be delivered at a later point by a different neighbor than the one

through which current data path is set. The sink then has two choices: either to reinforce

20

the new path immediately or wait until the next refresh cycle to confirm the new path. A

refresh cycle is a period of time between transmissions of reinforcements messages at a sink.

If a sink is to confirm the path immediately then it will cause duplicate data paths. This

choice is avoided in the implementation.

At each relay, on reception of reinforcement message, its parameters are compared with

entries in the node’s interest table. If there is an interest entry for the data type from the

sink which sent the reinforcement message, then the entry is updated to indicate that it

is reinforced and that its expiry is extended. Reinforcement is forwarded to the node that

relayed the least cost data for the reinforced data type.

On receiving reinforcement, the source updates its interest table similar to the relays, but

does not forward reinforcement. It periodically sends out data to neighbors that delivered

reinforcements. As long as there are reinforced entries within the interest tables on relays

along data path, the flow of data can continue.

If a sink does not receive data it requested after a certain span of time, it may recommence

interest propagation, and the process will start again. The series of actions starting with

interest propagation and the series of data and reinforcement transmissions up to next

recommencement of interest propagation constitute an interest cycle.

3.1.5 Sink Logic

A sink may need to perform a certain application specific computation, which requires one

or the other data type. It could also be the case that sink requires different data items for

processing. In the first case a sink can use Or logic for data selection, where as in the second

case it uses And logic.

In both cases, during the interest propagation phase the sink sends out interest for

all data types. Depending on limitations of packet lengths in the wireless sensor network

application, the sink could pack as many interests as possible into a single message. This

interest message is called an aggregate interest.

21

Whenever a relay receives an aggregate interest message, it needs to do processing for

each of the encompassed data types. The processing may be done in a fashion as if interest

for each data type were received separately. If an interest message has to be forwarded,

then it can be forwarded again in an aggregate interest message, but only those data types

whose interests need to be forwarded will be included in this aggregate interest message.

Sources also process aggregate interest messages in the same ways as relays, except it need

not forward it.

When a sink receives the first data message for a particular type it requested after

interest transmission, its response depends on the logic used. If it uses Or logic, then it

responds only to one of the data messages it receives with a reinforcement message even if it

receives other data before the start of next refresh cycle. At the start of next refresh cycle,

the neighbor that delivered the least cost data among all data types sink has received, will

be transmitted a reinforcement.

When a sink using And logic receives a data type it is interested in, it waits for a period

before it will send out reinforcement against the least cost data message that it received

for that particular data type. At the start of the next refresh cycle for each data type sink

received data message against its interest, the sink transmits reinforcement to the neighbor

that delivered the least cost data message.

3.1.6 Aggregation

Data aggregation: It can be achieved at relay nodes by combining data of different data

types whenever they are to be forwarded to same neighbor. In Figure 3.3 sink C1 requires

both data types produced by source P1 and P2. At relay node 5, which is the starting point

of common path shared by both data types, data aggregation could be done.

Interest aggregation: It is very much possible that several sinks may be in the interest

propagation phase at the same time. Thus there is a chance that relays may receive distinct

interests with the scope of aggregation. When a relay receives different interest messages

22

Figure 3.3: An example for data aggregation

from the same sink for the same data type, then only the one with the lower cost needs to

be forwarded. Also in the case when more than one interest are at a relay that need to be

forwarded they may be aggregated.

3.2 Implementation

The algorithm is implemented in nesC for TinyOS platform and is simulated on TOSSIM.

The components are implemented in such a way that data and interests are handled in

separate modules. Algorithms for source, sink and relays are discussed separately in the

following discussion.

3.2.1 Messages

From the discussion so far, it is clear that there will be three different types of messages

flowing in network, viz., interest, data and reinforcement. Interests messages are identified

by the sink that generated the interest and the data type that sink is interested in. The

message must also bear the identifier of the node that transmitted it as interest progress

through the network, as well as the cost of path traveled thus far.

Reinforcements also have the same requirement as interests. Thus both these messages

can have same format and there is a need for a field in these messages to identify whether

they are reinforcement or interest or data. The messages also require a field to identify the

23

newness of the message. This can be implemented with a sequence number.

Format of the interest message is as follows:

• MSG TY PE : Identifies the message as interest. Length is 1 byte with value 0x01

• PREV HOP : Identifies the node that transmitted this message. Length is 2 bytes

• MSG SRC ID : Identifies the sink requesting data. Length is 2 bytes.

• DATA TY PE : Identifies the type of data requested by sink. Length is 1 byte.

• COUNT : Gives the message number at the sink. Length is 2 bytes

• COST : Gives the cost of interest message. Length is 2 bytes.

The reinforcement message format is given below:

• MSG TY PE : Identifies the message as reinforcement. Length is 1 byte with value

0x02

• PREV HOP : Identifies the node that transmitted this message. Length is 2 bytes

• MSG SRC ID : Identifies the sink requesting data. Length is 2 bytes.

• DATA TY PE : Identifies type of data requested by the sink. Length is 1 byte.

• COUNT : Gives the message number at the sink. Length is 2 bytes

• COST : Gives the cost of reinforcement message. Length is 2 bytes.

In addition to the fields described above, data messages will have a field to hold the

actual data. The data message structure is as follows:

• MSG TY PE : Identifies the message as data. Length is 1 byte with value 0x03

• PREV HOP : Identifies the node that transmitted this message. Length is 2 bytes

24

• MSG SRC ID : Identifies the sink requesting data. Length is 2 bytes.

• DATA TY PE : Identifies the type of data in the message. Length is 1 byte.

• COUNT : Gives the message number at the sink. Length is 2 bytes

• COST : Gives the cost of data message. Length is 2 bytes.

• V ALUE : This field contains data. Length is 2 bytes

The cost used in this implementation is hop count multiplied by ten. This is to accom-

modate integer division for the cost division heuristic.

Interests are broadcast where as reinforcements are unicast, so they can not be aggre-

gated. However, they can be aggregated separately. An aggregate message is identified

by its first field. The next field will contain the number of interests that are packed in the

aggregate message, followed by a field for previous hop. This is followed by units of interests

consisting of a sink identifier, data type, cost of interest and count. In a similar manner

reinforcements can also be packed. In addition to the fields discussed for other aggregate

messages, data aggregate messages require the field with data as well to be packed in the

aggregate data message.

3.2.2 Tables

Every node in the network maintains both a data and an interest table. Fields in the data

table correspond to parameters in data messages. The data table is meant to cache data

messages. A timestamp is associated with each entry in table. A timer is used to check for

the expiration of entries. The structure of the table is given in 3.1.

SOURCE TY PE COUNT DATA COST PREV HOP STAMP

Table 3.1: Data table format

The interest table is used to cache interest and reinforcement entries. Thus the fields

of the table correspond to interest and reinforcement messages. As it was discussed, an

25

interest message is identified by a sink and data type, correspondingly there will be only

one entry per sink and data type. A timestamp is also associated with each entry.

