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Abstract 

Sorghum, millets and teff are important staple crops worldwide, especially in semi-arid 

regions of Africa and India because of their drought tolerance. However, lack of 

research and other limitations have restricted their usage in food products. This study is 

focused on extrusion processing of low and high tannin sorghum varieties, millet and 

teff for high and low moisture applications, and to investigate process characteristics 

such as residence time distribution and specific mechanical energy, physico-chemical 

properties of resultant food products (such as pre-cooked pasta and expanded snacks) 

and their resistance starch content. Results from preliminary lab scale extrusion, 

including optimization of starch type and level for pre-cooked pasta and in-barrel 

moisture for expanded snacks, were used to design pilot scale studies on a twin-screw 

extruder.  

 

In the first pilot-scale experiment, decorticated white sorghum blends prepared with 

addition of mono-glycerides (0.5%, 1% and1.5%) and salt (1%) were processed at three 

different in-barrel moisture contents 40%, 44% and 48% (wet basis) for processing of 

precooked pasta. The optimum formulation containing 1% mono-glycerides and process 

conditions corresponding to 48% in-barrel moisture were also used to develop 

precooked teff and millet pasta. The non-traditional grain based pastas were 

investigated for cooking quality, thermal characteristics using differential scanning 

calorimeter, pasting properties using rapid visco analyzer and texture profile analysis. In 

general, increasing in-barrel moisture led to reduction in solid losses (ranging from 4.0-

8.2% for all treatments), indicating improvement in cooking quality. On the other hand, 

increase in mono-glycerides concertation led to higher cooking losses, and also affected 

pasting and textural properties significantly. Sorghum-based precooked pasta was of 

best quality while millet pasta was poorest in cooking quality, and visual and textural 

attributes. Cooking loss for control pre-cooked pasta produced in this experiment using 

semolina was 4.5%, and commercial semolina pasta was 3.2%. 

 



  

Residence time distribution in pilot-scale twin screw extruder, during high moisture 

process conditions used for pre-cooked pasta, was also investigated at three different 

in-barrel moistures (40%, 44% and 48%) and monoglycerides/ lipid (0.5%, 1% and 

1.5%) concentrations. Increase in in-barrel moisture significantly decreased mean 

residence time. For example, mean residence time was 4.47 mins at 40% moisture, 

3.89 mins at 44% and 3.74 mins at 48%. On the contrary, residence time significantly 

increased with lipid level. For example, mean residence time was 3.87 mins at 0.5% 

concentration of mono-glycerides, 4.48 mins at 1% and 4.70 mins 1.5%.  

 

In the second experiment focusing on low moisture applications, pilot-scale twin screw 

extrusion was used to process decorticated white sorghum and high tannin sumac 

sorghum for expanded snacks. The addition of sumac bran decreased the specific 

mechanical energy input (366-578 kJ/kg) and expansion ratio (6.4-7.9), and resulted in 

higher piece density of extrudates. Use of sumac bran and sumac flour led to increase 

in resistant starch content, although it was less than 1% for all treatments. Therefore, 

extrusion with ingredients having high tannin content does not provide value, despite 

tannins being associated with resistant starch at least in raw materials. 
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Chapter 1 - Introduction  

The global gluten-free (GF) packaged food market is projected to grow at a compound 

annual growth rate of approximately 6% between 2015 and 2019. As per a report 

published by Transparency Market Research gluten free food market is projected to 

grow at 7.7% from 2015 to 2021. In terms of volume, the global gluten free food market 

was valued at 277.2 ('000) metric tons in 2014 and is expected to reach 423.0 ('000) 

metric tons by 2021, expanding at a CAGR of 6.1% over the forecast period.  

As the market for gluten-free processed foods grows every day and has proven to be 

new evolution in food industries despite its challenges.  New products enter stores 

every day whether it’s a new application or simply another company seeking to ride the 

trend’s rising popularity. Gluten-free consumers are now presented with cakes, pizzas, 

noodles, pasta, snacks, breakfast cereals and sweet goods suitable for their 

intolerances or chosen diets — a far cry from when bread was the only gluten-free 

product on the shelf. The consumer is getting more choices and people with celiac 

disease will be having more products to eat. Gluten-free products have evolved, and 

with that evolution, nutrition, texture and taste are more important than ever.  Their use 

has been promoted and recommended in various dietary guidelines either as whole 

grain or processed food. Gluten-free products have turned from being medicated 

products for gluten intolerant people to a lifestyle choice across all customer segments. 

This growth engine has brought attention to alternate grains such as sorghum, teff, 

quinoa and millets etc., to play a major role in food processing.    

There are a variety of GF whole grains available, each with its own unique texture and 

flavor including corn, millet, oats, brown rice, sorghum, teff, millet, amaranth and quinoa. 

Some of the gluten free grains are superior in nutritional value over traditional grains 

such as wheat, corn or rice. Teff, millet and sorghum are among such grains that 

remained unexplored especially teff and millet. In this research white decorticated whole 

sorghum, ivory (white) teff and proso millet grain were studied. 
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Gluten Free Foods and Health Benefits  

GF food products offer alternative food choices to people that are gluten intolerant. 

Celiac disease is a lifelong intolerance to two protein fractions, gliadin of wheat and the 

prolamins of rye (secalin), barley (hordeins) and possibly oats (avidins) (Murray, 1999). 

