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CHAPTER 1

INTRODUCTION

The adaptive linear predictor configuration shown in Fig. 1-1 is a
scheme which has found a variety of applications, such as line enhancement
[1], spectral estimation [2], speech enhancement [3], and intrusion detect-—
tion [4]. An integral part of the adaptive predictor is a finite impulse
response (FIR) filter, whose coefficients (welghts) are updated continuously
via a variety of algorithms. They can be updated, for example, using
information related to the prediction error e(k) (see Fig. 1-1), using
Widrow's least-mean-square (IMS ) algorithm [1]. Information pertaining to
the input correlation matrix Exx(k) can also be used, as is the case with
a class of sequential regression (SER) algorithms [5,6], one of which [5]
is also referred to as Godard's algorithm [7]. The IMS and SER filters are
usually implemented in the form of a tapped delay line model (see Fig. 1-2),
where gi(k) denotes the i-th filter coefficient (weight) at time k, N is
the number of weights, which also equals the number of past values x(k-1),
x(k=2),...,%x(k=N) used to predict x(k). This class of filters is optimum
in that if the input is stationary,T then the predictor weights (or their
expected value in the LMS case) converge to the Wiener solution.

Since the SER algorithms utilize information related to the input
correlation matrix Zxx(k) to update the filter weights, their implementa-

tions involve matrix operations. In contrast, the LMS algorithm involves

1-i.e., the input correlation matrix is positive definite.
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Fig. 1-2. Tapped delay line predictor.



only scalar operatiomns, since no information related to Exx(k) is used.
Thus the IMS algorithm is relatively easier to implement, while SER
algorithms possess superior convergence properties.

Another realization for the predictor in Fig. 1-1 is a lattice
structure [9-11]. For example, if A=1 in Fig. 1-1, then the corresponding
lattice structure is shown in Fig. 1-3. The lattice outputs ej(k) and
Wj(k) are called the "forward" and "backward" prediction errors, respec-
tively, at the j~th stage, and Ej(k) is the corresponding lattice weight.
The error output eN(k) corresponds to e(k) in Fig. 1-1. Several methods
for updating the ﬂj(k) using information related to the forward and reverse
prediction errors are discussed in [8~10]. In each case, only scalar
operations are necessary. It has been shown that these lattice structures
have superior convergence properties relative to the LMS algorithm, since

the backward prediction error w,{(k), ji=1,2,...,N are mutually uncorrelated.

3

Again, such lattice structures are also optimum in the sense that conver-
gence to the minimum mean-squared-error is achieved if the input is wide~

sense stationa:y.+

The maln objective of this study 1s to introduce the notion of

escalator structures for implementing the predictor in Fig. 1-1. For the

purpose of discussion, we consider the case A=l and N=3 in Fig. 1-1. Then
the corresponding escalator structure is shown in Fig. 1-4, and will be
shown to have the following properties:

{1} It consists of 3 stages corresponding to N=3. In general, there

are N stages.

1-i.e., the input correlation matrix is Toeplitz, im addition to being

positive definite.
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2) The output yi(k—m) are prediction errors at the i-th stage, as
summarized in Fig. 1-4.

3) The prediction errors yl(k—2), yz(k—l), and y3(k) are mutually
uncorrelated; in general, the errors yi(k~N+i), i=1,2,...,N are

mutually uncorrelated,

i
h|

total number of weights ai(k) is given by

4) The i-th stage has (N+l-i) weights a|(k), j=1,2,...,N+l-i. Thus the

N+ (N-1) + (N-2) + ... + 1 = N(N+1)/2 (1-1)
These a?(k) are updated using the steepest descent approach and
minimizing the squared values of the errors yi(k-m), as indicated
in Fig. 1-4.
5) The final prediction error is y3(k), which in the general case is

yN(k), corresponds to e(k) in Fig. 1-1.

From the above discussion it is apparent that the desjired prediction
error ys(k) in Fig. 1-4 is attained via an escalator effect using sets of
prediction errors associated with (N~1) prior stages. Hence we shall refer
to the equations used to update the escalator weights a?(k) as the adap-
tive escalator predictor (AEP) algorithm. An important property of the AEP
algorithm is that if the input is stationary (i.e., Exx(k) is positive
definite), then it is optimum in the sense that the final output mean
squared error converges to the minimum mean squared error. In additionm,
only scalar operations are necessary to update the weights mi(k). These
operations are essentially the same as those used to update the lattice

welghts via an adaptive lattice predictor algorithm proposed in [9].
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Stage 1: yl(k) = error to predict x(k) using x(k-3)
yl(k-l) = agrror to predict x(k-1) using x(k-3)

y. (k=2) = error to predict x(k~2) using x(k-3)
1

Stage 2: yz(k) = error to predict x(k) using x(k-2) and x(k-3)

yz(k-l) = grror to predict x{(k-1) qsing x(k=2) and x(k-3)

Stage 3: YB(k) = grror to predict x(k) using x(k-1), =(k-2) and x(k=3)

Fig, 1-4, Prediction considerations wia an escalator
structure for A=1 and N=3.



