PRESSURE DROP FOR SINGLE PHASE FLOW THROUGH PACKED BEDS

by

ROBERT HAMBLETT CROWTHER

B. Ch. E., Fenn College, 1950

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE

# TABLE OF CONTENTS

| Locu-                                |  |
|--------------------------------------|--|
|                                      |  |
|                                      |  |
| C7 TABLE OF CONTENTS                 |  |
| INTRODUCTION                         |  |
| Variables Which Have Been Considered |  |
| Some Important Concepts              |  |
| LTTERATURE REVIEW                    |  |
| VATERIAL AND VETHODS                 |  |
|                                      |  |
|                                      |  |
| The Flow System                      |  |
| Fluids and Flow Measurement          |  |
| Manometry                            |  |
| Thermometry                          |  |
| Sample Experimental Data             |  |
| Schedule for Each Bed                |  |
| THEORETICAL DEVELOPMENTS             |  |
| General Considerations               |  |
| Laminar Flow                         |  |
| Turbulent Flow                       |  |
| The Basic Equation                   |  |
| The Width of a Packing Unit          |  |
| Application of the Hypotheses        |  |
| Preliminary Analysis                 |  |
| Estimations for Perimeter            |  |
| Laminar Flow                         |  |
| Turbulent Flow                       |  |
| w/m As a Unique Variable             |  |
| Friction Factor and Reynold's Number |  |
|                                      |  |

| DISCUSSION                                                   |   | • | 55  |
|--------------------------------------------------------------|---|---|-----|
| Factors of General Importance                                | • | • | 55  |
| Orifice Analogy                                              | • | • | 59  |
| Orientation Near the Column Wall                             | • | • | 60  |
| How Well Must a Packed Bed be Defined                        | • | • | 63  |
| Determination of Packing Surface from Pressure Drop          | • | • | 67  |
| One Way in Which Active Surface Might Be Estimated           | • | • | 70  |
| Efficient Packing                                            | • | • | 73  |
| CONCLUSIONS                                                  | • | • | 76  |
| TABLE OF NOMENCLATURE                                        | • | • | 78  |
| ACKNOWLEDGMENT                                               | • | • | 82  |
| BIBLIOGRAPHY                                                 | • | • | 83  |
| APPENDIX                                                     | • | • | 85  |
| Photographs of Sectioned Beds                                | • | • | 87  |
| Table of Author's Original Data                              | • | • | 88  |
| Individual Values for the Laminar Flow Constant              | • | • | 101 |
| Individual Values for the Turbulent Flow Constant            | • | • | 107 |
| Calculated Values for Friction Factors and Reynold's Numbers | • |   | 120 |
| Procedure for the Orifice Analogy                            | • | • | 125 |

#### INTROLUCTION

Knowledge of the factors which contribute to pressure drop in packed beds finds many applications. Motion of ground waters, petroleum, and natural gas through rocks, soil, and sands require a knowledge of the same laws that govern flow through packed beds. Seepage under dams, the permeability of concretes, and surface area or density of many industrial materials are determined by application of these laws. Direct application to chemical engineering is found in filtration, distillation, absorption, fluidized or packed bed catalytic operations, and drying of solid particles.

Several attempts have been made to describe packed beds adequately so that pressure drop could be predicted. These investigations have successfully answered problems of limited scope, but, none have resulted in sufficiently general conclusions to allow the extension of existing information to new packing materials of novel geometrical nature.

This investigation was initiated in order to isolate a series of packed bed variables that could be used as a criterion for predicting pressure drop in any randomly packed bed. Special attention was given to amplifying the effect of variables that had already been recognized as important, isolation of the relevant factors, and a general formulation of these results that would lead to accurate prediction for pressure loss through any packing material.

#### Variables Which Have Been Considered

The factors which affect pressure drop can be segregated into two groups. The fluid and empty column variables constitute one group. The packed bed variables constitute another. The role of fluid variables has long been understood sufficiently so that they need not be analysed in the discussion. It is sufficient to select nomenclature for these.

Table 1. Nomenclature for fluid and empty column variables.

- g = gravitational constant converting weight units to force units. L<sub>t</sub> = depth of the packed zone. △ P = pressure loss due to frictional resistance across L<sub>t</sub>. Units of weight divided by area.
  - $U_0$  = velocity based upon the empty column.
  - A = absolute viscosity of the fluid.
  - P = mass density of the fluid.

Table 2 includes basic items which have been given prior consideration. More complex variables are not included since each different investigator has grouped the items to suit his theory or needs. Expression of these complex terms has been avoided for the sake of simplicity of understanding the subject as a whole.

The measurements used to describe packed columns as treated in the literature are given in Table 2.

| Table | 2. | Nomenclature | for | packing | variables | needed | for | discussion | of |
|-------|----|--------------|-----|---------|-----------|--------|-----|------------|----|
|       |    | literature   |     |         |           |        |     |            |    |

| Dp             | -  | nominal diameter of the packing unit.                                     |
|----------------|----|---------------------------------------------------------------------------|
| Ds             |    | diameter of a sphere having the same volume as the packing unit.          |
| Dt             |    | column diameter.                                                          |
| е              | 3  | height of an element of surface roughness.                                |
| r              | 3  | ratio between distance traversed by a fluid and the length of the column. |
| sp             | -  | surface of the packing unit.                                              |
| Sp             | -  | total surface of the packing.                                             |
| 5 <sub>5</sub> | 28 | surface of a sphere having the same volume as the packing unit.           |
| st             | -  | surface area of the column.                                               |
| V              | -  | total free, or void, volume in the packed zone.                           |
| vp             | -  | volume of the packing unit.                                               |
| Vp             | -  | total volume occupied by the packing.                                     |
| Vt             | -  | $V + V_p = volume of the empty column.$                                   |

## Some Important Concepts

One very basic concept of the problem of fluid flow has become classic to the representation of pressure drop in packed beds. Dimensional analysis based upon the assumption that pressure drop is a function of fluid density, fluid viscosity, fluid velocity, hydraulic radius or diameter, and surface roughness leads to results that parallel the development of the Fanning equation which is concerned with flow through channels. The result is

$$\frac{dP}{dL} = \int \frac{\rho u^2}{g^D} \phi\left(\frac{D \rho u}{\mu}, \frac{e}{D}\right)$$
(1)

where

- $\frac{dP}{dL}$  = gradient of frictional pressure loss along the actual path  $\frac{dP}{dL}$  of flow,
- S = constant factor determined from the geometrical nature of the available flow path,
- U = mean fluid velocity along the actual path of flow,

D = the equivalent hydraulic diameter or radius of the bed, other terms are as in Tables 1 or 2.

Early developments did not recognize the influence of  $\int and \frac{e}{D}$ . The efforts of each individual to express these four variables through consideration of those in Table 2 and the geometrical nature of the packing unit has constituted all theoretical developments concerned with flow through packed beds.

According to the results of this investigation a satisfactory expression for hydraulic radius was perhaps first introduced by Blake (1) in 1922. Blake did not include this development in his paper, but his results were identical to those of Carman (5) who chose to solve for

This was carried even closer to the concept of hydraulic radius as it was applied to flow through channels by

Regardless of the mode of development, it is certainly true that this quantity is a measure of the distance between surfaces that contact the fluid. It has been found convenient to write

$$m = V/S_{p}$$
(2)

No serious difficulty would be encountered by including column surface with packing surface, a step which appears logical. However, a certain degree of mathematical simplicity is gained by use of equation (2).

Prediction of pressure drop through a wide variety of packing materials and packed bed variables was finally accomplished by introducing a concept which might be termed hydraulic width of the packing unit. In any event, the new term represents the width of the barrier that must be circumvented by the fluid just as "m" represents the width of the path available for flow. A definition was framed so that the following could be approximated mathematically.

# w = surface contacting the fluid boundry of obstructing surfaces

To this end the packing perimeter, C<sub>p</sub>, was defined as: the locus of tangent points to the packing that would be generated by a line which moved throughout the packed bed remaining oriented parallel to the column wall. It was then possible to include this mathematical expression for w:

$$w = S_p / C_p \tag{3}$$

By combining (2) and (3) a very useful measure of the distortion of flow path was obtained and retained in the form

very excellent factor for accommodating the confining surface of a circular column; its development will be treated later since it is of secondary importance.

Plate I, Figs. 1, 2, and 3 represent the way in which  $\frac{W}{m}$  indexes the degree to which the fluid stream is disturbed. Figure 1 illustrates a bed of spheres, and the arrows suggest the path of flow through the bed. Figure 2 is constructed approximately to scale so that a bed of packing units, which is composed of randomly suspended circular plates, has the same values of "m" and "w" as does the bed of spheres. According to the results of the investigation, the pressure drop through both beds will be identical if  $U_0$ , hard M are identical. Figure 3 represents a bed, similar to the one in Fig. 2, that has the same value for "m" but fewer units of greater "w" are contained. It is predicted that, if  $U_0$ , hard M are the same as before, the pressure drop through this bed will be greater than that for either of the other beds. On the other hand, wire packing producing the same value for "m" should allow very low pressure drop.

The illustration was not tested experimentally, but the principle was repeatedly tested by reference to pressure drop through packed beds of widely differing properties which were approximately equivalent to those in the example.

# EXPLANATION OF PLATE I

- Fig. 1. Flow through spheres of diameter  $D_1$  producing  $\Delta P_1$  for  $m_1$ ,  $\rho_1$ ,  $\mu_1$ ,  $(U_0)_1$ .
- Fig. 2. Flow through plates of diameter 2 x  $\mathbb{D}_1$  should produce  $\Delta P_1$  for  $m_1$ ,  $\mathcal{P}_1$ ,  $(\mathbb{U}_0)_1$ .
- Fig. 3. Flow through plates of diameter  $h \ge D_1$  should produce  $\Delta P > \Delta P_1$  for  $m_1$ ,  $\rho_1$ ,  $\mu_1$ ,  $(U_0)_1$ .

PLATE I



figure l



figure 2



figure 3

#### LITHFATURE LEVIE

The need for an understanding of the factors which contribute to pressure drop in packed beds was realized as early as 1863. The earlier theories utilized the assumptions that a packed bed was comprised of a series of ducts that possessed a total sectional area equal to the area that would be intersected by a plane passing through the bed, and that the surface of the walls of these ducts was equivalent to the surface of the packing material. Investigators who have considered one or two different packing materials have been relatively successful. Those who have considered a large number of packing materials have accepted serious discrepancies or have resorted to extremely complex and unjustifiable empiricisms.

In 1922 Elake (1) analysed flow through several beds of glass and clay Raschig rings. He applied the principles of equation (1) with a relative degree of success. In developing a friction factor and Reynold's number, he assumed that velocity should be in excess of the superficial velocity, U<sub>0</sub>, by the ratio  $V_t/V$  and that hydraulic radius should be expressed as in equation (2). The ratio,  $V/V_t$ , had been previously proven identical to the fraction of column cross-section that was not intersected by the packing material. Elake represented the friction factor by  $\Delta PgV^3/L_tU_0^2S_pV_t$  and the Reynold's number by  $PU_0V_t/\mu S_p$ . These terms were plotted on logarithmic coordinates. He found that a single line represented results of tests with the glass packing but that lower values of the friction factor were obtained for the clay packing.



Flow through beds comprised of lead shot was studied by Burke and Plummer (h). They utilized variables equivalent to those of Elake and also represented their results on logarithmic coordinates. These tests illustrated the manner in which  $\beta$  of equation (1) depends upon the Reynold's number representation. The groupings that were used were equivalent to those used by Blake. Figure 5 illustrates these results. The region where  $\Delta P/L_t$  is proportional to  $U_0$  is laminar flow region. In the turbulent region  $\Delta P/L_t$  is proportional to  $U_0^2$ . The intermediate zone of transition from laminar to turbulent flow is peculiar to packed beds. A single line represented the results with a satisfactory degree of accuracy.





Literature up to about 1936 was thoroughly surveyed by Carman (5). This survey included much information that did not reach journals in English print. He found that laminar flow could be represented conveniently by the equation

$$\frac{\Delta P}{L_t} \propto \frac{\mu \log_p 2V_t}{g^{V_3}}$$

The proportionality factor included considerations of  $\int \sin equation (1)$  from the standpoint of the nature of a sphere and an emperical wall factor correction,  $(1 + S_t/S_p)$ , which yielded  $\Delta P/L_t = \int (1 + S_t/S_p)U_0S_p^2V_t/gV^3$ . Some results of tests by Pirie, given to Carman in a private communication, supply information for beds packed with cubes and prisms. Pirie was quoted to have worked "entirely in the streamline region".

Carman concluded that pressure drop through a variety of packing materials could be represented by

$$\frac{\Delta P}{Lt} = 5 \frac{\mu U_0 S_p^2 V_t}{g^{\sqrt{3}}} + 0.4 \qquad \frac{\rho U_0^2 V_t^2 S_p}{g^{\sqrt{3}}} \left(\frac{S_p \mu}{\rho U_0 V_t}\right)^{0.1}$$

This equation was formulated from information concerned with flow that was highly laminar, transitional, or highly turbulent. Figure 6 illustrates how this equation represented the information available at that time, the coordinates are identical to those used by Burke and Plummer.

Carman personally conducted a test to ascertain the true length of flow path in a bed of spheres. Unaided visual observations showed that the fluid path was inclined anywhere from  $0^{\circ}$  to  $90^{\circ}$  with respect to the container wall, and sometimes the fluid would follow an helical path. The mean inclination to the wall was concluded to be  $45^{\circ}$ .

A different approach for estimating the hydraulic diameter of a packed bed was being considered in the case of packing materials such as sands or crushed



Fig. 6. Conclusions by Carman (5).

stone. These materials frequently possess an indeterminate surface area and the term D<sub>s</sub>, as defined in Table 2, was found satisfactory for many empirical correlations. The investigation by Meyer and Work (9) typifies this approach. They found that

$$\frac{\Delta P}{L_{t}} = \frac{1.750 \,\mu \, \text{U}_{02} \,(0.67 \,\,\text{V}_{t} - \text{V})}{\text{g} D_{v}^{2} \text{V}_{t}}$$

accomodated their crushed stone very well.  $D_v$  was expressed in terms of  $D_s$  and  $V/V_t$ , thus accommodating wall surface and factors due to variation of free space. Use of  $D_s$  was supported by analogy between diameter of a packing unit and its surface according to  $S_p/V_p = 6/D_p$  for spheres.

Sullivan and Hertel (14) elaborated on the reasoning that Carman used to predict S' for laminar flow through beds packed with spheres and textile fibers. They assumed that S' for packed beds should originate from a basic value of S = 3 for an arbitrary duct which existed within the packed bed. They assumed that the effect of "r" could be expressed by the mean angle of orientation of surfaces with respect to the overall direction of flow. They expressed this mathematically as  $S' = 3/(\sin^2\theta)$ av. Their reasons for choosing a basic value of S = 3 can be understood only in the light of the fact that the agreement with experimental results was excellent. An earlier paper by Fowler and Mertel (6) showed that a basic value of S = 3 exists only in the extreme case of an infinitely wide rectangular duct. Sections that might more logically be present in packed beds are the triangle or square. Both of these possess values for S which are much less than 3. It is also true that the wide rectangular duct suffers a large depression in S if the walls converge as often as once every ten times the distance between them.

Table 3. Values of S for laminar flow through empty ducts (7).

| Shape of cross-section       | : 5   |
|------------------------------|-------|
| Circular                     | 2.00  |
| major axis = 2 x minor axis  | 2.10  |
| major axis = 10 x minor axis | 2.42  |
| Rectangular                  |       |
| square                       | 1.78  |
| length = 2 x width           | 1.94  |
| Length = 10 x width          | 2.05  |
| infinitely wide              | 3.00  |
| Triangular                   | 7 69  |
| infinitely high              | 1.50* |

"Included by present author.

The experimental results of Sullivan and Hertel are believed to be the most reliable in the literature. They payed extreme attention to detail and found that

$$\frac{\Delta P}{Lt} = 4.50(1 + 2 \text{ St}/3 \text{ Sp})^2 \frac{\mu \text{ U}_0 \text{Sp}^2 \text{Vt}}{g^{\sqrt{3}}} \pm 0.55 \text{ percent}$$

for their tests with a few beds of spheres. Although this equation was derived from very general considerations, it is applicable only to those few beds of spheres. The wall correction factor,  $(1 + 2St/3S_p)$ , was arrived at by considering mathematical consistency between the circular column, S = 2, and the value for S' = 4.50. This correction has been found slightly too large to apply to greater values of  $St/S_p$ . Similar reasoning, based upon practical consideration of a great variety of packing materials, has led to another value. Sullivan and Hertel maintained  $P_0V_t/A_p < S_p < 0.014$  thus insuring that totally insignificant transitional effects were encountered.

Wall effects as a function of  $D_p/D_t$  has been reviewed by Perry (1?). More recent developments along this line have been accomplished in a series of articles by Leva and Grummer (8).

Onan and Watson (11) tested several beds of different packing materials. Flow was almost entirely turbulent. They introduced an accurate picture of the effect of "loose pack" and "close pack" upon pressure drop. It was found that by plotting friction factor =  $\frac{\Delta P}{L_t} \frac{gV^{1.7}}{C_{00}^2 S_p V_t^{0.7}}$  vs. Reynold's number =  $\frac{\partial U_0 V_t}{\partial S_p}$  on logarithmic coordinates a best mean line representation was obtained. A factor, (fd/f<sub>1</sub>), was used to allow for the effects encountered due

to the differences in void space offered by the two methods of packing. One important point is that free volume was included as being raised to the 1.7 power rather than the 3.0 power, a direct contridiction to most previous conclusions. This is in good agreement with results obtained in the present investigation.

Morcom (10) developed an equation for predicting pressure drop in laminar, transition, or turbulent flow regions. His equation agreed well with experimental data for many individual beds and was of the form

$$\frac{\Delta P}{L_t} = k \frac{\mu U_0}{g} + k \frac{\rho U_0^2}{g}$$
(5)

More detail is purposely excluded because reference was made to some very illusive terms such as "normal voids". The most important consideration is that this expression accommodated the various regions of flow well for any one bed. The packing materials used were poorly defined so that results of his individual tests were not useful in a detailed analysis of flow. It is noteworthy that equation (5) is in general agreement with the conclusions of Carman except for absence of the term,  $(\mu S_p/\rho U_0 V_t)^{0.1}$ . An inspection of Fig. 6 shows that pressure drop through spheres would have been better accommodated had this term been absent in Carman's equation.

Illustrations in a text by Rouse (13) typify how the results of studies of flow about suspended objects tend to verify equation (5).

Brownell and Katz (2) introduced several new concepts originating from a comparison of pressure drop in packed beds to pressure loss in conduits. Of primary importance is the discussion of the effect of surface roughness. Figure 7 shows several curves that were illustrated; most of these proposed curves 'are approximated by equation (5). The different packed bed variables considered by Brownell and Katz are summarized as follows:

| $(v_t/v)^m$                    |    | Reynold's number function  |
|--------------------------------|----|----------------------------|
| $(v_t/v)^n$                    |    | friction factor function   |
| ss/sp                          |    | sphericity                 |
| e/Dp                           | -  | relative surface roughness |
| pp PUo/u                       | 35 | modified Reynold's number  |
| $(2gD_p \Delta P/L_t / U_o^2)$ | -  | modified friction factor   |

By means of the Reynold's number function and the friction factor function, a representation of equation (1) was moved onto the pipe friction factor curve. Consideration of both sphericity and surface roughness resulted in satisfactory representation for a large series of particles of "primary configuration". Some difficulty was encountered when "splined" rings, or particles of "second configuration", were considered. In the written discussion to the authors, C. E. Lapple expressed doubt as to the possibility that surface roughness actually contributes to pressure drop in packed beds. In answer, the authors agreed that surface roughness was of little importance.



#### Reynold's number

Fig. 7. Effect of surface roughness according to Brownell and Katz (2).

The proposals of Brownell and Katz were elaborated by Brownell, Dombrowski and Dickey (3). They proposed Figs. 8 and 9 to represent the Reynold's number function and the friction factor function. They arrived at no definite conclusions concerning the effect of surface roughness. Intensive tests which were conducted on a few beds tend to verify equation (5).

It is of some interest to note that the Reynold's number function of Fig. 8 will not lend itself to the wire rings tested by the present author. Figure 9 only vaguely suggests a friction factor function for them. The wire rings possessed a sphericity of 0.42 and beds of them possessed 82 to 84 percent void space.

## MATERIAL AND METHODS

Pressure drops through several packed beds was observed in order to gain new knowledge as to the effect of tower surface and packing density upon pressure drop. Pressure drop through less conventional packing materials was also sought.

# The Packing Materials

Seven packing materials, including four different types of packing units were tested. The volume, surface area, and perimeter of each unit was determined according to a method which was considered to be direct and accurate.

The following outline illustrates the basic measurements, accuracy of



Fig. 8. Brownell's (3) Reynold's number function.



Fig. 9. Brownell's (3) friction factor function.

" ` 18 determination, and the derived information.

```
Packing #1, wire ring
```

```
Diameter of wire by micrometer, 23 arbitrarily selected units: 0.06765<sup>±</sup> 0.00029 inches
Volume by bouyancy in water, 1190 arbitrarily selected units: 3.83 x 10<sup>-6</sup> cu. ft.
Volume by water displacement, 25700 arbitrarily selected units: 3.95 x 10<sup>-6</sup> cu. ft.
Volume by water displacement, 11750 arbitrarily selected units: 4.04 x 10<sup>-6</sup> cu. ft.
```

Final values:

volume =  $4.00 \times 10^{-0}$  cu. ft. surface = 2.89 x 10<sup>-3</sup> sq. ft. perimeter = 0.338 ft. = 2L +  $\pi D$ 

Packing #2, glass ball

```
Volume by bouyancy in water, 109 arbitrarily
selected units: 1.485 x 10<sup>-4</sup> cu. ft.
Volume by water displacement, 500 arbitrarily
selected units: 1.506 x 10<sup>-4</sup> cu. ft.
```

Final values:

| volume    |   | 1.502 : | x 10 | <sup>4</sup> cu. j | ft. |
|-----------|---|---------|------|--------------------|-----|
| surface   | - | 6 v/D,  | D =  | 0.0660             | ft. |
| perimeter | = | 0.2074  | ft.  | = nD               |     |

Packing #3, clay Berl saddle

Width by machinist's rule, 20 arbitrarily selected units: 0.0854 ft.
Width by steel tape, 30 arbitrarily selected units placed edge to edge: 0.0847 ft.
Volume by bouyancy in water, 96 arbitrarily selected units: 1.444 x 10<sup>-4</sup> cu. ft.
Volume by water displacement, 275 arbitrarily selected units: 1.374 x 10<sup>-4</sup> cu. ft.
Volume by water displacement, 500 arbitrarily selected units: 1.468 x 10<sup>-4</sup> cu. ft.

Final values:

| volume    | -   | 1.445 x 10 <sup>-4</sup> cu. ft. |
|-----------|-----|----------------------------------|
| surface   | 239 | 0.0343 sq. ft. (from mfg. data*) |
| perimeter | -   | 0.538 ft. = 2mD                  |

\*Manufactured by the Maurice A. Knight Company, Akron, Ohio.

Packing #4, clay Berl saddle

Width by steel tape, 10 arbitrarily selected units placed edge to edge: 0.0127 ft. Volume by water displacement, 2100 arbitrarily selected units: 2.54 x 10<sup>-5</sup> cu. ft.

Final values:

volume =  $2.54 \times 10^{-5}$  cu. ft. surface =  $8.80 \times 10^{-3}$  sc. ft. (from mfg. data\*) perimeter = 0.268 ft. =  $2\pi D$ 

Packing #5, clay Raschig ring

Volume by water displacement, 330 arbitrarily selected units: 2.68 x 10<sup>-4</sup> cu. ft. Diameter by steel tape, 58 arbitrarily selected units placed side by side: 0.0860 ft. Length by steel tape, 95 arbitrarily selected units placed end to end: 0.0873 ft.

Final values:

| volume    | 2.68 x  | 10-4  | cu.  | ft  | •  |   |   |    |
|-----------|---------|-------|------|-----|----|---|---|----|
| surface   | 0.0459  | sq. : | ft.  |     |    |   |   |    |
| perimeter | 0.630 1 | ft. = | 2 π] | + 0 | 2L | - | 2 | nt |

Packing #6, clay Raschig ring

Volume by water displacement, 2000 arbitrarily selected units: 4.11 x 10<sup>-5</sup> cu. ft.
Diameter by steel tape, 94 arbitrarily selected units placed side by side: 0.0435 ft.
Length by steel tape, 167 arbitrarily selected units placed end to end: 0.0444 ft.

