PRESSUPE DROP FOR SINGLE PHASE

 FLOF: THIOUGH PACKED BEDS
by

ROBERT HAMBLETT CROWTHER
B. Ch. E., Fenn College, 1950

A THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KALSAS STATE COLLTGE
OF AGRICULTURE AND APPLIED SCIENCE
Cow-

TABLE OF CONTENTS

INTRODUCTION 1
Variables Which Have Been Considered 1
Some Important Concepts 3
LITERATURE REVIEW 9
MATERLAL AND METHODS 17
The Packing Materials 17
The Flow System 21
Fluids and Flow Measurement 22
Manometry 25
Thermometry 26
Sample Experimental Data 26
Schedule for Each Bed 29
THEORETICAL DEVELOPMENTS 29
General Considerations 29
Laminar Flow 36
Turbulent Flow 37
The Basic Equation 37
The Fidth of a Packing Unit 38
Application of the Hypotheses 38
Preliminary Analysis 38
Estimations for Perimeter 39
Laminer Flow 40
Turbulent Flow 42
w / m As a Unique Variable 45
Friction Factor and Reynold's Number 45
DISCUSSION 55
Factors of General Importance 55
Orifice Analogy 59
Orientation Near the Column Wall 60
How Well Must a Facked Bed be Defined 63
Determination of Packing Surface from Pressure Drop 67
One Way in Which Active Surface Might Be Estimated 70
Efficient Packing 73
CONCLUSIONS 76
TABLE OF NOMENCLATURE 78
ACKNOWLEDGMENT 82
BIBLIOGRAPHY 83
APPENDIX 85
Photographs of Sectioned Beds 87
Table of Author's Original Data 88
Individual Values for the Laminar Flow Constant 101
Individual Values for the Turbulent Flow Constant 107
Calculated Values for Friction Factors and Reynold's Numbers 120
Procedure for the Orifice Analogy 125

INYRODUCTION

Knowledge of the factors which contribute to pressure drop in packed beds finds many applications. Motion of ground waters, petroleum, and natural gas through rocks, soil, and sands require a knowledge of the same laws that govern flow through packed beds. Seepage under dams, the parmeability of concretes, and surface area or density of many industrial materials are determined by application of these laws. Direct application to chemical engineering is found in filtration, distillation, absorption, fluidized or packed bed catalytic operations, and drying of solid particles.

Several attempts have been made to describe packed beds adequately so that pressure drop could be predicted. These investigations have successfully answered problems of limited scope, but, none have resulted in sufficiently general conclusions to allow the extension of existing information to new packing materials of novel geometrical nature.

This investigation was initiated in order to isolate a series of packed bed variables that could be used as a criterion for predicting pressure drop in any randomly packed bed. Special attention was given to amplifying the effect of variables that had already been recognized as important, isolation of the relevant factors, and a general formulation of these results that would lead to accurate prediction for pressure loss through any packing material.

Variables Which Have Been Considered

The factors which affect pressure drop can be segregated into two groups. The fluid and cmpty column variables constitute one group. The packed bed variables constitute another.

The role of fluid variables has long been understood sufficiently so that they need not be analysed in the discussion. It is sufficient to select nomenclature for these.

Table 1. Nomenclature for fluid and empty column variables.

```
g = gravitational constant converting weight units to force units.
L
\DeltaP = pressure loss due to frictional resistance across IL . Units
                ol weight divided by area.
U0 = velocity based upon the empty column.
\mu = absolute viscosity of the fluid.
\rho = mass density of the fluid.
```

Table 2 includes basic items which have been given prior consideration. More complex variables are not included since each different investigator has grouped the items to suit his theory or needs. Expression of these complex terms has been avoided for the sake of simplicity of understanding the subject as a whole.

The measurements used to describe packed columns as treated in the literature are given in Table 2.

Table 2. Nomenclature for packing variables needed for discussion of literature.
$D_{p}=$ nominal diameter of the packing unit.
$D_{S}=$ dianeter of a sphere having the same volume as the packing unit.
$D_{t}=$ colunn diameter.
$e \quad=$ height of an element of surface roughness.
$r=$ ratio between distance traversed by a fluid and the length of the column.
s_{p}. surface of the pecking unit.
$S_{p}=$ total surface of the packing.
$s_{s}=$ surface of a sphere having the same volume as the packing unit.
$S_{t}=$ surface area of the column.
$\mathrm{V}=$ total free, or void, volume in the packed zone.
$v_{p}=$ volume of the packing unit.
$V_{p}=$ total volume occupied by the packing.
$V_{t}=V+V_{p}=$ volume of the empty column.

Some Important Concepts

One very basic concept of the problem of fluid flow has become classic to the representation of pressure drop in packed beds. Dimensional analysis based upon the assumption that pressure drop is a function of fluid density, fluid viscosity, fluid velocity, hydraulic radius or diameter, and surface roughness leads to results that parallel the development of the Fanning
eçuation which is concerned with flow through channels. The result is

$$
\begin{equation*}
\frac{d P}{d J}=\delta \frac{\rho U^{2}}{g^{D}} \phi\left(\frac{D \rho U}{\mu}, \frac{e}{D}\right) \tag{1}
\end{equation*}
$$

where
$\frac{d P}{d I}=$ gradient of frictional pressure loss along the actual path du of flow, $\delta=$ constant factor determined from the geometrical nature of the available flow path,
$U=$ mean fluid velocity along the actual path of flow,
$[=$ the equivalent hydraulic diameter or radius of the bed,
other terms are as in Tables 1 or 2.
Early developments did not recognize the influence of δ and $\frac{e}{D}$. The efforts of each individual to express these four variables through consideration of those in Table 2 and the geometrical nature of the packing unit has constituted all theoretical developments concerned with flow through packed beds.

According to the results of this investigation a satisfactory expression for hydraulic radius was perhaps first introduced by Blake (1) in 1922. Blake did not include this development in his paper, but his results were identical to those of Carman (5) who chose to solve for

$$
m=\frac{\text { volume of duct }}{\text { surface contacted by the fluid }}
$$

This was carried even closer to the concept of hydraulic radius as it was applied to flow through channels by

$$
\begin{aligned}
m & =\frac{\text { cross-section of duct }}{\text { perimeter of duct }}=\frac{\text { cross-section } \times \text { length of duct }}{\text { perimeter x length of duct }} \\
& =\frac{\text { volume of duct }}{\text { surface of duct }}
\end{aligned}
$$

Regaruless of the mode of development, it is certainly true that this quentity is a measure of the distance between surfaces that contact the fluid. It has been found convenient to write

$$
\begin{equation*}
\mathrm{m}=\mathrm{V} / \mathrm{S}_{\mathrm{p}} \tag{2}
\end{equation*}
$$

No serious difficulty would be encountered by including column surface with packing surface, a step which appears logical. However, a certain degree of mathematical simplicity is gained by use of equation (2).

Prediction of pressure drop through a wide variety of packing materials and packed bed variables was finally accomplished by introducing a concept which night be termed hydraulic width of the packing unit. In any event, the new term represents the width of the barrier that must be circumvented by the fluid just as "m" represents the width of the path available for flow. A definition was franed so that the following could be approximated mathematically.

$$
w=\frac{\text { surface contacting the fluid }}{\text { boundry of obstructing surfaces }}
$$

To this end the packing perimeter, c_{p}, was defined as: the locus of tangent points to the packing that would be generated by a line which moved throughout the packed bed remaining oriented parallel to the column wall. It was then possible to include this mathematical expression for w:

$$
\begin{equation*}
w=S_{p} / C_{p} \tag{3}
\end{equation*}
$$

By combining (2) and (3) a very useful measure of the distortion of flow path was obtained and retained in the form
$\frac{W}{m}$ index to degree of distortion of flow path and other effects
of the packing. It is not clear at present whether $w / m, w\left(1+S_{t} / S_{p}\right) / m$ or $w\left(1+0.6 S_{t} / S_{p}\right) / m$ will be proved most useful. The term, $\left(1+0.6 S_{t} / S_{p}\right)$, was discovered as a
very exccllent factor for accomodating the confining surface of a circular column; its development will be treated later since it is of secondary importance.

Plate I, Figs. 1, 2, and 3 represent the way in which $\frac{\mathrm{W}}{\mathrm{m}}$ indexes the degree to which the fluid stream is disturbed. Figure 1 illustrates a bed of spheres, and the errows suggest the path of flow through the bed. Figure 2 is constructed approximately to scale so that a bed of packing units, which is composed of rendomly suspended circular plates, has the same values of " m^{n} and NW^{W} " as does the bed of spheres, According to the results of the investigation, the pressure drop through both beds will be identical if $U_{0} \rho$, and μ are identical. Figure 3 represents a bed, similar to the one in Fig. 2, that has the same value for "m" but fewer units of greater "w" are contoined. It is predicted that, if U_{0}, ρ, and μ are the same as before, the pressure drop through this bed will be greater than that for either of the other beds. On the other hand, wire packing producing the same value for "m" should allow very low pressure drop.

The illustration was not tested experimentally, but the principle was repeatedly tested by reference to pressure drop through packed beds of widely differing properties which were approximately equivalent to those in the example.

EXPLANATION: OF PLATE I

Fig. I. How through spheres of diameter D_{1} producing Δ_{1} for m_{1}, ρ_{1}, μ_{1}, $\left(U_{0}\right)_{1}$.
 Fig. 3. Flow through plates of diameter $4 \times D_{1}$ should produce $\Delta P>\Delta P_{1}$ for m_{1}, $\rho_{1}, \mu_{1},\left(U_{0}\right)_{I}$.

PLATE I

figure 1

figure 2

figure 3

LTM\&MMJU ILVIE

The need for an understanding of the factors which contribute to pressure drop in packed beds was realized as early as 1863. The earlier theories utilized the assumptions that a packed bed was comprised of a series of ducts that possessed a total sectional area equal to the area that would be intersected by a plane passing through the bed, and that the surface of the walls of these ducts was equivalent to the surface of the packing material. Investigators who have considered one or two different packing materials have been selatively successful. Those who have consiciered a large number of packing materials have accepted serious discrepancies or have resorted to extremely complex and unjustifiable empiricisms.

In 1922 Blake (1) analysed flow through several beds of glass and clay Paschig ringse He applied the principles of equation (1) with a relative degree of success. In developing a friction factor and Reynold's number, he assumed that velocity should be in excess of the superficial velocity, U_{0}, by the ratio $V t V$ and that hydraulic radius should be expressed as in equation (2). The ratio, $V / V_{t,}$ had been previously proven identical to the fraction of column cross-section that was not intersected by the packing material. Blake represented the friction factor by $\Delta \mathrm{Pg}^{3} / L_{t} U_{0}{ }^{2} \mathrm{~S}_{\mathrm{p}} V \mathrm{~V}$ and the Reynold's number by $P U_{0} V t / \mu S_{p}$. These terms were plotted on logarithmic coordinates. He found that a single line represented results of tests with the glass packing but that lower values of the friction factor were obtained for the clay packing.

Flow through beds comprised of lead shot was studied by Burke and Plumer (4). They utilized variables equivalent to those of Blake and also represented their results on logarithmic coordinates. These tests illuse trated the manner in which of of equation (1) depends upon the Reynold's number representation. The groupings that were used were equivalent to those used by Blake. Figure 5 illustrates these results. The region where $\Delta P / L_{t}$ is proportional to U_{0} is laminar flow region. In the turbulent region $\Delta P / L_{t}$ is proportional to $U_{0}{ }^{2}$. The intermediate zone of transition from laminar to turbulent flow is peculiar to packed beds. A single line represented the results with a satisfactory degree of accuracy.

Reynold's number

Fig. 5. Results of Burke and Plummer (4).

Literature up to ahout 1936 wis thoronghly surveyed by Cerman (5). This survey included much information that did not reach journals in English print. He found that laminar flow could be represented conveniently by the equation

$$
\frac{\Delta \mathrm{p}}{L_{t}} \propto \frac{\mu \mathrm{VoS}_{n}{ }^{2} V_{t}}{g^{V 3}}
$$

The proportionality factor: included considerations of S in equation (I) from the standpoint of the nature of a sphere and an emperical wall factor correction, $\left(I+S_{t} / S_{p}\right)_{s}$ which yielded $\Delta P / I_{t}=S^{\prime}\left(I+S_{t} / S_{p}\right) U_{o} S_{p}{ }^{2} V_{t} / g V^{3}$. Some results of tests by Pirie, given to Carman in a private communication, supply infomation for beds packed with cubes and prisms. Pirie was quoted to have worked "entirely in the streamline region".

Caman concluded that pressure drop through a variety of packing materials could be represented by

$$
\frac{\Delta p}{I_{t}}=5^{\mu U_{0} S_{p}{ }^{2} V_{t}} \frac{g^{3} V^{3}}{}+0.4 \frac{\rho_{U_{0}}{ }^{2} V_{t}{ }^{2} S_{0}}{g V^{3}}\left(\frac{S_{0} \mu}{\rho_{U_{0}} V_{t}}\right)^{0.1}
$$

This equation was formulated from information concerned with flow that was higily laminar, transitional, or highly turbulent. Figure 6 illustrates how this equation represented the information available at that time, the coordinates are identical to those used by Burke and Plumer.

Carman personally conducted a test to ascertain the true length of flow path in a bed of spheres. Unaided visual observations showed that the fluid path was inclined anywhere from 0° to 90° with respect to the container wall, and sometimes the fluid would follow an helical path. The mean inclination to the wall was concluded to be 45°.

A different approach for estimating the hydraulic diameter of a packed bed was being consiciered in the case of packing materials such as sands or crushed

stone. These materials frequentily possess an indeterminate surface area and the term D_{s}, as defined in Table 2, was found satisiactory for many empirical correlations. The investigation by lieyer and Work (9) typifies this approach. They found that

$$
\frac{\Delta p}{L_{t}}=\frac{11750 \mu U_{0} 2\left(0.67 \mathrm{~V}_{t}-v\right)}{g_{D_{v}}{ }^{2} \mathrm{~V}_{t}}
$$

accomodated their crushed stone very well. D_{V} was expressed in terms of D_{S} and V / V_{t}, thus accommodating wall surface and factors due to variation of free space. Use of D_{S} was supported by analogy between diameter of a packing unit and its surface according to $S_{d} / V_{p}=6 / D_{p}$ for spheres.

Sullivan and Hertel (14) elaborated on the reasoning that Carman used to predict S^{\prime} for laminar flow through beds packed with spheres and textile fibers. They assumed that S^{\prime} for packed beds should originate from a basic value of $S=3$ for an arbitrary duct which existed within the packed bed. They assumed that the effect of "r" could be expressed by the mean angle of orientation of surfaces with respect to the overall direction of flow. They expressed this mathematically as $S^{\prime}=3 /\left(\sin ^{2} \theta\right)$ av. Their reasons for choosing
a basic value of $S=3$ can be understood onl-j in the light of the fract that the agreement with experimental results was excellent. An earlier paper by Iowler and IIcrtel (6) showed that a basic value of $S=3$ exists only in the extreme case of an infinitely wide rectangular duct. Sections that might more logically be present in packed beds are the triangle or square. Both of these possess values for S which are much less than j. It is also true that the wide rectangular duct suffers a laree depression in δ if the walls convorge as often as once every ten times the distance between them.

Table 3. Values of Sor laminar flow throuch empty ducts (7).

Shave of cross-section	δ
Circular	2.00
Elliptical	
major axis $=2 \times \mathrm{minor}$ axis	2.10
major axis $=10 \times$ minor axis	2.42
Rectangular	
square	1.78
length $=2 \times$ width	1.014
length $=10 \mathrm{x}$ width	2.65
infinitely wide	3.00
Triangular	
equilateral triangle	1.67
infinitely high	1.50 \%

'Included by present author.

IThe experimental results of Sullivan and Hertel are believed to be the most reliable in the literature. They payed extreme attention to detail and found that

$$
\frac{\Delta P}{L t}=4.50\left(1+2 \mathrm{St} / 3 \mathrm{~s}_{\mathrm{p}}\right)^{2} \frac{\mu U_{0} S_{p}{ }^{2} V t}{g V^{3}}=0.55 \text { percent }
$$

for their tests with a few beds of spheres. Although this ecuation was derived from very general considerations, it is applicable only to those few beds of spheres. The wall correction factor, ($\left.I+2 S_{t} / 3 S_{p}\right)$, vas arrived at by considering mathematical consistency between the circular column, $\delta=2$, and the value for $S^{\prime}=4 \cdot 50$. This correction has been found slightly too large to apply to greater values of S_{t} / S_{p}. Similar reasoning, based upon practical consideration of a great variety of packing materials, has led to another value. Sullivan and Hertel maintained $\rho U_{o} V_{t} / \mu S_{p}<0.014$ thus insuring that totally insignificant transitional effects were encountered.

Wall effects as a Iunction of D_{p} / D_{t} has been reviewed by Perry (12). Wore recent developments along this line have been accomplished in a series of articlee by Leva and Grumner (8).

Onan and latson (11) tested several beds of different packing materials. Flow was almost entirely turbulent. They introduced an accurate picture of the effect of "loose pack" and "close pack" upon pressure drop. It was found that by flotting friction factor $=\frac{\Delta P}{L_{t}} \frac{\mathrm{gV}^{1.7}}{\rho_{U_{0}}{ }^{2} S_{P} V_{t} 0.7}$
vs. Reynold's number $=\frac{\rho U_{0} V_{t}}{\mu S_{p}}$ on logarithmic coordinates a best mean line representation was obtained. A factor, $\left(f d / f_{1}\right)$, was used to allow for the effects encountered due to the differences in void space offered by the two methods of packing. One important point is that free volume was included as being raised to the 1.7 power rather than the 3.0 power, a direct contridiction to most previous conclusions. This is in good agreenent with results obtained in the present investigation.
lforcom (10) developed an equation for predicting pressure drop in laminar, transition, or turbulent flow regions. His equation agreed well with experimental data for many individual beds and was of the form

$$
\begin{equation*}
\frac{\Delta P}{L_{t}}=k \frac{\mu U_{0}}{g}+k \frac{\rho U_{0}^{2}}{g} \tag{5}
\end{equation*}
$$

More detail is purposely excluded because reference was made to some very illusive terms such as "normal voids". The most important consideration is that this expression accommodated the various regions of flow well for any one bed. The packing materials used were poorly defined so that results of his individual tests were not useful in a detailed analysis of flow. It is noteworthy that equation (5) is in general agreement with the conclusions of Carman except for absence of the term, $\left(\mu S_{p} / \rho U_{0} V_{t}\right)^{0.1}$. An inspection of Fig. 6 shows that pressure drop through spheres would have been better accomodated had this term been absent in Caman's equation.

Illustrations in a text by Rouse (13) typify how the results of studies of flow about suspended objects tend to verify equation (5).

Brownell and Katz (2) introduced several new concepts originating from a comparison of pressure drop in packed beds to pressure loss in conduits. Of primary importance is the discussion of the effect of surface roughness. Figure 7 shows several curves that were illustrated; most of these proposed curves Fare approximated by equation (5). The different packed bed variables considered by Brownell and Katz are sumnarized as follows:

$\left(V_{t} / V\right)^{m}$	- Reynold's number function
$\left(V_{t} / V\right)^{n}$	$=$ friction factor function
S_{s} / S_{p}	$=$ sphericity
e / D_{p}	$=$ relative surface roughness
$D_{p} \rho U_{0} / \mu$	$=$ modified Reynold's number
$\left(2 g D_{p} \Delta P / L_{t} \rho U_{0}{ }^{2}\right)$	$=$ modified friction factor

By means of the Reynold's number function and the friction factor function, a representation of equation (1) was moved onto the pipe friction factor curve. Consideration of both sphericity and surface roughness resulted in satisfactory representation for a large series of particles of "primary configuration". Some difficulty was encountered vinen "splined" rings, or particles of "second configuration", were considered. In the written discussion to the euthors, C. E. Lapple expressed doubt as to the possibility that surface roughness actually contributes to pressure drop in packed beds. In answer, the authors agreed that surface roughness was of little importance.

Fig. 7. Effect of surface roughness according to Brownell and Katz (2).

The proposals of Brownell and Katz were elaborated by Brownell, Dombrowski and Dickey (3). They proposed Figs. 8 and 9 to represent the Reynold's number function and the friction factor function. They arrived at no definite conclusions concerning the effect of surface roughness. Intensive tests which were conducted on a few beds tend to verify equation (5).