SOURCE COUNT TY PE REINFORCED COST PREV HOP STAMP

Table 3.2: Interest table format

The tables are maintained in separate modules. Care must be taken in adjusting the

timer parameters such that when a reinforcement message arrives at a relay there is still data

in the data table. The timestamp is simply a count which marks the epoch in which a table

entry expires. Thus whenever that mark is reached that entry is removed. As discussed in

the design phase, whenever an update is made in the entry the timestamp for expiration is

updated to extend the entry’s life.

3.2.3 Sink Node Algorithm

A sink node maintains two timers, one for interest cycles and another for refresh cycles. The

timer maintaining interest cycles is called the interest timer and timer maintaining refresh

cycles is called the reinforcement timer.

Code Listing 3.1: Sink Algorithm - Broadcast interest

Node ∗ p1 ;
MoteDataType ∗ q ;
GenMessage msg ;

i n l i n e void updateIntMessage () {
sendmsg . msg type = IntType ;
sendmsg . count = count ;
sendmsg . co s t = 10 ; // f o r 1 hop , co s t = 1∗10
sendmsg . msg s r c id = TOS LOCAL ADDRESS;
sendmsg . prev hop = TOS LOCAL ADDRESS;

}

task void s end In t e r e s t () {
atomic q = moteInfo [TOS LOCAL ADDRESS]−>dType ;
while (q != NULL) {

updateIntMessage () ;
sendmsg . data type = q−>type ;

26

c a l l GenMsgOutput . output(&sendmsg , TOS BCAST ADDR) ;
q = q−>next ;

}
}

When a sink starts up, it waits for some time and then it starts its interest timer. It then

enters interest propagation phase where it broadcast interests of all data types that it has

interest. After broadcasting interests, the sink waits for responses. Data tables are updated

on the arrival of each data message. When the first data message in response to an interest

arrives, the reinforcement timer is started and a reinforcement message is sent.

As described previously, depending on sink logic, further arrival of data messages may

or may not result in the transmission of reinforcements. In the case of a sink that consumes

only one data type, no further transmission of reinforcements occur until the beginning of

the next refresh cycle.

Code Listing 3.2: Sink Algorithm - Reinforcement transmission

bool type [NUMTYPES] ; /∗ i n i t i a l i z e d to FALSE at
s t a r t o f i n t e r e s t propagat ion phase ∗/

bool t r i g g e r () {
bool va lue = FALSE;
int i = 0 ;
while (i < moteInfo [TOS LOCAL ADDRESS]−>ntypes) {

value |=type [i] ;
i++;

}
return value ;

}

event DataMessage ∗ In te r e s tData . rece ivedData (DataMessage ∗ m) {
int i = 0 ;
// s t a r t re in forcement t imer
i f (! t r i g g e r ())

c a l l ReinforceTimer . s t a r t (TIMER REPEAT, RefreshPer iod) ;
q = moteInfo [TOS LOCAL ADDRESS]−>dType ;
while (i < moteInfo [TOS LOCAL ADDRESS]−>ntypes | | q != NULL) {

i f (m−>data type == q−>type && ! type [i]) {
i f (moteInfo [TOS LOCAL ADDRESS]−> l o g i c == AndLogic)

r e i n f o r c e (q−>type) ;
else i f (! t r i g g e r ())

27

r e i n f o r c e (q−>type) ;
type [i] = TRUE;

}
i++;
q = q−>next ;

}
return m;

}

If a sink uses Or logic, only the first data message arrived will result in reinforcement

until the next refresh cycle. In the case of And logic, at the arrival of first data message of

each data type that sink is interested in, a reinforcement message will be unicast to the relay

that delivered it. A Boolean array is used to save the status of the reception of data message

for each data type. This is illustrated in listing 3.2. When its reinforcement timer expires,

the sink sends a reinforcement message. If the sink consumes only one data type, which is

the case when it uses Or logic or it has interest only on one data type, reinforcement is sent

only to the neighbor that delivered the least cost data message. In the case of Or logic, the

neighbor that delivered the least cost data among all the data types sink has interest, will

be sent reinforcement.

Code Listing 3.3: Sink Algorithm - Refresh Timer expiration

GenMessage sendmsg ;

i n l i n e r e s u l t t r e i n f o r c e (u i n t 16 t t) {
u in t 16 t hop = c a l l DataTableI . getLeastCostHop (t) ;

atomic {
sendmsg . prev hop = TOS LOCAL ADDRESS;
sendmsg . msg s r c id = TOS LOCAL ADDRESS;

}
sendmsg . count = ++count ;
sendmsg . msg type = ReInfType ;
sendmsg . data type = t ;
sendmsg . co s t = c a l l RouteTableI . getCost (hop) ;
return c a l l GenMsgOutput . output(&sendmsg , hop) ;

}

event r e s u l t t ReinforceTimer . f i r e d () {
int i =0;
i f (moteInfo [TOS LOCAL ADDRESS]−> l o g i c == AndLogic) {

28

q = moteInfo [TOS LOCAL ADDRESS]−>dType ;
while (q != NULL) {

i f (type [i ++])
r e i n f o r c e (q−>type) ;

q=q−>next ;
}

} else i f (moteInfo [TOS LOCAL ADDRESS]−> l o g i c == OrLogic) {
return r e i n f o r c e (c a l l DataTableI . getLeastCostDataType (

moteInfo [TOS LOCAL ADDRESS]−>dType)) ;
}
return SUCCESS;

}

In the case of And logic, reinforce is sent for each data type to the neighbor that delivered

the least cost data of that type. In the case of a simple sink that consumes only one data

item, it is set to use And logic, with the number of data types one.

A Reinforcement timer is set up as a repeat timer, so that once it expires it will restart

itself. When the interest timer expires, the reinforcement timer is stopped. The sink enters

interest propagation phase, i.e., the beginning of the algorithm, and the process repeats.

3.2.4 Relay node algorithm

Every relay maintains an interest table to cache interest messages and a data table to cache

data messages. When a relay receives an interest, it consults the interest table. If there is

no interest in the table with same data type for that sink, a new entry is made. If there is

an entry, then that entry is updated only if it is a newer interest message or it is a duplicate

interest message with lower cost. The rule to propagate will appropriately set a flag to

indicate that an interest message may or may not be propagated. The rule might be such

that a duplicate interest message need not be forwarded. The other rule that is implemented

is that duplicate interest messages with lower cost will be forwarded.

In Figure 3.4 nodes P1 and P2 generate the same type of data and nodes C1 and C2 are

consumers of this data. Path 1 is a shortest path between producer P2 and consumer C2,

where as path 3 is the shortest path between producer P1 and consumer C1. The overall

cost of transmitting a data message through these two paths are higher than the shared

29

Figure 3.4: Cost division

path 2(here cost is simply the number of hops). C1 and C2 can be made to select a path

through node 6, if it has lower cost than paths 3 and 1 respectively. This can be made

possible by cost division approach. If the cost(which is 2) of data path from node 4 to 6 is

distributed into branches, then the cost(2/2 + 1) of path through node 6 will be lower than

the cost(which is 3 each) of path 1 and 3.

