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PURPOSE

The purpose in carrying out this work was to develop a nonlinear

controller suitable for control of underdamped processes and to determine

its stability by simulation on an analogue computer.

INTRODUCTION AND THEORETICAL BACKGROUND

Control Theory

In general, physical systems are passive in that they do not contain

an active source of internal energy. Passive systems are inherently stable

because there exists no reason for self-excitation due to an unbounded build-

up or decay of energy within the system (l). A stable system does not

necessarily imply that the value or quantity of the system output variable

is desirable, or even tolerable, but only that the system output variable

is a bounded function of a bounded input (2), (3). In most physical systems

it is necessary not only to maintain the output variable as a bounded

function of a bounded input but to maintain its value within narrow pre-

determined limits. In order to accomplish this the energy or material flow

into an earlier stage of the system can be controlled or varied by informa-

tion emerging from an advanced stage of the system. Systems in which the

information from an advanced stage is returned or fed back into an earlier

stage are called closed loop or feedback control systems (U). Feedback

control systems may become unstable for certain system disturbances due to

the propagation of these disturbances around the closed loop (5). Even at

the risk of encountering instability the advantages of feedback control

systems are so numerous that they are used in almost every physical process.



Feedback control systems usually consist of a sequential or parallel

array of basic component interconnected to form one or more closed loops.

The five basic components usually found in a feedback control system are (6):

1. the process, 2. the measuring means, 3. the error detecting mechanism,

k. the controller, 5. the final control element. From the standpoint of

control, each of these components may be considered as information proces-

sing units; and the physical energy and material flows may be represented by

functional analogue signals. As each signal passes through one of the in-

formation processing units, it may be transformed in magnitude, phase angle,

or by some nonlinear relationship. The output signal from each element may

be described by a differential equation which is a function of the input

signal, time, and the element itself. By making a few simplifying

assumptions concerning the nonlinearities, this equation can generally be

solved for the LaPlace transform of the output signal divided by the LaPlace

transform of the input signal. The ratio of these transforms, when it

exists, is defined as the system transfer function (7). Hence, each system

element may be represented by a box or block described by a transfer function.

By connecting an array of these blocks by functional signal lines, a block

diagram or signal flow diagram representing an actual physical system may

be obtained.

Figure 1 is a simplified block diagram of a feedback control system

with a single feedback control loop. The process output variable is

measured and transformed by the measuring means into a signal representative

of the condition it is desired to control. This signal is transmitted to

the error detecting device and compared to the reference input or set point.

If initially the difference or the error between the feedback variable and
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Figure 1. A simplified signal flow or block diagram of a feedback
control system.



the set point is zero, there will not be a change in the signal transmitted

to the controller; and, therefore, no control action will be taken. Now if

the process is disturbed by a change in the process load variable, the

difference between the feedback variable and the set point will no longer

be equal to zero; and an error signal proportional to this difference will

be transmitted to the controller. The controller will then transform the

error signal into a control signal capable of actuating the final control

element. The control signal may be either a linear or nonlinear function of

the error. The final control element upon receiving the signal from the

controller changes the energy or material flow into the process, altering

the value of the process output variable. If all of the control functions

and system parameters have been properly selected, the output variable will

return back within acceptable limits in a reasonable length of time. If the

system has been designed improperly, the resulting control action could initiate

instability; or poor control could result. Since the process parameters are

generally fixed, or at best adjustable within narrow limits, the controller

functions or control modes along with their proper adjustment have received

considerable attention.

Underdamped Systems

A system with a considerable amount of inertia in relation to the

system restraining forces is described as underdamped (8), (9). When an

underdamped system is disturbed, it tends to result in oscillations which

die out gradually with time. If an underdamped system is included in a

feedback control loop, these oscillations may be propagated around the loop

in such a manner that each oscillation results in a new system disturbance.



Thus a closed loop system containing an underdamped element may be very

sensitive to upsets. It is the function of the controller to generate an

error compensating signal capable of damping out these oscillations as

rapidly as possible with minimum area under the error-time curve (6).

If the controller gain is set at a very low value, the maximum magnitude

of each oscillation will be greatly reduced each time around the loopj but

the system will be sluggish, and the error may persist for a long period of

time. As the controller gain is increased, the system response rate will in-

crease; but the maximum magnitude of each oscillation around the loop will

not be reduced as greatly as with the lower controller gain. As the con-

troller gain is increased, a point will be reached where the maximum magnitude

of each oscillation around the loop is reduced by about 15%. This system

usually exhibits satisfactory control, and the area under the error-time

curve is near a minimum (2). When the controller gain has been sufficiently

increased, the system will begin to oscillate with constant magnitude and

period. This condition is usually described as marginal stability, and the

loop gain is at its ultimate or critical value (2). The frequency of the

oscillation is called the ultimate frequency of the system (10). With only

linear elements in the control loop the ultimate frequency is approximately

equal to the undamped or the natural frequency of the system (ll). This

condition is usually considered undesirable from the control viewpoint be-

cause any further increase in gain will cause instability. When the system

reaches the point of instability, the maximum magnitude of the oscillations

will increase each time around the loop. Once instability has been initiated,

the system output variable is completely independent of the system input

variable (8). To restore stability the feedback loop must be disconnected or



the loop gain sufficiently reduced.

Conventional Controllers and Controller Theory

When a difference or error between the system output variable and the

reference input is detected, it is the function of the controller to

generate a signal to reduce the error back within limits as rapidly as

possible. The method the controller uses to generate this signal is called

the control action or control mode. Modern industrial controllers usually

consist of the sum of two or more control modes (12)

The most common linear process control mode is the proportional as

described by the equation:

p(t) = Ae (!)

where p(t) is the controller output, A is a gain constant, and e is the

system error. This equation should contain a constant term associated with

the steady state or zero error output. Since the inclusion of this constant

term does nothing to improve the clarity of the equation, it will be omitted

in all controller equations in this thesis.

Equation (l) shows that the proportional control mode is simply the

error multiplied by the constant A. Since the controller output is zero

except when an error exists, the proportional control mode will allow a

steady state error or offset to exist for sustained load changes. The

popularity of the proportional mode is due to its inherent stabilizing

effect resulting from the controller output ' s always being in phase with the

error (13). Thus, the controller output is always in a direction tending

to reduce the error, providing there are no time delays or phase lags within



the control loop. However., in most physical systems time delays and phase

lags exists j and the proportional control mode tends to increase the error

for certain error signals. In order to offset this condition it is some-

times necessary, or desirable,, to add phase angle shifting elements to the

control loop.

If the error signal to the controller is regarded as a sine wave^

there are two critical points per cycle where the controller output should

be zero because there is a chance that both the error and its first time

derivative will return to zero without any further control action. These

critical points are approximately 135° and 315 , depending upon the

characteristics of the system parameters (lii). In industrial controllers

the derivative mode is usually added to the proportional mode to reduce

the error to zero at the critical points.

The equation describing the derivative mode is:

p(t) = AD(de/dt) (2)

where D is a gain constant 3 or in transform notation:

iff}
- ADS (3)

where s is the LaPlacian dummy variable. The LaPlace transform of a variable

will be represented by a capital letter with the dummy variable s in paren-

theses. Zero initial conditions will be assumed throughout this work.