The ingestion of gluten can cause inflammation of the small intestine leading to the 

malabsorption of several important nutrients including iron, folic acid, calcium and fat-

soluble vitamins, and small intestine functionality becomes severely impaired (Feighery, 

1999; and Murray, 1999).  Murray (1999) concluded that celiac disease is the result of 

three processes (genetic predisposition, environmental factors and immunologically 

based inflammation) that culminates in intestinal mucosal damage. The only effective 

treatment for coeliac disease is a strict adherence to a gluten-free diet throughout the 

patient's lifetime, which, in time results in clinical and mucosal recovery.  

Gluten is the main structure-forming protein in flour, and is responsible for the elastic 

characteristics of dough, and contributes to the appearance and crumb structure of 

many products. Gluten removal results in major problems for bakers, and currently, 

many gluten-free products available on the market are of low quality, exhibiting poor 

mouthfeel and flavor (Arendt et al., 2002). This presents a major challenge to the cereal 

technologist and baker alike, and has led to the search for alternatives to gluten in the 

manufacture of gluten-free bakery products. However, gluten is not a structure forming 

component in extruded products. Extrusion is high thermal and high shear process with 

a moderate range of moisture (10% to 40%). High shear breaks down starch at 

molecular level which forms structure once fluid melt releases through die. To define 

and optimize process to improve physico-chemical characteristics of gluten free (GF) 

pasta still represents a challenge for researchers and industry. For precooked pasta 

making several ingredients (modified starch, GF flours, and additives) have been used 

as alternative to gluten to create a starch based network than can withstand the 

physical stress of cooking and provide firmness to the cooked product. Moreover, 

various technologies have been proposed such as repeated heating and cooling steps, 

which are difficult to control and costly. This research work is based to study how 

precooked pasta can be made based three GF flours with different kinds of starches at 

http://www.sciencedirect.com/science/article/pii/S0924224403002590#BIB48
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different levels with mono-glycerides and how they impact physico-chemical properties 

of precooked pasta.  

 

 Pasta 

Pasta is considered as one of the simplest cereal based products in terms of based 

ingredients (semolina, and water) and processing (includes hydration, mixing, forming 

and frying steps). Both raw material and processing conditions play a critical role in 

determining the quality of final pasta. Pasta basically originated in Italy but is a most 

famous food in the world. The cooking convenience, palatability, long and stable shelf 

life and nutritional properties are key eye catchers. The term usually refers to 

unleavened extruded wheat dough, composed simply of flour and water, some- times 

egg. A significant part of the human population, however, cannot tolerate gluten, a 

protein composite found in wheat, rye and barley. Hence, it is necessary to develop 

products based on alternative cereals or pseudo-cereals. Also for the non-coeliac 

population, switching from refined wheat products to nutritionally more valuable grains 

could bring benefits regarding health and well-being. In last few decades, a new group 

of categories, the gluten free (GF) pasta has grown rapidly not only by the growing 

number of celiac but also by regular consumers who prefer GF pasta for nutritional 

benefits. One of the objectives of this study was to develop optimum quality sorghum, 

teff and millet pasta comparable to traditional wheat pasta. 

 

Pasta Manufacturing  

Gluten protein and starch are two key components important in pasta manufacture both 

in precooked pasta and raw pasta. The gluten protein bodies in durum wheat are 

present in wedge shaped structures between the voids starch granules. Gluten protein 

is a glassy material in dry state, but the addition of water makes it rubbery and elastic. It 

acquires the ability to form strands and sheets through intermolecular bonds. These 

properties make gluten essential to its role as the continuous matrix which traps and 

encapsulates starch in pasta and holds product shape during manufacture and cooking. 

Heating of protein bodies leads to irreversible formation of protein-protein crosslinks. It 
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is important to control protein heating in pasta manufacturing to stabilize structure and 

texture of pasta.  

Major component of semolina is starch (85%). Starch act as filler, raw starch has limited 

water absorption capacity below 55°C. Upon heating, starch loses its crystalline 

structure and can absorb high amount of water. The water absorption cause swelling of 

granules followed by viscosity development till it disintegrates and dissolves into 

suspension. The structural expansion of pasta raw materials can be understood by the 

concept of glass-rubber transition. Kalichevsky et al. (1992) and Kokini et al. (1994) 

explained that at 10% moisture content and 25°C prior to wetting and extrusion, gluten 

protein exists in glassy state. A more usual moisture content of 13%-15% at the same 

temperature will result in the gluten which has undergone the glass transition and has 

some of the rheological properties of a rubbery material. As water percent is raised to 

33% during wetting, it will start developing the properties of a flexible material with the 

ability to flow under applied stress. This is the desired state to make high-quality pasta 

with optimum texture and mouthfeel.  

The first stage in pasta forming includes the dampening of dry raw material with liquid 

ingredients. To produce good quality pasta, it is very important to achieve optimum 

semolina hydration. The hydrated semolina is fed to extruder to form dough and give a 

desired shape. Extrusion processing is combines factors such as mixing, kneading, 

pressure and temperature and cooking results into developing physical structure of 

pasta. The extrusion application involves repeated heating and cooling treatments 

induces starch gelatinization and retrogradation phenomena, creating starch network 

capable of standing up to cooking stresses (Pagani, 1986). The comprehensive 

character of the extrusion cooking technique provides the option of modifying the 

extruder by changing the configuration of the screws, the use of cooling or heating 

segments of the extruder and the application of various shape forming dies. Due to 

thermal and pressure treatment, instant pasta is already precooked and requires only 

rehydration in boiling water or short cooking (Kruger et al.,1996).  

