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Abstract 

During 2015 and 2016, five site years of research were implemented in double crop 

soybean after winter wheat at experiment fields in Kansas near Manhattan, Hutchinson, and 

Ottawa to assess various non-glyphosate herbicide treatments at three different application 

timings for control of Palmer amaranth (Amaranthus palmeri S. Wats.) and common waterhemp 

(Amaranthus rudis Sauer). 

Spring-post (SP) treatments with residual control of Palmer amaranth and waterhemp 

were applied in the winter wheat at Feekes 4 and resulted in less than 50% control of Palmer 

amaranth and waterhemp at the time of double crop soybean planting. Pre-harvest treatments 

were applied two weeks before winter wheat harvest. 2,4-D resulted in highly variable Palmer 

amaranth and waterhemp control whereas flumioxazin resulted in comparable control to PRE 

treatments that contained paraquat plus a residual herbicide. 

Excellent Palmer amaranth and waterhemp control was observed at 1 week after planting 

(WAP) double crop soybean with a preemergence (PRE) paraquat application; however, reduced 

control of Palmer amaranth and waterhemp was noted at 8WAP due to extended emergence. 

Palmer amaranth and waterhemp control was 85% or greater at 8WAP for most PRE treatments 

that included a combination of paraquat plus residual herbicides. PRE treatments that did not 

include the combination of paraquat and residual herbicides did not provide acceptable control. 

A second set of field experiments were established in 2015 and 2016 near Manhattan, 

Hutchinson, and Ottawa to assess residual Palmer amaranth and waterhemp control with very-

long-chain-fatty acid (VLFCA) inhibiting herbicides. Acetochlor (non-encapsulated and 

encapsulated), alachlor, dimethenamid-P, metolachlor, S-metolachlor, and pyroxasulfone as well 

as the microtubule inhibiting herbicide pendimethalin were applied at three different field use 



  

rates (high, middle, and low) based on labeled rate ranges for soybean as PRE treatments in a 

non-crop scenario after the plot was clean tilled with a field cultivator. 

The experiment was conducted one time in 2015 and four times in 2016 at two different 

locations for a total of five site years of data. PRE applications were made June 1, 2015, near 

Manhattan. PRE applications in 2016 were made in April at locations near Hutchinson and 

Ottawa; the second run of the experiment was applied in June at the same locations on a different 

set of plot areas.  

At Manhattan pyroxasulfone, S-metolachlor, and dimethenamid-P resulted in the highest 

Palmer amaranth control at 4WAT. At Hutchinson, pyroxasulfone resulted in superior Palmer 

amaranth control compared to dimethenamid-P and pendimethalin at 4WAT and 8WAT. At 

Ottawa, acetochlor, S-metolachlor, and pyroxasulfone resulted in higher waterhemp control than 

alachlor and pendimethalin at 4WAT and 8WAT.  
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Chapter 1 -                                                                                              

Herbicide and Timing Options for Burndown and Residual Control 

of Palmer Amaranth (Amaranthus palmeri) and Common 

Waterhemp (Amaranthus rudis) in Double Crop Soybean 
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 ABSTRACT 

 

Double crop soybean after winter wheat is a component of many cropping systems across 

eastern and central Kansas. Until recently, control of pigweed (Amaranthus spp.), particularly 

Palmer amaranth (Amaranthus palmeri S. Wats.) and common waterhemp (Amaranthus rudis 

Sauer), has been both easy and economical with the use of sequential applications of glyphosate 

in glyphosate resistant soybean. As a result of this management approach, many populations of 

Palmer amaranth and common waterhemp in Kansas have become resistant to common use rates 

of glyphosate. During 2015 and 2016, five site years of research were implemented at 

experiment fields in Kansas near Manhattan, Hutchinson, and Ottawa, to assess various non-

glyphosate herbicide programs at three different application timings for control of Palmer 

amaranth and waterhemp in a double crop soybean after winter wheat cropping system.   

Emergence of Palmer amaranth and common waterhemp begins in April in southern 

Kansas. Therefore, spring-post treatments of pyroxasulfone and pendimethalin were applied to 

winter wheat at Feekes 4 to evaluate residual control of Palmer amaranth and waterhemp ahead 

of double crop soybean. Less than 40% control of pigweed was observed in both treatments 2 

weeks after planting (WAP) double crop soybean. Pre-harvest treatments of 2,4-D and 

flumioxazin were also applied to the winter wheat to assess burndown control of emerged Palmer 

amaranth and waterhemp. 2,4-D resulted in highly variable Palmer amaranth and waterhemp 

control; whereas, flumioxazin resulted in comparable control to preemergence (PRE) treatments 

that contained paraquat plus a residual herbicide. 
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No-till soybean planting followed by PRE herbicide treatments, occurred within 24 hours 

of winter wheat harvest at all locations. Excellent control was observed at 2WAP with a PRE 

paraquat application; however, reduced control of Palmer amaranth and waterhemp was noted at 

8WAP due to subsequent emergence.  Results from orthogonal contrasts indicate that Palmer 

amaranth and waterhemp control was 85% or greater at 8WAP for most PRE treatments that 

included a combination of paraquat plus residual herbicides. PRE treatments that did not include 

both paraquat and residual herbicides did not provide acceptable control. 

 

 INTRODUCTION 

 

Palmer amaranth and waterhemp were ranked as the number 1 and number 4 most 

troublesome weeds in 2015 based on a survey of weed scientists across the United States (Van 

Wychen 2016). It is difficult to distinguish common waterhemp and tall waterhemp, and the 

International Survey of Herbicide Resistant Weeds (Heap 2017; Steckel 2007) combines both 

species; therefore, they will be referred to collectively as waterhemp. Amaranthus spp. 

(pigweeds) have an aggressive growth rate (Horak and Loughin 2000) and vast seed production 

abilities which contributes to their competitiveness with crops (Schwartz et al. 2016; Webster 

and Grey 2015; Sellers et al. 2003; Steckel et al. 2003). In addition, Palmer amaranth and 

waterhemp have been confirmed resistant to six different herbicide sites of action (Heap 2017).  

The emergence of Palmer amaranth and waterhemp closely coincides with that of 

soybean (Bell et al 2015; Hartzler et al. 2004). Pigweed species utilize the C4 photosynthetic 

pathway while soybean utilizes the C3 photosynthetic pathway giving pigweed a physiological 

advantage to soybean in high temperatures and moisture limited conditions (Stoller and Myers 
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1989; Pearcy and Ehleringer 1984; Ehleringer 1983; Chollet and Ogren 1975). Some pigweed 

species, such as Palmer amaranth, have physiological and morphological adaptations to shading 

(Jha et al. 2008) as well as diaheliotropism which aids in light interception through solar tracking 

(Ehleringer and Forseth 1980). These adaptations result in higher growth rates and more biomass 

accumulation under high temperatures even in the presence of a competing crop such as soybean 

when compared to other weed species that do not possess these adaptations. Densities of 8 

Palmer amaranth m-2 caused a 78% yield reduction in soybean, whereas 11 waterhemp m-2 

reduced soybean yield by 56% (Bensch et al. 2003).  

The critical weed free period in soybean to prevent grain yield loss of no more than 5% 

has been described as VE through the V3 stage of development (Van Acker et al. 1993). While 

Palmer amaranth and waterhemp density has been related to yield loss in soybean (Bensch et al. 

2003), the time of pigweed emergence was found to be more important than pigweed density in 

the prediction of yield loss in soybean (Dieleman et al. 1995, 1996). This is likely due to the 

indeterminate phenological development of pigweed (Ward et al. 2013). 

Farmers must consider additional management implications for Palmer amaranth and 

waterhemp since emergence can occur after the critical weed free period in soybean (Jha and 

Norsworthy 2009). Late emerging Palmer amaranth and waterhemp can perpetuate the soil seed 

bank as well as supply seeds for dispersal to other fields with harvest equipment (Cordes et al. 

2004). The glyphosate-resistance trait in Palmer amaranth was transferred up to 300 m through 

pollen from glyphosate resistant male plants to glyphosate-susceptible female plants (Sosnoskie 

et al. 2012). These are some of the factors that provide the basis for the need to facilitate a 

community-based pursuit of a zero-tolerance approach to management of herbicide resistant 

Palmer amaranth (Barber et al. 2015). While high initial upfront costs are associated with a zero-
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tolerance or a no seed threshold approach to weed management, long term costs should decrease 

(Norris 1999).  

Double crop soybean after winter wheat can be a profitable option (Ibendahl et al. 2015) 

as well as a way to add diversity to the cropping system for Kansas farmers (Ciampitti et al. 

2016). In 2015 and 2016, 187,530 ha and 147,757 ha, respectively, of double crop soybean after 

winter wheat were planted in Kansas (NASS 2017).  

There is considerable uncertainty associated with planting double crop soybean in 

Kansas. Poor soybean emergence, inadequate soil moisture, and limited profitability are some of 

the factors that Kansas farmers must assess before choosing to plant double crop soybean. To 

mitigate some of these challenges, double crop soybean is normally no-till planted into wheat 

residue immediately after winter wheat harvest (Ciampitti et al. 2016).  

Glyphosate resistant soybean brought an option for producers to easily and cost 

effectively achieve broad-spectrum weed control in double crop soybean without the use of 

residual herbicides (Krausz and Young 2001, Vangessel et al. 2001). Sequential applications of 

glyphosate in glyphosate resistant crops without the use of multiple effective modes of action to 

facilitate weed control have been widely used in most cropping systems (Wilson et al. 2011, 

Norsworthy et al. 2007, Norsworthy 2003). As a result of widespread glyphosate resistance, the 

effectiveness of postemergence (POST) glyphosate applications has decreased while weed 

control expense and seed costs have increased (Gianessi 2008).  

Multiple herbicide application options for control of Palmer amaranth and waterhemp in 

double crop soybean are currently available. Control of both grass and broadleaf weeds in double 

crop soybean have been achieved with dinitroaniline herbicides applied in the winter wheat at 

Feekes 4 developmental stage (McHarry and Kapusta 1979). Pyroxasulfone and pendimethalin 
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are labeled for application in winter wheat and can provide residual control of Palmer amaranth 

and waterhemp in soybean (Anonymous 2016d,f). Pyroxasulfone has been demonstrated to have 

excellent residual activity on Palmer amaranth and waterhemp in soybean when applied PRE to 

soybean emergence (Meyer et al. 2016, Mahoney et al. 2014). Pendimethalin has also been 

shown to provide residual control of Palmer amaranth (Steckel et al. 2002); however, Palmer 

amaranth resistant to microtubule inhibiting herbicides, such as pendimethalin, has been 

documented in the mid-south but not confirmed in Kansas (Heap 2017, Gossett et al. 1992).  