Final values:

volume =  $4.11 \times 10^{-5}$  cu. ft. surface = 0.01165 sq. ft. perimeter = 0.312 ft. = 2 mD + 2L - 2 mt

\*Manufactured by the Maurice A. Knight Company, Akron, Ohio.

Packing #7, metal Raschig ring

Diameter by micrometer, 25 arbitrarily selected units: 1.0115<sup>±</sup> 0.0049 inch Length by micrometer, 25 arbitrarily selected units: 1.0034<sup>±</sup> 0.0005 inch Density by Westphal balance, water displacement, 5 arbitrarily selected units: 7.8764<sup>±</sup> 0.0135 gm. per cu. cm. Mass of total supply, 698 = 8456<sup>±</sup> 6 gm. Final values: percent void = 92<sup>\*</sup> surface = 62.7 sq. ft. per cu. ft.<sup>\*</sup> perimeter = 0.681 ft. = 2 mD + 2L - 2 mt

The calculations for perimeter are indicated primarily to illustrate how the perimeter is defined for packing materials. Determination of the perimeter of the Berl saddle is considered only an approximate method; all others are exact according to the present definition. Auxiliary measurements, such as thickness of the Raschig rings or length of the wire rings, were observed to agree with the above conclusions.

#### The Flow System

Three steel pipes of differing diameter were used as columns. Each of these was thirty-six inches in length. The packed zone included the entire length of each pipe while pressure drop measurements were taken from pressure taps located twenty-four inches apart and six inches from the ends.

Plate II illustrates the exact flow system used and the location of the various metering instruments.

\*Manufacturer's information: Metallo Gasket Company.

The pressure taps in the four inch column were different from the piezometer rings used in the three and six inch columns. These were so constructed to facilitate a later study of counter-current flow. No difference in results was noted that could be attributed to the difference in style of the pressure taps.

The diameters of the columns were determined by filling each column with water and noting the amount required for the space between the pressure taps. Column diameters and sectional areas thus determined were as follows:

| Column     | Diameter, inches | Area, square fee |
|------------|------------------|------------------|
|            |                  |                  |
| three inch | 3.10             | 0,05207          |
| four inch  | 4.06             | 0.0898           |
| six inch   | 6.08             | 0.2019           |

The porosity of each packed column was determined by the same process used to determine column diameter. The porosity of the bed of metal rings was the exception, its void fraction was ascertained from information published by the manufacturer.

#### Fluids and Flow Measurement

Three fluids were used: S.A.E. #60 oil, water, and air.

The density of the S.A.E. #60 oil was determined by Westphal balance. The balance was calibrated against water samples at various temperatures. The oil samples of varying temperature were then tested. The balance was found to be very sluggish when measuring the density of the oil; this was overcome by allowing sufficient time for the balance to react. No attempt was made to control temperature closely, temperature being read on the plumet of the balance, since it was not anticipated that serious effects of convection would be existant at the range of temperatures encountered. Results were reproducable to within ±0.0005 gram per cubic centimeter. The results used are as follows:

| Temp. C | Density, 1b. per cu. ft. |
|---------|--------------------------|
| 20      | 56.28                    |
| 25      | 56.11                    |
| 30      | 55.95                    |
| 35      | 55.75                    |
| 40      | 55.50                    |

Viscosity of the oil was determined by the Kansas State Highway Department at different temperatures. Repeated checks on samples that contained possible impurities, such as sludge, emulsified water, or emulsified air, showed that little error resulted from the presence of these impurities. Results of these tests are as follows:

| Date     | Temp.,<br>oF | Viscosity,<br>centistokes | Possible<br>impuritie: | 5       |
|----------|--------------|---------------------------|------------------------|---------|
| 12-16-50 | 70           | 1636.6                    | dissolved              | water   |
|          | 80           | 1038.5                    | 11                     | 11      |
|          | 100          | 454.72                    | <b>2</b> 3             | 99      |
|          | 210          | 25.51                     | 47                     | 13      |
| 1-4-51   | 100          | 445.03                    | sludge and             | d water |
|          | 100          | 433.68                    | 11 11                  | 11      |
| 2-6-51   | 100          | 431.6                     | 11 F2                  | air     |
|          | 100          | 432.2                     | , 11 11                | 11      |

The impurities are noted to have affected viscosity very little over a period of two months usage. The average viscosity of samples at  $100^{\circ}$  F for tests on 12-16-50 and 1-4-51 were used as a basis for calculations. The trend of viscosity with temperature was determined from results of 12-16-50; the logarithm of absolute viscosity was found to vary linearly with the inverse cube of absolute temperature. The validity of the relationship is illustrated thus:

Temp. range,  $^{O}F$ 70-8080-100100-210 $\Delta \log \mu / \Delta (1000/^{O}R)^3$ 0.5130.51950.531

The following viscosity information, being between 80 and 110° F, was derived from the slope determined for 80 to 100° F of 0.261 1b, per ft,-sec.

|       | Temp. <sup>O</sup> C      | 30           | 32        | 34         | 36        | 38      | 10        | 42      |
|-------|---------------------------|--------------|-----------|------------|-----------|---------|-----------|---------|
|       | Visc. rel.<br>to 100° F   | 1.774        | 1.520     | 1.310      | 1.132     | 0.985   | 0.859     | 0.750   |
|       | Visc., lb.<br>per ft-sec. | 0,463        | 0.397     | 0.342      | 0.295     | 0.257   | 0.224     | 0.196   |
| These | viscosities               | were used f  | or all i  | flow calcu | lations.  | Flow of | the oil w | was     |
| measu | ared by time 1            | required for | r a weigl | ned quanti | ty of oil | to flow | from the  | system. |

The density and viscosity of the water were taken from the Handbook of Chemistry and Physics (8). The water used was obtained directly from the Manhattan city supply.

The density and viscosity of dry air were obtained from the same source as the information for water. Corrections for moist air were applied as follows:

dens. moist air = dry air (1 - 0.61 abs. hum.)

The estimation for density of moist air is an approximation which is good for low values of absolute humidity. No mumidities over one percent were cncountered. The estimation for the viscosity of moist air is based on the assumption that viscosities are additive with respect to weight percent. The calculated viscosity was never less than 99 1/2 percent of the viscosity of dry air. The air was obtained from the compressed air supply of the Kansas State College of Agriculture and Applied Science. Humidity was measured with a sling psychrometer and interpreted according to the psychrometric chart from the textbook of Badger and McCabe (17).

Flow of air and water was measured with a flow nozzle made by expanding one end of a short length of brass pipe. The nozzle was 0.0552 ft. in diameter and was mounted in a one inch steel pipe line. Impact and static pressure taps were located at the exit of the nozzle. The nozzle coefficient was found to be constant at  $W/P(\Delta H)^{1/2} = 0.00518$  for the range of flow studied. Calibration was made with water where W = flow, lb. per sec.; P = density, lb. per cu. ft.;  $\Delta H = \text{head loss}$ , inches of fluid. This meter was later calibrated with air. The coefficients were found to agree within four percent for the different fluids. The above mentioned coefficient corresponds to a discharge coefficient of about 93 percent. The flow nozzle used is seen in place in Plate I, together with other nozzles of similar construction.

#### Manometry

Manometers were used to measure pressure differential caused by flow through the nozzles, pressure drop, and pressure. Inverted manometers were used when water or oil was in the system; water filled manometers were used for air flow and pressure drop. Mercury filled manometers were used to measure pressure. All manometers were the "U" tube type and were calibrated in inches of fluid displacement. They are illustrated in Plate II.

Each manometric reading was interpreted so as to include the secondary effects of air as a second fluid and the difference between the density of the fluid in the system and the density of the fluid in the manometer. The latter effect was significant when the temperature of the oil approached 40 degrees centigrade.

#### Thermometry

Thermometers were located as indicated in Plate II. The column temperature was determined as the median temperature between inlet and outlet points. The temperature change did not exceed two degrees centigrade for any one run. The temperature of the flow meter was assumed to be the same as the temperature indicated by the inlet thermometer. All thermometers were checked against a precision thermometer so that any one temperature reading could be considered accurate within  $\pm 0.1$  to  $\pm 0.2$  degrees centigrade. The possibility of a temperature gradient at right angles to the flow path was considered. It was found that a gradient of only one degree centigrade existed when oil in the reservoir was at a temperature of 35 degrees centigrade. Since oil moved far more rapidly through the system than it did through the reservoir, it is assumed that no measurable gradient existed anywhere within the flow system.

#### Sample Experimental Data

When oil was used in the system, circulation was maintained for one half hour at each different rate to insure equilibrium in the manometers and to insure thermal equilibrium in the system. Two hours were allowed for initial equilibrium for each series of runs. Apparent equilibrium was reached in half of the allowed times. The following information was gathered twice in succession, sometimes three times, in order to determine pressure drop, flow rate, viscosity, and density for each single "run". Since the time pattern for each reading was symmetrical about the flow reading, a direct numerical average of results was made.

```
Run #87: (first half)
```

| lower manometer leg = 14.55 inches<br>upper manometer leg = 39.72 inches<br>outlet temp. = 37.2° C. |
|-----------------------------------------------------------------------------------------------------|
| lower manometer leg = 14.55 inches<br>upper manometer leg = 39.72 inches<br>outlet temp. = 37.2° C. |
| outlet temp. = 37.2° C.                                                                             |
| outlet temp. = 37.2° C.                                                                             |
| outlet temp. = $37.2^{\circ}$ C.                                                                    |
|                                                                                                     |
| flow weight = 1920 less 371 gm                                                                      |
| flow time = 24.1 sec. simultaneously                                                                |
| time = 08:36 1/2                                                                                    |
| inlet temp. = 38.2° C                                                                               |
| } 20 sec.                                                                                           |
| upper manometer leg = 39.69 inches                                                                  |
| lower manometer leg = 14.52 inches                                                                  |
| 20 sec.                                                                                             |

Most of the runs were made during winter months in a large laboratory that opened out of doors, and it was not uncommon for the opening of a door to cause room temperature to suddenly drop one half to one degree centigrade. This would cause the air in the inverted manometer to contract and draw both legs up a fraction of an inch. The differential readings did not vary by more than 0.05 inch in any case. Runs identified by alphabetical symbols were accomplished less systematically; they were noted to yield the same results as the remainder of the tests.

Runs with water were similar to those with oil except that only five or ten minutes were required for equilibrium and that flow was measured with a nozzle. An entire series of readings could be taken within 30 seconds, thus a time schedule was not maintained. Double readings, as below, were usually taken. Sometimes a fine oil ring in the manometer tube facilitated reading so well that one reading was considered sufficient.

Run #79:

col. man. temp. = 21.3° C lower leg column man. = 18.45 inches upper leg column man. = 29.20 inches Run #79 (cont.)

outlet temp. = 26.2° C inlet temp. = 26.3° C flow man. temp. = 21.3° C static flow leg = -11.3 inches impact flow leg = +15.35 inches, time = 13:24 impact flow leg = +15.35 inches static flow leg = -11.35 inches inlet temp. = 26.4° C outlet temp. = 26.3° C upper leg column man. = 29.00 inches lower leg column man. = 18.45 inches, time = 13:25

Runs with air required more information that runs with water. Equilibrium was reached so rapidly that a time schedule was not considered useful. Duplicate readings were made for each run as illustrated below. Some fluctuations in readings were noted, but they were so rapid that a time schedule for making readings would not have been capable of capturing the average reading any better than a fast scanning of all instruments.

Run #105: (first half)

impact leg flow man. = +1.42 inches static leg flow man. = +2.83 inches flow man. temp. = 22.8° C meter side of gage pressure man. for static meter tap = -0.30 inches atmospheric side of gage pressure man. for static meter tap = +0.16 ins. inlet temp. = 23.2° C outlet temp. = 23.0° C upper leg col. man. = -0.59 inches lower leg col. man. = +0.81 inches col. man. temp. = 23.8° C system side of gage pressure man. for upper column tap = +0.83 inches atmospheric side of gage pressure man. for upper column tap = +1.09 ins. time = 16:12

Barometric pressure and humidity of the exit air supplemented this information. Fluctuations in manometer readings never produced discrepancies greater than 2 percent of the manometer displacement for any one run.

#### Schedule for Each Bed

The beds were packed by introducing about five to ten percent of the required packing material, settling this by rapping the column, and then introducing another five to ten percent of the required packing material. The mixture in bed #14 was introduced in individual portions that represented the simplest subdivision of the mixture. Free space was measured immediately after packing each column, and after all runs were completed. No settling of the packing during runs was noted. Water was the first fluid used, air was next, then oil.

The entire system was flushed with carbon tetrachloride and dried after tests with oil were completed. Then the system was flushed with water. Some oil remained in the system, but never any more than enough to produce a thin oil slick on top of the water.

#### THEORETICAL DEVELOPMENTS

#### General Considerations

The first consideration was that of locating a more useful equation than that resulting from dimensional analysis. It was decided that Morcom's (10) representation should adequately determine the relationship between pressure drop and fluid variables.

$$\frac{\Delta P}{L_t} = k \frac{\mu U_0}{g} + K \frac{\rho U_0^2}{g}$$
(5)

Equation (5) has properties such that laminar and turbulent flow may be scrutinized independently. Actually, few experimental data concerning

#### EXPLANATION OF PLATE II

Sketch of the flow system showing instrument location

- C-1 The six inch column.
- C-2 The three inch column.
- C-4 The four inch column.
- E Exit manifold for all three columns.

F Location of the flow meter used to measure the flow rates of water and air.

I Inlet manifold for all three columns.

M-1 Inverted manometer used for measuring the rate of water flow.

M-2 Mercury filled manometer used to measure pressure in the columns.

M-3 Water filled manometer used to measure pressure drop for runs with air.

M-4 Inverted manometer used to measure pressure drop for runs with oil or water.

M-5 Water filled manometer used for measuring the rate of flow of air.

M-6 Mercury filled manometer used for measuring air pressure in the flow meter.

- P Piezometer rings and pressure taps.
- R Reservoir for fluid being circulated.
- S Positive displacement pump, eccentric gear type, used to circulate water or oil.
- T Thermometers used to measure the temperature of the inlet and outlet streams.
- -/ Portions of the pipe system that were closed to the circulating fluid.

PLATE II

•



# EXPLANATION OF PLATE III

Photograph of the flow system.

# PLATE III


### EXPLANATION OF PLATE IV

Photographs of the packing units.

Fig. 10. Upper left, one half inch clay Berl saddle. Upper right, one inch clay Raschig ring. Center left, wire ring. Center right, glass ball. Lower left, one half inch clay Raschig ring. Lower right, one inch clay Berl saddle.
Fig. 11. The mixture tested in bed #14.

Fig. 12. The metal Raschig rings.



1 D 93 C. 0 0 0 0 0 0 000 000 Fig. II 0 C 0 . . 0 12 R Π 1 Ph C 1 8 17 /

Fig. 10

Fig. 12

truly turbulent flow were found. This required that laminar flow be studied first. Development of a reliable prediction for an equivalent of "k" made possible direct evaluation of an equivalent for "K" from data obtained for somewhat transitional flow.

Laminar Flow. In order to obtain agreement with equation (1), which summarizes dimensional analysis, it was necessary to approximate certain bed variables.

$$\frac{\Delta P}{L_t} = \int \frac{\rho u^2}{g^D} \phi \left( \frac{D \rho u}{\mu}, \frac{e}{D} \right)$$
(1)

Since fluid and empty column variables,  $\triangle P$ ,  $L_t$ ,  $\mathcal{M}$ ,  $\mathcal{P}$ , Uo, were known, a limited number of others was required. Carman's (5) representation for "m" was adopted to replace "D" and was later found to be the proper substitution. This was defined by equation

$$m = V/S_{\rm p} \tag{2}$$

On first consideration, the classic approximation for area of flow, used by Blake (1) and many other investigators was thought to be useful. This amounted to reducing the column cross-section by the void fraction. Later considerations found this quite valueless.

The final list of bed variables, in addition to the approximation for hydraulic radius was concluded to be:

- a = effective area of flow column cross-section
- r = effective length of flow path length of the bed
- z = effective hydraulic radius estimated hydraulic radius

 $S_1$  = constant derived from geometrical nature of the flow path  $S_t/S_p$  = ratio between column surface and packing surface Pressure drop in laminar flow has long been known to be independent of surface roughness.

<u>Turbulent Flow</u>. The same terms that were related to laminar flow, except for  $S_1$ , were considered to be applicable to turbulent flow. This may not have been an exact assumption because for instance, the effective area of flow available to a turbulent stream might be different from the area available to a stream in laminar motion.

The effect of surface roughness was expected to become evident in the turbulent region. Additional terms to be considered included:

 S<sub>1</sub> = constant derived from geometrical nature of the flow path
 e/m = <u>height of surface protrusion</u> estimated hydraulic radius

The Basic Equation. Restatement of equation (5) produced equation (6).

$$\frac{\Delta P}{L_t} = \delta_1 \frac{\mu U_0}{gm^2} \cdot \frac{r}{az^2} \delta_1 \left(\frac{S_t}{S_p}\right)^+ \delta_2 \frac{\rho U_0^2}{gm} \cdot \frac{r}{a^2 z} \delta_1 \left(\frac{S_t}{S_p} \frac{e}{m}\right)$$
(6)

8 was used to represent the arbitrary functions. Examination of equation (6) showed that attempts to solve for all of the bed variables from pressure drop information would be futile. A simplier form was adopted for further analysis of pressure drop.

$$\frac{\Delta P}{L_t} = A^t \frac{\mu_0}{gm^2} + B^* \frac{\rho_0^2}{gm}$$
(7)

Both A<sup>1</sup> and B<sup>\*</sup> could then be quickly evaluated for each bed. It was felt that any randomly packed bed should possess values for  $S_1$  and  $S_2$  that depended on the same bed properties that would determine a, r, and z, therefore, all five of these terms would be accountable to some single bed variable.

The Width of a Packing Unit. Satisfactory determination of  $A^{*}$  and  $B^{*}$  was obtained by introducing the concept of packing width. The width of the packing is a derived property which is not necessarily related to the nominal diameter of the packing unit.

The packing width was defined as the surface area of the packing divided by the perimeter representing boundries which must be circumvented by the fluid. This was expressed mathematically as:

 $w = S_p / C_p \tag{3}$ 

In order to facilitate a precise estimation for C<sub>p</sub>, this definition was formulated: the packing perimeter consists of the locus of tangent points to the packing that would be generated by a line which moved throughout the packed bed remaining oriented parallel to the column wall.

Comparison of "w" to "m" yielded a variable that uniquely measured the degree to which the fluid path would be distorted and blocked. Scaled illustrations such as Figures 1, 2, and 3 showed that flat packing units might produce a bed containing dead spaces to such a degree that a bed of lesser porosity comprised of somewhat spherical units should produce no more pressure drop. The magnitude of w/m seemed to parallel this effect. As a result of these observations, it was considered feasible that w/m would index basic changes in the bed structure so that the three terms, w/m,  $S_t/S_p$ , and e/m could completely describe a packed bed.

### Application of the Hypotheses

<u>Preliminary Analysis</u>. The data of several investigators was used to supplement the experimental results of this investigation. Preliminary

considerations showed that w/m very decidedly indexed A' and B<sup>\*</sup> of equation (7). A graphical representation similar to Plate III showed that the limiting value for A' as w/m  $\rightarrow$  0 was 50/9. This initial representation also showed that B<sup>\*</sup> varied directly as did w/m for large columns.

The method of correcting for wall effects that was used by Sullivan and Hertel (14) was adopted. Thus, it was assumed that

$$\frac{\Delta P}{L_{t}} = A \frac{\mu U_{0}}{gm^{2}} (1 + 0.6S_{t}/S_{p})^{2} + B^{*} \frac{\rho U_{0}^{2}}{gm}$$
(8)

would accommodate wall effects for laminar flow. That this is true is illustrated in Fig. 15. This equation produced precise correlation for wall effects in the case of spheres, and good correlation for all packing materials for ratios of  $S_t/S_p$  from 0.01984 to 0.305. B\* was found more nearly uniformly dependent upon w/D<sub>t</sub> than upon  $S_t/S_p$ . The therm, B\* + w/m, was found to depend upon w/D<sub>t</sub> but no longer upon w/m. The final flow equation took this form;

$$\frac{\Delta P}{L_{t}} = A \frac{\mu U_{0}}{gm^{2}} (1 + 0.6S_{t}/S_{p})^{2} + B \frac{\rho U_{0}^{2} W}{gm^{2}}$$
(9)

with A depending on w/m and B depending on w/D<sub>t</sub>

Contributions of e/m to pressure drop could not be isolated by comparison to values for "e" which were published by Brownell and Katz (2). Thus, it was assumed that normal roughness should not affect pressure drop through randomly packed beds.

Estimations for Perimeter. The contributions to perimeter offered by many packing units, the sphere, the wire or cylinder, the Raschig ring, the prism, and the cube, were noted to be independent of orientation within the bed. The Berl saddle was noted to yield different perimeter with each orientation. Observing the Berl saddle from various directions showed that the outer edges constituted the perimeter from some views while part of these outer edges ceased to contribute and other elements of perimeter appeared in other views. For this reason, the outer edges were felt to approximate the mean perimeter of the Berl saddle. The perimeter of the "saddle" tested by Brownell and co-workers (3) was approximated by assuming that the units were manufactured from square blanks and that the edges of the square constituted an equivalent of the final perimeter.

Table 4 shows the exact method used to estimate the perimeter of each different packing unit.

| Unit :           | Perimeter                  |
|------------------|----------------------------|
| Sphere           | $C = \pi D$                |
| Wire or cylinder | $C = \pi D + 2L$           |
| Cube             | c = 6D                     |
| Hexagonal prism  | C = 3D + 2L                |
| Raschig ring     | $C = 2\pi D + 2L - 2\pi t$ |
| Berl seddle      | $C \cong 2 \pi D$          |
| "Saddle" of (3)  | $c \approx h(s_p/2)^{1/2}$ |

Table 4. Perimeter of some packing units.

Laminar Flow. Values for A were calculated from information for each individual experimental run. For each bed tested, the logarithmic mean value of A was determined. Table 5 includes these results together with other important information. Detailed lists of the calculated results are included in the appendix.

| Ref.                                                           | Packing                                                                                                                               | Svoid                                                                                                                                                                                                                                                                   | St/Sp                                                                                                                                                                                                                                                            | w/m                                                                                                                                                                               | i.                                                                                                                                                                       | Am.1.                                                                                                                                   | A<br>Am.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (3)<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1 | Glass ball<br>Smooth saddle<br>Rough saddle<br>Berl saddle<br>Raschig ring<br>Hexagonal prism<br>"""""""""""""""""""""""""""""""""""" | 41.2<br>93.1<br>93.5<br>72.7<br>77.7<br>42.6<br>39.7<br>44.8<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.04<br>39.11<br>39.6<br>83.6<br>83.2<br>44.0<br>77.8<br>92<br>92<br>59.5<br>53.0 | 0.114<br>0.041<br>0.044<br>0.113<br>0.121<br>0.066<br>0.065<br>0.075<br>0.078<br>0.078<br>0.078<br>0.01985<br>0.01985<br>0.01984<br>0.09347<br>0.098<br>0.225<br>0.305<br>0.131<br>0.098<br>0.225<br>0.305<br>0.285<br>0.118<br>0.157<br>0.126<br>0.126<br>0.157 | 8.565<br>3.52<br>3.36<br>9.366<br>9.366<br>1.10<br>9.366<br>1.10<br>9.366<br>1.10<br>9.366<br>1.10<br>9.366<br>1.10<br>9.366<br>1.250<br>1.250<br>1.250<br>4.433<br>4.433<br>3.57 | 10.21 $11.11$ $7.65$ $6.58$ $7.69$ $12.32$ $9.30$ $14.10$ $10.80$ $8.62$ $11.63$ $11.64$ $6.14$ $6.27$ $5.96$ $10.72$ $9.80$ $9.52$ $11.63$ $10.08$ $9.59$ $9.74$ $8.39$ | 10.81 8.48 8.26 9.16 9.18 11.66 10.17 13.36 11.40 9.97 11.63 11.64 11.62 11.57 6.20 6.11 6.13 10.62 10.16 7.95 8.88 8.67 7.88 9.81 7.37 | 0.945<br>1.310<br>0.950<br>0.718<br>0.838<br>1.057<br>0.914<br>1.055<br>0.927<br>0.965<br>0.999<br>0.999<br>1.006<br>0.999<br>1.006<br>0.999<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.009<br>1.147<br>0.993<br>1.217<br>0.993<br>1.140 |
|                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

-

.

Table 5. Laminar flow, mean values of A for each bed.