Precooked pasta is usually made by twin screw extrusion cooking technique. The 
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process requires addition of water and steam during pasta processing. The dough 

inside extruder barrel passes through low shear and gentle screw mixing at different 

temperatures. The temperature ranges are between 50°C to 70°C (Wang et al., 1999). 

An extremely important parameter in the extrusion process is the dough moisture 

content. When manufacturing simple pasta forms such as threads or spaghetti type, the 

dough moisture may be relatively low around 28%-29%, while for products with more 

complicated shapes, it is necessary to ensure higher dough moistening up to 32% 

(Wojtowicz, 2006). Optimum moisture allows smooth flow of dough inside barrel 

whereas excessive dough moisture decrease degree of gelatinization results into 

unstable structure and high cooking losses post drying. Low dough moisture lead to 

expansion and results into developing undesirable bristles. The extrusion system was 

usually equipped with vacuum system to take out steam form barrel and cool the 

cooked melt to form a condensed pasta structure. It is very important to cool the cooked 

melt to avoid bubble formation in pasta matrix. Pasta with bubbles in structure 

disintegrates quickly during cooking results into high cooking loss (Wojtowicz et al., 

2009). Once the product is out from extruder die it is dried at low temperature for longer 

time to reach the moisture level of 12.5%. Usually the drying of pasta was carried out at 

70°C to 75°C for 60 mins, high temperatures are avoided to prevent cracking of pasta 

structure. Starch in a processed product is approximately 90% gelatinized, the level of 

microbiological contamination is low and the ability for rapid rehydration is high, even in 

cold water (Manthey et al., 2004).   

The role of raw materials is also very important. The technology developed by the 

Wenger Company (USA) shows the characteristic composition of extrusion cooked 

pasta of firm consistency is: 98% semolina, 1% mono-glyceride, 1% powdered egg 

albumin. The soft texture of pasta can be obtained using semolina (98.5%) and mono-

glycerides (1.5%). Protein, gluten, eggs, milk or emulsifiers are added to reduce the 

hydration time. On the other hand, the addition of mono-glycerides reduces the 

adhesiveness of pasta made from soft wheat flour and can also influence the quantity of 

cooking losses (Malcolmson and Matsuo, 1993).  This study is aimed to quantify both 

process moisture conditions and mono-glycerides to develop high-quality pasta by using 

sorghum, teff and millets.  
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Residence Time Distribution  

The second objective of this study was to determine the residence time distribution 

(RTD) at three different in-barrel moistures (40%, 44% and 48%) and mono-glycerides 

concentrations (0.5%, 1% and 1.5%) used in extrusion process. RTD is a measure of 

the length of time feed materials spends in continuous extruder flow system. Apart, from 

feed material properties, in-barrel moisture and lipid levels also affects the mean 

residence time, the residence time distribution (RTD), and the flow patterns in extruder. 

The effect of moisture content on the mean residence time for cereal processing in twin 

extrusion was studied by (Liang et al., 2012; Kumar et al., 2008 and Sisay et al., 2017). 

Increase in in-barrel moisture (19%) reduced both mean residence time and RTD 

spread with reduced gluten based formulation in twin screw extruder (Sisay et al., 

2017). Chen et al. (2010) found shorter residence time at high in-barrel moisture content 

for soy protein processed in twin screw extruder. However, various studies have shown 

opposite results at similar moisture levels. Kumar et al. (2008) reported increase in 

mean residence time with increase in in-barrel moisture content from 16 to 28% for 

native starch processed in twin screw extruder.  Altomare and Ghossi (1986) found 

increase in moisture content from 10% to 28.4% increased residence time from 21 to 25 

seconds in twin screw extruder. 

Similarly, the inclusion of lipids into the formulation or into the barrel also affects the 

RTD. The addition of lipids develops slippage, which not only reduces the energy input 

but also increase the mean residence time and RTD spread. Increase in lipid levels 

significantly (p<0.05) increased the mean residence time of rice flour for increased fish 

solid concentration (5%, 10% and 15%) (Choudhury and Gautam, 2003). Similar results 

of higher residence time were reported by Phillips and Facone (1988), for sorghum meal 

processing at 15% and 30% peanut fat addition. This study was dedicated to confirming 

the effect of in-barrel moisture and lipid concentrations on residence time in a low shear 

pasta making process. 
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Sorghum Tannin Based Expanded Snack and Resistant Starch  

 The growing market of low calorie processed snack food worldwide had surged the 

food processing industries interest to dig deep into the functional properties of various 

cereal. Sorghum is a cereal crop grown in semi-arid regions around the world. Its 

resistance to drought and heat makes it an ideal crop for regions faced with the threat of 

climate change and global warming (IPCC, 2007; Srivastava et al., 2010). There is 

growing interest in the food industries worldwide for the use of sorghum for its potential 

health benefits related to slow starch digestibility, high antioxidant and phenolic 

properties. Sorghum has similar starch content to wheat and maize, but the presence of 

polyphenolics, unique protein matrix and tannins have made it a very special grain. The 

presence of polyphenols and tannins has been shown to lower starch digestibility and 

overall calorie intake in sorghum foods (Taylor and Emmambux, 2010). Jenkins et al. 

