DISCOMFORT GLARE /: VARIATION OF LIGHT INTENSITY

bу

KITTUR V. GANESH

B.E. (MECHANICAL), U.V.C.E., BANGALORE, INDIA , 1981

A MASTER'S THESIS

submitted in partial fulfillment of the requirement for the degree

MASTER OF SCIENCE

Department of Industrial Engineering KANSAS STATE UNIVERSITY

Manhattan, Kansas.

1986

Approved by

th

Major Professor

TABLE OF CONTENTS

LD		V17505 53PPP1		
2668 .T4 1986	ITEM		PAGE	<u>N 0</u>
. 6.35 CIZ				

ACKNO	WLEDGE	SMENTS	• •	• • •	• •	• • •	• • •	• •	• •	•	• •	• •	٠	• •	• •	•	• •	•	• •	•	•	•	•	•	•	111
LIST	OF TAE	BLES														•					• •			•		IV
LIST	OF FIG	GURES				•••		• • •												•	•			•		v
INTRO	DUCTIO	DN			• •											•										1
	Glare	from	str	eet	1	igł	hti	ing	: ·	•											•		. '			2
	Disabi	ility	gla	re						•						•				•		• •		•	•	2
	Discom	nfort	gla	re						•	• •				• •	•					•		• •	• •	•	2
	Resear roadwa																						•			3
	Resear	ch at	Ka	nsa	s	Sta	ate	e t	Ini	v	er	s i	t	у		•					• •		• •	•		5
PROBL	EM		• •		•••	•••	•••	•••	• • •	•	•••	• •	•	• •	• •	•	• •	•	• •	•	•	• •	•	•	•	1
METHO	D				• •					•	• •	• •	•	• •	• •	•	• •				• •	• •	•	• •	•	9
	Princi	iples	of	dyn	am	ic	s	imu	118	ıt	io	n				•					•		•			9
	Prepai	ration	of	th	е	sir	nu]	lat	:01	•					• •	•	• •	•		•	• •	•		• •		12
	Detern to obt													• •							•			• •		30
	Condit	tions	of	Exp	er	ime	e n 1	t	• •	•		• •				• •					•		•			34
	Experi	imenta	1 D	esi	gn			• • •		•			•													45
RESUL	TS .																									50

TABLE OF CONTENTS (CONT'D)

DISCU	SSION	• •	•••	• • •	•••	•••	•••	• •	• •	• •	• •	• •	•	• •	• •	·	• •	• •	•	·	• •	• •	• •	• •	• •	58
CONCL	USION								• •				•						•						•••	62
REFER	ENCES								• •		• •	• • •	•				• •	• •	•					• •		63
APPEN	DIX				•••				• •	• •		• •				•		• •	•	•		• •	•		•	64
L	uminano	ce	cal	ibr	at	ion	с	ur	ve		• •	• • •	•					• •	•					• •		65
R	aw data	a –	Su	bje	ct	Ra	ti	ng			• •		•		• •	•	• •	• •		•		• •	•		• •	66
R	aw data	n –	Su le	bje vel	ct fo	ad or	ju BC	st D	e d 	1	uл	iir 	an •	n c (e 								• •			70

LIST OF TABLES

TABLE

PAGE

TABLE	E 1. REAL-WORLD CONDITIONS vs SIMULATION CONDITIONS	. 13
TABLE	2. DETAILS OF LIGHTING INSTALLATIONS	. 15
TABLE	3. DISK SPEED CALIBRATION CHART	. 31
TABLE	2 4. FILTER GRADIENT FOR N.MANHATTAN AVE. ROAD	. 35
TABLE	5. FILTER GRADIENT FOR MCCALL ROAD	. 36
TABLE	6. EXPERIMENTAL CONDITIONS	. 39
TABLE	7. BIOGRAPHICAL DATA OF SUBJECTS	. 46
TABLE	2 8. LSD MEANS FOR SUBJECT RATING	. 51
TABLE	E 9. LSD MEANS FOR SUBJECT ADJUSTED BCD	. 52
TABLE	E 10. ANOVA TABLE FOR SUBJECT RATING	. 53
TABLE	E 11. ANOVA TABLE FOR SUBJECT ADJUSTED BCD	. 54
TABLE	E 12. LSD MEANS FOR SUBJECT RATING(ROAD)	. 55
TABLE	E 13. LSD MEANS FOR SUBJECT RATING(LUM.TYPE)	. 56
TABLE	14. LSD MEANS FOR SUBJECT RATING(SPEED)	. 57

LIST OF FIGURES

FIGURE

FIGURE 1.	DOUBLE SPIRAL TRACK	10
FIGURE 2.	INTERSECTING DOUBLE SPIRALS	11
FIGURE 3.	ROADWAY SIMULATING DIAGRAM	14
FIGURE 4.	TYPICAL COBRAHEAD LUMINAIRE	16
FIGURE 5.	ISOFOOTCANDLE LINES OF HORIZONTAL ILLUMINATION	17
FIGURE 6.	CANDLEPOWER TABLE(N.MANHATTAN AVE. ROAD)	18
FIGURE 7.	CANDLEPOWER TABLE (McCALL ROAD)	20
FIGURE 8.	PHOTONEGATIVE OF A DOUBLE SPIRAL PLOT	28
FIGURE 9.	LUMINAIRE-DRIVER POSITION ON ROADWAY	32
FIGURE 10	. CONVENTION FOR HORIZONTAL ANGLE	33
FIGURE 11	. OCCLUDER MOUNTED WITH LIGHT FILTERS	37
FIGURE 12	. NEW NORTH AMERICAN GLARE SCALE	40
FIGURE 13	. INFORMED CONSENT STATEMENT	41
FIGURE 14	. INSTRUCTION SHEET	42
FIGURE 15	QUESTIONNAIRE	44
FIGURE 16	. LUMINANCE CALIBRATION CURVE	65

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and gratitude to the amicable Dr. Corwin Bennett, for his valuable guidance and encouragement throughout my study at this university.

I am grateful to Dr. E.S. Lee and Dr. Prakash Krishnaswami for serving on the graduate committee.

I would like to gratefully acknowledge the help rendered by Craig Tilton in the laboratory.

Kittur V. Ganesh

May 1986

INTRODUCTION

The advent of high - speed vehicles has increased the necessity for improving the visibility on roads. In addition, the task of driving gets more difficult during night time. The principal purpose of roadway lighting is to improve the performance of this driving task and to create a night-time environment conducive to quick, accurate and comfortable seeing for the driver. For this, adequate visibility at night resulting from lighting (both fixed and vehicular) has to be provided after carefully considering the visibility factors which influence seeing and visibility.

Visibility Factors

The fundamental factors which directly influence visibility are :

a) The luminance of an object on or near the roadway.

b) The luminance of the background of the roadway.

c) The size of an object and its identifying detail.

d) The contrast between an object and its surroundings.

e) The ratio of pavement luminance to the surroundings as seen by the observer.

f) Glare.

Adequate visibility at night is achieved through lighting which provides adequate luminance contrast with good uniformity coupled with reasonable freedom from glare.

Glare from Street Lighting

Glare is the first factor determining visual comfort, after a suitable lighting level for reliable perception has been provided. "When the field of vision of an observer contains a light source whose luminance in the direction of the observer is appreciably greater than that of the other parts of his field of vision, this light source will give rise to glare. The glare produced increases with the luminance and apparent size of the light source, and with decreasing luminance of the background and the angle between the direction of observation and the direction to the light source" (DeBoer, 1967). Glare is described, studied and discussed under two headings :

<u>Disability glare</u>: This acts to reduce the ability to see or spot an object. It is sometimes referred to as " blinding glare" or "veiling glare" (which may not be apparent to the observer).

<u>Discomfort glare</u>: This produces a sensation of discomfort but does not necessarily affect the ability to discern an object. Most assessments of discomfort glare are based upon consideration of the size, luminance and the number of glare sources and also background luminance.

While both forms of glare reaction may be caused by the same light flux , the many factors involved in roadway lighting such as source size, displacement angle of the source, illuminance at the eye, etc. do not affect both forms of glare in the same manner, nor to the same degree. The only two factors

common to both forms of glare are illuminance at the eye and the angle of flux entrance to the eye. It is generally true that when disability glare is reduced, there also will be a reduction in discomfort glare, but not necessarily in the same relative amount. However, if the discomfort glare is acceptable, hardly any effect on visual performance may be expected.

Research on Discomfort Glare In Roadway Lighting

The results of various investigations into the discomfort glare phenomenon showed that: 1) the magnitude of glare sensation is related directly to the luminance of the glaring source and its apparent size as seen by the observer, and 2) that the discomfort is reduced if the source is seen in a bright surrounding of light and the farther the glare source is off the line of sight, the less the discomfort.

On the continent, de Boer and Schreuder(1967) conducted an experiment using a dynamic model of a normal street lighting installation. Here, a randomized sequence of street lighting installations was presented to the observers who had to choose in their appraisals between the following degrees of glare : "unbearable" glare(G = 1); "disturbing" glare(G = 3); "just admissible" glare(G = 5); "satisfactory glare (G = 7); and "unnoticeable" glare (G = 9). The number in the bracket indicates the associated "Glaremarks" that were used for calculation. Their findings resulted in the system "Glaremark". In this empirical model, the observer position along or across the roadway is not a criterion. This means that it is immaterial to glaremark whether the observer is in one lane or the other, or whether he is moving

dynamically or is static. Currently, in Europe, Glaremark is in use to prevent discomfort glare in the design of lighting for streets and highways.

