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Abstract 

The recent economic crisis has been partially blamed on the decline in the housing 

market.  This decline in the housing market resulted in an estimated 87% decline in value of 

collateralized debt obligations (CDOs) between 2007 and 2008.  This drastic decline in home 

values was sudden and unanticipated, thus it was incomprehensible for many investors how this 

would affect CDOs.  This shows that while analytical techniques can be used to price CDOs, 

these techniques cannot be used to demonstrate the behavior of CDOs under radically different 

economic circumstances.  To better understand the behavior of CDOs under different economic 

circumstances, numerical techniques such as Monte Carlo simulation can be used instead of 

analytical techniques to price CDOs.  Andersen et al (2005) proposed a method for calculating 

the probability of defaults that could then be used in the Monte Carlo simulation to price the 

collateralized debt obligation. 

The research proposed by Andersen et al (2005) demonstrates the process of calculating 

correlated probability of defaults for a group of obligors.  This calculation is based on the 

correlations between the obligors using copulas.  Using this probability of default, the price of a 

collateralized debt obligation can be evaluated using Monte Carlo simulation.  Monte Carlo 

simulation provides a more simple yet effective approach compared to analytical pricing 

techniques.  Simulation also allows investors to have a better understanding of the behaviors of 

CDOs compared to analytical pricing techniques.  By analyzing the various behaviors under 

uncertainty, it can be observed how a downturn in the economy could affect CDOs.  This thesis 

extends on the use of copulas to simulate the correlation between obligors.  Copulas allow for the 

creation of one joint distribution using a set of independent distributions thus allowing for an 

efficient way of modeling the correlation between obligors. 

The research contained within this thesis demonstrates how Monte Carlo simulation can 

be used to effectively price collateralized debt obligations.  It also shows how the use of copulas 

can be used to accurately characterize the correlation between obligor defaults for pricing 

collateralized debt obligations.  Numerical examples for both the obligor defaults and the price 

of collateralized debt obligations are presented to demonstrate the results using Monte Carlo 

simulation.  
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Chapter 1 Introduction 

1.1 Introduction to Collateralized Debt Obligations and Credit Default 

Swaps 

In the 2002 Annual Report for Berkshire Hathaway, Warren Buffett was quoted as saying 

“derivatives are financial weapons of mass destruction, carrying dangers that, while now latent, 

are potentially lethal (Berkshire, 2003).”  Now those weapons of mass destruction are no longer 

latent and have been viewed as the culprits to the current financial crisis which has been 

compared to an economic Pearl Harbor by Warren Buffett in his 2008 interview with Charlie 

Rose (Rose & Vega, 2008).  To accurately calculate the value of these financial derivatives a 

new field of study has emerged.  This field known as Financial Engineering or Quantitative 

Finance is the application of engineering and mathematics in the aiding of investment decisions 

based on the expected worth of derivatives as well as risk control. 

Recently the focus of Financial Engineering has revolved around stock options, Credit 

Default Swaps (CDSs), and Collateralized Debt Obligations (CDOs).  Stock options come in 

various different forms with the two most common being American and European options, also 

known as “vanilla options.”  In general there are three main parts to an option.  First, there is the 

expiration date, which is the date at which point the option can no longer be exercised.  Second, 

there is the strike price, which is the amount for which underlying asset will be exchanged.  

Lastly, there is the type of option, which can be either a put or a call.  A put option gives the 

purchaser the right to sell the underlying asset at the pre-agreed strike price whereas the call 

option gives the purchaser the right to buy the underlying asset at the pre-agreed strike price. 

Collateralized debt obligations and credit default swaps are both credit derivatives. A 

credit derivative covers a group of financial instruments, whose value is based on the credit risk 

of the underlying asset (Das, 2005).  Primarily, credit derivatives are used to efficiently 

repackage and transfer risk.  Credit derivatives are usually classified into two main formats: 

funded and unfunded.  Funded credit derivatives involve the seller of protection making an initial 

payment to cover potential credit events, such as defaults.  CDOs are an example of a funded 

credit derivative. An unfunded credit derivative involves both parties making payments based on 
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the underlying contract.  A CDS is an example of an unfunded credit derivative (O’Kane, 2001).  

Figure 1.1 below shows the hierarchy of credit derivatives.  The research focus of this thesis is 

on collateralized debt obligations. The fundamental mechanisms of these two credit derivatives 

are explained in the next two subsections. 

 

Figure 1.1 Credit Derivatives Hierarchy 

adapted from Das 2005 

1.1.1 Collateralized Debt Obligations (CDOs) 

A CDO is a type of an asset-backed security comprised of a portfolio of assets.  CDOs are 

frequently divided into one to three different pieces called tranches with the three main ones 

being the junior equity tranche, the mezzanine tranche, and the senior tranche each bearing a 

certain amount of exposure or risk.  Each tranche can be owned by one too many investors.  Each 

tranche i, has a notional principal, Pi, or the original value of the tranche, and an upper and lower 

default loss level denoted as Lb and La , respectively, where Lb > La.  The seller of protection 

earns a return, also referred to as a spread, based on the notional principal.  This is why the CDO 

is considered a funded credit derivative; the seller of protection makes an initial payment to 

cover any potential defaults as mentioned in Section 1.1 above. In the beginning when the 

cumulative losses on the portfolio, L, are less than La the spread is earned on the entire Pi.  After 

time when Lb > L > La, the spread is earned on Pi(Lb  L)/( Lb  La), where Pi(Lb  L)/( Lb  La) is 

the remaining value of the tranche.  A spread is no longer earned once the losses exceed Lb 

(Glasserman & Suchintabandid, 2006).   

Credit Derivatives

Funded Unfunded

Collateralized Debt 

Obligation
Credit Linked Note

Credit Default 
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Total Return Swap
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Figure 1.2 CDO Structure 

adapted from Glasserman and Suchintabandid 2006. 

Illustrated in Figure 1.2 is a CDO with three different tranches.  Assuming that the pool of 

assets was worth $1 million, the notional value of the equity tranche, P1, would be $100,000 with 

a La=0% and Lb=10%.  Similarly, the notional value of the mezzanine tranche, P2, would be 

$200,000 with La=10% and Lb=30%. Finally, the notional value for senior tranche, P3, would be 

$700,000 with La=30% and Lb=100%. 

Every period, the seller of protection receives a coupon payment, an amount of money 

based on the remaining notional value.  When coupon payments are made, they are paid out in 

reverse order losses are accumulated.  This means the senior tranche is paid first, the mezzanine 

tranche is paid second, and the equity tranche is paid last, assuming there are still funds 

available.  Since the equity tranche holder is paid last and incurs losses due to defaults first, it 

receives the highest yield because it contains the highest risk. In Figure 1.2 each tranche is 

shown to have a yield, yi.  This yield is the amount of interest each tranche will receive in a given 

period.  In this example, the equity tranche will receive an interest payment worth v1 = 35% of 

the remaining notional value of the tranche, P1. Thus in the beginning each tranche will receive 

coupon payments relative to their perspective yields for the entirety of the value of the tranche, 

but as defaults occur the value of the tranches will decrease, thus the coupon payments will 

decrease.  As an example, in the beginning when no defaults have occurred, L=0, thus all 

tranches will receive coupon payments equal to yiPi.  For example the equity tranche buyers will 

receive coupon payment of (35%)(100,000) or $35,000 each period, such as a month or a year. 

30% 

10% 

100% 

Pool of 
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Once a default occurs, say the losses are L=5%, the coupon payments thereafter to the equity 

tranche will become (35%)($100,000)((10% 5%)/(10% 0%)) or $17,500.  Note, that since 

L=5% is less than La for both the mezzanine and senior tranche, both of these tranches will 

continue to receive coupon payments on each of the respective Pi.  If more backed assets are 

defaulted over time, say the losses are now L=15%, then the equity tranche would be wiped out 

and receive no more coupon payments since L > Lb and the mezzanine tranche would start 

bearing the losses and receive discounted coupon payments in the amount of $22,500, or 

(15%)($200,000) * ((30% 15%)/(30% 10%)). 

CDOs have received a great deal of attention and criticisms lately due to the downturn in 

financial industries.  According to the Securities Industry and Financial Markets Association the 

global value of the CDO market peaked in 2006 at an estimated value of $520 billion and fell to 

an estimated value of $61 billion in 2008 (Securities, 2009).  This can be seen below in Table 

1.1. 

 

Table 1.1 Global CDO Value (Securities, 2009) 

Year USD Billions 

2004 $157.4 

2005 $271.8 

2006 $520.6 

2007 $481.6 

2008 $61.1 

This shows that with the economic downturn, the global value of CDOs has decreased 

drastically since 2006.  Part of this is due to the mark to market difference in the notional value 

of the underlying assets brought on by the drastically decreases in home prices.  Even though the 

value has dropped off lately, credit derivatives are still the fundamental financial instruments for 

lenders and investors to hedge risks or seek protection.  Since there are still significant benefits 

to the economy using these credit derivatives, they should be evaluated to better understand their 

behavior. 

CDOs were developed around 1987 but did not really take hold until the 1990s, and have 

since become one of the fastest growing areas in the market.  Originally, CDOs were designed 

for investors to repackage high yield bonds, which lacked liquidity, thus making them hard to 
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sell on the secondary market.  These CDOs were also developed because the requirements 

established by the National Association of Insurance Commissioners’ (NAIC) on the reserve 

required to hold equities, which made these bonds expensive to hold.  This was because the 

requirements established by NAIC required the bank to hold a percentage of capital in 

relationship to the credit quality.  For this reason, the riskier tranches were either sold or 

transferred to the insurance companies holding companies, also referred to as a special purpose 

vehicle.  Since the holding companies were not subject to the requirements set up by the NAIC, 

the banks could minimize the capital requirements by holding on to the tranches with the highest 

credit quality (Das, 2005).  Other reasons for structuring CDOs include: 

o The transfer of risk 

o The creation of tailor-made positions in credit risks 

o The funding benefits 

o The capital relief due to regulations 

To better optimize the return on capital, banks can take either long or short with their 

positions.  Here, going short involves selling the credit risk and thus buying protection.  When a 

bank goes long, they are buying credit risk and are thus selling protection.  This works to 

eliminate the traditional buy and hold strategy and thus improves the return to risk ratio of the 

credit portfolio (Das, 2005). 

To hedge against the risk of default a couple of different strategies can be used.  One 

common approach to hedging the risk to the investor is the standard “bull-bear” approach.  This 

approach is used when the investor believes the default rates will stay relatively low.  In this 

approach the investor sells protection in the equity tranche while buying protection in the senior 

tranche.  Another technique for hedging against defaults is by using individual credit default 

swaps which can be an expensive strategy (Rajan, McDermott, & Roy, 2007). 

CDOs are structured for several difference reasons from the bank’s perspective.  First, it 

reduces the amount of capital needed to cover credit portfolios.  Second, it allows the bank to 

remove assets from its balance sheet, thus enhancing the return on equity.  Third, for smaller 

banks, it can help to raise funding.  Fourth, it helps to transfer the risk to investors, to help reduce 

risk.  

There are several key drivers of CDOs from the investor’s point of view as well.  First, 

the structure of CDOs allows investors to take part in a diversified portfolio easily.    Second, it 
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allows investment managers to manage more assets while still being leveraged.  Investors can 

also receive higher returns on CDOs relative to similar credit risk.  CDOs also provide investors 

with structured exposure.  An example of this is that in the market highly rated assets, such as 

those rated AAA, are not very common, but a CDO can create a tranche with a AAA rating even 

though the underlying assets aren’t all AAA.  Before the downturn in the economy there was a 

very low level of defaults, thus many assets were given higher ratings than they deserved due to 

the history of the market (Weitzner, 2009).  Lastly, there remains a certain level of liquidity in 

the CDO market since they can be sold on the secondary market. 

Transactions of CDOs can be issuer driven, investor driven, arbitrage driven, or some 

combination of the three.  Typically, if a CDO is issuer driven, it is to either access funding for 

the issuer or to transfer some of its risk to an investor.  Investor driven CDOs are typically driven 

by the need to provide tailor made structured exposure to credit risk.  CDOs are arbitrage driven 

when a difference between the market price of the assets and the worth of the assets in a 

structured form, exists.   

The following figure, Figure 1.3, represents a single tranche CDO.  The CDO has three 

main groups involved: the obligors, the special purpose vehicle, and the investor.  The special 

purpose vehicle (SPV) is a stand-alone entity, frequently owned by the bank issuing the 

underlying CDO, that is used to limit the liability to the issuers.  This has a couple of advantages.  

First, it doesn’t require the issuer to hold as much capital to back the assets.  Second, if the 

portfolio were to under-perform it would not affect the issuer.  The obligor receives capital from 

the SPV.  In this illustrated example the SPV provides 25 obligors with a $150,000 mortgage 

each.  In return each obligor will make a monthly payment to the SPV in the amount of $997.95.  

The SPV takes the assets and packages them into a CDO to sell to an investor for a given 

amount.  In this case the SPV will sell all 25 mortgages to the investor for an amount relative to 

the expected number of defaults.  In return, the investor will receive a coupon payment from the 

issuer of $997.95, less 3% in fees, for each obligor who has not defaulted at this point.  Note, the 

3% in fees is paid to the issuer in this illustrated case.  When an obligor defaults, the cash flows 

decrease accordingly.  In this illustrated case once the first obligor defaults, the SPV receives 

only 24 coupons and thus pays the investor for only 24 coupons. 
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Figure 1.3 How a CDO Operates 

CDOs can be structured with various underlying assets from mortgages to other CDOs.  