(1981) and Buyken et al. (2010), reported that foods high in slow digestible starch 

(SDS) reduce the risk of chronic disease, especially of type 2 diabetes mellitus. 

Sorghum based diets containing phytochemicals delivered several health benefits such 

as potential to reduce risk of cardiovascular disease and certain types of cancer in 

humans (Awika and Rooney, 2004).  

The supplementation of wholegrain sorghum flour have reduced starch digestibility and 

increased the antioxidant capacity of refined wheat flour flat bread (Yousif et al., 2012). 

The addition of wholegrain sorghum flour increased resistant starch content and 

antioxidant activity of durum semolina pasta (Khan et al., 2013). Henceforth, in societies 

where over-nutrition leading to obesity and type- 2 diabetes mellitus is a chronic 

concern, sorghum grain has the potential to be used to maintain slow starch digestion 

and high antioxidant capacity in food products and provide protection against such 

chronic diseases.  

The interactions of sorghum tannins (proanthocyanidins) with starch molecules have 

increased resistant starch in high amylose starch formulation by 52% higher over the 

control. Sorghum tannins interact strongly with starch that decreases the starch 

digestibility (Barros et al., 2012). Higher molecular weight phenolic extracts when 
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formulated with higher amylose starch increased the levels of resistant starch content. 

Sorghum tannins have the natural potential to modify starch by interacting strongly with 

amylose and are thus most suitable to produce foods with higher resistant starch 

(Barros et al., 2013). Therefore, the third objective of this study was to quantify resistant 

starch formation in sorghum tannin based expanded snack processed in twin screw 

extrusion.  

Scope of This Study 

Focus: Process conditions and formulations optimized on lab scale extrusion can be 

used to effectively scale up to pilot scale.  

 

Objective 1: Quantification of process moisture and mono-glycerides levels to develop a 

high-quality sorghum, teff and millet pasta.  

 

Focus: Optimal energy input based on in-barrel process moisture and lipid (mono-

glycerides) concentration can lead to the desired starch transformation to form a strong 

protein- starch matrix in the absence of gluten, leading to good quality gluten-free 

product. Plasticizing and lubricating effects of water and mono-glycerides respectively 

can significantly impact residence time distribution in high moisture extrusion 

applications. 

 

Objective 2: To study the extruder barrel residence time distribution (RTD) at three 

different in-barrel moistures (40%, 44% and 48%) and mono-glycerides (0.5%, 1% and 

1.5%) concentrations for precooked sorghum pasta.  

 

Focus: High tannin content in sorghum bran can result in increased resistant starch 

content in extruded products. Hence, the study was aimed to validate resistant starch 

retention in expanded extruded snacks formulated with sumac flour and sumac bran 

containing high concentrations of tannins.  
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Objective 3: To measure resistant starch retention in sorghum expanded snack 

formulated with sumac flour and condensed sumac tannins processed at different 

processing conditions in twin screw extruder.  

 

Proximate analysis of raw materials  

The proximate composition of grain flours used in this study was analyzed in SDK 

laboratories. The compositions of the individual flour used in the study are shown in 

Table 1.1. It can be inferred from the table that corn flour has the highest total starch 

content (78.2%) followed by decorticated white sorghum flour (72.9%), millet flour 

(70.2%), whole sumac flour (68.0%), durum wheat semolina (65.7%), teff flour (64.8%), 

and sumac bran (34.0%). The starch content was lower in blends with whole flour as 

component of whole flours had lower starch content compared to decorticate or 

degermed flours. The condensed sumac bran had the highest crude fiber content 

(5.3%), followed by teff flour (1.8%), whole sumac flour (0.9%), millet flour (0.8%) and 

decorticated white sorghum flour (0.5%). The fat content was highest in condensed 

sumac bran (6%), followed by millet flour (4.1%), whole sumac flour (2.7%), teff flour 

(2.0%), and decorticated white sorghum flour (1. 8%).The durum wheat semolina had 

the highest protein content (13.8%), followed by teff flour (11.7%), millet flour (10.4), 

decorticated white sorghum flour (9.7%) and least for sumac flour (0.2%). 
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Table 1.1:Proximate analysis of different raw materials. 

Samples Crude protein        Crude fiber     fat         Ash Total starch  

         (%)   (%)          (%)        (%)       (%) 

Semolina      13.8±0.0       <0.2±0.0        1.1±0.0    0.7±0.0   65.7±0.4 

Sorghum flour    09.7±0.0         0.5±0.1        1.8±0.1    0.8±0.0   72.9±0.0 

Sumac flour      00.2±0.0         0.9±0.1        2.7±0.3    1.0±0.1   68.0±0.4 

Sumac bran      00.8±0.0         5.3±0.0        6.0±0.1    3.6±0.1   34.0±0.4 

Teff flour      11.7±0.1         1.8±0.2        2.0±0.0    1.9±0.0   64.8±0.4 

Millet flour      10.4±0.5         0.8±0.2        4.1±0.1    1.2±0.0   70.2±0.5 

Corn flour      05.0±0.0        <0.2±0.0       1.9±0.0     0.5±0.0   78.2±0.2  
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Chapter 2 - Millet and teff based gluten free pasta formulated 
with corn starch and mono glycerides as texture enhancers 