It is of some interest to note that the Reynold's number function of Fig. 8 will not lend itself to the wire rings tested by the present author. Figure 9 only vaguely suggests a friction factor function for then. The wire rings possessed a sphericity of 0.42 and beds of them possessed 82 to 84 percent void space.

MATERIAL AND METHODS

Pressure drops through several packed beds was observed in order to gain new knowledge as to the effect of tower surface and packing density upon pressure drop. Pressure drop through less conventional packing materials was also sought.

The Packing Materials

Seven packing materials, including four different types of packing units were tested. The volume, surface area, and perimeter of each unit was determined according to a method which was considered to be direct and accurate.

The following outline illustrates the basic measurements, accuracy of

Fig. 8. Browneli's (3) Reynold's number function.

Fig. 9. Brownell's (3) friction factor function.

determination, and the derived information.

Packing fl, wire ring
Dianeter of wire by micrometer, 23 arbitrarily selected units: $0.06765^{\mathbf{t}} 0.00029$ inches
Volume by bouyancy in water, 1190 arbitrarily selected units: $3.83 \times 10^{-6} \mathrm{cu}$. ft.
Volume by water displacement, 25700 arbitrarily selected units: $3.95 \times 10^{-6} \mathrm{cu} . f t$.
Volume by water displacement, 11750 arbitrarily selected units: $4.04 \times 10^{-6} \mathrm{cu}$. ft.

Final values:

```
volume \(=4.00 \times 10^{-6} \mathrm{cu} . f t\).
surface \(=2.89 \times 10^{-3} \mathrm{sq}\). ft.
perineter \(=0.338 \mathrm{ft}=2 L+\pi D\)
```

Packing \#2, glass ball
Volume by bouyancy in water, 109 axbitrarily selected units: $1.485 \times 10^{-4} \mathrm{cu} . \mathrm{ft}^{-4}$
Volume by water displacement, 500 arbitrarily selected units: $1.506 \times 10^{-4} \mathrm{cu} .1$.

Final values:

$$
\begin{aligned}
& \text { volume }=1.502 \times 10^{-4} \mathrm{cu} . \mathrm{ft} \\
& \text { surface }=6 \mathrm{v} / \mathrm{D}, \mathrm{D}=0.0660 \mathrm{ft} \\
& \text { perimeter }=0.2074 \mathrm{ft} .=\pi D
\end{aligned}
$$

Packing \#3, clay Berl saddle
Width by machinist's rule, 20 arbitrarily selected units: 0.0854 ft 。
Width by steel tape, 30 arbitrarily selected units placed edge to edge: 0.0847 ft .
Volume by bouyancy in water, 96 arbitrarily selected units: $1.444 \times 10^{-4} \mathrm{cu} . \mathrm{ft}$.
Volume by water displacement, 275 arbitrarily selected units: $1.374 \times 10^{-4} \mathrm{cu}$. ft.
Volume by water displacement, 500 arbitrarily selected units: $1.468 \times 10^{-4} \mathrm{cu} . \mathrm{ft}$.

Final values:

$$
\begin{aligned}
& \text { volume }=1.445 \times 10^{-4} \mathrm{cu} . \mathrm{ft} . \\
& \text { surface }=0.0343 \mathrm{sq} \cdot \mathrm{ft} . \text { (from mfg. data*) } \\
& \text { perimeter }=0.538 \mathrm{ft}=2 \pi D
\end{aligned}
$$

[^0]Packing th, clay Berl saddle
Width by steel tape, $1: 0$ arbitrarily selected units placed edge to edge: 0.0427 ft ,
Volume by water displacement, 2400 arbitrarily selected units: $2.54 \times 10^{-5} \mathrm{cu} . \mathrm{ft}$.

Final values:

```
volume \(=2.54 \times 10^{-5} \mathrm{cu}\) 。ft.
surface \(=8.80 \times 10^{-3} \mathrm{sc}\). ft. (from mfg. data*)
perimeter \(=0.268 \mathrm{ft} .-2 \pi D\)
```

Packing \#5, clay Raschig ring
Volume by water displacement, 330 arbitrarily selected units: $2.68 \times 10^{-4} \mathrm{cu} . f t$.
Diameter by steel tape, 58 arbitrarily selected units placed side by side: 0.0860 ft .
Length by steel tape, 95 arbitrarily selected units placed end to end: $0.0873 \mathrm{ft}_{\text {. }}$

Final values:

```
volume \(=2.68 \times 10^{-4} \mathrm{cu} . \mathrm{ft}\).
surface \(=0.0459 \mathrm{sq} . f t\).
perimeter \(=0.630 \mathrm{ft} .=2 \pi \mathrm{D}+2 \mathrm{~L}-2 \pi t\)
```

Packing \#6, clay Raschig ring
Volume by water displacement, 2000 arbitrarily selected units: $4.11 \times 10^{-5} \mathrm{cu}$. ft.
Diameter by steel tape, 94 arbitrarily selected units placed side by side: 0.0435 ft .
Length by steel tape, 167 arbitrarily selected units placed end to end: 0.0444 ft.

Final values:

```
volume \(=4.11 \times 10^{-5} \mathrm{cu} . f\) f.
surface \(=0.01165 \mathrm{sq}\). ft.
perimeter \(=0.312 \mathrm{ft} .=2 \pi \mathrm{D}+2 \mathrm{~L}-2 \pi t\)
```

*Manufactured by the Maurice A. Knight Company, Akron, Ohio.

Packing ${ }^{*} 7$, metal Faschig ring
Diameter by micrometer, 25 arbitrarily selected units: $1.0115^{ \pm} 0.0049$ inch
Length by micrometer, 25 arbitrarily selected units: $1.0034^{ \pm} 0.0005$ inch
Density by Vestphal balance, water displacement, 5 arbitrarily selected units: $7.8764 \pm 0.0135 \mathrm{gm}$. per cu. cm.
Mass of total supply, $698=8456 \pm 6 \mathrm{gm}$.
Final values:

```
percent void \(=92^{*}\)
surface \(\quad=62.7 \mathrm{sq}\). ft. per cu. ft.*
perimeter \(=0.681 \mathrm{It}=2 \pi \mathrm{D}+2 \mathrm{~L}-2 \pi t\)
```

The calculations for perimeter are indicated primarily to illustrate how the perimeter is defined for packing materials. Determination of the perimeter of the Berl saddle is considered only an approximate method; all others are exact according to the present definition. Auxiliary measurements, such as thickness of the Raschig rings or length of the wire rings, were observed to agree with the above conclusions.

The Flow System

Three steel pipes of differing diameter were used as columns. Each of these was thirty-six inches in length. The packed zone included the entire length of each pipe while pressure drop measurements were taken from pressure taps located twenty-four inches apart and six inches from the ends.

Plate II illustrates the exact flow system used and the location of the various metering instruments.

[^1]The pressure taps in the four inch colum were different from the piezometer rings used in the three and six inch columns. These vere so constructed to facilitate a later study of counter-current flom. No difference in results mas noted that could be attributed to the difference in style of the pressure taps.

The diameters of the column were deternined by filling each column with water and noting the amount recuired for the space between the pressure taps. Column diameters and sectional areas thus determined were as follows:

Column	Diameter, inches	Area, square feet
three inch	3.10	0.05207
four inch	4.06	0.0898
six inch	6.08	0.2019

The porosity of each packed column was determined by the same process used to determine column diameter. The porosity of the bed of metal rings was the exception, its void fraction was ascertained from infomation published by the manufacturer.

Fluids and Flow Measurement

Three fluids were used: S.A.E. \#60 oil, water, and air.
The density of the S.A.E. W0 oil was determined by Festphal balance. The balance was calibrated against water samples at various temperatures. The oil samples of varying temperature were then tested. The balance was found to be very sluggish when measuring the density of the oil; this was overcome by allowing sufficient time for the balance to react. No attempt was made to control temperature closely, temperature being read on the plumet of the balance, since it was not anticipated that serious effects of convection would be existant at the range of temperatures encountered. Results
were reproducable to within ± 0.0005 gran per cubic centimeter. The results used are as follows:

$20 \quad 56.28$
25 56.11
30
55.95
35
40
55.75
55.56

Viscosity of the oil was determined by the Kansas State Highway Department at different temperatures. Repeated checks on samples that contained possible impurities, such as sludge, cmulsified water, or emulsified air, showed that little error resuited fron the presence of these impurities. Results of these tests are as follows:

Date	$\underset{\mathrm{O}_{\mathrm{F}}}{\mathrm{Temp}_{\bullet}}$	Viscosity, centistokes	Possible impurities	
12-16-50	70	1636.6	dissolved water " "	
	80	1038.5		
	100	454.72	"	
	210	25.51	"	"
1-4-51	100	445.03	sludge and water	
	100	433.68		
$2-6-51$	100	431.6	"	air
	100	432.2	" "	"

The impurities are noted to have affected viscosity very little over a period of two months usage. The average viscosity of samples at $100^{\circ} \mathrm{F}$ for tests on 12-16-50 and 1-4-51 were used as a basis for calculations. The trend of viscosity with temperature was detemained from results of $12-16-50$; the logarithm of absolute viscosity was found to vary linearly with the inverse cube of absolute temperature. The validity of the relationship is illustrated thus:

$$
\begin{array}{llll}
\text { Temp. range, }{ }^{\circ} \mathrm{F} & 70-80 & 80-100 & 100-210 \\
\Delta \log \mu / \Delta\left(1000 /{ }^{\circ} R\right)^{3} & 0.543 & 0.5495 & 0.534
\end{array}
$$

The following viscosity information, being between 80 and $110^{\circ} \mathrm{F}$, was derived from the slope determined for 80 to $100^{\circ} \mathrm{F}$ of 0.261 lb . per ft.-sec.

Temp. ${ }^{\circ} \mathrm{C}$	30	32	34	36	38	40	42
Visc. rel.	1.774	1.520	1.310	1.132	0.985	0.859	0.750
to $100^{\circ} \mathrm{F}$							
Visc., Ib. perft-sec.	0.463	0.397	0.342	0.295	0.257	0.224	0.196

These viscosities were used for all flow calculations. Flow of the oil was neasured by time required for a meighed gnantity of oil to flow from the system. The density and viscosity of the water were taken fron the llandbook of Chemistry and Physics (8). The water used was obtained directly from the Manhattan city supply.

The density and viscosity of dry air were obtained from the same source as the information for water. Corrections for moist air were applied as follows:

```
dens. moist air = dry air (1 - 0.61 abs. hum.)
    visc. moist air = visc. dry air - abs. hum. (visc. dry air - visc.
        wat. vap.)
```

The estimation for density of moist air is an approximation which is good for low values of absolute humidity. No mumidities over one percent were cncountered. The estimation for the viscosity of moist air is based on the assumption that viscosities are additive with respect to weight percent. The calculated viscosity was never less than $991 / 2$ percent of the viscosity of dry air. The air was obtained from the compressed air supply of the Kansas State College of Agriculture and Applied Science. Humidity was measured with a sling psychrometer and interpreted according to the psychrometric chart from the textbook of Badger and 15 cCabe (17).

Hlow of air and water was measured with a flow nozzle made by expanding one end of a short length of brass pipe. The nozzle was 0.0552 ft . in diam meter and was mounted in a one inch steel. pipe line. Irpact and static pressure taps were located at the exit of the nozzle. The nozzle coefficient was found to be constant, at $W / \rho(\Delta H)^{1 / 2}=0.00518$ for the range of flow studied. Calibration was made with water where Willow, lb. per sec.; $P=$ density, $l b$. for cu. ft.; $\Delta H=$ head loss, inches of fluid. This meter was later calibrated with air. The coefficients were found to agree within four percent for the dilferent fluids. The above mentioned coefficient corresponds to a discharge coefficient of about 93 percent. The flow nozzle used is seen in place in ?2.ate $I_{\text {s }}$ together with other nozzles of similar construction.

Manometry

Manometers wore used to measure pressure differential caused by flow through the nozzles, pressure drop, and pressure. Inverted manometers were used when water or oil was in the system; water filled manometers were used for air flow and pressure drop. Morcury filled manometers were used to measure pressure. All manoneters were the "U" tube type and were calibrated in inches of fluid displacement. They are illustrated in Plate II.

Each manometric reading was interpreted so as to include the secondary effects of air as a second fluid and the difference between the density of the fluid in the system and the density of the fluid in the manometer. The latter effect was significant when the temperature of the oil approached 40 degrees centigrade.

Thermometry

Thermometers were located as indicated in Plate II. The column temperature was determined as the median temperature between inlet and outlet points. The temperature change did not exceed two degrees centigrade for any one run. The temperature of the flow meter was assumed to be the same as the temperature indicated by the inlet thermometer. All thermometers were checked against a precision thermometer so that any one temperature reading could be considered accurate within ± 0.1 to ± 0.2 degrees centigrade. The possibility of a temperature gradient at right angles to the flow path was considered. It was found that a gradient of only one degree centigrade existed when oil in the reservoir was at a temperature of 35 degrees centigrade. Since oil moved far more rapidly through the system than it did through the reservoir, it is assumed that no measurable gradient existed anywhere within the flow system.

Sample Experimental Data

Then oil was used in the system, circulation was maintained for one half hour at each different rate to insure equilibrium in the manometers and to insure thermal equilibrium in the system. Two hours were allowed for initial equilibrium for each series of runs. Apparent equilibrium was reached in half of the allowed times. The following information was gathered twice in succession, sometimes three times, in order to determine pressure drop, flow rate, viscosity, and density for each single "run". Since the time pattern for each reading was symmetrical about the flow reading, a direct numerical average of results was made.

Run $\ddagger 87$ (first half)

Most of the runs were made during winter months in a large laboratory that opened out of doors, and it was not uncommon for the opening of a door to cause room temperature to suddenly drop one half to one degree centigrade. This would cause the air in the inverted manometer to contract and draw both legs up a fraction of an inch. The differential readings did not vary by more than 0.05 inch in any case. Runs identified by alphabetical symbols were accomplished less systematically; they were noted to yield the same results as the remainder of the tests.

Runs with water were similar to those with oil except that only five or ten minutes were required for equilibrium and that flow was measured with a nozzle. An entire series of readings could be taken within 30 seconds, thus a time schedule was not maintained. Double readings, as below, were usually taken. Sometimes a fine oil ring in the manometer tube facilitated reading so well that one reading was considered sufficient.

Run \#79:

```
col.man. temp. = 21.30}\textrm{C
lower leg column man. = 18.45 inches
upper leg column man. - 29.20 inches
```

```
Run #79 (cont.)
```

```
outlet temp. = 26.20}\textrm{C
inlet temp. = 26.30}\textrm{C
flow man, temp = 21.30}\textrm{C
static flow leg = -11.3 inches
impact flow leg = +15.35 inches, time = 13:24
impact flow leg = +15.35 inches
static flow leg = -11.35 inches
inlet temp. = 26.40}\textrm{C
outlet temp. = 26.30}\textrm{C
upper leg column man. = 29.00 inches
lower leg column man. = 18.45 inches, time = 13:25
```

Runs with air required more information that runs with water. Equilibriun was reached so rapidly that a time schedule was not considered useful. Duplicate readings were made for each run as illustrated below. Some fluctuations in readings were noted, but they were so rapid that a time schedule for making readings would not have been capable of capturing the average reading any better than a fast scanning of all instruments.

Run \#105: (first half)

```
impact leg flow man. = +1.42 inches
static leg flow man. }=+2.39\mathrm{ inches
flow man, temp, = 22.80}\textrm{C
meter side of gage pressure man. for static meter tap = -0.30 inches
atmospheric side of gage pressure man, for static meter tap = +0.16 ins.
inlet temp. = 23.2 }\mp@subsup{}{}{\circ}\textrm{C
outlet temp. = 23.0
upper leg col. man. = -0.59 inches
lower leg col.man. * +0.81 inches
col.man. temp. = 23.8}\mp@subsup{8}{}{\circ}\textrm{C
system side of gage pressure man. for upper column tap = +0.83 inches
atmospheric side of gage pressure man. for upper column tap = +1.09 ins.
time = 16:12
```

Barometric pressure and humidity of the exit air supplemented this information. Fluctuations in manometer readings never produced discrepancies greater than 2 percent of the manometer displacement for any one run.

Schedule for Each Bed

The beds were packed by introducing about five to ten percent of the required packing material, settling this by rapping the column, and then introducing another five to ten percent of the required packing material. The mixture in bed $\# 14$ was introduced in individual portions that represented the simplest subdivision of the mixture. Free space was measured imnediately after packing each column, and after all runs were completed. No settling of the packing during runs was noted. Water was the first fluid used, air was next, then oil.

The entire system was flushed with carbon tetrachloride and dried after tests with oil were completed. Then the system was flushed with water. Some oil remained in the system, but never any more than enough to produce a thin oil slick on top of the water.

THEORETICAL DEVELOPMENTS

General Considerations

The first consideration was that of, locating a more useful equation than that resulting from dimensional analysis. It was decided that lorcom's (10) representation should adequately determine the relationship between pressure drop and fluid variables.

$$
\begin{equation*}
\frac{\Delta P}{L_{t}}=k \frac{\mu U_{0}}{g}+K \frac{\rho U_{0}^{2}}{g} \tag{5}
\end{equation*}
$$

Equation (5) has properties such that laminar and turbulent flow may be scrutinized independently. Actually, few experimental data concerning

EXPLANATION OF PLATE II

Sketch of the flow system showing instrument location

C-1 The six inch column.
C-2 The three inch column.
C-4 The four inch column.
E Exit manifold for all three columns.
F Location of the flow meter used to measure the flow rates of water and air.
I Inlet manifold for all three columns.
M-1 Inverted manometer used for measuring the rate of water flow.
1-2 Nercury filled manometer used to measure pressure in the columns.
1.3 Water filled manometer used to measure pressure drop for runs with air.

K-4 Inverted manometer used to measure pressure drop for runs with oil or water.
K-5 Water filled manometer used for measuring the rate of flow of air.
M-6 Mercury filled manometer used for measuring air pressure in the flow meter.
P Piezometer rings and pressure taps.
R Reservoir for fluid being circulated.
S Positive displacement pump, eccentric gear type, used to circulate water or oil.

I Thermometers used to measure the temperature of the inlet and outlet streams.
$-\int$ Portions of the pipe system that were closed to the circulating fluid.

PLATE II

EXPLANATION OF PLATE III

Photograph of the flow system.

PLATE III

EXPLANATION OF PLATE IV

Photographs of the packing units.

Fig. 10. Upper left, one half inch clay Berl Eaddle. Upper right, one inch clay Raschig ring. Center left, wire ring. Center right, glass ball. Lower left, one half inch clay Raschig ring. Lower rigit, one inch clay Berl saddle.

Fig. 11. The mixture tested in bed \#14.
Fig. 12. The metal Raschig rings.

plate iv

Fig. 10
os
號 $\$$ 90 go da

Fig. II
$0 \pi 0$
$\Rightarrow 8$

- IT

Fig. 12
truly turbulent flow were found. This required that laminar flow be studied first. Development of a reliable prediction for an equivalent of "k" made possible direct evaluation of an equivalent for "K" from date obtained for somewhat transitional flow.

Laminar Flow. In order to obtain agreement with equation (I), which sumarizes dimensional analysis, it was necessary to approximate certain bed variables.

$$
\begin{equation*}
\frac{\Delta P}{I_{t}}=\delta \frac{\rho U^{2}}{g^{U}} \beta\left(\frac{D \rho U}{\mu}, \frac{e}{n}\right) \tag{1}
\end{equation*}
$$

Since fluid and empty column variables, $\Delta P, L_{t}, \mu, \rho$, Uo, were known, a limited number of others was required. Carman's (5) representation for " $\mathrm{m}^{\prime \prime}$ was adopted to replace "D" and was later found to be the proper substitution. This was defined by equation

$$
\begin{equation*}
m=v / S_{p} \tag{2}
\end{equation*}
$$

On first consideration, the classic approximation for area of flow, used by Blake (1) and many other investigators was thought to be useful. This anounted to reducing the column cross-section by the void fraction. Later considerations found this quite valueless.

