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INTRODUCTION

In synthesizing a system, the objective function or functions which are

criteria for its performance are minimized (or maximized) subject to a

variety of equality and/or inequality constraints. The majority of the system

synthesis techniques are predicated on the assumption that a system has only

one objective or all of its objectives can be subsumed under one scalar

function; the optimal solution minimizes (or maximizes) only one objective

function. However, a real system frequently involves multiple conflicting

or non- commensurable objectives. This is especially true for a large scale

system. Several methods and their variations have been proposed for solving

problems with, more than one objective function and have been applied mainly

to economic and resource management systems.

Conventionally, a chemical and/or industrial process system has been

designed optimally by considering only one objective which is an economic

efficiency (profit or cost) , although it is often difficult or even

impossible to express variables and parameters associated with such s

system in a monetary unit. For example, the available energy is invaluable

to a nation where the energy resources are seriously depleted, since the

available energy once lost in a process cannot be recovered by any ?^.eavi>:

yet the cost of energy resources can be extremely low because of the

artificial or manipulated world market condition. Furthermore, the

excessive loss of available energy may result in severe pollution, which

in turn, may lead to destruction of the environment or the human life.

This again cannot be monetarily taken into account. It is natural that the

concept of multi-objective analysis should be introduced in synthesizing

a chemical and/or industrial process svstem.



This chesis consists basically of two portions. One is devoted to

the interpretations of the basic concepts and terminologies and the

comprehensive review of methods for a multi-objective problem (Chapter

II). The other is devoted to applications of the methods to the optimal

synthesis of a large heat exchanger system where two objectives are

simultaneously taken into consideration (Chapter III).



CHAPTER II

ON METHODS FOR DECISION MAKING WITH MULTIPLE OBJECTIVES



ON METHODS FOR DECISION MAKING WITH MULTIPLE OBJECTIVES

1. INTRODUCTION

Numerous papers have been published during the last fifty years on

systems synthesis or optimization techniques. These techniques have been

applied to many problems. The optimal solutions obtained, however, have

seldom been implemented for real systems. One of the major reasons is

the unrealistic nature of the solution of any of the problems which

optimize a single objective, as pointed out by Zadeh (1963):

"One of the most serious weaknesses of the current theories of optimal
control is that they are predicated on the assumption that the performance
of a system can be measured by a single number. The trouble is that, in

general, there is more than one consideration that enters into the assess-
ment of performance of a system and in most cases these considerations can
not be subsumed under a single scalar valued criterion."

Any real system to be synthesized is usually of multiple objectives or

goals, all of which cannot be attained completely because of a variety of

constraints which may be technical, economical cr ecological. The decision

maker must trade off one objective against others in synthesizing a system.

The subject of a multi-objective system is not new. The concept of

non-inferiority, which plays a key role in analyzing the system, has been

well known as the concept of the Pareto optimality in welfare economics

(see, e.g., Henderson and Quandt, 1971). Nevertheless, this subject has

not become a major concern of system scientists and engineers. It may be

due to the fact that a multi-objective problem does not always give rise

to a unique decision (solution) and often requires more or less subjective



evaluation by Che decision maker. Only lately have system scientists

and engineers become active in developing methods to systematically

trade off more than one objective and in applying the methods. General

discussion and reviews of the literature on multi-objective problems

have been presented by iMayor (1969), Freeman and Haveman (1970), Roy (1971),

Cohon and Marks (1975), Etoh (1976), and Nakayama and Sawaragi (1976).

In the present work, decision making methods for a multi-objective

problem are reviewed comprehensively and critically from the viewpoint

of system engineering. In addition, the basic concepts and terminologies

involved in such methods are explained.



2. INFERIOR, NON- INFERIOR, PREFERRED AND SUPERIOR DECISIONS

A multi-objective optimization (minimization) problem is generally

formulated as

Minimize

f.(x), t • 1, 2 n

subject to

g.(x) ^ 0, i « 1, 2,...,k

where x is an m-dimensional decision vector, and all functions, f
. (x) and

g_. (x) , are assumed to be non-linear. For simplicity, this is rewritten

in the vector form as

Minimize

f(x) (1)

subject to

sQs) 1 ° (2)

where f_(x) is an n-dimensional objective function vector, and _g_(x) is a

k-dimensional constraint function vector. Note that the objective function

vector, f_(x) , can be mathematically viewed as a mapping from the decision

vector space to the objective vector space. These two vector spaces are

manipulated simultaneously in a multi-objective problem. The region defined

by the constraint set in the m-dimensionai vector space

X = {x ! £(x) < 0} (3)

is referred to here as the feasible region in the decision space. Each

vector x e X determines a unique objective vector _fG0 in the n-d imensionai

vector space, and the feasible region in the objective space, F, is defined

as
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F = {f(x)
J

X £ X; (4)

Distinction between these two feasible regions, X and F, must be clearly

kept in mind in che ensuing discussion.

Definition: Inferior Decision

Decision x e X is an inferior decision (solution) if and only if there

exists at least one decision x' E X such that

_f (x' ) < f (x)

(5a)

f.(x') < f.(x)
i — i —

for some i = 1, 2,...,n. This can be stated equivalently as

f(x*) < f(x)

(5b)

f (x» ) * f (x)

Let us consider the following example involving two objectives and

two decision variables:

Minimize

f (x , x
9 ) = COS X- + |x« - lj + 1

f«(x.. , x») = sin x^ + 1

subject to

£ x < 2^

< x, < 3

Figures 1-a and 1-b show the feasible regions in the decision and objective

spaces, respectively. Decision a = (ir, 3) is an inferior decision, because

there is another decision b_ = (7tt/6, 1) which satisfies

1(b) <_ Ha)

f (b) * f (a)

We can verify that, from the sufficient condition, Eq. (5a), for a solution

to be an inferior decision, all decisions corresponding to the interior points

of the feasible region, F, are inferior decisions in any multi-objective problem.



Definition: Non-inferior Decision

Any decision x e X other than the inferior decisions (solutions) is

defined as a non-inferior decision. From this definition, we know that

the sets of the inferior and non-inferior decisions complement each

other.

Suppose that x' is a non-inferior decision. Then there is no

other decision x e X which fulfills the. condition that at least one

component of f(x) is less than and the remaining components are equal

to the corresponding components of f_(x* ) . In other words, any objective

function f.(x') can not be improved (decreased) without simultanously

degrading (increasing) at least one of the other objective functions.

The non-inferior decision defined here is also well known as the

Paratc optimum (Henderson and Quandt, 1971) or the efficient decision

(Geoff rion, 1967) in economics.

The set of non-inferior decisions for a minimization problem with

two objectives is indicated by the heavy solid lines in Figs. 2-a and

2-b . Two important properties of the non- inferior decisions can be

observed from these figures. All non-inferior points must lie on the

boundary of the feasible region in the objective space (see Fig. 2-b)

but not necessarily in the decision space (see Fig. 2-a). Though the

non-inferior set is continuous for a convex problem, it may not be for

a non-convex problem as shown in the figures.

Since the determination of the non-inferior set is insufficient in

most cases to uniquely synthesize a system optimally, the decision maker

must select one of the non-inferior decisions, which is considered to be

the best in some sense.
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Definition: Preferred Decision

A preferred decision is a non-inferior decision which is chosen as

the final decision (solution) based on some additional criteria. As the

preferred decision is the best fit for the criteria introduced by the

decision maker, some authors call it the optimal decision (solution) or

the best-compromise decision (Belenson and Kapur, 1973). Others (Zadeh,

1963; Haimes et al., 1975) have defined the optimal decision differently.

The term, a preferrred decision, will be used hereafter in the present

wo r k

.

Definition: Superior Decision

Decision x,' £ X is a superior decision if and only if

f_(x') <_ f(x) for any x e X (6)

This definition is identical to the definition of an optimal decision used

by some authors (Zadeh, 1963; Reid and Citron, 1971; Verauri, 1974; Haimes

et al., 1975). A superior decision is a special case of a non-inferior

decision because it does not satisfy the definition of the inferior

decision. Figures 3-a and 3-b show an example of a superior decision.

Note that most multi-objective problems have no superior decisions in the

feasible region. If there exist superior decisions, all of them correspond

to a unique point in che objective space, and the set of the non-inferior

objectives contains the superior point only. Inversely, if che non-inferior

set in the objective sapce consists of only one point, it is a superior

point and the associated decision vector or vectors are superior decisions.
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3. GENERATION OF THE NON-INFERIOR SET

Since no superior solution exist for many of the problems, the

decision maker is required to specify the preferred decision based on

the available information. The preferred decision must be selected

from the non-inferior set as mentioned previously. The knowledge of

the set of the non-inferior decisions in its entirety is particular I

useful for the selection of the preferred decision. This section is

devoted to che discussion of the techniques generating the non-inferior

set.

3.1 Weighting Method (Parametric Method)

Kuhn and Tucker (19 51) presented their well-known condition for the

cptir.ality of single-objective problems, and extended their work to

multi-objective problems to identify the non-inferiority condition (also

see Cohon and Marks, 1975). The condition states:

[f decision x £ X is non-inferior to a minimization problem with

multiple objectives, there exist an n-dinensional vector w and a k-

dimensional vector \ such that

if T 3g T

rJrj w + (-§) , =

w > 0, w t

£(x) < (or x e X)

• .g.(x) = 0, i = l,2,...,k

11°
This is a necessary condition for the optimality of a non-convex problem

and a necessary and sufficient condition for the optimality of a convex

problem. It is very difficult to solve these equations for decision

vector x either analytically or numerically, if f_(x) and jg_(x) are in the

general form.
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On the assumption that the feasible region is convex in the objective

space, Zadeh (1963) has shown that the Kuhn-Tucker condition for a non-

inferior decision for a multi-objective problem can be proved to be the

optimal condition for the following single-objective problem:

Minimize

J w
T
I(x) (8)

subject to

x z X

It follows that the entire non- inferior set of a multi-objective problem

can be obtained by finding the optimal solution to the problem having the

single objective function, J, with varying weight w in the non-negative

vector space except w = 0. This optimization problem is numerically much

easier to solve than the Kuhn-Tucker condition. The primary drawback

of this weighting method is the assumption of the convexity of reasible

region F.

Figure 4 provides the geometrical interpretation of this approach for

a three-objective problem. All planes with the nomal vector, w, can be

expressed by

T
w . _f(x) = constant (9)

The smaller the constant in this equation, the closer to the origin the

plane. This method searches the plane which satisfies Eq. (9) and which

supports the feasible region, F, because the objective vector, f_, corre-

sponding to the point of contact between the plane and the feasible region

yields the least value of the objective function given by Eq . (8).

For a problem with more than three objectives, Eq. (9) represents a set of

hyperplanes, and the feasible region, F, forms a hypervolume.