This rearranged form of equation (8) was used for estimations:

$$\Lambda = \frac{\Delta Pgm^2}{L_t \mu U_0 (1 + 0.6S_t/S_p)^2} - B! N$$
  
where N =  $\rho U_0 m/\mu$  and B! =  $B^*/(1 + 0.6S_t/S_p)^2$ 

The values for  $B^*$  which were used in this estimation were obtained by initial observation of turbulent flow data for the bed being considered. Since  $B^*$  was only approximate, the second term on the right was not allowed to exceed 5 percent of the estimated value for A.

Plate V shows how A varies with w/m. No theoretical considerations to explain the linear relationship on semilogarithmic coordinates were deduced.

The data of Sullivan and Hertel (14) and the intercept for A = 50/9 at w/m = 0 were used to determine this empirical relationship:

$$A = \frac{50}{9} (10)^{0.03430 \text{w/m}}$$

or 
$$\log A = 0.7447 + 0.03430 \text{w/m}$$
 (10)

Equation (10) was termed the "mean line" value for A.

Turbulent Flow. Values for B\* were solved by using this modified form of equation (8):

$$B^* = \frac{\Delta Pgm}{L_t \rho U_0^2} - A^t/N = f - A^t/N$$
  
where N = m U\_0  $\rho/\mu$  and A' = A(1 + 0.6S\_t/S\_p)^2

 $B^*$  was then converted to B according to  $B = B^* + w/m$ . Values for A' were obtained by use of equation (10). This was done, even when the true value was known, for the sake of maintaining a consistent approach for all information that was at hand.

EXPLANATION OF PLATE V

A as a function of w/m

Legend:

|          | Auth.        | 000 00                                                                                          |
|----------|--------------|-------------------------------------------------------------------------------------------------|
| gators   | (1/1)        | 0                                                                                               |
| Investig | (2)          | ⊕●                                                                                              |
|          | (3)          | 0000                                                                                            |
| • 74     | Packing unit | Cube<br>Hex. prism<br>Sphere<br>Raschig ring<br>Berl saddle<br>"Saddle"<br>Wire ring<br>Mixture |

.



PLATE V

The term, A'/N, was allowed to exceed the calculated value for  $B^*$  in a few cases, but was gnerally restrained to a maximum value equal to the estimated value for  $B^*$ . The logarithmic mean value for B for each bed was determined and placed in Table 6 along with other important information.

Plate VI shows how B varies with w/Dt. Definition of the mean line value for B according to

$$B = 0.25(10)^{-1.766 \text{W/D}_{t}} \tag{11}$$

was found quite satisfactory. This was established by first noting that B approached 0.25 as w/D<sub>t</sub> approached zero, and by determining the line that would pass through this point presenting the closest approximation to the mass of information.

<u>w/m As a Unique Variable</u>. If w/m were not a unique variable, A and B would show dependence on the other variables. Plate VII shows that the deviations of the constants from their mean line values do not arise from either the percent voids or  $S_t/S_p$ . The fact that independence of  $S_t/S_p$ existed showed that  $D_p/D_t$  would not explain deviations either,  $D_p/D_t$  is approximately proportional to  $S_t/S_p$  for any given packing material.

The variable, w/m was thus established as the sole criterion for A and  $v/D_t$  as the criterion for B. Deviations from the mean line values were attributed to normal experimental errors such as might arise from insufficient column length when large packing units were tested in small diameter columns.

Friction Factor and Reynold's Number. It was desired to represent all experimental information on a single friction factor vs. Reynold's number plot. In order to do this, certain considerations of the variability of A

|                                                    | L' L                                                          | 01 94011 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R                                                                                                                                                                                                                                                                                           |
| Ref.                                               | Packing                                                       | % void                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | w/Dt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bm.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Briel.                                                                                                                                                                                                                                                                                      |
| Ref.<br>(1)<br>""""""""""""""""""""""""""""""""""" | Packing<br>Flass ring<br>"""""""""""""""""""""""""""""""""""" | % void<br>67<br>72<br>80<br>84<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>93<br>93<br>52<br>72<br>75<br>73<br>76<br>70<br>75<br>73<br>76<br>70<br>75<br>73<br>76<br>70<br>75<br>73<br>76<br>70<br>75<br>73<br>76<br>70<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | w/m<br>6.532<br>6.532<br>6.532<br>6.532<br>6.535<br>6.535<br>6.535<br>6.535<br>6.535<br>6.535<br>6.535<br>6.535<br>7.555<br>6.535<br>7.039<br>10.067<br>8.855<br>8.555<br>6.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8.555<br>8. | w/Dt<br>0.047<br>0.057<br>0.076<br>0.090<br>0.141<br>0.051<br>0.052<br>0.051<br>0.122<br>0.028<br>0.029<br>0.028<br>0.029<br>0.040<br>0.029<br>0.040<br>0.058<br>0.058<br>0.059<br>0.058<br>0.058<br>0.059<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.055<br>0.058<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.0 | 2<br>0.310<br>0.332<br>0.223<br>0.224<br>0.140<br>0.121<br>0.158<br>0.164<br>0.160<br>0.156<br>0.166<br>0.178<br>0.166<br>0.166<br>0.178<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.207<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.206<br>0.20 | Fm.1.         0.206         0.198         0.134         0.173         0.141         0.203         0.202         0.166         0.147         0.223         0.222         0.152         0.223         0.222         0.166         0.197         0.197         0.180         0.179         0.173         0.173         0.118         C.201         ""         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " | B<br>B<br>B<br>1.51<br>1.68<br>1.21<br>1.70<br>0.99<br>0.68<br>1.05<br>0.65<br>0.70<br>0.65<br>0.70<br>0.65<br>0.70<br>0.65<br>0.77<br>0.85<br>0.77<br>0.85<br>0.77<br>0.85<br>0.77<br>0.85<br>0.37<br>1.01<br>1.15<br>1.46<br>0.99<br>1.03<br>1.07<br>1.04<br>1.02<br>0.96<br>1.01<br>1.04 |
| 17<br>17<br>17<br>17                               | 18 17<br>97 25<br>75 *5<br>88 97                              | 37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.19<br>6.55<br>6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89<br>77<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.196<br>0.162<br>0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F0<br>F1<br>78<br>79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.02<br>0.84<br>0.67                                                                                                                                                                                                                                                                        |
| 89<br>89<br>89<br>89<br>89<br>89<br>87             | Raschig ring<br>n n<br>n n<br>n n                             | 45655555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37<br>7.95<br>8.12<br>8.21<br>8.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.088<br>n<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.170<br>0.186<br>0.185<br>0.191<br>0.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.175<br>n<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.89<br>1.06<br>1.06<br>1.09<br>1.11                                                                                                                                                                                                                                                        |
| 17<br>11<br>12<br>13                               | 11 53<br>18 59<br>17 29<br>38 19                              | 61.35<br>62.07<br>62.13<br>62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.44<br>6.26<br>6.25<br>6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95<br>57<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.144<br>0.158<br>0.147<br>0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28<br>78<br>79<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.82<br>0.90<br>0.84<br>0.87                                                                                                                                                                                                                                                                |

Table 6. Turbulent flow, log mean values of B for each bec.

| 7 | ab | 1 | e | 6 ( | C | 01 | n | t | • | ) |  |
|---|----|---|---|-----|---|----|---|---|---|---|--|
|---|----|---|---|-----|---|----|---|---|---|---|--|

| Fef.                                        | Packing                                                    | 5 void                                                                                                                                                                                                     | w/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s/Dt                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          | Br1.1.                                          | B. 1.                                                                                                                                                          |
|---------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (11)<br>""""""""""""""""""""""""""""""""""" | <pre>Eerl saddle """""""""""""""""""""""""""""""""""</pre> | 72.05<br>71.33<br>71.05<br>71.25<br>76.30<br>76.35<br>75.90<br>76.15<br>61.6<br>83.6<br>83.6<br>83.2<br>42.3<br>144.0<br>36.8<br>77.0<br>71.8<br>72.7<br>68.9<br>74.5<br>92<br>92<br>59.5<br>me,<br>r.53.0 | 4.93<br>4.93<br>1.12<br>4.95<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1.12<br>1 | 0.100<br>""<br>"<br>"<br>"<br>"<br>0.017<br>0.033<br>0.026<br>0.195<br>0.256<br>0.195<br>0.256<br>0.130<br>0.256<br>0.130<br>0.256<br>0.130<br>0.121<br>0.189<br>0.152<br>0.152<br>0.152<br>0.152<br>0.152<br>0.128<br>0.110 | 0.177<br>0.179<br>0.174<br>0.180<br>0.167<br>0.166<br>0.167<br>0.237<br>0.251<br>0.203<br>0.120<br>0.140<br>0.166<br>0.123<br>0.120<br>0.166<br>0.154<br>0.166<br>0.154<br>0.166<br>0.154<br>0.166<br>0.154<br>0.167<br>0.213<br>0.213<br>0.213<br>0.213 | 0.166<br>""""<br>"""""""""""""""""""""""""""""" | 1.07 $1.08$ $1.05$ $1.08$ $1.01$ $1.00$ $1.00$ $1.03$ $1.02$ $1.15$ $0.70$ $1.06$ $1.59$ $0.72$ $1.69$ $0.75$ $0.58$ $1.58$ $1.09$ $1.43$ $1.44$ $1.11$ $1.21$ |

•

EXPLANATION OF PLATE VI

B as a function of w/Dt

Legend:

| Auth.        | 00000                                                         | 00      |
|--------------|---------------------------------------------------------------|---------|
| (11)         | 000 <b>0</b>                                                  |         |
| (17)         | 0                                                             |         |
| (3)          | 0008                                                          |         |
| (1)          | @                                                             |         |
| Packing unit | Cylinder<br>Sphere<br>Raschig ring<br>Berl saddle<br>"saddle" | Hixture |



PLATE VI

### EXPLANATION OF PLATE VII

Illustrations showing that the effects of voids and column surface

have been accurately predicted.

- Fig. 13. A/Amean line versus void fraction.
- Fig. 14. B/Bmean line versus void fraction.
- Fig. 15. A/Amean line versus ratio of column surface to packing surface.
- Legend:
- CubeHexagonal prism
  - Cylinder 0

- O Sphere
  O Raschig ring
  O Berl saddle
  O "saddle" of (3)
  - O Wire ring
    - © Mixture

illustrates accuracy of prediction. Conformity with the dotted line



•

and B had to be accomplished. The first step was to equate

$$\frac{\Delta P}{L_t} = f \frac{\rho v_0^2}{gm}$$
(12)

and, from equation (9),

$$f = A \frac{\mu}{m \rho U_0} (1 + 0.6S_t/S_p)^2 + B \frac{w}{m}$$
(13)

Next, a Reynold's number representation which could be used as an abscissa was determined by inspection.

$$Re = \frac{W \rho U_0}{\mu} \frac{B}{A (1 + 0.65 t/S_p)^2}$$
(14)

The residual term was considered to be the friction factor.

$$\mathbf{F} = \frac{fm}{Bw} \quad \text{or} \tag{15}$$

$$F = \frac{1}{Re} + 1$$
(16)

Re and F were solved for all of the information that had been used to determine values for A and B. They were also determined for transition flow data that were not used for determining A and B. "f" was determined by equation (12) and Re by use of equation (14). Values for A and B were determined by equations (10) and (11).

Plate VIII compares the actual values for F and Re to the relationship suggested by equation (16). The few beds tested by Brownell and co-workers (3) represented about one third of all data when the individual test runs were counted. Actually, they only tested five beds, or about 7 percent of the number of beds considered. Four out of five of their runs were excluded from

## EXPLANATION OF PLATE VIII

Graphical solution to pressure drop through packed beds.

Ordinate:  $F = \Delta Pgm/Bl_t P U_o^2(w/m)$ Abscissa:  $Re = Bw P U_o/A \mu (1 + 0.65_t/3_p)^2$ 

The following information is shown:

| Packing materials | Glass ring and Raschig ring. | Raschig ring, Berl saddle, glass<br>ball, and "saddle". | Lead shot. | Raschig ring, Berl saddle, sphere,<br>and cylinder. | Raschig ring, Berl saddle, glass ball,<br>wire ring, and mixture containing all |
|-------------------|------------------------------|---------------------------------------------------------|------------|-----------------------------------------------------|---------------------------------------------------------------------------------|
| Investigators     | (1)                          | (3)                                                     | (1)        | (TT)                                                | Author                                                                          |

of these.



PLATE VIII

ŧ

the graph in order that unjustifiable weight would not be given to them. The actual values of F and Re that were plotted are included in the appendix.

### DISCUSSION

### Factors of General Importance

This investigation has shown that pressure drop through a wide variety of packing materials can be accurately predicted by reference to three easily determined properties of a packed bed. These properties are: total packing surface, S<sub>p</sub>; total packing perimeter, C<sub>p</sub>; and free volume of the packed zone, V. Reference to these properties eliminates the necessity for considering highly complex methods of correlation or vague terms such as "norminal particle diameter" or "normal voids".

The scope of packed bed variables which has been studied is summarized in Tables 7 and 8. The accuracy of prediction of pressure drop is also summarized in these tables. The columns headed "average deviation" show how well the pressure drop information for each type of packing material is centered upon the predicted value while the columns headed "root mean square deviation" illustrate the average error involved in predicting pressure drop.

A less obvious advantage of this correlation lies in the fact that coefficient terms do not vary widely for different types of packing materials. The coefficient for laminar flow, A, varies from 5.56 to 13.36 or 2.4 fold. The coefficient for turbulent flow, B, varies from 0.25 to 0.079 or 3.2 fold. These ranges of variation include sparsely packed beds

|                                                      |               |                             |                         |         |              |           |           |         |        | _              |           |
|------------------------------------------------------|---------------|-----------------------------|-------------------------|---------|--------------|-----------|-----------|---------|--------|----------------|-----------|
| Packing                                              | beds<br>obs'd | nom. d1<br>small            | a., in.<br>large        | in avoi | lds<br>Large | small ]   | b<br>arge | I LIBUS | arge   | log de<br>mean | V ** 23 . |
| Cube                                                 | 3             | 0.22                        | 0.22                    | 34.4    | 144.8        | 0.074 0   | 0.078     | 7.40 1  | 1.11   | -4.7           | 6.6       |
| Hexagonal prism                                      | 0             | 0.185                       | 0.185                   | 37.7    | 42.6         | 0.065 0   | .066      | 7.66    | 9.39   | -1.7           | 2.2       |
| Sphere                                               | 2             | 0.02734                     | 0.792                   | 39.04   | 0.44         | 0.020 0   | .305      | 7.64    | 9.368  | -1.2           | 2.6       |
| Reschie ring                                         | 20            | 0.522                       | 1.048                   | 59.5    | 92           | 0.103 0   | 1.157     | 4.43    | 7.20   | 12.0           | 23.7      |
| Perl saddle                                          | $\sim$        | 1.00                        | 1.028                   | 71.8    | 0.77         | 0.113 0   | .285      | 4.54    | 6.33   | -7.6           | 23.2      |
| Suire ring                                           | С             | 0.645                       | 0.645                   | 81.6    | 83.6         | 0.059 0   | .131      | 1.21    | 1.39   | +1.0-          | 2.3       |
| "saddle" of (3)                                      | N             | 0.130                       | 0.132                   | 93.1    | 93.5         | 0.041 0   | ·. 01:14  | 5.02    | 5.35   | 11.6           | 21.5      |
| Mixt.;wire ring.<br>sphere, Berl sa.<br>Raschig ring | ر<br>د        | 0.645,<br>0.512,<br>respect | 0.792<br>0.522<br>ively | 53.0    | 53.0         | 0.157 0   | 157       | 3.57    | 3.57   | 14.0           | 14.0      |
| All types                                            | 26            | 0.02734                     | 1.048                   | 34.4    | 93.5         | 0.020 0   | .305      | 1.21 1  | 1.11   | 1.6            | 14.8      |
| * Lor mean devia                                     | tion r        | efers to                    | the an                  | 1 Logar | 1 tham o     | [ > 1-1 ] | or (A/A   |         | root K | lean adı       | are ,     |

deviation thus refers to the antilogarithm of the absolute value of  $\{n-1 \leq \log^2(A/A_m, 1, )\}^{\frac{3}{2}}$ . This method of averaging lends equal emphasis to deviations in either direction.

|                                                  |                  |                            |                          |                | and we have been a set of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |            | ne e service and a provinsion e service de la company |              |           | 1     |
|--------------------------------------------------|------------------|----------------------------|--------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-------------------------------------------------------|--------------|-----------|-------|
| Packing                                          | beds<br>obsid    | nom. di<br>small           | a.,in.<br>Large          | Small<br>Small | ds<br>Lar <sub>6</sub> e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MITCHE | n<br>Iarço | w/Dt<br>small lar                                     | <u>3e na</u> | Cev*,     | ! • ! |
| Jylinder                                         | 5                | 0.267                      | 0.267                    | 36.1           | 46.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (.37   | 9.63       | 0.065 0.0                                             |              | 11 9      |       |
| Sphere                                           | 22               | 0.058                      | 0.792                    | 36.3           | 46.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.30   | 10.53      | 0.028 0.2                                             | 56           | -3 22     |       |
| Raschig rin;                                     | 20               | 0.233                      | <b>1</b> .0½6            | 35.45          | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.20   | 8.23       | 0.047 0.2                                             | 5            | <u>کا</u> |       |
| Berl saddlo                                      | 12               | У.                         | <b>1.02</b>              | 71.05          | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.95   | 6.33       | 0.100 0.2                                             | . 61         | -3 30     |       |
| Vire ring                                        | m                | 0.645                      | 0.645                    | 81.6           | 63.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.21   | 1.39       | 0.017 0.0                                             | 33           | 0 13      |       |
| "saddle" of (3                                   | 5                | 0.130                      | 0.132                    | 93.1           | 93.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.02   | 5.35       | 0.051 0.0                                             | 22           | 17 21     |       |
| lixt.;wire rin<br>sphore, Terl s<br>Raschif ring | ۳۹<br>م<br>د) مر | 0.645,<br>0.512,<br>respec | 0.792<br>0.522<br>tively | 53.0           | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.57   | 3.57       | 0.076 0.0                                             | 26           | 21 21     |       |
| All types                                        | 66               | 0.058                      | 1.048                    | 36.1           | 93.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.21   | 10.53      | 0.017 0.2                                             | 32           | 2         |       |
| ะ โกร พอลุก ชื่อน                                | ation n          | of and to                  | the on                   | 1000 C 54      | 1 + 7 + + + + + + + + + + - + - + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + + - + + - + + - + + + + + + + + + + + + + + + |        | 10/201     |                                                       |              |           | 1     |

deviation thus refers to the antilogarithm of the absolute value of  $\{n^{-1} \leq \log^2(B/B_{m-1}, )\}^{\frac{n}{2}}$ . This method of averaging londs equal emphasis to deviations in either direction.

to dense beds and large ratios of column diameter to particle diameter as well as ratios of column diameter to particle diameter as low as 3:1. The recent correlation by Brownell and co-workers (3) involves variation of coefficient terms in the order of magnitude of 10 fold or more and is incapable of predicting pressure drop through wire packing. Most other correlations cannot be compared in this respect because they were not supposed to be general in nature.

The greatest deviations of pressure drop from the predicted value were encountered in the case of information published by Elake (1). Elake measured pressure drop across the entire packed zone. He stated in his paper that the packing support, where units such as Raschig rings usually assume undesirable orientation, may have caused the overall pressure drop to be somewhat higher than the value which should be expected. Estimations for the coefficient for turbulent flow, B, scattered most widely when the ratio of column diameter to particle diameter was small. This is a logical consequence since very few packing units were required for the small columns and the probability of any one such bed producing a representative pressure drop should be small.

The average accuracy of prediction of pressure drop, including questionable results such as those of Blake, was found to be  $\pm15$  percent for laminar flow and  $\pm25$  percent for turbulent flow.

The convergence of this correlation upon those of other persons is best illustrated by the fact that results of other investigators forms the basic body of information upon which the present conclusions are based. The writer performed experimental tests which were primarily designed for illustrating the effect of extremes in packed bed variables. The effect of

"loose pack" and "close pack", which was studied by Oman and Watson (11), had been previously treated by empirical corrections. This investigation produced good correlation for such extremes without reference to the method of packing the bed save that randomness should be maintained.

The correlation for  $B^*$  as a function of w/m does not show agreement with Stoke's law for freely falling objects in turbulent flow. Stoke's law asserts that  $B^*$  should be constant where the objects are highly dispersed. The approximation that has been used,  $B^* = B(w/m)$ , implies that  $B^*$  becomes very small for sparsely packed beds. Pressure drop was not measured for the range where  $B^*$  is predicted to be very small; the wire rings constituted the limit in this direction.

<u>Orifice Analogy</u>. An experiment was conducted to determine a reason for the lack of convergence upon Stoke's law. The total energy loss due to flow about a falling object was compared to the total energy loss through an orifice in a pipe line. Freely falling objects, as treated by Stoke's law, are widely dispersed while in a packed column the objects are encountered frequently by the fluid stream. Consequently, loss through widely separated orifices was compared to pressure loss through a series of orifices spaced about one orifice diameter apart. Nine orifices were used. It was found that the coefficient for pressure loss through any one of the widely dispersed orifices was considerably higher than the coefficient for any one of the closely spaced orifices. The results of these tests were as follows:

Case #1, orifices spaced 4.94 orifice diameters apart.

 $B_0^* = \frac{\Delta P_{og}}{\rho U^2} = 0.417$ 

Case #2, orifices spaced 0.875 orifice diameters apart.

$$B_0^* = \frac{\Delta P_{og}}{\rho u^2} = 0.1456$$

In each case, velocity was based on the orifice area. The subscript, o, refers to the fact that an orifice was considered. The experimental procedure and apparatus are described in the appendix.

Case #1 agrees with the head loss coefficient for a single orifice. Case #2 shows that only 34.9 percent as much energy is lost when the orifices are spaced to compare with conditions within the packed bed. This analogy shows that Stoke's law may not be applicable to packed beds. It implies that coefficients in the order of those for turbulent flow through ducts may be approached in packed beds. Ducts offer much less resistance to flow for a given total surface than do suspended objects.

Orientation Near the Column Wall. The coefficient for pressure loss in turbulent flow, B\*, suffers large depressions as the column diemeter is decreased. This depression is greater than that suggested by the reduction in w/m which results from the fact that small columns produce less dense beds than do larger columns. Some cross-sections of packed beds were exposed to determine whether the arrangement of packing units was such that the fluid should encounter less resistance near the wall. Photographs of the sections that were damaged least during preparation are shown in Plate IX. All of the sections are shown in the appendix. These sections were prepared by settling the packing into a thin cement slurry, allowing the cement to harden, and then sawing the hardened mass into cross-sections at intervals of about one inch. Inspection of these photographs shows that the beds represent typical degrees of packing density and that the units near

### EXPLANATION OF PLATE IX

# Cross-sections of packed beds.

- Left. Raschig ring, 1.032 inches in diameter. Left center. Raschig ring, 0.522 inches in diameter. Right center. Berl saddle, 1.028 inches in diameter.
- Right. Berl saddle, 0.512 inches in diameter.



PLATE IX

the wall are arranged similarly to the units in the interior of the bed. Thus, the reduction in  $B^{*}$  for small columns cannot be attributed to the existance of larger space for passage near the wall. The column wall probably tends to reduce the intensity of turbulence within the bed so that less energy is lost by the fluid stream.

### How Well Must a Packed Bed Be Defined

Brownell and Katz (2) felt that porosity of the packed bed should be determined with very delicate precision, their correlation required special knowledge of porosity. Precision certainly does not detract from the validity of results, but it is often difficult to measure certain properties, such as porosity, with a great deal of accuracy. Analysis of the proposed equation shows just how errors in measuring, or predicting, packed bed variables should affect the accuracy of predicting pressure drop. Certain errors may originate from definition of fluid or empty column variables. Lack of randomness within small beds might also contribute errors, these factors are not included in the following discussion. Such factors as these cannot be isolated for the general case, however, the fact that they might exist is sufficient to induce necessary precaution in cases where they may become predominant.

Equation (16) summarizes the method of predicting pressure drop for a range of packed bed variables that includes all of the extremes that might be encountered in its application.

$$\frac{\Delta P}{L_{t}} = \frac{50}{9} (10)^{0.0313} \text{ m/m} \frac{\mu U_{0}}{\text{gm}^{2}} (1 + 0.6 \text{S}_{t}/\text{S}_{p})^{2} + 0.25(10)^{-1.766} \text{ m/D}_{t} \frac{\rho U_{0}^{2} \text{ m}}{\text{gm}^{2}}$$
for;  $1 < \text{m/m} < 15$ 
 $0 < \text{m/D}_{t} < 0.3$ 
 $0 < \text{S}_{t}/\text{S}_{p} < 0.35$ 
 $0.3 < \text{V/V}_{t} < 1$ 
(16)

The range of applicability may be larger, but only the range of certainty is stated. The range of certainty encompasses all of the observations that have been cited.