Equations (2) and (3) show that the derivative control mode leads the

error signal by 90°. If the derivative control mode is combined with the

proportional controller response the transfer function is given by the

equation:



or

{$ , * jm (U

§$ - A(l . Da) (5)

If the error signal to the controller is:

e(t) = sin tut (6)

where u> is the angular frequency, then the controller output of Equation (£)

is given by:

p(t) = Im A(l + jD«c)exp jo>t (7)

where Im signifies that only the imaginary part of the final solution will

i

be considered, and j (—!). Solving Equation (7) for its real part

results in:

p(t) = A(l + D
2

cj
2
)2 sin ( w t + arctanDcj) (8)

Equation (8) shows that the proportional plus derivative controller has a gain

factor A which is modified by (l + Do*) 2
. Since the angular frequency

cj is included in the gain term of Equation (8), the derivative response

adds a dynamic gain element to the control loop as opposed to the zero

frequency gain supplied by the proportional mode alone (ll). The phase

angle associated with the proportional plus derivative mode is given by

arctan(Da>) . In order to reduce the controller output to zero at the

critical points the error frequency must be determined and the gain term

D properly selected.

The integral mode is generally added to the controller for the purpose

of reducing the steady state error or offset. The equation describing the



integral mode is:

p(t) AI I edt/' (?)

where I is a gain constant. Equation (9) shows that the integral mode lags

the error phase angle by 90°. If the integral mode is combined with the

proportional control mode the following transfer function is obtained:

P(s) = a + Al/s

°r M =A(1 + I/S)

(10)

(11)

If the error is again considered to be a sine wave, then Equation (ll)

becomes:

p(t) Im A(l + l/jco)exp jcjt (12)

Solving Equation (12) results in the following

,2
p(t) = A 1 + (1/uY sin (wt - arctan 1/tJ ) (13)

1 + (I/6J) 2
, andThe proportional gain constant A is now modified by-

becomes infinite when the error frequency approaches zero. Thus the

integral control mode will not tolerate steady state errors since its zero

frequency gain is infinite (5). The phase angle associated with the pro-

portional plus integral controller lags the error phase angle by the term

arctan (l/co). Since it is undesirable to add any components to the control

loop that will increase the phase angle lag, the integral mode should be

employed only where offset cannot be tolerated (15).
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For many physical processes the system parameters are related in such

a manner that good control and stability are incompatible with only linear

phase shifting elements in the control loop. For this and other reasons the

introduction of nonlinear elements into the feedback control loop has been

proposed (16), (17).

Nonlinear Control Systems

A feedback control system should be designed to hold the system error

to as small a value as possible following a system load or setpoint change.

If the absolute value of the error is large or departing from zero, a high

loop gain or a small damping factor is desirable to increase the system

response rate to controller corrections. Conversely, if the absolute value

of the error is small or approaching zero, a low loop gain or a large damp-

ing factor is desirable to slow down the system response rate and prevent

excessive oscillations. Since the system damping factor can alter the

system response rate in essentially the same manner as the controller or

the loop gain, the use of nonlinear damping which has an inverse relation-

ship to the error or error rate has been proposed (17), (l8), (19)- Since

the damping factor is an integral part of the system, this requires that the

system transfer function be altered or varied during operation. This is

usually feasible only in mechanical or electrical systems which fall under

the classification of servomechanisms, and rarely, if ever, applicable to

chemical processes or regulator control systems.

Nixon (3) has suggested that the product of the absolute value of the

error and the error be added to the proportional mode response to increase
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the controller gain for large errors. This controller response is described

by the equation:

p(t) = Ae + A-i\e\e (lU)

where A^ is a gain constant. Since the sign of the nonlinear terra is

always the same as the sign of the proportional mode, the nonlinear terra

has the appearance of being in phase with the error but with a distorted

wave form. For nonlinear systems the phase angle in not easily or

accurately defined. The usual procedure is to excite the system with a

sinusoidal forcing function and determine the Fourier series of the output

wave form (19), (20). The phase angle associated with the system is given

by the phase angle contributions of the first harmonics of the Fourier

series. Applying this definition to the nonlinear term in Equation (lU)

results in the following wave form:

p(t) = A-, |sin<ot| sinot (15)

after substituting (-t) for (t) in Equation (15), the result is given by the

following

:

p(-t) = A
1 |

sin (-cjt)| sin (-cjt) (16)

or p(-t) = -A, I sin cot I sin&jt (17)

therefore:

P(t) = -p(-t) (18)

and p(t) is an uneven function, and the Fourier series will contain only

sine wave harmonics in its expansion (21). The Fourier series for Equation

(lit) is given by:
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n =of

p(t) = A slncot + ) % s^n na>t (!9)

n = 1

where n = 1, 2, 3 5
— , n, —— eo , and an is the coefficient of the n th

term of the series. An examination of Equation (19) shows that the first

harmonics are:

p(o>t) = A sincjt + a-^ sinwt (20)

and the phase angle contribution is zero since the sum of two sine waves of

the same frequency is another sine with that frequency. The wave form will

be distorted by the harmonics so that the magnitude of the nonlinear term

increases rapidly for large errors and contributes very little when the

error is small. In order to be very effective on systems with phase angle

lags or time delays, a phase angle lead component such as the derivative

mode should be included in Equation (lit).

A similar, but superior, controller mode is obtained by subtracting

the third harmonic of the error from the first (22). If the error is

regarded as a sine wave, then the controller output would be described by

the equation:

p(t) = A
2sino>t - A-^sin 3<wt (21)

where A
2
and A3 are gain constants. If A2 and A- are chosen as follows:

A
2 = 3VU (22a)

and A3 = A^/U (22b)

the controller output of Equation (21) is then:
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p(t) - (3 \/k) sino>t - (A^/U) sin 3«t (23)

or p(t) - A,sin3Wt (2U)

and p(t) - A^e3 (25)

which is a cubic response.

In consideration of the first harmonic of the controller response

given in Equation (21), the cubic response does not supply a leading phase

angle to the system. The cubic response does have the advantage of in-

creasing the loop gain for large errors and decreasing the gain when the

error is small. This can be seen by an examination of Equation (23) which

shows that the sign of the third harmonic will be the same as the sign of

the first harmonic when the error is between 60° to 120° and 21*0° to 300°.

Therefore, the magnitude of the first harmonic will be increased by the

value of the third harmonic term over these ranges where the error is

largest . At all other points during one cycle the value of the third

harmonic will be subtracted from the magnitude of the first harmonic, and

the controller will have a low gain value for small errors.

In order to reduce the controller gain to zero at the critical points,

the gain of the third harmonic term in Equation (21) could be increased

above that required for a true cubic response. This would also decrease

the response for small errors departing from zero and could cause the

controller error correction to be in the wrong direction over the first

portion of the error cycle. Since this could easily lead to instability,

the derivative control mode could be added to the cubic response if a lead-

ing phase angle component is desired.
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Bates (-4) has proposed setting the loop gain at some suitable low

value and increasing it to the limit whenever the error or the error rate

reaches a maximum. Mathematically this could be accomplished by the

addition of two nonlinear control modes to the controller. These are the

error divided by the absolute value of its first time derivative and the

first time derivative divided by the absolute value of the error or in

equation form:

where A£ and A^ are gain constants. These terms would require low values

for the gain coefficients since division by signals close to zero could

result in extremely large gains which would initiate instability. In a

practical system limiters would be required, or a somewhat different

controller response could be selected.