If at reception of an interest message, it is identified as new and data is already avail-

able, then data is forwarded to neighbor that delivered the interest message. For example,

consider that the path between nodes P1 and C1 via nodes 5 and 6 is already reinforced

when node C2 sends out interest. Node 6 need not further propagate interest from C2 as

data is already available and hence only replies with data with the cost distributed over

existing reinforced path and the new path to node C2(this is the implementation of greedy

incremental heuristic). The new cost for the data message that will be forwarded can thus

be computed from the expression(but only if cost division heuristic is implemented):

new cost = (old cost/(#reinforced paths for data type + 1)) + cost of next link

Code Listing 3.4: Relay Node Algorithm - Interest processing

event GenMessage ∗ ReceiveGenMsg . r e c e i v e (GenMessage ∗ message){

30

i f (message−>msg type == IntType) {
i f (! consume (message−>data type)) {

intTable [TOS LOCAL ADDRESS] = c a l l IntTable I . updateEntry (
intTable [TOS LOCAL ADDRESS] , message) ;

i f (! produce (message−>data type)) {
i f (i n tP ro c e s s i ng [TOS LOCAL ADDRESS] == TRUE) {

atomic i n tP ro c e s s i ng [TOS LOCAL ADDRESS] = FALSE;
i f ((c a l l DataTableI . getLeastCost (

message−>data type)) > 0) {
s i g n a l Data Inte re s t . sendData (message−>prev hop ,

message−>data type) ;
atomic propInt [TOS LOCAL ADDRESS] = FALSE;

}
i f (propInt [TOS LOCAL ADDRESS] == TRUE &&

! consume (message−>data type)) {
propoga t e In t e r e s t (message) ;
atomic propInt [TOS LOCAL ADDRESS] = FALSE;

}
}

}

. . .
return message ;

}

event r e s u l t t Data Inte re s t . sendData (u in t 16 t dest , u i n t 8 t d) {
c a l l DataTableI . getDataMsg (&senddata , d) ;
atomic senddata . prev hop = TOS LOCAL ADDRESS;
senddata . co s t = senddata . co s t /(computes ize (c a l l

IntTable I . getRe in fNe ighbors (dType)) + 1) ;
senddata . co s t += c a l l RouteTableI . getCost (des t) ;
return c a l l DataOutput . output(&senddata , des t) ;

}

1

When a relay receives a data message, the data table is consulted. If it is already in the

table, the packet is dropped. If there is an entry for data, but data received is new then the

data message is forwarded and the entry is updated by modifying its time stamp to extend

its expiration time. If the data message is flagged to be forwarded, then the following rules

1RouteTableI is an interface that maintains a list of neighbors of the node

31

are used to forward data: If it is the first data message of its type, the interest table is

consulted to retrieve interested neighbors. These are the neighbors that delivered least cost

interests for the data type. Since there is only one entry per sink and data type combination

for each sink, there will be only one neighbor per interest entry in this list of neighbors.

A data message is then unicast to each of these neighbors. The cost of the data message

is distributed equally over the new paths if the cost division heuristic is implemented. In

Figure 3.4, when a data message arrives at node 6 for the first time and sees the distinct

interests from nodes 3 and 7, it will forward the data message to both neighbors and the

cost of the data thus forwarded may be computed(again if the cost division heuristic is

implemented) with the expression given:

new cost = (old cost/#interested sink node paths) + cost of next link

Code Listing 3.5: Relay Node Algorithm - Data Message Processing

event DataMessage ∗ ReceiveDataMsg . r e c e i v e (DataMessage ∗ m) {
i f (c a l l DataTableI . getLeastCost (m−>data type) == 0 && ! consume (

m−>data type)) {
//no entry in Data t a b l e f o r the data type
l i s t 2 = c a l l IntTable I . ge t IntNe ighbors (m−>data type) ;

} else {
l i s t 2 = c a l l IntTable I . getRe in fNe ighbors (m−>data type) ;

}
l i s t s i z e = computes ize (l i s t 2) ;
dataTable [TOS LOCAL ADDRESS] = c a l l DataTableI . updateEntry (

dataTable [TOS LOCAL ADDRESS] , m) ;
while (l i s t 2 != NULL && propData [TOS LOCAL ADDRESS]) {

i f (l i s t 2 −>id != m−>prev hop) {
memcpy(&rcvdata , m , s izeof (DataMessage)) ;
atomic rcvdata . prev hop = TOS LOCAL ADDRESS;
rcvdata . co s t = m−>co s t / l i s t s i z e + c a l l RouteTableI . getCost (

l i s t 2 −>id) ;
c a l l DataOutput . output(&rcvdata , l i s t 2 −>id) ;

}
l i s t 2 = l i s t 2 −>next ;

}
return m;

}

32

If the data message is to be forwarded and it is not the first data message of its type

to reach the relay, then it is forwarded only to the neighbors that delivered reinforcement

messages. Again the data message is unicast to each of these nodes. For example, when

data paths to nodes 3 and 7 are confirmed through node 6, and data reaches node 6, each

of the forwarded messages from node 6 can have the cost of data message distributed over

the paths(if cost division heuristic is implemented) with the expression given below.

new cost = (old cost/#reinforced paths for data type) + cost of next link

When a relay receives reinforcement messages, its interest table is updated to reflect that

the interest has been reinforced(all the parameters of the entry are set to that of the one

in the message). The reinforcement message is propagated as unicast to the neighbor that

delivered the least cost data of the data type contained in reinforcement message.

Code Listing 3.6: Relay Node Algorithm - Reinforcement Processing

event GenMessage ∗ ReceiveGenMsg . r e c e i v e (GenMessage ∗ message){
i f (message−>msg type == IntType) {

. . .
} else {

intTable [TOS LOCAL ADDRESS] = c a l l IntTable I . updateEntry (
intTable [TOS LOCAL ADDRESS] , message) ;

i f (! produce (message−>data type) && propInt [TOS LOCAL ADDRESS]) {
atomic next hop = c a l l DataTableI . getLeastCostHop (

message−>data type) ;
memcpy(&sendmsg , message , s izeof (GenMessage)) ;
atomic sendmsg . prev hop = TOS LOCAL ADDRESS;
sendmsg . co s t = message−>co s t + c a l l RouteTableI . getCost (

next hop) ;
c a l l GenMsgOutput . output(&sendmsg , next hop) ;

}
}
. . .
return message ;

}

33

3.2.5 Source node algorithm

Every source maintains an interest table similar to relay node. When a source node receives

an interest message for data it produces, it consults the interest table. If there is no entry,

then it makes a new entry. If there is an entry and the interest message is a duplicate,

it updates to reflect the lower cost. Otherwise it is ignored. It sends data to its neighbor

whenever an update is made in the interest table. When it receives reinforcement messages,

the source just updates the interest table.

Code Listing 3.7: Source Node Algorithm - Interest/Reinforcement Processing

event GenMessage ∗ ReceiveGenMsg . r e c e i v e (GenMessage ∗ message){
i f (message−>msg type == IntType) {

i f (! consume (message−>data type)) {
intTable [TOS LOCAL ADDRESS] = c a l l IntTable I . updateEntry (

intTable [TOS LOCAL ADDRESS] , message) ;
. . .