The Illuminating Engineering Society of North America (IESNA) has been working to have procedures for dealing with discomfort glare for future revisions of its Standard Roadway Lighting Practice. Moreover, North American tests have failed to show the validity or adaptability of Glaremark (Keck and Odle, 1975). A great deal of research on discomfort glare has been made in recent years in North America. Much work has been done on streets and a method of expressing discomfort glare called the North American "CBE"(Cumulative Brightness Evaluation) system was developed.

The CBE predictive system is an observer - oriented system. This means that its value varies depending on which lane the observer is located in, and his position along that lane. Accordingly, Merle Keck, based on a suggestion by Dr. Glenn Fry developed a formula for CBE using the findings at Kansas State University. The resulting formula is shown below:

 $B_1^{1.67*}S_1 B_2^{1.67*}S_2$ CBE = ----- + ----- +

e0.08A1 e0.08A2

where,

B = Photometric brightness of the glare, footlamberts
 S = Source size, steradians
 A = Source angle off the line of sight, degrees

Research on Discomfort Glare at Kansas State University

In order to provide a basis for the North American system, research is underway at Kansas State University. The first study was an extensive experiment based upon the pilot work by Putnum and his coworkers (Bennett, 1977). A multiple regression model was developed for predicting glare as a function of glare source size, position and background luminance for a single glare source. This study enabled prediction of an average response for a single.static glare source. Later probit analysis (Bennett and Rubison, 1979) enabled prediction of an arbitrary percentile rather than just the average. Further research extended this work to a number of static sources rather than a single source(Bennett,1980). This research also has shown the declining influence of lights as one looks down the roadway and led to what Keck has called the CBE model, where summation of effects over successive lights are substituted for size, position, and background luminance in the previous multiple regression model. This is the current "CBE" procedure.

A dynamic roadway simulator for discomfort glare was designed and built at Kansas State University (Anantha, Dubbert, and Bennett, 1982) based upon an idea of Dr. Glenn Fry. An experiment simulating the various roadway conditions was conducted using this simulator(Bennett, 1982). In the experiment, the conditions simulated were :

Car speeds of 30 mph and 60 mph and a static condition, Spacing of four mounting heights and eight mounting heights,

One sided lighting and two sided staggered lighting, Number of lights of 26, 10, 2, and 1.

Statistical results showed that the static condition was less comfortable than the dynamic conditions. Spacing was a statistically significant variable. No difference was found between lighting on one or both sides or the number of luminaires. The results showed, in general, that the Fry Simulator approach was a useful way to study discomfort glare from fixed roadway lighting. The main advantage of the simulator is that it is less expensive than the field tests, and is highly flexible.

An improved simulator was developed at Kansas State University (Easwer, Dubbert, and Bennett, 1983). Also, instead of a " parametric study ", a predictive - system - validation approach was used. A detailed study of the two predictive systems, namely Glaremark and CBE was carried out in the Fall of 1983. The results of the experiment revealed that, the first three luminaires in front of the driver were most important, in significantly contributing to glare, and an increase in the mounting height makes a particular installation more comfortable.

An experiment carried out in the spring of 1984 showed no statistically significant difference between the glare responses of a driver and a passenger (Hussain, 1984). Also, an experiment to determine the effects of non-homogeneous background luminance on discomfort glare was performed with forty student subjects in the summer of 1985 (Ganesh, 1985). In order to simulate the real - world roadway conditions, the background luminance was divided into three zones of illumination namely,

the sky, the pavement and the side luminance zone. Three specific luminance levels were chosen for each of the background luminances. A flat reflector simulated the non-homogeneous background luminance conditions of the real world. The subjects evaluated the glare based on the BCD criterion. It was concluded that at the 1 % alpha level, there were significant differences between the subjects and the side luminances. Also, at the 10 % alpha level significant differences were found among all the three main effects.

In all the experiments on discomfort glare carried out at Kansas State University, only an average glare source luminance was used.But, in the real-world, considerable variation in light intensity occurs as a function of viewing angle. If the lateral angle is also varied, the variability would be greater. The chief purpose of this study was to make the roadway lighting simulation more realistic through the modification of the simulator, making provision for varying the light output as a function of driver viewing angle. Also, the study was undertaken to compare the significance of using varying light output as a function of driver viewing angle vs. average glare source luminance, on discomfort glare.

The light output was varied in the simulator by using films of controlled density.

PROBLEM

The objective of this study was to make roadway lighting simulation more realistic through the variation of light intensities as a function of driver viewing angle.

Forty subjects were subjected to two simulated lighting installations, and a comparison of the significance of using varying light output as a function of viewing angle vs. average light output, and of different speeds on discomfort glare were made. METHOD

Procedure

The experiment was performed with the help of the dynamic simulator, which was used to simulate the actual dynamic roadway lighting conditions.

Principles of dynamic simulation

The basic concept of the simulation is that a disk is rotated in front of a light source. The disk has a clear spiral which increases in width as it spirals outward. The disk is opaque except for the clear spiral track. An occluder with a narrow open sector occludes most of the disk. As the disk rotates behind the occluder, the observer sees a series of " roadway lights " from the large first light above him to the ever more closely spaced small lights near the horizon. The basic concept is further developed in the new simulator.

The new concept is that two disks for each side of the road rotate in opposite directions (in proportion to the vehicle speed) behind an occluder. The disks are opaque except for the clear double spiral tracks on each of them as shown in Figure 1. The occluder is opaque except for the two narrow sectors. Both, the disk and the occluder are in front of the light source. On the several places where the two sectors and the double - spirals on each disk intersect, a series of roadway lights occur (Figure 2). These appear to move toward and above the driver, getting larger.

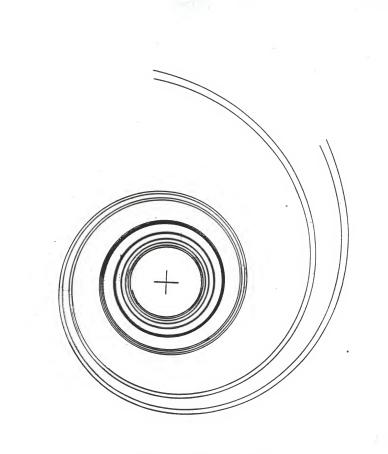
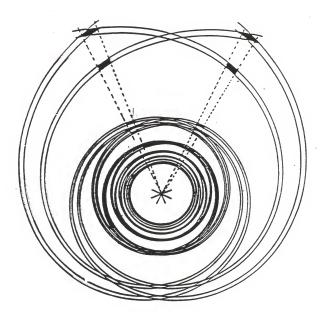



Figure 1: Double spiral track

Figure 2: Intersecting double spirals

The new concept of simulation was used in developing a dynamic simulator at Kansas State University (Easwer, Dubbert, and Bennett, 1983). Table 1 shows the relationships between the roadway lighting conditions and the simulation parameters. Figure 3 shows the side view of the simulator. It is actually the driver portion of an old car and is closed from the outside light. The only light a subject can see is the background light and the simulated road lights.

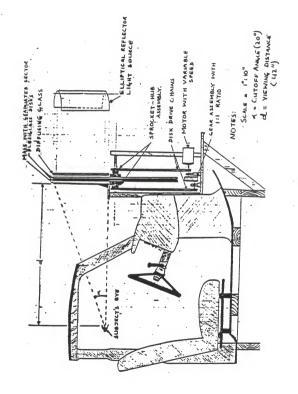
Preparation of the Simulator:

For the experiment, two different types of luminaires (Cobra Head / Mercury Vapor and Cobra Head / High Pressure Sodium) representing N. Manhattan Ave, and McCall roads in the City of Manhattan were selected. In case of McCall road, the luminaires are mounted on only one side of the road. This condition represents a " single-sided " installation. And if the luminaires are mounted on either sides of the road as on North Manhattan Ave. road, then the condition represents a " doublesided " installation. The details of these installations are given in Table 2. Figure 4 shows a typical cobrahead luminaire. Figure 5 gives the isofootcandle lines of horizontal illumination of this type of luminaire. Figures 6 and 7 give the candlepower tables for the two types of luminaires selected.

To simulate these roads in the simulator, appropriate disks containing the double spirals have to be used.

TABLE 1 . REAL WORLD CONDITIONS vs. SIMULATION CONDITIONS

REAL WORLD CONDITION	SIMULATION CONDITION
1) Speed of the car, mph	Rotational speed of the disk, rpm
 Angular distance from the observer's line of sight to the road light 	Angular distance from the observer's line of sight to the spiral segment
 Distance from the motorist to the light pole 	Spiral segment radius
 Horizontal dimension of the luminaire 	Width of the narrow open section in the opaque mask
5) Vertical dimension of the luminaire	Width of the spiral in the radial direction



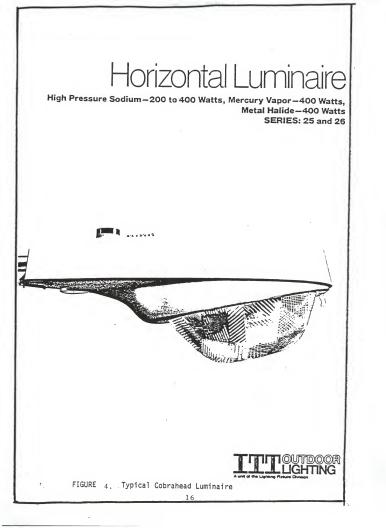

Figure 3: Roadway simulator diagram

TABLE 2 . DETAILS OF THE LIGHTING INSTALLATIONS.