 

Abstract  

Food allergies and food intolerances are a growing public health concern causing higher 

consumer demand of new food products that are custom-made to meet special dietary 

requirements. Especially, the rapidly growing gluten free (GF) cereal product market. In 

this study, Ivory teff (Eragrostis tef) and proso millet (Pancium miliacuem) were utilized 

as base material to produce GF precooked pasta. Extrusion technology was used to 

process precooked pasta formulations. Native and high amylose cornstarch and mono-

glycerides (MG) at different levels were used to enhance structural and textural 

attributes. Rice based commercial pasta as gluten free control, lab cooked durum wheat 

semolina and commercial rotini pasta was used as overall control. The resulting 

products were characterized for texture profile analysis (TPA), cooking loss, water 

absorption (WA), and gelatinization and viscoelastic properties. Wheat precooked pasta 

was of superior characteristics such as firmness, water absorption and low solids loss 

followed by rice, teff and millet.  

 

The addition of MG with corn starch reduce the cooking loss of both teff and millet 

pasta. The native corn starch addition worked better over high amylose corn starch in 

controlling cooking losses. The inclusion of corn starch increased starch content of the 

formulations, higher starch content led to strong cooked starch matrix of pre-cooked 

pasta. Whereas the addition of high amylose corn starch led to leaching of amylose 

resulted in higher cooking loss. The twenty percent addition of native corn starch 

significantly (p<0.05) reduced solids loss by 23.01% for teff and 37.18% for precooked 

millets. Addition of corn starch increased the water absorption during cooking, teff 

absorbed more water than millet at same addition level of corn starch. The increase in 

MG percentage from 0.5% to 1% resulted in higher cooking losses due to less cooking 

of starch. Gelatinization temperature for teff flour was in the range of 79.8°C to 81.4°C, 

and for millet flour it was 77.6°C to 80.5°C. Teff pasta had higher firmness values than 
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millet. Pasting temperature of teff ranged from 67°C to 80.3°C and for millets 59.5°C to 

68.6°C. In general, increase in MG increased the peak viscosity, peak time and final 

viscosity of precooked pasta. The change in viscoelastic properties is the result of high 

shear in extrusion process. Overall lab control durum wheat pasta was of optimum 

quality characteristic followed by teff and millet. Teff pasta quality attributes were 

analogous to gluten free rice pasta group. 

 

Key Words 

Teff, Millet, corn starch, mono-glycerides, extrusion   

 

Introduction  

Transparency Market Research has published a market report titled "Gluten Free Food 

Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2015 - 

2021. Per the report, the global gluten free food market was valued at US$2.84 billion in 

2014 and is projected to reach US$4.89 billion by 2021, growing at a rate of 7.7% from 

2015 to 2021. As the market for gluten-free processed foods grows every day and has 

proven to be a bandwagon that many industries are willing to jump on despite its 

challenges in formulating and processing. With the growing number of gluten-free 

products on the market, there are now more choices, and people with celiac disease will 

be selective in choosing what products they eat.  

Pasta, once a famous food from Italy, has gaining acceptance in the world. The cooking 

convenience, palatability, long and stable shelf life and nutritional properties are the 

main characteristics. As an alternative to conventional durum wheat based pasta 

amaranth, buckwheat, teff, millet and quinoa precooked pasta are enriched with fiber, 

mineral, antioxidants and polyphenols. In last few decades, a third group of categories, 

the gluten free (GF) pasta has grown rapidly not only by the growing number of celiac 

but also by regular consumers who prefer GF pasta for nutritional benefits. Pasta is one 

of the 100 percentage wheat based food, where gluten protein dominates. Hence, if 

gluten free products need to develop it should replace pasta first as a real alternative to 
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gluten. Currently, there is a broad range of gluten free products based on rice, corn and 

other GF flours. Unfortunately, most of the GF pasta exhibits poor cooking and inferior 

when compared to wheat. There is a variety of gluten-free whole grains available, each 

with its own unique texture and flavor including corn, millet, oats, brown rice, sorghum, 

teff, millet, amaranth and quinoa. Some of the gluten free grains are superior in 

nutritional value over traditional grains such as wheat, corn or rice. Teff and millet are 

among such grains that remained unexplored. In this research work ivory (white) teff 

and proso millet grain were used. They especially are rich in minerals, iron, dietary 

fibers, antioxidants, phytochemicals and polyphenols, which contribute broad-spectrum 

positive impacts to human health. 

Ivory teff (Eragrostis tef) is an ancient grain that has been cultivated and used for 

human consumption in Ethiopia for centuries. Teff is perhaps the smallest cereal grain 

on earth with an average length of 1mm (Umeta and Parker, 1996; Lacey and Llewellyn, 

2005; Adebowale et al., 2011). The color of teff varieties varies from bright white (ivory) 

to dark brown (black), and nutritional quality varies accordingly. 