Equation (17) is identical to equation (16) except that the maperian base, e, has been substituted for the base 10, and "w" and "m" have been resolved into their component factors.

$$\frac{\Delta P}{L_{t}} = \frac{50}{9}(e)^{0.079S_{p}^{2}/VC_{p}} \frac{\mu U_{0}S_{p}^{2}}{g^{V2}} (1 + 0.6S_{t}/S_{p})^{2} + 0.25(e)^{-4.07S_{p}/D_{t}C_{p}} \frac{\Delta U_{0}^{2}S_{p}^{3}}{g^{V2}C_{p}}$$
(17)

Differentiation of equation (17) produces equations (18) and (19), which are of direct value in estimating the errors which might arise from inaccurate estimation of the different variables. Errors in estimating  $\Delta P/L_t$  for highly laminar flow are summarized by equation (18). Fluid and empty column variables are considered subject to no error.

$$\frac{d}{\frac{\Delta P}{L_{t}}} = 0.0790 \frac{s_{D}^{2}}{VC_{p}} \left( 2 \frac{dS_{D}}{S_{p}} - \frac{dV}{V} - \frac{dC_{D}}{C_{p}} \right) + 2 \frac{dS_{D}}{S_{p}} - 2 \frac{dV}{V} - 1.2 \frac{S_{t}}{S_{p}} \frac{dS_{D}}{(1 + .6S_{t}/S_{p})}$$
$$= 0.079 \frac{W}{m} \left( 2 \frac{dS_{D}}{S_{p}} - \frac{dV}{V} - \frac{dC_{D}}{C_{p}} \right) + 2 \frac{dS_{D}}{S_{p}} - 2 \frac{dV}{V} - 1.2 \frac{S_{t}}{S_{p}} \frac{dS_{D}}{S_{p}} - \frac{dS_{t}}{(1 + .6S_{t}/S_{p})}$$
when flow is laminar (18)

For highly turbulent flow, error is summarized by equation (19).

$$\frac{\frac{\Delta P}{L_{\rm t}}}{\frac{\Delta P}{L_{\rm t}}} = -4.07 \frac{{\rm Sp}}{{\rm D}_{\rm t}} \left( \frac{{\rm dSp}}{{\rm Sp}} - \frac{{\rm dCp}}{{\rm Cp}} \right) + \frac{3{\rm dSp}}{{\rm Sp}} - \frac{2{\rm dV}}{{\rm V}} - \frac{{\rm dCp}}{{\rm Cp}}$$
$$= -4.07 \frac{{\rm W}}{{\rm D}_{\rm t}} \left( \frac{{\rm dSp}}{{\rm Sp}} - \frac{{\rm dCp}}{{\rm Cp}} \right) + \frac{3{\rm dSp}}{{\rm Sp}} - \frac{2{\rm dV}}{{\rm V}} - \frac{{\rm dCp}}{{\rm Cp}}$$
(19)

when flow is turbulent

The error contributed by each variable, E, is summarized in Table 9.

Table 9. Contribution of incorrect evaluation of packed bed variables to error in predicting pressure drop.

| Variable :     | Laminar flow                                                                                                                         | Turbulent flow                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Ŷ              | $E_{\rm V} = -(2 + 0.079 \frac{\rm W}{\rm m}) \frac{\rm dV}{\rm V}$                                                                  | $E_v = -2 \frac{dV}{V}$                                   |
| Sp             | $E_{s} = \begin{cases} 2 + 0.158\frac{W}{m} \\ -\frac{1.2S_{t}}{S_{p}(1 + .6S_{t}/S_{p})^{2}} \\ \end{bmatrix} \frac{dS_{p}}{S_{p}}$ | $E_s = (3 - 1.07\frac{W}{D_t}) \frac{dS_p}{S_p}$          |
| С <sub>р</sub> | $E_{c} = -0.079 \frac{W}{m} \frac{dC_{p}}{C_{p}}$                                                                                    | $E_{c} = (4.07 \frac{W}{D_{t}} - 1) \frac{dC_{p}}{C_{p}}$ |

Suppose that none of the packed bed variables is to be allowed to contribute more than 5 percent to the error in predicting pressure drop. Table 9 shows that porosity, or V should be known within 2.5 percent of its true value when flow is turbulent; when flow is laminar, porosity may be known within 2.5 percent for small values of w/m, or within 1.57 percent when w/m reaches the upper limit of 15. When flow is turbulent, total packing surface,  $S_p$ , should be known within 1.67 percent when w/D<sub>t</sub> is small and within 2.81 percent when w/D<sub>t</sub> reaches the upper limit of 0.3; laminar flow requires that packing surface be known within 2.5 percent when both w/m and  $S_t/S_p$  are small, within 2.92 percent when  $S_t/S_p$  reaches its upper limit of 0.35, within 1.14 percent when w/m reaches its upper limit of 15, and within 1.23 percent when w/m and  $S_t/S_p$  both reach their limiting values. For turbulent flow, the total packing perimeter, Cp, should be known within 5 percent for small values of w/D<sub>t</sub> and within 7.6 percent when w/D<sub>t</sub> reaches its upper limit of 0.3; laminar flow requires no knowledge of  $C_p$  when w/m is small and requires accuracy of 4.22 percent when w/m reaches its upper limit of 15. Transition flow requires intermediate degrees of accuracy for these variables.

For turbulent flow, the sum of possible errors for all three packed bed variables may be as large as 9.17 percent for small values of  $w/D_t$ and 12.91 percent for the limiting  $w/D_t$  of 0.3 if it is desired to maintain the predicted pressure drop within 15 percent of the true value. Laminar flow requires that this sum of errors be within 5.0 percent plus any large error in C<sub>p</sub> when w/m is near zero and within 7.12 percent when S<sub>t</sub>/S<sub>p</sub> and w/m reach their respective limits of 0.35 and 15.

 $S_p$  must be known with the greatest degree of accuracy, V requires less accuracy, and  $C_p$  may be less well defined than either of the others when each of the variables is expected to contribute the same degree of accuracy to the predicted pressure drop. In general, an error in pressure drop of less than  $\pm 8.5$  percent will result if the value of each of these variables is known within  $\pm 1$  percent.

### Determination of Packing Surface From Pressure Drop

Knowledge of the surface area of irregular objects is often desired. Certain relations between surface area and particle size, catalytic activity, mass transfer rates, or ionic activity exist. Often, a quantitative measure of surface area can be used to determine when a pulverizing operation is satisfactorily completed, or when fibers are of a desired fineness or texture.

Most tests for surface area have been conducted by allowing flow through the material in question to be laminar. Allowing the flow to be transitional would require very cumbersome calculations, and truly turbulent flow requires tremendous pressure drops that are not required when laminar flow is maintained. Thus, it is valid to assume that any surface area determination will require the use of equation (20) and not the complete equation for pressure drop.

$$\Delta P/L_{t} = \frac{50\mu}{9gV^{2}} \frac{U_{0}S_{t}^{2}(1+0.6S_{t}/S_{p})^{2}(10)^{0.03l_{1}3W/m}}{9gV^{2}}$$
  
or  $S_{p} = 0.6V \left(\frac{*\Delta Pg}{2L_{t}/\mu U_{0}}\right)^{1/2} (10)^{-0.017l_{5}W/m} - 0.6S_{t}$   
for highly laminar flow (20)

V,  $L_t$ ,  $\mu$ ,  $U_o$ ,  $\Delta P$ , g, and  $S_t$  are always known when surface area is sought. A typical determination of V is from the density of the material and the total volume of the sample.  $S_t$  is usually negligible but can be included when the necessity arises.

w/m is the only term which must be approximated when equation (20) is used. Fortunately, w/m can be predicted quite accurately from porosity when only the general nature of the particles of the material in question is known. Table 10 shows how w/m can be approximated for many common

shapes that are approximated by fibers, dusts, crystals, or sands.

| Object :                        | w/m as a function of porosity                       |
|---------------------------------|-----------------------------------------------------|
| Sphere                          | $6 (1 - V/V_t)/(V/V_t)$                             |
| Cube                            | ŧ                                                   |
| Tetrahedron                     | $6.788(1 - V/V_t)/(V/V_t)$                          |
| Octahedron                      | $6.364(1 - V/V_t)/(V/V_t)$                          |
| Circular fiber                  | $2\pi (1 - V/V_t)/(V/V_t)$                          |
| Square fiber                    | $8(1 - V/V_t)/(V/V_t)$                              |
| Triangular fiber                | $5.196(1 - V/V_t)/(V/V_t)$                          |
| Circular disc                   | (Diam./thickness) $(1 - V/V_t)/(V/V_t)$             |
| Square plate                    | 8                                                   |
| Equilateral triangular<br>plate | $7\frac{1}{1}/3(edge/thickness)(1 - V/V_t)/(V/V_t)$ |
| Ribbon                          | 2(width/thickness) $(1 - V/V_t)/(V/V_t)$            |

Table 10. w/m from porosity for some common geometrical shapes.

Uniformity of particle size or degree of conformity to the geometrical shapes listed effect very little the estimated value for w/m. Ordinarily, a mixture of sizes will possess a slightly lower value for w/m than will the parent particle of uniform size. Only 0.0395 of the error in estimating w/m manifests itself as relative error in calculating the final surface area, that is, a discrepancy of  $\pm 1.0$  in evaluating w/m results in  $\pm 3.95$  percent

uncertainty in estimating surface area. Ordinarily, errors in evaluating w/m should range between zero, for materials of known shape to -0.5 for materials of irregular shape.

Hoffing and Lockhart (15) presented information by which the method of determining surface area might be tested. The surface area of diatomacious earth was determined by both Nitrogen adsorption and permeability. They used Carman's conclusions to determine surface area by permeability. These results are as follows:

| Information reported                                                                                                                      | Air permeability                                                                                                                | Water permeability                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Vol. of cake, $V_t$<br>Area of cylinder, $A_t$<br>Inverse flow rate<br>Pressure drop, $\Delta P$<br>Porosity, $V/V_t$<br>Viscosity, $\mu$ | 0.756 cm <sup>3</sup><br>0.378 cm <sup>3</sup><br>8.87 sec/cm <sup>3</sup><br>704 gm/cm <sup>2</sup><br>0.714<br>0.000185 poise | 5.90 cm <sup>3</sup><br>1.77 cm <sup>2</sup><br>27.3 sec/cm <sup>3</sup><br>704 gm/cm <sup>2</sup><br>0.849<br>0.00947 poise |
| Surface area, $S_p/V_p$<br>(by methods of Carman)                                                                                         | 74600 cm <sup>2</sup> /cm <sup>3</sup>                                                                                          | $74300 \text{ cm}^2/\text{cm}^3$                                                                                             |
| Surface area, $S_p/V_p$ by nitrogen adsorption                                                                                            | 78800 cm <sup>2</sup> /cm <sup>3</sup>                                                                                          | 78800 cm <sup>2</sup> /cm <sup>3</sup>                                                                                       |
| Derived information                                                                                                                       |                                                                                                                                 |                                                                                                                              |
| w/m, assuming circular fibers                                                                                                             | 2.51                                                                                                                            | 1.12                                                                                                                         |
| Surface area, Sp/Vp<br>by equation (20)                                                                                                   | 75800 cm <sup>2</sup> /cm <sup>3</sup>                                                                                          | 74200 cm <sup>2</sup> /cm <sup>3</sup>                                                                                       |

This example does not show the full advantage of equation (20) over that proposed by Carman, although slightly better agreement was obtained by equation (20). Equation (20) can be expected to apply to plate-like or ribbon-like materials and Carman's equation is known to be inapplicable for such materials.
One Way in Which Active Surface Might be Estimated

Studies concerned with mass transfer and catalysis in packed beds have shown that all of the surface area of solid particles is not exposed to the transient fluid mass.

The proportion of unavailable surface might be comparable to an apparent unavailable free volume. The following equation, similar to that of Carman, represents how pressure drop would be expressed for hypothetical packed beds where the fluid path is not obstructed.

$$\frac{\Delta P}{L_{\pm}} = \frac{50}{9} \frac{\mu U_0 V_{\pm} S_p^2}{\sqrt{3}} (1 + 0.6 S_{\pm} / S_p)^2$$

Actually, the fluid path is obstructed and the proportionality between the above equation and equation (20) may be a measure of the surface about which appreciable quantities of material flow. This residual term is proposed to have the following interpretation:

$$\frac{\text{active surface}}{\text{total surface}} = \frac{\text{available volume}}{\text{free volume}} = (V_{t}/V) (10)^{-0.0343\text{w/m}}$$

Turbulent flow is not understood well enough so that the effect of increasing flow rate upon available surface can be predicted. Present knowledge does not preclude the possibility that the same fractional free volume is available in turbulent flow.

Comparison of transfer rates in packed beds requires that the Reynold's number be the same for each bed. Reynold's number has been determined as

$$Re = \frac{B}{A} \frac{w \rho u_0}{\mu (1 + 0.6 \text{ St/Sp})^2}$$
  
=  $\rho_{\text{WW}/200A_{\text{t}}} \mu (1 + 0.6 \text{ St/Sp})^2 (10)^{1.766\text{w}/\text{Dt}} + 0.0343\text{w/m}$ 

Taecker and Hougen (16) determined heat transfer coefficients for several packed beds. The material from which the packing was made and the operating conditions were maintained very nearly constant so that a direct comparison of heat transfer coefficients to available surface can be made. The following information illustrates heat transfer factors,  $j_h$ , for their beds at Re = 3.0. Values of w, m, and S<sub>p</sub> that were used to ascertain the Reynold's number are also included. The coefficients are not point values but have been obtained from plots of  $j_h$  vs. Re for the range of interest.

| Packing        | Sp/V+ | m       |        | Ĵh    | $(V_t/V)$ (10) -0.0343 w/m |
|----------------|-------|---------|--------|-------|----------------------------|
| Raschig ring   | 111   | 0.0057  | 0.0350 | 0.103 | 0.976                      |
| £1 [1          | 111   | 0.0057  | 0.0350 | 0.094 | 0.976                      |
| 37 <u>37</u>   | 58    | 0.0123  | 0.0698 | 0.095 | 0.896                      |
| 80 B           | 29    | 0.0248  | 0.1396 | 0.082 | 0.895                      |
| Partition ring | 36    | 0.0186  | 0.1440 | 0.062 | 0.813                      |
| Berl saddle    | 155   | 0.0038* | 0.0358 | 0.11  | 0.806                      |

\*Required free volume based on manufacturers information for similar packing as presented by Perry (12).

Figure 16 illustrates the manner in which  $j_h$  decreases as the proposed measure for available surface decreases. A decrease in  $(V_t/V) (10)^{-0.03h_3w/m}$  represents a proposed decrease in available surface. This comparison suggests that the surface available for transfer may be proportional to  $(V_t/V) (10)^{-0.03h_3w/m}$ .



Fig. 16. Heat transfer factor versus a measure of available surface area, Re constant at 3.0.

### Efficient Packing

The packed bed is used where large surfaces are required for mass and heat transfer operations. Increased pressure drop through a bed increases the cost required in accomplishing a given amount of transfer. Thus, packing efficiency may be defined as follows:

> packing eff. - rate of trans. income per unit trans. power cons. cost per unit power

Heat transfer rates parallel mass transfer rates so that efficiency may be evaluated from the standpoint of heat transfer.

packing eff. = 
$$\frac{h \text{ Sp } \Delta T}{U_0 \text{ At } \Delta P}$$
 (income ratio)

This efficiency is a dimensionless quantity if consistent energy units are used throughout. Accurate evaluation of efficiency requires specific knowledge of heat transfer coefficients and operating conditions for each operation. However, efficiency may be indexed by reference to some well known relationships.

Most transfer processes are accomplished where flow is turbulent. Certain general relationships may be established for this case. They are as follows:

The heat transfer coefficient, h, may be estimated by the results of the investigation by Taecker and Hougen (16). The Reynold's number that they used has been adjusted to include "w" rather than their approximation for particle diameter. This equation represents their tests with Reschig rings and partition rings.

$$h = 0.723C \rho U_0 \left(\frac{C\mu}{k}\right)^{-0.667} \left(\frac{\rho U_0 W}{\mu}\right)^{-0.41}$$

Pressure drop in turbulent flow may be estimated by the results of this investigation.

$$\Delta P = L_t \rho U_0^2 (w/m) / ligm$$

for highly turbulent flow and large diameter columns.

Substituting these approximations into the equation for packing efficiency produces the following relationship.

Packing eff. = (inc. ratio) 
$$\frac{2.89 \text{gk}^{0.67} \text{c}^{0.33} \text{\Delta}\text{T}}{\mu 0.26 \text{ p}_{0.41} \text{U}_{0} \text{ 2.41}} \cdot \frac{(\text{Sp}/\text{V}_{t}) \text{m}^{2}}{\text{m}_{0.41}}$$

The group of fluid and empty column variables, income ratio, k, C,  $\Delta$  T,  $\mu$ ,  $\rho$ , U<sub>o</sub>, and constant factors, are controlled independently of the type of packed column so that  $(S_p/V_t)m^2 \div w^{1.011}$  becomes a measure of the expected amount of transfer per unit of pumping power input. Including "w" to the 1.0 power rather than the 1.01 power will not alter the accuracy of this approximation by a greater degree than the order of accuracy involved in substituting "w" for the particle diameter used by Taecker and Hougen. Thus, this equation may be considered an index to the usefulness of a packing material for transfer operations.

Packing index = 
$$\frac{m(Sp/Vt)}{w/m} = \frac{(V/Vt)}{(w/m)}$$

# when flow is turbulent

Similar analysis of heat transfer during laminar flow produces this index to the packing material:

Packing index = 
$$(V/V_t)$$
 (10)  $^{-0.03L3}$  w/m  
when flow is laminar

These developments have not considered the availability of surface area which has been previously discussed. In a more detailed analysis, the indexes derived above should be multiplied by the fraction of available surface. Inclusion of the proposed measure for available surface would produce these indexes:

Packing ind. = 
$$\frac{(10)^{-0.0343} \text{ w/m}}{(\text{w/m})}$$
 for turbulent flow  
=  $(10)^{-0.0686} \text{ w/m}$  for laminar flow

The measure of available surface does not change the overall picture as to the effect of w/m on packing efficiency.

Generally speaking, it is desirable to use packing materials that produce low values for w/m. The range of w/m noted for several packing materials that were studied are listed below. The more desirable units are placed at the top of the list.

| Packing material | Range of w/m |
|------------------|--------------|
| Wire ring        | 1.21-1.39    |
| Berl saddle      | 3.95-6.33    |
| Raschig ring     | 4.28- 8.23   |
| Cylinder         | 6.37- 9.65   |
| Sphere           | 6.80-10.53   |

Mixing wire rings with other packing materials produces favorable values of w/m.

#### CONCLUSIONS

Pressure drop in packed beds has been found to depend on three properties of the packing. These properties are the void space within the bed, the total surface of the packing, and the perimeter of the packing. The perimeter represents boundries which must be circumvented by the fluid in passing through the bed and has been defined as the locus of tangent points to the packing that would be intersected by a line that moved throughout the bed remaining oriented parallel to the column wall.

Other factors incluencing pressure drop are the size of the column, fluid density, fluid viscosity, and the superficial velocity of the fluid. Normal degrees of roughness of the packing material do not noticeably influence pressure drop. For laminar flow, three fifths of the column wall tends to reduce pressure drop in turbulent flow, this effect is determined by the ratio of packing width to column diameter. Packing width is defined as total packing surface divided by total packing perimeter.

Pressure drop through beds of widely varying properties and for flow ranging from completely laminar to highly turbulent can be expressed mathematically or graphically by reference to the variables which are mentioned above. Graphical correlation of pressure drop requires consideration of the following factors<sup>\*</sup>.

1. F = 
$$\beta(\text{Re})$$
, primary representation.  
2. Re =  $w \rho U_0 B/\mu A(1 + 0.6 S_t/S_p)^2$   
3. F =  $f/B(w/m)$   
4. f =  $\Delta Pem/L + \rho U_0^2$ 

\* Table of nomenclature is on page 78.

5. B =  $\beta(w/D_{+})$ , auxiliary representation.

6. A =  $\beta(w/m)$ , auxiliary representation.

Mathematical correlation requires use of the following equations\*:

$$\Delta P/L_{t} = A \mu U_{o} (1 + 0.6S_{t}/S_{p})^{2}/gm^{2} + B^{*} \rho U_{o}^{2}/gm$$

$$A = \frac{50}{9} (10)^{0.03430 \text{ w/m}} \text{ $^{2}15\%}$$

$$B^{*} = 0.25(\text{w/m})(10)^{-1.766 \text{ w/D}_{t}} \text{ $^{2}25\%}$$

These conclusions have been derived from information representing eight different packing materials and a mixture comprised of four of them. They have also been proven applicable to materials such as diatomacious earth. The range of variables that was studied is as follows<sup>\*</sup>:

$$0.344 \leq V/V_t \leq 93.5$$
  
 $0.020 \leq S_t/S_p \leq 0.305$   
 $1.21 \leq W/m \leq 11.11$   
 $0.017 \leq W/D_t \leq 0.282$   
 $0.00008 \leq Re \leq 97.0$ 

A Reynold's number equal to unity indicates the center of the transition region as flow varies from laminar to turbulent.

The term, w/m, has been identified as an index to the power required by different packing materials when a given rate of mass or heat transfer is desired. Small values of w/m indicate the minimum in pumping costs.

<sup>\*</sup> Table of nomenclature is on page 78.

| a                | - ratio between the effective flow area and At.                                                              |
|------------------|--------------------------------------------------------------------------------------------------------------|
| A                | = laminar flow constant = $\Delta Pgm^2/L_t \mu U_0(1 + 0.6 S_t/S_p) - B'N$ .                                |
| Am.l.            | = the predicted value for A.                                                                                 |
| At               | = cross-sectional area of the column.                                                                        |
| <b>*</b>         | = $A(1 + 0.6 S_{t}/S_{p})^{2}$ .                                                                             |
| В                | $= B^*/(w/m)$ .                                                                                              |
| Bm.l.            | = predicted value for B.                                                                                     |
| B*               | = turbulent flow constant = $\Delta Pgm/L_t \rho U_0^2 - A!/N$ .                                             |
| B.               | $= B^{*}/(1 + 0.6 S_{t}/S_{p})^{2}$ .                                                                        |
| B <sub>o</sub> * | = constant for an orifice = $\Delta Pg/\rho U^2$ .                                                           |
| С                | - heat capacity, or perimeter contributed by a specific packing unit.                                        |
| Cp               | • total perimeter of the packing.                                                                            |
| °c               | = temperature, degrees Centigrade.                                                                           |
| cm               | = centimeter.                                                                                                |
| d                | = differential element.                                                                                      |
| D                | equivalent hydraulic diameter, or nominal particle diameter for a<br>specific packing unit.                  |
| Dp               | • nominal diameter of a packing unit.                                                                        |
| Ds               | diameter of a sphere having the same volume as the packing unit.                                             |
| $D_t$            | - diameter of the column.                                                                                    |
| D <sub>v</sub>   | <ul> <li>effective nominal diameter of a packing unit corresponding to a<br/>given void fraction.</li> </ul> |
| е                | height of an element of surface roughness, or, 2.71828.                                                      |
| E                | · relative error.                                                                                            |
| Ec               | <ul> <li>error in predicted pressure drop due to an error in perimeter determination.</li> </ul>             |

| Es             | <ul> <li>error in predicted pressure drop due to an error in surface<br/>determination.</li> </ul> |
|----------------|----------------------------------------------------------------------------------------------------|
| Ev             | error in predicted pressure drop due to an error in porosity determination.                        |
| f              | = $\Delta Pgm/L_t / U_o^2$ .                                                                       |
| fd             | • friction factor for dense packing arrangement.                                                   |
| fl             | = friction factor for loose packing arrangement.                                                   |
| ft             | = foot.                                                                                            |
| F              | • friction factor = $f/B^*$ .                                                                      |
| ⁰ <sub>F</sub> | = temperature, degrees Fahrenheit.                                                                 |
| g              | acceleration due to gravity, taken as 32.15 ft. per sq. sec. in<br>the Manhattan area.             |
| gm             | • gram.                                                                                            |
| h              | = heat transfer coefficient.                                                                       |
| ΔH             | <pre>&gt; vertical displacement.</pre>                                                             |
| jh             | = heat transfer factor = $\frac{hA_t}{CW} \left(\frac{C\mu}{k}\right)^{2/3}$ .                     |
| k              | arbitrary constant, or thermal conductivity.                                                       |
| K              | arbitrary constant.                                                                                |
| lb             | pound.                                                                                             |
| L              | = true length of flow path, or length of a specific packing unit.                                  |
| Lt             | - length of the packed zone for which $\Delta P$ is measured.                                      |
| m              | = estimated hydraulic radius = V/S <sub>p</sub> .                                                  |
| mm             | = pressure, millimeters of Mercury.                                                                |
| n              | = number of items.                                                                                 |
| N              | = m / U/Ju.                                                                                        |
| ΔP             | • pressure loss due to frictional resistance along Lt.                                             |
| r              | - ratio between true length of flow path and Lt.                                                   |

| Re             | = Reynold's number = $m / U_0 B^* / \mu A(1 + 0.6 S_t / S_p)^2$ .   |
|----------------|---------------------------------------------------------------------|
| °R             | = temperature, degrees Rankine.                                     |
| ap             | • surface of the packing unit.                                      |
| sq.            | • square,                                                           |
| SS             | = surface of a sphere having the same volume as the packing unit.   |
| sec.           | • second.                                                           |
| Sp             | • total surface of the packing.                                     |
| St             | = surface of the column wall.                                       |
| t              | = thickness of a specific packing unit.                             |
| U              | - true fluid velocity.                                              |
| Uo             | • velocity based on the empty column.                               |
| v              | = volume of a specific packing unit.                                |
| vp             | • volume of the packing unit.                                       |
| V              | = free or void volume within the packed zone.                       |
| V <sub>p</sub> | - total volume of the packing.                                      |
| Vt             | • $V + V_p$ • volume of the empty column.                           |
| W              | = $S_p/C_p$ = width of the barrier to be circumvented by the fluid. |
| W              | <pre>mass rate of flow.</pre>                                       |
| Z              | - ratio between effective hydraulic radius and m.                   |
| 8              | = arbitrary function.                                               |
| 5              | - constant arising because of the geometrical nature of a duct.     |
| 5'             | • special case for S .                                              |
| Δ              | • incremental element.                                              |
| θ              | • angle of orientation of an element of surface.                    |
| M              | • absolute viscosity.                                               |

- π = 3.14159
- $\phi$  = function of.
- < = less than.
- < = less than or equal to.
- ≅ approximated by.
- ∞ = proportional to.
- **γ** = square root.