The final list of bed variables, in addition to the approximation for hydraulic radius was concluded to be:
$a=\frac{\text { effective area of flow }}{\text { column cross-section }}$
$r=\frac{\text { effective length of flow path }}{\text { length of the bed }}$
$z=\frac{\text { effective hydraulic radius }}{\text { estimated hydraulic radius }}$
$\delta_{1}=$ constant derived from geometrical nature of the flow path $S_{t} / S_{p}=$ ratio between column surface and packing surface Pressure drop in laninar flow has long been known to be independent of surface roughness.

Turbulent Flow. The same terms that were related to laminar flow, except for δ_{1}, were considered to be applicable to turbulent flow. This may not have been an exact assumption because for instance, the effective area of flow available to a turbulent stream might be different from the area available to a stream in laminar motion.

The effect of surface roughness was expected to become evident in the turbulent region. Additional terms to be considered included:

$$
\begin{aligned}
& S_{2} \text { constant derived from geometrical nature of the flow path } \\
& e / m=\frac{\text { height of surface protrusion }}{\text { estimated hydraulic radius }}
\end{aligned}
$$

The Basic Equation. Restatement of equation (5) produced equation (6).

$$
\begin{equation*}
\frac{\Delta P}{L_{t}}=\delta_{1} \frac{\mu U_{0}}{g^{2}} \cdot \frac{r}{a z^{2}} \gamma_{1}\left(\frac{S_{t}}{S_{p}}\right)+\delta_{2} \frac{\rho U_{0}^{2}}{g m} \cdot \frac{r}{a^{2} z} \gamma_{2}\left(\frac{S_{t}}{S_{p}} \frac{e}{m}\right) \tag{6}
\end{equation*}
$$

γ was used to represent the arbitrary functions. Examination of equation (6) showed that attempts to solve for 231 of the bed variables from pressure drop information would be futile. A simplier form was adopted for further analysis of pressure drop.

$$
\begin{equation*}
\frac{\Delta P}{L_{t}}=A^{\prime} \frac{\mu U_{0}}{g m^{2}}+B^{*} \frac{\rho U_{0}{ }^{2}}{g m} \tag{7}
\end{equation*}
$$

Both A^{\prime} and B^{*} could then be quickly evaluated for each bed. It was felt that any randomly packed bed should possess values for δ_{1} and δ_{2} that depended on the same bed properties that would detemine a, r, and z, therefore,
$a l l$ five of these terms would be accountable to some single bed variable. The ridth of a packing Unit. Satisfactory determination of A^{\prime} and B^{*} was obtained by introducing the concept of packing width. The width of the packing is a derived property which is not necessarily related to the nominal diameter of the packing unit.

The packing width was cefined as the surface area of the packing divided by the perimeter representing boundries which must be circumvented by the fluid. This was expressed mathematically as:

$$
\begin{equation*}
w=s_{p} / c_{p} \tag{3}
\end{equation*}
$$

In order to facilitate a precise estination for C_{p}, this definition was form mulated: the packing perimeter consists of the locus of tangent points to the packing that would be generated by a line which moved throughout the packed bed remaining oriented parallel to the column wall.

Comparison of "w" to n_{m} " yielded a variable that uniquely measured the degree to which the fluid path would be distorted and blocked. Scaled illustrations such as Figures 1, 2, and 3 showed that flat packing units might produce a bed containing dead spaces to such a degree that a bed of lesser porosity comprised of somewhat spherical units should produce no more pressure drop. The magaitude of w / m seemed to parallel this effect. As a result of these observations, it was considered feasible that w / m would index basic changes in the bed structure so that the three terms, $w / m, S_{t} / S_{p}$, and e / m could completely describe a packed bed.

Application of the Fypotheses

Preliminary Analysis. The data of several investigators was used to supplement the experimental results of this investigation. Preliminary
considerations showed that π / m rery decidedly indexed A^{\prime} and B^{*} of equation (7). A graphical representation similar to Plate III showed that the limiting value for A^{\prime} as $w / m \rightarrow 0$ was 50/9. This initial representation also showed that B^{*} varied directly as did w / n for large columns.

The method of correcting for wall effects that was used by Sullivan and Hertel (14) was acopted. Mus, it was assumed that

$$
\begin{equation*}
\frac{\Delta P}{L_{t}}=A \frac{\mu v_{0}}{g^{2}}\left(1+0.6 S_{t} / S_{p}\right)^{2}+B^{*} \frac{\rho U_{0}^{2}}{g_{n}} \tag{8}
\end{equation*}
$$

would accomodate wall effects for laminar fiow. That this is true is illustrated in Fig. 15. This equation produced precise correlation for wall effects in the case of spheres, and good correlation for all packing materials for ratios of S_{J} / S_{p} from 0.01984 to 0.305 . B^{3} was found more nearly uniformly dependent upon w / D_{t} than upon S_{t} / S_{p}. The therm, $B^{*}+w / m$, was found to depend upon W / D_{t} but no longer upon W / m. The final flow equation took this form

$$
\begin{aligned}
\frac{\Delta P}{I_{t}}= & \frac{\mu U_{0}}{g^{2}}\left(I+0.6 S_{t} / S_{p}\right)^{2}+E \frac{\rho U_{0}^{2} w}{g m^{2}} \\
& \text { with A depending on } w / m \text { and } \\
& B \text { defending on } w / D_{t}
\end{aligned}
$$

Contributions of e / m to pressure drop could not be isolated by comparison to values for "e" which were published by Brownell and Katz (2). Thus, it was assumed that normal roughnesa should not affect pressure drop through randomly packed beds.

Estimations for perimeter. The contributions to perimeter of fered by many packing units, the sphere, the wire or cylinder, the Raschig ring, the prism, and the cube, were noted to be independent of orientation within the bed. The Berl saddle was noted to yield different perimeter with each orientation.

Observing the Berl saddle from verious directions showed that the outer edces constituted the perimeter from some views wile part of these outer edges ceased to contribute and other elements of perimeter appeaxed In other views. For this reason, the outer cdges were felt to approximste the mean perimeter of the Berl saddle. The perimeter of the "Badile" tested by Brownell and coworkers (3) was approximated by sssuming that the undts were manufactured from square blanks and thet the edges of the square constituted an equivalent of the final perimeter.

Table 4 shows the exact mothod used to estimate the perdmeter of each different packing unit.

Table 4. Perimeter of some packing units.

Unit	Perimoter
Sphere	$C=\pi D$
Wire or cylinder	$c=\pi D+2 L$
Cube	$C=O U$
Hexaconal prism	$C=3 D+2 L$
Paschig ring	$C=2 \pi D+2 L-2 \pi t$
Berl seddle	$C \cong 2 \pi D$
"Saddle" of (3)	$c \approx u\left(s_{p} / 2\right)^{1 / 2}$

Lbminas Flow. Values for a were calculated from information for each individual experimental zun. For each bed tested, the logarithmic mean value of A vas cotonined. Table 5 includes these rosults together with other important information. Letailed lists of the calculated results ere included in the appendix.

This rearranged form of equation (8) was used for estimations:

$$
\begin{aligned}
A= & \frac{\Delta \mathrm{Pgm}^{2}}{L_{t} \mu U_{0}\left(1+0.6 S_{t} / S_{p}\right)^{2}}-B^{\prime} N \\
& \text { where } N=\rho U_{0} m / \mu \quad \text { and } B^{\prime}=B^{*} /\left(1+0.6 S_{t} / S_{p}\right)^{2}
\end{aligned}
$$

The values for B^{*} which were used in this estimation were obtained by initial observation of turbulent flow data for the bed being considered. Since B^{*} was only approximate, the second term on the right was not allowed to exceed 5 percent of the estimated value for A.

Plate V shows how A varies with w / m. No theoretical considerations to explain the linear relationship on semilogarithmic coordinates were deduced.

The data of Sullivan and Hertel (14) and the intercept for $A=50 / 9$ at $\mathrm{v} / \mathrm{m}=0$ were used to determine this empirical relationship:

$$
\begin{align*}
& A=\frac{50}{9}(10)^{0.03430 \mathrm{w} / \mathrm{m}} \\
& \text { or } \log A=0.7447+0.03430 \mathrm{w} / \mathrm{m} \tag{10}
\end{align*}
$$

Equation (10) was termed the "mean line" value for A.
Turbulent Flow. Values for B^{*} were solved by using this modified form of equation (8):

$$
\begin{aligned}
B^{*}= & \frac{\Delta P g m}{L_{t} \rho U_{0}^{2}}-A^{\prime} / N=I-A^{\prime} / N \\
& \text { where } N=m U_{0} P / \mu \text { and } A^{\prime}=A\left(1+0.6 S_{t} / S_{p}\right)^{2}
\end{aligned}
$$

B^{*} was then converted to B according to $B=B^{*}+w / m$. Values for A^{\prime} were obtained by use of equation (10). This was done, even when the true value was known, for the sake of maintaining a consistent approach for all inform mation that was at hand.
explanation of plate v

Packing unit
Cube
Hex. prism
Sphere
Raschig ring
Berl saddle
"Saddle"
Wire ring
Mixture

The term, $A I / N$, was allowed to exceed the calculated value for B^{*} in a few cases, but was gnerally restrained to a maximum value equal to the estimated value for B^{*}. The logarithmic mean value for B for each bed was determined and placed in Table 6 along with other important information.

Plate VI shows how B varies with w / D_{t}. Definition of the mean line value for B according to

$$
\begin{equation*}
B=0.25(10)^{-1.766 w / D_{t}} \tag{11}
\end{equation*}
$$

was found quite satisfactory. This was established by first noting that B approached 0.25 as W / D_{t} approached zero, and by determining the line that would pass through this point presenting the closest approximation to the mass of information.
w / m As anique Variable. If w / m were not a unique variable, A and B would show dependence on the other variables. Plate VII shows that the deviations of the constants from their mean line values do not arise from either the percent voids or S_{t} / S_{p}. The fact that independence of S_{t} / S_{p} existed showed that D_{p} / D_{t} would not explain deviations eitner, D_{p} / D_{t} is approximately proportional to S_{t} / S_{p} for any given packing material.

The variable, w / m was thus established as the sole criterion for A and $v_{\%} / D_{t}$ as the criterion for B. Deviations from the mean line values were attributed to normal experimental errors such as might arise from insufficient column length when large packing units were tested in small diameter columns.

Friction Factor and Reynold's Number. It was desired to represent all experimental information on a single friction factor vs. Reynold's number plot. In order to do this, certain considerations of the variability of A

Taile 6. Turlulent flow, log mean values of a for oach bec.

Ref.		cking	\% voio	$1 \mathrm{~V} / \mathrm{m}$	W/ D_{t}		Em. 1.	$\frac{13}{10.10}$
(I)	ilass	ring	677280$8 . .7$7293.193.541.272.570.737.536.338.037.439.037.039.737.538.342.137.8537.9037.7537.8540.9046.0046.9046.4036.136.537.245.545.746.346.355.855.5555.555.4561.3562.0762.1362.3	6.536.325.244.625.355.355.020.505.336.3610.0010.539.7910.039.3910.209.1010.009.678.269.859.849.899.856.006.836.206.749.059.483.196.556.476.377.753.128.218.228.236.456.266.256.19	0.047	0.310	0.206	1.51
					0.057	0.332	0.198	1.68
\because	$\#$	"			0.076	0.223	0.134	1.21
"	"	"			0.000	0.294	0.173	1.70
,	Raschi	rs ring			0.141	O. Ii 0	0.IL 1	0.99
(3)	Smoot'h	sadde			0.051	C.ici	0.203	0.8
	Rouch	saddle			0.052	0.158	0.202	0.78
"	class	ball			0.201	0.154	0.166	0.99
"	Eorls	acdle			0.130	0.100	$0.24 ?$	0.60
"	Raschi	8 ring			0.122	0.160	0.152	1.05
(4)	Lead s	hot			0.028	0.190	0.223	0.85
					0.029	0.156	0.222	0.70
"	"	1			0.040	0.178	0.212	0.84
"	,	"			0.083	0.138	C. 179	0.77
\square	"	"			0.058	0.169	0.17 ć	0.85
"	"	"			0.059	0.164	0.197	0.83
"	"	"			0.081	0.157	0.180	0.37
"	"	"			0.082	0.180	0.179	1.01
"	"	"			0.091	0.178	0.173	1.15
"	"	"			0.146	0.172	0.118	2.46
(111)	Celito	spiero			0.054	0.109	0.201	0.94
1	π	"			ท	C. 108	"	0.79
"	"	"			"	0.207	"	1.03
"	11	:			!	$0.21{ }^{\prime \prime}$	"	1.07
"	"	18			"	0.208	"	1.04
"	"	"			"	0.206	"	2.02
8	"	"			"	0.193	"	0.96
"	Celite	cylinder			0.065	0.104	"	1.01
"	"					0.200	"	1.04
"	"	"			"	0.196	"	1.02
"	"	"			"	0.162	"	0. 024
"	"	\because			"	0.167	"	0.67
"	"				"	0.170	"	0.89
"	Rasciais ring				0.088	0.106	0.175	1.00
"			,		0.165	.17	1.06	
"	"	"			"	0.191	"	1.07
"	"	"			"	0.194	"	1.11
"	"	"			"	0.196	π	1.13
"	"	"			"	0.144	"	0.82
"	"	"			"	0.158	"	0.90
n	"	\%			"	$0.11+7$	1	0.34
"	11	"			H	0.152	"	0.87

Table 6 (cont.).

EOI.	Paokinu	; void	\because / m	\because / D_{t}	\pm	Bri. 1.	$\frac{B}{I_{1} .10}$
(II)	Eerl saódle	72.05	4.93	0.100	0.177	0.166	1.07
	11	71.33	5.10		0.179		1.08
"	" 1	71.05	5.18	"	0.174	"	1.05
"	" "	71.25	5.12	"	0.180	"	1.08
"	" "	76.30	3.95	\%	0.167	"	1.01
"	" "	76.35	3.95	"	0.167	"	1.01
"	"	$78 \% .90$	1.03	"	0.166	"	1.00
"	" "	76.15	3.97	"	0.171	"	1.03
Autb.	Wire rina	© 1.0	2.39	0.017	0.237	"	1.02
	${ }^{1}{ }^{\text {n }}$	83.6	1.21	0.033	0.251	0.217	1.15
"	"	83.2	1.25	0.026	0.203	0.225	0.30
"	Glass ball	42.3	8.20	0.195	0.120	0.113	1.06
"	" 1	14.0	7.64	0.256	0.140	0.088	1.59
"	"	30.0	9.47	0.130	0.1廹	0.147	0.72
"	Berl sacile	77.0	4.54	0.249	0.154	0.091	1.69
"	-	71.8	$5 \cdot 94$	0.121	0.114	0.153	0.75
\%	"	72.7	5.70	0.189	0.067	0.110	0.58
"	Raschis rine	68.9	3.63	0.152	0.213	0.135	1.58
\square	"	$74 . \%$	4.28	0.282	0.056	0.070	1.09
"	" "	92	4.43	0.128	0.212	0.148	1.43
"	" "	92	4.43	"	0.213	"	1.
"	" "n	39.5	7.20	0.110	0.177	0.160	1.11
"	Mixture: viro ring glass ball, Eerl saddie, Rasciler	53.0	3.57	0.075	0.223	0.184	1.21

EXPLANATION OF PLATE VI
 B as a function of w / D_{t}

 Packing unit
Cylinder
Sphere
Raschig ring
Berl saddle
"saddle"
Wire ring
Mixture

EXPLANATION OF PLATE VII
Illustrations showing that the effects of voids and column surface
have been accurately predicted.
Fig. 13. $A / A_{m e a n ~ l i n e ~}$ versus void fraction.
Fig. 14. $B / B_{\text {mean }}$ line versus void fraction. Fig. 15. A/Amean line versus ratio of column
A/ mean line versus ratio of colunn
surface to packing surface.

Legend:
-

and B had to be accomplished. The first step was to equate

$$
\begin{equation*}
\frac{\Delta P}{L_{t}}=f \frac{\rho U_{0}^{2}}{g n} \tag{12}
\end{equation*}
$$

and, from equation (9),

$$
\begin{equation*}
f=A \frac{\mu}{m \rho U_{0}}\left(1+0.6 S_{t} / S_{p}\right)^{2}+B \frac{W}{m} \tag{13}
\end{equation*}
$$

Next, a Reynold's number representation which could be used as an abscissa was determined by inspection.

$$
\begin{equation*}
R e=\frac{w \rho U_{0}}{\mu} \frac{B}{A\left(1+0.6 s_{\ell} / S_{p}\right)^{2}} \tag{14}
\end{equation*}
$$

The residual term was considered to be the friction factor.

$$
\begin{align*}
& F=\frac{f m}{B w} \text { or } \tag{15}\\
& F=\frac{I}{R e}+1 \tag{16}
\end{align*}
$$

Re and F were solved for all of the information that had been used to determine values for A and B. They were also determined for transition flow data that were not used for determining A and B. " f " was determined by equation (12) and Re by use of equation (14). Values for A and B were determined by equations (10) and (11).

Plate VIII compares the actual values for F and Re to the relationship suggested by equation (16). The few beds tested by Brownell and co-workers (3) represented about one third of all data when the individual test runs were counted. Actually, they only tested five beds, or about 7 percent of the number of beds considered. Four out of five of their runs were excluded from
FXPILANATION OF PLATEE VIII
Graphical solution to pressure drop through packed beds.

Packing materials
Raschig ring, Berl saddle, glass ball, wire ring, and mixture containing all of these.

the graph in order that unjustifiable weight would not be given to them. The actual values of F and Re that were plotted are included in the appendix.

DISCUSSION

Factors of General Importance

This investigation has shown that pressure drop through a wide variety of packing materials can be accurately predicted by reference to three easily determined properties of a packed bed. These properties are: total packing surface, S_{p}; total packing perimeter, C_{p}; and free volume of the packed zone, V. Reference to these properties eliminates the necessity for considering highly complex methods of correlation or vague terms such as "norminal particle diameter" or "normal voids".

The scope of packed bed variables which has been studied is sumarized in Tables 7 and 8. The accuracy of prediction of pressure drop is also summarized in these tables. The columns headed "average deviation" show how well the pressure drop information for each type of packing material is centered upon the predicted value while the columns headed "root mean square deviation" illustrate the average error involved in predicting pressure drop.

A less obvious advantage of this correlation lies in the fact that coefficient terms do not vary widely for different types of packing materials. The coefficient for laminar flow, A, varies from 5.56 to 13.36 or 2.4 fold. The coefficient for turbulent flow, B, varies from 0.25 to 0.079 or 3.2 fold. These ranges of variation include sparsely packed beds
Table 7. Laminar flow, scope of the investigation and accuracy of the predictions.

Packins	$\begin{aligned} & \text { bodis } \\ & \text { obs id } \end{aligned}$	nom. dia., in.		Tovoids		S_{t} / S_{p}		W/m		$10 \mathrm{~g} \mathrm{dev} \%$, 0	
		small	12 rgo	small	Iars0	Small	large	Small	large	mean	r.m.s.
Cubo	3	0.22	0.22	$34 \cdot 4$	4.4 .8	0.074	0.078	7.40	11.21	-4.7	9.9
Texazonal prism	2	0.185	0.185	37.7	42.6	0.065	0.066	7.66	2.39	-1.7	7.7
Sphore	7	0.02734	0.792	39.04	44.0	0.020	0.305	7.64	9.308	-1.2	2.6
Raschic ring	5	0.522	1.048	59.5	92	0.103	0.157	$4 \cdot 43$	7.20	12.0	23.7
Derl sacdio	3	1.00	1.028	71.8	77.0	0.113	0.285	4.54	6.33	-7.6	23.2
Wire rinct	3	0.645	0.645	81.6	83.6	0.059	0.131	1.21	1.39	-0.4	2.3
"sadile" of (3)	2	0.130	0.132	93.1	93.5	0.041	0.044	\%.02	5.35	11.6	21.5
sphero, 万orl sa. Raschif ring	1	$\begin{aligned} & 0.645, \\ & 0.512, \\ & \text { rospect } \end{aligned}$	$\begin{aligned} & 0.792 \\ & 0.522 \\ & i v e 1 y \end{aligned}$	53.0	53.0	0.157	0.157	3.57	3.57	14.0	14.0
111 types	26	0.02734	1.048	$34 \cdot 4$	93.5	0.020	0.305	1.21	11.11	1.6	14.8

[^2]iablo c Turbulent rlow, scope of tho invostiation and acoracy of ino procictions.

to dense beds and large ratios of column diameter to particle diameter as well as ratios of column diameter to particle dimeter as low as 3:1. The recent correlation by Brownell and co-workers (3) involves variation of coefficient terms in the order of magnitude of 10 fold or more and is incapable of predicting pressure drop through wire packing. Most other correlations cannot be compared in this respect because they were not supposed to be general in nature.