Location Luminaire Lamp Wattage Single Driving Double-sided McCall Rd. CH HPS 400 Single Dynamic N. Manhattan-Ave. Rd. CH MV 250 Double Dynamic CH = Cobra Head MV = Mercury Vapor HPS = High Pressure Sodium

MEASUREMENT DETAILS :

Location .	Spacing (ft)	Mounting Height (ft)	Road Width (ft)	Overhang (ft)
McCall Rd.	210	30	44	5
N. Manhatt- an Ave.	195	29	24	5

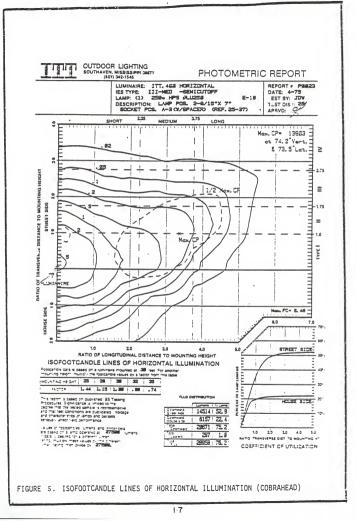


FIGURE 6. CANDLE POWER TABLE FOR N.M. AVE. ROAD

-		105.0	129	132	ct I	149	144	144	133	154	001	154	159	149	128	123	611	123	128	18	37
		95.0	104	061	216	267	257	205	210	241	262	241	. 216	205	130	185	190	061	195	154	123
		0.05	200	102	303	3:04	349	3 5.0	547	1032	1324	-C711-	ICP	539	330	237	339	335	293	226	190
		40.61	324(330	4 35	40.5	5 l 3	734	1237.	2273	31 66.	2653.	14 30	596	583	544	457	452	435	305	405
		, (, cò	463	529	575	/13	÷75	1611	14 ad	6161	2356.	2273'	1704-	1242	000	713	ò16	567	572	150	154
			Caç	505	662	321	1057	1329	1463	15944	1537	1776	1560	1355	1139	347	672	525	500	631	ó83
		45.0	1.01	713	719	647	1150.	0741	1454	2109 *	1960.	1740 -	1 601	1540	1386	996	713	647	óll	606	535
		35.0.	1047	1232	1375	1542	1050	2335	2525-	2412	2109	181	1540	1.334	c 811	1032	347	590	ó21	575	<u> </u> 265
		25.0	2254	cffS	23.05	2412	24.33	2453 -	2244	2104	1394	láoj	1447	1233	1196	1103	101	367	Url	729	593
	iL: >>:	ں ، دا	23.04	22 J J	2274	2253	2243	2100	2037	1909	1/60	1511	1433	1381	1293	1216	<u>c</u> c	1124	1083	2 <i>ċ</i> r I	1 03 2
	CAL AN	د. د	0.00	13.44	1001	1551	1312	1795	cc/1	0+71	1 //04	1675	1032	1601	(74)	1534	+04	1493	0/41	1453	1463
		0° 0	COV 1	C0/1	1/02	1/05	c0/1	C0/1	C0/ 1	<07 I	50/1	G0/ 1	50/1	CO/1	CO/ 1	1705	C0/1	C0/ 1	c0/1	50/1	1705
	ZNOR	AULE	°.	۰. د	12.0	20	0° 48	40.0-	0.00	62°U	0°c1	0.05	0.46	0.001	0.411	120.0	130.05	140.0	0.001	C° col	U.c/1

CANUELA DATA (02)

FIGURE 6. (CONT'D)

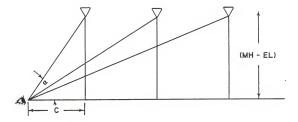
CANDELA DATA (0.0 72.5 75.5 237 1201 1342 889 1904 1955 489 1904 1955 710 2864 3064 3592 2301 335 2392 2361 335 2392 2361 335 1370 1357 273 1170 1357 273 1170 1357 273 177 1378 357 737 357 575 357 575 357 575						-					-	-		1					13					
CHITCAL CAJUELA DATA (04) 50.0 02.0 02.0 57.0 07.0 75.0 17.5 50.0 667 1940 1991 1400 1343 1237 1201 1342 1371 1076 929 1643 1771 1561 1347 1201 1373 1076 929 1643 1771 1561 1369 1904 1973 1076 929 1643 1791 1553 2343 2349 2343 2959 1332 1237 1555 2315 2314 2343 2346 2343 2959 1343 1273 1706 929 1555 2315 2310 2343 2343 2346 2346 1347 1235 1357 1357 1357 1357 1356 1347 1317 1355 1357 1352 1357 1357 1357 1357 1357 1357 1357 1357 1370 1324 1370		3 L E		4	520		04 V	724	736	102		c: /	5,33	009			4 / 2.	4 00	244	5	303	257		100
S0.0 22.5 55.0 71.5 40.2 50.0 22.5 55.0 57.5 77.5 40.2 14315 1416 1405 1545 1237 1201 127.5 40.2 1543 1237 1201 1042 1345 1237 1201 1273 1078 1643 1751 1501 1345 1237 1201 1342 1473 1643 1751 1501 1345 1237 1201 1342 1473 2044 2155 2315 2210 2710 2844 2033 2491 1771 1773 170 2044 2155 22315 2210 2710 2844 2764 2755 2363 2044 2725 2364 2756 2243 1370 2145 2233 2317 2535 2365 2044 2756 2263 1370 1370 1370 1760 1537 1264 13		50		000	734		222	11.39	1203	1260		2021	1093	A78	724		0 0 0	485		-	354	205		0.90
Girl Track, CA, DELA DATA (04) 50.0 32.5 55.0 57.5 77.5 1432 1410 150.0 57.5 77.5 1432 1416 150.0 57.0 77.5 1540 1591 1501 1504 472 1643 1741 1560 1604 188 147 1644 1751 2010 72.5 73.2 73.3 2044 2155 2313 2319 1904 1955 1342 2044 2155 2313 2310 2324 2333 2347 2033 2145 2233 2317 2355 2493 2364 2764 2756 2145 2233 2317 2355 2392 2367 2367 2756 2145 2233 2317 2335 2392 2361 2202 2145 2333 1327 1447 129 1261 1276 2145 2333	•	5	1	00	929	1227	2021	1550	1332	1040		10/1	1499	1124	L Y H		503	559	1-1		411	645		* - *
CHITCAL CANDELA DATA (0 50.0 62.0 50.0 51.0 1010 1042 1402 1410 1401 1360 1504 1488 1477 1543 176 1791 1350 1504 1488 1477 1544 1951 2048 2333 2341 2448 2952 2044 2155 2315 2315 2310 2864 3064 2195 2563 2317 2349 2488 2948 3054 2195 2563 2371 2356 2694 3064 3054 2195 2563 2371 2356 2694 2961 2957 1295 2563 2371 2356 2694 2961 2957 1295 1329 1327 1329 1327 1293 1355 1329 1324 1309 1273 1170 1257 1355 1329 1329 1329 1329 1307 1257 1355 1329 1329 1329 1329 1370 1357 1355 1329 1329 1329 1329 1309 536 730 636 730 637 739 636 731 734 734 734 734 734 730 730 657 739 636		C - 04		2	1078	20.11		19/1	2350	24R4	01010	10.33	1373	1370	030		0	657	500	1	44.5	4.00		
Oct 1 CALITICAL CA-UELA DATA 50.0 02.0 55.0 57.2 75.0 1322 1410 1541 1541 101 1042 1543 176 1541 1541 101 1042 1543 176 1541 1561 1042 1042 1644 1941 1561 1564 1881 1955 1644 1951 1561 1644 1955 1955 1644 1951 2014 2233 2313 2043 2044 2044 2155 2315 2213 2310 2343 2044 3044 2044 2155 2315 2213 2310 2342 2043 2344 2145 2204 2170 2243 2044 2361 1669 1761 1837 1633 1324 1307 1237 1332 1332 1659 1796 1937 1334 1307 1337 <t< td=""><td>(1)</td><td>5.77</td><td>52.0</td><td>210</td><td>1273</td><td>1347</td><td>110</td><td>2433</td><td>2425</td><td>2033</td><td>2755</td><td></td><td>2202</td><td>1581</td><td>11 70-</td><td></td><td>212</td><td>749</td><td>521</td><td></td><td>45 C</td><td>463</td><td></td><td>200</td></t<>	(1)	5.77	52.0	210	1273	1347	110	2433	2425	2033	2755		2202	1581	11 70-		212	749	521		45 C	463		200
GRUTICAL CAUDELA 50.0 52.0 51.0 72.5 50.1 52.0 51.0 72.5 1432 1410 1450 1531 1201 1543 1410 1541 1541 1201 1543 1761 1541 1541 1201 1543 1761 1541 1543 1281 1544 1515 2343 2342 2434 2155 2347 2365 2342 2332 2165 2363 2443 2337 2343 3044 2165 2363 2464 1363 1323 1333 170 1543 1543 1543 1333 1332 178 1543 1543 1543 1333 1332 170 1553 1543 1543 1333 1332 178 1543 1543 1543 1333 1170 174 1543 1543 1543	č	0.67	010	140	1437	1055		22	3064	3274	1900		2361	1699	1203	1.301		878	734		050	575	-	5
GRITICAL 50.0 52.0 57.0 57.0 1432 1410 145.0 17.0 70 1432 1410 145.0 150.0 57.0 70 1543 1410 1541 1416 1540 151 1540 151 1540 151 1540 151 1541 1541 1541 1541 1541 1541 1541 1512 2213 23 153 163 1	_	12.5	1001	2	483	1904		2430	2864	3084	POPC		2392	1332	1442	02.11	2	166	347	000	129	657	01.5	
50.0 62.0 62.0 65.0 50.0 62.1 641 1416 1432 1416 1406 1406 1543 1541 1541 1406 1643 1541 1541 1406 1543 1541 1541 1541 1644 1745 176 1791 2155 2315 23407 2145 2165 2007 2069 2170 2165 2037 2069 2170 2165 2037 2069 2170 2165 2037 1563 1324 1761 1837 1563 1324 1766 1329 1324 1170 705 1057 1073 1324 705 1057 1073 1324 705 1057 1073 1324 705 1057 1073 1324 705 1057 1057 1057		0.01	1237		1004	1 389	0.000	2.340	2710	2369	27416		5555	1363	1524	0201	2171	560	960	520	100	739	-04	2
50.0 50.0 52.5 1416 1542 1541 1542 1541 1663 1176 1664 2155 2044 2155 2145 2253 2145 2253 2145 2253 2165 1155 1156 1155 1156 1155 1156 1155 1052 1057 1052 1057 1052 1057 1052 1057 1052 1057	CRITIC	c.1.5	1345		0001	1853	1000	6677	2510	2523	2005		5422	132/	(-0¢1	1200		0011	6101	070	, nex	700	-	
50.0 145.0 145.0 164.0 164.0 164.0 164.0 174.0 1		6.c¢	1405		1001	16/.1	2 14 2	0100	c1 22	2407	2371	217-	1	1003	1545	1324		11/07	1073	013		22	100	
		ó2.5	1410			1/75	1041		200	2263	22>3	OPUC	200	1831	ccc l	1323			1001	207		10)	100	
22.5 6.75 6.75 6.75 6.75 6.72 6.72 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7		50.0	1432	07-1		1633	1204		2043	212	2145	2000		19/1	0000	1345		0.11	1062	010		661	103	
			5.20	1 1 2		02.0	61.5		C. V.	c° / /	32.5	1 1 1		C.74	c. /6	d.201			C.211	- 2.7		C*22	C./2	