Gibson ( 23) has suggested the use of a dual controller to provide high

loop gain for large errors and a small loop gain for small errors. This

system would require a relay switching device to select the controller

which would be in operation. Each controller would be equipped with its

own separate gain and phase angle shifting components. When the error is

small the high gain controller would be switched out of the loop, and the

system would be controlled by the low gain controller. When the system

error exceeds some predetermined limit, the low gain controller would be

switched out of the control loop; and the high gain controller would assume

system control. This type controller could be very effective but would

b3 complex and costly since two separate controllers along the necessary

error sensing and switching mechanism would be required.
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A somewhat more sophisticated extension of the dual mode controller

is the programmed controller or the optimum switching relay servomechanism

(17), (22), (23). This type controller is based on the theory that for

every system error an optimum controller response can be determined.

Theoretically this type controller could have any desired response for any

linear or nonlinear function of the error. However, in practical systems

the controller response is usually determined by some function of the error

and its first time derivative (22).

An equation of the form:

y(t) - f(e, de/dt) (27)

is determined by consideration of the phase plane plot of the error versus

the error rate. Equation (27) when represented on the phase plane plot is

called the optimum switching line (17)- The controller response will then

be determined by the value of y(t) in Equation (27). From a practical view-

point the applications of the optimum switching relay servomechanism are

somewhat limited due to the cost and complexity of the equipment required to

optimize a given system.

Consideration of these ideas has led to the development and investigation

of another nonlinear controller which is believed to have many desirable

characteristics.
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AN ERROR MAGNITUDE-RATE CONTROLLER

Controller Characteristics

The nonlinear control mode developed and analyzed for this thesis* is

described by the equation:

p(t) * AB
|
e

|
de/dt (28)

where A and B are gain constants. Since the controller output in Equation

(28) is proportional to the product of the absolute value of the error

magnitude and the error rate, it has been called the "magnitude-rate mode"

in this thesis as an aid in its discussion.

Since the output wave form of the magnitude-rate mode is a nonlinear

function of the error, its phase angle will be given by the phase angle

contributions of the first harmonics of its Fourier expansion with a

sinusoidal error forcing. Equation (28), with a sinusoidal error is given

by the following:

p(t) = ABco |sinwt|coscjt (29)

The Fourier expansion of Equation (29) has been derived in the Appendix

and is described by the infinite series:

p(t) = - -—— \ cos(2n - l)u>t (30)

where n - 1, 2, 3, — , n, cx> . Solving Equation (30) for n equals

* Selected sections of this thesis have been published by Dr. H. T. Bates,
and the author. See Reference No. li*.
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one results in the first harmonic of the series:

p(o)t) = gj= cos cut (31)

which is the same as the derivative mode except for the form of the gain

constant. In consideration of the first harmonic of the output wave form,

the magnitude-rate mode has a 90 phase angle lead component.

Figure 2 shows the controller output wave forms of Equations (29) and

(31) with the gain coefficients chosen to give both responses the same

maximum magnitude. Since the sign of the magnitude-rate mode is determined

by the sign of the first time derivative of the error, it always has the same

sign as the derivative mode. However, the response of the magnitude-rate

mode differs significantly from the response of the derivative mode. The

00 °
points of greatest difference are: , 180 , and 360 , over one error cycle.

The difference at these points is due to the inclusion of |sinu>t| in

Equation (29) which forces the magnitude-rate mode to zero at these points

while the derivative mode assumes its maximum value. Thus, the main

purpose of the higher harmonics in Equation (30) is to reduce the first

harmonic cosine wave to zero at these points. An expansion of Equation (30)

for the first five terms of the Fourier series results in:

p(t) = i^coscot - ±!^cos3a,t - l**g cos$co t
37T 57r 2177

- ^coslcot - ^cos9<ot (32)

Equation (32) shows that the Fourier series representing the magnitude-rate

mode consists only of odd harmonics with the sign of the higher harmonics
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Figure 2, Comparison of the output wave forms for the magnitude-rate
and the derivative control modes.
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always being opposite that of the first harmonic at the points , 180 ,

and 360°.

Considering only the first two harmonics of Equation (30) demonstrates

the error possible in assuming that the phase angle of a nonlinear element

is accurately described by the first harmonics of the Fourier series only.

The difference between the coefficients of the first two terms of Equation

(30) is:

UABto

57T
(33)

or
hABqj

Tf

1_

3

1
(3U)

Equation (3U) shows that the coefficient of the first harmonic of the Fourier

series is only k0% greater than the coefficient of the third harmonic. If

only the magnitude of the coefficients is considered, the third harmonic

has almost as much effect on the magnitude-rate mode as the first harmonic.

However j, it is known that most physical systems act as low pass filters (19).

When this is the case, the higher harmonics are greatly attenuated and thus

lose some of their effectiveness in defining system performance. Since the

accuracy of assuming that the first harmonics determine the system response

is generally within 10$ error (20), the actual effect of the phase angle

lead is probably between 75 and 85 .

Since the response of the magnitude-rate mode is zero anytime the error

rate is zero, a control mode with a zero frequency gain must be included

with it to prevent the system output variable from drifting or stabilizing

at a new value. Either the proportional or the irtegral mode is suitable
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for this purpose although each has its disadvantages. If the integral

mode is used in the loop, an additional phase angle lag is introduced for

consideration] but there will not be a steady-state error. If the pro-

portional mode is used, the system will tolerate steady-state errors; but

no additional phase angles are included in the loop. Since steady-state

errors have less effect on system stability than phase lags, the pro-

portional mode was chosen to supply a zero frequency gain (l6). In

addition, the proportional response can be used as a "standard" for

comparison to help clarify the effect of the magnitude-rate response.

If the proportional mode is combined with the magnitude-rate mode,

the total controller response will be:

p(t) = Ae + AB|e|de/dt
(tf)

or, after factoring out the gain constant A:

p(t) = A(e + B|e|de/dt) (36)

which shows the reason for inclusion of two gain factors in Equation (28).

As an aid in visualizing the controller response of the proportional plus

magnitude-rate mode, it is convenient to let the error be represented by a

sine wave; then Equation (36) becomes:

p(t) = A(sinwt + Ecu |sincot| coso>t) (37)

Figure 3 shows the controller output wave form of Equation (37) for

A 1; Ba> = 0, 1, 2 and $. When Btu equals zero, the controller response

reduces to the proportional mode described by Equation (l). When Bw is not

equal to zero, the proportional response is distorted from a true sine wave

by the value of the magnitude-rate mode. The degree of distortion depends

upon the magnitude of the error frequency u> and the gain factor B.
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"igure 3. The proportional plus magnitude-rate controller response,
A(e + B|e|de/dt), for a sinusoidal error, with A - 1.0
for several values of B&j.
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When the error is departing from zero, the sign of magnitude-rate mode

is the same as the sign of the proportional mode; and the controller gain

increases rapidly in an effort to restore the system error to zero. As the

error continues to depart from zero, but with a decreasing error rate, the

value of the magnitude-rate mode begins to have less effect on the pro-

portional mode; and the controller response begins to decrease. When the

error rate is zero, the output of the magnitude-rate mode is zero; and the

controller response is reduced to that of the proportional mode alone,

further exemplifying that the magnitude-rate mode connot be used without a

zero frequency gain element in the loop. When the error turns and begins to

approach zero, the sign of the magnitude-rate mode will be opposite that of

the proportional mode; and the controller gain will be decreased. By an

appropriate choice of the gain constant B for a constant operating

frequency the controller output may be made to approach zero very slowly

as the error approaches zero (Bcu = l), or it may be made to reverse sign

to correct for the error overshoot before it occurs (Btu = 2). For any

choice of B^u the controller output will always be reduced to zero when the

error is zero. As the error crosses zero and continues to increase in

magnitude, the controller output increases rapidly, and the cycle, as

previously described, is repeated.