While 2N update equations are involved in the lattice case, N(N+1)/2
equations are encountered in the case of escalators. However, escalator
predictors possess two important advantages over thelr lattice counter-
parts. These are as follows:

1) For stationary inputs, they are optimal for a larger class of inputs,
in that the input correlation matrix Zxx(k) needs only be positive
definite--i.e., optimality is not restricted to wide-sense stationary
processes.

2) There are N mutually uncorrelated errors yi(k—N+j), i=1,2,...,N,
involved, and hence the convergence rate is not dependent on the
gigenvalue distribution of Exx(k), as is the case with the LMS
algorithm. In addition, since the escalator predictor has N(N+1)/2
weights that are updated, compared to 2N weights in the lattice
case, the AFP algorithm tends to converge faster. This aspect is

illustrated via experimental results presented in Chapter 6.



CHAPTER 2

DIAGONALIZATION OF SYMMETRIC MATRICES

Given a symmetric matrix Exx’ it can be shown that there exists a
nonsingular unit lower triangular (ULT) matrix W, such that W Exx W' is
a diagonal matrix [10,11], which is unique. This W matrix can be computed
in the form of a product of N ULT matrices [12-14], as discussed in what
follows [13].

A symmetric matrix Exx can be partitioned in the form

i = (2-1)

where Al is a matrix obtained by striking out the first column and the
first row,

LI
Vi=lay, a9 0002y ol

prime denoting matrix (vector) transpose, and all is assumed to be nonzero.

Now, let
i 0
Wl = (2-2)
—V/all L
where IN is an identity matrix of order N. Then,
a,; 0
1 = -
Wl zxx Wl (2-3)
0 B

where B is a symmetric matrix of order N whose elements b

13 are given by



b

13~ 441,341 "

2141,1 24+1,1

a

11

(2-3.a)

The matrix B is then treated in the same way and the process is continued

until Exx is reduced to a diagonal form D, such that

D=WZI__ W
XX

= diag (dl’dZ""’dN+1)

where W = WN wN—l

process 1s now illustrated by an example for the case N=3,

where aij = aji’

From (2-2), we have

1
where aj = aj+l,l/all

Substitution of (2-5) and (2-6) in (2-3) leads to

' =
Wl zxx Wl

vee W, W

271

o B

81

31

a

241

i b

0

g 1)

832

By

342

0

Byy

oy

bay

213

393

o

843

and j = 1,2,3.

0

blZ

oy

b32

is the desired ULT matrix.

814
324

834

vy

a; # 0 and i,j = 1,2,3,4.

0

P13

by3

b

33

(2~4)

This factorization

(2-3)

(2-6)

(2-7)



where b,, can be computed by using (2-3.a).

ij

Similarly, for the submatrix B in (2-7), it follows that

0 0
1 0
W lo -a2 1
1
0 =a2 0
- 2
where a2 = b /b., and j = 1,2, and
3 T Py+1,17°12 v
al1 0
A 11
Wy Wy 2 W1 W= 1o 0 @
11
.0 0 c2l

.

(2-8)

Next, applying the above approach to the submatrix C in (2~8), we obtain

1
0
0
0

o O = O
w

-

3
where a] c21/c11 .

Hence, the desired diagonal matrix D is obtained as the product

1] 1 | »
W3 W2 Wl Zxx Wl W2 W3 3 l.e.,

D=WZI W
Xx
which yields
a 0
. 0 bll
0 0
0 0

[ e ]

0

- O O O

11

where W = W, W, W,. The above computations

3721

A O O O

11

(2-9)

are summarized in Fig. 2-1.

10
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CHAPTER 3

DIAGONALIZATION OF AUTOCOVARTIANCE MATRICES

We consider the case when W is a unit lower triangular (ULT) transform

matrix, as illustrated in Fig. 3-1.

Input , X(k) W Output, Iy(k)
.