An additional herbicide application timing is a pre-harvest treatment prior to the harvest 

of winter wheat. Many pre-harvest treatments are targeted to desiccate the standing wheat crop 

as well as any other vegetation to aid in harvest (Armstrong 2009). 2,4-D and flumioxazin are 

labeled for pre-harvest treatment in winter wheat in some states as well as control of emerged 

pigweed (Anonymous 2016e, 2006). Flumioxazin also provides residual control of Palmer 

amaranth and waterhemp in soybean (Meyer et al. 2016, Mahoney et al. 2014). 

Planting into weed-free fields has been recognized as a best management practice for 

controlling herbicide resistant weeds (Norsworthy et al. 2012). Paraquat has been demonstrated 

to control emerged Palmer amaranth and waterhemp (Shoup et al. 2003, Steckel et al. 2002, 

Gossett et al. 1992) and has been used as a burndown application before no-till planting of 

double crop soybean into winter wheat stubble (Triplett 1978).   

The use of a residual herbicide in combination with a non-selective herbicide such as 

paraquat has increased double crop soybean grain yield when compared to using only a residual 

herbicide or paraquat alone (Triplett 1978). The lack of crop canopy in double crop soybean can 

result in extended emergence of Palmer amaranth and waterhemp. This can warrant the use of a 

residual herbicide in conjunction with a non-selective herbicide at the time of PRE application. 
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Considerable mulch can cover the soil surface at the time of PRE application in a no-till 

system as used in double crop soybean. Compared to other crop residues, winter wheat has a 

high efficiency of soil coverage per unit weight of biomass (Greb 1967). Residual herbicides 

such as metolachlor and metribuzin can be spatially separated from the soil surface due to 

previous crop residue interference (Banks and Robinson 1986, 1982). By increasing the 

herbicide rate, it is possible to overcome the potential for reduction in weed control (Steinsick 

and Oliver 1979). While mulches can intercept herbicides, this does not always result in reduced 

weed control because of the complex interaction of mulches with weed emergence and growth 

(Crutchfield et al. 1986).  

The objectives of this study were to assess the efficacy of Palmer amaranth and 

waterhemp control in double crop soybean with a) spring-post, pre-harvest, and PRE application 

timings for various non-glyphosate herbicide combinations and b) the utility of paraquat to 

control existing weeds as a component of the PRE treatments. 

 

 MATERIALS AND METHODS 

 

General 

Field experiments were conducted in 2015 and 2016 near Manhattan and Hutchinson, 

Kansas, and in 2016 near Ottawa, Kansas, for a total of five site years. Palmer amaranth 

populations at Manhattan and Hutchinson and common waterhemp populations at Ottawa were 

20 plants m-2 or higher at PRE application at all site years. Soil properties (type, texture, pH, 

organic matter, and cation exchange capacity), herbicide application dates, and Palmer amaranth 

and waterhemp details are presented in Table 1.1. Three different herbicide application timings 
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were utilized in this experiment: spring-post, pre-harvest, and PRE. Various labeled treatments 

were selected to assess the control of pigweed through the burndown as well as possible residual 

properties of the given herbicides. All treatments were applied using a four nozzle CO2 

pressurized backpack sprayer calibrated to deliver 144 L ha-1 at 241 kPa. Experiments were 

conducted in a randomized complete block design. Plots at all sites were 3 m wide and 9 m long, 

and staked when the winter wheat was at the Feekes 3 stage.  All treatments were replicated four 

times at each site. Clethodim was applied to all plots as needed at the rate of 56 g ai ha-1 for grass 

weed control in the double crop soybean. Percent Palmer amaranth and waterhemp control was 

visually evaluated compared to the untreated check 2 WAP, 4 WAP, and 8 WAP. Visual ratings 

were based on 0% = no Palmer amaranth or waterhemp control and 99% = complete Palmer 

amaranth or waterhemp control. Soybean grain was harvested from the center two rows of the 

four row plots and adjusted to 13.5% moisture for yield comparisons. 

 

Data Analysis 

Data were analyzed using the Mixed Procedure in JMP Pro 12 (SAS Institute., 100 SAS 

Campus Drive, Cary, NC 27513-2414) and means were separated using Fisher’s Protected Least 

Significant Difference (LSD) at α = 0.05. Site year combinations within a given species (e.g., 

Palmer amaranth), replications (nested within site year), and all interactions of these effects were 

considered random effects (Carmer et al. 1989). Treatment was considered as a fixed effect. By 

considering site year environments as random effects, it has been demonstrated that implications 

about treatments can be made over a range of environments (Johnson et a. 2014, Zhang et al. 

2005, Stephenson et al. 2004a,b, Hager et al. 2003). 
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Spring-post Application Timing 

“Everest” winter wheat was drilled at approximately 56 kg ha-1 during the preceding 

October and November at all sites. When the winter wheat reached the Feekes 4 stage of 

development, two treatments were applied in March of 2015 and 2016 (Table 1.1). Palmer 

amaranth and waterhemp had not emerged at the time of application at any of the site years. 

Application was made using TeeJet (TeeJet Technologies, Springfield, IL) Air Induction 

Extended Range (AIXR) 110015 nozzles.  

 

Pre-harvest Application Timing 

Pre-harvest treatments were applied in June each year two weeks prior to anticipated 

winter wheat grain harvest (Table 1.1). Turbo TeeJet (TT) 110015 nozzles were used and all 

appropriate adjuvants were utilized according to label recommendations (Table 1.2). Palmer 

amaranth and waterhemp height and density at time of application are listed in Table 1.1. 

 

Preemergence Application Timing 

“Asgrow 3634” glyphosate-resistant soybean (Monsanto Company, St. Louis, MO 

63167) was no-till planted in 76 cm rows into the winter wheat residue after grain harvest (Table 

1.1). Thirteen PRE herbicide treatments were applied after soybean was planted, and 1% v/v 

crop oil concentrate was utilized with all PRE treatments (Table 1.2). Soybean planting and PRE 

herbicide applications were completed within 24 hours after winter wheat grain harvest. TT 

110015 nozzles were used in all PRE treatments. Palmer amaranth and waterhemp height and 

density at the time of application is listed in Table 1.1. 
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 RESULTS AND DISCUSSION 

 

In Season Precipitation 

Thirty year precipitation normals from 1980 to 2010 were referenced for each site from 

the National Oceanic and Atmospheric Administration (Arugez et al. 2010). Cumulative 

precipitation percentages of the 30 year normal from January 1 to July 1 and June precipitation 

(Figure 1.1) indicate that moisture conditions leading into double crop soybean planting in all 

five site years were slightly dry. This may have contributed to reduced surface moisture at the 

time of double crop soybean planting; however, adequate rainfall for germination and emergence 

was received within 1WAP in all site years, except Hutchinson 2015 (Table 1.3). Because of dry 

soil conditions at planting and lack of moisture until 4WAP at Hutchinson 2015, highly variable 

double crop soybean emergence was observed. 

Ample rainfall for herbicide activation (> 5.0 cm) was received within 1WAP at all site 

years except for Hutchinson 2015. Periodic moisture events occurred each week (≥ 0.4 cm) up to 

8WAP. This helped to contribute to new pigweed emergence at each rating interval.  

 

Spring-post Application Timing 

Poor Palmer amaranth and waterhemp control was generally observed at all observation 

times for both spring-post treatments (Table 1.4, 1.5). The best results were at Ottawa where 

pyroxasulfone resulted in 40% waterhemp control and pendimethalin resulted in 30% waterhemp 

control 2WAP but control dropped to 0% 4WAP (Table 1.5). Pyroxasulfone resulted in only 

14% control of Palmer amaranth 2WAP whereas pendimethalin resulted in only 5% control of 

Palmer amaranth 2WAP at Manhattan and Hutchinson (Table 1.4). At 4WAP, spring-post 
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applications resulted in less than 5% Palmer amaranth control, and at 8WAP, 0% Palmer 

amaranth control was observed (Table 1.4). 

The lack of Palmer amaranth and waterhemp control in both of these treatments is not 

surprising when the application timing is compared to the extended emergence of pigweed in 

double crop soybean. At the time of double crop soybean planting, both of these treatments had 

been applied in excess of 90 days.  

Pyroxasulfone is susceptible to microbial degradation in the soil and has a half-life of 16 

to 26 days (Shaner 2014a). As described by Busi et. al (2012) for pyroxasulfone susceptible rigid 

ryegrass (Lolium rigidum Gaudin), it was possible to select for pyroxasulfone resistant rigid 

ryegrass through repeated low-dose exposure. While research on this topic has not been 

conducted with pyroxasulfone in Palmer amaranth and waterhemp, repeated exposure at low-

doses, as implemented with a spring-post application of pyroxasulfone, could help in selecting 

for pyroxasulfone-resistant Palmer amaranth or waterhemp. 

 

Pre-harvest Application Timing 

2,4-D resulted in 22% Palmer amaranth control and 41% waterhemp control 2WAP, 

respectively (Table 1.4, 1.5). Less than 20% Palmer amaranth and waterhemp control was 

observed at 4WAP. No Palmer amaranth and waterhemp control was observed at any site year at 

8WAP (Table 1.4, 1.5). The higher efficacy of 2,4-D 2WAP (41% waterhemp control) could 

have been due to the lower density of waterhemp at Ottawa at the time of application of the pre-

harvest treatments (Table 1.1). 

Flumioxazin as a pre-harvest treatment resulted in equivalent Palmer amaranth and 

waterhemp control when compared to other top performing PRE treatments 2WAP and resulted 
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in similar Palmer amaranth and waterhemp control when compared to top performing PRE 

treatments through 8WAP. Flumioxazin also provided burndown of emerged Palmer amaranth 

and waterhemp comparable to the level of control observed with PRE treatments that contained 

paraquat (Table 1.4, 1.5).  

 

PRE Application Timing 

Most PRE treatments that included paraquat resulted in superior burndown control of 

Palmer amaranth and waterhemp in all treatment combinations and control ratings at 2WAP in 

all site years compared to those treatments that did not include paraquat. A high level of control 

was realized despite various sizes of Palmer amaranth and waterhemp present at the time of 

application. In two of the site years (e.g., Hutchinson 2015 and Manhattan 2016) paraquat was 

applied to Palmer amaranth that had sustained injury from a 15 cm cutter bar height (Table 1.1). 

PRE paraquat treatments were applied within twenty-four hours of injury to Palmer amaranth 

stems without leaves; whereas the herbicide label requires leaf regrowth after such injury before 

paraquat application (Anonymous 2016b). This indicates that paraquat may have burndown 

utility when ample time for weed leaf regrowth is not available to producers (e.g., winter wheat 

harvest and double crop soybean planting). 

Pigweed control 2WAP from paraquat alone did not differ from other PRE treatments 

that included paraquat (≥ 90%) (Table 1.4, 1.5). Numerical reductions in control were observed 

at some locations; however, this was due to extended emergence rather than recovery of emerged 

Palmer amaranth and waterhemp at the time of application (data not shown). 