It should be pointed out that the gain of the magnitude-rate mode, like

the derivative mode, is modified by the error rate or error frequency. At

very high frequencies the gain of the magnitude-rate mode could become very

large in comparison to the proportional response, and the loop gain could

be sufficiently increased to initiate instability. When Bcj = 10 the

effect of the proportional mode is negligible, and the Equation (37) is
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approximately:

p(t) = ABo>
|
sincot|coso»t (38)

with a maximum error of about 10$. Equation (38) can be written as (2U):

ABw
sin2o>t, when = t * H

2 o»

p(t) (39)

±M slrttot, when 2 ^ t ^ ^
2 oj o>

and the magnitude-rate mode has the appearance of being a second harmonic

sine wave in direct contradiction of the Fourier series of Equation (30)

which contains only odd cosine harmonics. The disappearance of the second

harmonic sine waves in the Fourier series is apparently due to the sign

reversal on each half cycle exhibited by Equation (39). An explanation of

the way in which the tendency toward instability at high frequencies is

somewhat avoided can be seen by an examination of Equations (32) or (39).

Attenuation of high frequency signals,, and in particular the higher harmonics,

results in reducing the effect of the magnitude-rate mode as described by

Equation (32) since it is essentially made up of higher harmonics. In

addition to this^ the sign reversal once each half cycle in Equation (39)

results in a smoothing effect as it passes through a low pass filter system.

On systems capable of responding to high frequency signals a low gain constant

B would be desirable to reduce the controller gain in these frequency ranges.

The significant features of the magnitude-rate mode may be summarized

as follows:

1. The controller gain will be increased for all errors departing from
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zero.

2. The controller gain will be decreased for all errors approaching zero.

3. The controller output will be zero anytime the error or the error rate

is zero.

iu The magnitude-rate mode has a leading phase angle of approximately 80°.

5. The tendency toward instability at high frequencies is reduced by the

attenuation of the higher harmonics representing the magnitude-rate mode.

6. Since the magnitude-rate mode does not have a zero frequency gain, it

must be used in combination with some other control mode such as the pro-

portional or integral.

Experimental Procedure

Due to the nonlinearity of the magnitude-rate mode, an analytical de-

termination of its effect in a feedback control system would have been ex-

ceedingly difficult to obtain. Since an analogue computer capable of

simulating the nonlinearity was available, analogue simulation of feedback

control loop containing the magnitude-rate mode was performed as part of the

experimental work for this thesis.

The analogue computer used was the Kansas State Engineering Experi-

mental Station Analogue Computer (KEESAC). High gain DC amplifiers were

used to perform the linear arithmetic operations. Ten turn Helipot pre-

cision potentiometers with calibrated dials were used to adjust the control

functions and the closed loop gain. Diodes were used for voltage rectifi-

cation in order to obtain the absolute value of the error signal. Servo-

multipliers were used for voltage multiplication. A two channel Brush

recorder was used to record two variables simultaneously with respect to
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time. A Hewlett-Packard function generator was used to generate the

sinusoidal forcing functions for the open loop response.

Figure h shows the analogue computer signal flow diagram used for both

the open loop and the closed loop response. All resistor values are in

megohms and capacitor values are in microfarads.

Amplifier 1 was used to obtain the system error by comparison of the

feedback variable and the reference input. Switch S2 was used to dis-

connect the feedback variable for the open loop response. Switch S-^ a

micro-switch, was used as a gate for the step function inputs for the

closed loop response and for the sinusoidal forcing functions for the

open loop frequency response. The voltage for the step function was

supplied directly from the output of an amplifier to prevent potentiometer

loading effects.

Amplifier 3 was used in conjunction with the two diodes for full-wave

voltage rectification in order to obtain the absolute value of the error.

Figure 5(b) shows a recording of a sinusoidal error and its absolute value.

The diodes used did not have an exact cut-off value ; so the corners are

somewhat rounded at the points where the error signal changes sign. The

exact mathematical significance of the ten megohm resistor was not

determiried, but system noise was greatly reduced by its inclusion in the

circuit. The resistor did not appear to have an effect on the rounding

of the corners.

Amplifier k was used to obtain an approximation of the first time

derivative of the error. Since noise is generally an inherent feature of

an exact differentiation circuit, a 0.01 microfarad capacitor was employed

in the feedback path (25). The transfer function of Amplifier k is then:
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Figure k- Analogue computer diagram for the proportional plus magnitude-rate
controller and a second order process. All resistors are given
in megohms and capacitors in microfarads.
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Figure 5. (a) Wave form of the proportional plus magnitude-rate circuit

for a sinusoidal forcing function,

(b) Wave form of the absolute value of the error circuit for

a sinusoidal error.
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F (s)
o.5s

1 + 0.01s
(Uo)

or for a sinusoidal input signal:

f (t) Im 0.5JCO

1 + O.Oljco
exp jcot (UD

then:

f (t) =

or f (t) S

therefore

:

de/dt «

O.SCa)

1 + (0.0100)'

0.5a)cosu»t

h
cos(tut - arctan 0.01OJ) (U2)

(U3)

- 2f (t) (Uii)

with negligible error. Figure 6 shows the first time derivative of a

sinusoidal signal using the approximation circuit described in Equation

(U0) at an angular frequency of Jt radians per second. The error present

is not detectable on this recording.

Since the derivative of a step function is infinite, limiters probably

should have been used on the output of the derivative circuit. This was

not done because the output of the derivative circuit was fed directly into

the servo-multiplier. Since the frequency response characteristics of the

servo-multiplier were so poor at high frequencies, it was felt that this

sudden high voltage input would have very little effect of the servo-

multiplier output (8).

Amplifier 5 was used in conjunction with the servo-multiplier to

obtain the product of the absolute value of the error and the error rate.

The constant voltage for the reference potentiometer was approximately 12%
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Figure 6. Output wave form of the derivative approximation circuit for

a sinusoidal input.
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volts. Figure 7 (a) and (b) are the outputs of the servo-multiplier for a

sinusoidal error. At 0,5 cycles per second the servo-multiplier followed

very closely. At 2.0 cycles per second the output wave was completely

distorted from the second harmonic sine waves given by Equation (39)' In

general , the servo-multipliers followed rather closely up to about 1.5 cycles

per second. At other times the servo-multiplier exhibited instability or

failed to follow at lower frequencies for no apparent reason. It was

usually necessary to switch between the two operating servo-multipliers

every few minutes to allow the servo-multiplier that had been in use to

settle down and quit "hunting". The cause or the solution to this problem

was not determined.