Fig. 3-1. A ULT transform interpretation.

The input vector X'(k) = [x(k~-N) ... x(k=1) x(k)] consists of zero-
mean random variables x(k-i), i=0,1,2,...,N. Thus, the output data vector

zﬂ(k) can be expressed in matrix form as

Y00 = WER (3-1)
where
(1 0 0 ea 0]
_Wl,l 1 0 - 0
W = -Wz’z _Wz,l l e 0
-, -W ces =W 1
- "N,N N,N-1 N,1 4

and gﬂ(k) e [YN(k-N) yN(k-N+;) cus YN(k‘l) vl .
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Let zxx denote the input autocorrelation matrix which is assumed to
be positive definite. Then, the corresponding output autocorrelation
matrix zyy is given by

zyy =WZI_ W (3-2)

However, from the discussion in the previous chapter, it follows that I

is a diagonal matrix. Hence the components XN are mutually uncorrelated;

i.e.,
E[YN(k“i) YN(k-j)] - dij 3 d=j

=0 ;i

Equation (3-1) can alternately be written as

y (k=) = x(k-N) ,
N-1

k=) = x(k=1) = ] wy , o x(k=1-1) (3-3)
3=1 ’

for i=0,1,2,...,N-1 ,
which represents a one-step delay predictor if yN(k*i) is treated as an
error between x(k-i) and its predicted value R(k-i),
N-i
#(k-1) = ] wy . j x¥(k=im9) , 1=0,1,...,8-1 .
b ’

For the special case when the input is an N~-th order Markov process, it
has been shown that W in (3-1) is a banded ULT matrix [15]. Again, it can
be shown that (see Appendix A) the elements of the (n+l)-th row of W cor-
respond to the optimum (Wiener)} ccefficients of a one-step delay predictor
which uses n past input values. The corresponding filter structure can be
realized as a bank of N FIR filters, where (N-i) past input values are used
to predict x(k-i). In the chapter that follows, we show that (3-3) can be

realized in the form of an escalator structure.
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CHAPTER 4

ESCALATOR STRUCTURE DERIVATION

From (2-4) it follows that we can factorize W in (3-1) into N+1 matrices

Wi’ i=1,2,3,...,N. Hence, we have the implementation shown in Fig. 4-1.
X(k)=¥, (k) (k) ¥, (k) ¥y (k
..._:_'q_.._-. Wl % Wz u-—-—"Z-----n-. Wi L—-_-is(-_.)--_h WN = aat
T (k)
Fig. 4-1. ULT transform implementation in factored form.
We define the following vectors with respect to Fig. 4-1:
Yok} = X' (k) = [x(k-N) ... x(k-1) x(&)] ,
. _ ; o -
K = [y, (kW) oen oy, (k=1) v ()] (4-1)

for L = 1,2,444,N
where x(k) is the current input sample, and yi(k-j), j=0,1,...,N are the
output of the i-th stage. The output of the i~th stage at time k is given by

From the discussion given in Chapter 2, it follows that Wi is given by

i-th column

p= + -
l 0 OIII 0 LI N ]
0.e 0 aus
l . e B 0 L3 [ ]
1
Wy = r ¥ eyl B (4=3)
. a - l .
-ui 0
0 0 0 s ... 1



To illustrate, consider the case N=3. Then, the output of the first

stage is given by

¥, () = Wy X(K)

1 0 0 0] [x(k=3)]
-ai 1 0 o] [|xx-2)

= —u% 0 1 ol {xx-1)
L-aé 0 0 1l x(k)
% (k-3) I [y (=3)]
x(k-2) —ai x(k~3) y, (k=2)

% - - (4=4)
x{k-1) -, x(k-3) yl(k*l)
2(0) -aé x(k=3) 7, ()

o L o

Similarly, the remaining stages can be Implemented as illustrated in the
signal flowgraph shown in Fig. 4-2.

For example, when N=3, the computations in Fig. 4-2 result in the
escalator structure shown in Fig, 4-3. Again, from (3-3), yN(kmi),
1=0,1,...,N-1 is the error between x(k-1) and its predicted value %(k-i),
where

N-1
2(k-1) = ] we . (1) x(k-i-i) , (4=5)
N-i
J=1
i=0,1,...,N~1 ,
where wN_i(j) are functions of the a; which are elements of the Wi
matrices in (4-2).