CHITICAL CAMDELA DATA

CANDELA DATA (02)

,

	0.50	103	103	1 03	103	113	118	129	134	139	134	118	93	17	62	2 <u>ç</u>	52	46	41	41
	95°O	144	144	144	160	226	2 88	314	319	283	221	165	129	103	87	77	67	62	62	57
-	85.0	226	226	226	. 278	540	1235	1894	1853	1390	751	350	211	149	113	BO I.	98	87	82	87
	. 75.0,	380	427	474	551	. 829	1441	2795-	5490	6310	3551.	.1379	597	355	247	1 7.0	144	154	175	1.80
	65.0	1261	1086	9 11	782	1101	1642	27.79	41.79	4220	2872	1348	1127	726	525	396	381	381	381	396
	- '0° '55	1255	1065	375	334.	1312	1868	2419	289/	2820	2167	1559	1070	334	C17	654	613	587	587	7.9ċ
	45.0	1086	1000	932	1086	1616	2105	2239	2357	2162	1673	1297	998	193	710	700	695	695	705	721
	35.0	1426	1400	1374	1508	1951	2141.	2033	1755	1719	1420	1153	916	762	61.9	669	<u>907</u>	731	772	793
Î	25.0	1626	1 652	1678	0c7 I	1868	1961	1671	1359	1034.	6E8	01/	618	516	1/5	607	654	084	721	741
GLE >>	15.0	1.832	1796	1760	17.70	C0 7.1	1729	1668	1570	1462	1318	1179	1029	890	11.1	00/.	643	633	633	628
CAL AN	5.0	1585	c/21	0001	1539	1503	1467	1431	1395	1354	1315	1256	1220	1173	1143	1112	1601	10/6	c 90 l.	1055
VERTI	0.0	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349	1349
HORZ	ANGLE	0.0	5.0	15.0	25.0	35.0	45.0	55.0	7 65.0	15.0	. 0 ° ¢ 8	95.0	0.001	0.611	125.0	132.0	145.0	0.041	165.0	0، د/ ۱

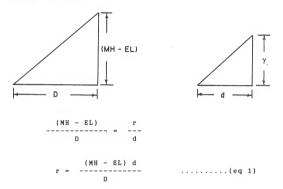

FIGURE 7. CANDLE POWER TABLE FOR McCALL ROAD

CRITICAL CANDELA DAFA (04)

87.5	1235	1235	1209	1153	1024	834	. 623	448	324	242	196	160	139	134	113	108
85.0.	1822	1971	1925	1786	1549	1235	896	618	422	304	237	1 90	165	144	129	118
82.5	2409	2995	3136	29.75	2506	1925	1364	896	582	395	293	232	196	170	149	ó£ I
80.0	2403	3664	44 98	4508	3901	2940	2028	1287	793	515	371	283	237	206	185	154
77.5	2306	3567	.5172	5996	5651	4503	3062	1930	1158	731	494	3.76	299	247	221	185
75.0	2293	3304	4786	6212	6690	5939	4344	2764	1698	1060	695	504	391	61 E	263	226
72.5	22 90	3108	4143	5322	6268	6402	5455	3999	2671	1704	1096	746	546	412	324	252
70.07	2337	3186	E1.6E	4658	5183	5342	4966	4184	3253	2311	1529	1 00 9	690	494	355	273
67.5	2434	3232	4055	4483	4472	4210	3736	3175	2014	2033	1467	1024	146	195	432	0.c
65.0	2434	3129	3880	4477	4493	3953	3201	2553	2059	1642	1276	983	137	654	5 Ó C	484
62.50	2429	2985	3587	4071	4302	3963	3201	2439	1889	203	1199	8/6	434	141	ó74	623
60.0	2403	2892	3325	3685	3744	3567	3047	2419	1909	blal	1210	503	075	1111	725	5/4
	52.5	c.7c	62.5	61.5	72.5	71.5	82.5	d.18	d. 24	c. 16	d. 201	C.101	4.211	<./II	d.221	c.121

FIGURE 7. (CONT'D)

The following method was used in the preparation of the disks for these lighting installations by Easwer, Dubbert, and Bennett, in 1983. To understand lighting simulation better, a brief description of the design calculations used in the design of the simulator is given below :



Let (MH) be the mounting height of the luminaire,

(EL) be the eye level of the motorist from the road,

and C be the corresponding distance of the pole to the motorist at cut-off angle.

The spacing (S) between the two adjacent light poles can be expressed as a multiple of mounting height (MH). Let this spacing be X(MH). Let d be the viewing distance of the simulation spiral. The instantaneous radius r of this spiral can be calculated from the similar triangles shown below, where D is the instantaneous distance (in the real- world) of the light pole from the motorist.

A distance of S or X(MH) corresponds to one revolution (i.e., $2 \prod$ radians) of the spiral. Therefore, a distance of D corresponding to an angular rotation of \bigcirc radians is given by:

$$\frac{X (MH)}{2 \pi} = \frac{D}{\Theta}$$

$$D = X (MH) \cdot \frac{\Theta}{2 \pi} \cdot \frac{2 \pi}{2 \pi} \cdot \dots \cdot (eq 2)$$

Substituting for D in equation 1,

 $\mathbf{r} = \frac{(\mathbf{MH} - \mathbf{EL}) \mathbf{d}}{\mathbf{X} (\mathbf{MH})} \cdot \mathbf{2} \, \overline{\mathcal{V}} / \mathbf{G} \cdot \dots \cdot (\mathbf{eq} \, \mathbf{3})$

From equation (2) ,

$$\Rightarrow = \frac{2 \sqrt{7}}{X (MH)}$$
. D

The limits for the value of \ominus - have to be fixed. Considering the one extreme condition when the closest luminaire is just about to be cutoff from view by the windshield, the maximum radius r_{max} of the spiral can be obtained from the similar triangles shown below:

Now, $\tan A = \frac{(MH - EL)}{C} = \frac{r_{max}}{d}$

rmax = d tan <(eq 5)

 $C = \frac{(MH - EL)}{\tan \phi} \qquad \dots \dots (eq 6)$

From equation (4),

$$\Theta_{mAX} = \frac{2C \nabla}{X (MH)}$$

$$\Theta_{\mu_{ffX}} = \frac{2 \text{ ff} (MH - EL)}{X (MH)} \quad \text{tan } \phi$$

The other limiting value $\mathcal{O}_{im_{1/2}}$ is obtained, considering the luminaire farthest away from the motorist. If the motorist is able to see a total of N luminaires, then the distance of the luminaire farthest away from the motorist is C + (N-1) S i.e., C + (N-1) X(MH).

From these similar triangles,

rmin (MH - EL) ----- d C + (N-1) X (MH)

 $\begin{array}{cccc} d & (MH - EL) \\ r & = & - & - & - & - & - \\ min & C + (N-1) & X & (MH) \end{array}$

From equation (4),

$$\Theta_{\text{In},\text{IC}} = \frac{2 \, \mathcal{T}}{\text{X (MH)}} \cdot \begin{bmatrix} \text{C} + (\text{N}-1) \, \text{X} (\text{MH}) \end{bmatrix} \quad \ell_{\text{Q}}, \text{Q}$$

Thus, equation (3) establishes the radius of the spiral and equations (7) and (9) establish the limits for the rotational angle \ominus through which the spiral has to be plotted. The vertical dimensions of the luminaire have to be simulated by plotting another concentric spiral. This will give rise to a spiral track. the width (in radial direction) of which will correspond to the vertical dimension of the luminaire. However, the luminous area of the luminaire is not perpendicular to the line of sight. Therefore the luminous area varies as a function of the vertical angle as the observer moves. To incorporate the luminous area as a function of vertical angle, the vertical dimension of the luminaire is assumed to vary linearly as the angle changes. The difference between the instantaneous radii of the outer and inner spirals gives the width of the spiral in the radial direction. which corresponds to the vertical dimension of the luminaire. The horizontal dimension of the luminaire is simulated by the narrow opening in the mask, by maintaining the angle subtended by the width of the opening at any point the same as that subtended by the corresponding luminaire on the road. The width of the narrow opening in the mask is linearly related and inversely proportional to the distance D of the of the motorist from the light pole.