Teff is carbohydrate rich grain (80%) with starch content of approximately 73%. The 

amylose content of 13 teff varieties tested ranged from 20 to 26% (Bultosa, 2007). Teff 

starch granules sized from 2-6 µm using scanning electron microscopy (Bultosa et al., 

2002) (Figure 2.1), that makes it lower than wheat (A type 20-35 µm), sorghum (20 µm) 

and maize (20 µm) (Delcour et al., 2010). Given the smaller size and large surface area, 

smaller starch granules are more susceptible to enzymatic attack (Tester et al., 2004). 

The predicted glycemic index of teff (74) was found significantly lower than that of white 

wheat (100) but comparable to that of sorghum (72) and oats (71) (Wolter et al., 2013). 

The average crude protein of teff is in the range of 8 to 11 percent, the higher levels of 

glutamine, alanine, leucine, and proline and the comparatively lower content of lysine 

suggest that major prolamins are the major storage proteins (Adebowale et al., 2011). 

Likewise, compared to other cereals, higher contents of isoleucine, leucine, valine, 

tyrosine, threonine, methionine, phenylalanine, arginine, alanine, and histidine are found 

in teff (Bultosa and Taylor, 2004; FAO, 1992). Red teff has a higher iron and calcium 

content than mixed or white teff (Abebe et al., 2007). Teff is a comparatively good 
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source of essential fatty acids, fiber, minerals (especially calcium and iron), and 

phytochemicals, such as polyphenols and phytates. Teff as a rich iron source can be 

used as good alternative (Adish et al., 1999). Alaunyte et al., (2012) found that iron 

content of wheat reached more than double with 30% teff flour supplementation. 

Bokhari et al. (2012) showed that consumption of 30 percent teff-enriched wheat breads 

can help maintain serum iron levels in pregnant women. Given the high iron content of 

teff and its potential contribution to food-based approaches to improve nutrition is of 

great advantage. Teff is naturally gluten free cereal with more nutrient dense profile 

such as good amount of minerals, fiber and phytochemicals. The low glycemic index of 

teff makes it very important for diabetic patients especially with celiac disease.  

Millets are the sixth largest in small grain production tonnage worldwide and thrive in 

sub-arid and arid regions (Paust, 2006). On a nutritional basis, millets are a balanced 

source of carbohydrates, proteins, fat, and major vitamins/minerals. However, their 

usage for human consumption is limited and primarily is utilized for poultry feed. 

Structurally, millet is a small grain, composed of an outer fibrous pericarp, a starchy 

endosperm and a germ body. Millet inherently has numerous kernel shapes, sizes and 

colors. Traditionally, millet is hand pounded and winnowed to separate the pericarp, 

germ and endosperm. The pericarp and germ removal is completed to reduce bitterness 

in final food forms. The subsequent starchy endosperm is then consumed in the form of 

porridges, flatbreads, and cereal dishes.  

The corneous endosperm contains polygonal starch granules implanted in protein 

bodies. The amylose content ranges from 17.21% to 32.6% (Yanez et al., 1991). The 

protein levels of millet is in range from 11.5% to 13% with maximum of about 17%, the 

range vary according to the variety, environment conditions, and nutrient content of soil 

and water (Geervani and Eggum, 1989; Dendy, 1995; Parameswaran and 

Thayumanavan, 1995).  Light color varieties are higher in protein level than dark 

colored. Dry conditions in growing season enhance the protein content but affect the 

protein quality adversely. (Kalinova et al., 2006). The protein content of proso millet is 

higher than other varieties of millet (Geervani and Eggum, 1989). Millets are also a rich 

source fat and fiber. The fiber content of de-hulled proso millet is in the range of (0.8% 
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to 1.2%) to the levels of oat (Geervani and Eggum, 1989). The soluble fiber is 

comprised of 36% of total fiber content.  Lipids constitute a very fraction in cereals but 

lipid levels of de-hulled proso millet ranges from 3.5% to 6.7%. (Jones et al., 1970; 

Ravindran, 1991; Kalinova, 2002). The germ contains 25% of total lipids. The free, 

bound and structural lipid content is around 62.2%, 27.8% and 10% (Sridhar and 

Lakshminarayana, 1994). The proso millet lipids comprised of 86% to 89% unsaturated 

acids, among that 42% is poly unsaturated fatty acids (Becker, 1994). The main fatty 

acids of proso millet are linolenic (38.4% to 66.86%), oleic (21.4% to 22.7%) and 

palmitic acid (6.61% to 11.3%) (Dendy, 1995). These fatty acids very easily and give 

unpleasant taste to de-hulled grains when storage time is too long. Proso millet is also a 

rich source of vitamin B1, B2, B3, B6 and E (Dendy, 1995). The phenolic component of 

proso millets is about 0.05 mg and 0.10 mg per 100 gm on dry basis. 