3.2 ^-constraint Method

This method is also based on the Kuhn-Tucker condition for non-

inferior decision (Cohon and Marks, 1975). The first equation of the

Kuhn-Tucker condition can be rewritten as

IT i T '_8 T

— 1=2 — —

Since only relative values of the weights are significant, we can assume

that w
1

is 1 without loss of generality. Thus, the equation becomes

3f
l T 3f T /

3^T
(3T } + C

fc? ^ + ^ i= ° (I0)

where

f = (f
?
(x), t\(x),...,f (x))

T
— i — _> — n —

T
- =

^w 2'
w 3' ' '

•

'

w
n

^

This equation allows us to interpret w in the second term as a Lagrangian

multiplier vector. This interpretation implies that a non- inferior decision

satisfying the above equation can be obtained by solving the optimization

problem:

Minimize

J = f
x
(x) (11,'

subject to

l(x) 1 e

_g_(x) < (or x = X) (12)

where z is an (n-1) -dimensional constant vector. z_ varies parametrically

to vield the set of non-inferior decisions. Note that each -: must not
i

be smaller than a certain value in order to render the feasble decision

set defined by constraint (12) non-empty. To identify the minimum value



of £
. , the following auxiliary problem with a single objective must be

solved.

Minimize

J. - f .00

subject to

x e X

where other objectives f . (x) , j 7^ i, are entirely neglected. The optimal

value of J. is the minimum value of e . . Though the s-constraint method
1 I s

is somewhat intricate compared with the weighting method, it is widely

used because of its applicability to non-convex problems.

3.3 Analytical Approach

For a certain class of problems, the non- inferior value of each

objective function can be expressed as an explicit function of the weights

on the objective functions (Reid and Vemuri 1971; Vemuri, 1974). This

method is limited to problems fulfilling the following two assumptions.

First, each objective f . (x) is of the Cobb-Douglas type:

m a . .

f. = n (x.)
13

, i = 1, 2,...,n (13)
1

3=1 J

where a., are real numbers. Second, no constraints are imnosed on the

decision variables except that x. > 0.
l

As pointed out by Zadeh (1963) , a non-inferior decision can be generated

by solving the minimization problem with the single objective function:

n

J = I w. f . (x)

i=l
X X ~

Applying the first assumption for f . (x) to this equation yields

n m a. .

J = : w. t (x.) 1J (14)
. . 1 . . 1
1=1 J=l
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This is Che so-called posynomial function because all x. are positive.

Then, the geometric programming (Beveridge and Schechter, 1970) is

applicable in solving this problem. The optimal objective function, J ,

can be evaluated from

n w. a .

J° -Ti (-1 )

X
(15)

i=l i

where
n

: r, - 1

1-1
X

(16)

I -x.3. - 0, j - 1, 2,...,m
i-1 J

Also, the following equations are valid for optimal decision x •

w

.

J - — f
±

(x ), i = 1, 2,...,n
"i

Therefore, we obtain the relationship between the optimal objective functions

and the weighting coefficients as

a . n w . -j.
.

f.(x°) = {---) it (—) \ i = 1, 2,...,n (17)
l w , . - ct

.

l i=l l

a. should be evaluated from the (M + 1) linear equations given by equality

constraint (16). If n •- m + 1, all a. can be determined uniquely. Otherwise,

we encounter an additional difficulty (Beveridge and Schechter, 1970).

sTien n > m + 1, there are more unknowns than equations, and equation (15)

must be minimized with respect to j. , a„,...,i subject to equality

constraint (16)

.

Once all 3. are determined, it is easy to calculate, by means of

Eq. (17), rhe optimal objective functions which correspond to the components

of the non-inferior objective function vector for the multi-objective
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problem. This method is powerful and requires less numerical effort

than the other methods, but its applicability is very limited because of

the imposed assumptions mentioned previously.

3.4 Other Methods

Beeson (1971) has presented the adaptive search approach which

incorporates the weighting method with the gradient searching method.

The weighting coefficients do not change systematically but randomly at

each step. The disadvantages of this method are the enormous computational

effort required and the inapplicability to the selection of the preferred

decision.

The goal programming and the goal attainment method were originally

developed for the selection of the preferred decision of a multi-objective

problem (Haimes et al., 1975). These methods are also applicable to

generating the entire set of non-inferior decisions by parametrically

changing the weighting factors which are involved in their formulations.

We shall discuss the two methods in detail later.
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4. TRADE-OFF SURFACE (CURVE) AND TRADE-OFF RATIO

Given an optimization Drobiem with n objectives, the set of non-inferior

objective vectors forms a (n-L)-dimensional manifold in a n-dimens ional

objective space. The manifold is called a trade-off surface. (Note that

our concern in this section is Limited to the problem which does not involve

the superior decision.) The trade-off surface can be (zranhically shown on

in the case of n = 2 or 3, and it can provide the significant information

to the decision maker selecting the preferred decision. For a problem with

more than three objectives, it is not easy to visualize the trade-off

surface, and, therefore, we should resort to mathematical aporoaches.

Suppose that the trade-off surface for a problem with n objective

functions is mathematically expressed as

G(D -

where G is a scalar function. Since anv non-inferior objective, f_, must

satisfy this equation, one component of f is dependent on the others and

determined by means of Eq. (13). Let us denote the dependent component bv

f.. Then, instead of Eq. (18), the trade-off surface may be expressed as

f. = f. (f.: i t i) (19)
i i j

The trade-off ratio between the i-th and j-th objectives is denoted by

T. . which is defined as

T = - —X
-

ij 9f (20)
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where f
.

is assumed to be dif ferentiable with respect to f The1
J

differentiation of Eq. (13) with respect to f yields
J

52- + ^_. !!i. o
jf. 3f. 3f.

J

J i J

or

3f
i 5G

. dg

j j i

Then another form of the definition of the trade-off ratio is written as

hi - <$h"fb (22)

As illustrated schematically in Fig. 5, the negative of the trade-off

ratio is the slope of the tangent to the trade-off curve between f. and f.
i 3

which is the intersection between the trade-off surface and the f.-f.
i J

plane. Thus, an increase of one unit in the j-th objective results in a

decrease of T.. units in the i-th objective, if all other objectives remain

at their current values. It has been shown that T. . has the properties
i.]

"

that (Haimes et. al., 1975)

T. .
= 1/T. .

(23)

T .
= T . T

.

lj ik kj

These properties allow us to calculate anv T.. from the set, {T,_, T,^,
ij 12 13

. . . , T
r

}. Furthermore, there is at least one positive trace-off ratio,
In

i.e., there is at least one 3f./3f. which is negative. The oositive trade-
i J

off ratios are of sDecial interest, since the two objectives related to the

positive trade-off ratio are in conflict with each other, that is, to

improve one of them, we must sacrifice, the other.
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It is well-known chat the trade-off ratio, T.., is closely related

with the generalized Lagrangian multiplier (Luenberger, 1973; Haimes and

Hall, 1974). As indicated in the section on the ..-constraint: method,

the generation of non-inferior decisions for a minimization problem with

mult iple object ives is essentially equivalent to solving the problem:

Minimize

J = E
1
(x)

subject to

f
±
(x) " e

±
1 0, i = 2, 3, . . ., n

x £ X (or g(x) < 0)

The generalized Lagrangian, L, is formed as:

n k

L = f. (x) + .- a.. (f.(x) - :.) + .:. u.g.(x) (24)
1 — i=2 la i — i i=l 11 —

Kuhn and Tucker (195].) have derived the necessary conditions for the

oDtimalitv of this problem. •
. must satisfv the conditions:

li

' u (f
±
C^) - £

±
) - 0, i = 2, 3, ..., n

•

1
.

> 0, i = 2, 3, ..., n

(25)

We are interested only In a problem where ever; objective conflicts with

at least one of the others. Then, there is at least one active constraint

which prevents the minimum value of L to be lower than a certain level.

Suppose that the active constraint is identified by subscript j. Then,

we nave

f.(x) =
.

3 ~ 3

(26)

K > o
ij
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at the optimum. On the other hand, by differentiating Lagrangian L with

respect to e
.

, we obtain

K •
= " — (27)

I3 9e.

By virtue of Eq. (26) and the fact that

L = f
x
(x)

for the optimal solution, Eq. (27) becomes

A - - -^ (28)

J

The right hand side of this equation is identical to the definition

of the trade-off ratio between the first and j-th objectives [see F.q. 20].

Furthermore, replacing subscript 1 by i yields an important relationship:

'-.
.

= T. . (29)

Table 1 summarizes the relationship between the trade-off ratio, T ,

and Lagrangian multiplier, A... The surrogate worth trade-oft method,

which is discussed later, is based on this relationship (Haimes and Hall, 1974)
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5. SELECTION OF THE PREFERRED DECISION

Since the objective function is a vector value function in a

multi-objective problem all feasible decisions cannot be ordered in

sequence by the use of the objective function as performed in the case

of a single objective. Thus, we need a scalar index representing the

decision maker's preference in finally deciding the preferred decision.

Alternatively stated, we have to introduce a scalar function, v(0, mapping

from the objective space to the preference space. Fingure 6 shows the

relationship among the decision, objective and preference spaces. The

scalar function, v(_f) , is termed as a value function. Its construction

is the same as that of a utility function, ordinal utility function,

preference function or wortn function in the literature (Keeney and Raiffa,

1976).

The form of a value function is chosen subjectively by the decision-

maker, but it should be a monotoneous function with respect to each

objective, f . In a minimization problem with multiple objectives, any

objective vector, _f, is preferred or indifferent to the objective vector,

_f + 5_, for any non-negative vector S_. Therefore, it it is assumed that

the smaller the magnitude of the value function the more preferred it is

by the decision maker, the value function, v(f) , must satisfy

v(_f) <_ v ( f -f- 6) for
_5_ _>

This condition implies that v(_f) is monotonically increasing with respect

to any component of f.
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Any two objectives f and _f_ ' , are comparable through a value function

and satisfy one and only one of the following relationships (Keeney and

Raiffa, 1976):

(1) f_ is preferred to £_' (written f_ y~V ) , i.e., v(f) < v(f')

(2) f is indifferent to f_
T (written f '- _f*) t i.e., v(_f) = v(_f' )

(3) f_ is less preferred than V (written f-<!'), i.e., v(f_) > v(f')

Thus, given the value function, v(f_) , the preferred decision can be obtained

from the following optimization problem with a single objective:

Minimize

. J = v(f(x))

subject to

x z X

Geoffrion (196 7) have shown that the preferred decision for the above

optimization problem is one of the inferior decisions of the original

multi-objective problem.

In most cases the decision maker does not know the explicit functional

form of v(f_) . Methods for treating the unknown value function, v(_f) , and

deciding the preferred decision are reviewed.



5.1 Utility Function Approach

The utility function, u(_t_), commonly used in the field of economics,

indicates the level of satisfaction which the decision maker derives from a

condition characterized by the objective function, _f(x) (Henderson and Quandt,

1971). Thus,

u(f) I u(f')

implies

t%V

or

v(f) | v(f')

The preferred objective, f_*, yields the maximum vlaue of u(f*) or, equivalently

,

the minimum value of v(f*) . The utility function approach structures and

assesses the utility function, u(_f). Instead of minimizing the value function,

v(f_), the utility function, u(f), is maximized, i.e.,

Maximize

J = u(f(x))

subject to

x e X

Any otpimization technique for a single-objective problem is applicable to

solving this problem.