Finally, the rotational speed of the disk simulating

the speed of the car is calculated considering the fact that one revolution of the spiral corresponds to a distance travelled of one spacing between the poles. In other words, X(MH)'/min corresponds to 1 rpm of the spiral. Therefore, the rotational speed of the spiral, to simulate a driving speed of M mph (i.e., 88 M'/min) is (88 / X(MH)) rpm, which is the rpm of the disk.

As the first step of preparation, data for the installations (refered to earlier in Table 2) were collected from Kansas Power & Light, manufacturers (General Electric Corporation, and ITT Outdoor Lighting), and the road itself.

Two computer programs were written to plot the double spiral for each of the luminaires ; one program for the doublesided installation and one for the single-sided installation. The spiral plots so obtained (diameter = 3 ft.) were then filled in along the spirals with a black marker pen. These plots were then sent to the Kansas Department of Transportation, to get photonegatives as shown in Figure 8. These photonegatives were then " sandwiched " between two 3/8" plexiglass disks of three feet diameter each. Thus, there were two disks having the same double spiral track, offset from one another by an angle of 52 degrees and rotated in the opposite direction. This simulated the roadway lights for a particular installation with opposite side lighting.

Four graduated sectors were made for each of the installations except for the single - sided installation for which one of the sectors was kept completely opaque. Two of the

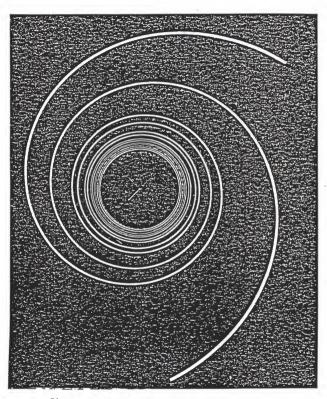


Figure 8. Photonegative of a double spiral plot

four sectors contained light filters mounted on them, and were used for obtaining varying light output as a function of driver viewing angle. A detailed description of the method used to arrive at the varying light output as a function of driver viewing angle will be described later. The remaining two sectors were used for obtaining average light output. The dimensions of these sectors were determined separately for each luminaire by taking into account the dimension of each luminaire and using a linear relationship (as the driver moves toward the luminaire, the dimensions of the luminaire increases).

Two light fixtures were used in line with the open sector to simulate the luminance of the real-world fixtures. Each simulated light fixture used five 300 Watt quartzline lamps covered with a heat resistant glass. The lamps were arranged in the simulator with the filament of each lamp positioned at the focus of the elliptical reflector made of a sheet of tin. The elliptical reflector increased the efficiency of the light source by concentrating the light from the quartzline lamp on to a long, narrow piece of diffusing glass (Factorlite). The net effect was to provide a long narrow bar of intense and well diffused light. Intensities as high as 100,000 candelas could be obtained by this system.

A calibration curve (Refer to Appendix) of voltage and luminance in foot-lamberts was drawn by measuring the luminance within the simulator with the help of a Spotmeter for the corresponding voltage level. This calibration curve enabled one to simulate the brightness of each luminaire system and, the luminance could be adjusted to any desired level.

Finally, the rotational speed of the disk simulating the speed of the car was calculated, considering that one revolution of the spiral corresponds to a distance of one spacing travelled between the light poles. Table 3 gives the rotational speed of the disk simulating the speed of the car.

Determination of the Filter Gradient to obtain Varying Light Output: Figure 9 shows the position of the driver and that of the luminaire considered for the experiment. The luminaire is in the same lane as the driver, and is about to disappear from view above the windshield. Figure 10 shows the convention for the vertical and horizontal angles with reference to the luminaire.

With a windshield angle of 20 degrees assumed, luminaire candlepower could be considered only for a vertical angle of 70 degrees and above, and the horizontal angle is dependent upon the location of the luminaire relative to the lane in which the driver is driving, in this case the angle is 90 degrees always.

The luminaire luminance in foot-lamberts ,if the observer is so located such that the maximum candlepower hits him right in the eye , would be :

(Candlepower / luminous area in sq. ft.) * pi * lightloss factor

Considering the position of the driver and the luminaire as was shown in Figure 9, the track of the luminaire (or the gradient of the filter as it progresses along the spiral)

TABLE 3. DISK SPEED CALIBRATION CHART.

Luminaire Type	Speed, mph	Disk, rpm
Cobrahead	30	16
Cobrahead	60	32

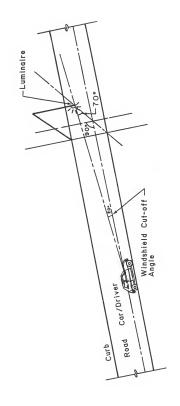


FIGURE 9. LUMINAIRE-DRIVER POSITION ON ROADWAY

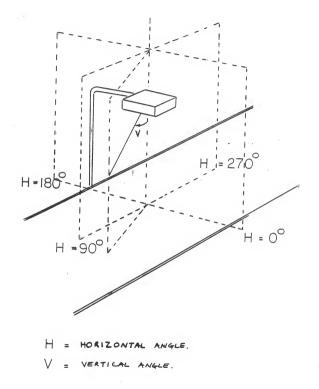


Figure 10. Convention for Horizontal Angle

would be a horizontal line from position 1 to position 2 as plotted on the data sets (Refer to Figures 6 and 7). It appears that on this track the luminaire would constantly increase in luminance but not linearly as a function of driver viewing angle.

Tables 4 and 5 show the luminance values in footlamberts of the luminaire track for the two different luminaires considered, and the transmittance values of the corresponding light filters required to obtain the luminance track. The maximum luminance value was taken as a reference for the incident light. This filter gradient when used gave the necessary luminaire track with luminance values varying as a function of driver viewing angle, for the position of the luminaire and driver considered.

Figure 11 shows the occluder with filters mounted on it to obtain a varying light output. To obtain an average light output, the occluder without the filters was used, and an average value of the luminaire track luminances was used for the incident light.

Conditions of Experiment

In the first part of the experiment, the task of night driving was performed with the help of the simulator by 40 subjects under the following conditions:

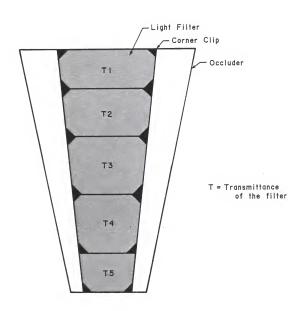

 Two different types of luminaire (Cobrahead / High Power Sodium, and Cobrahead / Mercury Vapor) representing

TABLE 4. FILTER GRADIENT FOR N.MANHATTAN AVE. ROAD

andle Power (candela)	Luminance (Foot-Lamberts)	Filter Transmittance	Remarks
		(%)	
2099	5161	99.38	-
2112	5193	100.00	incident light
2030	4992	96.13	-
1892	4652	89.58	-
1622	3988	76.80	-
1312	3226	62.12	-
986	2425	46.70	-
649	1596	30.73	-

TABLE 5. FILTER GRADIENT FOR MCCALL ROAD

andle Power (candela)	Luminance (Foot-Lamberts)	Filter Transmittance (%)	Remarks
3718	34107	100.00	incident
			light
3335	30593	89.69	-
2241	29557	60.27	-
1544	14164	41.53	-
1040	9540	27.97	-
739	6779	19.88	-
520	4770	13.99	-

FIGURE 11. OCCLUDER MOUNTED WITH LIGHT FILTERS

two roadway lighting installations selected from the City of Manhattan

2. Two different types of luminances namely, average glare source luminance(i.e.,occluder used without light filters), and variable glare source luminance (i.e., occluder used with light filters)

Two different speeds (30mph and 60 mph)

In all there were 8 combinations of the luminaire, luminance, and speed. Table 6 shows the 8 experimental conditions.

For each of the experimental conditions, correct luminance level for the incident light was set by the experimentor, and the subject was asked to rate the glare criterion on the new North American Glare Scale shown in Figure 12. The description in the enclosed brackets refer to the deBoer Scale where unnoticeable has a number of 1 and unbearable has a number of 9 on the rating scale.

In the second part of the experiment, for each combination of the luminaire, luminance type, and speed, the subject was asked to adjust the luminance to a criterion level called BCD (Borderline between Comfort and Discomfort).

When the subject reported to the laboratory, he was asked to read a description of the experiment titled " Informed Consent " (Figure 13) and to indicate his willingness to participate. He was then given a detailed instruction sheet (Figure 14) for specific tasks in the simulator.

EXP. COND. #	ROAD	LUMINANCE TYPE (average / variable)		RATING / AVERAGE BCD
1	N.MANHATTAN AVE.	average (without filters)	30	
2	N.MANHATTAN AVE.	variable (with filters)	30	 .
3	N.MANHATTAN AVE.	average (without filters)	60	
4	N.MANHATTAN AVE.	variable (with filters)	60 [.]	
 5 	McCALL ROAD	average (without filters)	30	
6	McCALL ROAD	variable (with filters)	30	
 7 	McCALL ROAD	average (without filters)	60	
 8 	McCALL ROAD	variable (with filters)	60	

7 BORDERLINE BETWEEN UNCOMFORTABLE AND INTOLERABLE (DISTURBING)

5 BORDERLINE BETWEEN COMFORT AND DISCOMFORT - BCD (JUST ADMISSIBLE)

3 BORDERLINE BETWEEN COMFORTABLE AND PLEASANT (SATISFACTORY)

1 PLEASANT (UNNOTICEABLE)

FIGURE 12: NEW NORTH AMERICAN GLARE SCALE

INFORMED CONSENT : Please read carefully.