} else {

i f (! c a l l IntTable I . hasCheaperInt (message−>msg src id ,
message−>data type , message−>co s t))

s i g n a l Data Inte re s t . sendProduce (message−>prev hop ,
message−>data type) ;

}
} else {

intTable [TOS LOCAL ADDRESS] = c a l l IntTable I . updateEntry (
intTable [TOS LOCAL ADDRESS] , message) ;

. . .
}
return message ;

}

Source nodes use a timer to periodically send data messages for reinforced data requests.

This timer is started when the node receives its first interest message. For every reinforce-

ment message received, the interest table is updated to save reinforcement from the data

requester. When the data timer expires, the source checks the interest table for all reinforced

interest requests and sends data for them. For each consumer requesting a data type, a data

message is transmitted to a neighbor node that has the shortest route to the consumer.

34

Code Listing 3.8: Source Node Algorithm - Timer expiry

event r e s u l t t Data Inte re s t . sendProduce (u in t 16 t dest , u i n t 8 t dType) {
// f o r i n t e r e s t in data produced by the node
i f (! f i r s tDa t a) {

f i r s tDa t a = TRUE;
c a l l DataTimer . s t a r t (TIMER REPEAT, DataPeriod) ;

}

producedata . data type = dType ;
producedata . msg s r c id = TOS LOCAL ADDRESS;
producedata . prev hop = TOS LOCAL ADDRESS;
producedata . msg type = DataType ;
producedata . count = ++count ;
producedata . va lue = data ;
producedata . co s t = c a l l RouteTableI . getCost (des t) ;
return c a l l DataOutput . output(&producedata , des t) ;

}

event r e s u l t t DataTimer . f i r e d () {
return c a l l ADC. getData () ;

}

async event r e s u l t t ADC. dataReady (u in t 16 t d) {
atomic data = d ;
post send () ;
return SUCCESS;

}

task void send () {
atomic mdt = moteInfo [TOS LOCAL ADDRESS]−>dType ;
count++;
while (mdt != NULL) {

dt = mdt−>type ;
atomic l i s t = c a l l IntTable I . getRe in fNe ighbors (dt) ;
while (l i s t != NULL) {

producedata . prev hop = TOS LOCAL ADDRESS;
producedata . msg s r c id = TOS LOCAL ADDRESS;
producedata . msg type = DataType ;
producedata . data type = dt ;
producedata . va lue = data ;
producedata . count = count ;
producedata . co s t = c a l l RouteTableI . getCost (l i s t −>id) ;
c a l l DataOutput . output(&producedata , l i s t −>id) ;
l i s t= l i s t −>next ;

}

35

mdt=mdt−>next ;
}

}

3.2.6 Message Transmission

Every node in the network maintains separate queues for transmission of messages. Trans-

mission of interest and reinforcements are handled by a separate module than the one which

handles data messages.

In the module which handles interests and reinforcement, interest is given preference

over reinforcement. There are separate queues maintained for each neighbor in which re-

inforcement messages are kept and one for broadcast in which interest messages are kept.

When there is more than one message in the queue, messages can be aggregated. The limit

of the aggregated packet depends on the mote type and its maximum packet length sup-

ported by the MAC layer. Currently the implementation sets limit such that a node can

aggregate up to 4 interest/reinforcement messages, and up to 3 data messages. If there are

older messages within the queue when a new message is queued up for delivery, the older

one will be replaced by the latest one. Also in the module that handles data messages,

there is no broadcast queue unlike the module which handles interest. This is because data

messages are always unicast.

3.2.7 Heuristics

This section explains the various algorithms that have been implemented and are analyzed

in the next chapter. All the algorithms implement data message aggregation.

Base Case: An algorithm which does not support any heuristics is implemented. It

does not support interest aggregation, which means if a sink has interest in four data types,

it will send out four different interest messages.

Whenever a relay receives an interest message for a data type, it is forwarded only if it is

a new interest. As described previously a new interest message is identified by comparing its

36

parameters with entries in the interest table. The algorithm uses a 16 bit sequence number

to determine the freshness of a message. Sequence wrap happens at a relay for an entry in

the interest table whenever it sees a message with a very low sequence number after seeing

some of the highest sequence numbers. Same is the case for data messages. Algorithm also

assumes that when a failed node restarts, it will have no previous state information.

Besides the base case does not implement shortest path heuristic either, which implies

it does not forward lower cost duplicate packets either.

Heuristic 1: This is a modified version of the base case, which supports interest aggre-

gation. As described in section 3.2.6, up to 4 interest messages can be aggregated.

Consider a simple application with one source and one sink, both producing and con-

suming two data items respectively. If interest messages are sent separately, there is a

greater chance that different paths may be set up for each data type even if they are of

same length. This will be illustrated later in Section 4.2.1. But if interest messages are

aggregated, the probability of the path convergence is higher. This idea is extended to more

than one producer and one consumer and their performance is analyzed in Chapter 4.

The interest aggregation takes place at relays where interest comes from diverse sinks as

explained in Section 3.2.6. As the number of sinks and data types increase in the network,

the constraint on the aggregation capability is limited by MAC layer. As obvious, this

heuristic reduces the number of interest transmitted when compared to algorithm with no

heuristics.

Heuristic 2: This is an improvement on heuristic 1 with forwarding of lower cost

interest(the shortest path heuristic). It also supports the transmission of data in response

to a new interest at a relay(greedy incremental heuristic), if data requested is available.

Although forwarding of lower cost interests as discussed in 3.2.4, adds an overhead, it

gives a better metric to determine the data path. This will lead to selection of shorter data

paths. This heuristic in addition to that of interest aggregation leads to a data graph with

lower number of transmissions than the one obtained due to heuristic 1.

37

When a node in already established data path receives an interest message, it can reply

with the data that is in store. Besides, the node does not forward interest messages, as the

data path is already established.

Heuristic 3: This is an extension of heuristic 2 with support for cost division. Cost is

divided at three different cases

1. Whenever an interest reaches an established path(reinforced path) to a different sink

but for same data, the relay replies with data, whose cost is distributed between the

new path and existing path/paths.

The case when one sink completes interest propagation phase and enter data propa-

gation phase followed by another sink and so on in a sequential manner will lead to

data graph/tree established in the manner of a greedy incremental heuristic. Cost

distribution as explained in Section 1.3 can lead to selection of a shared longer path

over unshared shorter paths.

2. Whenever a data message reaches a relay node that does not have any entry in the

data table for that data type, the cost of data is divided onto interest paths data is to

be forwarded.

As described before, the cost division approach is to favor shared data message paths

over shorter unshared paths. Since a sink node sends reinforcement to the first data

message arrived, the chance of selecting these shared longer paths are less on the first

refresh cycle. But this path may be selected at next refresh cycle, unless a newer data

message from the same source is received at the sink through a different path.

3. Whenever a data message reaches a relay and needs to be forwarded to more than one

reinforced paths.

This distribution of cost to reinforced paths, helps in maintaining the preference of

the shared path during the first two cycles. After this period, the other data message

38

paths which were established as a result of interest propagation phase would have

expired.