## ACKNOWLEDGMENT

Special acknowledgment is given to Dr. Rollin G. Tæcker, major instructor, and Dr. Henry T. Ward, Head of the Department of Chemical Engineering at Kansas State College. Dr. Tæcker provided consultation and direction which made possible the completion of this investigation.

The Engineering Experiment Station at Kansas State College provided funds which were greatly appreciated. James B. Newman, assistant on the project, contributed valuable aid during construction and operation of the experimental apparatus.

Acknowledgment is also given to Dr. O. A. Hougen who arranged for a loan of wire rings from the University of Wisconsin, to the Maurice A. Knight Sons Company which donated the clay Raschig rings and Berl saddles, and to the Owens Corning Fiberglass Corporation in Kansas City, Kansas, which donated the glass balls.

#### BIBLIOGRAPHY

- Blake, C. F. The resistance of packing to fluid flow. American Institute of Chem. Engineers, Transactions. 14: 415-421, 1921-22.
- (2) Brownell, Lloyd E., and Donald L. Katz.
   Flow of fluids through porous media Part I Single homogenous fluids. Chem. Engg. Progress. 43: 537-545, October, 1947.
- (3) Brownell, Lloyd E., H. S. Dombrowski, and C. A. Dickey. Pressure drop through porous media — Part IV New data and revised correlation. Chem. Engg. Progress. 46: 415-422, August, 1950.
- Burke, S. P., and W. B. Plummer.
   Gas flow through packed columns. Industrial and Engg. Chem. 20: 1196-1200, November, 1928.
- (5) Carman, P. C.
   Fluid flow through granular beds. Transactions of the Institution of Chem. Engineers. 15: 150-166, 1937.
- (6) Fowler, J. L., and K. L. Hertel.
   Flow of a gas through porous media. Journal of Applied Physics.
   11:496-502, July, 1940.
- Hodgman, Charles D.
   Handbook of chemistry and physics, 28th ed. Cleveland: Chemical Rubber Publishing Company, 1944.
- (8) Leva, Max, and Milton Grummer.
   Pressure drop through packed tubes. A series of three articles concluded in: Chem. Engg. Progress. 43: 713-718, December, 1947.
- Meyer, Walter G., and Lincoln T. Work.
   Flow of fluids through packed solids. American Institute of Chem.
   Engg., Transactions. 32: 13-18, 1937.
- (10) Morcom, A. R. Fluid flow through granular materials. Transactions of the Institution of Chem. Engineers. 24: 30-43, 1946.
- (11) Oman, A. O., and K. M. Watson. Pressure drop in granular beds. Process Engg. Data, a series of seven articles, University of Wisconsin. Reprinted from: Tech. section of the national petroleum news (now petroleum processing). May through November, 1944.

- (12) Perry, John H. Chemical engineers handbook, 2nd ed. New York: McGraw-Hill, 1941.
- (13) Rouse, Hunter. Fluid mechanics for hydraulic engineers, 1st ed. New York: McGraw-Hill, 1937.
- (14) Sullivan, R. R., and K. L. Hertel. The flow of air through porous media. Journal of Applied Physics. 11: 761-765, December, 1940.
- (15) Hoffing, E. H., and Frank J. Lockhart. Resistance to filtration. Chem. Engg. Progress. 47: 3-10, January, 1951.
- (16) Taecker, R. G., and O. A. Hougen. Heat and mass transfer of the gas film in the flow of gases through commercial tower packings. Chem. Engg. Progress. 15: 188-193, March, 1949.
- (17) Badger, Walter L., and Warren L. McCabe. Elements of chamical engineering, 2nd ed. New York: McGraw-Hill, 1936.

APPENDIX

# EXPLANATION OF PLATE X

Cross-sections of packed beds.

Packing materials shown:

0.792 inch glass ball.
1.028 inch Berl saddle.
1.032 inch Raschig ring.
0.512 inch Berl saddle.
0.522 inch Raschig ring.







Table 11. Author's original data.

1.028 inch Berl saddle in the 3.10 inch column. Bed #1,

volume of unit = 1.445 x 10-4 cu.ft. surface of unit = 0.0343 sq.ft.  $\sim void = 77.0$  $s_4/s_p = 0.285$ w/m = 4.54

| $\frac{\Delta P}{L_{t}} \frac{1b}{ft3}$     | $ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                      |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $\frac{W}{A_{\rm L}} \frac{1b}{ft^{2-sac}}$ | 20000000000000000000000000000000000000                                                                                         |
| $\mathcal{M}_{f}\frac{1b}{t-sec}$           | MMMMMMMH<br>MMMMMMM<br>MMMMMM<br>MMMMMM<br>MMMMMM<br>MMMMMM                                                                    |
| $\mathcal{O}_{ft3}^{1b}$                    | илилило<br>милилило<br>Фосолии<br>Фосолии<br>Стрето<br>Стрето<br>Стрето<br>Стрето<br>Стрето<br>Стрето<br>Стрето<br>Стрето<br>С |
| Press., mm                                  | *<br>5600<br>5000<br>51411<br>5000<br>5000<br>5000<br>5000<br>5000<br>5                                                        |
| Teap. oC                                    | 10000000000000000000000000000000000000                                                                                         |
| Run #                                       | AP-JUNO HOOD - DU JUNE AD                                                                                                      |

3-

,

Bed #2, 0.645 Inch wire ring in the 6.08 inch column

diameter of wire = 0.0677 inch length of wire = 1.92 inch % vold = 81.6 St/Sp = 0.059w/m = 1.39

| Run # | Do•duel, | Press., mm  | S Ito   | M 110     | $\frac{W}{A_t} \frac{1b}{t^{2-soc}}$ | Lt It3 |
|-------|----------|-------------|---------|-----------|--------------------------------------|--------|
| V     | 33.2     | 8           | 55.8    | 0.363     | 0.1111                               | 15.6   |
| ŝ     | 2.2      | 8           | 12.     | 0.266     | 1.31                                 | 33.3   |
| Ċ     | 37.0     | 8           | 552     | 0.300     | 0.338                                | 10.4   |
|       | 37.2     |             | 55.2    | 0.272     | 1.10                                 | 20.7   |
| 2     | 30.6     | 8<br>8<br>8 | 20      | 0.247     | 0.537                                | 12.0   |
| ~     | 39.2     | 8           | 55.6    | 0.237     | 0.365                                | С•3    |
| 24    | 28.1     | 8<br>8<br>8 | 62.2    | 5.60x10-4 | l. 18                                | 0.0    |
| 1.1   | 28.0     | 8           | 62.2    | 5.62 "    | 10                                   | 1.1    |
| 40    | 26.0     | 8 8         | 62.2    | 5.62 =    | 5.79                                 | 1.3    |
| 39    | 28.0     | 5           | (,2.2   | 5.26 =    | 7.12                                 | 2.0    |
| 36    | 27.9     |             | 62.2    | · 1.0.1 = | 7.65                                 | 2.4    |
| 37    | 27.7     | 173         | 62.2    | 5.66 = 7  | 0.31                                 | 2.6    |
| 50.   | 23.0     | 765         | 0.07146 | 1.22x10-  | 0.242                                | 1.0    |
| 27    | 22.6     | 778         | 0.0760  | 1.22 "    | 0.276                                | 1.3    |
| 20    | 22.0     | 793         | 0.0777  | 1.22 "    | 0.309                                | 1.6    |

Bed #3, 0.792 inch glass ball in the 4.06 inch column

% void = 1,2.3 St/Sp = 0.225 w/m = 8.20

.

| AP 1b<br>Lt ft3                          | 83 · 3                   | 22.8      | 20.02    | 34.4               | 91.9     | 36.7  | 20.2      | 1.7    | 2.0             | 40           | 16.6        | 23.8     | 50       |        | 3.0    | 2.5    | С.       | 12.0   | 17.9   | 10°0   | 7 . 7 3 |
|------------------------------------------|--------------------------|-----------|----------|--------------------|----------|-------|-----------|--------|-----------------|--------------|-------------|----------|----------|--------|--------|--------|----------|--------|--------|--------|---------|
| W 1b<br>At ft2-sec                       | 1.84                     | 0.766     | 1.92     | 1.07               | 2.78     | 1.28  | 0.000     | 4.42   | 23.0            | 1.34         | 13.0        | 16.6     | 10.3     | 0.202  | 0.258  | 0.346  | 0.455    | 645.0  | 0.686  | 0.701  | (C) · N |
| $M_{f \overline{t-sec}}$                 | 0.365                    | 0.238     | 0.318    | 0.289              | 0.276    | 0.242 | 4-01×17.2 | 5.72 = |                 |              | =           |          | 5.03<br> | H H H  | 34 38  | 84 84  | 24<br>24 | 11     | 11 13  | 11 11  |         |
| $\mathcal{P}_{\tilde{r}\tilde{t}3}^{1b}$ | 57.<br>27.<br>27.<br>27. | 04<br>104 | 100      | 252                | Ba<br>Ba | 5.    | 62.2      | 11     | gen D<br>des de | n Bre<br>Der | gan<br>Igan | 4        | 5 C C C  | 0.0718 | 0.0720 | 0.0725 | 0.0735   | 0.0747 | 0.0763 | 0.0764 |         |
| Press., mm                               | 8 8 8 8<br>9 9           |           | ****     | \$ 1<br>2 8<br>2 8 | 8 8 F    | 8 4 8 | 1 8 8     |        | 2 8 8           |              | 8           | 10 00 00 |          | - 24   | 737    | 742    | 753      | 763    | 780    | 782    | 761     |
| Temp.°C                                  | 33.1                     | 39.1      | 10<br>10 |                    | 37.0     | 38.9  | 27.2      | 27.1   | 27.0            | 20.0         | 26.6        | 26.4     | 20.3     | 22.00  | 25     | -      | H        | 88     | 22.5   | 22.7   | C.C L   |
| Run #                                    | F4 0                     | ΞF        | 1 [~]    | co <b>C</b>        | 63       | 16    | 200       | 50     | 84              | m c          | 01          | 00       | 0.0      | -10    | 16     | 1      | 77       | 13     | 12     |        | 77      |

.

Bed #4, 1.028 inch Berl saddle in the 6.08 inch column

volume of unit = 1.445 x 10<sup>-4</sup> cu. ft. surface of unit = 0.0343 sq. ft. % vold = 71.8 84/8p = 0.118w/m = 5.94 AL DA

1 1

| Temp. <sup>0</sup> C | Press., mm                             | ETT V      | / <u>ft-30c</u><br>0.297    | At 122-500                 | 11 123 |
|----------------------|----------------------------------------|------------|-----------------------------|----------------------------|--------|
| .0                   | 8 3                                    | 52.0       | 0.236                       | 1.00<br>0.630              | 6.0    |
|                      | -                                      | 62.3       | 6.28x10-4                   | 67.5                       | 1 • J  |
| -10                  | 5 <u>9</u><br>2 <u>8</u><br>2 <u>8</u> | n da<br>Ar | 6.30 "                      | 1<br>2<br>0<br>1<br>0<br>0 |        |
| -01                  | 8                                      | 45<br>5    | = : 01.0                    | 7.82                       | 2.1    |
| 20                   | 767                                    | 0 0746     | 0.40                        | 0-20<br>-20                |        |
| .0.                  | 942                                    | 0.0700     | 10 TVC 20 T                 | 0.210                      |        |
| .0.                  | 162                                    | 0.0772     | 1.22 #                      | · 0.248                    | 1.7    |
| 1•0                  | 8TH                                    | 0.0001     | Que<br>dans<br>Ques<br>dans | 0.301                      | 5.0    |
| 0                    | 03.2                                   | 0.0321     | " 12-1                      | 0.336                      | 2.6    |

•

-

١.

Bed #5, 0.645 inch wire ring in the 3.10 inch column

diameter of wire = 0.0677 inch length of wire = 1.92 inch % void = 0.3.6. 3t/sp = 0.131w/m = 1.21 AL DA

4

197

1 7

,4 -

| Lt IT3               | 58.4        | 29.1             | 15.9        | 2.4       | 1.6    | 2.4          | 0<br>0 | 20     | 12.0          | 17.6   | 22.7          | 1.2       | 1.6              | 5°<br>0 | ය<br>ෆ                                                                     | 16.3   | 000       |
|----------------------|-------------|------------------|-------------|-----------|--------|--------------|--------|--------|---------------|--------|---------------|-----------|------------------|---------|----------------------------------------------------------------------------|--------|-----------|
| At ftz-soc           | 2.71        | 1.30             | 0.780       | 5.30      | 6.89   | 0°53         | 12.1   | 16.5   | 23.0          | 20.4   | 31.           | 0.239     | 0.303            | 0.389   | 0.781                                                                      | 1.07   |           |
| M <u>ft-soc</u>      | 0.265       | 0.249            | 0.236       | 5.64×10-4 | 5.07 = | = 06.4       | 5.94 = | 100° 1 | 6.00 "        | 6.03 " | C.09 "        | 1.22×10-5 | gun<br>Bu<br>gun | 1.23 "  | Cate<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>and | 99 82  | 8.0 4.0   |
| S FE3                | 50.0        | 14<br>1          | dia .       | 62.2      | 38     | 875 8<br>8 8 | 22.42  | 11     | ilana<br>Bara | i i    | Sile-<br>Gust | 0.0730    | 0.0726           | 0.0728  | 0.0755                                                                     | 0.0789 | × - < - : |
| Press., nm           | 411 LAD 140 | 1<br>1<br>1<br>1 | 1<br>5<br>8 |           |        | 1            |        |        | 3 8           | 8      |               | 17712.    | 7116             | 750     | 627                                                                        | 816    |           |
| Temp. <sup>0</sup> C | 37.6        | 36.5             | 39.1        | 26.2      | 26.0   | 25.7         | 25.4   | 5.     | 25.0          | 24.8   | 21.12         | 21.3      | 24.0             | 25.0    | 23.6                                                                       | 26.1   | -         |
| Run #                | 87          | 30.              | 60          | 78        | 77     | 76           | 22     | 74     | 73            | 20     | 71            | 2         | 61               | 60      | 00                                                                         | 120    |           |

**3.**8

Eed #6, 1.032 inch Raschig ring in the 6.08 inch column

length of unit = 1.048 inch thickness of unit = 0.162 inch % void = 68.9 St/Sp = 0.157 w/m = 5.63

| Run # | Temp.ºC | Press., mn | 12 TE3          | M 1t-300   | At 122-300 | Lt rt3      |
|-------|---------|------------|-----------------|------------|------------|-------------|
| 125   | 30.1    | 1          | 55.6            | 0.255      | 1.28       | 9-412       |
| 126   | 38.8    | 1 2 9      | ditre:<br>apart | 0.243      | 0.864      | 10.0        |
| 127   | 39.3    |            | 11              | 0.235      | 0.605      | 6.7         |
| 122   | 29.5    |            | 62.2            | 5.43×10-4  | 8.26       | e<br>B<br>B |
| 123   | 29.7    | 2 2 2      | ngan<br>Bitra   | = 11.2     | 5.72       | 1.6         |
| 121   | 30.0    | 8 P2 8     | Giver<br>Gast   | 1 = 000.20 | 4.27       | 1.0         |
| 96    | 22.7    | 608        | 1670.0          | 1.22×10-5  | 0.331      | 3.6         |
| 26    | 23.8    | 062        | 0.0772          | 1.23 =     | . 0.278    | 3           |
| 98    | 23.6    | 764        | 0.071.6         | 1.22 =     | 0.190      | 1.1         |
| 99    | 23.4    | 753        | 0.0735          | 1.23 "     | 0.116      | 0.8         |

.

•

Bed #7, 0.645 inch wire ring in the 4.06 inch column

diameter of wire = 0.0677 inch length of wire = 1.92 inch % void = 83.28t/sp = 0.098w/m = 1.25

| Run # | Tenp.ºC           | Press., nun |            | $\mathcal{M}_{\tilde{1}\tilde{t}-sec}$ | W 1b<br>At ft2-sec | AP 1b<br>Lt IT3 |
|-------|-------------------|-------------|------------|----------------------------------------|--------------------|-----------------|
| 131   | 37.2              | 1           | 55.7       | 0.272                                  | 2.02               | 60.3            |
| 132   |                   | 3 8         | 22.2       | 0.263                                  | 1.36               | 20.2            |
| 133   | 20.<br>00.<br>00. | a<br>B<br>T | Que<br>des | 0.254                                  | 0.660              | 0.41            |
| 115   | 29.1              |             | 62.2       | 5.48x10-4                              | 6.10               | 1.0             |
| 114   | 29.0              | 3 S 3       | 8m-<br>8m- | -<br>-<br>-                            | 8.28               | 1.7             |
| 113   | 20.9              | 3           | 11         | 5.51 2                                 | 11.1               | 0.<br>M         |
| 112   | 20.7              | 2 H 1       | 5 5<br>5   | 5.54 =                                 | 14.0               | 4.9             |
| 111   | 20.4              | i<br>3<br>9 | 90°        | 57 = 2                                 | 16.6               | 7.6             |
| TTO   | 24.6              | 745         | 0.0724     | 1.23x10-5                              | 0.270              | 1.2             |
| 109   | 25.0              | 750         | 0.0728     | 44                                     | 0.358              | 2.1             |
| 100   | 24.9              | 771         | 0.074.6    | 33 33                                  | 0.558              | 4.7             |
| 107   | 24.1              | 795         | 0.0774     | 21 II                                  | 0.730              | 2.2             |

٠

Ded #8, 0.792 inch glass ball in the 3.10 inch column

| 0   | 10  |     |
|-----|-----|-----|
|     | õ   |     |
| I   | •   | -   |
| -   | 0   | 0   |
| 075 | #   | 5   |
| -   | ρ   |     |
| 0 N | S   | E   |
| 2.5 | 13  | R   |
| 6.  | ~ 4 | 100 |
|     |     |     |
|     |     |     |

a

| Lt rt3                          | CHUNHOCOCOSOUNHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W Ib<br>At ft2-sec              | инали сообласти<br>инали сооблас                                                                                                                                                                                                                                                                                                           |
| $\mathcal{M} \frac{1b}{ft-sec}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\sqrt{\frac{1b}{7t^3}}$        | 55.6<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2<br>62.2 |
| Press., mu                      | 2258<br>2528<br>2528<br>2528<br>2528<br>2528<br>2528<br>2528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Temp. <sup>o</sup> C            | 00000000000<br>0000000000<br>0000000000<br>000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Run #                           | 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

95

Eed "9, 0.792 inch glass ball in the 6.08 inch column

| S N CO |
|--------|
| •      |
| J M    |
| mor    |
| 0.+    |
| 11 .   |
| 11 0   |
| 3      |
| - 2.1  |
| 0 07   |
| 5/8    |
| See .  |
| 3200 1 |
| C      |
|        |
|        |
|        |
|        |

AL dV

,0 **1** 

2.25

dl "

,0 **-**

| Lt rt3               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~        |
|----------------------|-----------------------------------------------|
| At ft2-sec           | 9.24<br>6.62<br>14.04<br>0.326<br>0.222       |
| Aft-soc              | 6.25×10-4<br>6.20 "<br>1.23×10-5<br>1.23×10-5 |
| 2 IT3                | 62.3<br>"<br>0.0796<br>0.0746<br>0.0746       |
| Pross., ma           | 752                                           |
| Temp. <sup>o</sup> C |                                               |
| 3un 4                | 004-7200<br>004-7200                          |