Amplifier 6 was used to obtain the sum of the proportional plus magni-

tude-rate mode. Potentiometers 3 and 1+ were used to adjust the relative

magnitude of the two controller modes. A gain factor of ten was used in

Amplifier 6 because it was found that the noise from the servo-multiplier

was reduced by having Potentiometer 3 at a low value (0.2 to 0.5).

Figure 5(a) is the sum of the proportional plus magnitude-rate mode for a

sinusoidal error.

Amplifier 7 was used to simulate the second order processes with a

damping factor of approximately 0.63. The transfer function of Amplifier

7 is derived in the Appendix., and is given by:

Vq(s) R2

Vi(s) R, R
2
C
2
R
3
C
1
s<

f
+ C^R

2
+ R

3
+ R^/R^s + 1

(U5)

The second order process definition used in this work is given by the

transfer function:
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Figure 7. Output wave form of the servo-multiplier generating the

product of the absolute value of the error and the error

rate.

(a) At low frequencies the servo followed closely.

(b) Servo failed to follow at high frequencies.
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laisl =,

Vi(s) T
2
s
2

+ 2|Ts + 1

(U6)

where K is the gain factor, T is the time constant, and J is the damping

factor. Comparing Equations (U5) and (U6) results in the following system

parameters:

R 2

(I^C^C!)

(R? + Ro R2VR1^ C2

and <*>

2(R2C2R3C1 )

1
n

(R
2
C
2
R
3
C
1
)2

where f n is the natural frequency of the process. Table 1 in the

Appendix lists all of the resistor and capacitor values and the

calculated process parameters. Table 2 below lists only the process

parameters for the two second order processes simulated.

Table 2. Second order process parameters.

(U7)

(U8)

(U9)

(50)

Parameters
Run Number •

H 2 : Units

•0.5 -2.5 volts/volt

2.0 0.316 seconds

0.625 0.633 -

0.500 3.16 radians/sec

0.0796 0.503 cycles/sec

K

T

I

f,
ii
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The resistor and capacitor values in Equation (kS) were chosen to

give a damping factor of approximately the same value for the two runs.

This was done in order to allow a comparison of the two systems based

on their normalized angular frequency Ut/c*Jn . To have made the damping

factors exactly the same for the range of natural frequencies desired

would have required "odd" size capacitors and resistors.

Amplifier 8 was used for sign inversion for the closed loop response.

Potentiometer $ was used for final closed loop gain adjustment.

Closed Loop Response

If a step function change is made in the setpoint of the feedback

control loop, the zero frequency or the steady state error E(0) is given

by the following expression (6):

E(0) " ttV (50)

where C is the amplitude of the step function, and G(0) is the total

zero frequency gain of the control loop. In order to have an adjustable

zero frequency gain, the setting of Potentiometer 5 in Figure h was chosen

as the system loop gain parameter. Then, the zero frequency gain of the

loop is given by the equation:

G(0) = K(0) P
5 (51)

where K(0) is the maximum zero frequency gain of the loop, and P^ is the

dial setting of Potentiometer 5. Since the magnitude-rate mode does not

have a zero frequency gain component, the total steady state gain of the

loop is determined by the product of the proportional gain constant and
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the zero frequency gain of the other elements in the control loop. For

convenience, the proportional gain constant A was chosen to represent

the total zero frequency gain of the loop, or:

A = K(0) P^ (52)

Combining Equations (50), (5l), and (52) and solving for A results in:

C - E(0)

E(0)
(53)

By exciting the system in Figure k with a step function input and allow-

ing the error to reach its steady state value, the gain constant A was

determined by Equation (^3). The maximum steady state gain K(0) was

determined by Equation (52).

The gain constant B was determined by opening the loop and generating

a sinusoidal error, or:)

e(t) = E sinwt (5U)m

where F^ is the maximum amplitude of the sine wave. The output of the

magnitude-rate mode is given by:

p(t) = BwlEro sinu/tjEjjj cosa>t (55)

Equation {$$) can be written as:

Bo^Eju2

p(t) = — sin2a;t, when = t < -LL (56)
^ CO

If the maximum amplitude Pm of Equation (56) is known, then the gain constant

B can be calculated by:
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2P™
B =

g
(57)

Em W

From Equations (52) and (57) the proportional response is given by:

p(t) = K(0) P$e (58)

and the proportional plus magnitude-rate response is:

p(t) = K(0) P^(e + B|e|de/dt) ($9)

The closed loop response of Pain 1 was obtained for both the pro-

portional plus magnitude-rate controller and the proportional controller

alone. The step function change in the system setpoint and the system

error were recorded simultaneously on the two channel Brush recorder.

The total zero frequency loop gain was found to be 25P^ to give a

proportional response of:

p(t) = 2$?$e (60)

and the gain constant B was set to give a proportional plus magnitude-rate

response of:

p(t) = 25P5 (e + 0.025|e|de/dt) (6l)

Figures 8 through lU are comparisons of the closed loop response of Run 1

with a step function input of U.O volts. It should be noted that the step

function is doubled since Amplifier 1 has a gain of 2.0. The curves labeled

(a) are for the proportional plus magnitude-rate controller system. The

curves labeled (b) are for the system with only the proportional mode

controller.

Figure 8 is a comparison of the two systems at the very low gain of
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Figure 8. Closed loop response of the second order process to a step

function. Run 1. Potentiometer 5 = 0.08.

(a) With the proportional plus magnitude-rate mode controller.

(b) With the proportiona.1 mode only.
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A = 2.00. The system response is essentially the same for both controllers

except that the proportional plus magnitude-rate mode reached its steady

state error value slightly sooner than the proportional mode alone. Since

the error frequency was low, the magnitude-rate mode contributed very little

to the total controller response.

When the loop gain had been increased to A = 5.0, the error rate had

been increased enough to make the presence of the magnitude-rate mode more

evident. From Figure 9, it is seen that the maximum magnitude of the first

error overshoot is reduced by about 2$% by the action of the magnitude-rate

mode. The proportional mode system required over two cycles. The system

response rate was increased by about 35% by the inclusion of the magnitude-

rate mode.

Figure 10 is the response of the two systems when the loop gain had

been increased to A = 10.0. Both systems exhibited their approximate

optimum response. The proportional plus magnitude-rate mode was completely

lined out after two oscillations while the proportional mode required in

excess of three oscillations. The height of the first error overshoot was

approximately the same for both systems, but the response rate of the pro-

portional plus magnitude-rate mode was increased by approximately 60$.

In Figure 11 the proportional plus magnitude-rate mode was almost to

the point of instability. The magnitude of each oscillation was decreased

very little each time around the loop. The system containing the proportional

mode was not unstable, but several cycles were required for the error to line

out at its zero frequency value. The frequency of oscillation of the non-

linear system was 0.66 cycles per second as compared to an undamped natural

frequency of 0.0796 cycles per second for the second order process.
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1.0 CM/S3C

ERROR
8 VOLT/CM

Or' 5.0(e + 0.025 e| de/dt)

Figure 9. Closed loop response of the second order process to a step

function. Run 1. Potentiometer 5 =s 0.2.

(a) With the proportional plus magnitude-rate mode controller.

(b) With the proportional mode only.
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_ 1.0 CM/33C

SRROR
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Figure 10. Closed loop response of the second order process to a step
function. Run 1. Potentiometer 5 = O.k.