The most common types are: 

 Loans: Collateralized Loan Obligations 

 Bonds: Collateralized Bond Obligations 

 Mortgages: Mortgage-backed Securities 

 Credit Default Swaps: Synthetic CDO 

 CDO tranches: CDO of CDOs or CDO-squared structures 

1.1.2 Credit Default Swaps (CDSs) 

Credit default swaps (CDSs) are one of the most important credit derivatives and 

currently make up the majority of the trading volume in the credit derivatives market (Das, 

2005).  It is estimated that this credit derivative is worth $20 trillion globally (Barrett, 2006).  A 

credit default swap is a structured investment that has a predetermined payout that will pay off if 

a credit event occurs.  The structure of the CDS can be seen below in Figure 1.4.  
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Figure 1.4 Structure of a CDS 

adapted from Das 2005 

First, the bank providing protection receives fees from the bank seeking protection for a 

specific entity.  In return, if a credit event occurs, the bank providing protection will make a 

predetermined payment to the bank seeking protection.  If a credit event does not occur, then the 

bank providing protection does not make a payment to the bank seeking protection. In essence, 

the bank seeking protection is buying insurance on an entity from the bank providing protection.  

A credit event in most cases is a default.  The payment received by the bank seeking protection is 

usually one of four types: fixed payment, physical settlement, recovery value, or cash settlement.  

A fixed payment is when the buyer of protection receives a predetermined amount, an estimate 

of loss, from the provider of protection.  The physical settlement is when the protection provider 

receives an asset from the protection seeker while the protection provider purchases the defaulted 

security at a given price.  The recovery value is when the bank providing protection pays the 

bank seeking protection the full face value of the swap.  The protection buyer will also pay the 

protection provider for any amounts recovered after the default event.  A cash settlement is when 

the protection seeker receives an amount relative to the change in price of the asset between 

when the CDS was issued and when the credit event occurred (Das, 2006).  In essence, a CDS is 

the same as a one obligor CDO. 

Since CDOs and CDSs can have complicated structures and there is no closed form 

solution for pricing or evaluating them for most of the structures, a more simplistic method 

should be used to evaluate these credit derivatives.  One method to calculate their worth uses 
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Monte Carlo simulation.  Monte Carlo simulation allows for a better understanding of the 

behavior of these derivatives.  

1.1.3 Monte Carlo Simulation 

Simulation works by randomly generating scenarios based on given probabilities to 

generate possible outcomes.  These outcomes can then be analyzed to determine such things as 

risk and likely results.  Boyle (1977), was the first to apply Monte Carlo simulation to the 

financial markets where he used simulation to value options. Monte Carlo methods for valuing 

derivatives involves simulating the paths that the security can take as the price evolves based on 

time, interest rate, or other parameters (Glasserman, 2004).  The main issue with using Monte 

Carlo methods is the fact that it can be rather slow since a large number of paths must be 

simulated to accurately predict what will happen (Glasserman, 2004).  This is because the error 

rate is equal to 1/  where c is the number of generated paths.  To reduce the error rate, more 

replications must be performed thus taking longer.  Monte Carlo simulation is popular because it 

is easy to implement and is fairly accurate when using sufficient replications. 

1.2 Research Motivations 

Lately, more people have become skeptical of CDOs because of their involvement in the 

economic downturn.  One of the reasons for the skepticism of CDOs is due to the lack of 

knowledge about them.  Allan Greenspan was recently quoted on a 2009 CNBC documentary 

"House of Cards," that even he does not understand the complex mathematical formulas used to 

price CDOs (Weitzner, 2009).  This is why an easier technique needs to be developed to better 

understand the CDO behavior and nature. 

Copulas are also needed to represent the correlation between the different obligors.  The 

correlation between obligors is determined based on economic factors.  These economic factors 

include such things as market indexes, economic events such as defaults, presidential elections, 

natural disasters, geographical location, etc.  

The research effort within this thesis extends on Andersen’s probability of default model 

and uses Monte Carlo simulation to calculate the expected number of defaults, expected losses to 

a portfolio, and the value of a CDO.  Monte Carlo simulation can be used to evaluate CDOs as 

well as better represent their behavior. 
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1.3 Research Objectives and Contributions 

The purpose of this research study is to test the effectiveness of Monte Carlo simulation 

in the pricing of collateralized debt obligations.  The study will show the simplicity of using 

Monte Carlo simulation and relate the CDO pricing to the following input parameters: (1) initial 

asset price, (2) coupon payment value, (3) life of the asset, (4) risk-free interest rate, (5) value at 

default, and (6) correlation between obligors.  The dependent variable will be generally defines 

as the price of the tranches, and the control variables, interest rate and time period, will be 

statistically controls in the study.  This will be done using MATLAB r2007b to calculate the 

probability of default, and simulation software, Rockwell Software Arena 12.0 to simulate the 

defaults to the CDO to show the flexibility in using simulation.  The main contribution of this 

thesis is the exploration of the use of Monte Carlo simulation in conjunction with copulas to 

represent  the correlation between defaults to accurately and straightforwardly price CDOs in a 

method that allows for the observation of the behavior of the CDO over time. 

1.4 Thesis Overview 

The remainder of this thesis is presented in the following way.  Chapter 2 contains a 

literature review of Collateralized Debt Obligations and Credit Default Swaps and current 

methods to determine their prices.  Then Chapter 3 discusses the calculations of the probability 

of default.  This includes discussions on both loading matrices and correlation matrices. Chapter 

4 details the Monte Carlo simulation used to calculate the value of a CDO while Chapter 5 

describes the results of this research.  Finally, Chapter 6 provides the conclusion of the thesis.  
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Chapter 2 Literature Review 

When pricing credit derivatives it is important to know when an asset defaults because of the 

financial losses due to default.  In pricing credit derivatives there are two main techniques for 

determining defaults: reduced form models and structural models.   A reduced form model 

focuses on modeling the probability of default based on market data compared to a structural 

model which models a default based on if the value of the firm, based on debt and equity, drops 

below a certain barrier.  The two models also differ in what type of data (e.g., available 

credit/debit information) is available to the modeler.  Using structural models implies that the 

default time is predictable because complete knowledge of all of the firm’s assets and liabilities 

is known while the use of reduced form models infers that the firms default time is unattainable 

because the only information available is that which is available to the market which is 

incomplete in reference to all of the current conditions of a firm.  The main difference between 

the two models as mentioned before is what information is available to the modeler.  Most of the 

debates between the two modeling approaches have focused on which model is better at 

forecasting performance such as the expected number of defaults, instead of if the model should 

be based off of data observed by the market or not.  Data observed by the market should be used 

in pricing credit risks such as CDOs, thus the reduced form model should be used because 

complete knowledge of a firms assets and liabilities is very rarely known, which is required to 

use structural models.  Even though the structural model does not seem to be the best approach 

based on the information available to the modeler, it is still the most popular technique (Jarrow, 

2004).  Because of this, existing literatures in both the structural and reduced form model will be 

reviewed and discussed in this chapter.  

This chapter is a literature review of some of the existing works on copulas, Monte Carlo 

simulation, structural models, and reduced form models.  Because copulas are used by structural 

and reduced form models and is used in Monte Carlo simulations, Section 2.1 first discusses the 

existing literature on the use of copulas to model the correlation between obligors which can be 

used with either model. This use of copulas is expanded on and used to calculate the probability 

of default of obligors in Chapter 3.  With the information of copulas, Section 2.2 discusses the 

use of Monte Carlo simulation in pricing credit derivatives, which again can be employed by 
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either model.  Section 2.3 introduces pricing credit derivatives with reduced form models while 

Section 2.4 introduces structural models for pricing credit derivatives. 

2.1 Copula Distribution 

Being able to accurately represent the correlation between obligors is one of the key 

aspects of analyzing a credit derivative.  More recently this correlation between obligors has 

been modeled using copula distributions.  A copula is a function that obtains a joint distribution 

with a certain dependence structure using a combination of univariate distributions and can be 

used with either the structural model or the reduced form model.  The theorem that stands as the 

foundation of copulas is Sklar’s theorem, which states that there exists a copula function that 

relates a given joint multivariate distribution and relevant marginal distributions: 

Sklar’s Theorem 

Let FXY be a joint distribution with marginals FX and FY.  Then there exists a function 

C:[0,1]
2
[0, 1] such that 

 FXY(x,y) = C(FX(x),FY(y))  

If X and Y are continuous, then C is unique; otherwise, C is uniquely determined on the 

(range of X)*(range of Y). 

Conversely, if C is a copula and FX and FY are distribution functions, then the function FXY is 

a joint distribution with margins FX and FY. 

Though this theorem is for a bi-variate setting it can also be extended to the case of n marginal 

distributions. 

Copula’s work in the same way as using the CDF of a distribution to generate a random 

variate.  To simulate a univariate distribution, a sample from a uniform U(0,1) distribution can be 

inverted to obtain the random normal variate obtained from the PDF.  For example, using a 

sample from a uniform U(0,1) distribution, the random normal variate can be obtained by 

inverting the CDF of the normal distribution using the sample from a uniform U(0,1).  This 

process of generating the random normal variate can be seen below in Figure 2.1.  For this 

example the red line is the uniform U(0,1) sample and the light blue line indicates the random 

normal variate.  Here, the random uniform value is about 0.8 and the random normal variate is 

about 0.8 as well.  In practice, any distribution can be used, however the normal distribution is 

used here.   
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Figure 2.1 Simulation of Univariate Distribution 

 

Copula’s are different in the fact that they take this method and convert it from a single 

distribution to two or more distributions.  They also differ in the fact that the CDF on the vertical 

axis and PDF on the horizontal axis are probabilistically linked and thus are not necessarily 

linked in a straight-line manner.  Here x is the random normal variate and y is the random U(0,1).  

It should be noted that in such cases as the multivariate normal distribution, the two values, x and 

y are not linearly related.  This is primarily due to the fact the copula is multidimensional (Dorey 

& Joubert, 2007). 

A more formal definition of a Copula is as follows: 

C is a Copula if C:[0,1]2
 [0,1] and 

(i) C(0,u) = C(v,0) = 0 for every u, v in [0,1] 

(ii) C(1,u) = C(u,1) = u for every u, v in [0,1] 

(iii) C(u2,v2) - C(u1,v2) - C(u2,v2) + C(u1,v1) ≥ 0 for all v1 ≤ v2, u1 ≤ u2. For every u1, u2, v1, v2 

in [0,1] 

Some of the more frequently used copulas in the financial industry are the Gaussian Copula, the 

Archimedean Copula, and the Student-t Copula. 

2.1.1 Gaussian Copula 

The general definition of the n-variate Gaussian copula is as follows: 

Cm, (u1, …, um) = Nm[N
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Here, N[ ] is the standard normal function, N
-1

[ ] is the inverse of the standard normal function, 

and N[…; ] is the multivariate Gaussian distribution function with correlation matrix 

mjiij ,)( 1 , 

and mean of zero.  Here, as in most cases, m refers to the number of assets or obligors in the 

reference portfolio.  Through the use of Cholesky decomposition, a positive definite matrix can 

be created.  This decomposition will result in an n x n matrix, A, where =AA
T
.  The matrix of A 

will be a lower triangular matrix with the values representing the covariance matrix of the n 

variates.  This in turn with give a Gaussian copula of the form 

μ + AZ ~ N(μ, ), 

where Z = [Z1, …, Zn]  are normally distributed N(0,1) and are independent.  One of the major 

advantages of the Gaussian is the fact that only linear correlations between assets or obligors 

need to be calculated (Bluhm & Overbeck, 2007). 

2.1.2 Student-t Copula  

The second most widely used copula after the Gaussian is the Student-t copula.  The 

Student-t copula can be defined as follows: 

][],...,[,..., 1

1

1

,,1,, mdddmmdm uuuuC
. 

Here, dm ,, is the multivariate t-distribution with d degrees of freedom and linear correlation 

matrix , d is a t-distribution with d degrees of freedom and 1

d
 is the inverse of the t-

distribution with d degrees of freedom. 

2.1.3 Marginals 

Copulas can be used in combination with a marginal to obtain different forms of 

correlation.  In practice the marginal is the distribution of the individual pricing or defaults 

whereas the copula is used for the joint probability.  The four most common combinations of 

copulas and marginals are the Gaussian copula with Gaussian marginals, the Gaussian copula 

with Student-t marginals, the Student-t copula with Gaussian marginals, and the Student-t copula 

with Student-t marginals.  Another type of copula and marginal that is not as widely used is the 

Archimedian otherwise known as the Clayton copula and marginal. 
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The copula can thus be used to calculate the probabilities of defaults among different 

obligors.  The copula can be used to show the correlation between obligors which can then be 

used to calculate the correlated probabilities of defaults to be used in the Monte Carlo simulation.  

This will be discussed further in Chapter 3. 

2.2 Monte Carlo Simulation 

The research contained within this thesis uses Monte Carlo simulation to price CDOs 

instead of complex mathematical models.  Like Copulas, Monte Carlo simulation can be used for 

both structural and reduced form models.  In the credit derivatives market, Monte Carlo 

simulation is most commonly known for pricing options.  Monte Carlo simulation was first used 

in 1977 by Boyle in the financial markets to price options.  Monte Carlo methods for valuing 

derivatives involves simulating the paths that the security can take as the price evolves based on 

time, interest rate, or other parameters (Glasserman et al, 2006).  The main issue with using 

Monte Carlo methods is the fact that it can be rather slow since a large number of paths must be 

simulated to accurately predict what will happen (Glasserman et al, 2006).  This is because the 

error rate is equal to 1/  where c is the number of generated paths.  To reduce the error rate, 

more replications must be performed thus taking longer.  In general the running time for Monte 

Carlo simulation grows at a rate of O(MN) where N is the number of paths and M is the number 

of replications. 

CDOs are complex credit derivatives that along with the involved underlying assets 

default behavior make Monte Carlo simulation an attractive choice to be able to accurately 

capture the CDOs behavior over time. Morokoff (2003) demonstrated how single step 

approximations and multi-step simulations can produce significantly different results.  Monte 

Carlo simulation allows for the migration of the asset over time, which is significantly more 

realistic compared to traditional mathematical modeling techniques (Morokoff, 2003). 

2.3 Reduced Form Models 

A reduced form model focuses on modeling the likelihood of default compared to a 

structural model which models a default based on if the value of a firm drops below a certain 

barrier.  The main advantage of reduced form models over structural models is their ability to be 

calibrated to different types of credit structures.  Reduced form models are used when the firms 
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default time is inaccessible.  These models assume that the information on the set of obligors is 

less detailed than that of structural models much like that of the observed market.  Based on this, 

reduced form models are better suited for pricing risk. 