Replacement of the gluten network to produce GF products is a major technological 

challenge, gluten being the essential structure-building protein. Thus, substances that 

imitate the viscoelastic properties of gluten are always required in GF products (Mariotti 

et al., 2009). The first step in this direction is the utilization of starch retro-gradation. The 

formation of a “scaffold” is developed as alternatives to gluten networking especially 

when the base flours are from gluten free cereals. It order to have a good amount of 

retrograded starch in the pasta, it is necessary to induce starch disorganization by heat 

treatments/ or shear carried out under specific moisture conditions, followed by cooling 

phases during which part of the starch, mainly amylose, can create a three-dimensional 

network by strongly linking short starch chains by junction zones (Mestres et al., 

1988).These modifications of starch can be induced during the technological process or, 

as an alternative, pre-gelatinized starches or starchy flours can be used as raw 

materials. In addition, other ingredients can be included in the formulation of GF pasta 

(GFP), improving its nutritional value. Nowadays, the most used ingredients in GFP 

production are rice and corn flours (Arendt et al., 2008), flours from pseudo-cereals 

(Caperuto et al., 2001; Chillo et al., 2008), starches of different origin (Huang et al., 

2001), dairy products and vegetable proteins (Wang et al., 1999). In some cases, also 

low amounts of emulsifiers (Charutigon et al., 2008; Chillo et al., 2008) and 

hydrocolloids (Singh et al., 2004) are added. 

http://www.sciencedirect.com/science/article/pii/S0733521011000361#bib23
http://www.sciencedirect.com/science/article/pii/S0733521011000361#bib23
http://www.sciencedirect.com/science/article/pii/S0733521011000361#bib24
http://www.sciencedirect.com/science/article/pii/S0733521011000361#bib24
http://www.sciencedirect.com/science/article/pii/S0733521011000361#bib4


20 

Research on gluten free pasta using teff and millet solely is limited. Anna et al., 2012 

used fresh egg, teff and oat flour to produce high protein pasta. Teff, quinoa and 

buckwheat pasta was nutritionally superior to regular wheat pasta. Quinoa and teff are 

characterized by high protein, fiber content and are high in calcium, magnesium and 

iron (Hager et al., 2011). Similarly, blend of proso millet and wheat flour yielded into 

high quality pasta (Sudha et al., 2015). Noodles made with 20% millet flour were of 

superior quality over wheat pasta but as the proso millet flour added to 40 and 60%, the 

texture and taste of noodles shown adverse results (Lorenz et al., 1980. Most studies 

have been carried out on the production of gluten-free products, such as breads, pasta, 

biscuits and beer, and the level of dietary fiber was increased by using different 

sources, such as inulin (Gibson and Roberfroid, 1995), corn starch (Gambus and Sabat, 

2002), quinoa (Taylor and Parker, 2002), and amaranth (Tosi et al.,1996). But limited 

studies have been carried out where pasta is produced majorly either from teff or millet. 

This study is designed to use extrusion technology with two different grains with corn 

starch and mono-glycerides as texture enhancers for GF pasta. The objectives of this 

are to understand the processing nature of both teff and millet as base material and 

measure the physicochemical structure of cooked pasta. 

 

Materials and Methods 

Raw Materials 

Durum wheat semolina was purchased from local stores, maker Ziyad Brand (12.74% 

moisture). Ivory teff flour of mean particle size 124 µm with 83% purity (9.94% moisture) 

and teff grain (9.52% moisture) were obtained from The Maskal Teff company.  Yellow 

amber proso millets grain (11.56% moisture) was obtained from Hilary’s Eat Well 

Company. Proso millets grains were ground to flour of particle size 115 µm in a table 

top lab scale roller mill, make Ross Mill. Native (10.38% moisture) and high amylose 

corn starch (12.01% moisture) were donated by Ingredion. Distilled mono-glycerides 

Dimodan HS-KA was purchase from Danisco. Barilla rotini durum wheat pasta and 

commercial rice based pasta was used as a control for quality comparison. 

http://www.sciencedirect.com/science/article/pii/S0733521012001221
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Proximate Analysis of Raw Materials 

The proximate composition of raw ingredients was determined using standard methods. 

This included determination of moisture (135°C for 2h; AACC 44-19), crude protein 

(based on nitrogen by combustion, 6.25X; AOAC 920.176), crude fat (petroleum ether 

extract method; AOCS Ba 3-38), ash (600ºC for 2h; AOAC 942.05), crude fiber (AOAC 

962.09); and total starch (glucoamylase method; AOAC 979.10). Starch, protein, fat, 

ash and crude fiber contents were reported on dry basis percentage (%db) from 

replicates. Total carbohydrates were calculated by the difference method (Merrill and 

Watt, 1973). 

 

Experimental Design 

The experimental design includes usage of two grains teff and millet, with coarse and 

fine particle size of feed material. The treatments were formulated with three different 

concentrations (0%, 10% and 20%) of native and high amylose corn starch and two 

levels of mono-glycerides (0.5% and 1%) to produce high-quality spaghetti shaped 

pasta. The upper and lower limits of these levels were selected based on preliminary 

trials conducted on handmade pasta press machine (results not shown). There were 

eleven treatments in each grain experiment design. The response of each ingredients 

was analyzed by fitting quadratic models to the data with least square regression to 

identify significant (p<0.05) effects of the variations in ingredient levels on the 

responses. 