The greatest deviations of pressure drop from the predicted value were encountered in the case of information published by Blake (1). Blake measured pressure drop across the entire packed zone. He stated in his paper that the packing support, where units such as Raschig rings usually assume undesirable orientation, may have caused the overall pressure drop to be somewhat higher than the value which should be expected. Estimations for the coefficient for turbulent flow, B, scattered most widely when the ratio of column diameter to particle diameter was small. This is a logical consequence since very few packing units were required for the small columns and the probability of any one such bed producing a representative pressure drop should be small.

The average accuracy of prediction of pressure drop, including questionable results such as those of Blake, was found to be ± 15 percent for laminar flow and ± 25 percent for turbulent flow.

The convergence of this correlation upon those of other persons is best iliustrated by the fact that results of other investigators forms the basic body of information upon which the present conclusions are based. The writer performed experimental tests which were primarily designed for illustrating the effect of extremes in packed bed variables. The effect of
"loose pack" and "close pack", which was studied by Onan and Watson (11), had been previously treated by empirical corrections. This investigation produced good correlation for such extremes without reference to the method of packing the bed save that randomness should be maintained.

The correlation for B^{*} as a function of w / m does not show agreement with Stoke's law for freely falling objects in turbulent flow. Stoke's law asserts that B^{*} should be constant where the objects are highly dispersed. The approximation that has been used, $B^{*}=B(\pi / m)$, implies that B^{*} becomes very small for sparsely packed beds. Pressure drop was not measured for the range where B^{*} is predicted to be very small; the wire rings constituted the limit in this direction.

Orifice Analogy. An experiment was conducted to determine a reason for the lack of convergence upon Stoke's law. The total energy loss due to flow about a falling object was compared to the total energy loss through an orifice in a pipe line. Freely falling objects, as treated by Stoke's law, are widely dispersed wile in a packed column the objects are encountered frequently by the fluid stream. Consequently, loss through Widely separated orifices was compared to pressure loss through a series of orifices spaced about one orifice diameter apart. Nine orifices were used. It was found that the coefficient for pressure loss through any one of the widely dispersed orifices was considerably higher than the coefficient for any one of the closely spaced orifices. The results of these tests were as follows:

Case \#1, orifices spaced 4.94 orifice diameters apart.

$$
R_{0}^{*}=\frac{\Delta P_{0 g}}{\rho U Z}=0.417
$$

Case \#2, orifices spaced 0.875 orifice diameters apart.

$$
B_{0}^{*}=\frac{\Delta P_{O g}}{\rho U^{2}}=0.1456
$$

In each case, velocity was based on the orifice area. The subscript, o, refers to the fact that an orifice was considered. The experimental procedure and apparatus are described in the appendix.

Case ${ }_{i l} 1$ agrees with the head loss coefficient for a single orifice. Case 散2 shows that only 34.9 percent as much energy is lost when the orifices are spaced to compare with conditions within the packed bed. This analogy shows that Stoke's law may not be applicable to packed beds. It implies that coefficients in the order of those for turbulent flow through ducts may be approached in packed beds. Ducts offer much less resistance to flow for a given total surface than do suspended objects.

Orientation Near the Column Nall. The coefficient for pressure loss in turbulent flow, B^{*}, suffers large depressions as the column diemeter is decreased. This depression is greater than that suggested by the reduction in w/m which results from the fact that small column produce less dense beds than do larger columns. Some crossmections of packed beds were exposed to determine whether the arrangement of packing units was such that the fluid should encounter less resistance near the wall. Photographs of the sections that were damaged least during preparation are shown in Plate IX. All of the sections are shown in the appendix. These sections were prepared by settling the packing into a thin cement slurry, allowing the cement to harden, and then sawing the herdened mass into cross-sections at intervals of about one inch. Inspection of these photographs shows that the beds represent typical degrees of packing density and that the units near
EXPLANATION OF PLATE IX
Raschig ring, 1.032 inches in diameter.
Left center. Raschig ring, 0.522 inches in diameter.
Right center. Berl saddle, 1.028 inches in diameter.
Berl saddle, 0.512 inches in diameter.
Right.

the woll are arranged sinilarly to the units in the interior of the bed. Thus, the reduction in B^{*} for small columns cannot be attributed to the exdstance of larger space for passase near the wall. The column wall probably tends to reduce the intensity of turbulence within the bed so that less energy is lost by the fluid strean.

How Well Must a Packed Bed Be Defined

Brownell and Katz (2) felt that porosity of the packed bed should be determined with very delicate precision, their correlation required special knowledge of porosity. Precision certainly does not detract, from the validity of results, but it is often difficult to measure certein properties, such as porosity, with a great deal of accuracy. Analysis of the proposed equation shows just how errors in measuring, or predicting, packed bed variables should affect the accuracy of predicting pressure drop. Certain exrors may originate from definition of fluid or empty column variables. Lack of randomness within snall beds fight also contribute errors, these factors are not included in the following discussion. Such factors as thesc cannot, be isolated for the general case, however, the fact that they might exist is surficient to induce necessary precaution in cases where they mey become predominant.

Equation (16) sumnarizes the method of predicting pressure drop for a range of packed bed variables that includes all of the extremes that might be encountered in its application.

$$
\begin{aligned}
& \frac{\Delta P}{I_{t}}=\frac{50}{9}(10)^{0.0343 \mathrm{~W} / \mathrm{m}} \frac{\mu \mathrm{~J}_{\mathrm{g}}}{\mathrm{~g}^{2}}\left(1+0.6 \mathrm{~S}_{\mathrm{t}} / \mathrm{s}_{\mathrm{p}}\right)^{2} \\
&+0.25(10)^{-1.766 \mathrm{~W} / \mathrm{D}_{\mathrm{t}}} \frac{\rho \mathrm{U}_{\mathrm{g}}^{2}}{\mathrm{gm}^{2}}
\end{aligned}
$$

$$
\text { for: } \begin{align*}
& I<\pi / \pi<15 \tag{16}\\
& 0<w / D t \\
& 0<0.3 \\
& 0<S_{t} t S_{p}<0.35 \\
& 0.3<V / V_{t}<1
\end{align*}
$$

The range of applicability may be larger, but only the range of certainty is stated. The range of certeinty encompasses $2 l l$ of the observations that have been cited.

Equation (17) is identical to equation (16) except that the naperian base, e, has been substituted for the base 10, and "w" and "m" have been resolved into their component factors.

$$
\begin{align*}
& \frac{\Delta P}{L_{t}}=\frac{50}{9}(e)^{0.079 S_{p}^{2} / V C_{p}} \frac{\mu U_{o} S^{2}}{g V^{2}}\left(I+0.6 S_{t} / S_{p}\right)^{2} \tag{17}\\
&+0.25(0)^{-4.07 S_{p} / D_{t} C_{p} \frac{\rho U_{0}^{2} S_{p}}{g V^{2} C_{p}}}
\end{align*}
$$

Differentiation of equation (17) produces equations (18) and (19), which are of direct value in estimating the errors which might arise from inaccurate estimation of the different variables. Errors in estimating $\Delta P / L_{t}$ for highly laminar flow are sumarized by equation (18). Fluid and empty column variables are considered subject to no error.

$$
\begin{aligned}
& \frac{d \frac{\Delta P}{T t}}{\frac{\Delta P}{L_{t}}}=0.0790 \frac{S_{p}^{2}}{V C_{p}}\left(2 \frac{d S_{n}}{S_{p}}-\frac{d V}{V}-\frac{d C_{p}}{C_{p}}\right)+2 \frac{d S_{p}}{S_{p}}-2 \frac{d V}{V}-1.2 \frac{S_{t}}{S_{p}} \frac{d S_{p}}{\left(1+.6 S_{t} / S_{p}\right)} \\
&=0.079 \frac{W}{m}\left(2 \frac{d S_{n}}{S_{p}}-\frac{d V}{V}-\frac{d C_{p}}{C_{p}}\right)+2 \frac{d S_{p}}{S_{p}}-2 \frac{d V}{V}-1.2 \frac{S_{t}}{S_{p}} \frac{d S_{p}}{S_{p}\left(1+.6 S_{t} / S_{p}\right)} \\
& \text { whon fIow is laminar }
\end{aligned}
$$

For highly turbulent flow, error is sumarized by equation (19).

$$
\begin{align*}
\frac{d \frac{\Delta P}{L_{t}}}{\frac{\Delta P}{L_{t}}} & =-4.07 \frac{S_{p}}{D_{t} C_{p}}\left(\frac{d S_{p}}{S_{p}}-\frac{d C_{p}}{C_{p}}\right)+\frac{3 S_{p}}{S_{p}}-\frac{2 d V}{V}-\frac{d C_{p}}{C_{p}} \\
& =-4.07 \frac{8 r}{D_{t}}\left(\frac{d S_{p}}{S_{p}}-\frac{d C_{p}}{C_{p}}\right)+\frac{3 d S_{p}}{S_{p}}-\frac{2 d V}{V}-\frac{d C_{p}}{C_{p}} \tag{19}
\end{align*}
$$

whon flow is turbulent

The error contributed by each variable, E, is sumnarized in Table 9.

Table 9. Contribution of incorrect evaluation of packed bed variables to error in predicting pressure drop.

Suppose that none of the packed bed variables is to be allowed to contribute more than 5 percent to the error in predicting pressure drop. Table 9 shows that porosity, or V should be known within 2.5 percent of its true value when flow is turbulent; when flow is laminar, porosity may be known within 2.5 percent for small values of w / m, or within 1.57 percent when W / m reaches the upper limit of 15 . When flow is turbulent, total packing surface, S_{p}, should be known within 1.67 percent when w / D_{t} is small and within 2.81 percent when W / D_{t} reaches the upper limit of 0.3 ; laminar flow
requires that packing surface be known within 2.5 percent when both w / m and S_{t} / S_{p} are small, within 2.92 percent when S_{t} / S_{p} reaches its upper limit of 0.35 , within 1.14 percent when w / m reaches its upper limit of 15 , and within 1.23 percent when w / m and S_{t} / S_{p} both reach their limiting values. For turbulent flow, the total packing perimeter, Cp , should be known within 5 percent for small values of w / D_{t} and within 7.6 percent when w / D_{\imath} reaches its upper limit of 0.3 ; laninar flow requires no knowledge of C_{p} when w / m is small and requires accuracy of 4.22 percent when w/m reaches its upper limit of 15 . Transition flow requires intermediate degrees of accuracy for these variables.

For turbulent flow, the sum of possible errors for all three packed bed variables may be as large as 9.17 percent for small values of $\% / D_{t}$ and 12.91 percent for the limiting w / D_{t} of 0.3 if it is desired to maintain the predicted pressure drop within 15 percent of the true value. Laminar flow requires that this sum of errors be within 5.0 percent plus any large error in C_{p} when W / m is near zero and within 7.12 percent when S_{t} / S_{p} and w / m reach their respective limits of 0.35 and 15 .
S_{p} must be known with the greatest degree of accuracy, V requires less accuracy, and C_{p} may be less well defined than either of the others when each of the variables is expected to contribute the same degree of accuracy to the predicted pressure drop. In general, an error in pressure drop of less than ± 8.5 percent will result if the value of each of these variables is known within ± 1 percent.

Determination of Packing Surface From Pressure Drop

Knowledge of the surface area of irregular objects is often desired. Certain relations between surface area and particle size, catalytic activity, mass transfer rates, or ionic activity exist. Often, a quantitative measure of surface area can be used to determine when a pulverizing operation is satisfactorily completed, or when fibers are of a desired fineness or texture.

Most tests for surface area have been conducted by allowing flow through the material in question to be laminar. Allowing the flow to be transitional would require very cumbersome calculations, and truly turbulent flow requires tremendous pressure drops that are not required when laminer flow is maintained. Thus, it is valid to assume that any surface area determination will require the use of equation (20) and not the complete equation for pressure drop.

$$
\begin{align*}
& \Delta P / I_{t}=\frac{50 \mu U_{0} S^{2}}{9 g^{2}}\left(1+0.6 S_{t} / S_{p}\right)^{2}(10)^{0.0343 \mathrm{w} / \mathrm{m}} \\
& \text { or } S_{p}=0.6 \mathrm{~V}\left(\frac{\Delta \mathrm{Fg}}{2 L_{t} \mu U_{0}}\right)^{1 / 2}(10)^{-0.01715 \mathrm{w} / \mathrm{m}}-0.6 S_{t} \\
& \text { for highly laminar flow } \tag{20}
\end{align*}
$$

$V, L_{t}, \mu, U_{0}, \Delta P, g$, and S_{t} are always known when surface area is sought. A typical determination of V is from the density of the material and the total volume of the sample. S_{t} is usually negligible but can be included when the necessity arises.
W / m is the only term which must be approximated when equation (20) is used. Fortunately, w/m can be predicted quite accurately from porosity when only the general nature of the particles of the material in question is known. Table 10 shows how w / m can be approximated for many comon
shapes that are approximated by fibers, dusts, crystals, or sands.

Table 10. W/m from porosity for some comnon geometrical shapes.

-Ob
Sphere

Cube w/m as a function of porosity

$$
6\left(1-V / V_{t}\right) /\left(V / V_{t}\right)
$$

Tetrahedron

$$
\begin{aligned}
& 6.788\left(1-V / V_{t}\right) /\left(V / V_{t}\right) \\
& 6.364\left(1-V / V_{t}\right) /\left(V / V_{t}\right)
\end{aligned}
$$

Octahedron
Circular fiber
$2 \pi\left(I-V / V_{t}\right) /\left(V / V_{t}\right)$
Square fiber
Triangular fiber
Circular disc
Square plate
Equilateral triangular plate

Ribbon
$8\left(1-V / V_{t}\right) /\left(V / V_{t}\right)$
5.196(1-V/V $) /\left(V / V_{t}\right)$
(Diamo/thickness) $\left(1-V / V_{t}\right) /\left(V / V_{t}\right)$
$"$
$\sqrt{4 / 3}($ edge/thickness) $)\left(1-\mathrm{V} / \mathrm{V}_{\mathrm{t}}\right) /\left(\mathrm{V} / \mathrm{V}_{\mathrm{t}}\right)$
2(width/thickness) $\left(1-V / V_{t}\right) /\left(V / V_{t}\right)$

Uniformity of particle size or degree of conformity to the geometrical shapes listed effect very little the estimated value for w / m. Ordinarily, a mixture of sizes will possess a slightly lower velue for π / m than will the parent particle of uniform size. Only 0.0395 of the error in estimating W/II manifests itself as relative error in calculating the final surface area, that is, a discrepancy of ± 1.0 in evaluating π / m results in ± 3.95 percent
uncertainty in estimating surface area. Ordinarily, errors in evaluating W / m should range between zero, for materials of known shape to ± 0.5 for materials of irregular shape.

Hoffing and Lockhart (15) presented information by which the method of determining surface area might be tested. The surface area of diatomacious earth was determined by both Nitrogen adsorption and permeability. They used Carmen's conclusions to determine surface area by permeability. These results are as follows:

Information reported	Air permeability	Water permeability
Vol. of cake, ∇_{t}	$0.756 \mathrm{~cm}^{3}$	$5.90 \mathrm{~cm}^{3}$
Area of cylinder, At	$0.378 \mathrm{~cm}^{3} \mathrm{~cm}^{3}$	$1.77 \mathrm{~cm}^{2}$
Inverse flow rate	$8.87 \mathrm{sec} / \mathrm{cm}^{3}$	$27.3 \mathrm{sec} / \mathrm{cm}^{3}$
Pressure drop, ΔP	$704 \mathrm{~mm} / \mathrm{cm}^{2}$	$704 \mathrm{gm} / \mathrm{cm}^{2}$
Porosity, V / V_{t}	0.714	0.849
Viscosjity, μ	0.000185 poise	0.0094 .7 poise
Surface area, S_{p} / V_{p} (by methods of Canian)	$74,600 \mathrm{~cm}^{2} / \mathrm{cm}^{3}$	$74300 \mathrm{~cm}^{2} / \mathrm{cm}^{3}$
Surface area, S_{p} / V_{p} by nitrogen adsorption	$78800 \mathrm{~cm}^{2} / \mathrm{cm}^{3}$	$78800 \mathrm{~cm}^{2} / \mathrm{cm}^{3}$
Derived information		
π / m, assuming circular fibers	2.51	1.12
Surface area, S_{p} / V_{p} by equation (20)	$75800 \mathrm{~cm}^{2} / \mathrm{cm}^{3}$	$74200 \mathrm{~cm}^{2} / \mathrm{cm}^{3}$

This example does not show the full advantage of equation (20) over that proposed by Carman, although slightly better agreement was obtained by equation (20). Equation (20) can be expected to apply to plate-like or ribbon-like materials and Caman's equation is known to be inapplicable for such materials.

One Way in Which Active ©urface Might be Estimated

Studies concerned with mass transfer and catalysis in packed beds have shown that all of the surface area of solid particles is not exposed to the transient fluid mass.

The proportion of unavailable surface might be comparable to an apparent unavailable free volume. The following equation, similar to that of Carman, represents how pressure drop would be expressed for hypothetical packed beds where the fluid path is not obstructed.

$$
\frac{\Delta P}{L_{t}}=\frac{50}{9} \frac{\mu U_{0} V_{t} S_{p}^{2}}{V^{3}}\left(1+0.6 s_{t} / S_{p}\right)^{2}
$$

Actually, the fluid path is obstracted and the proportionality between the above equation and equation (20) may be a measure of the surface about which appreciable quantities of naterial flow. This residual term is prom posed to have the following interpretation:

$$
\frac{\text { active surface }}{\text { total surface }}=\frac{\text { available volume }}{\text { free volume }}=\left(V_{t} / \mathrm{v}\right)(10)^{-0.0343 \mathrm{w} / \mathrm{m}}
$$

Turbulent flow is not understood well enough so that the effect of increasing flow rate upon available surface can be predicted. Present knowledge does not preclude the possibility that the same fractional free volume is available in turbulent flow.

Comparison of transfer rates in packed beds requires that the Reynold's number be the same for each bed. Rey nold's number has been determined as

$$
\begin{aligned}
\operatorname{Re} & =\frac{B}{A_{1}} \frac{W U_{0}}{\mu\left(1+0.6 s_{t} / e_{p}\right) 2} \\
& \rho_{\partial w / 200 \AA_{t} \mu\left(1+0.6 s_{t} / s_{p}\right)^{2}(10)^{1.766 w / D_{t}+0.0343 w / m}}
\end{aligned}
$$

Taecker and Hougen (16) determined heat transfer coefficients for several packed beds. The material from which the packing was made and the operating conditions were maintained very nearly constant so that a direct comparison of heat transfer coefficients to available surface can be made. The following information illustretes heat transfer factors, j_{h}, for their beds at Pe $=3.0$. Values of w, m, and S_{p} that vere used to ascertain the Heynold's number are also included. the coefficients are not point values but have been obtained from plots of j_{h} vs. Re for the range of interest.

Packin ${ }^{\text {S }}$	$\mathrm{S}_{0} / \mathrm{v}_{\text {娄 }}$	m	\#	Jh	$\left(V_{t} / V\right)(10)^{-0.0343 v / m}$
Raschie, ring	111	0.0057	0.0350	0.103	0.976
" ${ }^{\text {c }}$	111	0.0057	0.0350	0.094	0.976
" 1	58	0.0123	0.0698	0.095	0.896
*	29	0.0243	0.1396	0.082	0.895
Partition ring	36	0.0186	0.14140	0.062	0.813
Berl saddle	155	0.0038^{*}	0.0358	0.11	0.806

Figure 16 illustrates the manner in which j_{h} decreases as the prom posed measure for available surface decreases. A decrease in $(V t / V)(I .0)^{-0.034 .3 m / m}$ represents a proposcd decrease in available uurface. This comparison sugeests that the surface available for transfer may be proportional to $\left(V_{t} / v\right)(10)^{-0.0343 \pi / m}$.