PRE treatments that did not include paraquat (e.g., S-metolachlor plus metribuzin and S-

metolachlor plus fomesafen) resulted in less Palmer amaranth control 2WAP when compared to 



13 

the identical treatments with the addition of paraquat (Table 1.4). This demonstrates that while 

residual herbicides such as fomesafen and metribuzin have POST Palmer amaranth and 

waterhemp activity (Bond et al. 2006, Abendroth et al. 2006) the addition of paraquat can 

increase control when targeting large (> 6 leaves) Palmer amaranth and waterhemp which would 

otherwise be off label for herbicides such as fomesafen (Anonymous 2016c). 

PRE treatments that contained paraquat plus residual herbicides generally resulted in 

good pigweed control 4WAP and 8WAP, with the exception of the saflufenacil plus paraquat 

treatment. Reduced control was observed for this treatment for both Palmer amaranth and 

waterhemp at both the 4WAP and 8WAP observation times (≤ 81%) (Table 1.4, 1.5). This is 

likely due to the limited residual activity of saflufenacil at the 25 g ai ha-1 rate (Morichetti et al. 

2012).  

Imazethapyr plus dimethenamid-P plus saflufenacil plus paraquat resulted in excellent 

Palmer amaranth and waterhemp control at Manhattan and Hutchinson in all site years, but poor 

control at Ottawa (Table 1.4, 1.5). This is likely due to resistance to the acetolactate synthase 

(ALS)-inhibiting herbicide imazethapyr at Ottawa compared to the more susceptible populations 

at Manhattan and Hutchinson (data not shown). Producers selecting an herbicide for the control 

of Palmer amaranth and waterhemp in Kansas must carefully consider the potential of an ALS-

resistant population when making herbicide decisions (Gaeddert et al. 1997). 

Orthogonal contrasts confirm that the combination of paraquat plus residual herbicide(s) 

improved Palmer amaranth and waterhemp control. (Table 1.6, 1.7). This is due to extended 

emergence of Palmer amaranth and waterhemp during the development of double crop soybean 

in combination with poor burndown control of established Palmer amaranth and waterhemp at 

planting. At 2WAP, Palmer amaranth and waterhemp control with PRE treatments that did not 
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contain paraquat was 68%, whereas, treatments that did contain paraquat resulted in 95% control 

(Table 1.6). This contrast was significant (P ≤ 0.0001) through 8WAP where residual herbicide 

treatments without paraquat resulted in less control (44%); whereas, treatments that included 

paraquat with at least one residual herbicide resulted in a higher level of control (86%). PRE 

treatments that did not include paraquat resulted in recovery of emerged Palmer amaranth and 

waterhemp at the time of application which also contributed to reduced efficacy ratings. 

At 8WAP, PRE treatments that included sulfentrazone or flumioxazin plus paraquat 

resulted in a higher level of Palmer amaranth control (89%) when compared to other PRE 

treatments that consisted of paraquat plus residual herbicides (81%) (Table 1.6). Similar results 

were seen with the addition of sulfentrazone or flumioxazin for waterhemp control at Ottawa 

4WAP and 8WAP (Table 1.7). 

While the addition of sulfentrazone or flumioxazin tended to result in a higher level of 

control, there was no significant difference in Palmer amaranth and waterhemp control observed 

between the treatments that contained either of the two herbicides (Table 1.6, 1.7). 

 

Grain Yield 

Winter wheat grain yield differences between treatments were not significant; therefore, 

average wheat grain yield for each site year was reported (Table 1.1). PRE treatments generally 

resulted in the highest double crop soybean yield when compared to other application timings. 

Specific treatments at Manhattan and Hutchinson that resulted in the highest soybean yield (> 

2,700 kg ha-1) included flumioxazin plus metribuzin plus chlorimuron-methyl plus paraquat, 

sulfentrazone plus paraquat, sulfentrazone plus metribuzin plus paraquat, S-metolachlor plus 

metribuzin plus paraquat, pyroxasulfone plus flumioxazin plus paraquat, and flumioxazin plus 
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paraquat. Spring-post treatments of pyroxasulfone and pendimethalin did not differ from the 

weedy check (Table 1.4). 

PRE treatments that included residual herbicides without paraquat yielded less (1,907 kg 

ha-1) than PRE treatments that contained residual herbicides in combination with paraquat (2,667 

kg ha-1) as revealed through orthogonal contrast (P ≤ 0.0001). The inclusion of metribuzin in 

combination with flumioxazin or sulfentrazone with paraquat in PRE treatments also resulted in 

higher grain yield (P = 0.004) when compared to other PRE treatments comprised of paraquat 

plus residual herbicides (Table 1.6). 

Ottawa 2016 grain yields were highly variable whereas only the PRE treatments of S-

metolachlor plus metribuzin and S-metolachlor plus metribuzin plus paraquat resulted in higher 

yields than the spring-post treatment of pyroxasulfone, pre-harvest treatment of 2,4-D, and the 

weedy check. Numerical differences were observed with the grain yield in all other treatments 

(Table 1.5).  

 

Multiple Effective Sites of Action 

Over reliance on a single effective site of action has repeatedly enhanced the 

development of herbicide resistance (Beckie 2006, Powles et al. 1997). Glyphosate resistant 

Palmer amaranth and waterhemp was reported after less than 4 and 6 years of repeated 

glyphosate use without the use of other effective sites of action (Culpepper et al. 2006; Legleiter 

and Bradley 2008).  

Multiple herbicide combinations with varying numbers of effective sites of action on 

Palmer amaranth and waterhemp from both a foliar and a soil residual perspective were utilized 

in this experiment (Table 1.8). Treatments were considered to have an effective foliar site of 
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action if an active ingredient provided control of an emerged Palmer amaranth and waterhemp at 

the time of application; whereas, treatments were considered to have a soil residual site of action 

if control was provided for Palmer amaranth and waterhemp that had not emerged at the time of 

application. Treatments that contained an acetolacte synthase (ALS)-inhibiting herbicide (e.g., 

imazethapyr or chlorimuron-methyl) were not included in effective sites of action counts as most 

Palmer amaranth and waterhemp populations in Kansas are considered ALS-resistant (Heap 

2017, Gaeddert et al. 1997). 

Chloroacetamide and dinitroaniline herbicides (e.g., pyroxasulfone, S-metolachlor, and 

pendimethalin) do not control established weeds (Anonymous 2016a,d, Hamm 1974) and were 

recorded as effective residual sites of action since there is not any confirmed resistance to these 

herbicides in Kansas (Heap 2017). 

Protoporphyrinogen oxidase (PPO)-inhibiting herbicides (e.g., flumioxazin and 

fomesafen) were recorded as an effective site of action for soil residual as well as for foliar 

uptake (Table 1.8). Fluthiacet-methyl was not recorded as an effective site of action for foliar 

uptake because it is not labeled for POST Palmer amaranth control, and due to its high 

absorption to the soil and short half-life (< 2 days), it is not an effective residual site of action 

(Shaner 2014a, Anonymous 2012). PPO-resistant waterhemp and Palmer amaranth have been 

confirmed to be resistant to POST applications of fomesafen due to the target site mechanism of 

resistance with the presence of the PPO glycine 210 deletion gene. Waterhemp populations that 

express this gene are still susceptible to PPO-inhibiting herbicides PRE, and it is speculated that 

the same is true for Palmer amaranth (Salas et al. 2016, Wuerffel et al. 2015). PPO-resistant 

waterhemp has been confirmed in Kansas (Shoup et al. 2003), and it is speculated that isolated 

populations of PPO-resistant Palmer amaranth exist, but have not been confirmed. Therefore, 
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while resistant populations may exist in Kansas, they are spatially variable and a high-level of 

efficacy can still be expected with PPO-inhibiting herbicide applications. 

Many pigweed populations may be susceptible to various sites of action that were not 

reported as effective (Table 1.8). Local expertise must be consulted when making herbicide 

recommendations in regards to effective sites of action. 

As seen in the orthogonal contrast (Table 1.6, 1.7), PRE treatments that included 

metribuzin plus sulfentrazone or flumioxazin resulted in significantly higher Palmer amaranth 

control (P = 0.0012) as well as waterhemp control (P = 0.10) when compared to other residual 

herbicide treatments. Whitaker et al. (2010) reported that the addition of metribuzin plus 

chlorimuron-methyl to S-metolachlor increased Palmer amaranth control by 22% in a PRE 

application in soybean. Therefore, metribuzin should be considered in PRE applications as an 

additional effective site of action for residual pigweed control.  

Some PRE treatments included two effective sites of action on emerged pigweed but only 

one residual effective site of action (e.g., sulfentrazone plus paraquat with 90% Palmer amaranth 

control 8WAP). Many of these treatments resulted in numerical differences in Palmer amaranth 

when control when compared to treatments that contained multiple residual effective sites of 

action (e.g., sulfentrazone plus metribuzin plus paraquat with 93% Palmer amaranth control 

8WAP). However, when the data were pooled in contrast, it revealed that PRE treatments 

containing multiple residual sites of action resulted in greater control 8WAP when compared to 

treatments that utilized only one residual effective site of action (P = 0.009). The same pattern 

was observed with waterhemp control at Ottawa 8WAP (P = 0.10). Significant differences were 

not observed for this contrast at 2 and 4WAP; however, by the 8WAP observations, it was 
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realized that by adding effective sites of action at adequate rates can help in pigweed control later 

in the season (Table 1.4, 1.5). 

Models indicate that combining multiple effective sites of action in tank mixes is more 

effective than rotating two different sites of action from year to year in managing against the 

selection of herbicide resistant weeds (Becki and Rebound 2009). Resistance models indicate 

when an average of 2.5 effective sites of action are used per year compared to 1.5 effective sites 

of action, the selection of glyphosate-resistant weeds was 83 times less likely to occur (Evans et 

al. 2015). Additional cost is associated with utilizing additional sites of action in tank mixes, and 

growers tend to only manage herbicide resistant weeds after they have already become herbicide 

resistant (Peterson 1999). To contrast this, using multiple effective sites of action as a tank mix 

can increase grower profitability through time as a result of improved weed control, plus 

facilitate long term resistance management (Weirich et al. 2011a,b).  

 

Practical Implications for Integrated Weed Management 

Spring-post applications of residual herbicides such as pyroxasulfone and pendimethalin 

can provide some suppression of Palmer amaranth and waterhemp at planting of double crop 

soybean; however, when compared to other herbicides at different application timings, this 

application timing resulted in less Palmer amaranth and waterhemp control. Spring-post 

herbicide applications could be combined with other spring treatments in winter wheat to reduce 

application costs; however, the repeated exposure of a low dose of these herbicides at the time of 

Palmer amaranth and waterhemp emergence could select resistant biotypes. It is recognized as a 

best management practice of managing herbicide resistance to avoid recurrent low dose exposure 

to herbicides (Norsworthy et al. 2012). 
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As a pre-harvest treatment for Palmer amaranth and waterhemp control, flumioxazin 

performed superior to 2,4-D in all site years and observation timings. Flumioxazin has additional 

utility as pre-harvest treatment with both foliar and residual activity. By treating earlier to the 

planting of double crop soybean, the chances for receiving activating rainfall are also increased; 

however, complete control of emerged Palmer amaranth and waterhemp at the time of double 

crop soybean planting was not observed in any of the site years. Therefore, a sequential 

treatment, such as a POST application, would need to be implemented to control the remainder 

of emerged Palmer amaranth and waterhemp if a pre-harvest treatment of flumioxazin were to be 

effectively implemented. 