The most difficult task in this approach is to determine the utility

action, u(_f), with a satisfactory accuracy. To circumvent this difficult", a

variety of forms has been assumed for the utility function. Ore of the

assumptions which are frequently imposed is the utility independence

assumption, that is,

u(f) = S k.u.(f.) (30)— i=l li i
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or

"(f) -
1£1

[a
1
+ b^.Cf.)] (31)

where u.(f.) is the utility function attributed to the i-th objective, andII
k

.
, a., and b. are constant (Keeney and Raiffa, 1976).ill

5.2 Indifference Function Approach

There are many different conditions, any two of which can not be distin-

guished by the preference criterion of the decision maker. The locus of

such conditions in the objective space is an indifference sufrace (Henderson

and Quandt, 1971; Keeney and Raiffa, 1976). In terms of the value function,

v(f), an indifference surface is defined as the set,

{f |v(f) = constant;

.

A different constant value yields a different indifference surface.

These indifference surfaces do not intersect each other, and, therefore,

every point in the objective space lies on one and onlv one indifference

surface. The trade-off surface is tangent to one of the indifference

surfaces at the preferred point.

The curvature, of an indifference curve, v(_f) = constant, is determined by

a set of the derivatives:

) f .

—p . j = 1, 2, . . . , i-1, i+1, . .
.

, n

J

The negative of the derivative is termed as the marginal rate of

substitution of f. for f. and denoted bv M . .
, i.e.,

if.

M.. --&r m
(|f-)/(l?-) C32)

11 i E . 3 t . 3 f .

J J 1

The marginal rate of substititon, M.., corresponds to the trade-off ratio,

T . , of the trade-off surface. Since the trade-off and indifference surfaces
ij

are tangent to each other at the. preferred point, f , we have
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T. .(O - M. ,(f*) (33)

Note that ind i f t erenca surfaces are obtainable without knowing the

functional form of a value function, v(f). They are usually determined by

directly comparing many sampled points in the objective space based on

the decision maker's oreference.

The indifference surfaces of a two-objective problem yield a set of

contours, and the preferred point is readily located as shown in Fig. 7.

This graphical approach is not applicable to a problem with more than two

objectives, in which the preferred point is numerically searched to satis.

Eq. (33). As the numer of objectives increases, the difficulty of searching

the preferred point increases drastically in this approach.

5.3 Surrogate Worth Trade-off Method

The algorithm of this method (Haimes and Hall, 1974; Haimes et al

.

1975) consists of two parts. One is the generation or" the non-inferior

set which forms the trade-off surface in the objective space. The other

is the search for the preferred decision in the non- inferior set. The

feature of this method is that the preferred decision is located

by the use of the surrogate worth function newly introduced by Haimes

and Hall (1974).

A surrogate worth function, W.., estimates the desirability of the

trade between a decrease of T.. units in the i-ch objective and an increase

of one unit in the j-th objective; the other objectives remain at their

current values. Thus, W. . is a function of the trade-off ratio, T . . , and

the non- inferior objective, f_(x) . Haimes and Hall (1974) have defined

W. . in such a wav that

W > (34
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when Che trade is desirable, i.e., T. . units of f . 00 are preferred over

one unit of f .
(x) for a given f (x)

;

W,. - (35)

when the trade is even; and

W < (36)

when the trade is undesirable. The larger the absolute value of W.
.

, the

greater the desirability or undesirability of the trade. The numerical

value of W will depend on the decision maker's response to the question:

Is it desirable to reduce f.(x) bv T.. units when f
.
(x) is increased

by one unit and other objectives are maintained at their current levels?

It should be relatively simple to answer this question, since the attained

levels of all objectives are known (Haimes et al. , 1975).

The surrogate worth function, W... can be more easily understood in

terms of the marginal rate of substitution, M. . . Recall that M. . is a slooe

of the indifference curve, i.e., M. . units of f . (x_) is equivalent to one

unit of f.(x) according to the decision maker's preference. If the dif-
j
-

ference, T, . - M. . , is positive for a non- inferior decision, an increase of

one unit in f.(x) will result in a further decrease in f.(x) than that which
j
- i

-

is required to maintain the decision at the same value of v(f_) . Thus, such

a change is desirable, and W. . must be oositive at the decision. Conse-
i]

quentlv, W. . is essentiallv identical to the difference, T . .
- M.., which

is illustrated in Fig. 8 (Nakayama and Sawaragi, 1976). Obviously,

T - M. .
= 0, j=l,2,... ,i-l,i+l,.. . ,n (37)

at the preferred decision and then,

W =0, j=l,2,... ,i-l,i+l,...,n

The computational scheme for this method is as follows:
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(1) Obcain every non-inferior objective, J[(x) , and trade-off ratio,

T .(or <\
. . ) , corresponding to each of the non-inferior obiectives bv soliving

lj Lj
J

the Kuhn-Tucker condition for the generalized Lagrangian formed for the

-•onstraint method [see Eq. (24)].

(2) Estimate W.. from the interaction with the decision maker.

(3) Search the preferred decision which satisfies

W = 0, j=l,2,...,i-l,i+l, ...,n

Advantageously, this algorithm does not require us to simultaneously

take more than two objectives into consideration, even if there are many

objectives involved in a problem. One of the difficulties is to assign

a numerical magnitude to V... Nakayama and Sawaragi (1976) have

presented the modified algorithm using only the sign of W. . for searching

the preferred decision.

5.4 Interactive Approach

Geoffrion (1970) proposed a man-machine interactive mathematical

programming approach to a multi-objective problem and applied it to an

aggregated operating problem of an academic department (Geoffrion et al
.

,

1972). In this approach, the value function, v(_f), reflecting the decision

maker's preference is minimized by iterative calculations. The decision

maker is not required to identify an explicit form of v(_f) but is required

to orovide the marginal rate of substitution, M.
.
(f ) , at each iteration.

Since the marginal rate of substitution is a local information of v(f) , it

is generally easier to specify than the functional form of

The gradient of the value function, v(f(x)), is given by the equation:

• T .- r I iv T
eg) - *g> cff)
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or

. T n 3f . T
/3Vv _ _ ,3v i

j=i j
-

where superscript T stands for a transpose of a vector or matrix. The right

hand side of this equation can be rearranged as follows:

,3v T 8v " 3£
i

T

where ML . is the marginal rate of substitution between the i-th and j-th

objectives defined by Eq . (32), i.e.,

ij 3f. :-f. :-f.

(3v/3f.) in Eq. (38) is a scalar multiplier. Then, the direction of gradient

is determined by
a 3f

. t

g = e m e1
)

(39)
^s . n ij 'ax

'

3=1 - -

g can be evaluated if the marginal rates of substitution can be obtained

iteratively with the decision maker, Thus, we can employ any gradient method

which is for minimizing a multi-variable function. For instance, the steepest

descent method (Luenberger, 1973) is defined bv the iterative algorithm

i+1 i
x = x - ag (40)

where a is a positive scalar representing a step size. This iterative

scheme yields the minimum of the value function, v(f(x)), if it converges

to a decision which is the preferred decision, x*.

5.5 Lexicographic Approach

This approach was first proposed by Georgescu-Roegen (1954) for modeling

the human behavior in the decision process. The basic idea underlining

this algorithm is to simultaneously minimize as many of the objectives as



possible; starting with the most important and going down the hierarchy

(Haimes et al., 1975). Thus, the decision maker is required to give a

rank in order of importance to each objective prior to solving the problem.

Suppose that the subscripts of the objectives indicate not only the

components of the objective vector, f.(x) » but also the priorities of the

objectives, i.e., f (x) is the first and most important component of f_(,x)

,

f«(x) is the second and second most important component of J_(.x) , and so on.

Thus, the first subproblem to be solved is:

Minimize

J
x

= f
]

(x)

subject to

X E X

If this gives rise to a unique x for the optimal f (:<) , the solution is

considered as the preferred decision. Otherwise, the second subproblem

is imposed as:

Minimize

J 9
= r"

2
(x)

subject to

X E X

where f is the optimal value of f (x) attained in the first subproblem.

This procedure is repeated to obtain a unique solution which is the preferred

decision. In general, the i-th subproblem is formulated as:

Minimize

J. - f.(x)
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subject to

x £ X

f .;(x) = f
i

>
j=l,2, . . . ,i-l

Since the algorithm is terminated when a unique solution is reached, some

lower ranked objectives might be ignored and do not contribute to the

determination of the preferred decision at all.

Consider a problem with two objectives and one decision variable as

illustrated in Fig. 9. By solving the first subproblem, we have the

following feasible region for the second subproblem.

jc <_ x <_ x

f~(x) is minimum at x = x in this region. Therefore, x is the preferred

decision given by this method.

The algorithm explained above minimizes the value function, v(f_) , which

has the following property.

Let f_ and f_' by different objective vectors in the feasible region, F.

Then,

v(f) < v(f') (41)

if and only if the first non-zero component of the difference, f_ - f_' , is

negative. v(f_) can not be written in an explicit form.

Note that the preferred decision is very sensitive to the ranking of

the objectives. For instance, if the priorities of f (x) and f (x) are

changed in the example problem (Fig. 9), x becomes the preferred decision

instead of x^. The preferred decision can not lie in the region:

x < x < x
c e

All decisions in this region as well as x and x are non-inf erior . Care° c e

must be exercised co apply this method to a problem where more than one

objective are of nearly equal importance (Haimes et al. , 1975).
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Waltz's method (Waltz, 1967; Seinfeld, 1970) reduces the sensitivity

of the preferred decision to the priorities of the objectives by modify:

all subprobleras except the first as follows;

Minimize

J. - i.(x)
l I —

subject to

x e X

f.(x) - f.° + o., j-1,2,.,.,1-1 (42,
J
- -

J .]

where S.'s are tolerances determined bv the decision maker. This modification
J

expands the feasible region for the second subproblem in the example (Fig. 9) as

X < X < X,
a — — d

x, yields the minimum value of f-,(x) in this region and becomes the preferred

decision.

Waltz (1967) remarked that we generally have no idea what constitutes

a reasonable numerical value for the constraint, f. + :., until we have
J 3

worked the previous subproblem. This is the essential difference of this

method from the c-constraint approach or the Ignizio's goal programming

which will be mentioned in later sections.

5.6 Weighting Method

Suppose that a value function, v(f_), is a linear combination of all

objectives, f
.
(x) , that is,

n
v(f) = Z w. f.(x) (43)
"

i=l
L X _

where w.'s are weighting coefficients representing the relative importance

of the objectives. w.'s are non-negative and at least one of them is positive.

The preferred decision, x , can be found by solving the following problem:
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Minimize
n

J = v(f) = I w.f . (x)
"

i-1
X X ~

subject to

X £ X

This formulation yields a non- inferior decision which is the preferred

decision (Kuhn and Tucker, 1951; Zadeh, 1963).