Fig. 16. Heat transfer factor versus a measure of available surface area, Re constant at 3.0 .

Efficient Packing

The packed bed is used where large surfaces are required for mass and heat transfer operations. Increased pressure drop through a bed increases the cost required in accomplishing a given amount of transfer. Thus, packing efficiency may be defined as follows:

$$
\text { packing eff. } \frac{\text { rate of trans. }}{\text { power cons. }} \frac{\text { income per unit trans. }}{\text { cost per unit power }}
$$

Heat transfer rates parallel mass transfer rates so that efficiency may be evaluated from the standpoint of heat transfer.

$$
\text { packing eff. }=\frac{h S p \Delta \eta^{\prime}}{U_{0} A t \Delta P} \text { (income ratio) }
$$

Ihis efficiency is a dimensionless quantity if consistent energy units are used throughout. Accurate evaluation of efficiency requires specific knowledge of heat transfer coefficients and operating conditions for each operation. However, efficiency may be indexed by reference to some well known relationships.

Host transfer processes are accomplished where flow is turbulent. Certain general relationships may be established for this case. They are as follows:

The heat transfer coefficient, h, may be estimated by the results of the investigation by Taecker and Hougen (16). The Reynold's number tinat they used has been adjusted to include "п" rather than their approximation for particle diameter. This equation reprem sents their tests with Reschic rings and partition rings.
$h=0.723 C \rho U_{0}\left(\frac{C \mu}{k}\right)^{-0.667}\left(\frac{\rho_{U_{O}} w}{\mu}\right)^{-0.42}$

Pressure drop in turbulent flow may be estimated by the results of this investigation.

$$
\Delta P=I_{t} P U_{0}^{2}(w / m) / 4 \mathrm{~mm}
$$

for highly turbulent flow and large diameter columns.

Substituting these approximations into the equation for packing efficiency produces the following relationship.

$$
\text { Packing eff. }=\text { (inc. ratio) } \frac{2.89 \mathrm{gk}^{0.67} \mathrm{c}^{0.33} \Delta I}{\mu 0.26 \rho^{0.4 I_{U_{0}}} 2.41} \cdot \frac{\left(\mathrm{So} / V_{t}\right) \mathrm{m}^{2}}{\nabla^{1.41}}
$$

The group of fluid and empty column variables, income ratio, $k, C, \Delta T$, μ, P, U_{0}, and constant factors, are controlled independently of the type of packed column so that $\left(S_{p} / V_{t}\right) m^{2}+\pi^{1 / 41}$ becomes a measure of the expected amount of transfer per unit of pumping power input. Including "w" to the 1.0 power rather than the 1.41 power will not alter the accuracy of this approximation by a greater degree than the order of accuracy involved in substituting "w" for the particle diameter used by Taecker and Hougen. Thus, this equation may be considered an index to the usefulness of a packing material for transfer operations.

$$
\begin{aligned}
\text { Packing index }= & \frac{m\left(S_{p} / V t\right)}{W / m}=\frac{(V / V t)}{(W / m)} \\
& \text { when flow is turbulent }
\end{aligned}
$$

Similar analysis of heat transfer during laminar flow produces this index to the packing material:

$$
\text { Packing index }=\left(V / V_{t}\right)(10)^{-0.0343 \mathrm{w} / \mathrm{m}}
$$

when flow is laminar

These developments have not considered the availabllity of surface area which has been previously discussed. In a more detailed analysis, the indexes derived above should be multiplied by the fraction of available surface. Inclusion of the proposed measure for available surface would produce these indexes:

$$
\begin{aligned}
\text { Packing ind. } & =\frac{(10)-0.0343 \mathrm{~T} / \mathrm{m}}{(\mathrm{~W} / \mathrm{m})} \text { for turbulent flow } \\
& =(10)-0.0686 \mathrm{~W} / \mathrm{m} \text { for laminar flow }
\end{aligned}
$$

The measure of available surface does not change the overall picture as to the effect of w / m on packing efficiency.

Generally speaking, it is desirable to use packing materials that produce $10 w$ values for w / m. The range of w / m noted for several packing materials that were studied are listed below. The more desirable units are placed at the top of the list.

Packing material		Range of W / m
Wire ring		$1.21-1.39$
Berl saddle		$3.95-6.33$
Raschig ring		$4.28-8.23$
Cylinder	$6.37-9.65$	
Sphere	$6.80-10.53$	

Hixing wire rings with other packing meterials produces favorable values of w / m.

CONCLUSIONS

Pressure drop in packed beds has been found to depend on three properties of the packing. These properties are the void space within the bed, the total surface of the packing, and the perimeter of the packing. The perimeter represents boundries which must be circumvented by the fluid in passing through the bed and has been defined as the locus of tangent points to the packing that would be intersected by a line that moved throughout the bed remaining oriented parallel to the column wall.

Other factors incluencing pressure drop are the size of the column, fluid density, fluid viscosity, and the superficial velocity of the fluid. Normal degrees of roughness of the packing material do not noticeably influence pressure drop. For laminar flow, three fifths of the column wall tends to reduce pressure drop in turbulent flow, this effect is determined by the ratio of packing width to column diameter. Packing width is defined as total packing surface divided by total packing perimeter.

Pressure drop through beds of widely varying properties and for flow ranging from completely laminar to highly turbulent can be expressed matho ematically or graphically by reference to the variables which are mentioned above. Graphical correlation of pressure drop requires consideration of the following factors*.

```
1. \(F=\phi(R e)\), primary representation.
2. Re \(=w \rho U_{0} B / \mu A\left(I+0.6 s_{t} / S_{p}\right)^{2}\)
3. \(F=f / B(w / m)\)
4. \(f=\Delta P g m / L_{t} \rho U_{0}^{2}\)
```

[^3]5. $B=\phi\left(w / D_{t}\right)$, auxiliary representation.
6. $A=\phi(M / m)$, auxiliary representation. Mathematical correlation requires use of the following equations*:
\[

$$
\begin{aligned}
\Delta P / I_{t} & =A \mu U_{0}\left(1+0.6 S_{t} / S_{p}\right)^{2} / \mathrm{gm}^{2}+B^{\omega} \rho U_{0}^{2} / \mathrm{gm} \\
A & =\frac{50}{9}(10)^{0.03430 \mathrm{w} / \mathrm{m}} \quad 25 \% \\
B^{*} & =0.25(\mathrm{w} / \mathrm{m})(10)^{-1.766} / D_{t} \quad \pm 25 \%
\end{aligned}
$$
\]

These conclusions have been derived from information representing eight different packing materials and a mixture comprised of four of them. They have also been proven applicable to materials such as diatomacious earth. The range of variables that was studied is as follows*:
$0.344 \leqslant V / V_{t} \leqslant 93.5$
$0.020 \leqslant S_{t} / S_{p} \leqslant 0.305$
$1.21 \leqslant W / \mathrm{m} \leqslant 11.11$
$0.017 \leqslant \pi / D_{t} \leqslant 0.282$
$0.00008 \leqslant \operatorname{Re} \leqslant 97.0$

A Reynold's number equal to unity indicates the center of the transition region as flow varies from laminar to turbulent.

The term, W / \mathbb{m}, has been identified as an index to the power required by different packing materials when a given rate of mess or heat transfer is desired. Small values of m / m indicate the minimum in punping costs.

[^4]a ratio between the effective flow area and A_{t}.
$A \quad=$ laminar flow constant $=\Delta \mathrm{Pgm}^{2} / I_{t} \mu U_{0}\left(I+0.6 S_{t} / S_{p}\right)-B^{\prime} N$.
Am.1. = the predicted value for A.
At = crossmsectional area of the column.
$A^{\prime} \quad=A\left(1+0.6 S_{t} / S_{p}\right)^{2}$.
$B \quad=B^{*} /(W / m)$.
$\mathrm{Bm} .1 .=$ predicted value for B.
$B^{*} \quad=$ turbulent flow constant $=\Delta \mathrm{Pgm} / L_{t} \rho U_{0}^{2}-A^{1} / \mathrm{N}$.
$B^{\prime}=B^{*} /\left(1+0.6 S_{t} / S_{p}\right)^{2}$.
B_{0}^{*} = constant for an orifice $\quad \Delta \mathrm{Pg} / \rho U^{2}$.
C. heat capacity, or perimeter contributed by a specific packing unit.
C_{p} - total perimeter of the packing.
${ }^{\circ} \mathrm{C}=$ temperature, degrees Centigrade.
$\mathrm{cm} \quad$ centimeter.
d = differential element.
D = equivalent hydraulic diameter, or nominal particle diameter for a specific packing unit.
$D_{p} \quad$ nominal diameter of a packing unit.
$D_{s} \quad$ diameter of a sphere having the same volume as the packing unit.
$D_{t}=$ diameter of the column.
$D_{v} \quad$ - effective nominal diameter of a packing unit corresponding to a given void fraction.
e . height of an element of surface roughness, or, 2.71828.
E \quad relative error.
$E_{\mathbf{c}} \quad=$ error in predicted pressure drop due to an error in perimeter determination.

```
                    - error in predicted pressure drop due to an error in surface determination.
- error in predicted pressure drop due to an error in porosity determination.
\(f \quad=\Delta P \operatorname{cm} / L_{t} \rho U_{0}{ }^{2}\).
\(f_{d} \quad\) friction factor for dense packing arrangement.
\(f_{1}\) = friction factor for loose packing arrangement.
ft \(=\) foot.
F - friction factor \(=f / B^{*}\).
\(0_{F} \quad=\) temperature, degrees Fahrenheit.
g
- gram.
h = heat transfer coefficient.
\(\Delta H \quad=\) vertical displacement.
In \(\quad\) heat transfer factor \(=\frac{h A_{t}}{C T V}\left(\frac{c \mu}{k}\right)^{2 / 3}\).
\(k \quad\) arbitrary constant, or thermal conductivity.
K
1b
L
\(L_{t}\)
m
mm
\(n\) number of items.
\(N \quad=m \rho U / \mu\).
\(\Delta P \quad=\) pressure loss due to frictional resistance along \(L_{t}\).
\(r \quad\) ratio between true length of flow path and \(I_{t}\).
```

```
Re
    - Reynold's number \(=m \rho U_{0} B^{*} / \mu A\left(1+0.6 S_{t} / S_{p}\right)^{2}\).
\({ }^{c_{R}}\) = temperature, degrees Pankine.
    \(s_{p} \quad\) - surface of the packing unit.
    sq. . square.
\(s_{s} \quad=\) surface of a sphere having the swe volume as the packing unit.
sec. - second.
\(S_{p}=\) total surface of the packing.
\(S_{t}=\) surface of the column wall.
t a thickness of a specific packing unit.
U = true fluid velocity.
Uo velocity based on the empty column.
v \(\quad\) volume of a specific packing unit.
\(\mathrm{v}_{\mathrm{p}} \quad\) volume of the packing unit.
V \(\quad\) free or void volume within the packed zone.
    - total volume of the packing.
```



```
w \(\quad=S_{p} / C_{p}=\) width of the barrier to be circumvented by the fluid.
W - mass rate of flow.
\(z \quad\) = ratio between effective hydraulic radius and \(m\).
\(\gamma=\) arbitrary function.
    - constant arising because of the geometrical nature of a duct.
\(\delta^{\prime}\)
    - special case for \(\delta\).
    \(\Delta \quad\) = incremental element.
    \(\theta\) angle of orientation of an element of surface.
    \(\mu \quad\) absolute viscosity.
```

```
\pi - 3.14159
\rho - mass density of the fluid.
\varnothing= function of.
< less than.
\leqslant less than or equal to.
\cong approximated by.
\infty = proportional to.
T = square root.
```


ACKNOWLEDGMENT

Special acknowledgment is given to Dr. Rollin G. Taecker, major instructor, and Dr. Henry T. Ward, Head of the Department of Chemical Engineering at Kansas State College. Dr. Taecker provided consultation and direction which made possible the completion of this investigation.

The Engineering Experiment Station at Kansas State College provided funds which were greatly appreciated. James B. Newman, assistant on the project, contributed valuable aid during construction and operation of the experimental apparatus.

Acknowledgment is also given to Dr . O. A. Hougen who arranged for a loan of wire rings from the University of Wisconsin, to the Laurice A. Knight Sons Company which donated the clay Raschig sings and Berl saddles, and to the Owens Corning Fiberglass Corporation in Kansas City, Kansas, which donated the glass balls.
(1) Blake, C. F.

The resistance of packing to fluid flow. Americen Institute of Chem. Engineers, Transactions. 14: 415-421, 1921-22.
(2) Erownell, Lloyd E., and Donald L. Katz. Flow of fluids through porous media - Part I Single homogenous fluids. Chem. Enge. Progress. 43: 537-545, October, 1947.
(3) Brownell, Lloyd E., H. S. Dombrowski, and C. A. Dickey. Pressure drop through porous media - Part IV New data and revised correlation. Chem. Engg. Progress. 46: L15-422, August, 1950.
(4) Burke, S. P., and W. B. Plumer. Gas flow through packed colunns. Industrial and Engg. Chem. 20: 1196-1200, November, 1928.
(5) Carman, P. C. Fluid flow through granular beds. Iransactions of the Institution of Chem. Engineers. 15: 150-166, 1937.
(6) Fowler, J. L., and K. L. Hertel. Flow of a gas through porous media. Journal of Applied Physics. 11:496-502, July, 1940.
(7) Hodgman, Charles D. Handbook of chemistry and physics, 28th ed. Cleveland: Chemical Fubber Publishing Company, 1944.
(8) Leva, Max, and Milton Grumer.

Pressure drop through packed tubes. A series of three articles concluded in: Chem. Engg. Progress. 43: 713-718, December, 1947.
(9) Meyer, Walter G., and Lincoln T. Work.

Flow of fluids through packed solids. American Institute of Chem. Engg., Transactions. 32: 13-18, 1937.
(10) Morcom, A. R.

Fluid flow through granular materials. Transactions of the Institution of Chem. Engineers. 24: 30-43, 1946.
(II) Oman, A. O., and K. M. Watson. Pressure drop in gramular beds. Process Engg. Data, a series of seven articles, University of Wisconsin. Reprinted fromz Tech. section of the national petroleum news (now petroleum processing). May through November, 1944.
(12) Perry, John H.

Chenical engineers handbook, 2nd ed. New York: McGraw-ilill, 1941.
(13) Rouse, Hunter.

F'luid mechanics for hydraulic engineers, lst ed. New York: McGrar-Hill, 1937.
(1i4) Sullivan, R. Ro, and K. I. Hertel. The flow of air through porous media. Journal of Applied Physics. 11: 761-765, December, 1940.
(15) Hoffing, E. H., and Frank J. Lockhart. Resistance to filtration. Chem. Engg. Progress. 47: 3-10, January, 1951.
(16) Taecker, F. G., and O. A. Hougen. Heat and mess transfer of the gas film in the flow of gases through commercial tower packings. Chem. Engg. Progress. 1,5: 188-193, March, 1949.
(17) Badger, Walter L., and Warren L. McCabe. Elements of chemical engineering, 2nd ed. New York: McGraw-Hill, 1936.

EXPLANATION OF PLATE X

Cross-sections of packed beds.

Packing materials show:
0.792 inch glass ball.
1.028 inch Berl saddle.
1.032 inch Raschig ring.
0.512 inch Berl saddle.
0.522 inch Raschic ring•

PLATE X

Taolo 11. Authox's orieinal data.
Bod $\%$ I, 1.028 inch Lerl saddlo in the 3.10 inch column.

Table 11 (cont.)

Run \#	Tomp. ${ }^{\circ} \mathrm{C}$	Press., mm	$\rho \frac{1 b}{1+3}$	$\mu_{i t-s 0 c} \frac{1 b}{}$	$\frac{W}{A}+\frac{1 b}{f e^{2}-30 c}$	$\frac{\Delta P}{L_{t}} \frac{1 b}{\Gamma^{n} 3}$
A	33.2	---	55.8	0.363	0.44	$1 \% .6$
E	37.5	---	55.7	0.266	1.31	33.3
U	35.8	---	i, $5 . ?$	0.300	0.338	10.4
1	37.2	---	55.7	0.272	1.10	20.7
2	30.6	---	53.0	0.247	0.537	12.0
3	39.2	---	55.6	0.237	0.368	8.3
42	20.1	---	62.2	5.60×10^{-4}	4.18	0.9
41	28.0	---	62.2	$5.62{ }^{11}$	5.15	2.1
40	28.0	---	62.2	$3.62^{\prime \prime}$	5.79	1.3
39	28.0	---	62.2	5.26 "	7.12	2.0
38	27.9	---	62.2	$5.64{ }^{\prime \prime}$	7.85	2.4
37	27.7	-7\%	62.2	5.66 "	8.31	2.6
28	23.0	785	0.071 .6	1.22×10^{-5}	0.242	1.0
27	22.6	778	0.0760	1.22	0.276	1.3
26	22.0	793	0.0777	1.22	0.309	1.6

Table 11 (cont.)
Bod \# 3 , 0.792 inch glass ball in the 4.06 inch column
$\frac{\Delta P}{L t} \frac{I b}{I t} 3$

 $\mu \frac{10}{1-s o c}$

 1 void $=1+2.3$
$3 t / S p=0.22 \%$
$w / m=8.20$ - $\frac{1 b}{2 \mathrm{E} 3}$
Bun $\#$ Temp. ${ }^{\circ} \mathrm{C}$ Press., mm

(•quos) LI •โqる

Run'	Temp. ${ }^{\circ} \mathrm{C}$	```volume of unit }=1.445\times1\mp@subsup{0}{}{-4}\textrm{cu}. f.t gurface of unit = 0.0343 sq. it. % void=71.8 St/S Sp}=0.11 w/ra=5.94```				$\frac{\Delta p}{I t} \frac{1 b}{I t}$
		Pross., mm	$\rho \frac{2 \mathrm{D}}{\mathrm{I}^{\circ} \mathrm{t}}$	$\mu^{\mu} \frac{1 b}{E-s e c}$	$\frac{1}{A_{t}} \frac{1 b}{f^{2} c-50 c}$	
20	35.9	---	23.	0.297	1.51	20.4
91	37.6	_--	55.6	0.264	1.05	12.9
92	39.1	--.	,	$0.23{ }^{\circ}$	0.630	6.9
70	23.1	---	62.3	6.28×10^{-4}	5.49	1.1
62	23.0	-..-	n	¢.30 ${ }^{11}$	5.85	1.3
68	2.2 .7	---	"	$6.34{ }^{\prime \prime}$	6.99	1.3
67	22.2	---	\#	$6.40{ }^{\prime \prime}$	7.82	2.1
66	21.8	---	"	6.46	8.20	2.3
56	21.0	767	0.0746	1.23×10^{-5}	0.183	1.0
55	23.9	776	0.0755	"	0.210	1.3
54	23.2	791	0.0772	1.22 "	0.248	1.7
53	21.0	014	0.0001	" "	0.301	2.2
52	18.9	832	0.0324	1.21 "	0.336	2.6

rable 11 (cont.)

Wable 11 (cont.)

Eod $H^{B 6}, 1.032$ inch Raschig ring in the 6.08 inch colum$\begin{aligned} & \text { Ioneth of unit }=1.048 \text { inch } \\ & \text { thicleness of unit }=0.162 \text { inch } \\ & \% \text { void }=68.9 \\ & S_{t} / \mathrm{s}_{\mathrm{p}}=0.157 \\ & \mathrm{w} / \mathrm{m}=5.63 \end{aligned}$						
Run \#	Tomp. ${ }^{\circ} \mathrm{C}$	Pross., mm	$\rho \frac{I b}{1+3}$	$\mu \frac{i b}{t-30 c}$	$\frac{W}{A}+\frac{1 b}{m t^{2}-30 c}$	$\frac{\Delta P}{L t} \frac{I v}{I^{\prime} t 3}$
1215	38.1	---	55.6	0.255	1.28	1). 9
126	38.8	---		0.213	0.864	10.0
127	39.3	---	"	0.235	0.605	6.7
122	29.5	---	6.2 .2	b.43x10-4	8.26	3.
123	29.7	---	I	5.4111	5.72	1.6
124	30.0	---	"	5.39 "	4.27	1.0
96	22.7	808	0.0791	1.22×10^{-5}	0.331	3.6
97	23.8	790	0.0772	1.23 "	0.278	2.8
98	23.6	764	0.0746	1.22 "	0.130	1.4
99	23.4	753	0.0735	1.23 "	0.146	0.8

Table II (cont.)