In the next chapter, the performance of these algorithms will be compared for various

test cases set up.

39

Chapter 4

Testing and Analysis

4.1 Introduction

4.1.1 Test case assumptions

The algorithms were tested with assumption that no information regarding topology is

available to any node in the network. Results are collected after running algorithm for each

epoch of interest propagation phase followed by data flows from various sources to sink.

4.1.2 Network topology

Sources and sinks are placed in the test topologies where they are diagonally opposite in

a square grid. The maximum number of links in a data tree made by an algorithm using

shortest path heuristic, is the sum of all the shortest path lengths between sources and sinks.

The minimum number of links in the data tree is the number of links in minimum Steiner

tree formed by sources and sinks. From the test results it can be seen that these two values

form a bound on the number of links on the graph formed by the algorithm. As the quality

of trees are affected only by the traversing of messages in between source and sink nodes,

nodes outside this space are not simulated.

The number of messages transmitted during exploratory phase may be assumed pro-

portional to number of nodes in the test grid, where as the number of data messages is

proportional to data tree, as data aggregation is used in all algorithms.

40

1P1C 1P2C 1P4C
2P1C 2P2C 2P4C
4P1C 4P2C 4P4C

Table 4.1: Test cases for And logic

Testing is done with nodes starting with square grid 6x6, whose shortest path between

diagonally opposite nodes is of length 5. And the number of nodes simulated is 16, allowing

5 nodes above and below the diagonal. Testing is further done on nodes on square grids

with dimensions increased in steps of 2. The next test grid in the sequence has 22 nodes

from a 8x8 grid.

4.2 Test cases for Sinks with And logic

This set also includes the simple consumers. Testing were done on cases shown in table 4.1

where in each test case a producer will generate a distinct data type and each consumer

requests for all data types produced in the network. For example in the case of 4P4C each of

the four sources generate four different data items and each of the four consumers requests

all of the four data types. And the sink uses And logic, so they require all data types at all

times.

4.2.1 Effect of interest aggregation

In the algorithms modeled, when a node is delivered a message, the node considers its

neighbor as the source of message. The only metric that a sink can use is the cost field to

select a data path over another. The question how does interest aggregation help to select

a better path which can have more scope for data aggregation is answered here.

Consider a network where a sink requires two types of data, say temperature and pressure

readings and a source in the network generates both these data(See Fig 4.1 which is not

a test case). When there is no interest aggregation, sink sends out request separately.

This can cause the set up of different paths for data even if one source can supply both

41

Figure 4.1: Results - 1P1C2DAnd

the data. Fig 4.1 shows the difference in number of interest messages transmitted without

interest aggregation(NH) and with interest aggregation and forwarding of lower cost interest

messages(H2). The improvement in the number of links in the data tree formed in H2 is

illustrated in Fig 4.1.

Interest aggregation alone is added to the H1 heuristic in addition to the base case.

Observations made on H1 test runs in relation to NH test runs are as follows. The test

case of 1P1C(see Fig 4.2) for a single data type, number of interest messages transmitted

in algorithms NH and H1 are the same as there is no scope for interest aggregation.

Hence, there is 0% improvement due to interest aggregation alone in the case 1P1C1D.

For the case 1P2C1D(see Fig4.4) there is 7.07% decrease in the number of interest messages

transmitted in algorithm H1 than in the algorithm NH. And in 1P4C1D(see Fig4.8), this

difference is improved to 41%.

The test cases with two data items show a similar trend of improvement in the number

of interest message transmitted as in the case of test cases with one data item. For the

case 2P1C2D, the improvement of H1 over NH is 48.33% (see Fig 4.10). The test results

of 2P2C2D show 53.72% improvement(see Fig 4.12) and that of 2P4C2D show 56.32%

42

Figure 4.2: Results - 1P1C1D Nodes vs Interests

improvement(see Fig 4.14).

Results of the tests with four data items also show a reduced number of interest message

transmission for algorithm H1. For the case 4P1C4D, 4P2C4D and 4P4C4D the improve-

ment of algorithms H1 over NH is observed as 73.29%(see Fig 4.16), 69.44%(see Fig 4.18)

and 68%(see Fig 4.20) respectively. In this particular case, the improvement due to ag-

gregation has reached saturation, as H1 algorithm is implemented to aggregate up to four

different interest messages. Hence for the cases with two and four customers requesting

all the four different data types, the aggregation of all the interests are not possible at the

intermediate nodes.

Another result is observed when comparing the number of links in the networks formed

for transmission follows. For test case 1P1C1D, no interest aggregation is possible. So the

difference in the number of links formed due to H1 is 0% better than that due to algorithm

NH. For tests 1P2C1D and 1P4C1D, the difference between H1 and NH are observed as

12%(see Fig 4.5) and 7.97%(see Fig 4.9) respectively. Lowering of the values in the last

two test cases, reflects the increased complexity in aggregation.

In the test results with two data types, H1 showed an improvement of 20.48%, 11.4%

43

Figure 4.3: Results - 1P1C1D Nodes vs Links

and 5.35% for cases 2P1C2D(see Fig 4.11), 2P2C2D(see Fig 4.13) and 2P4C2D(see Fig

4.15)respectively over the algorithm NH. This result is consistent with the observations seen

for cases 1P2C1D and 1P4C1D. And the results of cases 4P1C4D(see Fig 4.17), 4P2C4D(see

Fig 4.19) and 4P4C4D(see Fig 4.21) with four different data types showed an improvement

of 13.14%,10.1% and 6.57% respectively over NH. These results show that improvement due

to H1 is inversely affected by the complexity of the network configuration.

4.2.2 Effect of forwarding lower cost interests

Test results for case 1P1C1D(see Fig 4.2) shows that the number of interests generated

by algorithm with heuristic 2(H2) is higher than that of one with no heuristics(NH) by

17%. This is due to the lack of possibility of interest aggregation. For cases 1P2C1D(see

Fig 4.4) number of interest messages in 12.58% higher than that of NH. Test results of

case 1P4C1D(see Fig 4.8), the number of interest messages generated in H2 is 35% lower

than that in NH. The two factors coming to play here are the reduction of messages due

to integration, and increase in transmission of messages, due to propagation of lower cost

interests introduced in H2. It can be see that, the reduction in number of messages due to

44

Figure 4.4: Results - 1P2C1D Nodes vs Interests

integration plays a higher hand in the case 1P4C1D.

Test cases 2P1C2D(see Fig 4.10), 2P2C2D(see Fig 4.12) and 2P4C2D(see Fig 4.14) show

an improvement of 30.12%, 41.97% and 50.48% reduction in number of interest messages in

H2 over NH. This clearly illustrates that, the effect of the increased number of messages due

to shortest path heuristic is dwarfed by the reduction of the number of interest messages by

interest aggregation.

The results of H2 test cases with four data types, 4P1C4D(see Fig 4.16), 4P2C4D(see

Fig 4.18) and 4P4C4D(see Fig 4.20) have improvements of 66.91%, 57.69% and 66.14%

respectively over NH. The aggregation has reached saturation levels for these test cases

with four data types, as the limit is set to four for aggregation in this implementation, and

interests from different consumers for same data type are treated as different interests.