Paraquat was an effective site of action with superior control of emerged pigweed prior to 

the emergence of double crop soybean. As a result of this research, paraquat combined with 

residual herbicides for multiple effective sites of action and applied in a PRE application to 

double crop soybean is recommended.  

While herbicides with a POST application timing in double crop soybean were not 

utilized in this experiment, the potential utility of a POST herbicide application is suggested by 

the reduced Palmer amaranth and waterhemp control observed 8WAP in all treatments in all site 

years. None of the treatments facilitated complete Palmer amaranth and waterhemp control 

8WAP and the inclusion of a POST application of herbicides with an effective site of action such 

as auxinic herbicides (e.g., 2,4-D and dicamba), glufosinate, or PPO-inhibiting herbicides (e.g., 

fomesafen) would likely increase the overall efficacy of pigweed control. 

Cultural control methods, while outside the objective of this experiment, must also be 

considered in addition to effective herbicide treatments when implementing double crop soybean 

after winter wheat. Wide row spacing (76 cm) was utilized in this experiment. It is understood 
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that narrow rows (≤ 38 cm) can aid in Palmer amaranth and waterhemp suppression (Butts et al. 

2016, Bell et al. 2015, Schultz et al. 2015, Knezevic et al. 2003). The winter wheat ecology 

should also be considered in terms of Palmer amaranth and waterhemp management. As seen at 

Hutchinson 2015, the winter wheat grain crop resulted in low grain yield, and because of a lack 

of crop competition, the Palmer amaranth and waterhemp size was large (> 75 cm) at the time of 

winter wheat grain harvest (Table 1.1). As a result, limited Palmer amaranth and waterhemp 

emergence was observed at this site after the emergence of double crop soybean (data not 

shown) when compared to other site years where emergence of weeds was normally more 

extended throughout the summer. The effect of a preceding cereal crop on the emergence pattern 

of Palmer amaranth and waterhemp in soybean should be considered when planning a weed 

control program. DeVore et al. (2013) reported that the residue from a winter wheat grain crop 

reduced Palmer amaranth emergence by 40% in the double crop soybean. Therefore, a high 

yielding wheat grain crop could have utility in managing Palmer amaranth and waterhemp in 

double crop soybean.  

It is imperative for double crop soybean producers to give careful selection to proper tank 

mixes of multiple effective sites of action for driver weeds, such as Palmer amaranth and 

waterhemp. Unfortunately, regardless of any chemical control tactic, herbicide resistance is 

inevitable (Shaner 2014b). Therefore, it is imperative that producers implement an integrated 

system which encompasses all possible control methods to suppress the long-term influence of 

weeds on agricultural productivity (Owen 2016). 
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Figure 1.1. Rainfall at five site years as a percentage of the 30 yr normal from 1980 to 2010 
for June, July, and August from the National Oceanic and Atmospheric Administration 
(Arugez et al. 2010).  
a Cum: cumulative rainfall percentage of 30 yr normal from January 1 to July 1 for each site 

year. 
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Table 1.1. Planting and herbicide application dates, soil characteristics, winter wheat grain yield, and Palmer 
amaranth and waterhemp densities and heights at experiment sites.a,b 

 2015 2016 

Site characteristics  Manhattan Hutchinson Manhattan Hutchinson Ottawa 

SP application date March 31 March 17 March 24 March 24 March 24 

PH application date June 17 June 22 June 13 June 15 June 13 

PRE application date July 1 July 6 June 27 June 29 June 29 

Density at SP - - - - - 

Height at SP - - - - - 

Density at PH 2 m-2 30 m-2 4 m-2 120 m-2 4 m-2 

Height at PH 8 cm 75 cm 8 cm 10 cm 10 cm 

Density at PRE 35 m-2 25 m-2 50 m-2 50 m-2 20 m-2 

Height at PRE 10 cm †15 cm †15 cm 14 cm 10 cm 

Soil series Reading c Farnum d Reading Darlow e Woodson f 

Soil texture silt loam loam silt loam silt loam silt loam 

Soil organic matter g (%) 3.5 2.4 2.6 2.6 2.4 

Soil pH 6.1 5.0 6.1 5.9 6.0 

Soil cation exchange 

capacity (meq/100g) h 
19.1 16.8 20.9 20.0 19.5 

Average winter wheat 

grain yield (ton ha-1) i 
4.0 1.8 3.8 3.5 4.1 

a Abbreviations: SP, spring postemergence; PH, pre-harvest; PRE, preemergence; meq, milliequivalents. 
b All soil characteristics assessed from a 0 to 7.6 cm soil sampling depth. 
c Fine-silty, mixed superactive, mesic Pachic Argiudolls 

d Fine-loamy, mixed superactive, mesic Pachic Argiustolls. 

e Fine-loamy, mixed, superactive, mesic Vertic Natrustalfs.  
f Fine, smectic, thermic Abruptic Argiaquolls.  
g Loss-on-ignition (Ball 1964). 

h Adjusted to 7 pH (Rich 1969). 

h Wheat grain moisture content adjusted to 12.5%. 
† Pigweed height determined by the 15 cm cutter bar height at wheat harvest. 
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Table 1.2. Herbicides, rates, and adjuvants for spring postemergence, pre-harvest, and PRE application timings. a 

Herbicide  Trade Name Rate Manufacturer Location 
Application 

Timing Adjuvant b 
  g ai or ae ha -1     
Pyroxasulfone Zidua® 119 BASF 

Corporation 
Research 
Triangle 
Park, NC 

SP - 

Pendimethalin Prowl® H2O 1065 BASF 
Corporation 

Research 
Triangle 
Park, NC 

SP - 

2,4-D Shredder™ 
2,4-D LV4 

561 Winfield 
Solutions LLC 

St. Paul, MN PH - 

Flumioxazin Valor® SX 107 Valent U.S.A. 
Corporation 

Walnut 
Creek, CA 

PH AMS + 
MSO 

Paraquat Gramoxone® 
SL 2.0 

841 Syngenta Crop 
Protection, LLC 

Greensboro, 
NC 

PRE COC 

S-met + metr Boundary® 
6.5 EC 

1472 + 350 Syngenta Crop 
Protection, LLC 

Greensboro, 
NC 

PRE COC 

S- met + fome Prefix® 1217 + 266 Syngenta Crop 
Protection, LLC 

Greensboro, 
NC 

PRE COC 

S- met + sulf BroadAxe® 
XC 

1435 + 160 Syngenta Crop 
Protection, LLC 

Greensboro, 
NC 

PRE COC 

Sulf + chlo Authority® 
XL 

152 + 19 FMC 
Corporation 

Philadelphia, 
PA 

PRE COC 

Sulf + metr Authority® 
MTZ DF 

202 + 303 FMC 
Corporation 

Philadelphia, 
PA 

PRE COC 

Flum + pyro Fierce® 70 + 89 Valent U.S.A. 
Corporation 

Walnut 
Creek, CA 

PRE COC 

Imaz + dime + 
safl 

OpTill® 
PRO 

70 + 526 + 25 BASF 
Corporation 

Research 
Triangle 
Park, NC 

PRE COC 

Flum + metr + 
chlo 

Trivence™ 72 + 250 + 22 E.I. du Pont de 
Nemours and 

Co. 

Wilmington, 
DE 

PRE COC 

Flut + pyro Anthem® 4 + 146 FMC 
Corporation 

Philadelphia, 
PA 

PRE COC 

Flumioxazin Valor® SX 70 Valent U.S.A. 
Corporation 

Walnut 
Creek, CA 

PRE COC 

Sulfentrazone Spartan® 4F 202 FMC 
Corporation 

Philadelphia, 
PA 

PRE COC 

Saflufenacil Sharpen® 25 BASF 
Corporation 

Research 
Triangle 
Park, NC 

PRE COC 

a Abbreviations: S-met, S-metolachlor; metr, metribuzin; fome, fomesafen; para, paraquat; sulf, sulfentrazone; 
chlo, chlorimuron-methyl; flum, flumioxazin; pyro, pyroxasulfone; imaz, imazethapyr; dime, dimethenamid-P; 
safl, saflufenacil; flut, fluthiacet-methyl; SP, spring postemergence; PH, pre-harvest; PRE, preemergence; AMS, 
ammonium sulfate; MSO, methylated seed oil; COC, crop oil crop concentrate. 
b Adjuvant rates: AMS, 2.8 kg ai ha-1 (N-Pak, Winfield, St. Paul, MN); MSO, 1% v/v (Destiny, Winfield 
Solutions LLC, St. Paul, MN); COC, 1% v/v (Prime Oil, Winfield Solutions LLC, St. Paul, MN). 
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Table 1.3. Rainfall data for each week after PRE application.  