Glasserman and Suchintabandid (2006) proposed a reduced form model for pricing 

CDOs through a series of independent-obligor models.  This approximation used the multifactor 

Normal Copula model to capture the default correlation between obligors.  The approach they 

used involved calculating independent defaults using power series expansions to scale the 

underlying correlations.  More specifically, the obligors’ correlation matrix is scaled while the 

tranche price is expanded as a power series with each term in the power series expansion being 

expressed as a weighted finite sum of independent-obligor prices.  In this paper they proposed 

approximations for weak and strong correlation. 

Approximation for weak correlation 

We calculate )( yLE , the expected loss at a certain coupon date with attachment point y.  To 

calculate the tranche price )( yLE of a dependent obligor model, they use an infinite sum of 

independent obligor tranche prices.  The correlation matrix of MXX ,...,1  is C such that: 

12 13 1

21 23 2

31 32 3

1 2 3

1

1

1 ,

1

M

M

t M

M M M

t t t

t t t

C t t t

t t t
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where 1,0t .  Since this is the case, t is set equal to 0, thus a total independent correlation 

matrix is constructed.  Since the values are independent, the tranche price can be calculated as 

follows: 
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approaches n as s, the perturbation parameter, goes to 0.  Here, 
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.  To do this, the exact value of )(
~

yLEJ  is computed using the recursive 

algorithm presented by Andersen et al. 
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Approximation for strong correlation 

For the case of strong correlation, t is no longer set equal to 0, but corresponds to a reference 

correlation matrix R such that:  tCRtCt )1( , 1,0t .  Where R contains a single factor 

structure such that for the thji ),(  element 
,

,1

ji

R
ji

ji
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multivariate normal vector. 
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where 
22

11/ jijiijij .  

Similar to the weak correlation ZyLEt  can be expanded to: 
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This integration to calculate n,...,0  can be used to approximate )( ylEt
(Glasserman & 

Suchintabandid, 2006).  As we can see, the calculations to price a CDO using this model can be 

very complex. 

2.4 Structural Models 

As mentioned in Section 2.3, structural models use a default triggered by the value of the 

firm dropping below a certain barrier.  Using structural models implies that there is complete 
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knowledge of the obligors data set.  This assumption implies that the default time for an obligor 

is predictable. 

Structural models were first introduced by Black and Scholes (1973) and Merton (1974).  

Fischer Black and Myron Scholes (1973) presented the Black-Scholes formula originally to price 

options in “The Pricing of Options and Corporate Liabilities”.  This formula incorporated a 

random walk, which demonstrated how a stock or derivative can only change in small amounts 

over time.  This, however, only covered stocks and could potentially be used to cover other types 

of assets as well.  

Merton (1974) presented a model that stated that an obligor would default if at the time of 

maturity the obligor’s debt was larger than its assets.  The model by Merton is considered the 

first model of defaults as well as one of the first structural models, because a structural model 

determines the time of default based on the evolution of a firms’ debt and equity (Elizalde, 

2005).  Merton’s model used a diffusion process to calculated the obligor’s asset value, Vt: 

 

where r is the risk-free rate, V is the volatility and Wt is a Brownian motion at time t.  With debt, 

D, and maturity, T, Merton’s model examined whether VT < D.  If this was the case then the 

obligor would default.  This assumes that the obligor can only default at time T.  For a case such 

as a European option this would be fine since the option can only be exercised upon maturity but 

for the case of a CDO the obligor can default at any time prior to time T.  Since the obligor can 

only default upon maturity, Merton’s model drastically underestimates the total probability of 

default. 

Black and Cox (1976) extended on the Black-Scholes formula and Merton’s model to 

create a structural model, which could be extended to corporate liabilities.  This structural model 

showed an obligor defaults once the value of its assets reaches a certain barrier assuming 

volatility and the risk-free rate are constant over time.  Black and Cox (1976) used a non constant 

barrier for determining if an obligor defaulted.  The barrier they presented was a time dependent 

barrier given by: 

, 

where P is the constant default threshold and is a given rate of change over time.  One 

interesting case is when r, where r is the risk-free rate.  In this case the barrier would then be 

equal to the face value of the default threshold discounted at the risk-free rate.  This structural 
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model was an improvement on Merton’s model because it allowed for the obligor to default at 

any point prior to maturity; which is important in pricing CDOs.  However, this only would 

cover one obligor. 

Zhou (2001) proposed a more realistic structural model for calculating the probability of 

default over time instead of only at maturity which extended on the Black and Cox (1976) 

structural model.  Zhou (2001) also extended the calculations for the probability of default to 

include the correlation between 2 obligors.  However, the main drawback to the work by Zhou is 

that it only covered the correlation between two obligors and couldn’t be used to calculate the 

correlation between a large numbers of obligors.   

In Li (2000) a couple of standard structural models were introduced for the study of 

default correlation.  In this the introduction of a random variable, time-until-default, was created 

as well as the definition of default correlation between two assets as the correlation between their 

survival times.  The introduction of using copulas in credit studies was discussed as well as how 

to calibrate the factor in a normal copulas function.  Li (2000) is credited with first using copulas 

in the financial industry to demonstrate the dependence between obligors.  This use of copulas 

was brought from the biostatistics and actuarial sciences area where it was already being used to 

demonstrate correlation between objects.  Li (2000) mentioned that if everything was 

independent it would be easy to handle any situation in the portfolio.  However, this is unrealistic 

because in a bear market defaults are higher and in a bull market defaults are lower.  This 

demonstrates the existence of macroeconomic influences that obligors share.  The addition of 

copulas to the financial markets was important because it helped introduce the correlation 

structure between obligors to the portfolio.  To do this however, a specific joint distribution of 

survival times must be determined with given marginal distributions. 

Hull, Predescu, and White (2005) demonstrated the use of a structural model in 

comparison to a reduced form model using the Gaussian copula.  Their model was an extension 

to Zhou’s model and addressed the problem with Zhou’s work, that Zhou’s technique could only 

be used to calculate the probability of default between 2 obligors.  They mentioned the advantage 

of the structural model is it provides a method for simultaneously modeling defaults and changes 

in credit rating.  However, this structural model did not show a good fit to market prices of CDO 

tranches.  The problem occurs when the correlation parameter is chosen to mirror the price of the 
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equity tranche, the mezzanine tranche became overpriced while the senior tranche became under 

priced. 
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Chapter 3 Probability of Default 

3.1 Introduction 

This chapter introduces the techniques to determine the correlated probabilities of 

defaults for a set of obligors in an asset pool of collateralized debt obligations.  Specifically, this 

chapter presents a technique for calculating the probability of default between assets while 

incorporating correlation.  To accurately price a CDO, the relationships among a pool of asset 

obligors needs to be carefully evaluated.  These relationships can be explained through the use of 

a correlation matrix.  In practice it is difficult to determine the correlation between two 

individual obligors but the correlation between the obligors and economic factors can be 

estimated in a more straight forward manner.  The correlations between obligors and factors can 

be explained through a loading matrix and it can be used to estimate the correlation matrix 

among a set of obligors.   

Section 3.2 discusses the loading matrix and how it is calculated.  The loading matrix is 

introduced first since it is easier to estimate in practice and is then used to calculate the 

correlation matrix.  The correlation matrix will be explained in Section 3.3.  Section 3.4 presents 

a technique for calculating the default time vector, while Section 3.5 discusses how the default 

time vector can be converted to a monthly probability of default. 

3.2 Loading Matrix 

The loading matrix, A, can be estimated through the use of factor analysis.  The factor 

analysis works by testing to see if the set of p individual predictor variables, X, can be explained 

using a set of m different factors denoted as Fi, i = 1, …, m.  This factor analysis is not intended 

to predict individual scores for X variables using other X variables but rather to explain patterns 

in the structure of the data (Warner, 2008).  The predictor variables, X, could be measures such 

as credit rating: AAA, AA, A, BBB, etc.  The vector of factors, F, could represent economic 

indices or events. Economic indices could include such things at the Dow Jones Industrial 

Average (DJIA), PHLX Semiconductor Index (SOX) the S&P 500(SPX), the Dow Jones 

Transportation Average (DJTA), etc.  Events could include such things as presidential elections, 

legislation of new bills, oil hitting a certain price, etc.  Other factors could include geographical 

locations, seasons, and so forth. 
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The use of a path model as seen in Figure 3.1 can be used to visually explain the 

relationship between the variables and the factors.  In this thesis, the factors are denoted F1 

through Fm and the measured variables are denoted Z(Xi).  In this research the measured 

variables, Z(Xi), would indicate the default probabilities of a rated security Xi.  The correlations 

between a measured variable Z(Xi) to factor Fj, is denoted as  aij.  
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Figure 3.1 Path Model for Loading Matrix 

adapted from Warner 2008 

The paths model is then used to construct the loading matrix A as seen in Equation 3.1.  

For example, the path a23 is the correlation between the variable Z(X2) and the factor F3. 

We can then arrange aij into a matrix format called the loading matrix as follows, 

   (3.1) 

 

The loading matrix, A, is then used to calculate the correlations among the various 

measured variables Z(Xi) (e.g., the probability of default for mortgage Xi).  This is done by taking 

each path between any two given Z(Xi) variables and multiplying the two path coefficients 
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together as seen in the path model Figure 3.1.  An example for the correlation coefficient 

between variables Z(X1) and Z(X2) can be seen below in Equation 3.2. 

 

 (3.2) 

 

Here, r12 is the correlation between variables Z(X1) and Z(X2).  The correlation based on 

the path from Z(X1) to Z(X2) through factor F1 is equal to a11a21.  Likewise, the correlation based 

on the path from Z(X1) to Z(X2) through factor F2 is equal to a12a22.  This calculation is repeated 

for all factors Fj to account for all possible paths (Warner, 2008). 

3.3 Correlation Matrix 

Once the correlation between all the variables Z(Xi) have been calculated, the correlation 

matrix can be constructed.  The correlation matrix takes on the form in Equation (3.3).  

 

 (3.3) 

 

The correlations, thus, represent the relationship between the different measured variables 

instead of the relationship between the variables and factors like the loading matrix.  All the 

diagonal elements are equal to 1.  It should be noted that if the set of p variables are uncorrelated, 

then all of the off diagonal elements of the matrix R are equal to 0.   

The elements of the correlation matrix can be either positive or negative, thus they are 

considered either positively or negatively correlated respectively.  If two elements are positively 

correlated, that means as one element increases the other element increases likewise, if one 

element decreases, the other element decreases as well.  For example, if two houses are located 

on the same block, there is a high likelihood that these two houses are positively correlated.  This 

is because since they are both in the same neighborhood, if the price of one increases, the value 

of the other home increases as well.  Similarly, if one home mortgage defaults, another home 

mortgage in the similar location could increase its probability for defaulting.  When two 

elements are negatively correlated they inversely change compared to each other.  An example of 
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two variables that are negatively correlated could be home values verse default rates.  As home 

values decrease, the default increases as seen in the recent economy. 

The computation of the correlation can be done by taking p factors and N participants and 

rate the importance of each factor on the participant.  Then the correlation can then be defined 

using Pearson correlation coefficients (Warner, 2008). 

In practice, the loading matrix is used more often because it can represent the relationship 

between the asset and its related factors (market indices, industrial indices, and others).  The 

coefficients of the paths are usually estimated, and can be used to reconstruct the correlation 

between variables.   This is easier to estimate because the relationship between a factor and an 

asset is far less complex than the correlation between two assets which can have several different 

factors influencing it.  When the correlation matrix is used in practice it is calculated using factor 

analysis or regression.  It is usually estimated using the loading matrix, since the loading matrix 

is easier to estimate than the correlation matrix. 

3.4 Default Time Vector 

Andersen, Sidenius, and Basu (2003) presented an algorithm for the pricing of CDOs.  

Their algorithm works by calculating the random default time vector, evaluate a payout function, 

and compute the average loss to the portfolio.  In this chapter, the algorithm to calculate the 

random default time vector is discussed, while Chapter 4 examines the simulation used for the 

payout function, and Chapter 5 discusses the outputs of the simulation which are used to 

compute the average loss to the portfolio. 

The first step of the algorithm is to generate an M+N dimensional sample of uncorrelated 

Gaussian numbers called U
T
 = [X

T
  e

T
].  The first M of these numbers is used to represent X, 

while the remaining N numbers are used to represent e by the following equation: 

, (3.4) 

where Y is an N x 1 standard Gaussian vector with correlation matrix  , and c is an N  M 

loading matrix, e is an N  1 matrix denoting the residual value, and X is the risk factor such as 

bond rating.  In this research, the estimated correlation between assets is estimated to be 0.25.  

Next, the correlated sample Y is generated using the equation: 

, (3.5) 



 25 

where  and  .  In this thesis, F is initially set to be an identity matrix, 

and F and c can be iteratively calculated as follows: 

1. Calculate   using a principal components analysis decomposition of  , 

where E is a matrix of normalized eigenvectors of  and  is a diagonal matrix 

which contains the M largest eigenvalues of . 

2. Calculate  where  

3. Repeat steps 1 and 2 until   

Once the correlated sample Y has been calculated, generate a single chi-square value, g, 

with v degrees of freedom.  Then calculate the correlated Student-t vector, Z, using the following 

equation: 

. (3.6) 

Using this Z, the random default time vector can be calculated as: 

, (3.7) 

where k is the number of assets.  These steps have been diagramed into a flowchart that can be 

seen in Figure 3.2: 
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Figure 3.2 Default Time Vector Calculation Flowchart 

3.5 Converting Overall Probability of Default to Different Period Lengths 

These cumulative probabilities must be converted to monthly probability of defaults, 

which is geometric in nature.  A cumulative default probability, s, can be expressed as the 

summation of the each periods probability of default.  The default in the first time period is p.  

The default in the second time period is (1 p)p because there is a (1 p) probability that the 

default does not occur in the first period and probability p that the default occurs in the second 
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period.  The probability of default for the third time period is (1 p)
2
p because there is a (1 p) 

probability that the default does not occur in the first period, a (1 p) that the default does not 

occur in the second period, and a probability of p that the default will occur in the third period.  