The ensuing analysis for the weighting coefficients, w , is carried

out in the objective space, and the objective vector, f, is considered as

an independent variable instead of the decision vector, x_. The preferred

j'c

objective, _f , defined as

JL.

is, in fact, on the trade-off surface. Thus, j£ muse solve che optimization

problem:

Minimize
n

J = E w.f.
. , 11
1=1

subject to

G(f) =0 (45)

where constraint (45) constitutes the trade-off surface in the objective

space. The Lagrangian, L, is formed as

n

L = I w.f. + ^G(f) (46)

where \ is a Lagrangian multiplier. The optimality conditions,

j-)* = 0, i=l,2,...,n (47)

i

yield

w. + * (-77-)* = 0, i=l,2,...,n (48)
1 at

.

1



where the asterisk denotes the evaluation at the preferred objective vector,

*
_f . By eliminating \ from these equations, we have

r1 - (If-)*/ (If")* . j-i,2,...,i-i,i+i,...,n (49)
w or. II.

i J 1

or

w. 3f *

-1 = - (tt1 ) , j - 1,2 L-l,i+l,...,n (50)w . I .

i J

The right hand side of the above equation is identical to the definition of

*
the trade-off ratio at the preferred objective vector, T . [see eq . (21)].

Since only the relative magnitudes of w.'s are significant, we can assume that

w. = 1 without any loss of generality. Finally, the following relationship is

obtained.

w =T , j=l,2,...,i-l,i+l,...,n (51)

where w. = 1. This implies that, in order to apply the weighting method,

we must know the trade-off ratio at the preferred objective vector to

specify v., without knowing the preferred objective vector. Most works

using this method, however, assume that each weighting coefficient is

constant over the entire objective space.

The weighting method is applicable to the generation of the entire set

of non-inferior decisions, which has been explained in the corresponding

section (Zadeh, 1963; Everett, 1963).

5.7 c-constraint Method

If the maximum allowable levels (e n , E ,...,e. ., e. ,,,...,£ ) for n-1
1 2 l-l l+l n

objectives (f , f ,..., f. ,, f ,..., f ) can be specified in advance, a

non-inferior decision can be derived by solving the problem (Cohon and Mar

L975):

Minimize

J = f.(x)
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subject to

f
.;
(*) 1 e

j ' j"l,2, ..., j-1, j+1, ... fn

x e X

This solution (non-inferior decision) is interpreted as the preferred

decision. The same preferred decision is obtainable by using the penalty

method (Luenberger, 1973) as follows:

Minimize

J = f . (x) + M • { E U(f .
- £.)}

subject to

x e X

where

U(f. - £.) =

v , f . (x) < £ .

M = large positive number

Thus, the £-constraint method assumes that the value function, v(f_) , is in

the form of

v(f) = f.(x) + M • { Z U(f .
- £,)} (52)

j^i J 3

If a unique decision cannot be attained in the first (n-1) iterations in

the lexicographic approach, the n-th iteration carried out in the manner

described above. f . (x) in this method corresponds to the least important

objective at the n-th iteration of the lexicographic approach. The difference

between these two methods is that in the lexicographic approach the allowable

levels, f. +5., are described one bv one in each iteration, while in the
3 1

£-constraint method all £.'s are determined at once in advance. The preferred
1

decision is sensitive to the choice of the objective function, f
.
(x) , in this

method as well as in the lexicoeraphic approach.



The graphical explanations for this method are provided in Figs. 10-a

and 10-b for the following problem:

Minimize

J = f
2
(x)

subject to

f
l

(- } - E
l

x e X (or f(x)e F)

The entire non-inferior set is indicated by the heavy solid lines.

5.8 Goal Programming

The goal programming was originally developed by Charnes et al.,

(Charnes et al., 1955; Charnes and Cooper, 1961; Lee, 1972) for a linear

model. The goal vector, f , is defined as a target in the objective space

which the decision maker wishes to reach but is unable to do so because

x e X. Thus, the aoal vector is an infeasible objective vector. Charnes

et al. (1955) has assumed that the value function, v(_f), to be minimized is

n

v(f) = Z f. - f .

" i=i
X gi '

or
n +

v(f) = : (z. + z.) (53)

i=l
L x

where z. and z. are the absolute values of the positive and negative

deviations, resoectively , from the goal of the i-th objective, i.e.,

£. - f .
- z

+
- zT

1 gl 1 1

z"T , zT > o >v
i i —

z
+

. z~ =
l l
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The goal programming by Charnes et al. (1955), therefore, can be stated as

Minimize

n

j = : ( z
+
+ zT)

i-1
x x

subject to

x € X (or g(x) 0)

Note that we do not have to pay attention to the third condition of Eq . (54)

which is automatically satisfied at the optimum. It follows that this

optimization can be carried out by any technique for the linear programming

as long as _f(x) and <y(x) are linear.

While Charnes et al. (1955) have introduced a linear value function

given by Eq. (53) to render their problem linear, it is possible to emplov

other value functions for a nonlinear model. The general goal programming

is formulated as follows:

Minimize

J = d(f(x), f ) (55)

subject to

x e X

where d(f,f ) stands for a distance between the two vectors. One of the well-— —o-

o

known distance expressions in a finite-dimensional space is (Makayama and

Sawaragi, 1976)

:

1
n —

d(f,f ) = £ Z w. ;f. - f .j
P

;
P f56)

§ i=1
i

which is called an L -distance with weighting coefficients. The sum of the
P

absolute values corresponding to p = 1, the Euclidean distance corresponding

to o = 2 and the Chebyshev distance corresponding to p = » can be represented

by this equation. An example of the Euclidean distance (w .
= 1) is shown in
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Fig. 11. The goal programming is capable of determining the non-inferior

decision set by parametrically changing the weignting coefficients, v..

Ignizio (1976) has incorporated a lexicographic approach into the

goal programming. Let f (x) be the most important objective. The: first

subproblem to be solved is, then:

Minimize

J. = z\ = max{0, f - f .} (57)11 1 gl

subject to

x £ X

As can be seen from the form of J , the negative deviation from the goal

dees not come in to play in evaluation of the decision vector, x, in this method

Since z is non-negative, the optimal value of J is zero or positive. If

the optimal J., is zero, the goal, f ., has been attained, and the solutions

of this subproblem satisfy

e.(x) < f . (58)
1 - - gl

If the first subproblem does not give a unique solution, the following

second subproblem is solved:

Minimize

J„ = z_ = max{0, f„ - f „} (59)
2 2 2 g2

subject to

x -z X

V*> i f
gl

where f-,(_x^ is the second most important objective. As performed in the

lexicographic approach, these procedures are repeated to obtain a unique

solution which is the preferred decision (See Fig. 12).



Gembichi (1973) has proposed the goal attainment method (also see

Haimes et al. , 1975). In this method, the value function, v(_f) , is

defined as

ff.(x) - f

v(f) E a E max)~ ^
\ (60)

I \. w.'

where f . is the i-th comoonent of the goal vector, f , and w. ' is the
gi ' -g i

relative over or under attainment of the goal for the i-th objective.

Suppose that f, is more important than f in a two-objective problem
J- z

(see Figs. 13-a and 13-b) . Then, a difference between f., and f ., should
1 gl

affect the value function more than that between f and f ». Thus w.
2 a2 i

should be smaller than w '
. It follows that the smaller weighting

coefficient is associated with the more important objective.

From Eq. (60), we have the following inequality:

aw' > f(x) - f-g

or

f (x) < f + aw' (61)

where w' is a vector consisting of comoonents w.'. The preferred decision
i

is obtained from solving the following problem:

Minimize

J = a

subject to

f(x) < f + aw'
g

x z X

This approach is illustrated for the case of two objectives in Figs. 13-a

and 13-b. Note that the value function given by Eq . (60) is a special case
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This approach is illustrated tor the case of two objectives in Figs. 13-a

and 13-b. Mote that the value function given bv Eq . (60) is a special

case of Eq. (56) with p - *> and w. = (w
.

' ) , and, therefore, this method

is included in the general goal programmi;:
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6. CONCLUDING REMARKS

The majority of available techniques for solving a multi-objective

problem has been discussed. Some of the techniques are capable of generating

a set of non-inferior decisions, any of which is not inferior to any feasible

decision. However, no technique can provide a unique optimal solution

without resorting to the decision maker's preferential selection. To

eventually reach a unique decision, namely, the preferred decision, a value

function reflecting the decision maker's preference is introduced, which

is ultimately optimized.

Techniques for solving a multi-objective problem can be classified

basically into two categories depending on a manner of assessing the value

function. The techniques in one of the categories do not assume any

functional form of the value function and locate the preferred decision by

utilizing information generated from the interaction with the decision maker.

The indifference function approach, the surrogate worth trade-off method and

the interactive aoproach belong to this category. The techniques in the

other category include the utility function approach, the lexicographic

approach, the weighting method, the e-constraint method and the goal

programming, each of which assumes a specific functional form or a key

propertv of the value function.

In spite of their great applicability, multi-objective optimization

svstem synthesis techniques have been employed only in a limited number

of fields such as welfare economics, management science and water resource

research. Additional effort need to be expended to explore applicability

in many other fields.
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7. SUMMARY

All feasible decisions in a multi-objective problem can be divided into

two sets. One is a set of inferior decisions which are inferior to a feasible

decision or decisions with respect to all objectives. The other is a set of

non-inferior decisions defined as the complementary set of the inferior decision

set. A preferred decision is a non-inferior decision chosen as the final

decision (solution) in the light of an additional criterion introduced by the

decision maker. If the non-inferior decision set consists of only one decision,

it is superior to any feasible decision with respect to some objectives and equal

to any feasible decision with respect to the remaining objectives. Such a

decision is called the superior decision or optimal decision.

There are several methods which can generate the entire set of non-inferior

decisions. Among them, the weighting method and the ^-constraint method are

most commonly used because of the simplicity of calculation schemes involved

in their applications.

The trade-off surface is formed by all non-inferior points in the objective

space. The intersection between the trade-off surface and a plane formed by

two objective functions, say f. and f
.
gives rise to the trade-off curve

i
3

between the two objectives. The negative of the slope of the trade-off

curve is termed the trade-off ratio denoted bv T... Thus, an increase of

one unit in one of the objectives, f., results in a decrease of T . . units in
3 ij

f., if all other objectives remain at their current values. The trade-off

ratio is closely related with the generalized Lagrangian multiplier.
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The criterion for selecting the preferred decision from the non-inferior

set is generally called the value function, v(f_) , which is chosen somewhat

subjectively but based on the decision maker's preference, and which should

be a monotonous function with respect to each objective. The indifference

surface is the locus of the points of the constant value function in the

objective space. Thus, any two conditions on the same indifference surface

can not be distinguished by the decision maker based on the. preference

criterion. The indifference curve is defined similarly to the trade-off

curve and the marginal rate of substitution for the indifference surface

is defined similarly to the trade-off ratio for the trade-off surface.