With the proportional plus magnitude-rate mode controller.
With the proportional mode only.fcl
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4VOLT/CM

m^m \ I

1.0 CM/S3C

ERROR
6* VOLT/CM

Figure 11. Closed loop response of the second order process to a step
function. Run 1. Potentiometer 5 = 0.55.
(a) With the proportional plus magnitude-rate mode controller,,

(b) With the proportional mode only.



ia

When the loop gain had been decreased to A = 12.5, the system contain-

ing the proportional plus magnitude-rate mode was stable ; but four cycles

were required for the error to reach its zero frequency value. It is

interesting to note that the error was essentially reduced to its steady

state value during the last oscillation only. This could indicate satura-

tion or limiting of some component within the loop. This was not verified

since none of the intermediate voltages in the loop were monitored.

Figures 13 and XU in the Appendix are additional recordings of the

closed loop response of the two control systems.

The closed loop response of Run 2 was obtained for the proportional

plus magnitude-rate mode only. The zero frequency gain was found to be

2.OP5. In order to make the effect of the magnitude-rate mode more

pronounced, the gain constant B was increased by approximately 2d% over

Run 1; or in terms of the controller response:

p(t) = 2.0P£(e = 0.032|e|de/dt) (6l)

The response of Equation (6l) to a sinusoidal error is shown in Figure 1$

at 0,5 cycles per second.

Figure 16(a) is the closed loop response of Run 2 with A = O.UO. The

effect of the magnitude-rate mode predominates even at this relatively low

loop gain. Since the sign of the magnitude-rate mode is opposite the sign

of the proportional mode as the error approaches zero, the error rate is

reduced to zero before the error reaches its steady state value. After the

error rate levels off, the magnitude-rate response is reduced to zero; and

the proportional response slowly forces the error to its steady state value.

When the gain is increased to A = 0.7 in Figure 16(b), the error rate
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Figure 12. Closed loop response of the second order process to a step
function. Run 1. Potentiometer 5= O.5.
(a) With the proportional plus magnitude-rate mode controller.
(b) With the proportional mode only.
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Figure 15. Wave form of the proportional plus magnitude-rate mode

controller response for Run 2.
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Figure 16. Closed loop response of the second order process vith the

proportional plus magnitude-rate mode. Run 2.

(a) Potentiometer 5 = 0.20.

(b) Potentiometer 5 = 0.35.
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is reduced to zero for a considerable length of time and then approaches its

steady state value very slowly.

when A is increased to 0.9> the approximate optimum system response is

obtained for the k.O volt step input. The error rate levels off once and

then approaches its steady state value rapidly. There is no error overshoot.

When the loop gain is increased to A 1.2 in Figure 17(a), the system

is unstable o The magnitude of the oscillations is increased each time

around the loop. The frequency of oscillation is 1.38 cycles per second as

compared to the undamped natural frequency of 0.503 cycles per second for

the second order process.

Figure 18 in the Appendix shows two additional closed loop responses

for Run 2.

Open Loop Response

The open loop responses of the second order processes (Runs 1 and 2)

were obtained with the proportional plus magnitude-rate controller.

Sinusoidal forcing functions of various frequencies between 0.03 and 1.2

cycles per second were used. The sinusoidal input and the second order

process output wave were recorded simultaneously on the dual channel Brush

recorder. The zerc frequency output magnitude was assumed to be given by

the maximum output wave amplitude at 0.03 cycles per second. The zero

frequency magnitude was required to calculate the magnitude ratio for the

frequency response curves. The phase angle lag was determined at corres-

ponding points where the process output wave and the sinusoidal input

amplitudes crossed zero on the recordings. No attempt was made to adjust

the output wave phase angle or the magnitude for nonlinear distortion.
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Figure J 7. Closed loop response of the second order process with the
proportional plus magnitude-rate mode. Run 2.

(a) Potentiometer 5= 0.60.
(b) Potentiometer 5= 0.1*5.
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The proportional plus magnitude-rate mode controllers were adjusted to

the same values as used in the corresponding closed loop response:

For Run 1

:

p(t) = A(e + 0.025 |e|de/dt) (62)

For Run 2:

p(t) = A(e + 0.032 |e|de/dt) (63)

Figure 19 shows the frequency response curves for both Runs 1 and 2.

The normalized angular frequency oj /on was used on the horizontal axis

for convenience in plotting the curves. The dashed lines on Figure 19

are the calculated response curves for the second order process with a

sinusoidal forcing function.

The frequency response curves were very odd, as shown by the additional

resonant Mbump". Immediately after the second resonant bump the magnitude

ratio and the phase angle dropped off rapidly, approaching that of the

second order process with the sinusoidal input. For Run 1 the approximate

point of the rapid decay was at 0.5 cycles per second or at the normalized

frequency of 1.52. For Run 2 the frequency was 0.76 cycles per second or

at the normalized frequency of 1.52.

The proportional plus magnitude-rate mode can be approximated by the

equation:

p(t) = A sinwt +
likBco

cosa/t (6U)
37T

where the higher harmonics in the Fourier expansion of the magnitude-rate

mode have been omitted due to their attentuation through the linear second
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order process. The open loop frequency response of AsincJt is shown by

the dashed lines on Figure 19. The first harmonic cosine wave has a leading

phase angle of 90°, and the gain is increased by the inclusion of the

angular frequency to in the numerator. Therefore, at the higher frequencies

the cosine wave would have the effect of shifting the dashed line represent-

ing the phase angle upward toward the -90° phase angle line. The increase

in gain of the cosine wave would also have the effect of increasing the

magnitude ratio at higher frequencies. Since the inclusion of the cosine

wave in Equation (6U) can only result in a positive increase in the phase

angle and an increase in the magnitude the rapid decay exibited by the

system must be due to a component failure within the loop. Since the servo-

multipliers were usually accurate up to frequencies approaching 1.5 cycles

per second, some other element within the loop must have failed. The most

logical points are the capacitors used on the second order process or a

faulty amplifier. The same capacitors were not used in both runs, but they

were of the same type. The same amplifiers were used in both runs.

Figure 20 is the output wave form of Run 2 with a sinusoidal forcing

function. At low frequencies the output wave was distorted only slightly

from a true sine wave. When the frequency had been increased to 0.18 cycles

per second, the output wave form was highly distorted by the magnitude-rate

mode. When a frequency of 0.U6 cycles per second had been reached, the

effect of the higher harmonics were greatly reduced; and the wave form

again appeared to be a sine wave, demonstrating the accuracy of Equation (61;)

in representing the proportional plus magnitude-rate mode at high frequen-

cies.