This is then continued for all N periods, 360 in this case.  The summation of all the periods can 

be seen below in Equation 3.8: 

 ppppppps N 12 )1(...)1()1(  (3.8) 

For the simulation, the probability of default of each period is needed, which can be 

calculated using the cumulative probability of default.  To do this, the original equation can be 

multiplied by (1 p) and subtracted from the original equation at which point p can be solved in 

terms of s. 

 ppppppps N 12 )1(...)1()1(  (3.9)

 
2 3(1 ) (1 ) (1 ) (1 ) ... (1 )Ns p p p p p p p p p  (3.10) 

Now subtract Equation (3.9) from Equation (3.10), 

 pppps N)1(  

 
Nps )1(1  

 
Nps )1(1  

 
N sp 11 . (3.11) 

Thus, the periodic independent default probability for each month is: 

 
N sp 11 . (3.12) 

 

These calculations assume that the probability, p, is constant for each time period. 

Table 3.1 has the cumulative default probability and the monthly default probability used 

for the simulation of the portfolio of 25 assets. 
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Table 3.1 Probability of Default 

Entity

Cumulative 

Default Probability

Monthly Default 

Probability

1 0.2218 0.0007

2 0.5180 0.0020

3 0.1468 0.0004

4 0.3923 0.0014

5 0.3836 0.0013

6 0.3983 0.0014

7 0.3051 0.0010

8 0.7298 0.0036

9 0.0446 0.0001

10 0.5332 0.0021

11 0.6754 0.0031

12 0.6271 0.0027

13 0.5802 0.0024

14 0.4107 0.0015

15 0.6108 0.0026

16 0.5774 0.0024

17 0.3225 0.0011

18 0.2888 0.0009

19 0.3112 0.0010

20 0.0800 0.0002

21 0.3287 0.0011

22 0.4350 0.0016

23 0.4972 0.0019

24 0.8120 0.0046

25 0.2960 0.0010  

This means that for the first asset, there is a 0.07% chance that the default occurs in the 

current month and a 22.18% chance that the asset will default at some point during the 360 

months.  Similarly, the second asset has a 0.2% chance of defaulting in the current month and a 

51.8% chance of defaulting at some point during the 360 months. 

The historic one year average probability of defaults for each rated class of assets was 

published in a 2005 study by Standard & Poor’s.  These historic average probabilities were 

calculated using data between 1981 and 2004 and are summarized below in Table 3.2 (Standard 

& Poor’s, 2005). 
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Table 3.2 One Year Probability of Default 

S&P 

Rating

Probability 

of Default

AAA 0.00%

AA 0.01%

A 0.04%

BBB 0.29%

BB 1.28%

B 6.24%

CCC 32.35%  

This table means that given a portfolio of 10,000 BBB rated bonds, 29 obligors are 

expected to default at some point within one yea.  This expected number of defaults can be 

extended out to multiple years using the following equation derived from Equations 3.9 and 3.10 

from above to calculate the cumulative probability: 

Nps )1(1 , (3.13) 

where s is the cumulative probability, p is the yearly probability, and N is the number of periods.  

For example, for a portfolio of 10,000 BBB rated bonds the cumulative probability of default for 

30 years would be about 8.34%.  This means the expected number of obligors to default over the 

30 year period would be about 834. 
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Chapter 4 Monte Carlo Simulation of CDOs 

4.1 Introduction 

This chapter extends on the method for pricing collateralized debt obligations.  

Specifically, this chapter takes the probability of default derived in the previous chapter and uses 

it in simulating a CDO setting to determine the price of a CDO.  Section 4.2 discusses the Monte 

Carlo simulation used to determine the amount of losses due to default.  In Section 4.3, the 

example outputs of the simulation setups are explained to demonstrate how the CDO prices can 

be calculated using the simulation results. 

In Chapter 3, a technique for calculating the probability of default is evaluated.  This 

technique integrated the correlation between obligors necessary for accurately representing a 

CDO.  A Monte Carlo simulation can then be developed using these probabilities of defaults 

which are developed in Section 4.2 that can be used to calculate the price for a CDO.  Also using 

these probabilities of defaults, the size of the equity tranche can be developed in Section 4.3. 

4.2 Monte Carlo Simulation 

To illustrate how to evaluate the price of a CDO, a portfolio of 25 mortgages is 

simulated.  To simplify the illustration, each asset is a 30 year $150,000 mortgage with a 7% 

interest rate paid monthly.  Thus, the monthly payment, A, is calculated using the following 

formula: 

, (4.1) 

 

where P is the original amount of the mortgage, i is the monthly interest rate, and N is the length 

of the mortgage.  In this example, P is $150,000, i is 0.583%, and N is 360 months.  Given this 

information, the monthly payment, A, is calculated to be $997.95.  It is also assumed that if an 

obligor defaults, the asset can be sold for 70% of the original value in the future. 

The correlation among the 25 assets is assumed to be 0.25.  Based on this assumption, the 

correlated default probabilities for each asset over the 360 periods can be calculated using the 

procedure proposed by Andersen, Sidenius, and Basu (2003) as seen in Chapter 3.  In addition, 

the independent default probabilities for each month can be obtained using Equation 3.12 from 
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Chapter 3.  Figure 4.1 illustrates the CDO pricing simulation logics using a flowchart 

presentation and the logics are explained in detail using an example. 

Generate N number of assets

Using the probability of defaults 

calculated, check to see if the 

asset defaults during this period

Update the 

cumulative amount 

of coupon 

payments

Calculate the cumulative loss 

due to default

Check to see if the experiation 

date has occurred yet

Assign each asset a monthly default probability using Andersen’s model

Increment the period by 1

Calculate the present value of 

the coupon payment

Check to see if the asset has 

defaulted before

Calculate the coupon payment 

based on difference between 

original value and current value

Set coupon payment 

equal to 0

Update the cumulative 

amount of coupon payments

No

No

Yes

Yes No

Simulation CompleteYes

 

Figure 4.1 Simulation Flow Diagram 

 

To simulate the value of a CDO, 25 assets are created as individual entities at the 

beginning of the simulation.  Each entity contains 4 attributes: 

 Asset number 

 Period 

 Coupon payment amount 

 Probability of default 

The asset number is used to differentiate between the different obligors and it ranges 

between 1 and 25 in this example.  The period is used to reflect the current month of the 

mortgage in the simulation. The coupon payment is the discounted value of the monthly 
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mortgage payment based on the period number.  Lastly, the probability of default is the 

probability of defaulting calculated in Chapter 3 Equation 3.12. 

The simulation model as a whole uses 3 global variables:  

 Cumulative coupon payments 

 Cumulative losses to CDO 

 Number of defaulted obligors 

The cumulative coupon payments variable records a running total of all the coupon 

payments received from the obligors.  The cumulative loss to the CDO is a running total of all 

the losses associated with defaults for keeping track of the current notional during the simulation. 

The number of defaulted obligors is the total number of obligors that have defaulted up to the 

current time period. 

To begin the simulation, each entity representing an asset is assigned an asset number and 

a corresponding probability of default.  This probability of default is read into the simulation 

from a file that is created using the techniques in Chapter 3 proposed by Andersen et al (2003).  

The period, which starts at 0 is then incremented by 1 for each iteration and is tested to see if the 

expiration date, 360 in this case, has occurred. 

If the expiration date has not been reached, the simulation checks to see if the asset has 

defaulted in a previous period.  If the asset has not yet defaulted, the simulation checks to see if 

the asset defaults in the current month using the monthly default probability attribute.  If the 

asset does default in the current month, then the loss due to default can be calculated by taking 

the original value of the mortgage, $150,000, and subtracting the discounted $105,000 from it.  

This represents a recovery of 70% of the original value in the future and will be discounted back 

at an annualized rate of 4%.  The formula used to calculate the present value given the future 

value is: 

 

, (4.2) 

 

where F is the future value, i is the interest rate, N is the number of time periods, and P is the 

present value.  The value is then used to update the cumulative loss given default by taking the 

previous cumulative loss given default value and adding the losses in this period given default.  

The asset is then flagged as having defaulted and updates the total number of assets to default by 
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taking the previous number of defaulted obligors and incrementing it by 1.  After these steps the 

following outputs are generated for this asset: 

 the current period 

 the asset number 

 the amount of the current coupon payment 

 the cumulative amount of coupon payments 

 the cumulative amount of losses to the CDO 

 the number of assets that have defaulted 

These outputs are used later in Section 4.3 to show the cash flows over the 360 periods 

and to calculate the yield for the equity tranche.  Once the simulation writes out the 

aforementioned information, the asset is then sent through the loop again updating the period, 

checking to see if the expiration date has occurred yet, etc. 

If an asset did not default in the current month, the coupon payment is calculated to 

account for discounting using Equation 4.2 and updates the cumulative amount of coupon 

payments received by taking the previous cumulative coupon payments and adding the current 

coupon payment.  The simulation then writes out the information as listed above and goes 

through the cycle again.  This cycle is then repeated until all 360 months have been simulated.   

If an asset has defaulted in a previous period, the asset is assigned a coupon payment of 

$0, increments the cumulative amount of coupon payments by taking the previous total amount 

of coupon payments made and adding $0 and then the simulation writes out the aforementioned 

information.   

Prior to running the simulation, the expected number of defaults can be calculated by 

summing the cumulative probability of defaults in Table 3.1 from Chapter 3.  For 25 assets, the 

expected number of defaults is 10.53.  Based on 30 replications, the average number of defaults 

was 9.9 with a standard deviation of 2.77. 

4.3 Simulation Outputs 

Table 4.1 shows the example outputs from the first period of the first replication of the 

simulation.  The first column is the period, which is 1 for all assets to begin with, and will 

increment by 1 for each period.  The second column is the asset number which there is 25 of 

them total.  The third column is the coupon payment for the current period.  As long as an asset 
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has not defaulted this value should be constant for each value and will decrease over time due to 

discounting.  Note that even though this is the first time period, the cash flow of $997.95 needs 

to be discounted back for one period to its present value of $994.63.  The next column takes the 

previous cumulative coupon payment and adds the current coupon payment to it.  Thus, this 

value increases with time.  The fifth column is the cumulative loss and keeps a running total of 

the sum of the losses due to default.  The next column is the portfolio value which will start at 

$3,750,000 based on the $150,000 initial value for the 25 assets.  Each time an asset defaults, this 

value will decrease by $150,000 with no discounting.  The seventh column keeps a running total 

of the number of assets that have defaulted.  The last column shows the monthly probability of 

default for each asset.  Note the monthly probability of default is not constant and in subsequent 

periods each asset continues to have the same probability of default. 

Table 4.1 Example Outputs for 1st Period 

Period

Asset 

Number

Coupon 

Payment

Cumulative 

Coupon Payment

Cumulative 

Loss Portfolio Value

Number of Assets 

Defaulted

Monthly Probability of 

Default

1 1 $994.63 $994.63 $0.00 $3,750,000.00 0 0.07%

1 2 $994.63 $1,989.27 $0.00 $3,750,000.00 0 0.20%

1 3 $994.63 $2,983.90 $0.00 $3,750,000.00 0 0.04%

1 4 $994.63 $3,978.54 $0.00 $3,750,000.00 0 0.14%

1 5 $994.63 $4,973.17 $0.00 $3,750,000.00 0 0.13%

1 6 $994.63 $5,967.81 $0.00 $3,750,000.00 0 0.14%

1 7 $994.63 $6,962.44 $0.00 $3,750,000.00 0 0.10%

1 8 $994.63 $7,957.08 $0.00 $3,750,000.00 0 0.36%

1 9 $994.63 $8,951.71 $0.00 $3,750,000.00 0 0.01%

1 10 $994.63 $9,946.35 $0.00 $3,750,000.00 0 0.21%

1 11 $994.63 $10,940.98 $0.00 $3,750,000.00 0 0.31%

1 12 $994.63 $11,935.61 $0.00 $3,750,000.00 0 0.27%

1 13 $994.63 $12,930.25 $0.00 $3,750,000.00 0 0.24%

1 14 $994.63 $13,924.88 $0.00 $3,750,000.00 0 0.15%

1 15 $994.63 $14,919.52 $0.00 $3,750,000.00 0 0.26%

1 16 $994.63 $15,914.15 $0.00 $3,750,000.00 0 0.24%

1 17 $994.63 $16,908.79 $0.00 $3,750,000.00 0 0.11%

1 18 $994.63 $17,903.42 $0.00 $3,750,000.00 0 0.09%

1 19 $994.63 $18,898.06 $0.00 $3,750,000.00 0 0.10%

1 20 $994.63 $19,892.69 $0.00 $3,750,000.00 0 0.02%

1 21 $994.63 $20,887.33 $0.00 $3,750,000.00 0 0.11%

1 22 $994.63 $21,881.96 $0.00 $3,750,000.00 0 0.16%

1 23 $994.63 $22,876.59 $0.00 $3,750,000.00 0 0.19%

1 24 $994.63 $23,871.23 $0.00 $3,750,000.00 0 0.46%

1 25 $994.63 $24,865.86 $0.00 $3,750,000.00 0 0.10%  

The next table, Table 4.2, shows the first 20 periods for one asset, asset number 13.    

Since this example is just one asset, the asset number and the monthly probability of default are 
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the same for all time periods.  This asset was chosen because it was the first to default.  It can be 

seen that in the 11
th

 time period the default occurs.  Prior to this, the cumulative loss had been $0 

as well as the number of assets that had defaulted.  In time period 11 however, the coupon 

payment is $48,774 because of the loss due to default.  This is calculated by taking $150,000 

and discounting $105,000 for 11 periods and subtracting it from $150,000.  The total portfolio 

value decreases by $150,000 to $3,600,000 and the cumulative loss is set to $48,774 to account 

for the losses.  The number of assets to default is also set to 1 at this point.  This also shows that 

since the asset has defaulted there will not be any more coupon payments made and thus the 

coupon payment is set to $0 for all remaining periods following the default. 