Bed /10, 1.020 inch Berl saddle in the  $l_{\rm t}.05$  inch column

volume of unit = 1.445 x  $10^{-44}$  cu. ft. surface of unit = 0.0343 sq. ft. % vold = 72.7 St/Sp = 0.182w/m = 5.70

| Run # | Tenp.°C | Press., am        | <sup>1b</sup> <sup>1b</sup> <sup>1t3</sup> | $\mathcal{M}_{f\overline{t-soc}}^{1b}$ | W 1b<br>At ft2-soc | AP 1b<br>Lt ft3 |
|-------|---------|-------------------|--------------------------------------------|----------------------------------------|--------------------|-----------------|
| d'ir  | V OF    |                   | 6 0 2                                      | 77-01-28 9                             | 0 00               | с <i>х</i>      |
|       |         | U 1<br>2 3<br>3 4 |                                            |                                        |                    |                 |
| 110   | 10.0    |                   | 11                                         | 6.76 <sup>n</sup>                      | 8                  |                 |
| 151   | 20.1    | 9 E S             | 3.5                                        | 6.73 #                                 | 9.55               | 0.1             |
| 152   | 20.3    | 1 8 8             | 11                                         | 6.70 "                                 | 7 . LI+            | 1.1             |
| 14.3  | 21.6    | 831               | 0.0815                                     | 1.22x10-5                              | 0.763              | 7.6             |
| 111   | 22.4    | 000               | 0.0783                                     | 23 34                                  | 0.626              |                 |
| 2112  | 22.0    | LLL               | 0.0756                                     | 23 23                                  | 0.512              |                 |
| 21/16 | 22.9    | 751               | 0.0733                                     | . 11 11                                | 0.382              | 2.5             |
| 14.7  | 22.6    | THT               | 0.0724                                     | 22 13                                  | 0.257              | . 1.1           |

|              |                                                         | AP 1b<br>Lt Ft3                   | SHOULOWOTUNH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|---------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | inch column                                             | W 1b<br>At ft2-sec                | 26.22<br>26.22<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25 |
| (            | ng in the 3.10<br>8 inch<br>.162 inch                   | $\mathcal{M}_{\frac{1b}{rt-sec}}$ | 66-46<br>66-44<br>11-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-222<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| .e 11 (cont. | Raschig ri<br>unit = 1.04<br>of unit = 0                | 354                               | 62.3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tabl         | #11, 1.032 inch<br>length of<br>thickness<br>% void = 7 | 54/3p = 0.                        | 7382<br>7362<br>7362<br>7362<br>7362<br>7362<br>7362<br>7362<br>736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | Bed                                                     | Temp.00                           | 00400000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                         | Run #                             | 24444444444<br>27222020040<br>242222020040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                    | inches                                                          | AP 1b<br>Lt 1t3                      | 0 MTHTHU<br>MMNNMM                             | inches                        | P 1b<br>Lt ft3                                      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|-----------------------------------------------------------------|--------------------------------------|------------------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| umnTop uput onto o | packed zone = 31.7                                              | W Ib<br>At ft2-rec                   | 1. 205<br>                                     | packed zone = 31.6            | $\frac{\eta}{\Lambda_{\rm tr}}$ ft <sup>2-sec</sup> | 1.142<br>1.171<br>0.273<br>0.353<br>0.353<br>0.353<br>0.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| chis ring in th    | 34 inch<br>/32 inch<br>emitics of the                           | $\mathcal{M}_{1^{\frac{10}{1-30c}}}$ | 0.313<br>0.204<br>0.287<br>1.235×10-5<br>" " " | as bed #12<br>smitles of the  | 1b<br>ft-sec                                        | 0.294<br>0.273<br>0.260<br>1.23×10=5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ch metal Rase      | unit = 1.00<br>of unit = 1.<br>cetween extro<br>22<br>.120      | 11 2 1t                              | 55.7<br>                                       | olfications a                 | 1b<br>153                                           | 55.7<br>55.6<br>0.0749<br>0.0753<br>0.0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HIG TTOT STA       | length of<br>thickness<br>distance h<br>St/Sp = 0<br>w/m = 4.4. | Press., nm                           | <br>768<br>787<br>787                          | #12a, same spec<br>distance t | Press., nm                                          | 776<br>776<br>825<br>825<br>825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bed                |                                                                 | Tenp.ºC                              | 20000000<br>20000000<br>20000000000000000000   | Eec                           | Tomp.°C                                             | 50 = 500 N = 5 |
|                    |                                                                 | Run 4                                | -+2000                                         |                               | Run 4                                               | 242444<br>24200<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>24274<br>242777<br>242777<br>2427777<br>24277777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Bod #13, 0.522 inch Raschig ring in the 4.06 inch column

length of unit = 0.533 inch thickness of unit = 0.00006 inch % void = 59.5 St/Sp = 0.103 w/m = 7.20

| Lt Ib<br>Lt ft3                           | 107.0    | 105.4    | 22.6   | 2.4        | 2.4     | ر_ر<br>س   | i<br>C<br>L      | 11.1   | 11.7      | 20.2                | 21.7   | . 41.8    | 41.9    | 61.4    | 64.2   |
|-------------------------------------------|----------|----------|--------|------------|---------|------------|------------------|--------|-----------|---------------------|--------|-----------|---------|---------|--------|
| $\frac{v}{\Lambda t} \frac{1t}{t^{-3}ec}$ | 1.462    | 1.478    | 0.2955 | 0.132      | 0.136   | 0.207      | 0.222            | 0.308  | 0.320     | 0.435               | 0.149  | 0.637     | 0.639   | 0.791   | 0.807  |
| $\mathcal{M}_{ft-sec}$                    | 0.315    | 0.310    | 0.275  | 1.235x10-> | 3.5 5.5 | 2.8<br>2.5 | 2 4<br>8 8 8 8 8 | 88 88  | 5 6 6 5 5 | talin<br>Mar<br>Mar | 24 52  | 3.5 & S.5 | 3.8 3.5 | 2-3 2-2 | 28 43  |
| $\mathcal{P}^{\frac{15}{753}}$            | 55.7     |          | din a  | 207070     | 0.0709  | 0.0711     | 0.0709           | 0.0712 | 0.0713    | 0.0722              | 0.0724 | 0.0741    | 0.0743  | 0.0758  | 0.0761 |
| Press., mn                                | 8        | 00 00 00 |        | 734        | 737     | 739        | 737              | 74.2   | 741       | 750                 | 752    | 022       | 772     | 789     | 162    |
| Jo.dwal.                                  | 35<br>50 | 37.1     | 37.1   | 27.0       | 27.14   | 27.5       | 27.0             | 27.0   | 26.9      | 27.0                | 27.7   | 27.1      | 27.6    | 27.1    | 27.4   |
| Run <sup>‡</sup>                          | 189      | 190      | 191    | 162        | 173     | 172        | 163              | 171    | 164       | 165                 | 170    | 166       | 169     | 168     | 167    |

| ~  |  |
|----|--|
| ٠  |  |
| -  |  |
| 2  |  |
| Ľ. |  |
| 2  |  |
| 2  |  |
| -  |  |
|    |  |
| -  |  |
|    |  |
| 0  |  |
| -1 |  |
| 0  |  |
| ଷ  |  |
| -1 |  |

5.W

Bod #14. mixture of 5-0.645 inch wire rings, 1-0.792 inch glass ball, 1-0.512 inch Herl saddle, and 1-0.522 inch Ras-chig ring in the 3.10 inch column. volume of simplest composite =  $2.37 \times 10^{-4}$  cu. ft. surface of simplest composite =  $2.37 \times 10^{-4}$  cu. ft. perimeter of simplest composite = 2.48 ft. % void = 53.0 54/5p = 0.157w/m = 3.57

| $\frac{\Delta P}{Lt} \frac{1b}{ft^3}$                                | 95.00<br>20000000<br>20500<br>2010<br>2010<br>2010<br>2010<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W 1b<br>At ft2-sec                                                   | 0.9990<br>0.177<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.00788<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.007888<br>0.0078888<br>0.00788888<br>0.00788888888<br>0.00788888888<br>0.0078888888888 |
| $\mu_{\rm f} \frac{1b}{t-sec}$                                       | 1.235%10-5<br>1.235%10-5<br>н н<br>н н<br>н н<br>н н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <sup>1b</sup> <sup>1b</sup> <sup>3</sup> <sup>1t3</sup> <sup>3</sup> | 55.7<br>0.0710<br>0.0718<br>0.0728<br>0.0728<br>0.0728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Press., nm                                                           | 77470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Temp. <sup>o</sup> C                                                 | 37.0<br>27.6<br>28.0<br>28.0<br>27.6<br>27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Run #                                                                | 1111111<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>120                          |

100

.

| water and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A                           | 6005<br>6005<br>6005    | 5.91           | 6.31       | 10.95<br>11.80<br>10.00<br>10.54          | 3.60        |                         | 0.<br>53     | 12.00  | 67.6           | 64.6        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|----------------|------------|-------------------------------------------|-------------|-------------------------|--------------|--------|----------------|-------------|
| president & recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 -10<br>f <sup>2</sup> -10 | 0.030                   | 0.036          | 0.0ip0     | 0.033<br>0.014<br>0.030<br>0.030<br>0.030 | 0.068       | 0.057                   | 0.04.3       | 0.045  | 0.070          | 0.063       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Run!                        | Edm                     | 132            | 33         | 940 0.71 Q                                | 129         | EU O                    | 16           | 126    | 165            | 197         |
| the second secon | ~L.                         | 0.10<br>0.10<br>0.10    |                | 6.08       | 11.27<br>11.27<br>10.40<br>10.40          | 9.59        | 9.19<br>9.19            | 8.59<br>8.59 | 11.56  | 10.43<br>10.01 | 9.34        |
| - Management - Carlos | N                           | 0.00£<br>0.007<br>0.013 | 0.071<br>0.018 | 0.072      | 0.040<br>0.026<br>0.049<br>0.043          | 0.129       | 0.10Ú<br>0.220<br>0.Ú63 | 0.034        | 0.055  | 0.056          | 0.057       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Run,                        | A O N                   | 131            | 87<br>63   | 4日~6小                                     | 126         | A-20                    | 90           | 125    | 184            | <b>1</b> 96 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                           | 0.3                     | 0.2            | 0.3        |                                           | ය<br>• •    | 0.0                     | 0.6          | 1 • O  | 0.2            |             |
| A REAL PROPERTY OF TAXABLE PROPERTY OF TAXABLE PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/m                         | 1.39                    | 1.2;           | 1.21       | £.20                                      | 7.64        | 4.54                    | 5.94         | 5.63   | 4.43           | 1           |
| States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | St/Sp                       | 0.0.9                   | 960.0          | 0.131      | 0.225                                     | 0.305       | 0.205                   | 0.116        | 0.157  | 0.126          | Br<br>Br    |
| The survey of the second secon | Noid                        | 9.10                    | C3 • 2         | 03.6       | 5. et to 3.                               | 0.++1       | 0.77.0                  | 71.6         | 65.9   | 92             | 15          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dn.in.                      | č410.0                  | da<br>b        | ÷.         | 0.792                                     | 95<br>1 apr | 1.028                   | 80-1<br>80-  | 1.032  | JIIO.I         | 11          |
| and the second s | Dt, in.                     | 6.08                    | 4.06           | 3.10       | 4.06                                      | 3.10        | 3.10                    | 6.08         | 6.05   | ÷              | Bin<br>Br   |
| and the second s | ed /                        | <b>⊙</b> i              | 2              | 57         | 3                                         | 0           | -                       | t            | 0      | 12             | 120         |
| Property of the Party of the Pa | н<br>1<br>1                 | ing                     | ann<br>dan     | tan<br>Ba  | ball                                      | Que<br>des  | addle                   | der<br>Ber   | e ring | 8**<br>#*      | gan<br>gan  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Packin                      | Wire r                  | \$-<br>\$      | ٤.         | Class                                     | den<br>Ba   | Corl s                  | 16           | Raschl | an<br>ar       | ł.          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lef.                        | lut.                    | 53             | 944<br>844 | ana<br>ana                                | рг.<br>18.  | gina<br>gina            | tan<br>Dire  | 5      | ĝes<br>Bes     | 4<br>8      |

Table 12. Individual values of the laminar flow constant.

| V       | 62.6    | 6.19     | 8 8 8       | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1 | 8<br>8<br>8<br>8 | 44 4444444<br>40 0004000000000000000000000 |
|---------|---------|----------|-------------|------------------|-----------------------|------------------|--------------------------------------------|
| N       | 0.025   | 0.020    | 1<br>T<br>T | 8<br>2<br>8<br>8 | 8                     | 8<br>7<br>8<br>8 | осоосососососососососососососососососо     |
| Run#    | 190     | 188      | 1           | 1                | 1                     | 8                | ананананананананана<br>                    |
| V       | 9.90    | 6.59     | 11.58       | 11.63            | 11.61                 | 11.64            | 04000000000000000000000000000000000000     |
| r N     | 0.024   | 0.020    | 10.01       | 0.01             | 10.01                 | 0.01             | 00000000000000000000000000000000000000     |
| Run     | 189     | 187      | ł           | 1                | 1                     | 1                |                                            |
| -       | 1.0     | 0.6      | 1           | 1<br>8<br>8      | 8                     | 1                | <ul><li>∩</li><li></li></ul>               |
| UI/M    | 7.20    | 3.57     | 9.353       | 9.368            | 9.341                 | 9.290            | 8.<br>20                                   |
| St/3p   | 0.103   | 0.157    | 0.0198      | 14               | 0.0335                | 11               | 411 · 0                                    |
| gvoid   | 59.5    | 53.0     | 39.08       | 39 • Ol.         | 39.11                 | 39.24            | 5<br>1                                     |
| Dp.in.  | 0.522   | varied   | 0.0273      | ė.               | 24                    | 4                | 0 • <b>2</b> 003                           |
| Dt.in.  | 14 • 06 | 3.10     | 1.523       | 64               | 0.3234                | -                | 2.07                                       |
| %pog    | 13      | t        | 8           | ł                | 1                     | 1                | r-1                                        |
| Щ<br>Ц  | ring.   |          | IIa         | đa<br>das        | jā ng<br>Spāre        | 4 A              | 54                                         |
| Packing | Raschie | Mixture  | Glass b     | der<br>der       | 52                    | 8++<br>9         | 5                                          |
| Ref.    | Aut.    | 40<br>20 | (1/1)       | 14               | 11                    | 11               | (3)                                        |

cable 12 (cont.)

| 00°-00<br>111-00     | 10000000000000000000000000000000000000                                                                      | 87787777777777777777777777777777777777                                                                                                                  |
|----------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.224                | 00000000000000000000000000000000000000                                                                      | 00000000000000000000000000000000000000                                                                                                                  |
| 30                   | 00000000000000000000000000000000000000                                                                      | 20000000000000000000000000000000000000                                                                                                                  |
| 9.53<br>5.62<br>5.62 |                                                                                                             | 10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                        |
| 0.194                | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                      | 000000000000000000000000000000000000000                                                                                                                 |
| 200<br>Can           | Nestanderennesennesenses                                                                                    | 0000 ±70000                                                                                                                                             |
| <b>℃</b><br>-        |                                                                                                             | ≎<br>•0                                                                                                                                                 |
| 6.56                 | 50<br>50                                                                                                    | 00<br>•<br>10                                                                                                                                           |
| 0.114                | 0.041                                                                                                       | 0 • 0l,l.i.                                                                                                                                             |
| 41.2                 | с.<br>С.                                                                                                    | 93 •<br>2                                                                                                                                               |
| 0.2083               | 0.1316                                                                                                      | 0.130                                                                                                                                                   |
| 2.07                 | =                                                                                                           | z                                                                                                                                                       |
| 7                    | 2                                                                                                           | m                                                                                                                                                       |
| III                  | အ ငံ ငံ ၂ ဝ                                                                                                 | addle                                                                                                                                                   |
| 1838                 | Smooth                                                                                                      | Rough                                                                                                                                                   |
| (3)                  | -                                                                                                           | F.                                                                                                                                                      |
|                      | (3) Glass ball 1 2.07 0.2063 41.2 0.114 8.56 1.2 27 0.194 8.53 28 0.224 8.50<br>29 0.260 9.02 30 0.311 8.44 | (3) Glass hill 1 2.07 0.2063 41.2 0.114 5.56 1.2 27 0.194 8.53 28 0.224 5.60 1.44 31 0.055 9.65 9.06 10.011 1.61 1.44 1.45 1.45 1.45 1.45 1.45 1.45 1.4 |

| V             | C30 | 0.7400000000000000000000000000000000000  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| n / 11        | 27000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
| Rui           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NONDER ERE ERE FRON                      |
| A             | 8977777887877978877778877877877877877877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HON-COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| N             | 010<br>016<br>016<br>016<br>016<br>016<br>016<br>016<br>016<br>016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000000000000000000000000000000000000   |
| Run/          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82222222222222222222222222222222222222   |
| 8.            | ය<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
| w/ia          | 2°05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | é . 33                                   |
| St/Sp         | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
| Svold         | 53.<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72°S                                     |
| Dp.in.        | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.<br>00                                 |
| Dt.1n.        | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | €**<br>•                                 |
| ed#           | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |
| р<br>1)<br>1) | saddle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acdle.                                   |
| Packin        | Rough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>L<br>L<br>D<br>O                   |
| Rof.          | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | £                                        |

| A     | 00011200000000000000000000000000000000   | 01001100100000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8           | 8                | 8           |                  |
|-------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-------------|------------------|
| N     | 00000000000000000000000000000000000000   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | E<br>B<br>E<br>E | E<br>E<br>E |                  |
| Run#  | 0 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t<br>I      | 1                | ł           | 1                |
| Å     | 20000000000000000000000000000000000000   | 6-1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.32       | 9.30             | 01.41       | 10.80            |
| N     |                                          | 00012<br>00012<br>000112<br>000112<br>000112<br>000112<br>000112<br>000112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00112<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00012<br>00000000 | 2           | 1                | 8           | 8<br>8<br>8<br>8 |
| Run#  | on con con con con con con con con con c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           | E<br>E           | E<br>B      | l<br>l           |
| E.I.  | · · · · · · · · · · · · · · · · · · ·    | 6°0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8<br>8<br>8 | 8<br>3<br>8      | 1<br>8<br>5 | E<br>E<br>E      |
| EI/M  | 6.33                                     | 6.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.39        | 7.66             | 11.11       | 9.10             |
| St/Sp | 0.113                                    | 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.066       | 0.065            | 670.0       | 0.078            |
| Svold | 72.5                                     | 70.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.7        | 4.2.6            | 34.4        | 39.7             |
| .ni.q | 00.1                                     | r.<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.165       | dur<br>s         | 0.220       | 11               |
| in. ] |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |             |                  |
| Dt,   | ¢.                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1                |             |                  |
| Bed#  | ÷-                                       | <i>5</i> 0<br>た<br>し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nî su       | 11               |             |                  |
|       | çálc                                     | rln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iol p       |                  |             |                  |
| king  | ອ<br>ຕ                                   | schic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anger.      | 56               | 00          |                  |
| Pac   | e<br>⊡                                   | a<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | He          |                  | Jul         | 8:<br>8          |
| Ref.  | (3)                                      | * ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)         | 81               | 5           | 3.6              |
Table 12 (concl.)

| A          | 8<br>3<br>5<br>5<br>5 |   |
|------------|-----------------------|---|
| I.         | 8<br>3<br>8<br>4      |   |
| Run.?      | 8                     |   |
| A          | 8.62                  |   |
| 5          |                       |   |
| Run."      | 8                     |   |
| ы<br>Ц     | 8                     |   |
| w/m        | 7.40                  |   |
| St/Sp      | 0.074                 |   |
| Svoid      | 44.6                  |   |
| Do.in.     | 0.220                 |   |
| Bed Dt.in. | 9 6 9<br>8 9<br>8 8   |   |
| . Packing  | oube                  |   |
| Ret        |                       | - |

This value assumed because of lack of evidence of the true value. The surface of this unit was calculated from the volume of the unit and its overall demensions. The calculated value of 0.0430 sq ft was used for these estimations instead of the reported value of 0.0390 sq ft because it was in agreement with infor-

| 1 | 1                | 000nN                                | ナノナロのクト                                                                                                                                                                                                                                   | owmo                                               | HMUNE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|---|------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|   | P.*              | 0010000                              | 00000000000000000000000000000000000000                                                                                                                                                                                                    | 0000                                               | 00.733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21<br>1.20<br>1.00   |
|   | Ņ                | 56.1<br>78.01<br>90.7                | 82.9<br>1419<br>1419<br>1419<br>1419<br>1419<br>1419<br>1419<br>14                                                                                                                                                                        | 103<br>103<br>310                                  | 1005 - 5<br>2005 - 5<br>2000<br>- 5<br>2005 - 5<br>200 | 81220                  |
|   | Run#             | 2339<br>2339                         | 55555000                                                                                                                                                                                                                                  | 1110                                               | 20002-1114<br>20040-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1440<br>00/07<br>00/07 |
|   | *<br>11          | 0.484<br>0.372<br>0.396<br>0.209     | 00000000000000000000000000000000000000                                                                                                                                                                                                    | 0.270<br>0.287<br>0.287<br>0.272<br>0.272<br>0.214 | 11 30<br>11 30<br>11 69<br>11 69<br>11 69<br>00 746<br>00 7346<br>00 7346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nitoc                  |
|   | N                | 112852<br>568953<br>568057<br>568057 | 64.0<br>1955<br>1955<br>6103<br>1955<br>6103<br>1955<br>6103<br>1955<br>6103<br>1955<br>6103<br>1955<br>6103<br>1955<br>6103<br>1955<br>6103<br>1955<br>610<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 77.3<br>2228<br>2228<br>199                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87.9<br>367.9          |
|   | un <sub>/2</sub> | 00000<br>NNMEE                       | 80051200<br>200051200                                                                                                                                                                                                                     | 200100                                             | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|   | A' R             | 6.7                                  | t•2                                                                                                                                                                                                                                       | 6.9                                                | 13•7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.3                   |
|   | m/m              | 1.39                                 | 1.21                                                                                                                                                                                                                                      | 1.25                                               | 0°50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.64                   |
|   | st/Sp            | . 050                                | 0.131                                                                                                                                                                                                                                     | .098                                               | .522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.305                  |
|   | vold :           | 9.13                                 | \$<br>\$                                                                                                                                                                                                                                  | 83 • 5                                             | r•2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 • trt                |
|   | Dn.In.           | 0.645                                | E                                                                                                                                                                                                                                         | 86                                                 | 0.792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŧ                      |
|   | t.in.            | 00                                   |                                                                                                                                                                                                                                           | •• 06                                              | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.10                   |
|   | Bed# L           | 0                                    | 77                                                                                                                                                                                                                                        | . 7 4                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                      |
|   | ទ្ធា             | ring.                                | £                                                                                                                                                                                                                                         | den<br>Ør                                          | s ball                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | z                      |
|   | Packi            | Wire                                 | 84<br>84                                                                                                                                                                                                                                  | 8.<br>5-                                           | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an<br>je               |
|   | Ref.             | Aut.                                 | 8                                                                                                                                                                                                                                         | \$ <del>.</del>                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | do-                    |

,

Table 13. Individual values of the turbulent flow constant.

•

| 13**               | 0.98<br>0.99                  | 0.93<br>1.01<br>0.901          | 0.000<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.728<br>0.582<br>0.582<br>0.603<br>0.603                                                                                     | 0000<br>000<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|--------------------|-------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Run <sup>#</sup> N | 103 381<br>101 787            | 160 74.5<br>136 79.4           | 231200<br>232 609<br>233 609<br>236<br>236<br>236<br>236<br>236<br>236<br>236<br>236<br>236<br>236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69<br>67<br>75<br>131<br>75<br>131<br>75<br>731<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 151 159<br>149 273<br>147 236<br>145 470<br>143 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123 138<br>99 155<br>97 295            |
| B*                 | 1.01<br>0.746<br>1.00         | 1.07<br>1.08<br>1.01           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>0000                                                                    | 00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>000000 | 1.36                                   |
| N ∲un              | 104 270<br>102 591<br>100 976 | 161 45.5<br>159 121<br>135 126 | 2013<br>2013<br>2013<br>2013<br>2013<br>2013<br>2013<br>2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000                                                                 | 152 119<br>150 212<br>146 343<br>144 5350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124 104<br>122 198<br>96 203<br>96 354 |
| A' P               | 143                           | 13.7                           | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.2                                                                                                                          | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.4                                   |
| m/m                | 7.04                          | 24.6                           | -t-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.5                                                                                                                          | 5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.63                                   |
| 5 t/3p             | 0.305                         | 0.142                          | 0. 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.116                                                                                                                         | 0 <b>.1</b> .32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.157                                  |
| évold              | 0• 1111                       | 32.8                           | 0•27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71.0                                                                                                                          | 72.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66.9                                   |
| Dn.in.             | 0.792                         | z                              | 1.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ÷                                                                                                                             | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.032                                  |
| ed# Dt.in.         | 8 3.10                        | 9 6.00                         | 1 3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 6.08                                                                                                                        | 10 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 6.08                                 |
| ug B               | s ball                        | 43                             | ຮຮດີຝີອ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                             | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lig ring                               |
| Packl              | 1835                          | Bri<br>Pr                      | [10 <b>2</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ten<br>Be                                                                                                                     | 0<br>8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rascl                                  |
| Ref.               | Aut.                          | 40<br>61-                      | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50<br>50                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54                                     |