When comparing the number of links in the network formed due to H2 and that due to

NH, improvements have been observed due to the heuristics. Test cases 1P1C1D(see Fig

4.3), 1P2C1D(see Fig 4.5) and 1P4C1D(see Fig 4.9) shows improvement of 3.15%, 18.76%,

and 11.83% respectively. It can be noticed that the case 1P1C is an instance of shortest path

algorithm, which explains the low value in difference. For 1P2C and 1P4C, the percentage

45

Figure 4.5: Results - 1P2C1D Nodes vs Links

reduction in link numbers is an indication of increasing difficulty of finding the minimal cost

network.

The test results showed a reduction of 28.85%, 18.47% and 9.44% in the number of links

in the transmission network formed due to H2 over NH for the cases with two data types

2P1C2D(see Fig 4.11), 2P2C2D(see Fig 4.13) and 2P4C2D(see Fig 4.15) respectively. The

trends in the decreasing values in improvement shows the inverse affect of the complexity

of network configuration.

A reduction of 25.7%,13.79% and 15.73% is observed for test cases 4P1C4D(see Fig

4.17), 4P2C4D(see Fig 4.19) and 4P4C4D(see Fig 4.21) in H2 when compared to NH. In

this particular set of results, the saturation of interest aggregation affects the performance.

The cases with four data types are border conditions, as interest aggregation is set a limit of

four messages, where as for the data aggregation it is set to three. However, on increasing

these aggregation limits to eight for interest aggregation and four for data aggregation, the

reduction were observed for cases with four data types as 33%, 21.78% and 25.69% for cases

4P1C, 4P2C and 4P4C respectively. The improvement in the reductions can be attributed

to better aggregation.

46

Figure 4.6: Difference - Steiner tree and the result trees in percentages

4.2.3 Effect of cost division heuristics

Algorithm with heuristics 3(H3) is not run for test cases with one sink(1P1C, 2P1C and

4P1C) as there is no room for cost division in these cases. Also there is no change in interest

propagation phases of H3 and that of H2, so number of interests transmitted in H3 is not

shown in the results.

The test case with a single data type 1P2C1D shows that the network formed during

H3 is 22.82% better than NH. An improvement of 14.81% over NH is observed for test case

1P4C1D.

An improvement of 22.31% and 15.97% is observed in H3 run for test cases with two

data types 2P2C2D and 2P4C2D over NH. Test runs of H3 in cases 4P2C4D and 4P4C4D

shows a reduction of 17.47% and 22.58% respectively over NH. As observed previously, the

test cases with four data type form the border test case, since the aggregation limit was

set to four messages for interest aggregation. However, when this limit was increased to

eight messages the reduction for cases 4P2C is improved to 27.26% and that for 4P4C it is

47

Figure 4.7: Difference - Steiner tree and the result trees in percentages

28.46%. It can also be noticed that values are closer.

Another observation that can be seen about the quality of data transmission paths from

the graphs is that as the complexity of aggregation increases, the number of links in the

graphs also tends to increase and move further away from Steiner tree. This is illustrated in

Fig 4.6. It can also be observed that for each test cases, the communication graph generated

by H3 performs better than H2, and H2 better than H1 and H1 better than NH. In other

words, the trend that can be observed is, for the test case with one data types, as the

number of consumer increases, the difference between Steiner tree and the result graph in

terms of percentage change in the number of links increase. This observation is repeated

for test cases with two data types as well as four data types.

4.3 Test cases for Or logic

Test cases for Or logic are shown in table 4.2. In each of these cases each source produce

a distinct data item and each sink are interested in all the data types generated within the

48

Figure 4.8: Results - 1P4C1D Nodes vs Interests

2P2C 2P4C
4P2C 4P4C

Table 4.2: Test cases for Or logic

network. Test cases with one source(1P) need not be simulated as there is only one data

item, their performance will be the same as shown before. Test cases with one sink will be

reduced to simply the case 1P1C, so they are not repeated either. The interest propagation

phase is the same irrespective of the sink logic used. So they are not repeated in the results

shown.

The graph shown in Fig 4.7 illustrates the relative quality of the communication graph

generated in each test case with respect to the Steiner graph for that configuration. For each

of the test case(see Figs 4.22, 4.23, 4.24, 4.25), the difference in quality of graph is computed

by averaging the differences of each test result. Test case 2P2C has 50.33%, 34%, 14.98%

and 10.25% difference with Steiner graph in terms of number of links for the runs of NH, H1,

H2 and H3 algorithms respectively. For 2P4C these values become 54.97%, 40.74%, 33.19%

and 22.53%. It can be seen, from these two tests that as the complexity of the configuration

49

Figure 4.9: Results - 1P4C1D Nodes vs Links

increases, the deviation from optimal results also increases and H3 heuristics perform the

best.

Test case 4P2C shows difference of 45.58%, 35%, 27.91% and 17.32% with Steiner graph

in terms of number of links for runs of NH, H1, H2 and H3 respectively. 67.36%, 51.41%,

40.72% and 33.46% are the respective values for test case 4P4C. Here too, the observation

held for the cases 2P2C and 2P4C holds. In short, in Or test results as well heuristic 3

performed better than heuristic 2, which in turn performed better than H1, as observed in

the test results of And cases.

4.4 Space complexity

If s is the number of sinks in the network, and d is the total number of data types, then

space required for interest table will be in O(sd). But as the algorithms reach steady state,

number of entries will be in O(d) for each node on the data path.

If p is the number of sources in the network, then the space required for data table will

be in O(pd) at each node. When algorithms reach steady state, number of entries in the

50

Figure 4.10: Results - 2P1C2DAnd Nodes vs Interests

table will be in O(d) for each node on the data path.

51

Figure 4.11: Results - 2P1C2DAnd Nodes vs Links

Figure 4.12: Results - 2P2C2DAnd Nodes vs Interests

52

Figure 4.13: Results - 2P2C2DAnd Nodes vs Links

Figure 4.14: Results - 2P4C2DAnd Nodes vs Interests

53

Figure 4.15: Results - 2P4C2DAnd Nodes vs Links

Figure 4.16: Results - 4P1C4DAnd Nodes vs Interests

54

Figure 4.17: Results - 4P1C4DAnd Nodes vs Links

Figure 4.18: Results - 4P2C4DAnd Nodes vs Interests

55

Figure 4.19: Results - 4P2C4DAnd Nodes vs Links

Figure 4.20: Results - 4P4C4DAnd Nodes vs Interests

56

Figure 4.21: Results - 4P4C4DAnd Nodes vs Links

Figure 4.22: Results - 2P2COr Nodes vs Links

57

Figure 4.23: Results - 2P4COr Nodes vs Links

Figure 4.24: Results - 4P2COr Nodes vs Links

58

Figure 4.25: Results - 4P4COr Nodes vs Links

59

Chapter 5

Conclusions

From the analysis of results it is clear that use of heuristics can definitely improve the data

flow in the network, by selecting shared paths over shorter paths which can lead to more

number of transmissions.