   Rainfall 

   Weeks after PRE application 

Location Year  PRE a 1 2 3 4 5 6 7 8 

     

 cm  

 

Manhattan 2015  July 1 7.8 0.8 2.3 0.9 1.9 3.1 1.7 1.1 

Manhattan 2016  June 27 6.7 1.62 5.1 0.2 4.1 3.4 1.9 4.6 

Hutchinson 2015  July 6 0.7 0.4 0.7 5.4 1.5 0.5 3.1 0.3 

Hutchinson 2016  June 29 5.6 1.1 2.1 1.3 2.7 5.1 5.5 0.0 

Ottawa 2016  June 29 8.4 3.8 0.13 2.9 0.6 2.8 4.6 3.7 
a Date of PRE application for each site year. 
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Table 1.4. Palmer amaranth control and double crop soybean grain yield at Manhattan and Hutchinson, KS.a,b 

   Visual Control  

Herbicide treatment 
Application 

timingc Rate 2WAP 4WAP 8WAP 
Grain 
yield 

 g ai or ae ha-1  %  kg ha-1   

Pyroxasulfone SP 119 14cd 2.5f 0e 1278jk 
Pendimethalin SP 1065 5d 1f 0e 1135jk 
2,4-D PH 561 22c 18e 5e 1348j 
†Flumioxazin PH 107 90a 86ab 84ab 1946hi 
Paraquat PRE 841 91a 64c 41d 1952hi 
S-met + metr PRE 1472 + 350 60b 47d 46d 2020ghi 
S-met + fome PRE 1217 + 266 75b 52d 41d 1794i 
S-met + metr + para PRE 1472 + 350 + 

841 
93a 90ab 82b 2824abcd 

S-met + fome + para PRE 1217 + 266 + 
841 

98a 94a 88ab 2691bcde 

†S-met + sulf + para PRE 1435 + 160 + 
841 

95a 89ab 81ab 2175fghi 

†Sulf + chlo + para PRE 152 + 19 + 841 99a 93ab 87ab 2428defg 
Sulf + metr + para PRE 202 + 303 + 841 98a 96a 93a 2898abc 
Flum + pyro + para PRE 70 + 89 + 841 97a 94a 90ab 2734def 
Imaz + dime + safl + 

para 
PRE 70 + 526 + 25 + 

841 
98a 95a 90ab 2583cdef 

Flum + metr + chlo + 
para 

PRE 72 + 250 + 22 + 
841 

98a 96a 93a 3051a 

Flut + pyro + para PRE 4 + 146 + 841 97a 92ab 83ab 2511def 
†Flum + para PRE 70 + 841 99a 92ab 89ab 2713abcde 
†Sulf + para PRE 202 + 841 99a 94ab 90ab 3035ab 
†Safl + para PRE 25 + 841 94a 81b 61c 2355efgh 
Not treated weedy 
check 

- - - - - 952k 

P-value   < 0.0001 < 0.0001 < 0.0001 < 0.0001 
a Abbreviations: SP, spring-post; PH, pre-harvest; PRE, preemergence; S-met, S-metolachlor; metr, metribuzin; 
fome, fomesafen; para, paraquat; sulf, sulfentrazone; chlo, chlorimuron-methyl; flum, flumioxazin; pyro, 
pyroxasulfone; imaz, imazethapyr; dime, dimethenamid-P; safl, saflufenacil; flut, fluthiacet-methyl; WAP, weeks 
after planting; NS, not significant. 
b Means followed by the same letter within a column are not statistically different according to Fisher’s Protected 
LSD (α = 0.05). 
c Application timing: SP, Feekes 4 stage; PH, 2 weeks prior to wheat harvest; PRE, at soybean planting. 
†Treatment only present in 2016 site years. 
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Table 1.5. Waterhemp control and double crop soybean grain yield at Ottawa, KS 2016.a,b 

   Visual Control  

Herbicide treatment 
Application 

timingc Rate 2WAP 4WAP 8WAP 
Grain 
yield 

 g ai or ae ha-1  %  kg ha-1   

Pyroxasulfone SP 119 40b 0h 0f 1407bcd 
Pendimethalin SP 1065 30b 0h 0f 1461abcd 
2,4-D PH 561 41b 13h 0f 1404cd 
Flumioxazin PH 107 91a 86abc 83ab 2235ab 
Paraquat PRE 841 99a 30g 25g 1841abc 
S-met + metr PRE 1472 + 350 94a 69e 60cd 2282a 
S-met + fome PRE 1217 + 266 96a 80bcd 73abc 1626abcd 
S-met + metr + para PRE 1472 + 350 + 841 99a 75de 71abc 2279a 
S-met + fome + para PRE 1217 + 266 + 841 99a 86abc 79abc 1929abc 
S-met + sulf + para PRE 1435 + 160 + 841 99a 91a 85ab 1746abcd 
Sulf + chlo + para PRE 152 + 19 + 841 99a 86abc 73abc 2042abc 
Sulf + metr + para PRE 202 + 303 + 841 99a 88abc 83ab 1809abcd 
Flum + pyro + para PRE 70 + 89 + 841 99a 86abc 78abc 1891abc 
Imaz + dime + safl + 

para 
PRE 70 + 526 + 25 + 

841 
99a 55f 41de 2185ab 

Flum + metr + chlo + 
para 

PRE 72 + 250 + 22 + 
841 

99a 90ab 85ab 2081abc 

Flut + pyro + para PRE 4 + 146 + 841 99a 85abcd 81ab 1557abcd 
†Flum + para PRE 70 + 841 99a 79cde 68bc 1687abcd 
†Sulf + para PRE 202 + 841 99a 91a 90a 2035abc 
†Safl + para PRE 25 + 841 99a 40g 35e 1846abcd 
Not treated weedy 
check 

- - - - - 994d 

P-value   < 0.0001 < 0.0001 < 0.0001 < 0.0001 
a Abbreviations: SP, spring-post; PH, pre-harvest; PRE, preemergence; S-met, S-metolachlor; metr, metribuzin; 
fome, fomesafen; para, paraquat; sulf, sulfentrazone; chlo, chlorimuron-methyl; flum, flumioxazin; pyro, 
pyroxasulfone; imaz, imazethapyr; dime, dimethenamid-P; safl, saflufenacil; flut, fluthiacet-methyl; WAP, weeks 
after planting; NS, not significant. 
b Means followed by the same letter within a column are not statistically different according to Fisher’s Protected 
LSD (α = 0.05). 
c Application timing: SP, Feekes 4 stage; PH, 2 weeks prior to wheat harvest; PRE, at soybean planting. 
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Table 1.6. Orthogonal contrasts of various treatments for Palmer amaranth control and double crop soybean grain 
yield at Manhattan and Hutchinson, KS.a 

   Visual Control  

Orthogonal Contrasts b,c 2WAP 4WAP 8WAP 
Grain 
yield 

PRE treatments containing sulf or flum + para              
vs. other PRE treatments containing residual 
herbicide(s) w/ para. 

98 vs. 95 
NS 

93 vs. 90 
NS 

89 vs. 81 
*** 

2719 vs. 
2593 NS 

PRE treatments containing para + residual herbicide(s) 
vs. PRE treatments containing residual herbicide(s) 
w/o para. 

95 vs. 68 
**** 

92 vs. 50 
**** 

86 vs 44 
**** 

2667 vs. 
1907 **** 

PRE treatments containing sulf or flum + metr + para vs. 
other PRE treatments containing residual 
herbicide(s) w/ para. 

98 vs. 94 
NS 

96 vs. 91 
* 

93 vs. 84 
*** 

2975 vs. 
2607 *** 

PRE treatments containing sulf                                       
vs. PRE treatments containing flum. 

98 vs. 98 
NS 

93 vs. 94 
NS 

88 vs. 91 
NS 

2634 vs. 
2838 * 

PRE treatments containing para + 2 residual herbicides 
vs. PRE treatments containing para + 1 residual 
herbicide.  

93 vs. 97 
NS 

93 vs. 90 
NS 

88 vs. 81 
*** 

2673 vs. 
2654 NS 

a Abbreviations: WAP, weeks after planting; sufl, sulfentrazone; flum, flumioxazin; para, paraquat; metr, 
metribuzin; NS, not significant. 
b Means of contrast different at *P = 0.1 to 0.05, **P = 0.05 to 0.01, ***P = 0.01 to 0.0001, ****P  ≤ 0.0001 
levels. 
c Residual herbicide only counted if listed as an effective site of action in Table 1.8. 
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Table 1.7. Orthogonal contrasts of various treatments for waterhemp control and double crop soybean grain yield 
at Ottawa, KS.a 

   Visual Control  

Orthogonal Contrasts b,c 2WAP 4WAP 8WAP 
Grain 
yield 

PRE treatments containing sulf or flum + para              
vs. other PRE treatments containing residual 
herbicide(s) w/ para. 

99 vs.   99 
NS 

87 vs. 68 
*** 

80 vs. 61 
*** 

1898 vs. 
1959 NS 

PRE treatments containing para + residual herbicide(s) 
vs. PRE treatments containing residual herbicide(s) 
w/o para. 

99 vs. 95 
NS 

79 vs. 75 
* 

72 vs. 67 
** 

1924 vs 
1954 NS 

PRE treatments containing sulf or flum + metr + para vs. 
other PRE treatments containing residual 
herbicide(s) w/ para. 

99 vs. 97 
NS 

89 vs. 77 
* 

84 vs. 70 
* 

1945 vs. 
1920 NS 

PRE treatments containing sulf                                       
vs. PRE treatments containing flum. 

99 vs. 99 
NS 

89 vs. 85 
NS 

83 vs. 77 
NS 

1908 vs. 
1886 NS 

PRE treatments containing para + 2 residual herbicides 
vs. PRE treatments containing para + 1 residual 
herbicide.  

99 vs. 99 
NS 

82 vs. 74 
NS 

74 vs. 69 
* 

1995 vs. 
1781 NS 

a Abbreviations: WAP, weeks after planting; sufl, sulfentrazone; flum, flumioxazin; para, paraquat; metr, 
metribuzin; NS, not significant. 
b Means of contrast different at *P = 0.1 to 0.05, **P = 0.05 to 0.01, ***P = 0.01 to 0.0001, ****P  ≤ 0.0001 
levels. 
c Residual herbicide only counted if listed as an effective site of action in Table 1.8. 
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Table 1.8. Effective herbicide sites of action on Palmer amaranth and waterhemp for various 
herbicide combinations for soil residual and foliar action. a 

   Effective Sites of Actionb,c 

Herbicide treatmenta 
Application 

timingd Rate Residual Foliar 
  g ai or ae ha-1  
Pyroxasulfone SP 119 1 - 
Pendimethalin SP 1065 1 - 
2,4-D PH 561 1 1 
Flumioxazin PH 107 1 1 
Paraquat PRE 841 - 1 
S-met + metr PRE 1472 + 350 2 1 
S-met + fome PRE 1217 + 266 2 1 
S-met + metr + para PRE 1472 + 350 + 841 2 2 
S-met + fome + para PRE 1217 + 266 + 841 2 2 
S-met + sulf + para PRE 1435 + 160 + 841 2 2 
Sulf + chlo + para PRE 152 + 19 + 841 2 2 
Sulf + metr + para PRE 202 + 303 + 841 2 3 
Flum + pyro + para PRE 70 + 89 + 841 2 2 
Imaz + dime + safl + para PRE 70 + 526 + 25 + 841 2 2 
Flum + metr + chlo + para PRE 72 + 250 + 22 + 841 2 3 
Flut + pyro + para PRE 4 + 146 + 841 1 1 
Flum + para PRE 70 + 841 1 2 
Sulf + para PRE 202 + 841 1 2 
Safl + para PRE 25 + 841 1 2 
a Abbreviations: SP, spring postemergence; PH, pre-harvest; PRE, preemergence; S-met, S-
metolachlor; metr, metribuzin; fome, fomesafen; para, paraquat; sulf, sulfentrazone; chlo, 
chlorimuron-methyl; flum, flumioxazin; pyro, pyroxasulfone; imaz, imazethapyr; dime, 
dimethenamid-P; safl, saflufenacil; flut, fluthiacet-methyl; WAP, weeks after planting. 
b Effective sites of action listed with an assumed ALS-inhibiting herbicide resistant population. 
c Soil residual control listed of Palmer amaranth and waterhemp that had not emerged at the time of 
application. Foliar control listed for Palmer amaranth and waterhemp that had emerged at time of 
application. 
d Application timing: SP, Feekes 4 stage; PH, 2 weeks prior to wheat harvest; PRE, at soybean 
planting. 
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Chapter 2 -                                                                                                

Palmer Amaranth (Amaranthus palmeri) and Common Waterhemp 

(Amaranthus rudis) Control with Very Long Chain Fatty Acid 

Inhibitor Herbicides 
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 ABSTRACT 

 

Increased herbicide resistance in Palmer amaranth (Amaranthus palmeri S. Wats.) and 

common waterhemp (Amaranthus rudis Saur) across multiple herbicide sites of action (SOA) 

requires a change in management to facilitate weed control. Very long chain fatty acid (VLCFA) 

inhibitor herbicides have been mostly used for residual grass control. It is often overlooked that 

these herbicides also can provide residual control of Palmer amaranth and common waterhemp.  

