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PREFACE 

ii 

The circular and longitudinal magnetization of nickel-iron 

wires under tensional and torsional stress has been measured by 

G. J. van der Maas (10). He used the search coil-ballistic gal- 

vanometer method to measure the longitudinal magnetization, and 

utilized the first Inverse Wiedemann Effect to measure the cir- 

cular magnetization. Under the action of a periodic alternating 

magnetic field the wire changes its magnetization periodically. 

For wires under external stress the major portion of this change 

takes place discontinuously at some distinct value of the applied 

field. The experimental results obtained indicate that in the 

region 2 g H 8 oersteds, the circular and longitudinal mag- 

netization increases with torsional stress. It was also shown 

that these results were independent of the waveform of the ap- 

plied magnetic field over the range of audio frequencies. 

Theoretical investigation of this problem under the assump- 

tions that (a) the magnetocrystalline anisotropy energy is con- 

stant or small in comparison with the magnetoelastic and field 

energies, (b) the change in magnetization takes place quasi- 

statically, (c) internal stress is negligible, yields the re- 

sult that with increasing torque the circular component of mag- 

netization should increase and the longitudinal component should 

decrease for all positive values of longitudinal stress, pro- 

vided that the wire has a positive linear magnetostriction co- 

efficient. Subsequent investigations by the writer have indi- 

cated that for fields above 8.82 oersteds, increasing torque 



will result in decreasing longitudinal magnetization. 

It is the purpose of this research to study the magneto- 

mechanical processes in torqued ferromagnetic wires in the re- 

versible region of magnetization H *g.- 0. Thus are avoided the 

complications which arise from the discontinuous changes in mag- 

netization, characteristic of the irreversible region-o4: H 

040. This thesis will primarily describe attempts to verify 

experimentally the theoretical expression given by G. J. van der 

Maas for the longitudinal magnetization curves of a polarized 

wire under torsional stress only. A. E. Asch is carrying out 

complementary investigations on the circular component, the re- 

sults of which are to be reported in his Master's thesis. 

The investigations reported here are preparatory to further 

investigations of the mechanisms of magnetization in stressed 

ferromagnetics. Therefore the conclusions and results which 

summarize a portion of these initial investigations are neces- 

sarily not complete. 
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INTRODUCTION 

For many years it has been known that a relationship exists 

between the stress condition and the magnetization of a ferro- 

magnetic material. As early as 1862 Wiedemann (2) demonstrated 

that under the combined action of a longitudinal and circular 

magnetic field a ferromagnetic rod experiences a torque. This 

effect is known as the Wiedemann Effect. There are two inverses 

of the Wiedemann Effect. (a) Longitudinal magnetization of a 

torqued ferromagnetic rod causes circular magnetization, or tor- 

sion of a longitudinally magnetized rod causes circular magneti- 

zation. In reversing the longitudinal field this circular mag- 

netization can be demonstrated as an emf across the wires in the 

direction of the longitudinal field. (b) Torsion in a circu- 

larly magnetized ferromagnetic rod causes longitudinal magneti- 

zation, or circular magnetization of a torqued rod causes longi- 

tudinal magnetization. This effect can also be demonstrated by 

reversing the circular magnetization (the current through the 

rod). The changes in the longitudinal magnetization can be ob- 

served by using a search coil hose axis lies along the direc- 

tion of the axis of the rod. 

A more general stress-magnetization relationship was first 

discovered by Joule in 1847 (6). He found that when a ferromag- 

netic material undergoes magnetization, the physical dimensions 

of the body change. This is generally referred to as magneto- 

striction, and is somewhat analogous to electrostriction. A 

material is said to have a positive linear coefficient of 



magnetostriction then its length increases in the direction of 

the applied field upon magnetization. It is said to have a 

negative linear coefficient of ma,netostriction when it con- 

tracts in the direction of the applied magnetic field. 

tore recently Sixtus and Tonks (8), Dijkstra and Snoek 

(5), Stewart (:,), and others, have investigated the flux revers- 

als in wires under tension. They have been primarily concerned 

with the speed of flux reversal as a function of the tension 

and the applied field. 

The Phenomenological Theory of Magnetization 

General bspects. In 1907 Veiss introduced the concept of 

the magnetic "molecular field" in order to explain the salient 

features of ferromagnetism. His initial postulates now have a 

firm theoretical and experimental basis in the modern phenome- 

nological and quantum mechanical theories of magnetism. The 

basic problem of ferromagnetism is the explanation of how very 

large magnetic induction values are produced by relatively small 

applied magnetic fields. eiss explained ferromagnetism in terms 

of magnetic dipoles by postulating the existence of a "molecular 

field' which tended to align the individual magnetic dipoles in 

one direction. Their alignment thus explained the large mag- 

netization values associated with ferromagnetic media. The prin- 

ciple may be seen from the simple couple on a magnetic dipole in 

a uniform magnetic field. Weiss recognized that the classical 

magnetic interaction between dipoles is much too weak to account 
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for the high value of the molecular field. It is now known that 

this field is of quantum mechanical origin. To explain the non- 

magnetized condition of a ferromagnetic Weiss assumed small 

regions called "domains" within which the local magnetization 

vector has a constant value. If these domains are oriented in 

a random manner, the total magnetization will be zero. 