Bod $\$ 7.0 .645$ inch wire ring in tho 4.06$\begin{aligned} & \text { diameter of wire }=0.0677 \text { inch } \\ & \text { length of wire }=1.02 \text { inch } \\ & \% \text { voic }=83.2 \\ & \mathrm{St} / \mathrm{Sp}=0.098 \\ & \mathrm{~m} / \mathrm{m}=1.25 \end{aligned}$						
Run $\frac{4}{1}$	Torip. 0^{0}	Press., 4n:	$\rho \frac{1 b}{f^{\prime} * 3}$	$\mu_{f: 30 c} \frac{1 b}{t-50}$	$\frac{W}{\bar{A}_{t}} \frac{1 b}{E^{2}-90 c}$	$\frac{\Delta P}{E t} \frac{1 b}{I^{\prime} t 3}$
131	37.2	---	59.7	0.272	2.82	60.3
132	37.7	---	$5 \% .6$	0.263	2.36	$2 C .2$
133	30.2	---	1	0.254	0.680	14.0
115	29.1	---	62.2	5.48×10^{-4}	6.10	1.0
11.	29.0	-- -	"	5.5011	8.28	1.7
113	23.9	---	"	\%. $0^{\prime \prime} 1{ }^{\prime \prime}$	11.1	3.0
112	20.7	--~	\%	5.94	14.8	4.9
111	22.4	--	11	5.5711	10.6	7.6
110	$2 \% .0$	745	0.0721	1.23×10^{-5}	0.250	1.2
109	25.0	750	0.0728	" ${ }^{\prime \prime}$	0.358	2.1
100	24.9	771	0.0748	111	0.5\%8	4.7
107	24.1	775	0.0774	111	0.730	$7 \cdot 2$

Tablo 11 (cont.)

$\begin{array}{rl} \text { Led } \# 8, & 0.792 \text { inch } g l a s \\ S v o i d & =44.0 \\ S_{t} / S_{p}=0.305 \\ W & m .64 \end{array}$						
Pun 菲	Temp. ${ }^{\circ} \mathrm{C}$	Pross., man	$\rho \frac{1 b}{I^{\prime} t^{3}}$	$\text { 从h } \frac{l b}{f t-3 e c}$	$\frac{1 b}{A_{t}} \frac{1}{r^{2}-3 e c}$	$\frac{\Delta P}{L t} \frac{1 b}{I^{n} t 3}$
12 C	38.5	-	55.6	0.249	3.72	93.9
129	39.1	---		0.238	1.07	46.1
130	30.8	---	"	0.227	2.06	25.1
121	30.0	---	62.2	5.28×10-4	5.34	2.3
120	30.1	---	"	$5.33{ }^{\text {n }}$	7.28	4.1
119	30.1	---	"	5.37 "	10.9	11.2
118	29.9	---	"	$5.39{ }^{\prime \prime}$	15.7	18.0
117	29.8	---	11	$5 \cdot 40$ "	22.9	32.9
110	29.6	--	"	$5 \cdot 42$ "	32.0	61.0
100	23.1	741	0.0724	1.22×10^{-5}	0.178	1.9
105	"	743	0.0727	" ${ }^{\prime \prime}$	0.253	3.6
104	23.0	750	0.0733	"	0.381	7.6
103	22.8	758	0.0742	" "	0.538	14.3
102	22.4	784	0.0767	" "	0.831	32.2
101	21.0	815	0.0801	" "	1.11	56.1
100	20.8	859	0.0847	"	1.37	81.0

Taile 11 (cont.)

$$
\frac{1 b}{1 t} 3
$$

$\mu \frac{1 b}{f t-90 c}$

Press., $2 m$
: $: 1: 180$:~NH

Run f Temp. 0 C
$\frac{14}{I_{t} t t^{2}-s c c} \quad \frac{\triangle P}{I t} \frac{I b}{I t 3}$

Sun 3	Tomn. ${ }^{\circ} \mathrm{C}$	Pross., mra	$\rho \frac{1 b}{i^{2} t 3}$	$\mu \frac{1 b}{t-s c c}$	$\frac{10}{A t} \frac{10}{t^{2}-s e c}$	$\frac{\Delta P}{L t} \frac{I b}{f t}$
199 160 101 134 13% 130	$\begin{aligned} & 23 \cdot 3 \\ & 23 \cdot 6 \\ & 23.7 \\ & 26.7 \\ & 26.3 \\ & 26.3 \end{aligned}$	$\begin{aligned} & -- \\ & --- \\ & 825 \\ & 778 \\ & 752 \end{aligned}$	$\begin{gathered} 62.3 \\ 11 \\ 0.0706 \\ 0.0740 \\ 0.0726 \end{gathered}$	$\begin{aligned} & C .25 \times 10^{-4} \\ & 0.20{ }^{11} \\ & 6.19 " 1 \\ & 1.23 \times 10^{-5} \\ & 11 " 11 \end{aligned}$	$\begin{aligned} & 9.24 \\ & 6.62 \\ & 4.01 \\ & 0.326 \\ & 0.222 \\ & 0.140 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 3.5 \\ & 1.6 \\ & 5.0 \\ & 3.1 \\ & 1.3 \end{aligned}$
Run \%	Temp. ${ }^{\circ} \mathrm{C}$	Press.e. 1 m	$\rho \frac{1 b}{1 t 5}$	$\mu \frac{1 b}{f t-90 c}$	$\frac{1}{A_{1}}+\frac{11}{2}-s c c$	$\frac{\Delta P}{1 b} \frac{1 b}{1 t}$
118	17.6	---	62.3	6.83×10^{-4}	20.9	
149	19.7	---		6.7611	16.5	
150	17.9	---	"	6.76 "	12.8	3.2
151	20.1	---	"	6.73 "	9.55	1.8
152	20.3	---	${ }^{\prime \prime}$	6.70 "	7.14	1.1
14.3	21.6	831	0.0815	1.22×10^{-5}	0.763	7.6
144	22.4	800	0.0783	" 1	0.626	5.4
145	22.8	777	0.0758	"	0.512	3.8
146	22.9	751	0.0733	" "	0.382	2.2
147	22.6	741	0.0724	" "	0.257	1.1

Table 11 (cont.)

Bed \#11, 1.032 inch Raschig ring in the 3.10 inch column$\begin{aligned} & \text { longth of unlt }=1.048 \text { inch } \\ & \text { thickness of unit } 0.162 \text { inch } \\ & \text { of void }=74.5 \\ & S t / S_{p}=0.354 \\ & \mathrm{~m}=4.28 \end{aligned}$						
Run	Tomp. ${ }^{\circ} \mathrm{C}$	Press., mm	$\rho \frac{1 b}{\mathrm{f}^{\prime} \mathrm{t} 3}$	$\mu_{i t-s e c} \frac{1 b}{}$	$\frac{\pi}{A_{1}} \frac{1 b}{f^{2}-30 c}$	$\frac{\Delta P}{1 t} \frac{1 b}{1 t} 3$
153	21.7	---	62.3	6.48×10^{-i}	36.2	17.5
254	21.9	---		6.4411	27.7	11.1
155	22.1	---	"	6.41 "	20.6	6.1
156	22.4	---	"	$6.30{ }^{\prime \prime}$	16.4	3.
157	22.6	---	"	6.35 "	12.3	1.8
150	22.8	---	"	6.32 n	6.68	0.9
137	23.1	825	0.0007	$1.22 \times 10-5$	1.29	13.9
130	23.1	782	0.0774	11	1.02	9.1
139	22.8	702	0.0744	". "	0.817	4.8
110	22.4	752	0.0736	" "	0.600	3.4
ILI	22.0	744	0.0729	" "	0.488	2.2
142	21.8	730	0.0723	" "	0.342	1.1

Tablo 11 (cont.)

Run \#	Temp.0\%	Press., mm	$\rho \frac{15}{f t 3}$	$\mu \frac{10}{i \frac{100}{2}}$	$\frac{\pi}{4}+\frac{1 h}{f^{2}-90 c}$	$\frac{\Delta P}{L_{t}} \frac{10}{1 t} 3$
$13!$	35.3	---	55.7	0.313	1.205	11.8
$10{ }^{\circ}$	36.6	---		0.204	1.346	11.3
100	36.5	\cdots	"	0.287	1.317	11.
177	27.0	768	0.0740	$1.235 \times 10^{-}$	0.275	2.1
174	26.6	772	0.074	1.23 "	0.295	2.4
176	26.2	787	0.0761	" "	0.342	3.1
175°	$25^{\circ} .8$	787	000761	$1{ }^{\prime \prime}$	0.34 .7	3.2
Fed illa, same spocifications as bed \#l2						
distance betweon extremities of the packed zone 31.6 inch						
Run :/	Tomp. ${ }^{\circ} \mathrm{C}$	Press., mm	$\frac{1 b}{1 t} 3$	$\frac{1 b}{f t-s e c}$	$\frac{1}{A_{1}} \frac{1 b}{f t^{2}-s e}$	$\frac{P}{I t} \frac{I b}{\Gamma t} 3$
196	36.2	---	55.7	0.204	1.142	9.5
197	37.2	---		0.273	1.171	9.1
198	37.9	---	55.6	0.260	1.139	8.9
193	20.1	776	0.0749	1.23×10^{-5}	0.273	2.0
195	"	780	0.0753		0.278	2.1
194	25.8	825	0.0797	"	0.353	3.2
192	25.3	826	0.0800	11	0.362	$3 \cdot 3$

Table 11 (cont.)

Run ${ }^{2}$	```Pod vilo, 0.522 inch Raschig rinc in the 4 longth of unit = 0.533 inch thicknes; af unit - 0.0086 inch % void = 59.5 St/mp=0.103 7.20```					
	Iemp. ${ }^{\circ} \mathrm{C}$	Pros3., mra	$\rho \frac{1 b}{x^{2} t^{3}}$	$\mu \frac{1 b}{f t-30 c}$	$\frac{i}{n t} \frac{11}{r,-3 c c}$	$\frac{\Delta P}{L_{t}} \frac{1 b}{1 t} 3$
189	35.2	---	59.7	0.315	2.152	107.0
170	35.4	-..-		0.310	1.470	105.4
191	37.1	---	"	0.275	0.2953	22.0
102	27.0	734	0.10707	1.235×10^{-5}	0.132	2.4
173	27.4	737	0.0709	"	0.130	2.4
172	27.5	739	0.0711	" "	0.207	$\% .3$
13	27.0	737	0.0709	" \quad "	0.23 ?	5.8
171	27.0	74.2	0.0712	" "	0.308	11.1
164	26.9	741	0.0713	" "	0.320	11.7
16	27.0	750	0.0722	"	0.133',	20.2
170	27.7	752	0.0724	" "	0.449	21.7
106	27.1	770	0.074 L	" 1	0.637	41.8
169	27.6	772	0.0743	" "	0.639	41.9
168	27.1	739	0.0758	" "	0.791	61.4
167	27.4	721	0.0761	"	0.807	64.2

Table 11 (concl.)

$$
\begin{aligned}
& \text { mixture of } 5-0.045 \text { inch wire rines, } 1-0.792 \text { inch glass } \\
& \text { ball, I-0.512 inch Eerl sadile, and } 1-0.522 \text { inch Ras- } \\
& \text { chic rine in the } 3.10 \text { inch colunn. } \\
& \text { volume of simplost composite }=2.37 \times 10-4 \text { cu. ft. } \\
& \text { surface of simplest composite }=0.0486 \mathrm{sq} \text {. ft. } \\
& \text { perimeter of gimplest composito }=2.48 \mathrm{ft} \text {. } \\
& \text { void }=53.0
\end{aligned}
$$

$$
\triangle P I b
$$

able 12. Incividual values of the laminar flow constant.

Rep.	Packiny Pe	ed I Dt, in.	Dngein.	-1voia	s_{t} / s_{2}	m / m	1	Run:	N	A	Run?	:	A
sut.	wire ring	26.02	0.64,	01.6	$0.0 \% 9$	1.39	0.3	$\begin{aligned} & A \\ & \mathrm{C} \\ & 2 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.007 \\ & 0.013 \end{aligned}$	$\begin{aligned} & 6.76 \\ & 6.51 \\ & 6.10 \end{aligned}$	$\begin{array}{ll}1 \\ 1 \\ 3 & 0\end{array}$	$\begin{aligned} & 0.030 \\ & 0.025 \\ & 0.009 \end{aligned}$	6.02 6.05 6.02
"	" "	74.06	"	33.2	0.098	1.2;		$\begin{aligned} & 131 \\ & 133 \end{aligned}$	$\begin{aligned} & 0.071 \\ & 0.018 \end{aligned}$	$\begin{aligned} & 5.80 \\ & 0.00 \end{aligned}$	132	0.036	8.91
"	" "	\% 3.10	:	83.6	0.131	1.21	0.3	$\begin{aligned} & 870 \\ & 89 \end{aligned}$	$\begin{aligned} & 0.072 \\ & 0.024 \end{aligned}$	$\begin{aligned} & 6.08 \\ & 6.42 \end{aligned}$	E0 0	$0.0 i 40$	6.31
"	Class ball	34.05	0.792	42.3	0.225	¢. 20	0.8	$\begin{array}{rr} \text { F } \\ \text { II } \\ 7 & 0 \\ 9 & 0 \\ 94 & 0 \end{array}$	$\begin{aligned} & 0.040 \\ & 0.026 \\ & 0.049 \\ & 0.011 \\ & 0.043 \end{aligned}$	$\begin{array}{r} 11.23 \\ 11.27 \\ 10.40 \\ 3.72 \\ 10.16 \end{array}$	$\begin{array}{rr} G 0 \\ 1 & 0 \\ 1 & 0 \\ 93 & 0 \\ 95 & 0 \end{array}$	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.030 \\ & 0.123 \\ & 0.021 \end{aligned}$	$\begin{aligned} & 10.98 \\ & 11.80 \\ & 10.00 \\ & 10.93 \\ & 10.04 \end{aligned}$
"	"	33.10	!	1.4 .0	0.305	7.64	0.8	$\begin{aligned} & 12 \varepsilon \\ & 130 \end{aligned}$	$\begin{aligned} & 0.129 \\ & 0.04,0 \end{aligned}$	$\begin{aligned} & 9.59 \\ & 9.91 \end{aligned}$	1290	0.068	7.80
"	Vorl saddle	13.10	1.028	77.0	0.205	4.5	0.6	$\begin{aligned} & D \\ & 1 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.106 \\ & 0.220 \\ & 0.063 \end{aligned}$	$\begin{aligned} & 7.41 \\ & 8.01 \\ & 9.19 \end{aligned}$		$\begin{aligned} & 0.057 \\ & 0.149 \end{aligned}$	9.44
n	"	46.08	"	71.8	0.118	5.94	0.6	$\begin{aligned} & 90 \\ & 92 \end{aligned}$	$\begin{aligned} & 0.054 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 8.1 .53 \\ & 8.59 \end{aligned}$	910	0.043	8.53
"	Raschin ring	66.08	1.032	68.9	0.157	$5 . .63$	1.0	$\begin{aligned} & 125 \\ & 127 \end{aligned}$	$\begin{aligned} & 0.065 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 11.58 \\ & 1.90 \end{aligned}$	126	0.045	$2 ? .00$
"	" "	12	1.0115	92	0.126	$4 \cdot 43$	0.5	$\begin{aligned} & 184 \\ & 186 \end{aligned}$	$\begin{aligned} & 0.056 \\ & 0.067 \end{aligned}$	$\begin{aligned} & 10.43 \\ & 10.01 \end{aligned}$	1850	0.070	9.79
"	" "	12a"	"	"	"	"		$\begin{aligned} & 196 \\ & 198 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.064 \end{aligned}$	$\begin{aligned} & 9.34 \\ & 9.93 \end{aligned}$	1970	0.063	9.49

Table 12 (cont.)

Table 12 (cont.)

ROf.	Paciking	Eed	\%	It, in.	Dp,in.	GVoid	$5 t / S_{0}$	W/is	B^{\prime}	Run\%	NT	A	Run'f	If	A	
(3)	Kough sacidlo 3			32.07	0.130	93.5	0.0414	5.02	0.0	104	0.010	8.07	105	0.012	7.83	
				106						0.013	8.03	107	0.015	8.00		
				108						0.016	7.97	109	0.018	8.00		
				110						0.019	7.92	11.1	0.020	7.81		
				112						0.023	7.70	113	0.02?	7.68		
				114						0.030	7.68	20:	0.029	?. 87		
				290						0.042	7.95	297	0.0, 0	2. 02		
				298						0.066	8.00	299	0.083	8.00		
				300						0.101	8.10	301	0.121	8.06		
				302 ?						0.145	C. 03	303	0.165	7.91		
				304						0.202	T.93	305	0.227	O. 01		
				306						0.26 2	0.08	307	0.309	0.01		
										$0.3!\div$	7.99	273	0.417	C.91		
				$2 \%^{\prime}$						0.482	7.15					
"	Berl sac		46%		1.00	72.5	0.113	6.33	0.6	10	0.008	$7 \cdot+7$	11	0.010	5.90	
											17	0.010	7.0;	21	0.012	$7 \cdot 45$
											3	0.013		52	0.017	6.03
											51	0.021	6.76	$1 ?$	0.022	6.92
											22	0.024	5.77	, 9	0.0215	7.73
											20	0.025	0.06	50	0.026	6.6
											42	0.029	6.67	19	0.032	6.12
											13	0.033	7.15	48	0.033	6.66
											23	0.034	-0.11	c	0.036	7. 21
											$2!$	0.037	(.39)	$4 ?$	0.037	6.52
												0.040	$\bigcirc .07$	126	0.042	6.1
												$0.0+3$	7.01	25	0.04 j	6. 33
												0.047	0.33	14	0.04 ?	7. 37
												0.031	0.57	43	0.036	
										0.059	7.05	42	0.061	6.39		
					13)					0.064	7.2?	26	0.004	5.1		
					1					$0.06: 8$	6.12	27	0.0\%	6.11		
					16					0.1022	7.01		0.033	6.1		
					29					0.020	6.18	6	0.114	6.17		

Table 12 (cont.)

Ref.	Packing Bedy	Dt,in.	Dp,in.	Jvold	S_{t} / S_{p}	w / m	11	Run/ ${ }^{\text {/ }}$	N	A	Run'	N	A
(3)	Eerl sacdic it	6*	1.00	72.5	0.113	6.33	0.6	$\begin{aligned} & 34 \\ & 55 \\ & 32 \\ & 37 \\ & 40 \\ & 5 \\ & 57 \\ & 68 \\ & 58 \\ & 3 \\ & 60 \end{aligned}$		$\begin{aligned} & 6.80 \\ & 6.23 \\ & 6.28 \\ & 6.73 \\ & 6.70 \\ & 6.29 \\ & 6.22 \\ & 6.19 \\ & 5.22 \\ & 6.82 \\ & 5.81 \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \\ & 35 \\ & 56 \\ & 36 \\ & 30 \\ & 39 \\ & 49 \\ & 59 \\ & 69 \end{aligned}$	$\begin{aligned} & 0.139 \\ & 0.192 \\ & 0.180 \\ & 0.200 \\ & 0.223 \\ & 0.270 \\ & 0.308 \\ & 0.348 \\ & 0.432 \\ & 0.518 \end{aligned}$	$\begin{aligned} & 6.76 \\ & 6.75 \\ & 6.86 \\ & 6.22 \\ & 6.82 \\ & 6.48 \\ & 6.74 \\ & 6.81 \\ & 5.88 \\ & 3.90 \end{aligned}$
	Raschi	"	"	70.7	0.121	6.36	0.9	$\begin{aligned} & 148 \\ & 150 \\ & 152 \\ & 153 \\ & 155 \\ & 157 \\ & 168 \\ & 169 \\ & 170 \\ & 160 \\ & 103 \\ & 161 \\ & 134 \\ & 163 \end{aligned}$	0.001 0.005 0.012 0.017 0.027 0.040 0.053 0.079 0.110 0.130 0.193 0.254 0.374 0.404	$\begin{aligned} & 7.57 \\ & 8.07 \\ & 7.77 \\ & 7.39 \\ & 7.80 \\ & 7.48 \\ & 3.68 \\ & 6.14 \\ & 8.31 \\ & . .31 \\ & 8.58 \\ & 8.20 \\ & 7.47 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 149 \\ & 151 \\ & 167 \\ & 154 \\ & 156 \\ & 158 \\ & 136 \\ & 159 \\ & 171 \\ & 172 \\ & 135 \\ & 162 \\ & 104 \\ & 137 \end{aligned}$	$\begin{aligned} & 0.003 \\ & 0.008 \\ & 0.015 \\ & 0.022 \\ & 0.033 \\ & 0.0 .22 \\ & 0.067 \\ & 0.080 \\ & 0.127 \\ & 0.157 \\ & 0.228 \\ & 0.312 \\ & 0.382 \\ & 0.410 \end{aligned}$	7.60 7.97 6.32 7.68 7.58 7.45 9.45 8.52 7.48 7.54 6.58 8.27 7.22 6.73
(5)	Hexaranol priseri		0.185	37.7	0.066	9.39		--		12.32			
1	" "	---	"	42.6	0.065	7.66	---	--	---	9.30			
"	Jubo	---	0.220	34.4	0.075	11.11	---	--	---	$14_{4} .10$		-----	
"	"	---	"	39.7	0.078	9.10	---	--	----	10.80	--	---	

Table 12 (concl.)