You have volunteered to participate in a study of lighting conditions involving glare. There is neither risk nor discomfort involved in taking part in the experiment except that you may find some lighting installations uncomfortable.

All information about your participation in this research will be kept confidential. You will not be identified in any report, and your records will be safely gaurded. Your performance as an individual will be treated as research data and can eventually be used to help design public roadway lighting systems for maximum driver safety.

This project is being conducted by Mr. Kittur Ganesh under the auspices of the Department of Industrial Engineering at Kansas State University with Dr. Corwin Bennett as advisor. If you have any questions about this research or your rights as a research subject, please feel free to contact Mr Ganesh or Dr. Bennett at 532-5606.

You have volunteered to be a subject in this research, and you are free to withdraw from the study at any time. Should you decide not to participate or to withdraw before the study is complete, there will be no penalty or loss of benefits to which you are otherwise entitled.

I have read the instructions sheet and the above statements and agree to voluntarily participate in the experiment.

Thank you very much for your participation.

Date

Signature

FIGURE 13 : INFORMED CONSENT STATEMENT

INSTRUCTION SHEET

(PLEASE READ CAREFULLY)

This simulator is designed to simulate actual dynamic roadway lighting conditions. You as a subject will be performing an experiment with this simulator.

Take a seat in the car and make yourself comfortable. The seat will be adjusted for you. Now you are ready to take off. Keep your hands on the steering wheel.

You will be driving the car under several different types of luminaire and two different speeds for each. In all you will be driving under 8 combinations of conditions in the first part of the experiment. The same combinations will be repeated in the second part of the experiment.

In the first part of the experiment, you will be asked to rate the glare criterion for luminance according to the glare scale (Refer to Figure 12). This scale is also posted to your right in the car. You can use the flash light provided to look at this scale. Please go through this carefully.

In the second part part of the experiment you will be adjusting the luminance level to a criterion called BCD ("border line between comfort and discomfort"). You are asked to adjust to BCD using the following procedure. Locate the transformer placed beside your seat. Turn the knob of the

FIGURE 14 : INSTRUCTION SHEET

transformer in the clockwise direction for about 25 degrees. As you rotate the knob in the clockwise direction the luminance level will increase. Now rotate in the counter-clockwise direction. This will reduce the luminance level. You are now ready to adjust the luminance level to a point between comfort and discomfort (BCD),when I ask you to do so.

First,take the control and increase the intensity of light to a high level. Look at the light. Most people would say that the light is uncomfortably glaring. Now take the control and turn the light down until it is at a low level. Look at the light . Most people would say that the light is comfortable i.e., not glaring. Now, somewhere between these two extremes must be a point of change, a threshold, where the light is at the borderline between comfort and discomfort . This is what we call " BCD ". This point should be such that the light is not annoying or uncomfortable to you, but, if it were any higher, it would be uncomfortable. Take your own time to find the BCD point. You will be repeating the same for each combination of luminaire,luminance type, and speed. After completing the same you are required to answer the attached questionnaire (Figure 15).

The approximate time for you to complete the experiment will be about one hour. If you have any questions, please ask me. I will be glad to answer them.

FIGURE 14. (CONT'D)

 Which lights generally constitute to most of the glare; the closest, middle or the farthest ?

 Does simulation seem to give the same sensation as experienced during night driving? Comments?

FIGURE 15 : QUESTIONNAIRE

Experimental Design

Two types of luminaire, two types of luminance, and the two speeds were the independent variables. The dependent variables were the subject's rating and the adjusted BCD values. Instead of a completely randomized design, a split-plot design which is more practical was used. One type of luminaire was chosen randomly out of the two luminaire types. Having fixed the luminaire, one type of luminance was chosen randomly. Next, the two speeds were selected randomly. For each combination of luminaire, luminance type, and speed, the subjects rated the glare . The same procedure of randomization was repeated for the second part of the experiment but, now the subjects adjusted the luminance level to a criterion called BCD for each of the 8 experimental conditions.

Forty student subjects participated in the experiment and completed all of the assigned tasks. Their biographical data is listed in Table 7. The data collection time was one hour for each subject.

TABLE 7. BIOGRAPHICAL DATA OF SUBJECTS

 Subj No.	Sex (M/F)		Profession	Comments
1	 M	56	Professor	Good Simulation
2	M	27	 Student	Closest lights contribu- tes to most of the glare.
3	M	21	Student	Decent simulation but, could be made more realistic by simulating bldgs.,and other features seen on sides of the road
4	M	22	 Student	Uncomfortable to changing lighting conditions.
5	M	25	Student	Make more realistic by simulating the headlights oncoming cars.
6	 M	23	 Student 	Car headlights are more glaring than street lights
7	M	22	 Student 	I never see roadlights when I am driving.
8	M	20	Student	No oncoming headlights.
9	F	21	 Student 	I get dizzy on focussing on lights than on roads.

TABLE 7. (CONTD..)

Subj No.	Sex (M/F)	Age (Yrs)	Profession	Comments
 10 	 M	20	Student	Realistic Simulation
11	 M	22	Student	Include headlights of oncoming cars.
12	M	22	Student	Decent Simulation
13	M	22	 Student 	Simulation not very realistic.
14	M	22	Student	Causes fatigue to eyes
15 	M	24	Student	Feels like I am driving on the highway.
16	 M	25	Student	Except lights, there is nothing else to look at.
17	M	22	 Student	I don't look at road lights when driving.
18	M	21	Student	No simulation of the actual surrounding.
 19 	M	21	 Student	Except lights, there is nothing else to look at.
20	M	20	Student	Realistic simulation
21	F	 19	 Student	Closest lights affected me most.

TABLE 7. (CONTD..)

 Subj	Sex	Age	 Profession	Comments
No.	(M/F)	(Yrs)	l .	
22	 M ·	20	Student	No music to listen to
23	M	22	 Student	Good simulation
24	M	20	 Student 	Realistic simulation
25	M	20	Student	Pretty close simulation
26	M	23	Student	Could be made more realistic
27	M	19	Student 	Closest lights contribute to most of the glare
28	M	22	Student	Good Simulation
29	M	20	Student	Should have music
30	M	20	Student	Realistic simulation
31	M	22	Student	None
32	M	21	Student	Closest lights contribute to most of the glare
33	M	21	Student 	Simulation of surroundings of the roads required
34	M	22	Student	Comfortable and good simulation
35	M	25	 Student	Good Simulation

TABLE 7. (CONTD..)

Subj	Sex	Age	Profession	Comments
No.	(M/F)	(Yrs)	İ	i
			1	
36	м	24	Student	No music to listen to
37	M	24	Student	Good simulation
38	M	24	Student	Realistic simulation
39	M	25	Student	 Closest lights contribute
1		20		to most of the glare
40	м	26	Student	Good simulation
			 	ا

RESULTS

The ratings of the glare criterion by the subjects for each of the 8 experimental conditions are listed in the Appendix. The data was averaged and the mean results are shown in Table 8.

Also listed in the Appendix are the subject adjusted BCD values for each of the experimental conditions. The mean results are shown in Table 9.

Analysis of variance was performed on the subject's rating, and the subject's adjusted value of BCD to find the luminaire, luminance type, and the speed effects. Tables 10 and 11 give the ANOVA tables. Tables 12 through 14 give the LSD means.

TABLE 8. RATING MEANS FOR THE 8 EXPERIMENTAL CONDITIONS

EXP. COND. #	ROAD	LUMINANCE TYPE (average / variable) 	SPEED (mph)	MEAN RATING
1	N.MANHATTAN AVE.	average (without filters)	30	4.725
2	N.MANHATTAN AVE.	variable (with filters)	30	5.500
3	N.MANHATTAN AVE.	average (without filters)	60	5.425
4	N.MANHATTAN AVE.	variable (with filters) 	60 	6.475
5	MCCALL ROAD	average (without filters)	30	6.350
6	McCALL ROAD	variable (with filters)	30	6.825
7	McCALL ROAD	average (without filters)	60	6.925
8	McCALL ROAD	variable (with filters)	60	7.275

TABLE 9. MEAN SUBJECT ADJUSTED BCD FOR THE 8 EXPERIMENTAL CONDITIONS

EXP. COND. #	ROAD	LUMINANCE TYPE (average / variable) 	SPEED (mph)	MEAN BCD
1	N.MANHATTAN AVE.	average (without_filters) 	 30 	3395.0
2	N.MANHATTAN AVE.	variable (with filters)	 30 	3507.37
3	N.MANHATTAN AVE.	average (without filters) 	 60 	 . 3571.25
4	N.MANHATTAN AVE.	variable (with filters) 	 60 	 3592.00
5	MCCALL ROAD	average (without filters) 	 30 	 6645.25
6	MCCALL ROAD	variable (with filters) 	 30 	 6227.25
7	 McCALL ROAD 	average (without filters) 	 60 	 6746.25
8	McCALL ROAD	variable (with filters)	 60 	6762.75