Becker (2) suggested that the increase in magnetization 

under the influence of an applied field may take place in two 

independent ways: 

1. By growth of favorably oriented domains at the expense 

of unfavorably oriented domains. 

2. By rotation of the domains. 

The first process occurs for smaller field values than the second. 

The theoretical explanation of the origin of domains in terms of 

magnetic field energy was given by Landau and Lifshitz (7), and 

the physical existence of domains was first shown by Bitter (3). 

Williams, Bozorth, and Shockly (12) have recently shown that 

the domain shapes and sizes in several ferromagnetic materials 

under mechanical stress and magnetic forces are in good agreement 

with current theory due to Neel, and others. In general, the 

size of domains varies from 10-6 to 10-2 cm3. 

The Minimization of the Total Free Energy Expression. There 

are several energy terms in the total free energy expression con- 

nected with the magnetization process, but the physical shape of 

the test material and the range of the applied field used in 

this work are such that it is possible to neglect two of these 

terms. They are the exchange energy Eex, and the magnetic self 



energy Eself The total energy density of magnetization is then 

given by Et = Ek + Eh + Eo-, where Ek is the magnetocrystalline 

anisotropy energy, EQ- is the magnetoelastic energy, and Eh is 

the field energy. In each of these expressions the saturation 

magnetization vector Is of a domain is related to some defined 

direction in the material. In the case of Eh the direction is 

that of the applied field H. For Ed-- it is one of the direc- 

tions of principal compressive or tensile stress, and for Ek the 

defined directions are the crystalographic axes of the crystal. 

Now if Et is expressed in terms of an angle variable, say 8, and 

minimized, the resulting expression is an equation relating Is, 

H, and 9. The component of Is in a direction 9 from H is re- 

lated to Is and 8 through the relation Ii = Is cos 9. Hence 

there are two equations, I = 1(9) and H = H(9), representing 

the magnetization curves. In general, it is desirable to leave 

the relation in this parametric form since eliminating 9 to ob- 

tain I as an explicit function of H may eliminate the multi- 

valued property of the relationship. It has been pointed out 

by G. J. van der Maas (11) that minimization of either the 

energy density, or the total energy, results in the same rela- 

tions between 1 and H, that is,the same equations of magnetiza- 

tion. 

The Terms in the Free Energy Expression 

The Magnetocrystalline Anisotropy Energy. In general, the 

magnetization is not in the same direction as the applied field. 
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If, however, the field is applied along an axis of symmetry in 

the crystal (in iron 100, 110, 111), then the magnetization has 

the same direction as the field. The experimental magnetization 

curves for single crystals with very small amounts of impurities 

and internal stresses reveal the existence of preferred direc- 

tions of magnetization. 

Akulov (1) suggested that the effect of magnetocrystalline 

forces could be represented by a magnetocrystalline energy term 

in the free energy expression for the crystal. This energy would 

be dependent on the direction of the domain magnetization rela- 

tive to the crystal lattice. He expressed this energy as being 

proportional to a series of ascending powers in 6K1, 0(.:2, and 

0( 3, the direction cosines of the magnetization relative to the 

principal axes of the crystal. For certain crystals the symmetry 

conditions cause some of the terms to drop out, since physically 

it is known that the final energy expression must be independent 

of the change of sign of any of the 0( or to the interchange of 

any two of them. Under these conditions the magnetocrystalline 

energy Ek for a cubic crystal is, 

Ek = Ko + Kl(oC 12,x22 4.0(22cc32 (32,2c12) 

K2(0(120(22cK32) 

Here Ko, K1, and K2 are the anisotropy constants characteristic 

of the material. 

The Field Energy. In a uniform field consider a domain 

magnetized to saturation. Let the magnetization Is be parallel 

to the applied field H. Then the energy per volume unit neces- 

sary to rotate the domain through 8 to a new position with respect 
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to the field is, 

EH =1 IsH sin 9 d9 = IsH(1 - cos 9) 

0 
and the energy density is 

EH = -IsH cos 8 + const 

The Magnetoelastic Energy. The derivation given here is 

from Becker and Dbring (2), and is valid for materials having 

isotropic magnetostriction with no change of volume upon mag- 

netization. Consider a small piece of this material cut in the 

form of a sphere of diameter iwhile above its curie temperature. 

As it cools below its curie point, it becomes spontaneously mag- 

netized into a single domain. Associated with this magnetiza- 

tion is a change in shape that may be represented to a first 

approximation by 

i= A + B (cos 0)2 
where the diameter measured in the direction making an 

angle 0 with the direction of magnetization of the domain. Now 

consider a group of such domains oriented at random. Then the 

average length of a domain measured in any one direction in the 

group is 

= A + B (cos 0)2 = A + B/3 

When the material is fully magnetized so that all domains are 

oriented in one direction, the length 4 of each domain in the 

direction of magnetization of the group is 

'eo = A B 

Now let - 
-7- 

and As - 
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Then 

Hence 

In this relation 

2k, 

= [(cos 0)2 

-3 7-3 

- 1/31-3- 
2 

(cos 0)2 1 

in length 

2 

represents the 

3_, 

relative change 

( magnetostriction) of the material in a direction making an 

angle 0 with the magnetization vector of the material. .2.8 

represents the relative change in the length when all domains 

are parallel (saturation magnetostriction) 

The strain energy for a unit volume of the material can be 

evaluated by letting the change in length take place in the 

presence of an external constant tension (7-, as the domains are 

rotated from their original position 0 = 00 to 0 = 0. 