Techniques for determining the preferred decision can be classified

basically into two categories. A technique in one of the categories

assumes a specific functional form or a key property of the value function,

and a technique in the other does not. The utility function approach, the

lexicographic approach, the weighting method, the e-constraint method and

the goal programming belong to the former, and the indifference function

approach and the surrogate worth trade-off method belong to the latter.
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NOMENCLATURE

T

a = decision vector

a constant value
l

a = exponent of the Cobb-Douglas equation
ij

b = decision vector

b = constant value
1

d = distance between two vectors

f = objective function vector

f = objective function vector

f = objective function vector defined as f = (f?, £•>>•••> f )

_f = preferred objective function vector

F = set of feasible objective function vectors

f = i-th component of the objective function vector, f
i

f
° = optimal value of f. in the j-th subproblem

3 J

f = goal vector

f
.

= i-th component of the goal vector, f

a = constraint function vectoro

G = scalar function representing the trade-off surface

g. = i-th component of the constraint function vector, g

gradient vector in the steepest ascent direction

J = scalar objective function

J = optimal value of the objective function, J

J. = scalar objective function associated with the i-th subDroblem

k = dimension of the constraint function vector, %

k. = constant value
l

L = Lagrangian

M = large scalar number



M. . = marginal rate of substitution of f. for f

M.* = marginal rate of substitution of f. for f. at the preferred
-1 objective vector, _f

,: -*

n = dimension of the objective function vector, f

p = exponent in Eq . (56)

T . . = trade-off ratio between the i-th and i-th objectives
ij

T!. = trade-off ratio between the i-th and j-th objectives at the
preferred objective vector, f*

u = utility function

U = unit step function

v = value function

w = weighting coefficient vector

T
w = weighting coefficient vector defined as w = (w , w„,...,w '

I J n

w. = i-th component of the weighting coefficient vector, w

W.. = surrogate worth function associated with the i-th and i-th

objectives

x = decision vector

x' = decision vector

x* = preferred decision vector

x_ = optimal solution of a single objective problem

x_ = i-th approximation of the preferred decision vector x*

X = set of feasible decision vectors

x , x, , x , x, , x = decisions in the example of the lexicographic approach

z. = positive deviation from the goal of the i-th objective

z. = negative deviation from the goal of the i-th objective

Greek Symbols

x = step size in iterative calculation for searching the preferred

decision, x*

scalar variable, in the goal attainment method
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l. = scalar value defined by Eq . (16)

= vector whose components are small non-negatives

= small positive scalar
1

= allowable Level vector for the objective function vector, £_

= allowable level of the i-th objective function, f.
I

= Lagrangian multiplier

X_ = Lagrangian multiplier vector

= Lagrangian multiplier

j. = Lagrangian multiplier
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Table 1. Relationship between Trade-off Ratio T.

,

and Lagrangian Multiplier a
ij

1

)

T. . X. .

1J X J

+

;
(T..-x..)

+

(T..=A..)
1J 1J
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Fig. 1-a. Inferior Jecision a and non-inferior decision b

in the decision soace.

Fig. 1-b. Inferior objective f(a) and non-inferior objective £(b)
in the objective space.
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Fig. 2-a. Non-inferior set for a two-objective minimization
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\
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Fig. 2-b . Non-inferior set for a two-objective minimization
problem in the objective space.
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Superior point

Fig. 3-b. Superior point for a two-obi ective minimization
problem in the objective space.
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&TL= constant

Fi<». 4. Geometrical explanation of the weighing method
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Fie. 5. Geometrical explanation of the trade-off ratio, T . .

ij
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^
Trade-off curve

f >- f' ~ f" VI

f
:
Preferred

Decision

m

Indifference Curves

Fig. 7. Graphical approach of the indifference function
method (ICeeney and Raiffa, 1976).
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Trade-off curve

Tjj (f) = M,
J

(f*)

T,j (fUM^f")

Indifference curve

Fig. 3. Surrogate worth function W. . (Nakayama and Sawara.Ri, 1976).
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Fie; - 10-a. e-constraint method for a convex oroblem.

Fig. 10-b. e-constraint method for a non-convex oroblem.
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Feasible Region F

Trade- Off curve

f,

Fig. 11. Goal programming with d(_f, fg) = (f. - f .)
2,1/2



Feasible region

Trade-off curve

Fig. 12. Ignizio's goal programming
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Trade-off curve

Fi». 13-a. Goal attainment method for a convex problem.

Trade-off curve

Fig. 13-b. Goal attainment method for a non-convex oroblem.
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CHAPTER III

MULTI-03JECTIVE OPTIMIZATION OF A HEAT EXCHANGE NETWORK SYSTEM
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MULTI-OBJECTIVE OPTIMIZATION OF A HEAT
EXCHANGE NETWORK SYSTEM

1. INTRODUCTION

The optimization of a heat exchanger system for energy recovery

has been attracting increasing attention because of the public's concern

over the energy shortage and thermal pollution of the environment. This

fact is reflected in the recent increase in the number of published

papers on this subject (see, e.g., Hendry et al., 1973; Hoffman, 1974;

Chen, 1977).

Each of the early works on the optimization of heat exchanger systems

has taken into account only a single objective such as the capital cost

(e.g., Rudd, 1968; Henley and Williams, 1973; Takamatsu et al., 1976:

Chen, 1977) or a combination of the capital and running "costs (e.g., Hwa,

1965; Masso and Rudd, 1969; Lee et al. , 1970; Kobayashi et al
. , 1971;

Pho and Lapidus, 1973; Rathore and Powers, 1975: Nishida et al., 1976).

Minimization of the cost function does not necessarily lead to an effective

design of the heat exchanger system from the standpoint of energy conser-

vation. Because of the artificial manipulation of the market or the

arbitrarily pricing of an energy resource, its cost in a monetary unit does

not always reflect its availability or usefulness.

Thermodynamically , the energy conservation is equivalent to the

minimization of the loss of available energv in a svstem. The available
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energy, which can be converted into mechanical energy, cannot be

recovered by any means, once it is lost. It appears that the thermo-

dynamics has been totally neglected in studies of heat exchanger system

synthesis except in one case (Umeda et al., 1977).

In addition to the conventional objective function, namely, the

cost, the present work introduces the rate of available energy loss as the second

objective function to be minimized in optimizing a heat exchanger system.

Since minimizing the available energy loss requires the maximum heat

transfer area which renders the capital cost maximum, the added objective

function is in conflict with the conventional one. This work shows that

the techniques for solving a multi-objective problem (see Chapter II)

can be applied to the analysis and synthesis of Che heat exchanger network

system.
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2. LARGE HEAT EXCHANGER SYSTEM

The system considered here consists of nine heat exchangers of the

counter-current type and invoLves three rold streams and four hot streams

(see Fig. 1). The configuration of the system is similar to those analyzed

bv Hwa (1965), Takamatsu et al. (1970, 1976), Henley and Williams (1973),

and Chen (1977).

2.1 Process Equations for a Heat Exchanger of the Counter-Current Type

In this section, we derive the basic equations governing each heat

exchanger included in the system, i.e., the relationships among the inlet

and outlet temperatures of the hot and cold streams through the heat

exchanger. Figure 2 shows briefly the temperature distributions of both

streams in the heat exchanger. T. and T denote, respectivelv , the inlet
1 o

and outlet temperatures for the cold stream; similarlv, t. and t denote,
l o

respectively, the inlet and outlet temperatures for the hot stream. The

heat transfer rate and heat balance equations are, respectively,

dl

da WC
P

(t - T) (1)

dt ur dT f9>wc — = VvC — (2)
p aa p da

where

T = temperature of the cold stream, R

o
t = temperature of the hot stream, R

a = heat transfer area, ft

2 -

U = overall heat transfer coefficient, Btu/hr-ft - R

-

WC = heat caoacitv flow rate of the cold stream, 3tu ;hr-'R
P

wc = heat capacity flow rate of the hot stream, 3tu/hr- R
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Eq. (2) can be rewritten as

WC

dT wc -
R (3)

P

Here, the ratio of heat capacity flow rates, R, is assumed invariant with

respect to temperature variation. Integrating Eq. (3) subject to the

boundary condition at a = (see Fig. 2) yields

t - t. = R(T - T ) (4)
1 o

This equation must satisfy the condition at a = A also, i.e.,

t - t. = R(T. - T ) (5)
o 1 10

which is the overall heat balance around the heat exchanger. Substitution

of Eq. (4) into Eq . (1) gives rise to

^ = ^r- {-(R-DT + RT - t.} (6)
da WC o l

P

If R ^ 1, by applying the boundary condition at a = A, we have

t.-T ( r, ^ RT-t
i o ua ,„ , v o

T - -^-T^ exp < - —- (R - 1)

l
-wT (R -"/ +

R-l r
|

WC v *' r r -

Since T = T. at a = A, this equation becomes

- T RT - t

.

2. + -2 1

i k(R - 1) R-lT. = r^ ?v + -4 ~ (7)

where

k = exP <i g£- (R _ d > (8)
I WC
I P

The process performance of the heat exchanger is expressed by Eqs. (5) and

(7). These process equations can be rearranged in the following linear forms

(Yagi and Nishimura, 1969; Takamatsu et al. , 1976; also see Appendix A):



n9

o
1 - xR>

(

z
l)

i

(9a)

T
(
c
1) =

1

(

L -^R r.uio)
1 - R - iR

v - iR 1 - a t
(9b)

T 1

1 - a
o

T
(Jo).

i

1

1 - aR

. 1 -a T

1

1 - a - aR
-aR l ) ( tD

o

(9c)

(9d)

where

a =
k - 1

Rk - 1 (10)

Any one of Eqs. (9a) through (9d) is identical to the combination of

Eqs . (5) and (7); however, it is easier to use the former than the latter

if A and anv two of t., t , T. and T are known. Furthermore, bv
1 o 1 o

eliminating R from Eqs. (5) and (7), we have

k =
t. - T
i o

t - T.
o 1

or

1 r\
exo< ^- (R

I
wc

- 1) \ -
t .

- T
1 o

t - T.
o 1

Therefore, we have another pair of the process equations
v.

t. - t - R(T - T.)10 1

WC
A =

U(R - 1)

t. - T

In (
~

—

~^r- )

o i

~>

<9e)



which is a convenient form to evaluate the heat transfer area from any three

known temperatures among t., t , T. and T . A orocess equation is selected
1 o i o

from Eqs. (9a) through (9e) , depending on the problem to which it is applied

Note that Eq. (9e) can be transformed into the commonly used form for the

counter-current heat exchanger;

= WC (T - T.) = wc (t. - t ) = UAAt
p o i p i o m

where

(t. - T ) - (t - T.)
m _± o o 1_

m t. - T

ln (
t - T.

}

o 1

In case both of the hot and cold streams have the same heat capacity

flow rate, i.e., R = 1, the equations corresponding to Eqs. (9a) through

(9e) can be obtained by letting R approach unity as shown below.

The constant, ol , in Eqs. (9a) through (9e) is a function of R, and

lim a = lim k - 1

R + 1 R + lRk-1

= lim ^dR

UA/WC (11)
v

1 + UA/WC
P

= 3

where

k = exp {
~- (R - 1)}

P
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Substitution of Eq. (11) and R = 1 into Eqs. (9a) through (9e) vlelds

respectively,

(Jo)^
1 " 3

J,) C*i) (12a)

O 1

i o

o 1

(
t
o) = r^" (

x
~-?