943 7 ¥3-1,3-1

Qs = @ for Jj=i+l

15
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qij =1 , fori=j

qij 0 , fori>j 1+ i,i=1,2,...,0+1 .

where qij are elements of W' .

A fundamental property of the escalator structure is that at the
output of stage 1, yl(k-N), which is same as x(k-N), 1s uncorrelated
with respect to all the other outputs at that stage. Next, yz(k~N+l),
which is the prediction error between x(k-N+l) and its predicted value

al x(k-N), is uncorrelated with respect to all other outputs of that

1

stage, etc., Finally, at the output of the N~th stage, the prediction
errors yN(k—i), i=0,1,...,N are mutually uncorrelated with respect to
all other outputs at the N-th stage. In other words, the uncorrelsted

prediction error yN(k-i), i=0,1,...,N , are obtained in N stages, one

prediction error per stage.

(4-6)

17
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CHAPTER 5

ADAPTIVE ESCALATOR STRUCTURES

When the input process is not stationary, the weights of filter must
be updated. To this end, we introduce the following notation:
y4Get) =y, ) (ke1) = @300 3, (ken) (5-1)
for j=1,2,...,8 , 1=0,1,...,(N-}) , m=N-i~j+1 , n=N-j+1 , and
yo(-) 2 x(+) . In (5-1), we note that there are N(N+1)/2 weights ai(k)
to be updated. Using the steepest-descent approach, ai(k) is updated

as follows:

ad er) = ad) - 0 —F— yla-0) (5-2)
3 o (k)
m
Substitution of (5~1) in (5-2) results in
ad (k1) = ad ) + 20 y, (1) y,_ (km) (5-3)

As in the case of adaptive lattice structures, (5-3) will have to be
modified so as to account for the variance estimate of the prediction

error yj_l(k—n) at the output of the (j-1)~th stage. Thus, we have

] . u . -
am(k+1) am(k) + 5 [yj(k i) yj_l(k nyl . (5~4)
a_ (k)
y
where p 1s a normalized adaptive step-~size parameter, and the variance
ci(k) is estimated via the relation [8]

ci(k+l) = 8 ci(k) + (1-8) yg_l(k—n) . (5-5)

We refer to (5-4) as the adaptive escalator predictor (AEP) algorithm,
where di(k) is updated via (5-53). The block diagram of AEP is drawn in

Fig. 5-1.
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CHAPTER 6

EXPERIMENTAL RESULTS

A white noise sequence is saﬁpled at the rate of 128 sps and passed
through two 8-pole bandpass filters to generate two band~limited noise
sequences. One filter has its cutoff frequencies at 15 Hz and 25 Hz, and
the other at 40 Hz and 50 Hz, respectively. They are added to get an input
signal whose power density spectrum is shown in Fig. 6-1. For the purpose
of comparison, the adaptive lattice predictor (ALP) algorithm [9] is used
in addition to the AEP algorithm. In each case, 8 sections (i.e., past
input values) are used for prediction purposes.

The parameters y and B were 0.05 and 0.95, respectively, for the AEP
algorithm. Two different values were used for the ALP algorithm. The
convergence parameter (o in [10]) and the smoothing parameter (R in [10])
were 0,02 and 0.98, respectively, to get the output shown in Fig. 6-2 (B)
and 0.05 and 0.95 for Fig., 6-2 (C). The input and the corresponding out-
puts are shown in Fig. 6-2.

Next, the results in Fig. 6-2 were used to obtain the "learning curves"
displayed in Fig. 6~3. These curves were obtained by computing the running
mean-squared-error of the predictor outputs. A window width of 200 samples
was used.

From Fig. 6-3, the superior performance of the escalator predictor is
apparent relative to that of the lattice predictor, in both the transient
and steady-state stages. We can also see that the output in Fig. 6-2 (B)
converges faster than that in Fig. 6-2 (C). However, the steady state error

in Fig. 6-2 (B) is slightly larger than that in Fig. 6-2 (C).
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CHAPTER 7

CONCLUSIONS

The AEP algorithm we have developed is pertinent to an escalator
structure which enables one to realize Wiener predictors associated with
positive definite correlation matrices; see Appendix A. It is important
to note that no matrix operations are necessary to update the escalator
weights, as is the case with the LMS and ALP algorithms. However, the
experimental results that have been presented demonstrate that the AEP
algorithm has superior convergence properties.

We add that another way of realizing Wiener predictors associated with
positive definite correlation matrix is via the Gram~Schmidt structure {11].
However, the pertinent updating is done using the final output error, as
opposed to local (or intermediate) errors that are used in the escalator
structure. Thus, it is reasonable to expect that the AEP algorithm will
converge faster than the algorithm proposed in [11].