 

Table 4.2 Example Outputs for first 20 Periods of Asset 13 

Period Asset #

Coupon 

Payment

Cumulative 

Coupon 

Cumulative 

Loss Portfolio Value

# of Assets 

Defaulted

Monthly 

Probability of 

1 13 $994.63 $12,930.25 $0.00 $3,750,000.00 0 0.24%

2 13 $991.33 $37,753.16 $0.00 $3,750,000.00 0 0.24%

3 13 $988.04 $62,493.59 $0.00 $3,750,000.00 0 0.24%

4 13 $984.75 $87,151.84 $0.00 $3,750,000.00 0 0.24%

5 13 $981.48 $111,728.16 $0.00 $3,750,000.00 0 0.24%

6 13 $978.22 $136,222.83 $0.00 $3,750,000.00 0 0.24%

7 13 $974.97 $160,636.13 $0.00 $3,750,000.00 0 0.24%

8 13 $971.73 $184,968.32 $0.00 $3,750,000.00 0 0.24%

9 13 $968.50 $209,219.67 $0.00 $3,750,000.00 0 0.24%

10 13 $965.29 $233,390.45 $0.00 $3,750,000.00 0 0.24%

11 13 -$48,774.10 $256,518.85 -$48,774.10 $3,600,000.00 1 0.24%

12 13 $0.00 $279,570.41 -$48,774.10 $3,600,000.00 1 0.24%

13 13 $0.00 $302,545.39 -$48,774.10 $3,600,000.00 1 0.24%

14 13 $0.00 $325,444.04 -$48,774.10 $3,600,000.00 1 0.24%

15 13 $0.00 $348,266.62 -$48,774.10 $3,600,000.00 1 0.24%

16 13 $0.00 $371,013.37 -$48,774.10 $3,600,000.00 1 0.24%

17 13 $0.00 $393,684.55 -$48,774.10 $3,600,000.00 1 0.24%

18 13 $0.00 $416,280.41 -$48,774.10 $3,600,000.00 1 0.24%

19 13 $0.00 $438,801.20 -$48,774.10 $3,600,000.00 1 0.24%

20 13 $0.00 $461,247.18 -$48,774.10 $3,600,000.00 1 0.24%

 

A cash flow plot in Figure 4.2 provides the visual of the total amount of losses and 

coupon payments for each period.  This shows the 9 defaults in red with the first being about 

$48,774 in period 11 as mentioned above.  This shows how the inflow of payments decreases 

over time due to discounting and dips slightly every time there is a default. 
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Figure 4.2 Portfolio Cash Flow Revenue and Losses per Month 

 

To price the CDO, the size of the equity tranche was first determined.  It was assumed 

that the notional value of the equity tranche would be equal to the expected number of defaults.  

In this example, the expected number of defaults according to Table 3.1 in Chapter 3 is 10.53 

which is rounded up to 11.  The notional value is then $1,650,000, (11 defaults * $150,000).  The 

yield for the equity tranche was calculated so the total yield from the equity tranche would be at 

least equal to the expected losses to the CDO.  This is necessary otherwise nobody would invest 

in the equity tranche because there would be no financial benefit associated.  To calculate the 

yield that should be paid to the equity tranche holder, the following equation is used: 

, (4.3) 

where y is the monthly yield, pN is the remaining principal in month N, and L is the cumulative 

loss due to default.  To calculate this, the cumulative loss and the cumulative remaining principal 

for each replication were written out by the simulation.  Both of these values included 

discounting using Equation 4.2.  By dividing the absolute value of the cumulative loss by the 
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cumulative notional value the monthly yield was determined.  These values can be seen in Table 

4.3 below. 

Table 4.3 Monthly and Yearly Yield 

Replication Cumulative Loss

Cumulative 

Notional

Monthly 

Yield

Yearly   

Yield

1 -$807,861.96 $234,719,014.66 0.34% 4.13%

2 -$1,130,107.41 $132,891,292.96 0.85% 10.20%

3 -$725,857.40 $199,457,052.84 0.36% 4.37%

4 -$1,229,170.46 $97,193,308.76 1.26% 15.18%

5 -$1,155,783.29 $138,173,227.60 0.84% 10.04%

6 -$465,597.53 $291,222,053.79 0.16% 1.92%

7 -$847,005.65 $251,550,800.70 0.34% 4.04%

8 -$771,655.98 $219,150,444.88 0.35% 4.23%

9 -$1,332,338.97 $207,457,114.66 0.64% 7.71%

10 -$799,674.73 $231,198,504.11 0.35% 4.15%

11 -$1,024,894.93 $177,270,952.26 0.58% 6.94%

12 -$805,566.04 $233,731,767.84 0.34% 4.14%

13 -$854,684.96 $203,933,718.23 0.42% 5.03%

14 -$691,252.63 $235,496,188.26 0.29% 3.52%

15 -$1,080,059.77 $199,097,203.58 0.54% 6.51%

16 -$814,941.19 $186,843,896.09 0.44% 5.23%

17 -$883,684.79 $165,484,460.41 0.53% 6.41%

18 -$774,096.62 $169,280,732.12 0.46% 5.49%

19 -$1,007,642.97 $218,786,476.01 0.46% 5.53%

20 -$833,580.02 $245,777,781.43 0.34% 4.07%

21 -$1,044,999.88 $94,655,375.70 1.10% 13.25%

22 -$535,739.73 $219,544,829.40 0.24% 2.93%

23 -$914,625.15 $129,598,086.08 0.71% 8.47%

24 -$562,824.00 $231,191,063.89 0.24% 2.92%

25 -$320,443.53 $279,725,022.49 0.11% 1.37%

26 -$621,585.84 $205,539,468.72 0.30% 3.63%

27 -$659,184.87 $170,787,864.14 0.39% 4.63%

28 -$591,547.03 $192,622,779.52 0.31% 3.69%

29 -$1,046,384.74 $235,445,437.42 0.44% 5.33%

30 -$580,421.26 $238,757,885.95 0.24% 2.92%

0.47% 5.60%Average  

By taking the average of the 30 replications, the annual yield was determined.  In this 

scenario the yield was calculated to be 5.6% which means that the SPV must provide a yield rate 

of 5.6% or more on the equity tranche for the owner of the equity tranche to break even. 
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An example illustrating the losses to the equity tranche can be seen below in Figure 4.3.  

In this example there are 30 portfolios simulated.  Each simulated CDO has an equity tranche 

detachment point of $12,900,000 shown as a horizontal red line in the graph.  This is chosen 

because the expected number of defaults for 200 assets is 85.219.  Thus $12,900,000 is 

determined by rounding up the expected number of defaults to 86 and multiplying by the 

$150,000 for each obligor. 

 

 

Figure 4.3 Cumulated Losses for 200 Assets over 30 year period- 30 individual simulations 

This figure illustrates there are 13 simulations with losses above the equity tranche 

detachment point.  This is used to visualize how a detachment point of an equity tranche is 

determined using the expected number of defaults. In this illustration, about half of the portfolios 

should be on each side of the detachment point. 
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Chapter 5 Simulation Results 

5.1 Introduction 

The previous two chapters discussed the techniques that are used in this research to 

calculate the probabilities of default and price the collateralized debt obligations yields via 

Monte Carlo simulation.  This chapter examines the computational results of the Monte Carlo 

simulation used to price CDOs in two main aspects: precision and accuracy.  Specifically, this 

chapter demonstrates high precision based on the expected number of defaults following a linear 

trend as the size (i.e., number of obligors) increases, while high accuracy is characterized by 

constant standard deviation between different sizes.  Section 5.2 shows the results for 30 

replications of CDOs with 25, 50, 100, and 200 obligors with each replication using the same 

probability of defaults. This section demonstrates how the Monte Carlo Simulation can produce 

high precision results across various numbers of obligors.  Section 5.3 will show the results for 

30 different CDOs with 25, 50, 100, and 200 obligors with each CDO having a different set of 

probability of defaults.  This section demonstrates how the Monte Carlo Simulation produces 

high accuracy results across various CDOs and sizes.  Finally, Section 5.4 concludes with the 

findings from these computational results. 

5.2 Test of Precision and Repeatability 

The objective of this section is to prove that the simulation is highly precise based on a 

constant standard deviation for all sets of obligors.  This section evaluates the outputs for CDOs 

with 25, 50, 100, and 200 obligors when each replication uses the same probability of default.  

Since the probability of default is the same for each of the 30 replications it is expected that the 

data should be fairly consistent thus having a low standard deviation.  For each CDO size the 

mean and standard deviation for the number of defaults is calculated based on 30 replications.  

These values are then used to perform a one-sample t-test to determine if the expected mean ( ) 

and the sample mean x̄are the same.  The null hypothesis is that the expected number of defaults 

is equal to the sample mean number of defaults from the simulation: 

Null Hypothesis:   

Alternative Hypothesis:  

Equation 5.1 is use to calculate the t value based on the one-sample t-test. 
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, (5.1) 

where  is the sample mean, is the expected mean,  is the sample standard deviation, and n is 

the number of replications.  Then using the t distribution with n 1 degrees of freedom, the p 

value is determined.  The calculated p value represents the probability of the obtaining a similar 

test statistic at least as great as the observed, while assuming the means are equal.  If this p value 

is greater than 0.05 we can fail to reject the null hypothesis that the sample mean, the average 

number of defaults from the simulation, and the expected mean, the calculated expected number 

of defaults, are equal.  This means that any scenario that has less than a 5% probability of 

happening is considered extraordinary and would thus reject the null hypothesis. 

The size of the four test cases were chosen to provide enough obligors to generate 

relative data but not too many obligors which would require additional and unnecessary running 

time to compute the price of the CDO.  A common size of a CDO in practice can range from 

about 50-200 obligors. 

5.2.1 25 Obligors 

To calculate the expected number of defaults the cumulative probabilities of defaults for 

each of the 25 obligors is summed together as described in Section 3.5.  For the illustrated 

example with 25 obligors in Table 5.1 the expected number of defaults is 10.53.  Table 5.1 

contains the cumulative probabilities of defaults as well as the monthly probabilities of defaults.  

For the illustrated example of 25 obligors the 1
st
 obligor has a 22.18% probability of defaulting 

at some point during the 360 periods while it has a 0.07% probability of defaulting in a given 

month.  Table 5.1 can be seen at the end of this chapter. 

Based on the expected number of defaults for 25 obligors, 10.53, the expected loss to the 

notional for the equity tranche was determined to be $1,650,000 by rounding up the number of 

expected defaults to 11 and multiplying by $150,000, the value of each mortgage.  This means 

over 30 years, the expected loss of the total starting value of the CDO will be $1,650,000 due to 

defaults.  On the other hand, using the Monte Carlo simulation, the average number of defaults 

for 30 replications was 9.9 with a standard deviation of 2.77 with a 95% confidence interval of 

(8.865, 10.935).  Using Equation 5.1 the p value of the one sample t-test was calculated to be 

22.3%.  Since this p value is more than 5%, we do not have sufficient evidence to reject the null 
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hypothesis that the means are equal.  Using Equation 4.3, the estimated monthly yield is 

calculated to be about 5.6%. 

5.2.2 50 Obligors 

To calculate the expected number of defaults the cumulative probability for each of the 

50 obligors is summed together as described in Section 3.5.  For the illustrated example with 50 

obligors in Table 5.2 the expected number of defaults was 13.05.  Table 5.2 contains the 

cumulative probabilities of defaults as well as the monthly probabilities of defaults.  For the 

illustrated example of 50 obligors the 1
st
 obligor has a 84.95% probability of defaulting at some 

point during the 360 periods while it has a 0.52% probability of defaulting in a given month.  

Table 5.2 can be seen at the end of this chapter. 

Based on the expected number of defaults for 50 obligors, 13.05, the expected loss to the 

notional for the equity tranche was determined to be $1,950,000 by rounding the number of 

expected defaults to 13 and multiplying by $150,000, the value of each mortgage.  This means it 

is expected that over 30 years, $1,950,000 of the total starting value of the CDO will be lost due 

to default.  Using the Monte Carlo simulation, the average number of defaults for 30 replications 

was 12.13 with a standard deviation of 3.19 with a 95% confidence interval of (10.941, 13.325).  

Using Equation 5.1 the p value was calculated to be 12.7%.  Since this p value is more than 5% 

we fail to reject the null hypothesis that the means are equal.  Using Equation 4.3 the estimated 

monthly yield is calculated to be about 6.14%. 

5.2.3 100 Obligors 

To calculate the expected number of defaults the cumulative probability for each of the 

100 obligors is summed together as described in Section 3.5.  For the illustrated example with 

100 obligors in Table 5.3 and 5.4 the expected number of defaults was 27.97.  Table 5.3 and 5.4 

contains the cumulative probabilities of defaults as well as the monthly probabilities of defaults.  

For the illustrated example of 100 obligors the 1
st
 obligor has a 80.90% probability of defaulting 

at some point during the 360 periods while it has a 0.46% probability of defaulting in a given 

month.  Table 5.3 and 5.4 can be seen at the end of this chapter. 

Based on the expected number of defaults for 100 obligors, 27.97, the expected loss to 

the notional for the equity tranche was determined to be $4,200,000 by rounding up the number 

of expected defaults to 28 and multiplying by $150,000, the value of each mortgage.  This means 
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it is expected that over 30 years, $4,200,000 of the total starting value of the CDO will be lost 

due to default.  Using the Monte Carlo simulation, the average number of defaults for 30 

replications was 27.37 with a standard deviation of 3.88 and a 95% confidence interval of 

(25.917, 28.816).  Using Equation 5.1 the p value was calculated to be 40.2%.  Since this p value 

is more than 5% we fail to reject the null hypothesis that the means are equal.  Using Equation 

4.3, the estimated monthly yield is calculated to be about 6.02%.   

5.2.4 200 Obligors 

To calculate the expected number of defaults the cumulative probability for each of the 

200 obligors is summed together as described in Section 3.5.  For the illustrated example with 

200 obligors in Table 5.5, 5.6, 5.7, 5.8 the expected number of defaults was 85.21.  Table 5.5, 

5.6, 5.7, 5.8 contains the cumulative probabilities of defaults as well as the monthly probabilities 

of defaults.  For the illustrated example of 200 obligors the 1
st
 obligor has a 98.49% probability 

of defaulting at some point during the 360 periods while it has a 1.16% probability of defaulting 

in a given month.  Table 5.5, 5.6, 5.7, 5.8 can be seen at the end of this chapter. 