IarIe 13. Iraividual. valuos or tra turbulent flow constant

Ref	Packing	Bodf $\mathrm{D}_{\text {t, }} \mathrm{in}$.	Dn, in.	Sovoid	$S_{t} / 3^{3} p$	w / m	$\mathrm{A}^{\prime} \mathrm{Ru}$	Run//4	N	E^{*}	Run ${ }^{\text {生 }}$	Ii	b^{*}
Aut,	Wire ring	26.08	0.645	81.6	0.059	1.39	6.7	$\begin{aligned} & 42 \\ & 40 \\ & 38 \\ & 28 \\ & 26 \end{aligned}$	$\begin{aligned} & 45.9 \\ & 63.0 \\ & 822 \\ & 125 \\ & 156 \end{aligned}$	$\begin{aligned} & 0.484 \\ & 0.32 \\ & 0.390 \\ & 0.209 \\ & 0.222 \end{aligned}$	$\begin{aligned} & 41 \\ & 39 \\ & 37 \\ & 27 \end{aligned}$	$\begin{array}{r} 56.1 \\ 73.0 \\ 90.7 \\ 139 \end{array}$	$\begin{aligned} & 0.409 \\ & 0.418 \\ & 0.389 \\ & 0.212 \end{aligned}$
"	" "	53.10	"	83.6	0.131	1.21	7.1	$\begin{aligned} & 78 \\ & 76 \\ & 74 \\ & 72 \\ & 62 \\ & 60 \\ & 58 \end{aligned}$	$\begin{aligned} & 64.0 \\ & 102 \\ & 195 \\ & 339 \\ & 139 \\ & 223 \\ & 610 \end{aligned}$	$\begin{aligned} & 0.485 \\ & 0.385 \\ & 0.293 \\ & 0.282 \\ & 0.285 \\ & 0.211 \\ & 0.238 \end{aligned}$	77 75 73 71 61 59 57	$\begin{aligned} & 82 \cdot 9 \\ & 1144 \\ & 270 \\ & 363 \\ & 175 \\ & 449 \\ & 744 \end{aligned}$	$\begin{aligned} & 0.394 \\ & 0.307 \\ & 0.089 \\ & 0.300 \\ & 0.24 \\ & 0.325 \\ & 0.234 \end{aligned}$
"	"	74.06	"	83.2	0.098	1.25		$\begin{aligned} & 115 \\ & 113 \\ & 111 \\ & 109 \\ & 107 \end{aligned}$	$\begin{aligned} & 77 \cdot 3 \\ & 138 \\ & 228 \\ & 199 \\ & 408 \end{aligned}$	$\begin{aligned} & 0.270 \\ & 0.287 \\ & 0.272 \\ & 0.221 \\ & 0.214 \end{aligned}$	$\begin{aligned} & 114 \\ & 112 \\ & 110 \\ & 108 \end{aligned}$	$\begin{aligned} & 103 \\ & 184 \\ & 140 \\ & 310 \end{aligned}$	$\begin{aligned} & 0.280 \\ & 0.268 \\ & 0.253 \\ & 0.229 \end{aligned}$
"	class ball		0.792	42.3	0.225	8.20	13.7	$\begin{aligned} & 85 \\ & 84 \\ & 82 \\ & 80 \\ & 18 \\ & 16 \\ & 14 \\ & 12 \\ & 11 \end{aligned}$	$\begin{array}{r} 59.1 \\ 78.3 \\ 129 \\ 230 \\ 113 \\ 170 \\ 300 \\ 493 \\ 500 \end{array}$	$\begin{aligned} & 1.30 \\ & 1.17 \\ & 1.69 \\ & 1.30 \\ & 0.013 \\ & 0.746 \\ & 0.34 \\ & 0.719 \\ & 0.75 \end{aligned}$	85 83 81 79 17 15 13 10	$\begin{aligned} & 62.2 \\ & 102 \\ & 161 \\ & 254 \\ & 134 \\ & 236 \\ & 362 \\ & 463 \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.34 \\ & 1.00 \\ & 1.27 \\ & 0.791 \\ & 0.733 \\ & 0.735 \\ & 0.717 \end{aligned}$
"	"	83.10	"	44.0	0.305	7.64	$14 \cdot 3$	$\begin{aligned} & 121 \\ & 119 \\ & 111 \\ & 106 \end{aligned}$	$\begin{aligned} & 87 \cdot 9 \\ & 176 \\ & 367 \\ & 128 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.54 \\ & 1.04 \\ & 1.07 \end{aligned}$	120 118 110 105	$\begin{aligned} & 118 \\ & 251 \\ & 510 \\ & 179 \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.20 \\ & 1.00 \\ & 1.07 \end{aligned}$

Tablo 13 (cont.)

Rof.	Packing	edit It, in	I_{n}, in	5void	$3 \mathrm{c} / 3$	w / m	A^{\prime}	Pun*	N	13\%	Run"	11	$13^{* *}$
Aut.	slass ball	U 3.10	0.192	44.0	0.305	7.44	14	$\begin{aligned} & 104 \\ & 102 \\ & 100 \end{aligned}$	$\begin{aligned} & 270 \\ & 591 \\ & 776 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 0.746 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 103 \\ & 101 \end{aligned}$	$\begin{aligned} & 381 \\ & 787 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.99 \end{aligned}$
!	" 1	96.08	11	30.8	0.142	9.47	13	$\begin{aligned} & 161 \\ & 159 \\ & 135 \end{aligned}$	$\begin{array}{r} 45 \\ 121 \\ 126 \end{array}$	$\begin{aligned} & 1.07 \\ & 1.08 \\ & 1.01 \end{aligned}$	$\begin{aligned} & 160 \\ & 136 \\ & 134 \end{aligned}$	$\begin{array}{r} 74 \\ 79 \\ 185 \end{array}$	$\begin{aligned} & 0.93 \\ & 1.01 \\ & 0.701 \end{aligned}$
"	Herl sadcle	13.10	1.028	77.0	0.285	4.84	10	$\begin{aligned} & 53 \\ & 49 \\ & 1+7 \\ & 45 \\ & 43 \\ & 24 \\ & 24 \\ & 22 \\ & 20 \end{aligned}$	$\begin{array}{r} 147 \\ 253 \\ 425 \\ 624 \\ 010 \\ 486 \\ 048 \\ 7300 \end{array}$	$\begin{aligned} & 0.213 \\ & 0.637 \\ & 0.657 \\ & 4.462 \\ & 0.883 \\ & 0.524 \\ & 0.502 \\ & 0.493 \end{aligned}$	$\begin{aligned} & 50 \\ & 48 \\ & 46 \\ & 44 \\ & 25 \\ & 23 \\ & 21 \\ & 19 \end{aligned}$	$\begin{aligned} & 196 \\ & 336 \\ & 525 \\ & 683 \\ & 364 \\ & 609 \\ & 1120 \\ & 1480 \end{aligned}$	
"	" "	46.08	"	71.0	0.110	3.94	10	70 68 50 55 33	$\begin{array}{r} 93 \\ 119 \\ 130 \\ 183 \\ 261 \end{array}$	$\begin{aligned} & 0.680 \\ & 0.696 \\ & 0.675 \\ & 0.678 \\ & 0.651 \end{aligned}$	69 67 50 30 $3 i 4$ 32	$\begin{aligned} & 100 \\ & 131 \\ & 139 \\ & 210 \\ & 208 \end{aligned}$	$\begin{aligned} & 0.728 \\ & 0.682 \\ & 0.718 \\ & 0.603 \\ & 0.615 \end{aligned}$
"	" "	104.06	"	72.7	6.132	5.70	10	$\begin{aligned} & 152 \\ & 150 \\ & 148 \\ & 146 \\ & 141 \end{aligned}$	$\begin{aligned} & 119 \\ & 212 \\ & 3143 \\ & 350 \\ & 275 \end{aligned}$	$\begin{aligned} & 0.393 \\ & 0.368 \\ & 0.390 \\ & 0.368 \\ & 0.369 \end{aligned}$	$\begin{aligned} & 151 \\ & 149 \\ & 147 \\ & 145 \\ & 143 \end{aligned}$	$\begin{aligned} & 159 \\ & 273 \\ & 230 \\ & 470 \\ & 700 \end{aligned}$	$\begin{aligned} & 0.375 \\ & 0.705 \\ & 0.369 \\ & 0.373 \\ & 0.308 \end{aligned}$
"	Raschic; ring	66.08	1.032	68.9	0.157	5.63	10	$\begin{gathered} 124 \\ 122 \\ 96 \\ 96 \end{gathered}$	$\begin{aligned} & 101 \\ & 104 \\ & 203 \\ & 354 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.36 \\ & 1.37 \\ & 1.07 \end{aligned}$	123 99 77	$\begin{aligned} & 138 \\ & 15 \\ & 205 \end{aligned}$	$\begin{aligned} & 1.23 \\ & 1.14 \\ & 1.13 \end{aligned}$

Table 13 (cont.)

Ref.	Packing Eed	d非 $\mathrm{D}_{\text {t, }}$	Dp,in. ¢\%oid	s_{t} / S_{p}	w / m	A^{\prime} R	Rund	N	- $1^{* *}$	Run!!	\%	E\%
Aut.	Raschicg ring	113.10	1.03274 .5	0.354	4.28	11.5	$\begin{aligned} & 150 \\ & 156 \\ & 154 \\ & 142 \\ & 140 \\ & 130 \end{aligned}$	$\begin{array}{r} 234 \\ 439 \\ 734 \\ 470 \\ 830 \\ 1420 \end{array}$	$\begin{aligned} & 0.359 \\ & 0.40 \\ & 0.479 \\ & 0.350 \\ & 0.368 \\ & 0.401 \end{aligned}$	$\begin{aligned} & 157 \\ & 155 \\ & 153 \\ & 141 \\ & 139 \\ & 137 \end{aligned}$	$\begin{array}{r} 330 \\ 549 \\ 954 \\ 681 \\ 111+0 \\ 1800 \end{array}$	$\begin{aligned} & 0.365 \\ & 0.470 \\ & 0.497 \\ & 0.363 \\ & 0.284 \\ & 0.365 \end{aligned}$
"	" "	126.08	1.011592	0.126	4.43		$\begin{aligned} & 177 \\ & 176 \end{aligned}$	$\begin{aligned} & 334 \\ & 416 \end{aligned}$	$\begin{aligned} & 0.961 \\ & 0.936 \end{aligned}$	$\begin{aligned} & 174 \\ & 175 \end{aligned}$	$\begin{aligned} & 358 \\ & 422 \end{aligned}$	$\begin{aligned} & 0.937 \\ & 0.918 \end{aligned}$
"	" 1	12a"	" 1	"	"		$\begin{aligned} & 193 \\ & 194 \end{aligned}$	$\begin{array}{r} 325 \\ 421 \end{array}$	$\begin{aligned} & 0.915 \\ & 0.953 \end{aligned}$	$\begin{aligned} & 195 \\ & 192 \end{aligned}$	$\begin{array}{r} 331 \\ 422 \end{array}$	$\begin{aligned} & 0.944 \\ & 0.965 \end{aligned}$
,	"	134.06	0.52259 .5	0.103	7.20	11.1	$\begin{aligned} & 162 \\ & 172 \\ & 111 \\ & 160 \\ & 106 \\ & 100 \end{aligned}$	$\begin{aligned} & 55.5 \\ & 67.0 \\ & 129 \\ & 143 \\ & 267 \\ & 332 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.32 \\ & 1.30 \\ & 1.22 \\ & 1.23 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 173 \\ & 163 \\ & 164 \\ & 170 \\ & 169 \\ & 167 \end{aligned}$	$\begin{aligned} & 5 \% .0 \\ & 93.2 \\ & 134 \\ & 184 \\ & 260 \\ & 339 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 1.28 \\ & 1.27 \\ & 1.27 \\ & 1.23 \\ & 1.2 ? \end{aligned}$
"	mixture	$14+3.10$	varicd 53.0	0.157	3.57	8.8	$\begin{aligned} & 183 \\ & 181 \\ & 179 \end{aligned}$	$\begin{aligned} & 78.8 \\ & 176 \\ & 391 \end{aligned}$	$\begin{aligned} & 0.846 \\ & 0.814 \\ & 0.768 \end{aligned}$	$\begin{aligned} & 102 \\ & 100 \\ & 178 \end{aligned}$	$\begin{aligned} & 128 \\ & 249 \\ & 305 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.802 \\ & 0.765 \end{aligned}$
(I)	Glass rine	-4^{x}	$0.269^{x \times 72}$	0.050	6.32	9.7	-	$\begin{aligned} & 15.2 \\ & 35.0 \\ & 65.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 2.10 \\ & 1.95 \end{aligned}$	--	$\begin{array}{r} 25.0 \\ 47.5 \\ 102 \end{array}$	$\begin{aligned} & 2.24 \\ & 2.03 \\ & 1.05 \end{aligned}$
\square	"	-- "	0.23367	0.042	6.53	9.8	--	$\begin{aligned} & 16.8 \\ & 33.8 \\ & 58.5 \\ & 102 \end{aligned}$	$\begin{aligned} & 2.27 \\ & 2.07 \\ & 1.93 \\ & 1.85 \end{aligned}$	--	$\begin{array}{r} 25.4 \\ 47.9 \\ 76.2 \end{array}$	$\begin{aligned} & 2.08 \\ & 1.98 \\ & 1.89 \end{aligned}$
"	"	-- "	0.39480	0.073	\%. 24	9.2	--	$\begin{array}{r}20.4 \\ \hline 40.0\end{array}$	$\begin{aligned} & 1.54 \\ & 1.16 \end{aligned}$	--	$\begin{aligned} & 28.0 \\ & 52.0 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.13 \end{aligned}$

Table 13 (cont.)

Rer.	Packi		Fed" I_{t}, in.	Dr,in.		$\mathrm{st}_{t} / \mathrm{s}_{n}$	W/m	A. ${ }^{\text {r }}$	Hun's	1 H	$3^{\prime \prime}$	Fun'	11	*
(1)	glass	rin:	-- 4^{x}	0.394	Co	0.073	5.24	9.2	--	$\begin{array}{r} 72.0 \\ 122 \end{array}$	$\begin{aligned} & 1.10 \\ & 1.0 \% \end{aligned}$	--	152.0	$\begin{aligned} & 1.10 \\ & 1.08 \end{aligned}$
"	"	"	-- "	0.484	$88_{r} \cdot 5$	0.092	4.62	2.9	--	$\begin{aligned} & 4.3 \\ & 05.5 \\ & 139 \end{aligned}$	$\begin{aligned} & 1.49 \\ & 1.39 \\ & 1.31 \end{aligned}$	--	$\begin{aligned} & 64.0 \\ & 113 \\ & 208 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.32 \\ & 1.25 \end{aligned}$
"	品sch	ig ring	g -- 6^{x}	1.00	72	0.147	5.35	10.1	--	$\begin{aligned} & 91.14 \\ & 24.2 \\ & 527 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.695 \\ & 0.678 \end{aligned}$	--	$\begin{aligned} & 162 \\ & 396 \\ & 635 \end{aligned}$	$\begin{aligned} & 0.766 \\ & 0.673 \\ & 0.674 \end{aligned}$
(4)	Lead	shot	-- 0.705	0.0583	37.4	0.088	10.03	13.6	--	$\begin{array}{r} 9.1 \\ 12.9 \end{array}$	$\begin{aligned} & 1.37 \\ & 1.34 \end{aligned}$	--	$\begin{aligned} & 10.7 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 1.34 \\ & 1.44 \end{aligned}$
"	"	"	-- 1.47	"	38.0	0.043	9.79	12.7	--	12.5	1.82	--	17.3	1.66
"	"	*	-- 2.07	"	37.5	0.030	10.00	"	--	11.5	1.89	--	23.0	1.91
"	"	"	--	"	36.3	"	10.j3	13.3	--		1.64			
"	"	"	-- 1.34	0.121	38.3	0.098	9.67	13.4	--	$\begin{aligned} & 19.1 \\ & 27.4 \\ & 36.3 \\ & 46.7 \\ & 53.2 \end{aligned}$	$\begin{aligned} & 1.89 \\ & 2.03 \\ & 1.07 \\ & 1.36 \\ & 1.90 \end{aligned}$	-- -- -	$\begin{aligned} & 24.0 \\ & 29.5 \\ & 42.5 \\ & 49.8 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 2.04 \\ & 1.90 \\ & 1.31 \end{aligned}$
"	"	"	-- 2.07	"	39.0	0.054	7.39	12.6	--	5.2	1.59			
"	"	"	n	"	37.0	0.062	10.20	13.4	--	$4 \cdot 4$	1.67			
"	"	"	-- 1.34	0.250	42.1	0.214	8.26	13.6	--	$\begin{aligned} & 16.2 \\ & 26.3 \\ & 43.0 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.37 \\ & 1.38 \end{aligned}$	--	$\begin{aligned} & 20.0 \\ & 30.0 \\ & 86.0 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 1.30 \\ & 1.28 \end{aligned}$

Table 13 (cont.)

「＇able 13 （coni．）

Res．	Packing		d	Dt，in．	In，in．	Svoia	St／En	w／m	$A^{\prime} \quad \mathrm{R}$	Run＇！	1	リ；＊	Run：	11	F \％
（11）	Maschls	ring	－－	4.026	0.305	$55^{5} 5$	0.677	亿． 22	11.6		$\begin{aligned} & 177 \\ & 200 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.50 \end{aligned}$		192	1.60
＂	＂	＂	－－	＂	＂	53.45	＂	8.23	＂		$\begin{aligned} & 112 \\ & 134 \\ & 156 \\ & 175 \end{aligned}$	$\begin{aligned} & 1.64 \\ & 1.69 \\ & 1.63 \\ & 1.9 \end{aligned}$		$\begin{aligned} & 122 \\ & 147 \\ & 162 \\ & 192 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.62 \\ & 1.62 \\ & 1.58 \end{aligned}$
＂	＂	＂	－－	＂	＂	61.35	0.029	E．6it	10.2		$\begin{aligned} & 328 \\ & 468 \end{aligned}$	$\begin{aligned} & 0.937 \\ & 0.922 \end{aligned}$		414	0.936
＂	＂	＂	－－	＂	＂	62.07	0.090	6.26	10.1		$\begin{array}{r} 317 \\ 1+31 \end{array}$	$\begin{aligned} & 1.00 \\ & 0.76 \end{aligned}$	－－	383	0.99
＂	＂	＂	－－	＂	＂	62.13	＂	6．25	＂		$\begin{aligned} & 278 \\ & 330 \end{aligned}$	$\begin{aligned} & 0.920 \\ & .916 \end{aligned}$		$\begin{aligned} & 321 \\ & 362 \end{aligned}$	$\begin{aligned} & 0.920 \\ & 0.91 \% \end{aligned}$
＂	18	＂	－－	＂	＂	62.3	0.091	6.19	＂		$\begin{aligned} & 1.0 \\ & 240 \\ & 207 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.0,71 \\ & 0.926 \end{aligned}$		$\begin{aligned} & 214 \\ & 266 \\ & 346 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.240 \\ & 0.226 \end{aligned}$
＂	velite sph	ere	－－	＂	c．216 5	37.65	0.052	9．8j	13.0		$\begin{aligned} & 109 \\ & 1 y_{5} \end{aligned}$	$\begin{aligned} & 1.94 \\ & 1.01 \end{aligned}$	－－	127	1.83
＂	\＃	1	－－	＂	＂	37.90	＂	9.84	＂	～－	$\begin{aligned} & 92.5 \\ & 106 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 1.06 \end{aligned}$		102	1.07
＂	\because	＂	－－	＂	\dagger	$3 ? \cdot 15$	＂	9.69	＂	－－	$\begin{aligned} & 7) .7 \\ & 9) .7 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 1.93 \end{aligned}$	－－	（i）． 0	1.97
＂	＂	＂	－－	1	＂	37.5	11	3.3	＂	－－		$\begin{aligned} & 2.06 \\ & 2.04 \\ & 2.02 \end{aligned}$	－－－	$\begin{aligned} & 57.3 \\ & 67.7 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 2.07 \\ & 2.03 \\ & 1.09 \end{aligned}$

Table 13 (cont.)