E = 7Ls ilceos 0)2 - 1/31 

= -3/20-"As [2/3 - (sin 0) 2J 

gyp-= 3/20-Xs (sin 0)2 -0-Xs 

If the magnetostriction is positive as in iron and a tension is 

applied (.1-2 the energy is minimum for 0 = 0. Therefore 

tension causes the magnetization to be parallel to the axis of 

tension. For negative magnetostriction as in nickel, the energy 

is minimum when 0 = w/2. Therefore tension causes the magneti- 

zation to be perpendicular to the direction of stress. 

THE THEORETICAL LONGITUDINAL MAGNETIZATION CURVE 

The theoretical determination of the magnetization curve of 

a stressed ferromagnetic material over the range <H<°' is 
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a complex problem and can be solved only after some highly re- 

strictive simplifications. Consider, for instance, the case of 

a wire under tension and torsion, with the applied field paral- 

lel to the axis of the wire. Suppose the wire to be magnetized 

to saturation in the upward direction. As the magnetic intensity 

decreases to zero, the magnetization will decrease to Ir. Theo- 

retical considerations not given explicitly in this thesis in- 

dicate that when the magnetic intensity is increased in the 

opposite direction, the first portion of the wire to change its 

magnetization toward the new direction of H is a small diameter 

(/°c < <1) cylinder concentric with the axis. As H increases, the 

diameter of this cylinder of reversed magnetization increases 

until for some distinct value of H, dependent on the parameters 

tension and torque, the remaining unreversed cylinder no longer 

changes its magnetization by reversible rotation and Block wall 

displacement, but instead undergoes a discontinuous rotation. 

The wire is then essentially one single macroscopic domain, and 

as the applied field increases further the change in magnetiza- 

tion in the wire again takes place by reversible rotation. 

It is difficult to represent mathematically the energies 

and domain wall movements and specifically the longitudinal and 

circular magnetization as a function of the applied field, 

torque, and tension for a process such as described above. To 

simplify the situation and initiate investigations in this 

problem, the writer chose to consider only the reversible region 

0. As a result, the theory outlined below is strictly 

valid only for reversible rotations. 
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It is always possible to replace all stresses acting on an 

isotropic body by three mutually perpendicular stresses which 

are referred to as the "principal" stresses. In the appendix 

the determination of the directions and magnitudes of the prin- 

cipal stresses in a torqued cylinder are presented in detail. 

The analysis shows that there are only two directions of stress, 

one compressive and the other tensile. Both make an angle of 45 

degrees with the axis of the cylinder and both are perpendicular 

to the radius vector which is perpendicular upon the axis of the 

cylinder. For a material with a positive linear saturation mag- 

netostriction constant, the action of the compressive stress with 

regard to the magnetoelastic energy term is equivalent to a per- 

pendicular tensile stress of equal magnitude. Hence the expres- 

sion for EcT- becomes 

Ecr = 3/)'s cr- (sin 0)2 (1) 

To make tenable the derivation of the magnetization curve and 

present a reasonably simple model of the magnetization process, 

it is assumed that internal stresses are negligible and that 

either the texture (degree of preferred crystal orientation) is 

zero, or Ek is zero. The total energy density expression is 

then 

ET= EQ -- +Eg (2) 

Minimization of this expression leads to the component expres- 

sions for the equations of magnetization. 

IH = Is cos e ( 3a) 

d0 s cos 2 
H = 3G (---) (3b) 

di Is sin 8 
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8 is the angle between the direction of Is and a line parallel 

to the axis of the cylinder, G is the shear modulus, -- the 

angular displacement per unit length, and /7the radius vector 

from the axis of the cylinder. It is seen that the parametric 

equation for H is a function of The The expression for the 

longitudinal magnetization in the rod is 

1 
IL - Is cos 8 27rde (4) 

ram 

If Pas a function of 8 is substituted in (4) and the resulting 

integral evaluated from 1 to u0 = cos 90 (where 90 is the value 

of 9 at /).=. r), the parametric equations of magnetization for 

the torqued cylinder become 

IL = Is 

3 

2 u0 2 - 1 2 

1 

^o 

/i 

/ 1 - u02 

110 

- 1) (5a) 

(1 
_ 

in 

- 1202)t 

fi 110 - 

(2 u o 2 \ 

+ 1 

) 

- 1)2 

1 
+ - 

Bra 
( )(,,__ 

Ir-- uo + 1 T2 - 1 
+ ( 

4 2 1202 - 1 

Ns dO 2 u02 - 1 
H = 3 Lr (5b) 

Is di (1 - uo2)t 

Plate VI is a plot of (5a) and (5b) for 0 g 8 g 45°, with 

G = 5.87 x 1011 dyne/cm2, /ks = 23.9 x 10-6, Is = 18,000/4v 
dO 

pole/cm2, r = 1.27 x 10-2 cm, and -- in multiples of 2w/110 cm, 
di 

i.e., one turn corresponds to a displacement of 2ff radians per 

110 cm. 