3

i
} (

t
i) (12d)

i o

t .
- t = T - T.

1 o o 1

WC T - T.
a = —£. _2 I

U t - T.
o 1

>
(12e)

>

Equations (12a) through (12e) can also be obtained directly by integrating

Eq. (6) with R = 1.

2.2 Design Objectives and Constraints

The heat exchanger network svstem shown in Fig. 1 is to be optimally

designed. Table 1 summarizes all specified conditions including the initial

and terminal temperatures, the heat capacity flow rates, and the overall

heat transfer coefficients. There are 24 design variables involved in the

system; 6 cold stream temperatures (T , T , T , T , T_,, T . ), 9 hot

stream temperatures (t^. t 3, t
2

, t , t p0 , t -, t^, t
9

, t^) , and 9

heat transfer areas (A., j = 1, 2, ..., 9). These design variables must
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be subject to 18 equality constraints which are process equations for 9

heat exchangers, yielding 6 degrees of freedom for optimization. The nine

inequality constraints imposed on the system are

A 1 3, j = 1, 2, ..., 9

These constraints prevent us from considering an unrealizable design.

Two objective functions to be minimized are considered here. One is

the total heat transfer area, namely,

f = Z A (13)

j = 1
3

which is the objective function adopted by Takamatsu et. al . (1970, 1976),

Henley and Williams (1972), and Chen (1977). While some investigators

(?ho and Lapidus, 1973; Ponton and Donaldson, 1974; Kelahan and Gaddy , 1976)

have employed the sum of (A.) ' rather than Eq. (13) to take into account

the economies of scale, the ensuing discussion is essentially valid, even

0. 6
if A. in Eq. (13) is reolaced bv (A.) '

.

3 3

The other objective function is a thermodynamical index; the rate of

available energy loss (Keenan, 1941, 1951);

f, = T b (14)
2 sur

o
where T is a temoerature of the surroundings, namelv, 537 R (298 K)

,

sur ' " ' J

and 5 is the overall rate of entropy creation. The reduction in the

available energy loss is desirable from the standpoint of energy conser-

vation. Suppose that the process is operated in a steadv state fashion
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without heat exchange between it and the surroundings. Eq . (14), then,

becomes (see Appendix B)

C T D t.
Q

t" = T • Z (WC ), In =*- + ). In r1 (15)
2 -"J-A ?J T

ji j-A ?i C
ji

The first term in the square bracket is constant because the initial and

terminal temperatures of the cold stream are fixed. Hence, the value of

Eq . (15) is affected only by the second term associated with the hot

streams.

The two objectives, Eqs. (13) and (15), to be minimized are in conflict

with each other. Note that minimizing the available energy loss, e.g.,

minimizing a, requires the maximum heat transfer area. Thus, the techniques

for a multi-objective oroblem are applicable to this problem.
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3. TRADE-OFF CURVE FOR THE HEAT EXCHANGE SYSTEM

The trade-off curve, which is the locus of non-inferior decisions,

provides useful information for the designer to select the preferred

design of the system with multiple objectives. There are several techniques

for generating the trade-off curve, which are described in the previous

chapter. Since the objective functions given by Eqs . (13) and (15) are not

of the Cobb- Douglas type, the functional relationship for the trade-off

curve (see section 3.3, Chapter II) can not be identified explicitly, and

thus the analytical approach is not useful for the present heat exchanger

system. However, all other approaches are applicable to this problem.

We resort to the most commonly used ^-constraint method (see section

3.2, Chapter II) to generate the trade-off curve. The e-constraint

method for a problem with two objectives is formulated as:

Minimize

J = f
2

(16)

subject to

g^.0 (17)

f- £ £ (13)

where Eq. (17) represents the entire set of equality and inequality

constraints. The trade-off curve is obtained by solving this optimization

problem by parametrically changing z. Note that z cannot be less than a

certain value which is the minimum value of f .

.

3.1 Minimum Total Heat Transfer Area

The minimum total heat tranfer area for the heat exchanger system can

be attained by solving the following optimization problem:
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Minimize

9

J - f - Z A. (19)
1

J - 1
J

subject Co

h = (20)

A. 21 0, i - 1, 2, ..., 9 (21)

ivhere Eq. (20) stands for 18 process equations for 9 heat exchangers involved

in the system. Chen (1977) has demonstrated that the adaptive random search

technique developed by Fan et al. (1975) is effective for this problem. We

reoptimize the system by the random search technique by selecting a different

set of independent variables from Chen's selections

As explained in the previous section, there are 6 degrees of freedom

in this problem. A. A A,, A- , A,, and A., are chosen as independent variables,
i L + d b /

which allow us to solve readily the process equations and to determine the

ocher dependent design variables. The calculation scheme is given below.

Step 1. Assign positive numbers to A , A9 , A , A_ , A
ft

, and A at

random, and calculate a for each heat exchange by Eqs . (8) and (10).

Step 2. To evaluate all design variables, solve the 18 process

equations in seriatim, starting with heat exchanger 1, as

Heat exchanger 1 [see Eq. (9a)],

(!
32

> - c W1

! \ . ) <!
B1

>
C
A2

J
1
R
1

X ' J
1
R
1 "Al

Heat exchanger 2 [see Eq. (9a)],

( ) = ( ) ( )
C
A3

:i

2
R
2

1 " Ci

2
R
2

C
A2
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Heat exchanger 3 [see Eq. (9e) j ,

C
D2 " R

3
(T
A2 " I

A3 ) + C
D1

(WC ) t - T
j = 2_i ln _2i M
' 3 U

3
(R

3
- 1) t - T

A2

Heat exchanger -\ [see Eq. (9a)],

T
C2

1 ~ a
4

a
4

T
C1

( ) = ( ) ( )

Heat exchanger 5 [see Eq. (9c)],

T 1 -a T

(

C4
) = _J

(
5

) (

C5
)

C
C2

l - =>3 °5R5
L " a

5
" a

5
R
5

C
C1

Heat exchanger 6 [see Eq. (9a)],

T 1 - a a T
, C3. . 6 '6 "C2

C
C3 *6

R
6 ! "W V

Heat exchanger 7 [see Eq. (9a)],

B3 / , B2

C
C4 ^7 R7

l ~ VV V
Heat exchanger 8 [see Eq. (9e) ] ,

^2 R
S
(T
B3

TB^ + C
B1

A
W»'»

,

C
31 - T

B4

8 " U
3
(R

8
- 1)

n
C
B2

- T
B3
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Heat exchanger 9 [see Eq. (9e)],

C
B3 " V T

C3
" T

C4
) + C

B2

^C
P

)
C .

C
B2 " T

C4
A = 2_C

L
9 U

9
(R9" » 43-^3

Since six out of nine A.'s are selected as independent variables and only
J

positive numbers are assigned to them in Step 1, six inequality constraints

can be eliminated from Eq. (21). It is worth noting that there are on

3 inequality constraints (A. > 0, j = 3, 3, 9) that need to be checked here,

as compared to 36 inequality constraints imposed by Chen (1977).

Table 2 summarizes the optimal results by this method along with Chen's

results. The designs of the system are slightly different, but the total

heat transfer areas are essentially identical. The minimum value of f

which is 70,071 yields the lower limit of z in Eq. (13). The ontimal

design derived here is depicted in Fig. 3.

3.2 Trade-Off Curve

Figure 4 displays the trade-off curve for the heat exchanger system

under consideration. The curve has been constructed from the solutions

of the following problem by varying the parameter, z , from 70,071 to

140,000:

Minimize

C T. D t.

J - f - T I (WC ). In ^- + I (wc ). In -^-

}

(22)
2 sur , . Pi T . . . pi t..

j - A J i J
= A !i

subject to

h = (23)
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A > 0, j = 1, 2, ..., 9 (24)

9

f, = 2 A. < e (25)

j = 1
J

The independent variables selected and the scheme for solving Eq. (23)

are the same as those employed in evaluating the minimum total heat

transfer area in the previous section.

As can be seen in Fig. 4, this problem is a typical convex problem.

As the total heat transfer area increases, both the rate of available

energy loss and trade-off ratio between the two objectives decrease graduallv

The rate of available energy loss can be reduced to approximately half if its

maximum value, if the total heat transfer area is allowed to be roughly

4 2. 42
twice its minimum value, i.e., f = 14 x 10 ft (1.3 x 10 m ).

Figure 5 shows the change in the optimal design of the system as

e increases. The sizes of most heat exchangers change abruptlv around

f = 113,000. This is probably due to the fact that the configuration

of the system is changed by the appearance of heat exchanger 6. Table 3

provides the numerical values of 9 non-inferior designs selected along

the trade-off curve.



79

4. SELECTION OF THE PREFERRED DECISION

This section is devoted to the extraction of the preferred designs

of the heat exchanger system by applying the three different methods. The

author is Che decision maker here and, therefore, his preference

is reflected in the allowable limit of f in the lexicographic

approach, the weighting coefficient in the weighting method

and the surrogate worth function in the surrogate worth trade-off method.

4.1 Lexicographic Approach

The lexicographic approach proposed by Waltz (1967) is utilized to

seek the preferred design of the system (see section 5.5, Chapter II).

The first objective, namely, the total heat transfer area is assumed to

be more important than the second objective, namely, the rate of available

energy loss. Thus, the first subproblem to be solved is as follows:

Minimize

subject to

h =

Aj 1 , j - 1,2,...,

9

This is identical to the problem of the minimum total heat transfer area

solved in subsection 3.1. The minimum value J. is already known to be

70,071.

Since the J -minimum is 70,071, we allow the total heat transfer

area to be as large as 80,000. Then, the following second subproblem

yields the preferred design.
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Minimize

r C T. D t.

J, « f , « 1
\ J (WC ). lnr^i I (wc ) . In ~^-

2 2 sur !.', p ] T. . ,

L
K

p'j t..Lj-A v ji j=A p J ji

subject to

h =

A 1 , j = 1,2,. ..,9

9

E n
- 7 A. < 80,000

j-l

The independent variables selected and the scheme for evaluating all

dependent variables are the same as those employed in section 3. The

results of this optimization are listed in the first columns of Table 4

and also depicted in Fig. 6.

Compared to the single-objective design given in Table 2,

the preferred two-objective design contains an additional exchanger

(exchanger 1) , has a larger exchanger 4 and somewhat smaller exchangers

7 and 9. These observations show that exchangers 7 and 9 are especially

effective for reducing the system size, while exchangers 1 and 4 are especially

effective for conserving the available energy. Overall, the increase of

2
approximately 10,000 ft" in the heat transfer area results in the decrease

Q

of 0.17 x 10 Btu/hr in the loss of available energy.