Rer.	Peckins		Jp,in. ふुणold St/Sn	vi/m	Λ^{\prime} Tun	n\% 1	$-B^{3}$	Run" N	$E^{* *}$
(11)	Collto sphoro	-- 4.026	$0.216646 .90 \quad 0.063$	6.60	10.3	-- 170	1.47	-- 20!	1.46
13	" \quad	"	" $46.800 . \overline{067}$	6.83	"	$\begin{aligned} & -\quad 1 ; 1 \\ & -\quad 273 \end{aligned}$	$\begin{aligned} & 1.4 .2 \\ & 1.40 \end{aligned}$	-- let	1.42
"	- $"$	--."	" 46.90 0.06E	6.0	"	$\begin{array}{ll} -- & 1+0 . \\ -- & 174 \end{array}$	$\begin{aligned} & 1.1+1 \\ & 1.30 \end{aligned}$	-- $15{ }^{\circ}$	1. 0
"	"	-- "	11 46.400 .067	6.94	10.4	-- 86.0 -- 113 -- I30 -- 100	$\begin{aligned} & 1.38 \\ & 1.3 i_{r} \\ & 1.32 \\ & 1.31 \end{aligned}$	$\begin{array}{ll} -- & 103 \\ -- & 123 \\ -- & 14.3 \end{array}$	1.35 1.34 1.32
"	Perl sacelc	-- "	$0.50 \times 8 \times 72.050 .113$	4.93	9.4	$\begin{aligned} & -\quad 1517 \\ & --662 \end{aligned}$	$\begin{aligned} & 0.072 \\ & 0.671 \end{aligned}$	$\begin{aligned} & -58 i j \\ & --723 \end{aligned}$	$\begin{aligned} & 0.16 .6 \\ & 0.167 \end{aligned}$
"	" "	17	371.330 .110	5.10	9.3	$\begin{aligned} & -\quad 453 \\ & --0 ? 0 \end{aligned}$	$\begin{aligned} & 0.918 \\ & 0.90 ; \end{aligned}$	-- 3.7	- \% 3
"	" "	\because	$\because \quad 71.050 .109$	5.18	"	$\begin{aligned} & -423 \\ & --52 j \end{aligned}$	$\begin{aligned} & 0.706 \\ & 0.37 \end{aligned}$	-- 302	$0.6) 7$
$"$	11	17	17 71.250.110	\%.12	"	$\begin{aligned} & -264 \\ & --43 j \end{aligned}$	$\begin{aligned} & 0.932 \\ & 0.912 \end{aligned}$	$\begin{aligned} & -\quad 362 \\ & --481 \end{aligned}$	$\begin{aligned} & 0.210 \\ & 0.911 \end{aligned}$
"	" "	-- "	" 76.30 0.133	3.9!	8.9	$\begin{aligned} & -1025 \\ & --775 \end{aligned}$	$\begin{aligned} & 0.866 \\ & 0.659 \end{aligned}$	$\begin{aligned} & --72 j \\ & --\quad 49 i \end{aligned}$	$\begin{aligned} & 0.694 \\ & 0.659 \end{aligned}$
"	" "	-- "	$" \quad 76.35 \quad$	13	"	$\begin{aligned} & -610 \\ & --620 \end{aligned}$	$\begin{aligned} & 0.6(x)+ \\ & 0.647 \end{aligned}$	-- 725	0.64,
"	" "	-- "	" 75.90 0.131	r.03		$\begin{aligned} & -=30 \\ & -\quad 764 \end{aligned}$	$\begin{aligned} & 0.67 j \\ & 0.60 \end{aligned}$	-- 6.70	0.671

Table 13 (cont.)

owamhryawnoryotmmaza
rionnio 00000000000
Miriónio0000000000000
93. 12.5Perl saddle

$$
0.130
$$

Tuble 13 (cont.)

$$
0.04
$$

$$
5.02
$$

$$
8.7
$$

$$
"
$$

| $1.00 \quad 72.5$ | 0.113 | 6.33 | 10.1 .119 | 12.3 | 0.56 | 118 | 13.8 | 0.59 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 117 | 1.0 | 0.62 | 116 | 17.0 | 0.61 | |
| | | 193 | 19.9 | 0.58 | 115 | 20.5 | 0.65 | |
| | | 111 | 24.0 | 0.65 | 113 | 20.1 | 0.66 | |
| | | 112 | 27.6 | 0.67 | 84 | 30.4 | 0.627 | |
| | | 111 | 30.7 | 0.63 | 110 | 32.0 | 0.68 | |
| | | 109 | 33.9 | 0.686 | 85 | 35.6 | 0.613 | |

FaUle 1 ? (ociot.)

Table 13 (concl.)

dile It. Sumionentany cescriptions of packiniz aiatorials.

Ief. Pacisiry Eoscription
(I) flass rime

Ciameter $=0.209$ inch; length $=$ 0.201 inch; thiciness $=0.032$ inch.
diameter $=0.233$ inch; lencth $=$ 0.217 inch; ti:1ckness $=0.032$ inch.
diameter - 0.394 inch; Iongth $=$ 0.375 inch; thickness $=0.032$ inch.
diametor a 0.4 it inch: Iencth $=$ 0.4 inch; inickness $=0.030$ inch.
viay raschas rin
(3) Emooth rickel sacicilo
" Rourh nickel packin!
" viau lerl sadicie
" Siey Rasciria rine
(シ) Toxa onal priar:
(11) Jolite cylindor

Rasciatran
ilay zerl sacide
ciameter $=1.00$ inch; len.rth $=$ 1.03 inch; thickness $=0.1$ inch.
ciameter $=0.1316$ inca; surface $=$ $6.3 j \times 10-4$ sq it: volume $=? \cdot Q_{t}$
$x 10-8$ cuft.

$$
\lambda 10<c a+0
$$

diancter $=0.0108$ root; surface $=$
U. $3 j$, $10^{-4} \mathrm{sq} \mathrm{ft}$; volume $=7.84_{4}$
x 10^{-0} cu $5 t$.
ciarieter $=1.00$ inch; surface C.03.3 sq ft; voluià $=1.35 \times 10^{-4}$ cu ft.
diamoter $=2.00$ inch; Ieneth $=$ 1.00 inch; volume $=1.93 \times 10^{-4}$ cuft.
diametar $=0.47 \mathrm{~cm}$; Ionct? $=0.48$ c\%.
ciarciocr $=0.26 \%$ inch; longth $=$ 0.3 .1 inch.
diamciar $=0.385$ inch; lensth $=$ 0.397 inch; tiaicioness $=0.0030^{\circ}$ in.
diamoter $=0.5$ inch; surfaco $=$ $37 \hat{0}$ sq it per cu ft of packine.

Fable lj，jalculued values for iriutiur İdetore and Reynola＇s nurbers．

Art．Irc

rine

	2040	ソ．じく39			9.0214	C	220	
	CCl	C． $2012 ?$	2	－ 50		33	2220	0.00
2	1.8	E．2．t	1	1.63	2.7	40	1.47	3.08
	1．，2			1.		37	1．${ }^{3}$	
	1． 22	5.73		C．00		2	J． 2	
\｛7	$3: 7$	0.00250	É	721	－． 0.14	U5	1230	0.00086
	2． $2!$	2．3c	77	1．20	3.00	76	1.75	$3 . C 1$
	1． 0		$7{ }_{4}$	1.23	7．29	73	1.2	0.1
72	1.19	12.	1	1．215	13.5	62	I． 32	－ 20
	1.			1.13	－3		0.95	
38			37	0.06	21.8	132	32.5	$0.052 i 8$
132		0．0012 7	133	1． 300	0.0 .074	115	1.22	3.23
11.4	1.23	． 27	113	2.20		112	1．0以，	7.50
111	$1 . C 7$		110	1.		1C？	0.91	6.15
103	1）．	12.6	107	－				， 1

Spae pe

	$\begin{array}{r} 39 \prime \\ 2100 \end{array}$	$\begin{aligned} & 0.03253 \\ & 0.00094 \end{aligned}$	${ }^{5}$	203	$\begin{aligned} & 0.0022 ? \\ & 0.00330 \end{aligned}$		$1,6$	$\begin{aligned} & 0.001 \\ & 0.002 \end{aligned}$
	1230	0．00074	93	126	0.00230	，	331	C．00290
	72.	0.0013	©		co	0	1.	4.20
			\＆ 3	1.59	－	C2		75
©1	1.71	12	io	1.	15.	79	1.	17.
0	1.01		17		\％． 10	16	c．	11.
		1.	14	．	20.3	13	0.	2.5
12	0.01	30.	10	0.61	31.3	11	.7	33.8
2	157	0.00670	129	306	0.00321	130		0.00180
121	2.10	4.16	120	$=.08$	．${ }^{\text {c }}$	119	？． 22	0.36
11	1.6	11.9	217	1.51	7.3	116	1.	． 1
105	1.	\％	103	1.71	． .32	102	1.50	12.1
103		． 0	102		$2 i .0$	101	1.0	37.2
100		C	15		3.70	1＇0	0.20	．
259			13.	，		135	0．éz	C． 8

π
「er
sadule

$\begin{array}{ll}296 & 0.00403 \\ 216 & 0.2056\end{array}$
2.10 ？ 45
－Monounitff
43
0.09215
2.0 .240
$\begin{array}{cc}4.13 & 9.54 \\ 2.21 & 19.4 \\ 2.17 & 30.3 \\ 1.29 & 23.2 \\ 2.21 & 1.0 \\ 2.22 & 0.06 \\ \therefore .21 & 6.30 \\ .03 & 12.1 \\ .00 & 19.4\end{array}$
mable 15 (cont.)
Rer. Packing Run F Ro Run" F Ro Run F Re

Aut. berl $\begin{array}{llllllllll}\text { saddle } & 150 & 0.66 & 13.5 & 149 & 0.67 & 17.4 & 148 & 0.64 & 21.8 \\ & 147 & 0.66 & 15.0 & 146 & 0.60 & 22.2 & 115 & 0.60 & 30.0\end{array}$ $144 \quad 0.59 \quad 36.6$
"

" Nixture $187 \quad 783 \quad 0.00149188$
$\begin{array}{lllll}745 & 0.00149 & 123 & 1.46 & 5.86 \\ 1.32 & 13.1 & 180 & 1.28 & 18.5\end{array}$ $\begin{array}{llll}179 & 1.21 & 20.1 & 170\end{array}$
$1.19 \quad 43.5$
(1) Raschig ring

	2.50	1.90
	1.78	6.13
	2.12	2.30
	1.64	5.74
--	1.45	11.0
--	1.4	1.20
--	1.	$9 \cdot 6$
--	2.12	4.08
--	1.75	10.2
--	1.34	6.82
--	0.94	29.5

(4) Sphore
$\begin{array}{ccc}- & 31.5 & 0.0215 \\ - & 7.53 & 0.125 \\ - & 4.4 & 0.23 \\ - & 2.7 & 0.48 \\ - & 2.1 & 0.63 \\ - & 1.59 & 1.21 \\ - & 1.17 & 2.62 \\ - & 5.03 & 0.225\end{array}$
-- 2

2.10	3.22	--	1.90	22
1.68	8.10	--	1.56	13.?
1.814	3.18	--	1.76	63
1.56	C.Ul	--	1.50	10.4
2.05	2.14	--	1. ${ }^{\text {! }}$	2.34
1.36) $0 \cdot+$	--	$1.2 \hat{2}$	7.55
1.29	22.3	--	1.12	13.9
1.99	5.76	--	1. d $^{\text {c }}$	7.70
1.72	12.5	--	1.01	$2 . .6$
1.12	12.1	--	0.95	16.0
0.32	39.3	--	0.72	47.4

Zaivle 1, (cont.)

Ref. Pacsin: Runt Re Fun* F Re Run* F Re
(4) Sphore

(3)

14	3300	0.00029	153	1130	0.00077	158	708	0.00141
163	461	0.00220	164	400	0.00255	175	128	0.00724
180	4.4	0.0108	164	65.2	0.0140	189	52.5	0.0184
21	35.2	0.022	33	12.4	0.0735	38	8.00	0.122
101	5.27	0.191	105	4.27	0.271	111	3.25	0.401
116	2.72	0.555	121	2.36	0.714	126	2.11	0.915
56	2.07	1.13	71	1.65	2.25	76	1.23	4.45
21	1.03	8.05	66	0.90	13.3	91	0.92	26.6
92	0.95	28.8						

$\begin{array}{llllllll}\text { Smuoti } & 136 & 10100 & 0.00014 & 141 & 1550 & 0.00063 \\ \text { saddie } & 151 & 540 & 0.002 .6 & 156 & 265 & 0.00465\end{array}$ $\begin{array}{llllll}171 & j 2.7 & 0.0202 & 176 & 28.5 & 0.0397\end{array}$ $\begin{array}{lllllll}186 & 10.3 & 0.120 & 191 & 7.00 & 0.169 & 196\end{array}$
$\begin{array}{ccccccc}10.3 & 0.120 & 191 & 7.00 & 0.169 & 196 \\ 201 & 3.70 & 0.417 & 205 & 3.00 & 0.664 & 73 \\ 212 & 2 . j 0 & 1.00 & 75 & 1.95 & 1.22 & 81 \\ 26 & 1.41 & 4.43 & 91 & 1.14 & 7.60 & 96 \\ 45 & 0.92 & 28.5 & 51 & 0.75 & 47.4 & 56 \\ 57 & 0.08 & 97.0 & & & & \end{array}$

$965 \quad 0.00126$ $\begin{array}{ll}90.9 & 0.0116 \\ 17.4 & 0.0685\end{array}$

Tajc 1j (cont.)

 sacile

(11) jjlinder

1	1.07	16.0
4	1.05	19.7
1	1.0	1.6
10	1.10	13.0
13	0.13	21.0
$1!$	0.26	19.8
10	0.90	21.3
23	0.23	21.3

2	1.08	17.2	3	1.06	19.1
5	1.14	12.7	6	1.10	13.7
6	1.11	12.3	9	1.09	12.4
11	1.04	13.2	12	0.90	23.6
1.4	0.87	31.0	13	0.07	31.2
11	0.90	21.8	18	0.90	21.0
20	0.74	19.1	21	0.74	20.4

nasei:

30.5
29.6
23.8
30.0
23.8
16.6
20.1
30.3
34.6
30.0
47.2
23.7
37.3

```
asie 1, (concl.)
```


 predictoo veluos of A anc F. Thus the accurasy for prodictine preasure rep can ie acoertsinod uy comparine $\overline{\mathrm{j}}$ to (1 + 1/Re).
-- Infornation Iaciolt mun numans is breaiod in the gamo orcior as ic apnéan in pailes 12 or 23 .

Talle 2i. Presiure erop through nine recularly spaces one-fourth irch orilicos in a trrec-fourth inch nipe.

Suin	Spacina, urilecigas • $\triangle \mathrm{H}$, inches	H20w, $3 \mathrm{~m} / \mathrm{sec}$	[
1	4.31420 .50	30.9	0.417
2	" 20.12	35.1	0.425
3	" - 2 c.it	+2.5	0.412
4	\because 26.6́	42.1	C. 414
5	0.875 2 2.75	72.1	0.1422
c	3 26.25	63.8	0.24c7
7	31.4	63.9	$0.1+46$
ε	" 20.94	62.8	0.1468

Tho flo: systom is describec in Plute XI.
\% $E_{0}^{*}=\Delta \pi / \mathrm{gu}^{2}$, all torms in consistent units anc u based on the area of lie orifice.

EXPLANATION OF PLATE XI

A. General layout, one eighth inch - one inch.
a. Kater level in the reservoir.
b. Thirty gallon tank open to the atmosphere.
c. I" outlet from tank.
d. Internal adaption to 1 1/4" pipe.
e. I $1 / 4^{11}$ gate valve, wide open for $2 l l$ muns.
f. I $1 / 4^{n}$ close nipple.
g. $11 / 4^{13}$ elbow.
h. 1 1/4" close nipple.
i. $11 / 4^{\prime \prime} \times 1^{\prime \prime}$ reducing coupling.
j. 1^{n} pipe $281 / 2^{\prime \prime}$ in length exsting to the atmospherc.
ΔH. Slevation ropresenting energ lost in the orifices.
B. The dispersed arrangement for the orifices, one-half inch $=$ one inch.
k. Upstrean insert of $3 / 4^{\prime \prime}$ pipe, 13 11/16" long.

1. Downstream insert of $3 / 4^{\prime \prime}$ pipe, $101 / 2^{\prime \prime}$ long.
m. Long spacer nado of $3 / 4^{\prime \prime}$ pipe, 1 15/64" long.
n. Orifice made of washer $1^{\prime \prime}$ o.d. $x 1 / 4^{\prime \prime}$ i.d. $x 3 / 16^{\prime \prime}$ thick.
C. The close arrangement for the orifices, one-half inch $=$ one inch.

- Short spacer made of $3 / 4^{\prime \prime}$ pipe, $7 / 32^{\prime \prime}$ long.

PLATE XI

PRESSURE DROP FOR SINGLE PHASE FLON THKOUGH PACKED BEDS

by

ROBERT HAMBLETT CROWTHER
B. Ch. E., Fenn College, 1950

AN ABSTRACT OF A THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE COLLEGE
OF AGRICULTURE AND APPLIED SCIENCE

Pressure drop in laminar or turbulent flow is correlated by considering the surface of the packing material, the porosity of the packed bed, the fluid variables, the size of the confining column, and the degree to which different packing materials obstruct flow. The effect of each of these factors is determined according to a simple mathematical or graphical solution.

Fxperimental results of seven investigators, including the author, are used to support the conclusions. These results represent seventy-five beds packed with eight different types of packing materials and a mixture of four of them. The correlation is of such a nature that it may be extended to novel packing units.

The observed accuracy of predicting pressure drop is 15 percent for laminar flow and 25 percent for turbulent flow. Accuracy is intermediate to these figures for transition flow.

Determination of surface area of porous media by permeability is discussed. Calculations for surface area are outlined. The maximum error to be encountered in determining surface area is estimated to lie within zero to 2 percent in cases where accurate measurements of porosity, pressure loss, and flow rate may be made, and where the approximate shape of the granules is known.

Auxiliary investigations were concerned with the appearance of the crosssection of a packed bed and the effect of spacing upon pressure loss through a scries of orifices.

[^0]: *amafactured by the Maurice A. Knight Company, Akron, Ohio.

[^1]: *Manufacturer's information: Metallo Gasket Company.

[^2]: * Lor mean deviation reiers to the antilogaritam of $n-\leqslant l o g(A / A m .1$.$) ; root inean squaro { }^{2}$ coviation thus refers to the antiloçarithm of the absolute value of $\left\{n^{-1} \leqslant \log ^{2}(\& / A m .1).\right\}$. This mothod of averaginis lends equal emphasis to doviations in eithor direction.

[^3]: *Table of nomenclature is on page 78.

[^4]: *Table of nomenclature is on page 78.