TABLE 10. ANOVA TABLE FOR SUBJECT RATING

ANALYSIS OF VARIANCE PROCEDURE

DEPENDENT VARIABLE : RATING

SOURCE	D F	ANOVA SS	F-VALUE	PR > F
subj	39	394.50	21.38	0.0001
b ROAD	1	137.813	28.67	0.0001
C LUMTYP	1	35.1125	11.17	0.0018
d SPEED	1	36.45	35.27	0.0001
e ROAD*LUMTYP	1	5.00	1.84	0.1833
f ROAD*SPEED	1	2.1125	1.52	0.2247
g LUMTYP*SPEED	1	0.1125	0.20	0.6550
h ROAD*LUMTYP* SPEED*SUBJ	1	2.1125	1.52	0.2247

using error	term :	
	a,h =	road*lumtyp*speed*subj
	b =	road*subj
	с =	lumtyp*subj
	d =	speed*subj
	e =	road*lumtyp*subj
	f =	road*speed*subj
	g =	lumtyp*speed*subj

53 -

TABLE 11. ANOVA TABLE FOR SUBJECT ADJUSTED BCD

ANALYSIS OF VARIANCE PROCEDURE

DEPENDENT VARIABLE : BCD

SOURCE	DF	ANOVA SS	F-VALUE	PR > F
a SUBJ	39	7 1.78*10	8.54	0.0001
b ROAD	1	8 7.58*10	25.20	0.0001
C LUMTYP	1	360125.70	00.05	0.8245
d SPEED	1	4026409.45	00.20	0.6570
e ROAD*LUMTYP	1	1429119.45	00.20	0.6610
f ROAD*SPEED	1	705470.70	00.09	0.7676
g LUMTYP*SPEED	1	587816.33	00.20	0.6550
h ROAD*LUMTYP* SPEED*SUBJ	1	1384037.58	00.26	0.6137

using error term :

a,h =	road*lumtyp*speed*subj
b =	road*subj
с =	lumtyp*subj
d =	speed*subj
e =	road*lumtyp*subj
f =	road*speed*subj
g =	lumtyp*speed*subj

TABLE 12. LSD MEANS FOR SUBJECT RATING

RATE, ARE NOT SIGNIFICANTLY DIFFERENT. ERRJR 2 (VARIABLE) 1 (AVERAGE) I TESTS (LSD) FOR VARIABLET RATING NJTESTS (LSD) FOR VARIABLET RATING NJTEST CONTROLS HETROR RATE. ANALYSIS OF VARIANCE PROCEDURE LJ4TYP z 160 160 MSE=3.14455 T=2.02269 DIFFERNCE=0.401018 YEAN 5.9562 6.5187 WITH THE SAME LETTER ALPHA=0.05 DF=39 CRITICAL VALUE DF LEAST SIGNI=ICANT GRJUPING œ đ MEANS -

TABLE 13. LSD MEANS FOR SUBJECT RATING

RATE, ARE NOT SIGNIFICANTLY DIFFERENT. ERRDR S (LSO) FJR VARIAJLE: RATING F415 TEST CONFROLS THE TYPE I COMPARISONWISE VJT THE EXPERIMENTWISE ERROR RATE. OF VARIANCE PROCEDURE SPEED z MSE=1.03333 T=2.02263 DIFFERENCE=0.229882 MEAN ANALYSIS YEAVS WITH THE SAME LETTER ALPHAED.05 DF=39 CRITICAL VALUE DF LEAST SIGNIFICANT GRJUPING T TESTS VJTE: T

(60 mph) (dqm.05).

160 160

6.5250 5.3503

A 30

-

--2

TABLE 14. LSD MEANS FOR SUBJECT RATING

	R RAT		ENT.			
	ERRO		IFFER		(JALL)	160 1 (N.M.AVE.)
EDURE	NHISE		TLY D	RUAD	2 (MċCALL)	(N.1
ROC	I 50		CAN			1
ANALYSIS OF VARIANCE PROCEDURE	I COMPARISONMISE ERROR RATE, Rate.		4EANS AITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.	Z	160	160
A 2 I		577	T S	MEAN	39.	13
2	ERDR	• 4 9	0 N	ž	6.8439	5.5313
S	۲ <u>–</u> ш	509 E=0	A R E		-0	5
YSI.	N I S	2 2 6 9 E N C	ER			
ANAL	MEN	45E=4.80509 T=2.02269 DIFFERENCE=0.49577	LETI			
	ERI		Ш. М			
000	EX PO	= 39 ANT	SA	ING	٩	69
	The second	H C L	TΗE	GRJUPING		
, t	IIS'	022 102 102	H	3		
0.10		C S I	IT S			
r rec	VITES TAIS TEST CONTROLS THE NJT THE EXPERIMENTATE	CRITICAL VALUE 39 CRITICAL VALUE 05 LEAST SIGNIFICANT	4EAVS	-		

57

÷

DISCUSSION

The subject effect is found statistically significant in both the F tests on subject rating, and subject adjusted values of BCD (Tables 10 and 11). To explain this variation among the subjects, a regression analysis with subjects as variables has to be made. Also, the correlation coefficients relating BCD to sex, eye color, age, etc., when computed help explain this variation among subjects. Similar results were obtained in a study made on discomfort glare by Ahmed, which showed significant variation among subjects. A regression analysis with subjects as dummy variables indicated that the variation was due to reliable subject differences. Correlation coefficients relating BCD to sex, age, eye color, and residential population of the subjects were computed. The only correlation that was significant was for eye color (blue/green-eyed observers more resistant to discomfort glare than brown-eyed observers), and age (older observers were more sensitive).

From the results of ANOVAS (Tables 10 and 11), it is observed that the dependent variable "subject rating " is more sensitive than the " subject adjusted BCD " regarding the main effects and their interactions. This can be attributed to the fact that in the former case, eight different preset values of glare source intensities were set by the experimentor for each of the experimental conditions, and the subject rated the glare based on the nine values of the new North American Glare Scale. Whereas, in the subject adjusted BCD case, the subject set the

BCD value only once. Since the dependent variable subject rating is more sensitive than the subject adjusted BCD, the results of ANOVA on subject rating only will be considered.

There is a significant luminance type effect (i.e., variation of light intensity using light filters) in the F test on subject rating. From the LSD means listed in Table 12, the mean values of rating 6.5187 and 5.8562 are for variable source luminance(i.e., occluder with filters used) and average source luminance(i.e., occluder without filters used). The result obtained suggests that the average glare source luminance system is more comfortable than the variable glare source luminance system. This means that the filtering of the light source intensities has indeed increased discomfort to glare. This seems absurd, because of the fact that in case of the variable source luminance system, there is a decline in the intensities of the light sources starting from the very first light source (Tables 4 and 5). However, the first light source in both the lighting systems was not filtered at all. Hence, the variable source lighting system might be as uncomfortable as the average source lighting system. However, it is surprising that filtered luminance is more uncomfortable. This peculiarity in the above result could not be attributed to any of the known factors considered in the experiment.

In the light of the above facts, it can be concluded that the filtering of the glare source intensities (i.e. use of light filters) is not essential as far as discomfort glare is concerned.

Referring to Tables 4 and 5, which give the actual intensities of glare sources as a function of driver viewing angle, it is observed that the values of intensities decline from the first large light source onwards. This fact coupled with the result obtained of filtering, suggests that the first largest light contributes most to discomfort, and that the contribution of subsequent light sources to glare is not very significant. This result agrees with the results obtained by Bennett in his study on the effect of a number of sources in a linear array on discomfort glare in 1979. It showed that the first closest light source was the most important and that it contributed most to glare. Also, analysis with CBE predictive system showed that the contribution of the second light source was in the order of one percent of the first light and subsequent light sources were even more trivial.

The second main effect namely speed, is found statistically significant in the F test on the subject rating. From the LSD means listed in Table 13, the mean values of rating 6.525 and 5.850 are for the speed of 60 mph and the speed of 30 mph respectively. This clearly indicates that a higher luminance level is required to produce the same degree of discomfort at a slower speed of 30 mph compared to 60 mph. It is also compatible with the fact that most of the subjects in their comments expressed greater annoyance for the higher speed than for the lower speed.

The result obtained above also agrees with the that obtained in a study on discomfort glare (Anantha, Dubbert, and

Bennett, 1982) which showed that as speed increased, so did discomfort. The results therefore fully justifies the use of the dynamic simulator.

The luminaire (road) effect is found statistically significant in F test on subject rating. From the LSD means listed in Table 13, the mean values of rating 6.8438 and 5.5313 are for McCall Road(Cobrahead / highpower sodium) and N. Manhattan Ave.(Cobrahead / Mercury vapor).The result suggests that N.Manhattan Ave. road is more comfortable compared to McCall Road. This result agrees with that obtained in a study on discomfort glare in 1985 by Hussain, Dubbert, and Bennett. This could be attributed to the fact that N.Manhattan Ave. is a 250W installation whereas. McCall is a 400W installation, and higher the wattage higher is the intensity of the system. Also, there is less traffic on the N.Manhattan Ave. road than McCall road. This means that there is less disturbance from other light sources like the headlights of oncoming motor vehicles and therefore less discomfort glare. Also, the McCall road lights are on very low poles and some of them in the ditch and thus are close to the observer.

Thus, the results of ANOVAS showed a significant variation among the subjects and could be attributed to subject differences like sex, eye-color etc. The luminance type effect was also found significant. This result showed that average luminance lighting system was more comfortable than the variable source lighting system.

CONCLUSION

The ANOVA results show that the dependent variable subject rating is more sensitive than the subject adjusted BCD.

The results show a significant luminance type effect. That is, filtering of the glare source intensities is found to be essential. The average source luminance type(i.e.,occluder without light filters used) is found to be more comfortable than the variable source lighting system. This result seems absurd and the cause for this deviation in result has to be looked into in further research.

There is a significant speed effect. As speed increased, so did discomfort.