1. Aggregation of interest not only lowers the number of interest messages sent out, but

also leads to better shared data path graphs where number of data transmissions is

lower than the algorithm which does not use any heuristics.

2. The metric used for path selection is a cost metric. Although implemented algorithms

use a value proportional to number of hops as cost, it has been observed that im-

plementation of shortest path heuristic together with interest aggregation can lead to

lower number of transmissions. Besides, preventing the further propagation of interest

when data is already available at a relay lowers the number of interests propagated, if

shortest path heuristic alone were implemented.

3. Although cost division heuristic further improves on the other heuristics, as explained

in section 4.2.3, the preference for preventing duplicate data paths affects the perfor-

mance of this algorithm.

60

5.1 Future Work

The next step to do will be to allow sinks to reinforce lower cost paths that arrive later in

the refresh cycle and incorporate negative reinforcements to prevent duplicate data paths.

This should improve on the data graphs formed by heuristic algorithms discussed in this

thesis.

Another area of study that could be further done is to study these algorithms with a

different metric for cost based on the underlying radio model. This study could be done

with distance as cost, or power consumed for transmission is another choice for metric.

From the experience of adjusting the timers over extensive testing and data collection

of the algorithms, it would be good to have an adaptive timer resolution14 where the timer

values are computed from the transmit time of messages and their reply; and progressively

reducing the timer frequency.

61

Bibliography

[1] V. G. Murphy A.L., Roman G.C., Proceedings of Ninth International Workshop on

Software Specification and Design , 25 (1998).

[2] G. Aggelou, Mobile Ad hoc Networks, Mc-Graw Hill, 2005.

[3] Research:wireless ad hoc sensor networks, national institute of standards and technol-

ogy, http://www.antd.nist.gov/wahn ssn.shtml.

[4] C.-Y. Chong and S. P. Kumar, Proceedings of the IEEE 91, 1247 (2003).

[5] Y. S. Ian F Akayildiz, Weilian Su and E. Cayirci, IEEE Communications (2002).

[6] B. Krishnamachari, D. Estrin, and S. Wicker, Modelling data-centric routing in wireless

sensor networks, In IEEE INFOCOM.

[7] Ravindra.K.Ahuja, Thomas.L.Magnanti, and James.B.Orlin, Network flows: Theory,

Algorithms and Applications, Prentice Hall, 1993.

[8] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, IEEE/ACM

Trans. Netw. 11, 2 (2003).

[9] B. Krishnamachari and J. Heidemann, Application-specific modelling of information

routing in sensor networks, 2004.

[10] J. Hill et al., System architecture directions for networked sensors, in Architectural

Support for Programming Languages and Operating Systems, pages 93–104, 2000.

[11] D. Gay et al., The nesc language: A holistic approach to networked embedded systems,

in PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming

62

language design and implementation, pages 1–11, New York, NY, USA, 2003, ACM

Press.

[12] P. Levis, N. Lee, M. Welsh, and D. Culler, Tossim: accurate and scalable simulation of

entire tinyos applications, in SenSys ’03: Proceedings of the 1st international conference

on Embedded networked sensor systems, pages 126–137, New York, NY, USA, 2003,

ACM Press.

[13] P. Levis and N. Lee, Tossim: A simulator for tinyos networks, 2003.

[14] J. Thomsen and D. Husemann, Evaluating the use of motes and tinyos for a mobile

sensor platform, in PDCN’06: Proceedings of the 24th IASTED international conference

on Parallel and distributed computing and networks, pages 95–100, Anaheim, CA, USA,

2006, ACTA Press.

63

Appendix A

Component declaration of Application

Configuration module for the simulator application implementing algorithm with no heuris-

tics.

configuration Algorithm {

}

implementation {

components Main, TimerC, MoteInfoM, InterestM,

RouteTableM, IntTableM, GenMsgSend, DataTableM, TrcvMsg,

DataM, DataMsgSend, DemoSensorC as Sensor;

Main.StdControl -> MoteInfoM.StdControl; //reads the src/sink info

Main.StdControl -> TrcvMsg.StdControl;

Main.StdControl -> InterestM.StdControl;

Main.StdControl -> GenMsgSend.StdControl;

InterestM.RouteTableI -> RouteTableM; //keeps track of neighbors

64

InterestM.IntTableI -> IntTableM;

InterestM.DataTableI -> DataTableM;

InterestM.GenMsgOutput -> GenMsgSend;

InterestM.ReinforceTimer -> TimerC.Timer[unique("Timer")];

InterestM.InterestTimer -> TimerC.Timer[unique("Timer")];

InterestM.IdInterest -> IdNeighborM;

InterestM.ReceiveGenMsg -> TrcvMsg;

InterestM.InterestData -> DataM;

InterestM.Send -> TrcvMsg;

Main.StdControl -> DataM.StdControl;

Main.StdControl -> DataMsgSend.StdControl;

DataM.RouteTableI ->RouteTableM;

DataM.IntTableI -> IntTableM;

DataM.DataTableI -> DataTableM;

DataM.DataOutput -> DataMsgSend;

DataM.ReceiveDataMsg -> TrcvMsg;

DataM.DataInterest-> InterestM;

DataM.DataTimer -> TimerC.Timer[unique("Timer")];

DataM.ADC -> Sensor;

IntTableM.CounterTimer -> TimerC.Timer[unique("Timer")];

}

65

Appendix B

Test Results

Node NH H2
16 15 18
22 21 23
28 27 29.8
34 33 41.2
40 39 47.75
46 45 52.33
52 51 57
58 57 69

Table B.1: 1P1C1DAnd - Interest

66

Node Steiner NH H2
16 5 5.6 5.4
22 7 7.5 7.25
28 9 9.75 9.4
34 11 12 11.75
40 13 15 13.8
46 15 16.6 16.25
52 17 19 18.75
58 19 20.75 20.5

Table B.2: 1P1C1DAnd - Links

Node NH H1 H2
16 24.2 20.6 26.75
22 35 31 38
28 47.25 42.6 49.33
34 51.5 51.8 59.6
40 64.25 61 69.4
46 73.25 72.6 85
52 90 83.6 96.8
58 94 86.5 122

Table B.3: 1P2C1DAnd - Interest

Node Steiner NH H1 H2 H3
16 6 9.33 8.8 8 7
22 8 11.8 11 10 9.4
28 10 14 13 12.25 12.1
34 12 16.67 15 13.67 13.33
40 14 20 17 16 15
46 16 23 20 18 16.67
52 18 26.5 22 20.67 20
58 20 29.5 23.2 21.75 21.67

Table B.4: 1P2C1DAnd - Link

67

Node NH H1 H2
16 39 27.2 27.2
22 72.25 40 42
28 96 56 56.2
34 127 75.4 87.4
40 143 86.33 97.8
46 167 92.25 117.2
52 190 103 123.67
58 215 125 130.4

Table B.5: 1P4C1DAnd - Interest

Node Steiner NH H1 H2 H3
16 8 14 11.67 10.25 10.2
22 10 16 13.8 12.25 12
28 12 18 16.33 16.18 15.6
34 14 20 18.4 18.13 17.33
40 16 21.33 20.8 20.5 19.9
46 18 24 23.2 22.22 20.9
52 20 27.5 26.75 26.5 25.67
58 22 30 27.75 27 26