( Future work will be devoted to deriving escalator structures for the

filter and noise cancelling modes, and studying their properties. )
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APPENDIX A

The escalator method [16] approach is used to show that the (n+l)-th
row elements of W in (3-1) are the optimum (Wiener) weights to predict
x(k~N+n) using n past input values.

Now, it is known that the optimum weights for prediecting x(k) by

using N past values, is given by [1]

-1
Gy = By Py
,
where GN [gl,N gZ,N sk gN,N] is the optimum weight wvector,
Ry = E[X(-1) X(k-1)'1
(A-1)
Py = E[x(®) X(x-D)] ,

and Xk=1)" = [x(k~-N) ... x(k=2) =x(k-1)] .
Thus, to predict x(k-N+n) by using n past values x(k-N+j), 3i=0,1,...,(a-1),

we need n weights given by

G, =-R"~ P (4-2)
where Gé = [gl,n 8yt gn’n] ,
R = E[X(k-m) X(k-m)'] ,
P = E[x(k-¥m) $(k-m)]

for m = N-n+l, and X(k-m)' = [x(k-N) ... x(k-m)] .
It is observed that the elements of Gn’ n=1,2,...,N are the solutions
of the following system of n equations:

+ a

BigBy o T BBy g Foove BBy By YAy =

aZlgl,n + a2232,n Foawa F az,ngn,n + 32,n+1 =
; (A-3)

.:-11_1’1gl’n + an,282,n + e T an,ngn,n + an,n+l =0 , n=1,2,...,N
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where 8ij = Efx(k=(N-i+1)) x(k-(N-j+1})]

for i = 1,2,-.-,1'1 and j = 1,2,|.o,(ﬂ+l) *

With n=2, for example, (A-3) yields

a1981p F 3198y *a;4=0

391817 F 832855 T 853 = 0 (A-3.2)
where

a;, = Bl (W] 5 ay, = a,; = Elx(e-N) x(k-N+1)]

2y, = Elx°(¥H1)] , a, = E[x(-N) x(k-¥2)] , and

3y, = E[x(k-1) x(k-M2)] .

We now define a unit upper triangular matrix Z whose elements are solu-
tiOIl.S Of (A-S) for n=l,2,...,N 3 i-e.,

(n+l)-th column
+

1 8y gy e 81,0 **" 81,y
1 322 a8 gz,n LR BN gZ,N
l . » : :
Z = a. gn,n (A-A)
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Then, from the escalator method [16] it follows that Z has the following

property:

z' Zxx Z=0D (A-5)

where zxx = E[X(k) X(k)'] and 5 is a diagonal matrix., Comparing (A-5)
with the general form of (2-4) and using the fact that the ULT matrix W
igs unique for a given positive definite zxx’ we conclude that 2' = W,
Thus we have the desired result

=w

Ri,n - Yn,n-itl

for i=1,2,...,n and n=1,2,...,8 .



APPENDIX B

FORTRAN program to simulate the AEP algorithm as described
in Chapter 5. Work was done with NOVA 1200 in the Depart-

ment of Electrical Engineering, Kansas State University.
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ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



YAESCFM.FR Ar29/78 227 41 9 DIRECTORY: FORT

aoooaocooconNnoOaon

0

OO0 Ciw

[y

00K 20002030 20 k0K 2 g 3 o K K KR K KK K K R kK K K
YAESCFM.FR

ISW=1 ! INFUT DATA IS SHIFTED 1-BY-1
=Q ! INFUT DATA IS5 VECTOR FORM
! BOTH OF THEM CAN EE NORMALIZED

0K 3 0000 o R OR K K  R OK K IOKOR KROK SKOK R KRR kR K

DIMENSION X{30:30)sFWR(3I0) »OUTPUR(IO)

CALL QUERY ('WANT COEF. 7 (YES/NQO)*»ILOE)
CALL QUERY (*NORMALIZE THE QUTFUT 7 (YES/NO) ", INOR)

ACCEPT *# OF ITERATIONS OF SaAME DATA SEQ. (ITER)Y ?*»ITER
ACCEFT *SEQUENCE (1) OR BLOCK (O0) DATA T (ISW)".1I5W
ACCEPT °"NUMERER OF PAST INFUT DATA (I1) 7*,»I1