0004920 364970 364970 364970 3664 0.937 1796.0 0.815 0.602 0.765 24 11.23 10.02 7.08 1.98 39 1.13 52.0 134.0 266 2339 2339 52.0 102.20 252 422 5549 954 681 331 1202120 358 12 2222400 2222400 2222400 195 200t-002 100 175 Run/ ł ł 1 1 ł ł 1 ł 0.915 0.846 0.814 0.768 0.961 2.10 Bir 1.54 2.27 . 78.8 176 391 100 1000 20.4 225 2 334 Run# 277744 00054 00054 0000 176 193 161 1 1 1 1 1 1 F F 1 11.5 ය. ව 0.6 9.8 9.2 11.1 2.6 = 2 4.28 7.20 64.4 6.32 6.53 3.57 5.24 m/m -0.073 0.354 0.157 0.042 0.126 St/Sn 0.103 0.050 -"vold 74.5 59.5 53.0 80 92 0.269<sup>XX</sup>72 -67 varied Dp.in. 1.0115 0.522 0.233 465.0 1.032 -Dt. in. 3.10 6.08 4.06 3.10 t, x ŧ = -128 Eed# 72 E 11 1 1 1 ring ring -÷ --= Raschig Packing Mixture Glass -0++ 13+5 --\*\* (7)Aut. Ref = 5 ---=

| ~      |  |
|--------|--|
|        |  |
|        |  |
| 10     |  |
|        |  |
| head   |  |
| 0      |  |
| 0      |  |
| 9      |  |
| $\sim$ |  |
|        |  |
| $\sim$ |  |
| 111    |  |
| j.m.f  |  |
|        |  |
| ~      |  |
| 9      |  |
| -      |  |
| 0      |  |
|        |  |
|        |  |
| 5      |  |
| A.0    |  |

| 2      |       |             |                        |                |            |       |            |                                                                                                                |            |            |              |
|--------|-------|-------------|------------------------|----------------|------------|-------|------------|----------------------------------------------------------------------------------------------------------------|------------|------------|--------------|
| *      | 000   | Jun y       | 796                    | the state      | .66        | 91    |            | 31 94                                                                                                          |            |            | 2000<br>2011 |
|        |       |             | 000                    |                | ~          | 1     |            | HNHH                                                                                                           |            |            |              |
| H      | 52.0  | 64-<br>0000 | 62<br>35<br>35         | 20.5           | 17.        | 25.0  |            | to 1055                                                                                                        |            |            | 20.00        |
| Run #  |       |             |                        | 8 - 1<br>8 - 1 | E<br>B     | 1     |            | 8 8 8 8<br>8 8 9 8                                                                                             |            |            |              |
| B*     | 1.10  | 1.49        | 1.05<br>0.695<br>0.678 | 1.37           | 1.82       | 1.69  | 1.64       | 22.03<br>27.03<br>27.03<br>27.03<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 1.59       | 1.67       | 24.4         |
| ĿĹ     | 72.0  | 17.0 m      | 91.4<br>527-4<br>527   | 12.9           | 12.5       | 11.5  | 5.2        | 2000 110 110 110 110 110 110 110 110 110                                                                       | 2          | 4.4        | 26.2         |
| in li  |       |             |                        |                | ł          | 8     | l<br>l     |                                                                                                                | l<br>L     | 1          | 111          |
| N . H  | 9.2   | 0           | 10.1                   | 13.6           | 12.7       | 19    | 13.3       | 13.4                                                                                                           | 12.6       | 13.4       | 13.6         |
| m/m    | 5.24  | lt .62      | تر.<br>بلار            | L0.03          | 67.6       | 10.00 | 10.53      | 9.67                                                                                                           | 9.39       | ľ0.20      | 8.26         |
| st/sn  | 0.073 | 0.092       | 0.147                  | 0 <b>•</b> 086 | 0.043      | 0.030 | 4          | c. 098                                                                                                         | 0.054      | 0.062      | 0.214        |
| Svuld  | 00    | 81.5        | 72                     | 37.4           | 36.0       | 37.5  | 36.3       | 30.3                                                                                                           | 39.0       | 37.0       | 1-21         |
| Dp.in. | 0.394 | 0.484       | 1.00                   | 0.0583         | 83         | łå    | 3.5        | 0.121                                                                                                          | 65         | à ș        | 0.250        |
| Dt.in. | ×t    | ter<br>Bro  | 6×                     | 0.705          | 1.47       | 2.07  | 104<br>8 - | 1.34                                                                                                           | 2.07       | <u>7</u>   | 1.34         |
| i pe   | 1     | ł           | 1<br>1                 | ł              | 1          | 8     | 8          | 8                                                                                                              | ł          | 8          | l<br>E       |
| ng Fo  | ring  | 6<br>9-     | ig ring                | shot           | 44         | 5     | 44         | 5                                                                                                              | an<br>da   | 44         | 1            |
| Packl  | 31888 | gan<br>gan  | Rasch                  | Lead           | ĝen<br>Br- | 3.1   | 11         | Que<br>Que                                                                                                     | 36         | 6-1<br>6-1 | dan<br>art   |
| Ref.   | (1)   | der<br>Øv   | gen<br>gen             | ( 17)          | 41         | 3.8   | 3.6        | lan<br>lan                                                                                                     | tter<br>Br | 11         | 2            |

2 1

| 14 A                | 1.03<br>1.03       | 1.76          | 1.68<br>1.36 | 1.50             | 1.79         | 1.0%           | 1.06      | 1.08           | 1.48       | 1.50         | 1.50       |
|---------------------|--------------------|---------------|--------------|------------------|--------------|----------------|-----------|----------------|------------|--------------|------------|
| 1 27                | 10.0<br>10.0       | 11            | - 121        | 1.16 -           | 62           | 221            | 179       | - 170          | 258        | 24.0         | 24.1       |
| Run/                | iii                | i i           | ii           | ê                | 21           | ii             | ii        | I<br>I         | 1 1        | ii           | ii         |
| ita<br>Ista<br>Inno | 01.03              | 1.75          | 1.89<br>1.86 | чч<br>999<br>972 | 1.81<br>1.60 | 1.000          | 1.13      | 1.08<br>1.07   | 1.51       | 1.50<br>25.7 | 622        |
| 44                  | 5.3<br>7.0<br>23.4 |               | 112          | 89.9<br>103      | 66.2<br>93.4 | 193<br>260     | 163       | 159            | 254        | 216<br>262   | 192        |
| un                  |                    | 1 I<br>1 I    | 8 8          |                  | 2 B<br>8 B   | 3 8            |           | 8 8            | 8 8<br>2 8 | 8 8          |            |
| A' R                | 12.7               | 13.6          | 1.3 • 0      | 12.9             | 12.6         | 10.3           | 10.2      | 8.6            | 11.4       | 2.11         | 11.6       |
| m/m                 | 9.10               | 10.00         | 9.65         | 84.6             | 9.13         | 6.55           | 6.47      | 6.37           | 56-1       | 8.12         | 6.21       |
| St/Sp               | 0.000              | 0.067         | 0.075        | ann<br>ann       | 0.076        | u <b>.</b> 058 | 44        | 0.089          | 370.0      | 0.077        | 80<br>84   |
| Svoid               | 39.7               | 37.5          | 36.1         | 36.5             | 37.2         | 45.5           | 1.54      | 46.1           | 56.3       | 55.8         | 55.55      |
| S'n. in.            | 0.250              | 80<br>91      | 0.267        | 40-<br>6-        | <i>6</i> .   | dur<br>Br      |           | 94.<br>1944    | 0.385      | 9%<br>8**    | ne<br>en   |
| Dt.in.              | 3.00               | quite<br>Quer | 4.026        | 44               | 34           | 800<br>81      | an<br>br  | -<br>-         | in<br>in   | an.<br>Ga    | Bri<br>Bri |
| cd #                | ł.                 | i<br>i        | 1            | 2                | l.           | 3              | 8         | 1              | E<br>E     | ê<br>E       | 8          |
| ing P               | sinot              | Ŧ             | cyllnder     | ŧ                | 2            |                | ан.<br>Т  | 97<br>10<br>10 | hig ring   |              | 5          |
| Pack                | I cad              | dan<br>Gan    | wlite        | 90m<br>97        | 8.           | gen<br>gen     | 80<br>80- |                | Rasc       | 844<br>845   | gar<br>gar |
| .Jer                | ( 17)              | 0-<br>8-      | (11)         | en<br>Bri        | gen<br>Ber   | 0-<br>8        | 8-<br>8-  | 5              | ž.         | 84           | 4          |

ш

**ن**و'

| F.S.               | 1.60    | -1-1-<br>-005<br>-1-1-   | 0.938       | 66.0           | 0.920<br>0.317 | 0.95                   | 1.82        | 1.63                                    | 79.I C           | 2 2.07<br>2 2.03                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|---------|--------------------------|-------------|----------------|----------------|------------------------|-------------|-----------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run <sup>4</sup> M | 192     | 122<br>147<br>162<br>192 | 411         | 363            | 321            | 266<br>266<br>345      | 127         | 102                                     | 85.              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T, 25              | 1.50    | 1111<br>1664             | 0.937       | н. 00<br>0. 36 | 0.920<br>0.916 | 0.97<br>0.951<br>0.926 | 1.04        | с<br>1.65<br>0<br>0<br>0<br>0<br>0<br>0 | 7 1.95<br>7 1.93 | 5 2 00<br>5 00<br>5 |
| un // B            | 208     | 134                      | 328         | 317            | 276            | 240                    | 103         | 108-                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A' R               | 11.6    | an<br>de                 | 10.2        | 10.1           | 97<br>84       | 4<br>8                 | 13.0        | di di                                   | 5                | dan<br>An                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| m/m                | C.22    | б <b>.</b> 23            | 6.44        | 6.26           | 6.25           | 6.19                   | 9.85        | 9.84                                    | 63.6             | 6.<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| St/5p              | 0.077   | -                        | 0.0(9       | 0.000          | 84<br>84       | 160.0                  | 0.050       | 5                                       | 6-<br>8-         | silan<br>data                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Svold              | 5.5     | 55.42                    | 61.35       | 62.07          | (2.13          | 62.3                   | 37.65       | 37.90                                   | 37.75            | 37.65                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dp.in.             | 0.305   | #                        | B-s<br>B-   | 54             | ĝo.<br>Er      | ÷                      | 0.2166      | 8-<br>8                                 | ٤.               | 24<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dt.in.             | 4.026   | an<br>an                 | 4.4         | di di          | Ben<br>Ser     | 6                      | dan.<br>Car | şer<br><del>ar</del>                    | 82<br>34         | ilia<br>Be                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ed.                | 3       |                          | i<br>I      | ł              | i<br>I         | 8<br>1                 | ų<br>I      | ł                                       | 1                | ł                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hand the second    | Suing   | 80<br>8-                 | 44          | 64<br>5        | 2.<br>2. b     | ÷.                     | ohere       | ta<br>gen                               | 84<br>8          | 10<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Packing            | Raschle | 2                        | gra<br>gina | 6.5            | 4.             | bias<br>data           | celite sp   | 4                                       | 00-<br>9-        | igen<br>ber                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref.               | (11)    | 6.1                      | фт.<br>Ф    | dha<br>Salan   | an<br>Ør       | 80<br>80               | а.<br>В     | 5                                       | ter<br>der       | 9-<br>9-1                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Р**         | 1.46         | 1.42           | 1.40        | 111<br>222<br>222                                                                           | 0.167        | 0.307      | 20.077               | 0.910    | 0.659           | 0.645            | 0.671         |
|-------------|--------------|----------------|-------------|---------------------------------------------------------------------------------------------|--------------|------------|----------------------|----------|-----------------|------------------|---------------|
| N           | 204          | 166            | 155         | 1133                                                                                        | 565          | 7.4.7      | 202                  | 362      | 725             | 125              | 029           |
| Run"        | 1            | 8              | 1           |                                                                                             | 1 1          | 3          | 1                    |          | 8 8<br>8 8<br>, | 8                |               |
| ₽<br>P<br>P | 1.47         | 1.42           | 1.          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.672        | 0.905      | 0.706                | 0.932    | 0.666           | 0.66l4<br>0.6l49 | 0.675         |
| 1-1<br>1-1  | 170          | 151            | 174.        | 1118<br>0001<br>0001<br>0001<br>0001<br>0001<br>0001<br>0001                                | 517          | 553        | 553                  | 264      | 625             | 610              | 500<br>704    |
| #un         | 1            | 8 - 8<br>8 - 8 | 1 1         |                                                                                             | 8 f<br>8 8   |            | F - B<br>- B - B     |          | <br>            |                  | 1 1           |
| A* R        | 10.3         | 81<br>86       | <b>2</b>    | 10                                                                                          |              |            | 8<br>Pa-             | te<br>te | 6.3             | 5.8              | an<br>tr      |
| ui/m        | 6.80         | 6.83           | 6.60        | 6.94                                                                                        | 4.93         | 5.10       | 5.18                 | 5.12     | 3.95            | fin<br>gan       | t- 03         |
| St/Sp       | 0.063        | 0.067          | 0.068       | 0.067                                                                                       | 0.113        | 0.110      | 0.109                | 0.110    | 0.133           | den<br>Ben       | 0.131         |
| Svold       | 46.90        | 46.80          | 4.6.90      | 1+6.40                                                                                      | 72.05        | 71.33      | 71.05                | 71.25    | 76.30           | 76.35            | 75-90         |
| .ni.q(I     | 0.2166       | an<br>ar       | 675.<br>894 | 6.<br>6.                                                                                    | 0.5XXXX      | den<br>Er- | an<br>Br             | -        | 11              | Į.               | 4<br>90<br>90 |
| Dt.In.      | 4.026        | 81             | а<br>С      | 8<br>8-                                                                                     | 62           | 24         | #<br>19-1<br>#*<br>1 | 6.8      | 6<br>8-         | Que<br>Que       | er<br>s       |
| e a #       | 1            | I<br>I         | I<br>I      | 1                                                                                           | 17<br>1      | 1<br>I     | 8                    | 8        | 8               | 1                | 8<br>3        |
| H Sul       | aterids e    | ٤              | <b>11</b>   | 84<br>84                                                                                    | 38¢ dlo      | ан<br>Б    | 2.2                  |          | ta<br>P         | 84<br>5          | a             |
| Peck.       | <b>Callt</b> | 81<br>81       | ÷.          | igen<br>gen                                                                                 | Ferl         | dan<br>Gr  | 0<br>80-             | tes<br>b | 11              | E.               | 974<br>18-    |
| Ref.        | (11)         | Pan<br>Spec    | ges<br>Ber  | **                                                                                          | tere<br>dare | 0-         | di-<br>bin           | da<br>B  | tu<br>t         | 80-<br>81-       | gan<br>gan    |

|          | <u> </u> |
|----------|----------|
|          | A        |
|          |          |
|          |          |
|          | ~        |
|          |          |
|          | 200      |
|          |          |
|          | and the  |
|          | F 3      |
|          | ·        |
|          |          |
|          | A        |
|          | ~ 1      |
|          | <u> </u> |
|          | -        |
|          |          |
| -        |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          | ~~       |
|          |          |
| - 2      | 6.5      |
| . (      | 1)       |
| 0        | 1)       |
| -        | 1)       |
|          |          |
|          |          |
|          |          |
| 1        |          |
| -        |          |
| 1        |          |
| 1        |          |
| •        |          |
| •        |          |
| r        |          |
| r        | -        |
| r        | -        |
| ¢        | -        |
| (        | -<br>e   |
| (<br>, , | T OT     |
| c<br>r   | -        |
| c<br>r   | T oT     |
| c<br>r   | T oTc    |
| c<br>r   | T oTa    |
| C #      | DTe Ta   |
| C #      | T of a   |
| c        | T of at  |
| c        | T argu   |
| c        | ante L   |
| C #      | T argu   |
| 0 F      | ante L   |
| 0 e - 1  | Lable L  |

| 19 ×             | 0.661                | NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD<br>NCOUTOWOOD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 235<br>735           | のためのなくののですので、そのので、そのので、そののでもしんで、そののでもしんかしをできてき、できてて、このででもしんかし、こので、こので、こので、このので、このので、このの、このの、このの、このの、こ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tttotonnongenn<br>Sonn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Run <sup>#</sup> | 8 2 8<br>8 8 8       | 40000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 563892234892 <del>3</del> 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *a4              | 0000<br>1922<br>1922 | NHOHOTANDERNARNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| from<br>port     | 401<br>2001          | 0 2012 1 200 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NONTOWAC WAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| un               | 8 8 8<br>8 8 8       | 80000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15. 000 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 00 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 2 |
| A. R             | 6.0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| m/m              | 2. • 8               | . 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | بري.<br>تو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5t/7p            | 6.132                | 0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0•0 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| void             | 76.15                | су<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| n.In.            | XXX S.C              | • 50(3<br>• 50(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| t, in. I         | .026                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ed. I            | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ĩ.               | 610<br>(             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acd1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Juč              | ស<br>ស<br>ល          | ອ<br>2<br>ເກ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 다.<br>오                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pack             | lact                 | ය<br>ස<br>[]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Smoo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ref.             | (11)                 | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 54           | 728<br>728<br>728<br>728<br>728         | 50000000000000000000000000000000000000 | 5000000<br>10000000<br>10000000                                            |
|--------------|-----------------------------------------|----------------------------------------|----------------------------------------------------------------------------|
|              | 000000                                  | 44440000000000000000000000000000000000 | 0000000                                                                    |
| И            | 2025500<br>2025500<br>2025500           | MOT NUT O ON O ON O ON CHERO           | HANN MAM                                                                   |
| Run.         | 0.0-1000                                | 22200000000000000000000000000000000000 | 4444<br>800<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 |
| *<br>27      | 000000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000                                     |
| h e<br>final | 00100100000000000000000000000000000000  | 20010100000000000000000000000000000000 | 20000000000000000000000000000000000000                                     |
| "un          | 24000000                                | 22222222222222222222222222222222222222 | 6111<br>6111<br>6111<br>6111<br>6111<br>6111<br>6111<br>611                |
| A B          | 6• a                                    | 8.7                                    | -11-0-                                                                     |
| m/m          |                                         | 2.03                                   | 6•33<br>2                                                                  |
| St/Sp        | 0•041                                   | t/10.0                                 | 0.113                                                                      |
| Svold        | 93•1                                    | 5°<br>5°                               | .12.5                                                                      |
| Cp.in.       | 0.1316                                  | 0•130                                  | 1.00                                                                       |
| t. în.       | 2.90.3                                  | z                                      | ×                                                                          |
| 1 . p        |                                         | 1                                      |                                                                            |
| ). H         | lddle                                   | 10<br>10                               | ale.                                                                       |
| Du           | S<br>S<br>S                             | ଅ<br>ଅ<br>ଅ                            | sado                                                                       |
| Packi        | Smoot                                   | Rou<br>E                               | Lael                                                                       |
| lef.         | (3)                                     | =                                      | E                                                                          |
|              |                                         |                                        |                                                                            |

| *          | 村ろとたっとかって、うててとくないのうででした。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~ ) ~ 1 ~ 2 0 0                        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| h          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ONDEDIMAR                              |
| 1          | the solution when a solution of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CODHHNM TO                             |
|            | Construction of the here of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 7'         | 40202404400400004000004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MHONHMALTA                             |
| tu n       | PAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOODOGOGE                              |
| المليم الم | $1200024 \pm 002002 = 200000 \pm \pm 000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| 14         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50000000000000000000000000000000000000 |
|            | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OOHOHOHH-                              |
|            | na moomen a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ina to a a min                         |
| 23         | HATE SECONDERIONEN ANDER NONOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S D 2 C H N C H                        |
|            | сторительными водать и в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tin tur tur tur tur tur tur            |
| 11         | to an an and the second concerned to a concerned to concerned to a concerned to concerned to a concerned to a c | 2000042001                             |
| Ru         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|            | ří l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ЪС                                     |
| U          | <u>m</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sim$                                 |
| 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|            | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| 2.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C)                                     |
| 5          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim$                                 |
| V0.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| E.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                      |
| -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jt X                                   |
| e (        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                      |
|            | r-i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r-1                                    |
| • 1 •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| E          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| · · · ·    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                      |
| C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ц<br>ц                                 |
|            | b d d d d d d d d d d d d d d d d d d d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hand)                                  |
| in .       | 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| C.Y.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S<br>N                                 |
| 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>2                                 |
|            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 1.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |

| 'a     | ананананананананананоосоооооооооооооооо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Run /  | であるのですできょうないでいたちがいいないであるのです。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| II     | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ",uny  | PRP6004400000044004000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A V    | л.<br>Г.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| w/m    | (°.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 51/50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| void   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| in. 2  | Lxxx OC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| n. Dp, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dt.1   | ex execution of the second s |
| Bod.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ing    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pack.  | Rasc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ref.   | (E) ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 345 C.C              | ilable.<br>t. was fc<br>inits pac             | າ<br>ມີ<br>ມີ<br>ມີ<br>ມີ<br>ມີ<br>ມີ<br>ມີ<br>ມີ<br>ມີ<br>ມີ<br>ມີ<br>ມີ<br>ມີ | - |  |
|----------------------|-----------------------------------------------|---------------------------------------------------------------------------------|---|--|
| 4 00                 | not ava<br>r cu. f<br>ber of r                | c 12.<br>was 31<br>to 378                                                       |   |  |
| 0.00<br>0.00<br>0.00 | lue was<br>ft. pc<br>s or num                 | in Tabl<br>amounts<br>amounts                                                   |   |  |
| 5 31                 | true va<br>288 sq<br>nna vola                 | dicated<br>ea of ti<br>, which                                                  |   |  |
|                      | s of the<br>s bod of<br>insions s<br>and pack | ied as ir<br>urface ar<br>ormation<br>imations                                  |   |  |
| 0.121                | evidence<br>a of thi<br>ing dime              | determin<br>t the su<br>rers inf<br>hose ost                                    |   |  |
| L.01 XX              | because<br>face are<br>tod pack               | s.<br>ait was<br>ates tha<br>inufactu<br>id for t                               |   |  |
| 1,00 <sup>xc</sup>   | ssumed<br>for sur<br>e report<br>estimate     | ulation<br>this ur<br>indice<br>ing. Me<br>was use                              |   |  |
| - 6 <sup>X</sup>     | s were a<br>c value<br>with th<br>238 was     | ese calc<br>area of<br>formatio<br>of pack<br>packing,                          |   |  |
| e ring               | ie valuo<br>reporte<br>isagree<br>lue of      | for th<br>surface<br>rted in<br>cu. ft.<br>ft. of                               |   |  |
| Raschi               | Thes<br>The<br>to d<br>A va                   | used<br>The<br>Per<br>cu.                                                       |   |  |
| (6)                  | XX                                            | XXX                                                                             |   |  |

Þ

.

| .Ref.      | Packing              | Lescription                                                                                     |
|------------|----------------------|-------------------------------------------------------------------------------------------------|
| (1)        | Glass ring           | diameter = 0.209 inch; length =<br>0.201 inch; thickness = 0.032 inch.                          |
| 44         | н п                  | diameter = 0.233 inch; length =<br>0.219 inch; thickness = 0.032 inch.                          |
| 8 <u>9</u> |                      | diameter = 0.394 inch; length =<br>0.375 inch; thickness = 0.032 inch.                          |
| e#         | н Ц                  | diameter = 0.484 inch; length =<br>0.449 inch; thickness = 0.030 inch.                          |
| হণ         | Jlay raschig ring    | diameter = 1.00 inch; length =<br>1.03 inch; thickness = 0.14 inch.                             |
| (3)        | Smooth nickel saddle | diameter = 0.1316 inch; surface = $6.35 \times 10^{-4}$ sq ft; volume = 7.84 x $10^{-8}$ cu ft. |
| н          | Rough nickel packing | diameter = 0.0108 foot; surface = $0.35 \times 10^{-4}$ sq ft; volume = 7.84 x $10^{-6}$ cu ft. |
| 28         | Jlay berl saddle     | diameter = 1.00 inch; surface = $0.0343$ sq ft; volume = $1.35 \times 10^{-4}$ cu ft.           |
| **         | Jlay Raschig ring    | diameter = 1.00 inch; length =<br>1.00 inch; volume = 1.93 x 10-4<br>cu ft.                     |
| (5)        | Haxagonal prism      | diameter = $0.47$ cm; length = $0.48$ cm.                                                       |
| (11)       | Jelite Cylinder      | diameter = 0.267 inch; length = 0.344, inch.                                                    |
| ŦŦ         | Raschig ring         | diameter = 0.305 inch; length =<br>0.397 inch; thickness = 0.0036 in.                           |
|            | Clay Ferl saddle     | diameter = 0.5 inch; surface =<br>376 sq ft per cu ft of packing.                               |

Taile 14. Supplementary descriptions of packing materials.