Table B.6: 1P4C1DAnd - Link

Node NH H1 H2
16 30 16 19.4
22 42 22 24.33
28 54 28 35.8
34 66 34 45
40 78 40 47
46 90 46 70.25
52 102 52 73
58 114 58 105

Table B.7: 2P1C2DAnd - Interest

68

Node Steiner NH H1 H2
16 6 9.8 8.13 8
22 8 13.5 11.75 9
28 10 15.5 14.5 10.75
34 12 21.8 15.33 14.5
40 14 22.57 18.25 16.67
46 16 26.25 19 17.6
52 18 28.2 20.67 19.5
58 20 31 23.5 23.25

Table B.8: 2P1C2DAnd - Link

Node NH H1 H2
16 56 27.2 28.4
22 85 34.4 41
28 102 46.4 55
34 128 52.5 69.17
40 150 69.2 92.8
46 163 80.4 103
52 190 97.6 117.25
58 212 101.4 149.67

Table B.9: 2P2C2DAnd - Interest

Node Steiner NH H1 H2 H3
16 7 13 11.67 11 9.86
22 9 16 12.33 11.7 10.67
28 11 19.67 14.75 13.4 13
34 13 20.5 19.33 19 17.5
40 15 26.5 24.6 22 21.67
46 17 28 26 23.25 23
52 19 33 32 28.5 28.33
58 21 36 32.4 29.25 28

Table B.10: 2P2C2DAnd - Link

69

Node NH H1 H2
16 89 31.25 36.25
22 133.33 51.2 69
28 178.5 70 71.75
34 213 88.8 91.8
40 224.5 94.33 110.4
46 268 120 134.8
52 279 147.6 164.6
58 304 168.25 188.25

Table B.11: 2P4C2DAnd - Interest

Node Steiner NH H1 H2 H3
16 9 14.5 14 13.75 12.6
22 11 17.6 17 16.25 14
28 13 21 20.5 19.5 17.4
34 15 25 23.33 23 22
40 17 29 26 25.25 24
46 19 34 32 28 25
52 21 36 34 32.67 32
58 23 39 37 36 35

Table B.12: 2P4C2DAnd - Link

Node NH H1 H2
16 61 17.75 20.25
22 85 23.2 29.8
28 105 28.2 35.67
34 133 34 41.25
40 157 40.2 49
46 179 47.5 58.4
52 202 53.75 68.67
58 232 60.5 78

Table B.13: 4P1C4DAnd - Interest

70

Node Steiner NH H1 H2
16 7 12 10 9
22 9 16 14 13
28 11 19.8 17 15
34 13 23 22 18
40 15 27.7 26 19
46 17 30 27 22
52 19 34 28 25
58 21 38 29 26

Table B.14: 4P1C4DAnd - Link

Node NH H1 H2
16 88.75 32.2 35.2
22 134.67 43.4 61
28 186 57.8 68.2
34 239 67.25 91.8
40 278 80.4 110.4
46 308.67 95 134.8
52 326.33 101 164.6
58 421.67 110 188.25

Table B.15: 4P2C4DAnd - Interest

Node Steiner NH H1 H2 H3
16 8 14.5 13.33 12.5 11.33
22 10 16 15 14.5 14.5
28 12 21 19.67 18.8 18.4
34 14 25.1 21.33 20.6 20.33
40 16 28.2 24.8 23.33 22
46 18 32.2 28 27 25.14
52 20 36.7 33 32 30
58 22 40 36 35 34

Table B.16: 4P2C4DAnd - Link

71

Node NH H1 H2
16 117.6 44 42.6
22 206 79.6 78.4
28 273 83.33 94.2
34 337 104.17 102.6
40 407 120.33 148.2
46 535.67 169.6 179.8
52 610.5 181 188
58 691.67 191.25 213.8

Table B.17: 4P4C4DAnd - Interest

Node Steiner NH H1 H2 H3
16 10 19 17 14.6 14.25
22 12 23 18 16.4 13.33
28 14 26 24.25 23 22
34 16 33 31.4 26.6 25.33
40 18 37 36.67 29.8 27.4
46 20 41 39.67 35.4 32.2
52 22 43 42 41.4 36.4
58 24 45 44 42.2 39.5

Table B.18: 4P4C4DAnd - Link

72

Node Steiner NH H1 H2 H3
16 7 11 10 9.5 9
22 9 12 11.75 11.5 11
28 11 13 12.8 11.5 11.5
34 13 19 17.2 13.25 13
40 15 23 20.25 18 17.67
46 17 28 25.25 17.6 17.2
52 19 31 28 21.6 19.33
58 21 35 25 23.67 22.25

Table B.19: 2P2C2DOr - Link

Node Steiner NH H1 H2 H3
16 9 15 13 12 11.8
22 11 17 14.5 13.8 12.75
28 13 20 18.4 18 15.6
34 15 23 22.4 21.33 17.67
40 17 28 26 23.67 22.5
46 19 27 24.75 23 22
52 21 32 27.75 26.6 25
58 23 35 33 32 29.5

Table B.20: 2P4C2DOr - Link

Node Steiner NH H1 H2 H3
16 8 15 13.5 13 12
22 10 15.5 14.5 14 13
28 12 16 15 14.5 14
34 14 18 17 16.5 16
40 16 24 23 21 18
46 18 25 24 22 19
52 20 27 24 23 21
58 22 30 27 25 23

Table B.21: 4P2C4DOr - Link

73

Node Steiner NH H1 H2 H3
16 10 17 15 13.5 13
22 12 20 17.5 16.5 15
28 14 23 21 20 18
34 16 27 25 24 23
40 18 31 27 26 25
46 20 35 31 29.25 29
52 22 36 33 30 28
58 24 38 37 32 31

Table B.22: 4P4C4DOr - Link

74

	Table of Contents
	List of Figures
	List of Tables
	List of Code
	Acknowledgements
	Introduction
	Wireless Sensor Networks
	Data aggregation
	Optimal aggregation
	Suboptimal aggregation

	Applying heuristics
	Consumer Logic:

	Thesis Organization

	Background and Related Work
	Diffusion algorithms
	Two-phase pull diffusion
	One-phase pull diffusion

	Observations on Diffusion Mechanism
	Development Tools
	Tiny Microthreading Operating System(TinyOS)
	nesC
	TOSSIM

	A data gathering algorithm
	Algorithm Design
	Introduction
	Interest propagation
	Data propagation
	Path maintenance
	Sink Logic
	Aggregation

	Implementation
	Messages
	Tables
	Sink Node Algorithm
	Relay node algorithm
	Source node algorithm
	Message Transmission
	Heuristics

	Testing and Analysis
	Introduction
	Test case assumptions
	Network topology

	Test cases for Sinks with And logic
	Effect of interest aggregation
	Effect of forwarding lower cost interests
	Effect of cost division heuristics

	Test cases for Or logic
	Space complexity

	Conclusions
	Future Work

	Bibliography
	Component declaration of Application
	Test Results