ACCEPT "HOW MANY DATA (N) 7"sN

ACCEPT "VALUE OF EFSILON (EFS) 7*,EFS

ACCEFT *VALUE OF ALFA (A) 77:5A

ACCEPT "VALUE OF HETA (R) 7*:B

IF {INDR.NE,1) GO TO 21
ACCEFPT *VaLUE OF LELOUT (DELOQUT) 7?°*»DELOUT
ACCEPT "VaLUE OF BOUT (ROUT) 7*»ROUT

CONTINUE

IF (ICOE.NE.1) GO TO 11

ACCEPT 'EXECUTION TIME OF COEF. (IT) 7°.IT

CALL IOFEN (2»3»2r+1»0,"0UTFUT FILE NAME FOR COEF. T7%)
EONTINUE

CALL TOFEN (1y2922150+"QUTFUT FILE NAME 7")

ISTEP=I1+1
INUH=ISTEF

LO 1 Ji=1»INUM
FUR(J1)=0,
CUTFWR(J1)=0,
D0 1 J2=1,INUM
X(J1yJ2)=0,
CONTINUE

IF (ISW.EQ.0) N=N/(I1+1)

DO 100 ITEM=1+ITER
ICHA=ITEM+2 ,
CALL IOFEN (ICHAs1,2,1,0s*INPUT FILE NAME 7%)

DG 2 I=1.N

PAGE

i



YAESCFM.FR 4/,29/78 223 41 9 DIRECTORY:

IF (ISW.EQ.1) GO TO 12

DO 13 J=1,INUM

READ BINARY {ICHAv(ERR=%,ENI=99%) X(1,J)
CONTINUE

GO TO 14

DO 3 J=1,Ii
X{1,J)=X{1sJ+1)

CONTINUE
READ BINARY (ICHA»ERR=9)END=999) X{1,INUM)

M=0

no 4 Ji=1,I1
PWR(IL)=BXFWR(J1)+ (1. ~B) X {(J1y13%X(J1r1)
IF(PWUR(J1).LT.EPS) FPWR(J1)=EPS
ISTEF=ISTEP-1

M=M+1
bo 4 J2=1,ISTEP
X{J1+12J20=X{JLp 24 1) -XC(ISTEP+1+ J2+MIRX(J11)

XCISTEP+1 s J2+M)=X(ISTERF+1 J2+M) +AXX(J1+1,J20%X(J1 1) /FUWR(JD)

IF (ICDE.NE.,1) GO TO 4
IC=(ITEM-1)%N+I

IF (IC.LT.IT) GO TO 4
COEF=X(ISTEF+1sJ2+M)
WRITE RINARY (2) COEF
CONTINUE

IF (ISW.EQ.1Y GO TO 15
D0 16 J=1:INUM
IF (INOR.NE.1) GO TO 20

OUTFWR (J)=BOUT*OUTFWR(UI+(1 . -BOUTI®*X(J, 1) %X {Jr1)+DELOUT

X(J213=X{Jr 1) /SART(OUTFWR(JD )
WRITE BINARY (1) X<Jr1)
CONTINUE

GO0 T0 18

IF (INOR.NE.1) GO 7O 1%

FORT
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PAGE

QUTFWR (1) =ROUTKOUTFWR (1)+ (1, ~KOUT Y kX ( INUM» 1) XX (INUM» 1) +DELDUT

XCINUM»10=X(INUM»1)/0UTFUWR(1)

WRITE BINARY (12 X(INUMr1)
ISTEP=INUM

-

CONT INUE

CaLL CLOSE (ICHA»IEER)
CONTINUE

IF (ICDE.NE.1) GO TO 22
CALL CLOSE (2,1EER)
CALL CLOSE (1.IEER}

&



YAESCPH.FR 4/29/78 22 41 9 DIRECTORY! FORT PAGE 3
c
STOP
9 g TYPE*ERROR IN READ®
P99 CONTINUE
sSTOFP

END
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ABSTRACT

In this report, an escalator structure for linear prediction of a
process whose correlation matrix is positive definite, is introudced.
A corresponding adaptive escalator predictor (AEP) algorithm is also
developed. If N past input values are used for prediction purposes,
the AEP algorithm requires N(N+1)/2 escalator weights to be updated.
However, the updating process requires no matrix equations, as is the
case with adaptive lattice structures. However, while lattice structures
are realized assuming that the input correlation matrix is Toeplitz,
escalator structures require that it need only be positive definite.

Thus, escalator structures correspond to larger class of Wiener solution.