Field experiments were established in 2015 and 2016 near Manhattan, Hutchinson, and 

Ottawa, Kansas to assess residual control of Palmer amaranth and waterhemp with VLCFA 

herbicides. Acetochlor (non-encapsulated and encapsulated), alachlor, dimethenamid-P, 

metolachlor, S-metolachlor, and pyroxasulfone, as well as the microtubule inhibiting herbicide 

pendimethalin, were applied at three different rates (high, middle, and low) based on labeled rate 

ranges for soybean. The experiment was a randomized complete block design with a factorial 

arrangement of herbicides and rates with four replications. All treatments were applied PRE in a 

non-crop scenario after the plot area was clean tilled with a field cultivator. The experiment was 

conducted one time in 2015 and four times in 2016 at two locations for a total of five site years 

of data. PRE applications were made June 1, 2015 near Manhattan. PRE applications in 2016 

were made on April 12 and 13, 2016 at locations near Hutchinson and Ottawa. The second run of 

the experiment was applied on June 6, 2016 at locations near Hutchinson and Ottawa as well. 

Percent Palmer amaranth and common waterhemp control was visually evaluated at 4 and 8 

weeks after treatment (WAT).  

Analysis of fixed effects revealed no significance for three and two-way interactions of 

herbicide by rate by timing and herbicide by rate for each site at both 4 and 8WAT; therefore, 
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percent Palmer amaranth and waterhemp control was compared using means for each product 

across rates. At Manhattan pyroxasulfone, S-metolachlor, and dimethenamid-P resulted in the 

highest Palmer amaranth control at both 4 and 8WAT. At Hutchinson and Ottawa, 

pyroxasulfone, S-metolachlor, and non-encapsulated acetochlor resulted in the highest Palmer 

amaranth and common waterhemp control at both 4 and 8WAT. Pyroxasulfone and S-

metolachlor were often the most effective herbicides; whereas, pendimethalin resulted in the 

least effective Palmer amaranth and common waterhemp control at all sites and observation 

times. The high use rate across all herbicides resulted in superior control when compared to the 

low use rate across all herbicides at all sites and observation times. This research demonstrates 

the value of utilizing VLCFA herbicides as an effective site of action for residual control of 

Palmer amaranth and common waterhemp as part of integrated weed management plan in 

various cropping systems.  

 

 INTRODUCTION 

 

 The very-long-chain-fatty acid (VLFCA) inhibiting herbicides have been a staple in 

many weed management programs as an effective site of action for many troublesome grass and 

broadleaf weeds for decades (Kearney and Kaufman 1988). Chloroacetamide, oxyacetamide, and 

pyrazole chemical families encompass most of the VLCFA herbicides used in Midwest cropping 

systems (Sprague 2017; Shaner 2014).  

Discovered in 1952 by Monsanto Company, the chloroacetamide family was the first of 

the VLCFA herbicides (Hamm 1974). In contrast to 2,4-D, a popular herbicide in the 1950’s, the 

VLCFA herbicides offered residual weed control options; whereas, 2,4-D was utilized primarily 
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for control of emerged weeds (Peterson et al. 2016; Hamm 1974). N,N-diallyl-2chloracetamide 

(CDAA) was first made available for public use in 1956, and this was the first time that a 

herbicide could be applied PRE to a crop to provide control of annual grass species (Timmons 

2005; Hamm 1974).  

VLCFA herbicides are absorbed after germination during internode elongation in 

emerging seedlings, but do not provide control of emerged weeds (Fuerst 1987).  Susceptible 

seedlings seldom emerge from the soil (Cobb and Reade 2010). Grass seedlings absorb herbicide 

through the coleoptile while dicotyledonous weeds absorb the herbicide through the radicle 

(Kearney and Kaufman 1988; Duke et al. 1975). Root and shoot development is thereby 

impeded, stopping seedling emergence (Fuerst 1987; Dhillon and Anderson 1972). 

Much uncertainty has been associated with the specific mechanism of action of the 

VLCFA herbicides (Böger 1997; Deal and Hess 1980; Deal et al. 1980). Recent research has 

specified that this class of herbicides inhibit VLCFA biosynthesis. Cultured rice (Oryza sativa 

L.) cells treated with pyroxasulfone showed a decrease in VLCFA levels and a buildup of 

medium chain and long chain fatty acids, which are required for synthesizing VLCFA (Tanetani 

et al. 2009; Böger et al. 2000). Plant cell death is likely due to reduced functionality of the 

plasmalemma as VLCFAs are its primary constituents (Matthes and Böger 2002). The 

plasmalemma enables a cell to export and retain solutes, ions, and metabolites as well as provide 

structure to specialized organelles (Taiz and Zeiger 2006).   

Detoxification of VLCFA herbicides in crop species is facilitated through numerous 

pathways, some of which are specific to the given VLCFA herbicide. However, enhanced 

herbicide metabolism from glutathione conjugation is considered to be the primary mechanism 

(Breaux 1987; Fuerst 1987; Jaworski, 1969). Selectivity among weed species has been linked to 
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morphological characteristics such as seed size (e.g., Amaranthus retroflexus L. compared to 

Xanthium strumarium L.) as well as the rate of herbicide metabolism through glutathione 

conjugation (Ruberson 1999; Breaux 1987; Fuerst 1987; Jaworski 1969).  

The primary fate of VLCFA herbicides in the soil is microbial degradation, which is 

influenced by the type of soil as well as the moisture content and temperature (Beestman and 

Deming 1974). Specific soil properties such as the variable net negative charge of organic matter 

as well as the clay minerology can heavily influence the adsorption of VLCFA herbicides within 

the soil (Obrigawitch et al. 1981; Helling et al. 1964). Increased adsorption to organic matter can 

dictate the application rate of VLCFA herbicide necessary to ensure residual herbicidal activity 

(Vasilakoglou and Eleftherohorinos 1997; Weber and Peter 1982; Peter and Weber 1985). In 

peat or muck type soils that consist predominantly of organic matter, applications of some 

VLCFA herbicides are prohibited due to poor weed control (Anonymous 2016). 

Seed applied safeners (e.g., fluxofenim in grain sorghum (Sorghum bicolor L. Moench)) 

as well as those included in the formulation of some VLCFA herbicides (e.g., benoxacor in S-

metolachlor) have expanded the number of crops available for VLCFA herbicide applications 

(Hatzios and Burgos 2004). Encapsulation of some VLCFA herbicides (e.g., acetochlor) have 

improved crop safety as well as influenced the residual control the herbicide can provide in a 

variety of conditions (Parker et al 2005; Vasilakoglou and Eleftherohorinos 1997; Peterson et al. 

1988). The revision of certain active ingredients (e.g., metolachlor to S-metolachlor and 

dimethenamid to dimethenamid-P) to include more of the biologically active isomer have 

reduced the net amount of VLCFA herbicide entering the environment and increased weed 

control efficacy (Shaner et al. 2006; O’Connell et al. 1998; Couderchet et al. 1997). 
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VLCFA herbicides provide residual control of a variety of weed species including 

monocotyledonous, dicotyledonous, and sedge type plants (Grichar et al. 1996; Kearney and 

Kaufman 1988; Banks 1983). From 1990 to 2006, the percent of planted soybean area receiving 

a VLCFA herbicide decreased dramatically (Figure 2.1; NASS 2017). This decline is likely due 

to an increased use of POST applied herbicides in soybean (e.g., imazethapyr and glyphosate) 

(Young 2006; Shaner 2000; Vangessel et al. 2001; Johnson et al. 1998).  In 2015, almost 25% of 

the planted soybean acres received a VLCFA herbicide. Increased use is likely due to the 

prevalence of Palmer amaranth and waterhemp resistant to acetolactate synthase (ALS) and 5-

enolypyruvyl-shikimate-3-phosphate (EPSP) synthase inhibiting herbicides (NASS 2017; Heap 

2017). 

 Palmer amaranth and common waterhemp have been confirmed resistant to six different 

herbicide sites of action (Heap 2017). Because common waterhemp (Amaranthus rudis Saur) and 

tall waterhemp (Amaranthus tuberculatus Moq. Saur) are difficult to distinguish and the 

International Survey of Herbicide Resistant Weeds combines both species, they will be 

collectively referred to as waterhemp (Heap 2017; Steckel 2007; Pratt and Clark 2001).    

 While numerous cases of VLCFA herbicide resistance have been reported in 

monocotyledonous species such as barnyardgrass (Echinochloa crus-galli L. var. crus-galli) and 

rigid ryegrass (Lolium rigidum Gaudin), no VLCFA herbicide resistance has been reported in 

dicotyledonous species (Heap 2017). 

 Drastic yield losses in many cropping systems can be expected if Palmer amaranth or 

waterhemp is left uncontrolled in fields (Bensch et al. 2003). Characteristics such as an 

aggressive growth rate, extended emergence, and vast seed production abilities have enabled 

Palmer amaranth and waterhemp to become driver weeds in many cropping systems (Horak and 
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Loughin 2000; Schwartz et al. 2016; Webster and Grey 2015; Sellers et al. 2003; Steckel et al. 

2003). 

Best management practices for herbicide resistance indicate that multiple effective 

herbicide sites of action should be used in combination with an integrated weed management 

strategy (Norsworthy et al. 2012). The high probability of developing herbicide resistance in 

Palmer amaranth and waterhemp combined with a lack of grower understanding of herbicide 

mode of action, makes this approach difficult to implement for producers (Norsworthy et al. 

2017; Owen et al. 2017). VLCFA herbicides can provide excellent efficacy on Palmer amaranth 

and waterhemp when applied prior to weed emergence (Vizantinopoulos and Katranis 1998; 

Whitaker et al. 2010; Meyers et al. 2010; Fuerst et al. 1986; Clewis et al. 2006). VLCFA 

herbicides also provide the needed flexibility for crop rotational restrictions as well as preharvest 

intervals for in-season applications to facilitate a layered residual approach (Anonymous 2017; 

Steckel et al. 2002).  

Differences exist between VLCFA herbicides and their formulations in the amount of 

precipitation required for activation as well as their residual persistence in a soil (Hart et al. 