The formulation of the second subproblem is the same as those of

the e-constraint method with e. = 80,000 (see section 5.7, Chapter II)

and the Ignizio's goal programming with f = 80,000 and f = (see

section 5.8, Chapter II). The differences among these methods, which

are discussed in section 5.5 of Chapter II, are significant only for a

problem with more than two objectives.
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4.2 Weighting Method

Suppose that the value function of the heat exchanger system can be

expressed as a linear combination of the two objectives, f. and £_, vhose

weighting coefficients are 1,000 and 1, respectively, i.e.,

v(f) = (1,000) f
x

+ (1) f
2

(26)

Since the trade-off curve of this problem is convex, the preferred design

can be uniquely obtained by the weighting method stated as (see section

5.6, Chapter II)

Minimize

J = v(f)

- (1,000) f A + T
sur{j QIC > lnj^ + J (wc > lag

(27)

subject to

h =

A > , j = 1,2,. ..,9

The second column in Table 4 shows the preferred design obtained by

this method, which is comparable with that obtained by the lexicographic

approach in the first column. Although the sizes of the exchangers are

slightly different, the structures of the networks are essentially identical

in both designs (see Fig. 7). Note that the trade-off ratio, T«. , must

be 1,000 for this preferred design (see section 5.6, Chapter II).

4.3 Surrogate Worth Trade-off Method

To apply the surrogate worth trade-off method (see section 5.3,

Chapter II), 15 non-interior points on the trade-off curve in Fig. 4
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have been selected, and the objective values of these non- interior points

have been calculated by the ^-constraint method (see section 3.3, Chapter

II). Table 5 lists these results. The trade-off ratio, T
? . , is essentially

the generalized Lagrangian multiplier, \_ , which satisfies the following

Kuhn-Tucker condition (see section 4, Chapter II):

!!i]
T

+ f!fi|
dX

J
[dX

j

T f*V
Xn + y y - (28)

Xn (f
1
-O =

An >0

h =

u_ >

where y_ is a Lagrangian multiplier vector and x is the independent design

variable vector, i.e.,

T
x = (A^ A

2
, A

4
, A

5
, A

6
, A

7
)

It is difficult to solve this condition analytically or numerically because

of the complexity of the forms of f~ and h. Since the trade-off ratio is

(29)

defined as

T
21

M
2

3f
I

'

it can be approximately estimated as

f
2
(f

1
+Af

1
) - f

2
(f

1
-Af

]
_)

2Af~
T„, = - -^—^ x

n , e — (30)
"1

The trade-off ratios listed in Table 5 have been obtained by this

approximation.

The fourth column of Table 5 shows the values of the surrogate worth

function, W„ , for each non-inferior point, which are the responses of the

decision maker to the question: Is it desirable to reduce f by T
?1
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units by increasing f by a single unic? The decision maker has

assigned an integer between -10 and 10 to each trade. A positive

integer indicates a desirable trade and vice versa. The larger the

absolute value of W , the greater the desirability or undesirability

of the trade. Since a numerical value of zero is assigned to the non-

3
inferior point, (f ,r ) = (35,000, 0.892 x 10 ) , it is the preferred

point. The preferred design corresponding to this point is shown

in Fig. 8 and tabulated in Table 5 along with those obtained by the

lexicographic approach and the weighting method. The preferred

design obtained by this method lays the most stress on the reduction

of the available energy loss among these preferred designs, but the

differences among the designs are not appreciable.
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5. CONCLUDING REMARKS

A large heat exchanger system has been optimized by the use of

techniques for a multi-objective optimization coupled with a random

search technique. The set of independent variables selected here

leads to a simple calculation scheme for solving the equality constraints

and reduces drastically the number of equality constraints to be

computed.

The trade-off curve between the total heat transfer area and the

rate of available energy loss shows that the feasible region of this

problem is convex in the objective space. The preferred designs have

been obtained by three different methods. These designs are essentially

identical; the heat exchanger sizes are slightly different, but the

differences are not significant when compared to the possible errors

involved in modeling such a large system. The comparison between the

design minimizing the total heat transfer area only and the preferred

designs obtained here indicates that heat exchangers 7 and 9 are effective

for economizing the system size, while heat exchangers 1 and 4 are effective

for minimizing the available energy loss.

The weighting method is the simplest among the three methods

for selecting the preferred design. However, it is not easy to

specify in advance the reasonable weighting coefficients for a problem

with more than several objectives. The surrogate worth trade-off method

is time-consuming and laborious, but it does not require any subjective

judgment of the decision maker until the calculation is completed. The

lexicographic approach is situated between the previous two methods, and



85

Che allowable levels of each objective are successively determined by the

decision maker in the course of the hierarchial calculation. Since the

lexicographic approach is fairly simple conceptually and numerically, it

may be applicable to many engineering problems with multiple objectives.
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6. SUMMARY

The process equations have been derived for a heat exchanger of

the counter- current type, and they are rearranged in linear forms.

A large heat exchanger system consisting of 9 heat exchangers, 3 cold

streams and 4 hot streams have been optimized. The equality constraints

imposed are given by 9 sets of the process equations for the 9 heat

exchangers. The inequality constraints express the fact that none of

the heat transfer areas can be negative. The total heat transfer area

and the rate of available energy loss have been employed as objective

functions to be minimized.

The trade-off curve between the two objectives has been constructed

by means of the c-constraint method. The curve has shown that this is a

typical convex problem. Three different methods have been applied to

the determination of the preferred design. The preferred designs obtained

by the three methods are almost identical. The comparison between the

single-objective and two-objective designs indicates that two of the heat

exchangers are especially effective for minimizing the system size and

two others are especially effective for minimizing the loss of

available energy.
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NOMENCLATURE

2
A = heat transfer area, ft

2
A. = heat transfer area of the j-th heat exchanger, ft

2
a = heat transfer area, ft

C . = specific heat capacitv of the j-th cold stream, 3tu/lb -°R
PJ m

c . = specific heat capacitv of the j-th hot stream, 3tu/lb -°R
PJ m

_f = objective function vector

f = first objective function which represents the total heat transfer
area, ft^

2
Af. = small deviation in f., ft

f- = second objective function which represents the rate of available
energy loss, 3tu/hr

j» = constraint function vector

AH = difference between the enthalpy flow rate at the inlet and that

at the outlet of the system, Btu/hr

h equality constraint function vector

h = specific enthalpy of the j-th cold stream, Btu/lb
cj m

J = scalar objective function

J. = scalar objective function of the i-th subDrobiem
J

k = parameter defined by Eq. (8)

? = pressure, atm

Q = rate of heat transfer from the hot stream to the cold stream,
Btu/hr

Q =« rate of heat transfer from the surroundings to the system, Btu/hr

R = ratio of heat capacity flow rates of the cold and hot streams

R. = ratio of heat capacity flow rates of the cold and hot streams
through the j-th heat exchanger

AS = difference between the entropy flow rate at the inlet and that

at the outlet of the system, Btu/hr-
3
R



88

•

S = rate of entropv change of the surroundings, Btu/hr-°R
sur

s = specific entropy of the j-th cold stream, Btu/lb -°R
cj m

is .
= difference between the specific entropy of the j-th cold stream

at the inlet and that at the outlet of the system, 3tu/lb -°R
m

'hj
= difference between the specific entropy of the j-th hot stream

at the inlet and that at the outlet of the system, Btu/lb -°R
m

T = temperature of the cold stream, °R

T_ = trade-off ratio between f~ and f

T. = temperature of the cold stream at the inlet of the heat exchanger,
1 o

R

T = temperature of the cold stream at the outlet of the heat exchanger,
°R

T , T , T = intermediate temperatures of the cold streams, °R
Aj Bj Cj

T .
= temperature of the j-th cold stream at the inlet of the svstem,°R

T temperature of the j-th cold stream at the outlet of the system, °R

T = temperature of the surroundings, namelv, 537°R
sur ° ' '

t = temperature of the hot stream, °R

t. = temperature of the hot stream at the inlet of the heat exchanger,
1

°R

t = temperature of the hot stream at the outlet of the heat exchanger,

°R

t , t , t , t = intermediate temperatures of the hot streams, °R
Aj Bj Lj Dj

t.. = temperature of the j-th hot stream at the inlet of the system, C
R

t. = temperature of the j-th hot stream at the outlet of the svstem, °R
jo

At = log-mean temperature difference, °R
m

2
U = overall heat transfer coefficient, Btu/hr-ft - R

U. = overall heat transfer coefficient of the j-th heat exchanger,
3 Btu/hr-ft 2- 3 R

v =» value function
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v .

3
= specific volume of the j-th cold stream, ft /lb

m

W = rate of the shaft work done by the system, Btu/hr

W
21

= surrogate worth function associated with f„ and f

W. mass flow rate of the j-th cold stream, lb /hr
J m

WC = heat capacity flow rate of the cold stream, Btu/hr-°R
P

(WC ) .= heat capacity flow rate of the j-th cold stream, Btu/hr- 3 "

P J

W = maximum rate of the shaft work, done bv the system, Btu/hr
max

w. = mass flow rate of the i-th hot stream, lb /hr
J n

wc = heat capacity flow rate of the hot stream, Btu/hr-°R

(wc ) .= heat capacity flow rate of the i-th hot stream, Btu/hr-°R
P J

x = independent design variable vector

Greek Symbols

a = parameter defined by Eq. (10)

;< . = parameter associated with the j-th heat exchanger

8 = parameter defined by Eq . (11)

£ = maximum allowable level of f

\.
?

3 generalized Lagrangian multiplier

y = Lagrangian multiplier vector

= rate of the total entropy creation, 3tu/hr-°Pv
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Table 1. Fixed Conditions for Optimisation

I. Initial temperatures of the hot streams

t ,, = 360 °R = 478 °K
Al

t_. = 1060 = 589
Bl

t
cl

= 990 = 550

t = 960 = 533

II. Initial and terminal temperatures of the cold streams

T A1 = 590 °R = 328 °K T A , - 860 °R = 473 °K
Al A3

T
,

= 640 = 350 T_. = 910 = 506
Bl B4

T = 610 = 339 T
c5

= 960 = 533

III. Heat capacity flow rates

(wc ). = 1.5 x 10° Btu/hr-°R = 6.81 x 10
8

cal/hr-°K
p 6 8

(wc )„ = 1.5 x 10 = 6.81 x 10pB , «

(wc )„ - 1.5 x 10 - 6.31 x 10
p C

6 3
(wc ) n = 1.5 x 10 = 6.81 x 10*

p D
6 S

(WC ) - 1.0 x 10 = 4.54 x 10
p A

6 8
(WC „ 1.0 x 10 = 4.54 x 10

P B r
a

(WC ) p = 1.35 x 10 = 6.13 x 10
P C

IV. Overall heat transfer coefficients

U. = 100 Btu/hr-ft"-°R - 4.88 x 10
D

cal/hr-m -°K, \ = 1,2,3,7,

U. = 135 = 6.59 x 10
5

, j = 4,5,6,9



Table 2. Comparison of results for the minimum total

heat exchanger area problem.
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Heat
Exchanger
area

Chen
(1977)

Present !

work

A
i

(ft
2

)

A
2

5,635 5,528

A
3

13,256 13,261

A
4

4,181 4,184

A
5

A
6

!