| Ref.    | Packing        | Run.                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Re                                                                                                                                                          | Run <sup>4</sup>                                                 | F                                                                                                   | Re                                                                                                                                                      | Punt                                               | 7,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Re                                                                                                                                       |
|---------|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Aut.    | -ire<br>ring   | 127252<br>43257052<br>1324103<br>11103  | $2640 \\ 01 \\ 1.94 \\ 1.92 \\ 0.02 \\ 307 \\ 2.34 \\ 1.40 \\ 1.00 \\ 0.90 \\ 1.23 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.89 \\ 1.07 \\ 0.08 \\ 1.07 \\ 0.08 \\ 1.07 \\ 0.08 \\ 1.07 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.0$ | 0.0 039<br>0.00122<br>2.24<br>3.00<br>5.93<br>0.00250<br>2.30<br>12.6<br>12.6<br>0.00147<br>4.19<br>9.24<br>12.6                                            | 5210<br>240<br>2877<br>2877<br>207<br>741<br>657<br>1333<br>1107 | (65<br>1560<br>1.53<br>1.47<br>0.20<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25 | 0.00147<br>0.00064<br>2.74<br>4.10<br>6.79<br>0.00143<br>3.69<br>7.29<br>13.5<br>0.33<br>27.8<br>0.00074<br>5.61<br>5.70<br>15                          | 0<br>330<br>347<br>259<br>732<br>591<br>112<br>109 | $3070 \\ 2220 \\ 1.47 \\ 1.73 \\ 0.02 \\ 1230 \\ 1.75 \\ 1.24 \\ 1.32 \\ 0.95 \\ 319 \\ 1.20 \\ 1.09 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0.91 \\ 0$ | C.00034<br>0.00044<br>3.08<br>4.41<br>7.61<br>0.00086<br>3.81<br>10.1<br>5.20<br>16.8<br>0.00228<br>3.13<br>7.50<br>6.15                 |
| ۰1<br>۱ | Splaeine       | 219,741,6,728,165,309,4<br>128165,309,4 | $\begin{array}{c} 396\\ 1100\\ 1230\\ 724\\ 1.46\\ 1.71\\ 1.61\\ 0.65\\ 0.51\\ 1.57\\ 2.10\\ 1.55\\ 1.75\\ 1.50\\ 0.66\\ 0.70\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00269<br>0.00094<br>0.00074<br>0.00135<br>5.28<br>12.5<br>7.65<br>16.6<br>30.6<br>0.00610<br>4.16<br>21.9<br>5.96<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9 | G<br>736<br>830<br>174<br>109<br>127<br>102<br>161<br>130        | 466<br>22659764<br>1.55464<br>1.55468<br>1.657764<br>1.608<br>1.677785<br>1.608                     | $\begin{array}{c} 0.00222\\ 0.00330\\ 0.00830\\ 4.00\\ 6.33\\ 15.5\\ 5.10\\ 20.3\\ 31.3\\ 0.00321\\ 5.55\\ 17.3\\ 4.52\\ 25.0\\ 3.90\\ 6.79\end{array}$ | HS<br>SS276<br>131<br>13096<br>135<br>13096<br>135 | (65815543994992245555001<br>1.943994992245555001<br>2.1.555001<br>2.1.555001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00175<br>0.00202<br>0.00290<br>4.20<br>0.75<br>17.2<br>11.5<br>24.5<br>33.8<br>0.00189<br>8.36<br>24.1<br>12.7<br>37.2<br>6.36<br>10.8 |
| 11      | Ferl<br>saddle | D507444100755                           | 296<br>216<br>2.13<br>2.14<br>2.52<br>1.32<br>1.25<br>1.25<br>1.25<br>0.84<br>0.84<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00403<br>0.00565<br>7.45<br>16.1<br>25.8<br>18.4<br>42.4<br>1.00479<br>6.35<br>12.7<br>15.3                                                               | 10000 mm 01 04 4                                                 | 3485<br>2.13<br>2.417<br>2.17<br>1.29<br>1.21<br>2.52<br>C.91<br>0.03<br>C.00                       | 0.67216<br>0.00240<br>9.50<br>19.9<br>30.5<br>23.0<br>51.5<br>0.60351<br>6.90<br>12.1<br>19.4                                                           | 14185322728633                                     | 122<br>2.40<br>2.37<br>1.31<br>1.27<br>1.22<br>0.86<br>0.65<br>0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00835<br>5.70<br>12.7<br>23.7<br>13.8<br>32.2<br>56.0<br>0.00292<br>10.6<br>14.2<br>23.5                                               |

Table 15. Calculated values for friction factors and Reynold's numbers.

| Ref. | Packing                        | Runf                                                   | F                                                                                                                        | Ro                                                                                                                                                  | Run"                                                                      | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Re                                                                                                                                               | Run-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                 | Re                                                                                                                                       |
|------|--------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Aut. | Be <b>rl</b><br>saddl <b>e</b> | 52<br>150<br>147<br>144                                | 0.71<br>0.66<br>0.66<br>0.59                                                                                             | 26.6<br>13.5<br>15.0<br>36.6                                                                                                                        | 152<br>149<br>146<br>143                                                  | 0.73<br>0.67<br>0.60<br>0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.60<br>17.4<br>22.2<br>44.5                                                                                                                     | 151<br>148<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.67<br>0.64<br>0.60                                                                                                              | <b>10.1</b><br>21.8<br>30.0                                                                                                              |
| T    | Raschig<br>ring                | 1254966<br>154966<br>15507666<br>19862<br>1659<br>1659 | 260<br>1.84<br>1.57<br>1.45<br>1.28<br>1.51<br>1.10<br>265<br>1.46<br>267<br>1.48<br>404<br>1.39<br>1.22<br>1.12<br>1.10 | 0.004.00<br>7.60<br>11.3<br>25.8<br>13.0<br>26.2<br>24.8<br>53.3<br>0.004.61<br>29.9<br>0.004.53<br>23.8<br>0.00250<br>5.77<br>9.69<br>19.0<br>27.8 | 126<br>128<br>155<br>155<br>138<br>175<br>199<br>197<br>108<br>177<br>168 | 409<br>1.72<br>1.61<br>1.45<br>1.45<br>1.45<br>1.45<br>1.45<br>1.45<br>1.43<br>2744<br>1.484<br>1.344<br>1.21<br>1.61<br>1.45<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.5 | 0.00339<br>10.1<br>14.3<br>6.93<br>16.2<br>14.1<br>33.8<br>0.00402<br>24.0<br>30.3<br>0.00260<br>30.3<br>0.00260<br>5.93<br>13.4<br>19.5<br>34.5 | $127 \\ 127 \\ 127 \\ 154 \\ 154 \\ 185 \\ 176 \\ 1932 \\ 1932 \\ 1932 \\ 1932 \\ 1932 \\ 166 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\$ | 567<br>1.86<br>1.54<br>1.10<br>1.47<br>1.10<br>1.21<br>246<br>1.47<br>290<br>1.44<br>1.50<br>2340<br>1.26<br>1.17<br>1.10<br>1.90 | 0.00244<br>14.5<br>21.6<br>9.77<br>20.1<br>42.0<br>0.00503<br>25.7<br>0.00410<br>23.4<br>30.4<br>0.00042<br>9.04<br>13.9<br>27.9<br>35.2 |
| 28   | Mixture                        | 187<br>182<br>179                                      | 783<br>1.35<br>1.21                                                                                                      | 0.00149<br>10.5<br>29.1                                                                                                                             | 188<br>181<br>178                                                         | 745<br>1.32<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00149<br>13.1<br>43.5                                                                                                                          | 163<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.46<br>1.28                                                                                                                      | 5.86<br>18.5                                                                                                                             |
| (1)  | Raschig<br>ring                |                                                        | 2.50<br>1.78<br>2.12<br>1.64<br>1.45<br>1.44<br>1.24<br>1.24<br>1.24<br>1.75<br>1.54<br>0.94                             | 1.96<br>6.13<br>2.30<br>5.74<br>14.0<br>4.20<br>9.63<br>4.08<br>10.2<br>6.82<br>29.5                                                                |                                                                           | <b>2.10</b><br><b>1.68</b><br><b>1.84</b><br><b>1.56</b><br><b>2.05</b><br><b>1.36</b><br><b>1.19</b><br><b>1.99</b><br><b>1.71</b><br><b>1.12</b><br><b>0.92</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.22<br>6.40<br>3.48<br>5.01<br>2.14<br>5.45<br>12.5<br>12.5<br>12.1<br>39.3                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.90<br>1.56<br>1.76<br>1.50<br>1.64<br>1.20<br>1.66<br>1.61<br>0.90<br>0.72                                                      | 4.52<br>13.2<br>4.63<br>10.4<br>2.94<br>7.55<br>15.9<br>7.70<br>16.8<br>16.0<br>47.4                                                     |
| (4)  | Sphere                         |                                                        | 31.5<br>7.55<br>4.4<br>2.7<br>2.1<br>1.59<br>1.17<br>5.05                                                                | 0.0245<br>0.125<br>0.23<br>0.48<br>0.69<br>1.21<br>2.66<br>0.225                                                                                    |                                                                           | 20.5<br>5.95<br>3.85.<br>2.5<br>2.0<br>1.45<br>19.5<br>4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0415<br>0.163<br>0.275<br>0.535<br>0.775<br>3.3<br>0.046<br>0.285                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.35<br>5.15<br>2.35<br>1.95<br>1.33<br>13.6<br>3.05                                                                              | 0.103<br>0.20<br>0.355<br>0.595<br>0.855<br>2.3<br>0.073<br>0.39                                                                         |

| Ref. | Packin           | Run                                                     | 1                                                                                                                                                                                                                                                                                                                        | Re                                                                                                                                                                                            | Run                                               | F                                                                                                                                   | Re                                                                                                                                                                                           | Run                                               | F                                                                                                                                                                                                                                                                                                                                      | Re                                                                                                                                                                                 |
|------|------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (4)  | Sphere           |                                                         | 2.3<br>1.12<br>4.74<br>22.5<br>2.7<br>1.75<br>1.33<br>2.7<br>1.33<br>2.7<br>1.33<br>1.35<br>1.33<br>1.35<br>1.5<br>1.5<br>1.5<br>1.5<br>2.7<br>1.5<br>1.5<br>1.5<br>2.5<br>1.5<br>2.5<br>2.5<br>1.5<br>2.5<br>2.5<br>1.5<br>2.5<br>2.5<br>2.5<br>1.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2 | 0.675<br>2.91<br>0.2(5<br>1.06<br>0.0(0<br>0.375<br>0.6(5)<br>3.0<br>4.75<br>0.6(5)<br>1.6(6)<br>1.6(6)<br>1.6(6)<br>1.6(6)<br>1.6(6)<br>1.6(6)<br>1.0(5)<br>1.0(5)<br>0.133<br>0.6(9)<br>3.3 |                                                   | 1.46<br>11.0<br>3.5<br>1.34<br>10.1<br>2.0<br>11.7<br>2.0<br>1.51<br>1.33<br>1.29<br>2.355<br>1.80<br>4.290<br>1.30<br>4.37<br>0.91 | $ \begin{array}{c} 1.70\\ 0.087\\ 0.31\\ 1.94\\ 0.102\\ 0.81\\ 0.095\\ 0.86\\ .3.4\\ 5.3\\ 0.86\\ 0.197\\ 0.69\\ 0.131\\ 1.16\\ 2.15\\ 0.32\\ 1.03\\ 3.95\\ 0.235\\ 1.46\\ 8.8 \end{array} $ |                                                   | 1.33<br>7.8<br>3.0<br>1.0<br>2.0<br>1.4<br>2.0<br>1.4<br>2.0<br>1.4<br>2.0<br>1.5<br>10<br>2.0<br>1.2<br>5<br>1.2<br>5<br>1.2<br>5<br>1.2<br>5<br>1.2<br>5<br>1.2<br>5<br>1.2<br>5<br>1.2<br>5<br>1.2<br>5<br>5<br>1.2<br>5<br>5<br>1.2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 2.10<br>0.120<br>0.405<br>4.2<br>0.168<br>0.92<br>0.190<br>2.4<br>3.65<br>5.8<br>0.028<br>0.35<br>0.765<br>0.178<br>1.43<br>3.05<br>0.265<br>2.35<br>0.625<br>2.35<br>0.64<br>2.35 |
| (3)  | ¥7 .             | 148<br>163<br>180<br>27<br>101<br>116<br>56<br>81<br>92 | 3390<br>461<br>35.2<br>5.27<br>2.72<br>2.07<br>1.03<br>0.96                                                                                                                                                                                                                                                              | 0.00029<br>0.00220<br>0.0108<br>0.0224<br>0.191<br>0.555<br>1.13<br>8.05<br>28.8                                                                                                              | 153<br>164<br>184<br>33<br>106<br>121<br>71<br>86 | 1130<br>400<br>65.2<br>12.4<br>4.27<br>2.36<br>1.65<br>0.90                                                                         | 0.00077<br>0.00255<br>0.0140<br>0.0735<br>0.271<br>0.714<br>2.25<br>13.3                                                                                                                     | 158<br>175<br>189<br>38<br>111<br>126<br>76<br>91 | 708<br>128<br>52.5<br>8.00<br>3.25<br>2.11<br>1.23<br>0.92                                                                                                                                                                                                                                                                             | 0.00141<br>0.00724<br>0.0184<br>0.122<br>0.401<br>0.915<br>4.45<br>26.6                                                                                                            |
| 1    | Smooth<br>saddle | 136<br>151<br>165<br>201<br>212<br>86<br>45<br>9        | 10100<br>540<br>52.7<br>10.3<br>3.70<br>2.50<br>1.41<br>0.92<br>0.68                                                                                                                                                                                                                                                     | 0.00014<br>0.0202<br>0.0202<br>0.120<br>0.417<br>1.00<br>4.43<br>28.5<br>97.0                                                                                                                 | 141<br>156<br>176<br>191<br>205<br>76<br>91<br>51 | 1560<br>265<br>28.6<br>7.80<br>3.00<br>1.95<br>1.14<br>0.75                                                                         | c.00063<br>0.00465<br>0.0397<br>0.169<br>0.664<br>1.28<br>7.60<br>47.4                                                                                                                       | 146<br>161<br>181<br>196<br>73<br>81<br>96<br>56  | 965<br>98.9<br>17.4<br>5.25<br>2.64<br>1.56<br>1.01<br>0.68                                                                                                                                                                                                                                                                            | 0.00126<br>0.0116<br>0.0685<br>0.264<br>0.839<br>2.53<br>12.8<br>82.0                                                                                                              |
| n    | Rough<br>saddle  | 68<br>103<br>298<br>277<br>249<br>202                   | 4690<br>1030<br>124<br>10.9<br>2.51<br>1.26                                                                                                                                                                                                                                                                              | 0.00016<br>0.00094<br>0.00692<br>0.0779<br>0.431<br>3.01                                                                                                                                      | 93<br>108<br>303<br>282<br>197<br>208             | 2300<br>520<br>50.6<br>6.10<br>1.88<br>0.9h                                                                                         | 0.00034<br>0.00166<br>0.0171<br>0.151<br>0.869<br>8.21                                                                                                                                       | 98<br>113<br>308<br>288<br>199<br>213             | 1380<br>302<br>24.4<br>3.57<br>1.54                                                                                                                                                                                                                                                                                                    | 0.00062<br>0.00276<br>0.0362<br>0.296<br>1.56                                                                                                                                      |

# Ta'le 15 (cont.)

| Ref. | Packin          | Runi                                                                                                                                                                                                                 | E'                                                                                           | Re                                                                                                     | Run#                                                  | F                                                                                                    | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Run;                                                    | TI                                                                                           | Re                                                                                                                                  |
|------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| (3)  | Pouch<br>saddle | 21                                                                                                                                                                                                                   | 0.75                                                                                         | 21.4                                                                                                   | 231                                                   | 0.66                                                                                                 | 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 236                                                     | 0.60                                                                                         | 76.7                                                                                                                                |
|      | Lerl<br>sadcle  | 21<br>24<br>27<br>5<br>70<br>124<br>113<br>131<br>132                                                                                                                                                                | 755<br>216<br>104<br>9.50<br>2.42<br>1.14<br>0.16<br>0.13<br>0.73                            | 0.00109<br>0.00328<br>0.00072<br>0.0218<br>0.0747<br>0.472<br>2.32<br>5.08<br>12.0<br>37.0             | 225441<br>225441<br>209<br>147<br>1996<br>137         | 312<br>174<br>72.5<br>25.0<br>6.85<br>1.90<br>1.07<br>0.83<br>0.76<br>0.72                           | 0.00212<br>0.00403<br>0.0104<br>0.0310<br>0.109<br>0.706<br>3.02<br>7.05<br>16.0<br>52.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19<br>7<br>350<br>76<br>117<br>123<br>127<br>123<br>127 | 238<br>149<br>47.6<br>1.85<br>1.41<br>0.72<br>0.83<br>0.74<br>0.67                           | 0.00286<br>0.00520<br>0.0161<br>0.0487<br>0.182<br>1.34<br>4.00<br>9.80<br>26.0<br>76.4                                             |
| 11   | Raschig<br>ring | 167<br>105<br>105<br>114<br>105<br>114<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                                                                         | 514<br>54-4<br>12-1<br>6-03<br>4-15<br>2-41<br>1-60<br>1-491<br>1-60<br>1-20<br>1-20<br>1-03 | 0.00147<br>0.0180<br>0.0690<br>0.186<br>0.286<br>0.655<br>1.22<br>1.91<br>2.65<br>5.87<br>13.1<br>31.5 | 157<br>104<br>140<br>1227<br>117<br>44272<br>17<br>17 | 224<br>23.6<br>9.25<br>5.66<br>3.65<br>2.10<br>1.61<br>1.56<br>1.45<br>1.12<br>1.12                  | 0.00429<br>0.0356<br>0.0935<br>0.182<br>0.344<br>0.845<br>1.46<br>2.21<br>2.86<br>7.70<br>17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 159<br>165<br>141<br>200<br>928<br>633<br>73<br>12      | 125<br>18.2<br>7.24<br>4.57<br>3.43<br>1.97<br>1.61<br>1.26<br>1.33<br>1.12<br>0.96          | 0.00746<br>0.0491<br>0.132<br>0.232<br>0.392<br>1.01<br>1.70<br>2.40<br>4.50<br>9.47<br>21.6                                        |
| (11) | Jylindur        | 14-10                                                                                                                                                                                                                | 1.09<br>1.05<br>1.09<br>1.10<br>0.09<br>0.76<br>0.90<br>0.93                                 | 16.0<br>19.7<br>14.6<br>13.0<br>27.0<br>19.8<br>24.3<br>21.6                                           | 215 L 1<br>147<br>20                                  | 1.08<br>1.14<br>1.11<br>1.09<br>0.87<br>0.90<br>0.94                                                 | 17.2<br>12.7<br>12.3<br>13.0<br>31.9<br>21.0<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92129<br>121<br>121                                     | 1.00<br>1.10<br>1.09<br>0.90<br>0.27<br>0.90<br><b>0.</b> 90<br><b>0.9</b> 4                 | 19.1<br>13.7<br>12.4<br>23.6<br>31.2<br>24.0<br>20.4                                                                                |
| ΤŸ   | Raschig<br>ring | 1<br>470<br>10<br>11<br>10<br>22<br>20<br>11<br>22<br>20<br>11<br>20<br>20<br>11<br>20<br>20<br>11<br>20<br>20<br>11<br>20<br>20<br>11<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 1.12<br>1.00<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                 | 31.0<br>32.0<br>32.0<br>22.0<br>13.9<br>12.3<br>21.0<br>45.9<br>41.6<br>25.5                           | 2.5% 1 +70 00 00 00 00 00 00 00 00 00 00 00 00 0      | 1.09<br>1.09<br>1.00<br>1.12<br>1.15<br>1.24<br>1.16<br>1.14<br>0.84<br>0.84<br>0.07<br>0.93<br>0.69 | 35.2<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.7<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.6<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>237.7<br>20.7<br>20.7<br>20.7<br>20.7<br>20.7<br>20.7<br>20.7<br>2 | 3692581<br>18122<br>22703369                            | 1.09<br>1.09<br>1.14<br>1.12<br>1.14<br>1.22<br>1.17<br>0.86<br>0.94<br>0.26<br>0.92<br>0.82 | 38.5<br>29.6<br>23.8<br>23.8<br>20.6<br>10.6<br>20.1<br>36.6<br>20.1<br>34.0<br>26.6<br>34.0<br>26.6<br>34.0<br>26.7<br>34.5<br>7.3 |

## Table 1, (concl.)

| Ref. | Packing        | Run!                                           | P                                                                                    | Re                                                                                                                   | Run -                                       | 17                                                                           | Re                                                                                                                                                                                                                            | Ru:                                                                                       | T                                                                            | Ro                                                                   |
|------|----------------|------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
| (11) | Derl<br>sadčle | 1<br>47+0<br>13<br>10<br>13<br>10<br>225<br>28 | 1.07<br>1.07<br>1.09<br>1.06<br>1.10<br>1.02<br>1.04<br>1.03<br>1.04<br>1.02         | ·02-17<br>·02-17<br>·035<br>·7-8<br>·076<br>·5<br>·02-17<br>·0<br>·0<br>·0<br>·0<br>·0<br>·0<br>·0<br>·0<br>·0<br>·0 | 2<br>58<br>11<br>14<br>17<br>20<br>23<br>29 | 1.00<br>1.11<br>1.00<br>1.12<br>1.09<br>1.02<br>1.00<br>1.02<br>1.03<br>1.01 | 543245<br>3054<br>40044<br>3050<br>0<br>544<br>0<br>0<br>544<br>0<br>0<br>544<br>0<br>0<br>544<br>0<br>0<br>544<br>0<br>0<br>544<br>0<br>0<br>544<br>0<br>0<br>544<br>0<br>0<br>544<br>0<br>0<br>544<br>0<br>0<br>5<br>0<br>5 | 36 92<br>15<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 | 1.00<br>1.00<br>1.00<br>1.11<br>1.04<br>1.02<br>1.01<br>1.02<br>1.01         | 7.0903093457<br>7.05.3093457<br>4.007114                             |
| ţŶ   | Spiere .       | 1470<br>136<br>192<br>28                       | 1.04<br>1.03<br>1.02<br>1.17<br>1.12<br>1.12<br>1.12<br>1.05<br>1.07<br>1.04<br>1.00 | 16.6<br>14.1<br>12.2<br>7.69<br>10.3<br>22.6<br>22.1<br>20.6<br>13.9<br>16.3                                         | 25011470236222                              | 0.97<br>1.02<br>1.16<br>1.16<br>1.10<br>1.06<br>1.05<br>1.02<br>0.99         | 19.4<br>15.6<br>13.0<br>6.77<br>11.2<br>27.1<br>25.7<br>25.2<br>15.2<br>15.2                                                                                                                                                  | 369<br>125<br>15<br>11<br>21<br>22<br>30                                                  | 0.96<br>1.01<br>1.04<br>1.13<br>1.08<br>1.09<br>1.08<br>1.07<br>1.01<br>0.99 | 22.1<br>15.5<br>15.3<br>9.75<br>13.0<br>20.1<br>10.6<br>16.5<br>21.5 |

The information in this table was calculated by using the predicted values of A and H. Thus the accuracy for predicting pressure drop can be ascertained by comparing F to (1 + 1/Re).

.

-- Information lacking run numbers is treated in the same order as it appears in Fables 12 or 13.

| Run | Spacing, orif.dians. | △H, inches | Flow, gm/sec | Do.    |
|-----|----------------------|------------|--------------|--------|
| 1   | 4. 74                | 20.50      | 36.9         | 0.417  |
| 2   | 19                   | 20.12      | 36.1         | 0.425  |
| 3   | 75                   | 26.94      | 42.5         | 0.412  |
| L.  | 11                   | 26.62      | 42.1         | 0.414  |
| 5   | 0.875                | 26.75      | 72.1         | 0.1422 |
| E   | 11                   | 26.25      | 69.8         | 0.1467 |
| 7   | 13                   | 21.44      | 63.9         | 0.1446 |
| 8   | n                    | 20.94      | 62.8         | 0.1468 |
|     |                      |            |              |        |

Talle 13. Pressure drop through nine regularly spaced one-fourth inch orifices in a three-fourth inch pipe.

The flow system is described in Plute XI. \*  $E_0^{*} = g \Delta H/9U^2$ , all terms in consistent units and U based on the area of the orifice.

.

#### EXPLANATION OF PLATE XI

## A. General layout, one eighth inch - one inch.

- a. Water level in the reservoir.
- b. Thirty gallon tank open to the atmosphere.
- c. 1" outlet from tank.
- d. Internal adaption to 1 1/4" pipe.
- e. 1 1/4" gate valve, wide open for all runs.
- f. 1 1/4" close nipple.
- g. 1 1/4" elbow.
- h. 1 1/4" close nipple.
- i. 1 1/4" x 1" reducing coupling.
- j. 1" pipe 28 1/2" in length exiting to the atmosphere.
- ΔH. Elevation representing energy lost in the orifices.

### B. The dispersed arrangement for the orifices, one-half inch = one inch.

- k. Upstream insert of 3/4" pipe, 13 11/16" long.
- 1. Downstream insert of 3/4" pipe, 10 1/2" long.
- m. Long spacer made of 3/1," pipe, 1 15/64" long.
- n. Orifice made of washer 1" o.d. x 1/4" i.d. x 3/16" thick.
- C. The close arrangement for the orifices, one-half inch = one inch.

o. Short spacer made of 3/4" pipe, 7/32" long.

PLATE XI



#### PRESSURE DROP FOR SINGLE PHASE FLOW THROUGH PACKED BEDS

.

by

ROBERT HAMBLETT CROWTHER

B. Ch. E., Fenn College, 1950

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE

Pressure drop in laminar or turbulent flow is correlated by considering the surface of the packing material, the porosity of the packed bed, the fluid variables, the size of the confining column, and the degree to which different packing materials obstruct flow. The effect of each of these factors is determined according to a simple mathematical or graphical solution.

Experimental results of seven investigators, including the author, are used to support the conclusions. These results represent seventy-five beds packed with eight different types of packing materials and a mixture of four of them. The correlation is of such a nature that it may be extended to novel packing units.

The observed accuracy of predicting pressure drop is 15 percent for laminar flow and 25 percent for turbulent flow. Accuracy is intermediate to these figures for transition flow.

Determination of surface area of porous media by permeability is discussed. Calculations for surface area are outlined. The maximum error to be encountered in determining surface area is estimated to lie within zero to 2 percent in cases where accurate measurements of porosity, pressure loss, and flow rate may be made, and where the approximate shape of the granules is known.

Auxiliary investigations were concerned with the appearance of the crosssection of a packed bed and the effect of spacing upon pressure loss through a series of orifices.