If the parameter u0 is eliminated between (5a) and (5b), it 
H 

is seen that I1 is a function only of -----. Besides a compari- 
0/di 

son between the theoretical and experimental values of .6,11, it 
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was an objective of this thesis to check on the functional de- 
H 

pendence of Il upon 
driVd,e 

THE EXPERIMENTAL METHOD 

General Principle 

In principle the measurement of the longitudinal component 

of magnetization is not difficult. The standard method employs 

a field producing solenoid and a search coil coaxial with the 

field coil. The specimen is placed in the field coil and its 

magnetization changed by changing the magnitude and/or direction 

of the current in the field coils. Accompanying the change of 

magnetization will be an induced emf in the search coil, given 

by 

6 = -N 
do 

dt 

If is due only to the change in magnetization, then 

108 (t2 B - H 
AIL = dt 

AN 4w /4 4w 

In this formula A is the cross-sectional area of the specimen 

in cm2, N is the number of turns in the search coil. E is ex- 

pressed in volts, t in seconds, and Il in unit poles/cm2. 

In this work the demagnetization field of the specimen in 

the region of the search coil is negligible. 

To a sufficient degree of approximation (three places) the 

magnetic field in the region of the search coils is given by 
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Ni 4Y 
H - 

10 

where N is in turns/cm, and i is in amperes. 

Since the search coil is located at approximately the center 

of the field coil, the flux linkage coefficient is assumed to 

be 1. 

The Basic Apparatus 

A sketch of the basic apparatus is given in Plate II. 

Plate III is a schematic of the experimental set-up. The field 

coils K and L shown in Plate II are physically identical. Each 

is 89.52 + 0.10 cm long and of mean diameter 1.05 cm, and has 

1040 turns. The search coils J and I are very nearly identical, 

each containing 5000 turns. The average outside diameter is 

3.73 cm, while the inside diameter of each is 2.52 cm and their 

length is 3.89 + 0.04 cm. 

The RC Integrator 

The circuit used for the integration of the search coil 

voltage is shown in (2) of Plate I. The voltage across C due to 

the input voltage Vi(t) is given generally by 

e 
-t/RC t 

Volt) - 
RC 

Vi(t)e t/RC dt + Vooe -t/RC 

)() 

When Vi(t) = Vi(t + T), then Volt) = Vo(t + T) for the steady- 

state condition. To a first approximation the relationship 
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between the time integral of the input voltage and the output 

voltage Volt) is given by 

(t 

) 

Vidt = RC Vs(t) 
0 

where the point t = 0 is chosen so that V0(0) = O. 

Calibration of the Integrator 

Figure 2 of Plate IV shows the functional change in Vi(t) 

(the voltage across the search coils) which is characteristic 

of the polarized wires used in this work. The range of H in 

these photographs is approximately 20 to 120 oersteds (see Plate 

explanation). Over the range 0 H S 120 oersteds torsion, 

longitudinal stress, and degree of polarization do not signifi- 

cantly affect the manner in which the function Vi changes. The 

wave forms shown here are for a polarized wire under a stress 

of 1 kg/mm2, and no torsional stress. 

To calibrate the integrator it will be assumed that the 

relation between Vi and Vs can be represented by 

ft 
Vi(t) dt = k(Vi) RC Vs(t) 

In this expression k varies with different Vi. RC k(Vi) has 

been determined experimentally for nine different wave forms of 

Vi distributed uniformly over the range of H used in this work. 

The "calibration curve" thus obtained is shown in Plate V. Since 

the curve is nearly linear, it has been assumed that k(Vi) is a 

constant, namely, the graphical average of k(Vi) over the dif- 

ferent Vi. The error thus introduced is small. Experimentally, 



14 

RC k(Vi) ,ave = 2.44 x 10-4 volt-sec/millivolt. In the integrator 

R = .43300 megohm, and C = .538 k(fd; hence RC = 2.33 x 10-4 

volt-sec/millivolt. 

The phase shift between the wave form of Vs and that of the 

applied field, caused by the integrator and associated circuitry, 

has been found to be negligible. Figure 4 of Plate IV is a 

photograph displaying Vs along the vertical axis, and Vh (the 

voltage across a resistance in the field coil circuit) along the 

horizontal axis. This is a check on the phase shift between Vs 

and Vh. The vertical and horizontal amplifiers were a matched 

set and had identical coupling constants. 