There is a significant luminaire effect. N.Manhattan Ave. Road is found to be more comfortable than McCall Road.

The subject's answers to the questionnaire regarding the quality of simulation show that it appealed to the subject as close to the actual night driving condition.

REFERENCES

Adrian, W., and D.A. Schreuder, A simple method for the appraisal of glare in street lighting, <u>Journal of</u> <u>Illuminating Engineering Society</u>, 1969.

Anantha,B.N.,Dubbert, and C.A.Bennett, Discomfort glare: Fry's dynamic roadway lighting simulator, Kansas State Engineering Experiment Station.Special Report 152,1982.

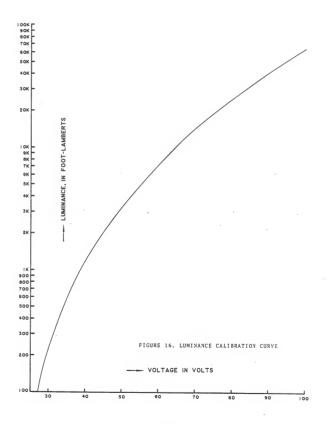
Bennett, C.A., Discomfort glare: Parametric study of angularly small sources, Journal of Illuminating Engineering Society, 1977.

Bennett, C.A., and Rubison, R.M., Discomfort glare: distribution of responses- A reanalysis, <u>Kansas State</u> Engineering Experiment Station.Special Report 132, 1979.

deBoer, J.B., Public lighting, <u>Phillips Technical</u> Library, 1967.

Easwer, G.K., Discomfort glare: An improved roadway lighting simulation, <u>A Master's Report</u>, KSU 1983.

Hussain,S.A.,Comparison of real-world roadway lighting, dynamic simulation, and CBE, and Glaremark systems, <u>A Master's Thesis</u>, KSU, 1985


Kaufman, J.E., and H.Haynes, Illuminating engineering society lighting handbook, <u>Reference Volume, IESNA,</u>1981

APPENDIX

LUMINANCE CALIBRATION CURVE

RAW DATA - SUBJECT RATING

RAW DATA - SUBJECT ADJUSTED LUMINANCE LEVEL FOR BCD

ROAD : N.MANHATTAN AVE.

 I	AVERAGE	LUMINANCE	VARIABLI	E LUMINANCE
SUBJ. No.	30 mph	60 mph	30 mph	60 mph
1	7	7	6	8
2	7	9	9	9
3	3	4	7	7
4	3	3	5	7
5	7	9	5	9
6	5	6	1	1
7	5	7	5	7
8	3	3	6	6
9	4	6	6	5
10	3	7	5	8
11	7	6	6	7
12	6	7	7	8
13	3	3	6	7
14	2	4	8	6
15	3	4	2	7
16	7	5	7	7
17	2	2	5	5
18	6	7	6	8
19	5	6	5	7
20	4	5	4	5

ROAD : N.MANHATTAN AVE.

		LUMINANCE	VARIABLI	LUMINANCE
SUBJ. No.		60 mph	30 mph	
21	5	6	5	7
22	3	5	8	9
23	5	5	4	5
24	6	7	7	7
25	5	4	7	5
26	1	2	3	4
27	5	3	3	з.
28	6	3	4	3
29	6	6	5	6
30	4	5	4	5
31	7	7	5	6
32	1	3	7	9
33	3	4	4	5
34	5	6	7	7
35	5	6	7	8
36	2	2	6	5
37	5	7	7	9
38	5	8	6	7
39	7	6	5	7
40	5	8	4	7

ROAD : McCALL

		LUMINANCE	VARIABLE	LUMINANCE
SUBJ. No.	30 mph		30 mph	60 mph
1	9	9	8	9
2	9	9	9	9
3	6	5	8	7
4	9	9	7	9
5	7	7	7	5
6	6	7	8	9
7	5	5	6	7
8	7	7	7	8
9	5	5	7	7
10	7	7	9	9
11	7	8	7	8
12	8	8	7	9
13	4	3	4	5
14	8	9	9	7
15	5	7	7	7
16	9	9	9	7
17	6	7	7	6
18	9	9	7	8
19	7	8	7	8
20	7	8	5	7

ROAD : MCCALL

 SUBJ.		LUMINANCE	VARIABLE	LUMINANCE
No.	30 mph	60 mph		60 mph
21	4	5	6	8
22	9	9	8	8
23	6	7	8	8
24	8	8	8	9
25	5	7	6	7
26	5	7	6	7
27	5	6	3	4.
28	5	4	4	5
29	7	9	7	9
30	6	7	5	6
31	8	8	8	8
32	7	7	8	9
33	1	3	4	5
34	7	7	7	7
35	7	8	6	7
36	7	8	7	8
37	1	5	7	9
38	7	6	7	5
39	6	8	7	7
40	9	6	7	5

ROAD : N. MANHATTAN AVE.

	AVERAGE	LUMINANCE	VARIABL	E LUMINANCE
SUBJ. No.		60 mph	30 mph	60 mph
1	2700	2000	2250	1700
2	9100	7600	11000	7600
3	4000	3300	3600	3000
4	3000	2000	3500	2250
5	7600	7600	6000	6800
6	3500	4000	3500	3600
7	1500	2250	1500	2250
8	4000	5000	2250	4500
9	500	400	120	130
10	2000	2000	2000	3000
11	1000	1400	2250	3000
12	3500	1650	3600	1850
13	2000	3300	1850	2000
14	700	1200	1000	850
15	4300	6800	4500	2000
16	500	700	225	200
17	1000	1200	4000	2000
18	2700	3600	1650	3500
19	2000	1700	1650	2250
20	1650	1850	850	3600

ROAD : N.MANHATTAN AVE.

		LUMINANCE	VARIABL	E LUMINANCE
SUBJ. No.		60 mph	30 mph	60 mph
21	3000	1500	3600	3600
22	11000	7600	9100	5500
23	7600	5000	4500	3500
24	5500	5000	4500	3500
25	4300	2700	6000	3000
26	4500	2700	6000	3500
27	3500	5000	4300	2700
28	6200	4500	4300	2700
29	4000	2700	6000	3000
30	3000	3600	1700	1400
31	2700	2000	1650	1400
32	4000	4300	3600	3600
33	4300	3500	3600	5500
34	1000	1200	1650	8000
35	1200	2700	1400	700
36	2700	3300	4000	8000
37	3600	4500	5000	6000
38	3000	8000	4500	6000
39	1200	5500	4300	8000
40	2250	8000	3300	8000

ROAD : McCALL

 I		LUMINANCE	VARIABLI	E LUMINANCE
SUBJ. No.		60 mph	30 mph	60 mph
1	1700	2250	310	150
2	3300	2000	2700	1850
3	3000	1850	4000	2700
4	10000	10000	7600	8400
5	7600	7600	12000	15000
6	8000	13000	10000	14500
7	4500	5500	5000	9100
8	3600	3600	3500	3500
9	100	400	130	130
10	3000	2700	3000	3000
11	- 310 .	4000	1200	3000
12	6200	6800	4300	5000
13	2250	3600	3000	5000
14	20000	1700	3000	2250
15	6800	3500	4000	1680
16	700	500	850	3300
17	500	1850	1000	1200
18	4500	5500	5500	4300
19	4300	4500	3500	3300
20	2700	3000	600	1700

ROAD : McCALL

	AVERAGE	LUMINANCE	VARIABLI	LUMINANCE
SUBJ. No.		60 mph	30 mph	60 mph
21	14500	8400	14500	8400
22	4500	3300	6000	3300
23	10000	6000	10000	6800
24	14500	10000	13000	9100
25	14500	8400	16000	13000
26	19000	13000	19000	8000
27	13000	7600	11000	7600
28	19000	12000	10000	4000
29	19000	11000	13000	7600
30	19000	14700	15000	9100
31	7600	5500	8000	6800
32	4300	8000	3600	14500
33	400	12000	4500	7600
34	225	19000	700	1650
35	3300	5500	8400	6000
36	2700	15000	4300	19000
37	3300	6800	4300	19000
38	2700	11000	4000	15000
39	225	4500	5000	10000
40	1000	4300	3600	16000

DISCOMFORT GLARE : VARIATION OF LIGHT INTENSITY

bу

KITTUR V. GANESH

B.E. (MECHANICAL), U.V.C.E., BANGALORE, INDIA , 1981

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirement for the degree

MASTER OF SCIENCE

Department of Industrial Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas.

ABSTRACT

The objective of this study was to determine the significance of the variation of light intensities through the use of light filters. For this, an experiment to determine the luminaire effect, the luminance type effect (i.e., the variation of light output using light filters), and the speed effect on discomfort glare was performed with the help of forty subjects. A dynamic roadway lighting simulator was used for the experiment.

Two different luminaires (Cobrahead/Mercury vapor and Cobrahead/Highpower sodium) representing N.Manhattan Ave. and McCall roads in the city of Manhattan;two different luminance types(variation of light output with/without light filters);and two speeds(30 mph and 60 mph) were used in the experiment. The luminaire track or the gradient of the filter was obtained for the driver-luminaire position in which the luminaire is in the same lane as the driver and is about to disappear from view above the windshield. Correspondingly, the luminaire values obtained through the luminaire candlepower tables was a function of driver viewing angle.

The results showed a significant luminance type effect. The average source lighting system was found to be more comfortable than the variable source lighting system. This is unexpected, and the cause for this deviation in result could be looked into in further research.

There was a significant speed effect with the lower speed of 30 mph was most comfortable. Also, there was a significant luminaire effect. N.Manhattan Ave. road was more comfortable.