Based on the expected number of defaults for 200 obligors, 85.21, the expected loss to 

the notional for the equity tranche was determined to be $12,900,000 by rounding up the number 

of expected defaults to 86 and multiplying by $150,000, the value of each mortgage.  This means  

it is expected that over 30 years, $12,900,000 of the total starting value of the CDO will be lost 

due to default.  Using the Monte Carlo simulation, the average number of defaults for 30 

replications was 85.03 with a standard deviation of 6.2 and a 95% confidence interval of (82.72, 

87.35).  Using Equation 5.1 the p value was calculated to be 87.7%.  Since this p value is more 

than 5% we fail to reject the null hypothesis that the means are equal.  Using Equation 4.3, the 

estimated monthly yield is calculated to be about 6.13%.   

These four example cases can all be considered consistent because they all fail to reject 

the null hypothesis.  Failing to reject the null hypothesis means that in all four cases there is not 

sufficient evidence to say that the expected number of defaults and the estimated number of 

defaults from the simulation are not statistically equal.  For the illustrated example of 100 

obligors the estimated number of defaults calculated using the simulation is accurate within 

 defaults while the illustrate example of 200 obligors is accurate within  defualts.  

This shows that even for large numbers of obligors the outputs are still rather precise.  The 
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running time that is observed for 30 replications ranged from 17 seconds for the illustrated 

example of 25 obligors to 1 minute 27 seconds for the illustrated case of 200 obligors using a 

computer with a Pentium 4 processor, 3.00 GHz, and 1.00 GB of RAM. 

5.3 Test of Accuracy 

The objective of this section is to verify the simulation is accurate.  To create an accurate 

simulation the goal is to simulate multiple CDOs, each CDO using a different set of probabilities 

of defaults.  This section evaluates the outputs for CDOs with 25, 50, 100, and 200 obligors 

when each replication uses a different probability of default.  For this, probabilities of defaults 

for 30 different CDOs are randomly generated using the techniques discussed in Sections 3.4 and 

3.5.  Each of these 30 CDOs are then simulated with 30 replications.  Using the different 

probabilities of defaults however, should give a more accurate expected number of defaults since 

it will cover more than just one circumstance. 

5.3.1 25 Obligors 

Table 5.9, at the end of this chapter, shows the expected and average number of defaults 

for 25 obligors.  The first column is the CDO number.  Each one of these CDOs has its own set 

of probabilities of defaults and is simulated for 30 replications.  Thus the second column, the 

average number of defaults is for the 30 replications each using the same probabilities of 

defaults.  For each CDO, the sample mean is compared against the expected mean to check and 

see if the means are equal.  Here, a one sample t-test is again performed using Equation 5.1 

which tested the null hypothesis that the sample mean, average number of defaults according to 

the simulation, is equal to the expected number of defaults.  The last column shows the p value 

for each replication.  If the p value is larger than 5%, we fail to reject the null hypothesis.  For 

the case of 25 obligors 3 replications rejected the null hypothesis meaning the sample mean and 

the expected mean for the number of defaults was not equal. 

A paired t-test is also performed to test whether the expected number of defaults to the 

estimated number of defaults using simulation.  The paired t-test is used in this case because 

each CDO has a pair of data points: the expected number of defaults and the estimated number of 

defaults.  The paired t-test creates a 95% confidence interval using the difference between the 

simulated data and the expected data.  If the range of the confidence interval covers 0, then the 

means of the two samples are statistically equal.  For the illustrated case of 25 obligors the 95% 
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confidence interval of the difference in means was ( 0.2577, 0.0241).  Because the confidence 

interval covers 0, we fail to reject the null hypothesis the means are equal.  It should be noted 

that the confidence interval is heavier on the negative side thus meaning the estimated data is 

consistently lower than the expected number of defaults.  The expected number of defaults was 

8.92 with an expected standard deviation of 3.23.  The observed average number of defaults was 

8.83 with a standard deviation of 3.29 over the 30 replications. 

The yield for each replication number was calculated using Equation 4.3 and is 

summarized at the end of this chapter in Table 5.10.  For this calculation the equity tranche was 

set at $1,350,000, (9 defaults x $150,000), based on the expected number of defaults as 

mentioned above, 8.92. 

Figure 5.1 below shows the relationship between the expected number of defaults and the 

calculated yield.  The green trend line shows a power trend with an R
2
 of 0.9536. The red trend 

line is an exponential with an R
2
 of 0.9805.  Both trend lines accurately represent the data, 

however the exponential trend line fits the data a little bit better due to the higher R
2
 value. 
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Figure 5.1 Expected Number of Defaults vs. Calculated Yield for 25 Obligors 

5.3.2 50 Obligors 

Table 5.11, at the end of this chapter, shows the expected and average number of defaults 

for 25 obligors.  The first column is the replication number.  Each one of these replications has 

its own set of probabilities of defaults and is run for 30 replications.  Thus the second column, 
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the average number of defaults is for the 30 replications each using the same probabilities of 

defaults.  For each set of replications, the sample mean is compared against the expected mean to 

check and see if the means are equal.  Here, a one-sample t-test is performed using Equation 5.1 

which tests the null hypothesis that the sample mean, average number of defaults according to 

the simulation, is equal to the expected number of defaults.  The last column shows the p value 

for each replication.  If the p value is larger than 5%, we fail to reject the null hypothesis.  For 

the case of 50 obligors, 4 replications rejected the null hypothesis meaning the sample mean and 

the expected mean for the number of defaults was not equal. 

For the illustrated case of 50 obligors the 95% confidence interval of the difference in 

means was ( 0.442, 0.007).  Because the confidence interval does not cover 0, we reject the 

null hypothesis that the means are equal.  It should be noted that the confidence interval is 

heavier on the negative side thus meaning the estimated data is consistently lower than the 

expected number of defaults.  The expected number of defaults was 18.45 with an expected 

standard deviation of 6.85.  The observed average number of defaults was 18.23 with a standard 

deviation of 6.93 over the 30 replications. 

The yield for each replication number is calculated using Equation 4.3 and is summarized 

at the end of this chapter in Table 5.12.  For this calculation the equity tranche was set at 

$2,850,000, (19 defaults x $150,000), based on the expected number of defaults as mentioned 

above, 18.45. 

Figure 5.2 below shows the relationship between the expected number of defaults and the 

calculated yield.  The green trend line shows a power trend with an R
2
 of 0.9742. The red trend 

line is an exponential with an R
2
 of 0.9894.  Both trend lines accurately represent the data, 

however the exponential trend line fits the data a little bit better due to the larger R
2
 value. 
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Figure 5.2 Expected Number of Defaults vs. Calculated Yield for 50 Obligors 

5.3.3 100 Obligors 

Table 5.13, at the end of this chapter, shows the expected and average number of defaults 

for 100 obligors.  The first column is the replication number.  Each one of these replications has 

its own set of probabilities of defaults and was run for 30 replications.  Thus the second column, 

the average number of defaults is for the 30 replications each using the same probabilities of 

defaults.  For each set of replications, the sample mean was compared against the expected mean 

to check and see if the means were equal.  Here, a one-sample t-test was performed using 

Equation 5.1 which tested the null hypothesis the sample mean, average number of defaults 

according to the simulation, is equal to the expected number of defaults.  The last column shows 

the p value for each replication.  If the p value is larger than 5%, we can fail to reject the null 

hypothesis.  For the case of 100 obligors 1 replication rejected the null hypothesis meaning the 

sample mean and the expected mean for the number of defaults was not equal. 

For the illustrated case of 100 obligors the 95% confidence interval of the difference in 

means was ( 0.508, 0.003).  Because the confidence interval covers 0, we fail to reject the null 

hypothesis that the means are equal.  It should be noted the confidence interval is heavier on the 

negative side thus meaning that the estimated data is consistently lower than the expected 

number of defaults.  The expected number of defaults was 37.33 with an expected standard 

deviation of 12.80.  The observed average number of defaults was 37.08 with a standard 

deviation of 12.98 over the 30 replications.  
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The yield for each replication number was calculated using Equation 4.3 and is 

summarized below in Table 5.14.  For this calculation the equity tranche was set at $5,550,000, 

(37 defaults x $150,000), based on the expected number of defaults as mentioned above, 37.33. 

 

Figure 5.3 below shows the relationship between the expected number of defaults and the 

calculated yield.  The green trend line shows a power trend with an R
2
 of 0.9885. The red trend 

line is an exponential with an R
2
 of 0.9918.  Both trend lines accurately represent the data, 

however the exponential trend line fits the data a little bit better due to the higher R
2
 value. 

y = 0.0087e0.0521x

R² = 0.9918

y = 5E-05x1.9829

R² = 0.9885

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0.00 20.00 40.00 60.00 80.00

C
a
lc

u
la

te
d

 Y
ie

ld

Expected Number of Deaults

 

Figure 5.3 Expected Number of Defaults vs. Calculated Yield for 100 Obligors 

5.3.4 200 Obligors 

Table 5.15, at the end of this chapter, shows the expected and average number of defaults 

for 200 obligors.  The first column is the replication number.  Each one of these replications has 

its own set of probabilities of defaults and was run for 30 replications.  Thus the second column, 

the average number of defaults is for the 30 replications each using the same probabilities of 

defaults.  For each set of replications, the sample mean was compared against the expected mean 

to check and see if the means were equal.  Here, a one-sample t-test was performed using 

Equation 5.1 which tested the null hypothesis that the sample mean, average number of defaults 

according to the simulation, was equal to the expected number of defaults.  The last column 

shows the p value for each replication.  If the p value is larger than 5%, we can fail to reject the 
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null hypothesis.  For the case of 200 obligors 2 replications rejected the null hypothesis meaning 

that the sample mean and the expected mean for the number of defaults was not equal. 

For the illustrated case of 200 obligors the 95% confidence interval of the difference in 

means was ( 0.425, 0.385).  Because the confidence interval covers 0, we fail to reject the null 

hypothesis that the means are equal.  The expected number of defaults was 67.24 with an 

expected standard deviation of 22.44.  The observed average number of defaults was 67.22 with 

a standard deviation of 22.47 over the 30 replications. 

The yield for each replication number was calculated using Equation 4.3 and is 

summarized below in Table 5.16.  For this calculation the equity tranche was set at $10,050,000, 

(67 defaults x $150,000), based on the expected number of defaults as mentioned above, 67.24. 

Figure 5.4 below shows the relationship between the expected number of defaults and the 

calculated yield.  The green trend line shows a power trend with an R
2
 of 0.9759. The red trend 

line is an exponential with an R
2
 of 0.9849.  Both trend lines accurately represent the data, 

however the exponential trend line fits the data a little bit better due to the higher R
2
 value. 
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Figure 5.4 Expected Number of Defaults vs. Calculated Yield for 200 Obligors 

These four cases all show that both the expected number of defaults and the standard 

deviation follow a positive correlation with the number of obligors as can be seen below in Table 

5.17. 
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Table 5.17 Average, Standard Deviation, and 95% CI 

Number of 

Obligors 

Average Number 

of Defaults 

Expected Number 

of Defaults 

Standard 

Deviation 

95% Confidence 

Interval 

25 8.83 8.92 3.29 (5.656, 11.960) 

50 18.23 18.45 6.93 (11.704, 24.749) 

100 37.08 37.33 12.98 (23.813, 50.352) 

200 67.22 67.24 22.47 (43.166, 91.274) 

 

The standard deviation for the test case when the probabilities of defaults are the same for 

each replication is expected to be lower than the test case when the probabilities for defaults are 

different.  This is because there is standard deviation due to the simulation and standard 

deviation due to the different probabilities of default for each CDO for the illustrated example 

using different probability of defaults.  Since the first test case uses the same probabilities of 

defaults there is no additional standard deviation other than that from the simulation. 

These four illustrated examples all show that the relationship between the calculated yield 

and the expected number of loses is exponential.  This is important to note because if the 

calculated yield is exponential, then as the number of defaults increases the losses to the portfolio 

increase exponentially.  This exponential trend was also seen as these CDO markets imploded in 

2008. 