Determination of the Wire Constants 

The saturation linear magnetostriction constant for 51 per 

cent Ni-49 per cent Fe wires under a longitudinal stress of 2.74 

kg/mm2 has been measured and found to be 23.9 x 10-6. A micro- 

scope was mounted at right angles to the axis of the wire, near 

the bottom of the field coils of the apparatus, and the transient 

change in length of the wire upon magnetization was observed by 

using a microcomparator type eye piece in conjunction with the 

microscope. The measured value of .2.s is in good agreement with 

the values obtained by other workers (see Bozorth, page 671). 

The diameter of the wire was measured using this same micro- 

scope arrangement and found to be .253 mm. 

The isothermal shear modulus was measured using the tor- 

sional pendulum method and found to be 5.87 x 10 11 dynes/cm 2 . 
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Only one sample of wire was used; hence the measurement is not 

truly representative of the samples. Van der Maas has obtained 

the value 5.94 x 1011 in measurements involving several wires 

of different length. 

A saturation induction (B - H) of 15,400 gauss has been 

measured for the wires used in this work. The accepted satura- 

tion induction for 51 per cent Ni - 49 per cent Fe alloys is 

16,000 gauss. The saturation magnetization in cgs units is, 

then, Is = 15,400/4w poles/cm2. A general method of obtaining 

Is involves plotting (B - H) as a function of 1/H, and extrapo- 

lating to H = o.cD . The degree of error introduced in the ex- 

trapolation is dependent on the range of H values. In the 

measurements reported here the largest value of H used was ap- 

proximately 45 oersteds. Hence the extrapolation error probably 

accounts for some of the discrepancy between the measured and 

accepted value (see Bozorth, page 870). 

Polarization of the Specimen 

The Problem. In the ideal case (no texture and no internal 

stress), the polarization of a polycrystalline ferromagnetic may 

be accomplished by subjecting it to an intense magnetic field. 

When texture and internal stress are present, as is the case in 

all fabricated metals, the meaning of the term polarization is 

somewhat ambiguous in that the remanent magnetization may vary 

considerably, depending on the internal structure of the ma- 

terial, i.e., the internal stresses and texture. From the theory 
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outlined above it is clear that in this work polarization will 

mean that no regions of reversed magnetization are present in 

the specimen, that is to say it is essentially on macrodomain. 

It is difficult to determine when the specimen meets this re- 

quirement, since the internal stresses and texture are usually 

not known. Initial measurements on the specimens used here show 

that subjecting the wire to a magnetic field of 150 oersteds 

does not polarize it. 

Magnetic Annealing. In this work a method of magnetic an- 

nealing has been used to obtain high degrees of polarization. 

Ordinary annealing relieves internal stresses. Annealing under 

stress reorients the internal stresses. In the magnetic anneal- 

ing process used here, the wire was placed in the field coil of 

the apparatus and heated until its temperature exceeded its curie 

point temperature. An electric current applied across the spec- 

imen provided the means to heat the wire. After an equilibrium 

temperature was reached (approximately 10 seconds after the cur- 

rent has been applied to the wire), the field coil was energized 

to produce a longitudinal magnetic field of 165 oersteds. Then 

the current through the sample was cut off, and the sample was 

allowed to cool rapidly (4-5 seconds) through its curie point to 

room temperature while in a constant longitudinal magnetic field 

and under a constant tensile stress. Rapid cooling is objec- 

tionable because of the possibility of introducing large in- 

ternal stresses. However, it is necessary because maintaining 

the annealing current in the wire would retain an unwanted cir- 

cular component of magnetic field. When the wire had reached 
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room temperature, the magnetic field was decreased continuously 

from 165 oersteds to 7 or 8 oersteds. 

Comparison of data from magnetically annealed wires, and 

wires polarized below their curie point after being annealed 

under longitudinal stress, shows that the magnetic annealing 

does not measurably change the texture of the sample. 

RESULTS 

Plates VII through XII display the experimentally obtained 

relationships between 4 I1 and H for different values of the 

parameters, polarizing stress, longitudinal stress, and torque. 

Comparison of these curves with the theoretical curves (Plate 

VI) shows qualitative agreement with the simple theoretical 

model. A precise quantitative comparison is difficult for the 

following reasons: (a) The exact nature of the internal 

stresses before and after polarization is not known, and (b) 

the texture of the samples before and after polarization is not 

accurately known. Both these factors influence the magnetiza- 

tion, and neither is taken into consideration in the simple 

model. Measurements of the longitudinal magnetization of sam- 

ples under large external longitudinal stress (20.3 kg/mm2) 
dO 

show the existence of a curve for -- = 0. At this value of 
di 

longitudinal stress the internal stresses are surely negligible 
di5 

and we must attribute the existence of the curves for __ = 0 
di 

to the fact that the texture and internal stress are not 

negligible. 
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Consider now the predicted relationship between AIl and 
H 

for the case of zero longitudinal stress. It has been 
dedi 
shown that theoretically AIL = g( 

e dca 
) Plate XIII displays 

H 
a plot of All versus ( ) for the data shown in Plate XI. 