1995; Shrefler and Chandler 1994). The objectives of this study were to a) determine the efficacy 

of various VLCFA herbicides for Palmer amaranth and waterhemp control and 2) determine the 

importance of VLCFA herbicide application rate in obtaining a high level of Palmer amaranth 

and waterhemp control through the growing season.  
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 MATERIALS AND METHODS 

 

General 

Field experiments were implemented at three different locations in Kansas near 

Manhattan, Hutchinson, and Ottawa during 2015 and 2016. A single, June application timing 

was utilized at Manhattan in 2015; whereas, two different April and June application timings 

were made at Hutchinson and Ottawa in 2016. Two application timings were assessed since 

VLCFA herbicides may be applied at a variety of timings to accommodate early preplant, 

preemergence (PRE), and post emergence (POST) application timings. The June application 

timings were applied to plot areas separate from the April application timings, and treatments 

were re-randomized and analyzed as separate experiments. Across all sites and application 

timings, five site years of data were considered in this project (Table 2.1). 

Palmer amaranth populations at Manhattan and Hutchinson and waterhemp populations 

at Ottawa exceeded 50 plants m-2 in untreated checks at 8 weeks after treatment (WAT) at both 

the April and June application timings (data not shown). Soil properties (type, texture, pH, 

organic matter, and cation exchange capacity) are reported for all plot areas (Table 2.1). All 

treatments were applied PRE in the absence of a crop after the ground was clean tilled with a 

field cultivator.  

Seven VLCFA herbicides and one microtubule inhibiting herbicide for comparison were 

applied in a randomized complete block design in a factorial of three rates for a total of 24 

treatments. Rates were designated as high, middle, and low based on the labeled rate structure for 

soybean for each herbicide (Table 2.2). The rate structure of non-encapsulated acetochlor was 
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based on corn (Zea mays L. ssp. indentata) as it is not labeled for use in soybean, and was 

included for comparison to encapsulated acetochlor (Anonymous 2012). 

Treatments were applied to plots 3 m wide and 9 m long and replicated 4 times per site. 

Treatments were applied using a 4 nozzle CO2 pressurized backpack sprayer calibrated to deliver 

144 L ha-1 at 241 kPa with TeeJet (TeeJet Technologies, Springfield, IL 62703) Air Induction 

Extended Range or Turbo TeeJet Air Induction 110015 nozzles. Percent control of Palmer 

amaranth and waterhemp was visually evaluated compared to the untreated check 4 and 8WAT. 

Visual ratings were based on 0% = no Palmer amaranth and waterhemp control and 99% = 

complete Palmer amaranth and waterhemp control. 

 

Data Analysis 

Data were analyzed using the mixed procedure in JMP Pro 12 (SAS Institute., 100 SAS 

Campus Drive, Cary, NC 27513-2414) and means were separated using Fisher’s Protected Least 

Significant Difference (LSD) at α=0.05. Analysis of interaction of main effects of herbicide, rate, 

and timing by location and observation timing did not reveal a significant interaction, while only 

the main effects of herbicide and rate were significant (Table 2.3). Therefore, herbicide and rate 

were considered fixed effects and application timing and replication (nested within application 

timing) were considered random effects (Carmer et al. 1989).   

In a separate analysis, data for S-metolachlor and metolachlor were extracted and pooled 

across site and application timing to understand implications about these two specific herbicides 

over a range of environments (Johnson et a. 2014; Zhang et al. 2005; Stephenson et al. 2004a,b; 

Hager et al. 2003). Analysis of main effects of herbicide and rate for both observation timings 

did not reveal significant interactions (Table 2.4). Site, application timing, and replication 
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(nested within site and application timing) were considered random effects for the fixed effects 

of herbicide and rate.                

 

 RESULTS AND DISCUSSION 

 

In-Season Precipitation and Temperature 

 Thirty-year precipitation normals from 1980 to 2010 were referenced from the National 

Oceanic Atmospheric Administration (Arugez et al. 2010), and cumulative rainfall values as a 

percent of normal for each month by site were calculated. All months received a greater amount 

of precipitation when compared to the 30 year normal, except for June 2016 at Hutchinson and 

Ottawa which were slightly drier (Figure 2.2). 

Activating rainfall (≥ 4.5 cm) was received within the first week after application for 

Manhattan and for the April application timings at Hutchinson and Ottawa. The June application 

timings at Hutchinson and Ottawa did not receive activation until 2WAT. Hutchinson received 

7.7 cm which provided excellent activation; whereas, Ottawa received 2.6 cm (Table 2.5). 

Because of the lack of activation and increased exposure to sunlight on the soil surface, 

photodegradation and volatilization of some VLCFA herbicides is possible (Kearney and 

Kaufman 1988). The combination of dry conditions after the 2 week delay in activation probably 

accounted for the reduced level of waterhemp control at Ottawa. After 2WAT, each site received 

at least 1.6 cm of rainfall biweekly through 8WAT (Table 2.5). This enabled the continued 

emergence of Palmer amaranth and waterhemp.  

Average daily temperatures were calculated by month for each site (Figure 2.3). 

Temperatures were generally warmer for June and July when compared to April and May. While 

temperature influences Palmer amaranth and waterhemp emergence (Jha and Norsworthy 2009; 
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Hartzler et al. 1999) and herbicide adsorption and degradation (Zimdahl and Clark 1982), the 

daily temperature swings experienced within the microclimate within the germination zone for 

Palmer amaranth and waterhemp (e.g., upper 1 cm of soil) within a field can be variable (Buhler 

et al. 1997,1996). Because of these variable factors that can change from year to year, producers 

have a limited probability of predicting the ideal application timing for a VLCFA herbicide (i.e., 

from an April vs. June timing).   

 

Palmer Amaranth and Waterhemp Control by Herbicide and Rate 

Pyroxasulfone, S-metolachlor, and dimethenamid-P resulted in the highest level of 

Palmer amaranth control when compared to encapsulated acetochlor and pendimethalin 4WAT 

and 8WAT at Manhattan (Table 2.6).  

Dimethenamid-P and pendimethalin resulted in less Palmer amaranth control than 

pyroxasulfone 4WAT at Hutchinson. At 8WAT acetochlor, encapsulated acetochlor, S-

metolachlor, and pyroxasulfone resulted in the highest level of control (≥ 83%) when compared 

to alachlor, dimethenamid-P, and metolachlor. Of the herbicides evaluated, pendimethalin 

provide the least amount of control (Table 2.6). 

At Ottawa 4WAT, acetochlor, S-metolachlor, and pyroxasulfone resulted in the highest 

level of waterhemp control. Acetochlor provided higher control (80%) when compared to 

encapsulated acetochlor (68%) at the 4WAT observation time; this is likely due to the 

differences in rate structure between the two formulations used in soybean versus corn (Table 

2.2). S-metolachlor and pyroxasulfone provided superior control compared to alachlor, 

dimethenamid-P, metolachlor, and pendimethalin at 8WAT (Table 2.6).  
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A lower level of waterhemp control was observed at Ottawa across all treatments when 

compared to the Palmer amaranth control observed at Hutchinson and Manhattan. This is likely 

an effect of weather rather than a species interaction. Producers can occasionally observe poor 

performance of VLCFA herbicides because of lack of activation at the time of weed germination 

and emergence; however, as demonstrated at Ottawa, there is still value in terms of waterhemp 

control after activating rainfall is received. In the case of extended emergence in waterhemp or 

Palmer amaranth (Jha and Norsworthy 2009; Hartzler et al. 1999), activation weeks after the 

application can still offer a substantial amount of weed control.  

Across all sites and observation times, pyroxasulfone and s-metolachlor tended to result 

in the highest level of Palmer amaranth and waterhemp control. Pendimethalin resulted in the 

lowest level of Palmer amaranth and waterhemp control at all sites and observation times. 

Analysis of the main effect of rate (Table 2.3) revealed differences across the high, 

middle, and low rates, and data were pooled across herbicides because of the lack of an 

interaction of herbicide by rate (Table 2.7). The high rate, regardless of site or observation time, 

resulted in a higher level of Palmer amaranth and waterhemp control when compared to the low 

rate. The middle rate performed better than the low rate except for Hutchinson 8WAT and 

Ottawa 4WAT where control was the same and the high rate was better than the middle rate at 

Hutchinson 8WAT and at Ottawa 8WAT (Table 2.7). Increasing the rate of VLCFA herbicide 

has been demonstrated to increase weed control at later observation timings (Grey et al. 2014; 

Knezevic et al. 2009; Meyers et al. 2010; Geier et al. 2006; Walker and Zimdahl 1981). 

 

 

 



52 

S-metolachlor and Metolachlor Compared 

 Data for S-metolachlor and metolachlor were extracted from the bulk data set and pooled 

across sites and application timings for both observation times (Table 2.4). At both observation 

times, S-metolachlor provided a higher level of Palmer amaranth and waterhemp control than 

metolachlor (Table 2.8). Numerical differences between the high, middle, and low rates of each 

herbicide reveal that the high rate of metolachlor (1068 g ai ha-1) was required to deliver 

comparable control to that of the low rate of S-metolachlor (2136 g ai ha-1). The high and middle 

rates of S-metolachlor resulted in better control when compared to all rates of metolachlor (Table 

2.8). Differences in efficacy observed between S-metolachlor and metolachlor is likely due to the 

biological function of the proportion of the resolved S-isomer as found in S-metolachlor (Shaner 

et al. 2006; Blaser 2002; O’Connell et al. 1998). 

 

Practical Implications and Conclusions 

 VLCFA herbicides should not be used as a stand-alone treatment. An inhibitor of 

photosystem II (e.g., metribuzin or atrazine) or an inhibitor of protoporphyrinogen oxidase (e.g., 

fomesafen) are often tank mixed with a VLCFA herbicide as an additional effective site of action 

(Wuerffel et al 2015; Whaley et al. 2009; Steckel et al. 2002; Akobundu et al. 1975). Timely 

rainfall for activation is required. Because VLCFA herbicides generally do not provide reach 

back control for flushes of weeds that emerged after application but before activation, producers 

can be reluctant to invest in this class of herbicides. In this study, delayed activation did 

contribute to reduced control. However, it is important to communicate that weeks of control of 

later emerging weeds can still be observed, once the herbicide is activated.  
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Because of extended emergence, the 4WAT observation times resulted in a higher level 

of Palmer amaranth and waterhemp control when compared to 8WAT. In addition to herbicide 

leaching out of the zone of germination for Palmer amaranth and waterhemp, decreasing control 

over time is due to the various degradation mechanisms (e.g., microbial) of VLCFA herbicides 

(Beestman and Deming 1974). Therefore, when producers make sequential applications (e.g, 

PRE followed by POST), additional control could be expected if a VLCFA herbicide is utilized 

in the tank mix in both applications (Steckel et al. 2002). By increasing the amount of VLCFA 

herbicide in soil solution, the potential to select for resistant biotypes through repeated low dose 

exposure would be reduced (Busi et al. 2012).  