5.4 Conclusion 

The data for CDOs with the same probabilities of defaults for each replication show that 

the average numbers of defaults are very precise based on the low standard deviation.  The low 

standard deviation is because there is no difference in the probabilities of defaults between each 

replication and thus the standard deviation is only due to the simulation.  However, using just 

one set of probability of defaults only gives one situation, thus it does not cover multiple 

scenarios as shown in Section 5.3.  This is evident when plotting the expected numbers of 

defaults for both cases, same and different probabilities of defaults.  This shows that using 

different probabilities of defaults results in data that follows a linear trend much more closely 

than data from the same probabilities of defaults and is thus more accurate.  Figure 5.5 below 

shows the linear trends for both cases where the green line shows the trend line when using the 
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same probabilities of defaults while the red line shows the trend line when using different 

probabilities of defaults. 
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Figure 5.5 Expected Number of Defaults for Same and Different Probabilities of Defaults
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Table 5.2 Expected Number of Defaults 25 Obligors 

Entity

Cumulative Default 

Probability

Monthly Default 

Probability

1 22.18% 0.07%

2 51.80% 0.20%

3 14.68% 0.04%

4 39.23% 0.14%

5 38.36% 0.13%

6 39.83% 0.14%

7 30.51% 0.10%

8 72.98% 0.36%

9 4.46% 0.01%

10 53.32% 0.21%

11 67.54% 0.31%

12 62.71% 0.27%

13 58.02% 0.24%

14 41.07% 0.15%

15 61.08% 0.26%

16 57.74% 0.24%

17 32.25% 0.11%

18 28.88% 0.09%

19 31.12% 0.10%

20 8.00% 0.02%

21 32.87% 0.11%

22 43.50% 0.16%

23 49.72% 0.19%

24 81.20% 0.46%

25 29.60% 0.10%

Total 10.53  
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Table 5.3 Expected Number of Defaults 50 Obligors 

Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability

1 84.95% 0.52% 26 28.83% 0.09%

2 7.17% 0.02% 27 21.51% 0.07%

3 12.94% 0.04% 28 1.73% 0.00%

4 13.20% 0.04% 29 26.96% 0.09%

5 27.95% 0.09% 30 74.19% 0.38%

6 9.98% 0.03% 31 51.60% 0.20%

7 10.16% 0.03% 32 21.07% 0.07%

8 1.00% 0.00% 33 15.09% 0.05%

9 12.04% 0.04% 34 38.51% 0.13%

10 38.77% 0.14% 35 20.92% 0.07%

11 25.88% 0.08% 36 17.72% 0.05%

12 26.31% 0.08% 37 32.59% 0.11%

13 27.68% 0.09% 38 70.38% 0.34%

14 36.00% 0.12% 39 0.76% 0.00%

15 18.30% 0.06% 40 49.39% 0.19%

16 14.29% 0.04% 41 9.56% 0.03%

17 46.87% 0.18% 42 61.07% 0.26%

18 20.06% 0.06% 43 0.92% 0.00%

19 37.88% 0.13% 44 24.84% 0.08%

20 10.23% 0.03% 45 32.67% 0.11%

21 26.89% 0.09% 46 19.98% 0.06%

22 54.64% 0.22% 47 25.38% 0.08%

23 11.23% 0.03% 48 4.50% 0.01%

24 35.10% 0.12% 49 8.09% 0.02%

25 24.53% 0.08% 50 12.41% 0.04%

26 0.2883 0.0009 Total 13.05  
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Table 5.4 Expected Number of Defaults Obligors 1-50 

Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability

1 80.90% 0.46% 26 11.20% 0.03%

2 27.80% 0.09% 27 86.27% 0.55%

3 0.58% 0.00% 28 52.19% 0.20%

4 11.53% 0.03% 29 25.24% 0.08%

5 8.12% 0.02% 30 15.03% 0.05%

6 26.53% 0.09% 31 25.84% 0.08%

7 16.81% 0.05% 32 52.73% 0.21%

8 15.35% 0.05% 33 94.26% 0.79%

9 6.97% 0.02% 34 34.70% 0.12%

10 21.15% 0.07% 35 56.78% 0.23%

11 1.56% 0.00% 36 49.09% 0.19%

12 46.28% 0.17% 37 43.88% 0.16%

13 2.05% 0.01% 38 62.41% 0.27%

14 7.98% 0.02% 39 72.11% 0.35%

15 18.80% 0.06% 40 24.56% 0.08%

16 31.70% 0.11% 41 14.52% 0.04%

17 20.79% 0.06% 42 30.91% 0.10%

18 85.98% 0.54% 43 62.21% 0.27%

19 83.17% 0.49% 44 70.56% 0.34%

20 46.87% 0.18% 45 9.89% 0.03%

21 26.14% 0.08% 46 58.80% 0.25%

22 6.05% 0.02% 47 18.09% 0.06%

23 11.39% 0.03% 48 14.02% 0.04%

24 1.71% 0.00% 49 43.33% 0.16%

25 13.17% 0.04% 50 59.61% 0.25%  
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Table 5.5 Expected Number of Defaults Obligors 51-100 

Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability

51 9.42% 0.03% 76 45.70% 0.17%

52 1.38% 0.00% 77 28.05% 0.09%

53 21.58% 0.07% 78 20.07% 0.06%

54 43.81% 0.16% 79 0.08% 0.00%

55 25.86% 0.08% 80 24.03% 0.08%

56 82.00% 0.48% 81 5.29% 0.02%

57 14.14% 0.04% 82 15.68% 0.05%

58 53.95% 0.22% 83 14.21% 0.04%

59 6.33% 0.02% 84 2.95% 0.01%

60 2.35% 0.01% 85 44.93% 0.17%

61 48.56% 0.18% 86 31.39% 0.10%

62 1.76% 0.00% 87 13.69% 0.04%

63 2.16% 0.01% 88 57.97% 0.24%

64 8.85% 0.03% 89 82.02% 0.48%

65 1.41% 0.00% 90 3.29% 0.01%

66 44.04% 0.16% 91 22.33% 0.07%

67 15.40% 0.05% 92 3.27% 0.01%

68 2.20% 0.01% 93 52.09% 0.20%

69 5.16% 0.01% 94 41.63% 0.15%

70 4.24% 0.01% 95 10.34% 0.03%

71 20.94% 0.07% 96 9.60% 0.03%

72 0.14% 0.00% 97 6.72% 0.02%

73 7.51% 0.02% 98 59.35% 0.25%

74 1.76% 0.00% 99 16.10% 0.05%

75 34.81% 0.12% 100 18.70% 0.06%

Total 27.97  
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Table 5.6 Expected Number of Defaults Obligors 1-50 

Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability

1 98.49% 1.16% 26 66.97% 0.31%

2 50.08% 0.19% 27 33.37% 0.11%

3 5.72% 0.02% 28 15.06% 0.05%

4 48.46% 0.18% 29 95.18% 0.84%

5 5.59% 0.02% 30 42.22% 0.15%

6 44.76% 0.16% 31 12.62% 0.04%

7 3.49% 0.01% 32 62.91% 0.28%

8 65.84% 0.30% 33 90.29% 0.65%

9 78.92% 0.43% 34 61.39% 0.26%

10 88.11% 0.59% 35 68.26% 0.32%

11 84.78% 0.52% 36 43.15% 0.16%

12 16.34% 0.05% 37 33.66% 0.11%

13 55.84% 0.23% 38 70.91% 0.34%

14 72.19% 0.35% 39 32.43% 0.11%

15 10.23% 0.03% 40 42.04% 0.15%

16 46.76% 0.17% 41 22.17% 0.07%

17 67.34% 0.31% 42 18.04% 0.06%

18 7.21% 0.02% 43 29.98% 0.10%

19 12.33% 0.04% 44 8.52% 0.02%

20 67.85% 0.31% 45 48.53% 0.18%

21 39.05% 0.14% 46 43.04% 0.16%

22 58.87% 0.25% 47 37.79% 0.13%

23 84.35% 0.51% 48 1.14% 0.00%

24 57.30% 0.24% 49 22.61% 0.07%

25 15.69% 0.05% 50 48.55% 0.18%  
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Table 5.7 Expected Number of Defaults Obligors 51-100 

Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability

51 53.08% 0.21% 76 55.42% 0.22%

52 45.91% 0.17% 77 24.53% 0.08%

53 37.93% 0.13% 78 40.37% 0.14%

54 4.13% 0.01% 79 28.45% 0.09%

55 51.96% 0.20% 80 74.24% 0.38%

56 34.61% 0.12% 81 39.94% 0.14%

57 57.42% 0.24% 82 69.18% 0.33%

58 61.58% 0.27% 83 65.25% 0.29%

59 36.19% 0.12% 84 31.20% 0.10%

60 51.42% 0.20% 85 35.22% 0.12%

61 27.84% 0.09% 86 43.99% 0.16%

62 28.24% 0.09% 87 15.42% 0.05%

63 26.37% 0.09% 88 30.96% 0.10%

64 12.32% 0.04% 89 36.07% 0.12%

65 47.96% 0.18% 90 11.07% 0.03%

66 81.33% 0.47% 91 73.01% 0.36%

67 20.76% 0.06% 92 9.34% 0.03%

68 22.87% 0.07% 93 17.44% 0.05%

69 65.97% 0.30% 94 8.78% 0.03%

70 40.72% 0.15% 95 76.81% 0.41%

71 87.92% 0.59% 96 18.17% 0.06%

72 3.44% 0.01% 97 3.28% 0.01%

73 10.90% 0.03% 98 69.02% 0.33%

74 16.21% 0.05% 99 86.00% 0.54%

75 95.86% 0.88% 100 64.20% 0.28%  
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Table 5.8 Expected Number of Defaults Obligors 101-150 

Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability

101 44.39% 0.16% 126 66.68% 0.30%

102 14.15% 0.04% 127 70.16% 0.34%

103 16.47% 0.05% 128 14.77% 0.04%

104 81.19% 0.46% 129 59.18% 0.25%

105 79.16% 0.43% 130 75.87% 0.39%

106 19.99% 0.06% 131 10.59% 0.03%

107 68.79% 0.32% 132 52.81% 0.21%

108 47.34% 0.18% 133 37.95% 0.13%

109 26.65% 0.09% 134 7.98% 0.02%

110 14.72% 0.04% 135 29.76% 0.10%

111 49.97% 0.19% 136 33.60% 0.11%

112 2.74% 0.01% 137 10.08% 0.03%

113 4.36% 0.01% 138 2.10% 0.01%

114 94.46% 0.80% 139 13.15% 0.04%

115 36.69% 0.13% 140 39.07% 0.14%

116 98.29% 1.12% 141 3.29% 0.01%

117 30.80% 0.10% 142 82.02% 0.48%

118 45.69% 0.17% 143 20.19% 0.06%

119 72.57% 0.36% 144 1.68% 0.00%

120 32.98% 0.11% 145 43.36% 0.16%

121 22.31% 0.07% 146 86.91% 0.56%

122 85.80% 0.54% 147 41.21% 0.15%

123 13.93% 0.04% 148 45.27% 0.17%

124 68.84% 0.32% 149 38.30% 0.13%

125 22.61% 0.07% 150 45.70% 0.17%  
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Table 5.9 Expected Number of Defaults Obligors 151-200 

Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability Entity

Cumulative 

Default 

Probability

Monthly 

Default 

Probability

151 71.27% 0.35% 176 0.48% 0.00%

152 46.03% 0.17% 177 49.92% 0.19%

153 67.08% 0.31% 178 69.45% 0.33%

154 58.27% 0.24% 179 38.98% 0.14%

155 44.14% 0.16% 180 70.51% 0.34%

156 49.72% 0.19% 181 67.74% 0.31%

157 11.78% 0.03% 182 83.03% 0.49%

158 12.49% 0.04% 183 81.24% 0.46%

159 38.80% 0.14% 184 73.66% 0.37%

160 52.52% 0.21% 185 3.75% 0.01%

161 13.44% 0.04% 186 11.65% 0.03%

162 68.99% 0.32% 187 64.66% 0.29%

163 43.31% 0.16% 188 11.93% 0.04%

164 98.62% 1.18% 189 20.02% 0.06%

165 54.66% 0.22% 190 64.71% 0.29%

166 6.99% 0.02% 191 40.01% 0.14%

167 53.63% 0.21% 192 76.77% 0.40%

168 57.95% 0.24% 193 6.59% 0.02%

169 22.61% 0.07% 194 57.21% 0.24%

170 48.01% 0.18% 195 3.90% 0.01%

171 20.25% 0.06% 196 5.52% 0.02%

172 40.03% 0.14% 197 50.23% 0.19%

173 54.97% 0.22% 198 34.29% 0.12%

174 80.22% 0.45% 199 9.36% 0.03%

175 67.62% 0.31% 200 29.19% 0.10%

Total 85.21  
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Table 5.10 Expected Default, Average Default, and P value for 25 Obligors 

CDO 

Number

Sample 

Mean

Sample Standard 

Deviation

Expected 

Mean

P 

Value

1 7.74 2.68 7.63 0.818

2 13.61 2.68 14.12 0.313

3 3.35 1.70 3.36 0.989

4 8.17 2.17 8.25 0.828

5 10.80 2.17 10.94 0.718

6 9.00 1.70 9.37 0.242

7 7.80 1.81 8.23 0.201

8 14.43 1.87 14.49 0.861

9 8.27 1.55 7.93 0.249

10 9.13 1.85 9.15 0.972

11 7.63 2.13 8.45 0.044

12 6.03 2.09 6.38 0.378

13 5.13 1.98 5.79 0.079

14 8.00 2.44 8.10 0.832

15 4.63 1.52 4.68 0.860

16 14.00 2.03 13.79 0.567

17 11.80 2.04 11.54 0.494

18 7.63 2.33 8.44 0.069

19 11.63 2.25 11.57 0.886

20 5.83 1.70 5.76 0.816

21 3.67 1.67 3.23 0.163

22 5.93 1.44 6.64 0.012

23 9.83 2.04 9.72 0.770

24 7.00 1.62 6.99 0.974

25 11.77 1.81 12.57 0.021

26 12.43 1.81 12.37 0.847

27 7.57 1.65 7.69 0.675

28 7.60 2.11 7.28 0.407

29 7.30 2.15 7.35 0.892

30 16.50 2.39 15.93 0.199  
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Table 5.11 Yield for 30 CDOs with 25 Obligors Each 

CDO 

Number

Expected Number 

of Defaults Yield

1 7.63 5.59%

2 14.12 20.44%

3 3.36 1.57%

4 8.25 5.51%

5 10.94 9.40%

6 9.37 6.62%

7 8.23 4.88%

8 14.49 17.04%

9 7.93 5.42%

10 9.15 7.03%

11 8.45 5.15%

12 6.38 3.35%

13 5.79 2.63%

14 8.10 5.51%

15 4.68 2.25%

16 13.79 17.69%

17 11.54 11.40%

18 8.44 5.09%

19 11.57 11.32%

20 5.76 3.15%

21 3.23 1.71%

22 6.64 3.20%

23 9.72 7.59%

24 6.99 4.21%

25 12.57 12.36%

26 12.37 13.43%

27 7.69 4.87%

28 7.28 5.03%

29 7.35 4.58%

30 15.93 23.35%  
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Table 5.12 Expected Default, Average Default, and P Value for 50 Obligors 