del /d? 
This plot is representative for those obtained from other data, 

e.g., Plate XII. It is seen from this set of curves that Il is 
H 

very nearly a function of only. Plots of the experimental 
del /ca 

versus the theoretical magnetization (Plates XIV through XVII) 

are to the first order linear, and reveal that the polarizing 

stress influences both the linearity and the slope. The slope 

measures the degree of departure between the theoretical and ex- 

perimental magnitudes of Ali. The linearity of these plots 

may be considered to measure the experimental validity of the 
H 

relation AIL = g( ). 

dO/di 

CONCLUSIONS 

The simple model of the magnetization mechanism suggested 

here appears to hold promise of describing the reversible quasi- 

static magnetization processes in stressed ferromagnetics. Re- 

sults presented show that the model is not unreasonable even 

when internal stress and texture are not negligible. Further in- 

vestigations of both the longitudinal and circular components of 

the magnetization of different ferromagnetic materials would 

test more severely the adequacy of the proposed theoretical 

model of the magnetization mechanism. 
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APPENDIX I 

Determination of the principal directions 
of stress in a torqued wire 

Consider the symmetric stress tensor 

Xx Yx Zx 

(S) =XYZ 
Y 

= X Y x y Zx = Xy Yz = Zy 

Xz Yz 

In this expression an arbitrary element, say Zy, represents the 

force in the Z direction on a surface whose normal is in the y 

direction. It is desired to know the three directions of pure 

normal stress and the corresponding stress values Xn, Yn, and 

In which describe completely the stressed condition of the body. 

This is equivalent to the determination of the directions QC, 

4i, and 6, for which 

(S) 

cos OC 

cos /5 

_cos X_ 

= ?` 

cos cx 

cos (5 

_cos X 

where X 

cos oC 

cos KY 

cos 6' 

Xn 

Yn 

Zn 

Expanding and rewriting, 

(Xx - 2L) COSCK Yx cos g + Zx cos = 0 

Xy cos C( + (YY A) cos,8 Zy COSY = 0 (1) 

Xz cosoc + Yz cos ,B + (Zy -?) cos = 0) 

Solutions of (1) will be non-trivial only if 

(Xx -7) Yx Zx 

X (Yy - N) Zy =0 (2) 

Xy Yz (Zy 
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For a cylindrical wire under torsion with its axis along Z, 

the tensor elements are 

Yz = G -7 x = Zy, Xz = -G y = Zx 
dt 

Xx = Yy = = 0, Xy = Yx = 0 

ciff 

Here G is 

angular 

in (2) yields, 

the isothermal 

displacement 

0 

dj 

per 

0 

G 

shear 

unit length. 

dO 

modulus, and 

Substituting 

dO 
-G-^y 

d2 

dO 
G 

the 

values 

(2a) 

-- represents 
di 

these 

= 0 x 
di 

-2' y -G 
di 

x 
di 

Solving for ? it is found that 

dO dO 
7 - . 1 G T e - 71/4-2 = -G P, 71/4-3 = 

where i)= (x2 + 72)1i. Since -2L3 = 0, there are only two non- 

degenerate principal directions of stress. Substituting -7`1 

in (1) gives 

cos al y cos /91 x 
and 

- 

cos Y2 /0 cos -1 

Substituting 2'2 in (1) gives 

cosoc2 y cos (92 x 
and Y .... -. 

cos 0 cos v 
Y 
2 l° 

Using (cos 0C)2 + (cos ,5 )2 + (cos 1)2 = 1 

one obtains from (2) and (3) 

(3) 

(4) 



1 

cosI1 =± 
1 

cos X = + 

1 

Letting cos ,)/1 = + 
/2 /2 

and cos X2 = yields 

-y p x 
cos 04.1 = cos = cos (rl = Ar 

Til° l'i, /2 

-1 

1 Tr 

Yl= 
and 

-y 
cos oc2 = cos; = cos = , 

7 2 

The principal stresses are therefore 

y dO y 
Xl = - __ G 

d.t 72 X2 = d r G 
dO x dO x 

Yi = di r G Y2 = c-71? G 

dO 1) 
dO 

p 
G Z2 = 

di 142 di ri 

dO 
and 0-/ = (X/2 + Yi2 + Zi2) = G - /7 

dg 
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)-2=- 

Determination of the Longitudinal Magnetization 
Curves of a Torqued Wire 

4 

Tr 

4 

It is assumed that the total energy expression is given by 

ET = E0- EH 

Let the applied field be parallel to the axis of the wire as in 

(1) of Plate I. Then Et becomes 

ET = 30-7"'s [sin(45° - 9)] 2 - Is H cos 9 (1) 

and 
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dET 
- -6(743 cos (45° - 9) sin (45° - 0) 

d8 
+ IsH sin 9 = 0 (2) 

Solving (2) for H, one obtains the component equations of mag- 

netization, namely. 