If the error to the controller is a sinusoidal wave, then the pro-
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Figure 20. Open loop response of the second order process, with the pro-

portional plus magnitude-rate controller. Run 2.
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portional plus magnitude-rate response is:

p(t) = A(sin cot + Bo)|sin6Jt JcoscJt) (65)

The LaPlace transform of Equation (65) has been derived in the Appendix and

is given by:

.2

P(s) = A
B(J

s
2

+ kCO
2

tanh
77 s

2W

If the process is described by the transfer function:

M(s)

P(s) T 2s2 + 2|Ts + 1

then the process output is:

M(s)
PCs)

T
2
s
2

+ 2|Ts + 1

(66)

(67)

(68)

M(s)
kUj

(s + to)(T
2
e
2

+ 2 iTs + l)

ABO)2

(s
2

Uft>
2
)(T

2
s
2

+ 2*Ts + 1)

tanh
20J

(69)

The inverse LaPlace transform of Equation (69) has previously been obtained

(lU) but will not be repeated here due to its complex nature and the more

complete experimental results included in this thesis.
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CONCLUSIONS

The nonlinear controller response:

p(t) = AB|e|de/dt (70)

has been shown to have several desirable characteristics. The most

significant of these are:

1) It provides an increase in the loop gain for all errors departing from

zero.

2) The loop gain is decreased for all errors approaching zero.

3) The loop phase angle can be increased up to approximately 80°.

k) The controller response will be zero anytime the error or the error rate

is zero.

The closed loop response of an underdamped process was obtained for both

the proportional plus magnitude-rate controller and the proportional con-

troller. The system with the proportional plus magnitude-rate mode improved

the system response to step function setpoint changes. The system response

rate was increased up to 60$. The number of oscillations required for the

error to line out were reduced by approximately $0%. By increasing the

gain cf the magnitude-rate mode the error could be made to approach its

steady state value rapidly without any error overshoot or oscillations.

While this work substantiates the usefulness of the magnitude-rate

mode for control of underdamped processes^ additional studies should be

made. A method of determining the optimum setting of the gain constant B

should be determined. Its effect when used on third or higher order

systems should be studied.
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NOMENCLATURE

A Proportional mode gain constant

A^ Controller gain constants, i = 1, 2, 3,

a Constant term in Fourier series

an Harmonic sine wave constants in Fourier series

B Magnitude-rate mode gain constant

bn Harmonic cosine wave constants in Fourier series

C Step function amplitude

C^ Capacitors in second order process circuit

Em Maximum amplitude of the sinusoidal error signal

E(s) LaPlace transform of the error signal

e(t) Error signal as a function of time

fn Undamped natural frequency of the second order process

G Amplifier gain

G(0) Steady state loop gain

G(s) LaPlace transform of the manipulated variable

g(t) Manipulated variable as a function of time

I Integral mode gain constant

Im Coefficient of the imaginary term

J Electrical junction

j Imaginary unit

K(G) Maximum value of the loop gain

k Length of the period for a periodic function

1 Load variable

M(s) LaPlace transform of the process output signal

m(t) Process output signal as a function of time
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n Integers, n = 1, 2, 3* n, . . ,

,

?t Dial setting of Potentiometer 5

Pm Maximum amplitude of the controller output signal

P(s) LaPlace transform of the controller output signal

p(t) Controller output signal as a function of time

Ri Resistor in the second order process

r Reference input signal or the system set point

s LaPlacian dummy variable

T Process time constant, seconds

t time

Va Voltage between Junction a and ground

V Voltage between Junction g and ground

Vjl System input voltage

V System output voltage

y(t) Optimum switching line for a programmed controller

c< Angular frequency,, radians per second

f9 Angular frequency, radians per second

i Second order process damping factor

CO Angular frequency, radians per second

CU^ Undamped natural frequency, radians per second
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Figure 13. Closed loop response of the second order process to a step
function. Run 1. Potentiometer 5 = O.OU.
(a) With the proportional plus magnitude-rate mode controller.
(b) With the proportional mode only.
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Figure 1 &. Closed loop response of the second order process with the

proportional plus magnitude-rate mode. Run 2.

(a) Potentiometer 5 = 0«55»
(b) Potentiometer 5= O.5O.
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DERIVATION OF THE FOURIER SERIES

OF THE MAGNITUDE-RATE CONTROL
MODE

The equation for the magnitude-rate mode is given by:

g(t) = AB|e|de/dt (71)

If the error signal to the controller is given by:

e(t) = sin cot (72)

then g(t) = AB6J|sinti>t|cos6L>t (73)

or as previously shown:

ABCO . _ , n < . * 77
+ —z— sxn2cot, when t = ——

-

g(t) -<

-
A?*> sin2«t, when

TT * t * 2

/[2 CO CO

(Ik)

Since g(t), as represented by Equation (7h) , is periodic and single -valued

with a finite number of discontinuities in one cycle, it may be represented

by a Fourier series (21):

n =00 n =00
\
—

' V
g(t) = a + \ ajj sin ncot + \ bn cos nwt (75)

/ 1
*•—

1

n - 1 n - 1

where n 1, 2, 3,— , n, —©0 .

Now let:

g(COt + Jt ) = AB6j|sin(o>t + Jf ) |cos(uut + ff ) (76)

Equation (76) reduces to:

g(4*Jt + 77*) = -ABco|sin<jt|cosc*>t (77)
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Then from Equations (73) and (77), there results:

g(cot) = -g((Ot + 7T ) (78)

and g(cut) is said to contain half wave symmetry and the Fourier series will

contain no even harmonics and a will be equal to zero (21).

Now let:

g(-CJt) ABo>l sin(-cot)| cos(-o)t) (79)

Equation (79) can be reduced to:

g(-cot) = ABo>| sinajt| coscot (80)

Therefore

:

g(cat) - g(-GJt) (81)

and g(fc>t) is defined as an even function of uit and will contain no sine

wave harmonic:3 in its Fourier series (21).

Equation (75) can now be reduced to the following:

n =oo
V 1

g(t) -
) D 2n - lcos(2n - l)tut

n = 1

(82)

where b-2n _i has been substituded for bn so that n will assume consecutive

values, and:

b2n -1
'

CTJ— /g(t)cos(2n - l)cut

^0

(83)

where k is the period. Since g(t) has half wave symmetry, b
?

, may be

evaluated over one half the period and the result multiplied by 2, , or:
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k/2
r

b2n - 1 " W5 I

«(t)«5(2« " Do)* W)
j
o

Substituting Equation (7U) into Equation (8U):

TT/co
r

k . JL— ^^ sin26>t cos(2n- \)a)t (85)
2n "1

27T/W J 2

The integral in Equation (85) is given by (27):

f „ cos(a - £ )t cos(« + £ )t
sincxt cos/^t = ="7" " ; TT (86)

J
H

2(tf - ) 2(0C £ )

After substituting Equation (86) into Equation (85) and supplying the limits

the following expression results:

2
ABat

b2n -1 " ^ l

cos(3 - 2n)tut

2(3 - 2n)

^

*

TT/oj

cos(l + 2n)o>t
>

2(1 + 2n)

i

After substituting in the limits and evaluating, Equation (87) reduces to

the following expression:



>2n -1

ABOT

7Tco 2(3 - 2n) 2(3 - 2n)

which reduces to:

Equation (89) reduces to:

66

2(1 + 2n) 2(1 + 2n)
(88)

>2n -1
ABg>

7T L 3 - 2n 1 + 2n
(89)

ijABijI"

2n " X 7T L(2n - 3)(2n l) .