CDO 

Number

Sample 

Mean

Sample Standard 

Deviation

Expected 

Mean

P 

Value

1 7.37 2.25 7.42 0.907

2 9.80 2.51 10.84 0.031

3 18.30 3.24 18.18 0.847

4 11.10 2.52 11.13 0.956

5 11.73 2.03 11.33 0.290

6 14.07 1.82 14.35 0.401

7 12.23 2.40 12.25 0.966

8 11.33 2.44 11.74 0.373

9 11.07 2.68 11.42 0.474

10 25.57 2.45 25.05 0.258

11 21.80 3.20 23.08 0.037

12 24.67 2.70 25.81 0.028

13 18.73 2.24 19.66 0.031

14 22.33 3.38 21.26 0.092

15 27.33 2.86 27.07 0.619

16 15.43 2.73 15.51 0.880

17 23.70 3.32 24.52 0.185

18 17.20 3.24 18.12 0.131

19 12.37 2.75 13.01 0.213

20 8.30 2.45 8.80 0.269

21 18.27 2.59 18.85 0.230

22 13.93 2.92 13.75 0.734

23 19.27 4.03 19.98 0.341

24 20.70 2.84 20.62 0.885

25 18.57 3.17 18.45 0.840

26 28.33 3.09 28.42 0.878

27 25.27 2.57 26.05 0.106

28 36.10 3.02 35.80 0.596

29 15.10 1.79 15.03 0.838

30 26.83 2.28 26.03 0.062  
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Table 5.13 Yield for 30 CDOs with 50 Obligors Each 

CDO 

Number

Expected Number 

of Defaults Yield

1 7.42 1.56%

2 10.84 2.26%

3 18.18 5.85%

4 11.13 2.64%

5 11.33 2.83%

6 14.35 3.70%

7 12.25 3.02%

8 11.74 2.72%

9 11.42 2.65%

10 25.05 12.07%

11 23.08 8.53%

12 25.81 10.57%

13 19.66 6.07%

14 21.26 8.95%

15 27.07 14.16%

16 15.51 4.37%

17 24.52 10.59%

18 18.12 5.33%

19 13.01 3.09%

20 8.80 1.82%

21 18.85 6.09%

22 13.75 3.69%

23 19.98 6.68%

24 20.62 7.45%

25 18.45 6.10%

26 28.42 15.90%

27 26.05 11.74%

28 35.80 30.86%

29 15.03 4.20%

30 26.03 13.28%  
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Table 5.14 Expected Default, Average Default, and P Value for 100 Obligors 

CDO 

Number

Sample 

Mean

Sample Standard 

Deviation

Expected 

Mean

P 

Value

1 55.97 5.47 56.25 0.779

2 36.47 3.92 37.15 0.345

3 30.77 3.94 30.74 0.970

4 36.30 3.35 36.28 0.976

5 38.63 4.63 38.68 0.958

6 41.30 3.72 41.04 0.701

7 51.23 4.17 52.30 0.172

8 26.63 3.38 27.49 0.176

9 26.20 3.27 26.14 0.926

10 53.97 3.53 53.83 0.828

11 26.10 3.48 26.46 0.579

12 32.23 4.31 32.24 0.996

13 38.43 3.58 38.17 0.693

14 46.33 4.05 46.01 0.661

15 24.93 3.77 25.05 0.867

16 28.23 3.48 29.90 0.014

17 21.70 3.96 22.37 0.362

18 59.80 2.61 60.25 0.353

19 28.33 3.35 28.72 0.528

20 66.40 3.86 66.57 0.809

21 48.80 3.33 49.08 0.645

22 20.50 2.93 21.26 0.166

23 56.33 4.37 55.16 0.151

24 27.70 4.79 29.25 0.087

25 17.77 2.71 19.24 0.006

26 37.53 4.22 36.89 0.413

27 27.80 3.75 28.40 0.391

28 25.27 4.42 24.44 0.315

29 48.10 3.39 48.77 0.288

30 32.70 3.35 31.93 0.220  
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Table 5.15 Yield for 30 CDOs with 100 Obligors Each 

Replication 

Number

Expected Number 

of Defaults Yield

1 56.25 15.76%

2 37.15 6.35%

3 30.74 4.42%

4 36.28 5.93%

5 38.68 6.82%

6 41.04 7.66%

7 52.30 12.55%

8 27.49 3.56%

9 26.14 3.44%

10 53.83 15.29%

11 26.46 3.46%

12 32.24 4.91%

13 38.17 6.62%

14 46.01 10.16%

15 25.05 3.22%

16 29.90 3.84%

17 22.37 2.64%

18 60.25 19.98%

19 28.72 3.92%

20 66.57 24.13%

21 49.08 11.09%

22 21.26 2.43%

23 55.16 15.57%

24 29.25 3.79%

25 19.24 2.00%

26 36.89 6.41%

27 28.40 3.80%

28 24.44 3.29%

29 48.77 10.70%

30 31.93 4.94%  
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Table 5.16 Expected Default, Average Default, and P Value for 200 Obligors 

CDO 

Number

Sample 

Mean

Sample Standard 

Deviation

Expected 

Mean

P 

Value

1 49.73 6.85 49.59 0.911

2 69.10 5.84 69.28 0.864

3 66.47 4.70 66.63 0.849

4 97.63 5.54 97.34 0.771

5 65.40 5.60 65.88 0.639

6 83.93 6.63 85.80 0.135

7 48.70 5.15 48.69 0.992

8 73.53 5.56 75.64 0.047

9 88.87 5.54 87.89 0.343

10 110.17 5.61 109.32 0.417

11 65.83 5.63 67.09 0.231

12 49.17 5.26 49.87 0.470

13 37.80 5.18 37.26 0.569

14 104.07 5.62 103.23 0.423

15 86.13 6.32 85.12 0.386

16 74.40 5.09 76.20 0.062

17 72.30 5.14 71.02 0.182

18 18.33 3.80 18.87 0.443

19 85.80 4.64 87.45 0.061

20 43.50 5.11 44.26 0.419

21 79.33 6.17 80.50 0.309

22 46.77 5.14 47.51 0.433

23 59.00 4.98 58.58 0.646

24 66.90 5.16 67.18 0.767

25 107.73 6.12 107.14 0.597

26 62.70 4.51 60.64 0.018

27 74.53 5.72 72.98 0.147

28 40.83 5.39 40.32 0.607

29 47.20 4.61 46.07 0.190

30 40.73 4.63 39.84 0.300  
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Table 5.17 Yield for 30 CDOs with 200 Obligors Each 

Replication 

Number

Expected Number 

of Defaults Yield

1 49.59 3.72%

2 69.28 6.55%

3 66.63 6.10%

4 97.34 14.29%

5 65.88 6.03%

6 85.80 9.83%

7 48.69 3.60%

8 75.64 7.43%

9 87.89 11.43%

10 109.32 17.89%

11 67.09 5.90%

12 49.87 3.64%

13 37.26 2.49%

14 103.23 16.47%

15 85.12 10.32%

16 76.20 7.47%

17 71.02 7.41%

18 18.87 1.04%

19 87.45 11.35%

20 44.26 3.02%

21 80.50 8.72%

22 47.51 3.36%

23 58.58 4.96%

24 67.18 6.03%

25 107.14 17.15%

26 60.64 5.47%

27 72.98 7.36%

28 40.32 2.77%

29 46.07 3.40%

30 39.84 2.75%  
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Chapter 6 Conclusions 

The recession that has lingered over the last few years has been blamed partially on 

collateralized debt obligations.  One of the reasons for the skepticism of CDOs is due to the lack 

of knowledge about them.  To reduce the skepticism, an easier technique to price CDOs needs to 

be developed, one that could better represent the nature and behavior of CDOs.   The research 

effort within this thesis extended on the probability of default model described by Andersen et al 

and then used Monte Carlo simulation to calculate the expected number of defaults, expected 

losses to a portfolio, and the value of a CDO.  This thesis has shown that Monte Carlo simulation 

along with the implementation of a copula distribution can be used to better represent the nature 

and behavior of CDOs. 

The purpose of this research study was to test the effectiveness of Monte Carlo 

simulation in the pricing of collateralized debt obligations and credit default swaps.  The study 

showed the simplicity of using Monte Carlo simulation and related the CDO price to the 

following input parameters: (1) initial asset price, (2) coupon payment value, (3) life of the asset, 

(4) risk-free interest rate, (5) value at default, and (6) correlation between obligors.  The 

dependent variable was the price of the tranches while the control variables were the interest rate 

and time period. 

The remaining sections of Chapter 6 are as follows.  Section 6.1 discusses the 

conclusions that can be made on the use of copulas in pricing CDOs.  Section 6.2 examines the 

conclusions that are made on the use of Monte Carlo simulation with regards to accuracy and 

precision.  Finally, Section 6.3 discusses future work related to this thesis. 

6.1 Conclusion on Copulas 

This thesis has shown that copulas can be used as an effective way of including the 

correlation between obligors when calculating their probabilities of defaults.  Chapter 3 

demonstrated how the set of correlated probabilities of defaults could be generated using a 

loading matrix to represent the correlation between obligors and economic factors.  This 

calculation was developed using the process explained by Andersen et al. (2003).  The loading 

matrix used within this thesis assumed the correlation between each obligor and the factor was 

constant and there was only one factor necessary to determine the correlation between obligors. 
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6.2 Conclusions on Monte Carlo Simulation 

This thesis has demonstrated how Monte Carlo simulation can be used to price 

collateralized debt obligations.  Monte Carlo simulation provides a flexible approach to pricing 

CDOs that is easy to understand and allows for the observation of the behavior.  In this thesis, 

two different experiments were setup to verify the precision and the accuracy in pricing the 

CDOs: same probabilities of defaults for each replication and then different probabilities of 

defaults were tested for each replication.  In both scenarios CDOs were priced with 25, 50, 100, 

and 200 obligors. 

In Section 5.2 CDOs were priced using the same probabilities of defaults for each 

replication.  To check for precision, a one-sample t-test was conducted for each CDO size: 25, 

50, 100, and 200 obligors.  This test was used to determine if the estimated number of defaults 

from the simulation was equal to the expected number of defaults calculated using the 

cumulative default probabilities of each obligor.  All four tests were consistent in lacking 

sufficient evidence to say that the expected number of defaults and the estimated number of 

defaults from the Monte Carlo simulations were significantly different.  For each illustrated 

example, a 95% confidence interval was created to demonstrate the precision of the simulation.  

For the illustrated example of 100 obligors the estimated number of defaults calculated using the 

simulation was accurate within  defaults while the illustrate example of 200 obligors was 

accurate within  defaults. This shows that even for large numbers of obligors the outputs 

are still rather precise.  Along with the ease of implementation, the computational effort for 

Monte Carlo simulation was also shown to be reasonable.  The running time that was observed 

for 30 replications ranged from 17 seconds for the illustrated example of 25 obligors to 87 

seconds for the illustrated case of 200 obligors.   

In Section 5.3 30 CDOs were priced with each CDO using different probabilities of 

defaults.  This was done as an attempt to observe the accuracy of the simulation.  To test for 

accuracy a paired t-test was performed on each of the four illustrated examples.  The paired t-test 

was used to compare the estimated number of defaults using simulation to the expected number 

of defaults for the 30 CDOs generated.  Three of the four examples lacked evidence to conclude 

that the estimated values and the expected values were not the same.  However, all of the 

examples showed that the estimated number of defaults were statistically lower than the expected 

number of defaults.  This was concluded based on the 95% confidence interval on the difference 
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in means being consistently heavier on the negative side of the interval.  This illustrated example 

also showed that the average number of defaults as well as the standard deviation were both 

positively correlated to the number of obligors and followed a linear trend. 

Finally, Figures 5.1 through 5.4 were used to plot the calculated yield verse the expected 

number of defaults.  It was interesting to note that all of these graphs showed an exponential or 

high-order power trend, meaning that as the expected number of defaults increased, the 

calculated yield increased exponentially.  This was very interesting to note because it helped to 

explain the drastic market downturns and the mortgage market meltdown behavior in the current 

economy.  This shows that as the number of defaults increases the losses to the portfolio also 

increase exponentially. 

6.3 Future Work 

During this research a few questions came up that warrant further research.  Five areas 

involving the use of Monte Carlo simulation with copulas are thought to warrant additional 

research.  These include the use of a memory reduction technique, using multiple factors when 

calculating the probabilities of defaults using copulas, the application of non constant 

probabilities of defaults, using a variance reduction technique in the Monte Carl simulation, and 

modifying the input parameters to accommodate underlying assets with separate input 

parameters (e.g. initial value, coupon amounts, recovery value, and probability of default).  For 

simplicity in analyzing the Monte Carlo simulation, the input parameters were kept constant in 

this thesis. 

The first concept that could benefit from further research is the addition of a memory 

reduction technique to the Monte Carlo simulation.  For small simulations, ones with a limited 

number of obligors and few replications (as an example 25 obligors and 30 replications), the 

Monte Carlo simulation ran relatively fast.  However for instances with 200 obligors and 900 

replications the simulation ran rather slow, almost 45 minutes in this case.  The running time is 

estimated to be O(NPM) where N is the number of obligors, P is the number of periods, and M is 

the number of replications.  The number of replications has a large impact on the running time, 

however a sufficient number of replications must still be run to reach an acceptable standard 

deviation.  By not forcing each obligor to loop through this system for each period, the running 
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time could be decreased, but this would come at the expense of no longer being able to observe 

the behavior of the CDO over time. 

In this research the number of factors used to calculate the probabilities of defaults was 

equal to one for simplicity in calculations.  In reality this is not true and should be further 

researched.  It should be evaluated to better understand what types of affects on running time and 

accuracy the different number of factors causes.  While researching this it also might be 

beneficial to understand how many factors are truly necessary to accurately represent the data. 

For simplicity, this thesis only used constant probabilities of defaults.  This means that 

given an obligor the same probability of default would be used for every month.  In reality, the 

monthly probabilities of defaults change over time due to various economic circumstances.  To 

more accurately simulate CDOs with real world conditions, non constant probabilities of defaults 

should be used in pricing CDOs. 

A variance reduction technique to be used in the Monte Carlo simulation should also be 

evaluated.  A variance reduction technique could be used to reduce the number of replications 

necessary to accurately understand the behavior of a CDO.  One variance reduction technique 

that could be used would be antithetic pairing.  Antithetic pairing reduces the variance in Monte 

Carlo simulation by using negative dependence between pairs replication pairs. 

The last area for future research is the enhancement to the Monte Carlo simulation to 

accommodate different input parameters for the various assets.  For simplicity, in this thesis the 

original asset value, recovery value, coupon value, and correlation between other obligors was 

kept constant.  In practice these values would not be constant for all obligors.  To better price a 

CDO, allowing for various input parameters would give a better representation of real world 

circumstances. 
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