IH = Is cos 9 (2a) 

3Gr 2-8 cos 2 9 
H = (2b) 

Is sin 9 

These equations are valid only for those values of 8 for 

d2ET 
> 0. 

d 92 

Let it be required to minimize the general expression 

f(8) - H Is cos 9 

For a minimum fi(0) + IsH sin 9 = 0 (3a) 

e(e) IsH cos 8 0 (3b) 

From (2a) and (3a) one can write 

dI = -Is sin 9 d 

(H Is cos 8 + f" 9) 
dH - d8 

Is2 sin 9 

Hence for (2) to be a minimum it must be true that 

dI (Is sin 9) 2 

> 0 
dH (IsH cos 0 + f" (9)) 

The total longitudinal flux can be obtained by integrating 

(2a) over the cross-sectional area of the wire. Thus 

Pit =f Is cos 8 2ir/ad 

Letting u = cos 9, and substituting 



p=/0(9) - 
dO 

3/'G -- (2 u2 - 1) 

di 

IsH (1 - u2)* 

in (4) yields 
IsH 

Ot = 
dO 

3 Ts 

where u1 = +1, and u2 = cos 60. 

Putting A = w 

(4) becomes 

Ot' = 
Ot 

IsH 

dO 
3;>" G 

s di 

uo 

u d 

Integrating by parts gives 

But 

Ot, = u 
(2 u2 - 1)2 1 

u d 

1 - u2 

(1 - u2) 

(2 u2 - 1)2 

(2 u2 - 1)2 

1 - u2 uo 

1(1- u2)du / du 

fo (1 - u2)du 

(2 u2 - 1)2 

du 

(2 u2 - 1)2 4/ (2 u2 - 1)2 (2 u2 - 1) 

u + 

u - 1 
uo 

and 

Also 

and 

uo 

)1 

) 1 

uo 

du 

- 

1 

n 2 u2 - 1 

du 

2p 

2 u2 - 1 

u2 du 

2 u2 - 1 

1 

= 
(2u2 - 1)2 a/ 

1 

uo 
(u0 4 u2 du 

1 (2 - 1)2 

fi u - 1 uo 1 

/2 u + 11 

(4) 

(5) 

4 2 u2 - 
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Therefore the complete integral is 

(u0 1 - u2 3 
rii du = n 

j1 (2u - 1)G 

and (5) becomes 

Ot = uo 

1 

4 

1 - uo 2 3 

0 
(2u0- - 1)2 8T-2 

2 o 

- 
- 1 

+ 1\ 1 u0 

- 21 4 2u0 2 - 1 
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(1/2uo - 1 1 

72 uo + 1 /2-- - 1 

Substituting the expression for H in the expression for A gives 

u2 - 1\2 
A = w Isr2 

(1 -u2)/ 

Substituting the expression for A in the equation for Ot' gives 

jet 2u02 - 1 
2 

'I IT 
= wr2 (1 - 1102)* 

1 - uo 2 

(2u02 - 1)2 

3 rg uo - 1 2 + 1\ 17 uo 
+ + 

8 1 / i CP:- uo + 1 Ti - 1/ 4\2 uo2 - 1 1 

The parametric equations of the magnetization curves are then 

IL = 
/Cos 2 G02 

Is cos 90 
sing 90 

sin 90 ) cost 2 00 

3 /1/2.-- cos Go - 1 2 1\ 1 cos Go 
+ + 
80 1: cos 0 + 1 fT- 1/ 4 cos 2 Go 

3 Gr7' 0 cos 2 90 
H 

Is dP sin 9 o 

I 
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EXPLANPTION 0? PLAT I 

Fig. 1. Diagram representing the relationship H, Is, 

and 0- at some value of /9. 

Fig. 2. Schematic of the integrating circuit. 
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EXPLANATION OF PLATE II 

Drawing of the Basic Apparatus 

A. Torquing knob 
B. 360° scale 
C. Pointer 
D. Leveling screws 
E. Polyethelene insulator 
F. Chuck 
G. The sample 
H. Location of the upper mercury contact 
I. Search coil 
J. Compensator search coil 
K. Field coil 
L. Compensator field coil 
M. Search coil leads 
N. Field coil leads 
O. Mercury contact leads 
P. Cap and body of contact 
Q. Mercury pool 
R. Platinum wire lead-outs 
S. Location of lower mercury contact 
T. Tab attached to sample 
U. Lucite tab holder 
V. Weight holder 
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PLATE II 

BASIC APPARATUS 

0 10 CM. 



EXPLANATION OF PLATE III 

General Circuit Diagram of Experimental Set-up 

A. Variac 

B. Meters 

C. Variable resistances 

D. Half-wave rectifier 

E. Mutual inductance 

F. Compensator field coil 

G. Field coil 

H. Search coil 

I. Compensator search coil 

K. Integrating circuit 

L. Oscilloscope 
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EXPLANATION OF PLATE IV 

Fig. 1. The input wave form to the field coils. 

Fig. 2. The input wave form to the integrator, i.e., 

the voltage across the search coils when specimen is in the 

field coil. Polarizing stress 5.93 kg/mm2; longitudinal 

stress 1 kg/mm2 

From the bottom reading up H oersteds V/cm 

Time/cm = 2 ms/cm a. 19.1 0.05 

b. 38.1 0.05 

c. 57.2 0.05 

d. 76.3 0.10 

e. 95.4 0.10 

Fig. 3. Output wave form from integrator, same speci- 

men as Fig. 2. 