(90)

Substituting Equation (90) into Equation (82) results is the equation for

the Fourier series of the magnitude-rate control mode:

n = ©0

g(t) = -
rr / ,

(2JT - 3)(2n + 1)

cos(2n - l)eut (91)

n = 1
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DERIVATION OF THE LAPLACE TRANSFORM FOR THE

PROPORTIONAL PLUS MAGNITUDE-RATE CONTROLLER RESPONSE

The equation describing the proportional plus magnitude-rate controller is

given by:

g(t) = A(e + B|e|de/dt) (92)

Let the error signal be given by:

e(t) = sincot (93)

Substituting Equation (93) into Equation (92) and expanding result in the

following equation:

g(t) = A slncot + ABcx>| sina»t|cosa;t (9k)

Equation (9k) can be written as:

g(t) =
gl(t) + g 2(t) (95)

where

:

gi(t) = A sin cot (96)

and

g2
(t) = ABco| sincjt| cosoJt (97)

Equation (97) can be written as:

( ab«j < < IX+ sin 2o>t, when - t = -ii-
2 CO

g2
(t) -i (98)

sin 2CUt, when " = t =

2 CO CO
\
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Since g ?(t) is periodic and has a finite number of discontinuities in one

period, its LaPlace transform is given by the expression (28):

G?(s) =

1 - exp(-ks)
exp(-st) g2(t)dt (99)

where k is the period of the function g (t).

Substituting Equation (98) into Equation (99) results in the following

integrals:

7T/u>

G
2
(s) =

AB CO

2[l * exp(- 27T/OJ )]

exp(- st)sin 2a)tdt

27T/W

exp(- st)sin 2o>tdt

t/oj

(100)

The integrals in Equation (100) may be evaluated by the expression (27)

exp(- st)sin 2ajtdt =
exp(-st)( -s sin 2 cut - 2o>cos 2o»t— .

g
s + hOJ

(101)

Performing the integrations in Equation (101) and substituting in the limits

results in the following equation for the LaPlace transform of g ? (t):
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Go(s)
2ABCJ

2[l - exp(-27fs/cu)][s + Uo> ]

expi-ffs/cj)

+ 1 + exp(-277s/cj) - exp(-77s/6j)

Equation (102) can be rearranged to give:

G
2
(s)

2ABOI
2
[l + 2exp(-Jfs/cj) + exp(-27fs/w)J

2[s
2

+ hcS 1 - exp(-27Ts/6L»)

which on further simplification yields:

G
2
(s)

since ( 28)

:

tanh

ABCJ
2 1

—

2

1 - exp(-7Ts/cu)

1 + exp(-77s/6j)

Hi
2W

1 - exp(-7fs/6o)

1 + exp(-7Ts/cj)

(102)

(103)

(10U)

(105)

Substituting Equation (lOf?) into Equation (10U) results in the following

expression:

G2(s)
AB6J 7Ttanh

S* + UCJ
2

2 0>2 2
(106)

The LaPlace transform of g^(t) is given by

G
x
(s) -

A a>

2 2
s^ + CO

(107)
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Since:

G(s) G^s) + G
2
(s) (108)

the Laplace transform of the proportional plus magnitude-rate mode is given

by the sum of Equation (106) and Equation (107), or:

0(b)
Ago

2 2
8 + CO

ABCJ . TC s
tanh

s
2

* U 20J
(109)

which after factoring out the common constant A results in the final form:

0(8)
uo

+ CO'

,
bco

2
. . Tt s

_|_ tanh

s
2

kCO 2 2co
(110)



DERIVATION OF THE SECOND ORDER

PROCESS TRANSFER FUNCTION

From Figure 21 if the gain G is large:

71

g
(111)

The current summation to junction J^ is:

— + Vn sC
R~.

O so 2
(112)

Solving Equation (112) for Va :

V sC2R
3

(113)

The current summation to junction Ja is:

V,

Rn
" VasCi

v - va

R2

- li - o
Rt

(liU)

Which after elimination of V& results in:

R2

Rn _C
1
C
2
R
2
R3S + C2(R2 + R3 + R^-j/R^s + 1.

(115)
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Table 1. The second o rder process circuit constants and parameters.

Constants *

Run Number
1 2

Rl megohms 2.00 0.20

*2 megohms 1.00 0.50

R3 megohms 1.00 1.00

Cl microfii^ads 4.00 2.00

C2 microfarads 1.00 0.10

K — -0.50 -2.50

T seconds 2.00 0.316

cOn radians/sec 0.500 3.160

tn cycles/sec 0.0796 0.503

I
- 0.625 0.633

Table 3. Experimental open loop frequency response data for the second

order process of Run 1 with the proportional plus magnitude-

rate controller forcing.

« . Magnitude : Phase Angle

f
': «h ;

Ratio : Degrees

•

0.03 0.377 1.000 -22.3

0.04 0.502 1.020 -20.7

0.05 0.628 1.030 -29.2

0.06 0.754 0.965 -44.0

0.07 0.879 0.901 -55.4

0.08 1.005 0.855 -62.5

0.09 1.130 0.737 -68.2

0.10 1.26 0.661 -74.8

0.12 1.51 0.526 -85.0

0.15 1.89 0.396 -91.1

0.20 2.51 0.275 -94.7

0.22 2.77 0.240 -98.1

0.26 3.27 0.184 -99.9

0.30 3.77 0.151 -102.0

0.34 4.27 0.123 -102.8

0.38 4.77 0.102 -105.1

0.42 5.27 0.088 -106.7

0.46 5.78 0.074 -109.0

0.50 6.78 0.065 -116.3

0.55 6.91 0.050 -155.2

0.60 7.54 0.023 -164.0
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Table 4. Experimental open loop frequency response data for the second

order process of Run 2 with the proportional plus magnitude-

rate controller forcing.

f
<±>/uj~

Magnitude
Ratio

Phase Angle
Degrees

0.03 0.06 1.00 -4.9

0.08 0.13 1.02 -7.9

0.10 0.20 1.02 -11.3

0.15 0.28 1.02 -18.1

0.22 0.44 1.10 -26.1

0.26 0.52 1.06 -28.9

0.30 0.60 1.04 -32.0

0.38 0.72 1.00 -40.0

0.42 0.84 0.981 -47.5

0.50 1.00 0.910 -49.6

0.54 1.08 0.904 -53.8

0.58 1.16 0.862 -58.9

0.66 1.32 0.848 -68.0

0.70 1.40 0.825 -74.6

0.76 1.52 0.801 -86.0

0.82 1.64 0.704 -122.6

0.90 1.80 0.387 -127.1

0.98 1.96 0.312 -132.0

1.10 2.20 0.233 -135.2

1.20 2.40 0.198 -137.0
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ABSTRACT

The effect of the proportional plus magnitude-rate controller response

A(e + B|e|de/dt) when included in a closed loop system containing an under-

damped process has been determined on an analogue computer. In addition,

the closed loop response of the underdamped process with the proportional

mode only was obtained for comparison purposes.

The closed loop response curves have shown that the proportional plus

magnitude-rate controller can increase the system response rate up to 60$

over that of the proportional mode when used alone. The time required for

the oscillations to die out was decreased by approximately 50% due to the

action of the nonlinear term. The height of the first overshoot was de-

creased up to 2$%. By the proper choice of the gain constant B the error

could be made to approach its steady state value rapidly without any oscil-

lations or error overshoot.

The magnitude-rate control mode has been shown to have a high gain for

all errors departing from zero and a low gain for all errors approaching

zero. The magnitude-rate mode has a leading phase angle of approximately

80°.