The high to middle rate, regardless of herbicide, tended to result in a superior level of 

Palmer amaranth and waterhemp control when compared to the low rate; therefore, the low rate 

range should be avoided when making VLCFA herbicide applications. Unfortunately, it can be 

difficult for producers to implement this recommendation as many premixes that contain a 

VLCFA herbicide are formulated with a reduced rate of VLFCA herbicide. Producers should 

consider the amount of active ingredient that will be applied when selecting an herbicide premix 

(Owen 2016). The high, middle, and low rates for this experiment were based around labeled 

soybean recommendations and the soils at the experiment sites (Table 2.1, 2.2). Rate structure of 

VLCFA herbicide will change depending on crop and soil type. Control of Palmer amaranth and 

waterhemp could be affected by the total amount of VLCFA herbicide applied as well as the 

adsorption and persistence of the VLCFA herbicide in a soil.  

S-metolachlor and metolachlor are often used synonymously when making weed 

management recommendations; however, a higher degree of Palmer amaranth and waterhemp 

control should be expected with S-metolachlor compared to metolachlor. The high rate of 
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metolachlor will tend to result in less Palmer amaranth and waterhemp control when compared to 

middle and high rates of S-metolachlor. Therefore, producers must consider the additional value 

of S-metolachlor when selecting a VLCFA herbicide. Unfortunately, it can be difficult for 

producers to make this value differentiation when metolachlor is often priced much lower than S-

metolachlor (Thompson et al. 2017). S-metolachlor is often available in premixes with other 

herbicides which could offset the additional cost of S-metolachlor as well as provide the 

producer with additional effective sites of action for herbicide resistance management.  

As an outcome of this study, VLCFA herbicides should be utilized as part of an 

integrated weed management plan for control of small seeded broadleaf weeds such as Palmer 

amaranth and waterhemp. Best management practices for managing herbicide resistance, such as 

using multiple effective sites of action, should always be implemented to help ensure the long-

term resilience of VLCFA herbicides and control of driver weeds. All VLCFA herbicides 

provided superior control when compared to the microtubule-inhibiting herbicide pendimethalin. 

Of the VLCFA herbicides compared, pyroxasulfone and S-metolachlor tended to provide the 

highest level of control across sites and observation times for both Palmer amaranth and 

waterhemp. 
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Figure 2.1 VLCFA herbicide usage as a percentage of planted soybean area in the 

Midwest as well as number of VLCFA active ingredients reported per survey year 

(NASS 2017).  
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Figure 2.2. Precipitation at Manhattan, Hutchinson, and Ottawa, KS as a percentage of 
the 30 yr normal from 1980 to 2010 (Arugez et al. 2010) for April, May, June, and 
July.  
a April and May precipitation data is excluded for Manhattan 2015 because treatments 

were not applied until June 1, 2015. 
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Figure 2.3. Average daily air temperature (oC) at Manhattan, Hutchinson, and Ottawa, 
KS, for April, May, June, and July.  
a April and May temperature data is excluded for Manhattan 2015 because treatments 

were not applied until June 1, 2015. 
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Table 2.1. Herbicide application dates and soil characteristics at experiment sites.a,b 

  June 2015 April 2016 June 2016 
Site characteristics  Manhattan Hutchinson Ottawa Hutchinson Ottawa 
PRE application date June 1 April 12 April 13 June 6 June 6 
Soil series Reading c Ost d Woodson e Ost Woodson 
Soil texture silt loam loam silt loam loam silt loam 
Sand (%) 16 30 6 30 8 
Silt (%) 60 46 64 46 64 
Clay (%) 24 24 30 24 28 
Soil organic matter f (%) 2.6 2.6 3.3 2.6 3.5 
Soil pH 7.3 5.0 7.0 6.3 6.6 
Soil cation exchange 
capacity (meq/100g)g 

17.0 24.7 18.5 22.6 17.9 

a Abbreviations: meq, milliequivalents. 
b All soil characteristics assessed from a 0 to 7.6 cm soil sampling depth. 
c Fine-silty, mixed superactive, mesic Pachic Argiudolls 

d Fine-loamy, mixed superactive, mesic Udic Argiustolls. 
e Fine, smectic, thermic Abruptic Argiaquolls.  
f Loss-on-ignition (Ball 1964).  
g Adjusted to 7 pH (Rich 1969). 
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Table 2.2. Factorial of herbicides and rates used for PRE applications. a  

Herbicide  
Trade 
Name 

 Rate  
Manufacturer Location Low Middle High 

  g ai ha -1   
†Acetochlor  Harness® 1471 2207 2943 Monsanto Company St. Louis, MO 
Acetochlor 
(encapsulated) 

Warrant® 1051 1367 1682 Monsanto Company St. Louis, MO 

†Alachlor Intrro® 1682 2523 3364 Monsanto Company St. Louis, MO 
Dimethenamid-P Outlook® 630 841 1052 BASF Corporation Research Triangle 

Park, NC 
Metolachlor Stalwart®  1121 1682 2242 Sipcam Agro USA, 

Inc. 
Roswell, GA 

S-metolachlor Dual 
Magnum® 

1068 1602 2136 Syngenta Crop 
Protection, LLC 

Greensboro, NC 

Pendimethalin Prowl® 
H2O 

799 1198 1598 BASF Corporation Research Triangle 
Park, NC 

Pyroxasulfone Zidua® 89 134 179 BASF Corporation Research Triangle 
Park, NC 

†Treatment only used in 2016 experiments. 
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Table 2.3. Analysis of significance of fixed effects and all interactions for Palmer amaranth control at Manhattan and Hutchinson, KS and waterhemp control at 
Ottawa, KS.a 

 Manhattan 2015 Hutchinson 2016 Ottawa 2016 
Fixed Effects 4WAT 8WAT 4WAT 8WAT 4WAT 8WAT 
 P Value F Ratio P Value F Ratio P Value F Ratio P Value F Ratio P Value F Ratio P Value F Ratio 
Timing - 

 
- 
 

- 
 

- 
 

<0.0001 67.53 
 

0.0923 2.872 0.5967 0.2812 0.0762 3.190 

Herbicide <0.0001 97.80 <0.0001 77.55 <0.0001 16.91 <0.0001 17.0641 <0.0001 5.054 <0.0001 6.434 
Rate <0.0001 20.09 0.0002 10.12 <0.0001 7.300 0.0006 7.858 0.0002 8.935 <0.0001 11.88 
Rate by timing - - - - 0.0862 1.006 0.0736 4.551 0.1584 10.67 0.0641 2.802 
Herbicide by timing - - - - 0.0111 2.724 <0.0001 4.941 <0.0001 7.432 0.0005 3.977 
Herbicide by rate 0.0833 1.805 0.3677 1.118 0.9648 0.4245 0.9333 0.4941 0.0725 1.652 0.9740 0.3967 
Herbicide by rate by 
timing 

- - - - 0.9216 0.5146 0.5321 0.9266 0.9303 0.4996 0.9386 0.4840 

a Abbreviations: WAT, weeks after treatment. 
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Table 2.4. Analysis of significance of fixed effects and all 
interactions for Palmer amaranth and waterhemp control for S-
metolachlor and metolachlor.a 

Observation time Fixed effect F-Ratio P-Value 

4WAT 
Herbicide 9.9000 0.0021 

Rate 4.2324 0.0170 
Herbicide by rate 0.3252 0.7231 

 

8WAT 

 

Herbicide 17.6189 <0.0001 
Rate 4.7824 0.0102 

Herbicide by rate 0.3980 0.6726 
a Abbreviations: WAT, weeks after treatment. 
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Table 2.5. Rainfall data for each week after PRE application.  

   Rainfall 
   Weeks after PRE application 
Location Year  PRE 1 2 3 4 5 6 7 8 
     

 
cm  

 
Manhattan 2015  June 1 4.5 4.5 0.9 0.7 1.3 7.3 1.9 1.1 
Hutchinson 2016  April 13 6.3 0.3 4.9 0.2 1.7 8.1 6.7 0.0 
 2016  June 6 0.0 7.7 2.4 5.6 1.1 2.1 0.0 4.0 
Ottawa 2016  April 13 4.5 4.5 0.9 0.7 1.3 7.3 1.9 1.1 
 2016  June 6 0.0 2.6 0.2 8.2 3.3 0.7 0.0 3.5 
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Table 2.6. Palmer amaranth control at Manhattan and Hutchinson, KS and waterhemp control at Ottawa, KS.a,b 

 Manhattan 2015 Hutchinson 2016 c Ottawa 2016 c 
Herbicide 4WAT 8WAT 4WAT 8WAT 4WAT 8WAT 

 
 %  
  

†Acetochlor - - 94abc 87a 80ab 65bc 
Acetochlor (encapsulated) 68c 56c 93bc 84a 68cd 64bc 
†Alachlor - - 94abc 76b 65d 51d 
Dimethenamid-P 92a 85a 91cd 73b 70bcd 54cd 
Metolachlor 83b 73b 93bc 73b 69cd 56cd 
S-metolachlor 92a 87a 93bc 83a 78abc 69ab 
Pendimethalin 48d 26d 79e 67c 62d 46d 
Pyroxasulfone 96a 91a 95ab 87a 82a 78a 
a Abbreviations: WAT, weeks after treatment. 
b Means followed by the same letter within a column are not statistically different per Fisher’s Protected LSD (α = 
0.05). 
c April and June application timing data per site pooled for analysis. 
†Herbicide only present in 2016 site years. 
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Table 2.7. Palmer amaranth control at Manhattan and Hutchinson, KS and waterhemp control at Ottawa, KS by 
application rate pooled across herbicides.a,b 

 Manhattan 2015 Hutchinson 2016 c Ottawa 2016 c 
Rate 4WAT 8WAT 4WAT 8WAT 4WAT 8WAT 

  %  
  

Low 73b 63b 89b 76b 66b 52c 
Middle 81a 71a 92a 78b 72ab 60b 
High 84a 75a 93a 82a 78a 70a 
a Abbreviations: WAT, weeks after treatment. 
b Means followed by the same letter within a column are not statistically different per Fisher’s Protected LSD (α = 0.05). 
c April and June application timing data per site pooled for analysis. 
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Table 2.8. Palmer amaranth and waterhemp control with S-metolachlor and metolachlor pooled across sites 
and application timings.a,b 

 4WAT  8WAT 

Herbicide High Middle Low 
Average of 
herbicides High Middle Low 

Average of 
herbicides 

  %  
  

S-metolachlor 92 89 86 87a 84 81 75 79a 
Metolachlor 87 80 76 79b 76 66 63 66b 
a Abbreviations: WAT, weeks after treatment. 
b Means followed by the same letter within a column are not statistically different per Fisher’s Protected 
LSD (α = 0.05). 
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