From bottom reading up H oersteds V/cm = 
.2 my /cm 

a. 54.5 

b. 83.1 

c. 109 

d. 139 

e. 166 

Fig. 4. A versus (horizontal) versus Vo (vertical) 

for different torques. 
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EXPLANATION 02 PLATE V 

The calibration curve for the integrating circuit 
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EXPLANATION OF PLATE VI 

The theoretical magnetization curves for a wire 

of the same dimensions as the experimental samples. 

The numbers denote angular displacement in turns per 

110 cm. One turn = 3.277cm. 
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EXPLANATION OF PLATE VII 

The experimental magnetization curves for dif- 

ferent values of angular displacement (T). One turn 

(T) is equal to 3.27°/cm. 

Wire No. 8 

Polarizing stress 0.988 kg/mm2 

Longitudinal stress 0.988 kg/mm2 

Polarizing field 167 oersteds 



103X 10 

6 

w 

0 5 

(9 

142 

PLATE VII 

0 

0- 
2 

0 

10 20 30 40 50 
H OERSTEDS 

60 70 80 90 100 



EXPLANATION OF PLATE VIII 

The experimental magnetization curves for dif- 

ferent values of angular displacement (T). One turn 

(T) is equal to 3.277 cm. 

Wire No. 13 

Polarizing stress 0.395 kg/mm2 

Polarizing field 167 oersteds 

Longitudinal stress 0.00 
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EXPLANATION OF PLATE IX 

The experimental magnetization curves for dif- 

ferent values of angular displacement (T). One turn 

(T) is equal to 3.277cm. 

Wire No. 9 

Polarizing stress 3.95 kg/mm2 

Polarizing field 167 oersteds 

Longitudinal stress 0.988 kg/mm2 
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EXPLANATION OF PLATE X 

The experimental magnetization curves for dif- 

ferent values of angular displacement (T). One turn 

(T) equals 3.27°/cm. 

Wire No. 7 

Polarizing stress 5.93 kg/mm2 

Polarizing field 167 oersteds 

Longitudinal stress 0.988 kg/mm2 
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EXPLANATION OF PLATE XI 

The experimental magnetization curves for dif- 

ferent values of angular displacement (T). One turn 

(T) equals 3.27c/cm. 

Wire No. 10 

Polarizing stress 5.93 kg/mm2 

Polarizing field 167 oersteds 

Longitudinal stress 0.00 
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EXPLANATION OF PLATE XII 

The experimental magnetization curves for dif- 

ferent values of angular displacement (T). One turn 

equals 3.27c/cm. 

Wire No. 11 

Polarizing stress 6.92 kg/mm2 

Polarizing field 153 oersteds 

Longitudinal stress 0.00 
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EXPLANATION OF PLATE XIII 

Plot of /AIL versus ( for data shown in 
dO/di 

Plate XI. 

0 - I turn. One turn equals 3.27 ° /cm. 

O - 2 turns 

o - 3 turns 
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EXPLANATION OF PLATE XI E' 

Plot of MI, experimental versus D IL theoretical, 

for data shown in Plate XI. T = I turn = 3.27u/cm. 
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EXPLANATION OF PLATE XV 

Plot of 6 IL experimental versus d It theoretical 
for data shown in Plate XI. T = 2 turns. 
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EXPLANATION OF PLATE XVI 

Plot of QIL ex:nerinental versus LI theoretical 

for data shown in Plate XI. T = 3 turns. 
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EXPLANATION OF PLATE XVII 

Plot of 6IL experimental versus LIL theoretical 

for data shown in Plates VII and VIII. 

1. T = 1 Plate VII 

2. T = 2 Plate VII 

3. T = 3 Plate VII 

4. T = 2 Plate VIII 

5. T = 1 Plate VIII 
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Theoretical considerations by G. J. van der Maas indicate 

that for a polarized and torqued ferromagnetic wire the change 

in longitudinal magnetization L\I = (I - Ir), (where Ir is the 
H 

remanent magnetization), is a function only of (magnetic 
0/di 

intensity divided by torque). This result was derived under the 

assumption that the total free energy is given by the sum of the 

magnetoelastic and field energies. Experimentally it is found 
H 

that AIL is essentially a function of 
dO 

for approximately 
/d.t 

the aforementioned conditions. 

To approximate experimentally the theoretically assumed 

conditions, the samples (51 per cent Ni - 49 per cent p() were 

magnetically annealed by heating them above their curie point 

(510 degrees (,), then cooling rapidly in a longitudinal 165 - 

oersted magnetic field while subjected to a longitudinal stress. 

This treatment probably leaves some longitudinal internal stress 

in the wire; nevertheless the predicted relation between Z\IL 
H 

and is still found. Even when the external stress is as 
0/di 

large as 1 kg/mm2, AIL is still a function of for small 
df/5/di 

values of the applied field. 

The samples were subjected to a periodic (60-cycle) uni- 

directional magnetic field parallel to the direction of polari- 

zation. The voltage across the search coil encircling the sample 

was integrated with an RC circuit which had a large time con- 

stant in comparison with the period of the applied field. 