A
7

20,622 20,628

A
8

545 544

A, 25,832 25,826

i :

J =

i

EA.
J

70,071 70,071
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Table 4. Preferred Designs of Che Heat Exchanger System
Determined bv the Three Different Methods

94

Lexicographic
\

Approach
Weighting
method

Sarrogate Worth
Trade-off Method

A 9,251 10,691 12,069

A
2

9,115 10,215 10,598

A
3

13,474 13,280 13,337

|_

A
4

14,712 16,683 17,891

A
5

A
6

.

S 12,892 11,601 11,232

A
8

675 897 822

A
9

19,881 19,537 19,053

f
l

80,000 82,904 85,000

f
2

0.943 x 10
8

0.912 x 10
8

0.892 x 10
8
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Table 5. Non-Inferior Points and the Decision Maker's Responses
for the Heat Exchanger Problem

(ft
2
)

f
2

(Btu/hr)

T
21

(Btu/hr-m )

W
21

70,071 1.1127 x 10
8

2096 10

575,000 1.0094 1700

80,000 0.9433 1173 1

85,000 0.8921 927

90,000 0.8506 778 -2

95,000 0.8142 664 -3

100,000 0.7842 577 -4

105,000 0.7565 515 -5

110,000 0.7327 430 -6

115,000 0.7135 410 -8

120,000 0.6917 417 -10

125,000 0.6719 378 -10

130,000 0.6539 346 -10

135,000 0.6373 319 -10

140,000 0.6221 305 -10
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Heat Exchanger

to

-d

T
T,

hot stream

cold stream

Heat Transfer Area, a

Fig. 2. Temperature distributions in a heat exchanger of
counter-current type.
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APPENDIX A: DERIVATION OF THE PERFORMANCE EQUATION FOR

A HEAT EXCHANGER IN A LINEAR FORM

Suppose that a heat exchanger is of the plug flow and counter-current

type. Then, the temperatures of both the cold and hot streams in the

exchanger change with the position. Figure 2 depicts the temperature

distributions of both streams in the heat exchanger. T. and T denote,
1 o

respectively, the inlet and outlet temperatures of the cold stream;

similarly, t. and t denote, respectively, the inlet and outlet temper-

atures of the hot stream. The differential energy balance gives:

dq = WC dT = wc dt = -U(t - T)da (1)
P ?

or

wc ^ = WC ^ - -U(t - T) (2)
p da p da

Equation (2) can be rearranged as

A*.
WC

P

Here, the ratio of heat capacity flow rates, R, is assumed invariant with

respect to temperature variation. Integrating Eq. (3) subject to the

boundary condition at a = yields

t - t. = R(T - T ) (4)
1 o

Substitution of Eq. (4) into Eq. (2) gives

^ "-— [(R-l)T-RT + t.) (5)
da wC o l

P

If R ^ 1, integration of this equation from a = to a = A yields

t. - T .. RT - t.

T. = -ri-r exp - — (R - 1) +
R . x

(6)

P

Note that T = T. at a = A. By letting

—p ^
P̂
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Eq. (6) becomes

t - T RT - t .

T = _i ° + —° L (7)
i k(R - 1) R- 1

Kn

which can be rewritten as

m
k(R- 1) k- 1

(8)
o Rk - 1 i RK - 1 i

Integrating Eq. (3) subject to the boundary condition at a = A yields

t - t = R(T - T.) (9)
o i

or

t - t

T = —-—- + T. (10)
R l

By substituting this equation into eq. (2), we have

iE.__s_itflL=-a. + ^_ T] (u >

da wc R R l
P

If R 4 1, integration of this eauation from a = to a = A, where t = t ,

o

gives

O 1 , LA R - 1,= exp[- — —

J

t. (R - 1) + t - RT. ^
l wc R

l o l p

= exp[- J£- <r - i)]
WC

P

m 1

k

Rearrange this equation gives

t =
R -1

t +
R(k - 1}

T (12)
o Rk - 1 i Rk-1 i

K
'

Equations (3) and (12) which are in the linear form can be expressed as

\ / k(R-l) (k- l)\/ \

o\ Rk-1 Rk-1 ' i

(13)

\
t
o R(k- 1 ) R- 1

C
i

^ R k - 1 Rk-1

By letting

= k " l

'Rk-1 '
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Eq. (19) becomes

T \ /1-a
o

I t ) \ aR 1 - *R

(14)

This is Eq. (9a) in Chapter III. Simple algebraic transformation of Eqs.

(8) and (12) leads to Eqs. (9b), (9c), and (9d) in the same chapter.

Suppose that a heat exchanger is of the complete mixing type. Then,

the temperature distribution of the cold stream in the exchanger is

uniform and is the same as that at the outlet. This is also true for the

hot stream. The overall heat balance equation and the heat transfer rate

equation for the exchanger are expressed, respectively, as

- wc (t. - t ) = WC (T - T.) ('15)
p i o p o i '

Q = UA (t
o

" V (16)

Equation (15) can be rearranged as

t = -R (T - T.) + t. (17)11
where

WC
R = —

*

wc
P

Equating Eq . (16) and the right hand side of Eq. (15) gives rise to

WC
t
« " T~

= ~7^ (T ~ T^ < 18 )o o UA o i

Substitution of Eq. (17) into Eq. (18) and rearrangement of the equation

result in

1
!

T
o " (1 " WC } T

l
+ —^ \ (19 >

1 + R + _£ i + R^^f



By substituting this equation back into Eq. (17), we have

77F" T. + (1 -
wC 1 wC l

1 + R + 1 + R +
UA UA

Equations (19) and (20) can be written in the matrix form as

where

/ 1 -

aR

a T.
• /

*

1 - aR I t

.
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(21)

x =

1

WC
p

UA

This is the same form as that for a heat exchanger of the plug flow type

except for the definition of the parameter, x.

Combinations of linear forms of the plug flow types and those of the

complete mixing types can approximate performance equations of a variety

of process equipment with wide ranges of mixing conditions.
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APPENDIX B: DERIVATION OF THE RATE OF AVAILABLE ENERGY LOSS
(Keenan, 1941, 1951; Reistad, 1970)

Suppose that an open system is operated under the steady state condition.

For this system, the first law of thermodynamics is written as

AH = Q - W (1)

where AH is the difference between the enthalphy flow rate at the inlet and

that at the outlet of the system, Q is the rate of heat transfer from the

surroundings to the system, and W is the rate of shaft work done by the

system. The rate of total entropy creation, J, is given by

d = AS + S (2)
sur

where AS stands for the difference between the rate of entropy flow at the

inlet and that at the outlet of the svstem, and S stands for the rate of
sur

entropy change of the surroundings.

Since we know that

i - - ^2- (3)
sur T

sur

where T is the surrounding temperature, elimination of and S from
sur ' sur

Eqs. (1) and (2) gives rise to

W = T AS - AH - T a (4)
sur sur

Because of the second law of thermodynamics (d _> 0) , the maximum rate of

the shaft work done by the system is

W = T AS - AH (5)
max sur
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The rate of available energy loss is defined as the difference between

• •

W and W, i.e.,
max

W - W = T a (6)max sur

Suppose that a heat exchanger system involving m cold streams and n

hot streams is isolated from the surroundings (Q = 0).

Then, Eq. (2) becomes

m n

I W. As .
+ Z w. As,, (7)

where

As .
= difference between the specific entroDv of the i-th

cj

cold stream at the inlet and that at the outlet of the

system

As, .
= difference between the specific entropv of the i-th

hot stream of the inlet and that at the outlet of the

system

W. = mass flow rate of the i-th cold stream
:

w. = mass flow rate of the i-th hot stream
J

On the other hand, we have

ds
cj <%% dT + (1#>t dp (8)

The following relationships exist among the thermodynamical functions:

3s . . 3h C .

(__£!) = I
(
_Si) = JSL1

3s 3v
(—Si) = _

(
_S1)

- :-?
J
T K

3T P
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where h ., v . and C . are, resoectivelv, the specific enthalpy, specific
cj C] pj

r

volume and specific heat capacity of the j-th cold stream. Applying these

relationships to Eq. (8), we obtain

dS
cj

= "f^ - ("!fV P (9)

Since all streams are liquid, the volume change with respect to the tempera-

ture is negligible. Therefore,

ds .
= -£i dT (10)

If C . is constant, this equation becomes
PJ

T

'cj ~?j * T̂
(11)

ji

where T. . and T. denote the temperature of the i-th cold stream at the
Ji jo

inlet and that at the outlet, respectively. Similarly, we have

t

.

AsL .
= c In -& (12)

hj pj t . .

Ji

for the j-th hot stream. Thus, Eq. (7) becomes

m T. n t.

a = I (WC ) . In -12
- + : (wc ) . In -^ (13)

i PJ T
• • • i ° J t. .

J = 1
*

Ji J = 1 Ji

From Eqs. (6) and (13), the rate of available energy can be written in the

form of

m T. n t.

W - W - T [ Z (WC ) . In -=^- + : (wc ) . In r^-] (14)
max sur . . pi T.

.

, ? j t.

,

j - 1 ji j - 1 ji

which is Eq. (15) in section 2.2.
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CHAPTER IV

CONCLUSION AND RECOMMENDATION
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CONCLUSION AND RECOMMENDATION

Optimization techniques for a multi-objective system, which have been

reviewed and applied in this study, should enable us to take into account

more than one objective function in synthesizing an optimal but realizable

system. Although most of the basic concepts and terminologies involved

in these techniques have been developed originally in the fields of

economics, management science and mathematics, these techniques are

readily applicable to various engineering problems because of their general

nature. The heat exchanger network system studied in Chapter II is such

an example.

The following two possible extensions concerning the heat exchanger

system are recommended for future work.

1. Optimization of the network structure. The network optimized here was

fixed in advance. It may be possible to improve the system performance

by optimizing the network structure as well as the sizes of each heat

exchangers. The structual parameter method may be applicable to this

extension.

2. Extension of the system boundary. A heat exchanger system is usually

built as an auxiliary system of a main plant. Thus, the optimization

should be carried out simultaneously for both the heat exchanger

system and the main plant.

There are many other chemical and/or industrial process systems which

have been optimized conventionally by minimizing a single cost function

for each system. In view of the growing oublic concern over the energy

depletion and the conservation of the environment, these svstems should

be reanalyzed and resythesized by explicitly taking into account other
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objective functions that characterize the thermodynamic efficiencies of

the systems and the esthetic values. The techniques for solving a multi-

objective problem will be effective for these future works.
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ABSTRACT

The basic concepts and terminologies employed in multi-objective

system analysis and synthesis have been interpreted, and the techniques

for solving a multi-objective optimization problem have been comprehensively

and critically reviewed. A large heat recovery system consisting of nine

heat exchangers has been optimized to demonstrate the applicability of the

techniques. Two objective functions considered are the total heat transfer

area and the loss of available energy. As indicated by the trade-off curve

between them, these two objectives are in conflict with each other, and

this problem is a typical convex problem. The preferred designs of the

heat exchanger svstem have been determined bv three different methods.