 

Extrusion Process 

Dry ingredients were premixed in a planetary mixer (Hobart make) and water was 

added. Total mixing time was 5 mins for all treatments. All mixed hydrated ingredients 

were transferred into sealed plastic zipper and were let to hydrate overnight in a 

refrigerator to achieve uniform water distribution. The target moisture was 31% as is 

basis. Fresh pasta was produced using a lab scale co-rotating twin screw (American 

Leistritz, Somerville, NJ) with L/D ratio of 30:1, screw diameter of 18 mm equipped with 
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a spaghetti nozzle/ die (3.2 mm diameter), Figure 2.7. Raw materials blends were 

metered into the extruder with a twin screw volumetric feeder (K-Tron, Model K2VT20, 

North America, Pitman, NJ, USA). The feed rate was calibrated for each treatment 

independently and was kept between (0.85 to 0.95 kg/h). The screw speed was kept 

constant at 250 RPM and barrel temperatures were between 50- 85C. Once out from 

die the product was cut into long strands (25 cm) using stainless-steel kitchen knife and 

packed into zipper pack plastic bags. The product was immediately stored in freezer to 

prevent starch retro-gradation. Drying was carried out at 70°C in hot air oven, relative 

humidity conditions were maintained by placing a bowl full of water inside oven. A hobo-

meter was placed inside hot air oven to monitor humidity levels. 

 

Cooking Process 

Optimum cooking time for wheat pasta was the time required for the opaque central 

core of noodle to disappear when squeezed gently between two glass transparent 

plates, AACC Approved Method 66–50 (AACC, 2000).  Similar scientific approach was 

used for teff and millet. An optimal cooking time for wheat pasta was 44 mins, 36 mins 

for teff and 25 mins for millet. Commercial wheat and rice pasta control was cooked as 

per cooking instructions which was 12 mins. The cooking time for all pasta was kept 

constant for the determination of cooking loss, water absorption/ weight gain, firmness 

and springiness. 

 

Cooking Loss 

Dry matter losses during cooking were determined by AACC Approved Method 66–50 

(AACC, 2000). Pasta samples (25 gm) were cooked to optimum time in 300 mL of 

distilled water in a glass beaker, rinsed in a stream of cold water for 30 seconds and 

drained. Rinsed water was collected, and the volume made to 500 mL. The beakers 

carrying liquid were evaporated to dryness in air oven at 100±1°C. Drying time was 

approximately 24h but may vary with oven capacity, load, etc. Once completely dry the 
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beakers were taken out from oven and cooled in desiccator and weighed. Duplicate 

samples were carried out for precise data. The formula used to calculate cooking loss is 

given below. 

Cooking loss =
𝐷𝑟𝑖𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 
 ×  100 

 

Water Absorption  

Water absorption or hydration is the amount of water retained by the cereal products. It 

is related to functionality parameters such as cooking time and texture following 

cooking. Water uptake in pasta is one the most important parameter post cooking that 

not only related to weight gain but also affects the taste. It is measured during the 

cooking loss analysis. The drained pasta weighed was measured for water absorption. 

All the samples were subjected to duplicate for precise results. Below mentioned was 

the formula used to calculate water absorption/uptake. 

 

𝑊𝑎𝑡𝑒𝑟 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 % =  
(𝐶𝑜𝑜𝑘𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝐷𝑟𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑤𝑒𝑖𝑔ℎ𝑡)

𝐷𝑟𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑤𝑒𝑖𝑔ℎ𝑡
 ×  100 

 

Thermal Analysis-Differential Scanning Calorimetry 

To understand the physical transformation of starch and protein known as starch 

gelatinization and protein denaturation, calorimetric measurements were carried out for 

each raw material blends and extruded products. A differential scanning calorimeter 

(DSC) instrument Q100 DSC (TA Instruments, New Castle, DE, USA) was used for 

analysis. A sample of 8-10 mg was weighed into large volume stainless steel DSC pans 

(Part no.03190029, Perkin Elmer Health Sciences Inc., Shelton, CT, USA). Distilled 

water was added to the sample in the pan to obtain a solid to water ratio of 1:2 (Stevens 

and Elton, 1971; Zhu et al., 2010). The pans were hermetically sealed and the samples 

allowed to equilibrate overnight. The instrument was calibrated using indium as 
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reference material. An empty sealed pan was used as reference for all experiments. 

The program consisted several steps which include both heating and cooling steps is as 

follows. Equilibrate at 10°C, heating the pans from 10°C to 140°C at the rate of 

10°C/min, mark end of cycle, cooling down the sample from 140°C to 10°C at the rate of 

25°C/min, mark the end of cycle with nitrogen gas flow rate of 50mL/min. The samples 

were again rescanned with heating from 10°C to 140°C at the rate of 10°C as the final 

phase of the test. DSC datum for each gelatinization and denaturation endotherm was 

analyzed for transition temperatures, onset (To), peak (Tp), and endpoint or completion 

(Tc) and the enthalpy (∆H) using TA Instruments Universal Analysis Software (version 

5.4.0). All the reported data was subjected to duplicates. 

Starch gelatinization (%) was calculated by comparing the enthalpy transition difference 

in starches between raw and extruded binary blends. Calculations were made using the 

equation below: 

𝑆𝑡𝑎𝑟𝑐ℎ 𝑔𝑒𝑙𝑎𝑡𝑖𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 % =  
∆𝐻𝑟𝑎𝑤 − ∆𝐻𝑒𝑥𝑡𝑟𝑢𝑑𝑒𝑑

∆𝐻𝑟𝑎𝑤
 ×  100 

Where,  ΔHraw = enthalpy of raw binary blend,  

ΔHextruded = enthalpy of extruded binary blend 

Total cook (%) was calculated as a ratio of the total enthalpic transition difference which 

includes the transition enthalpies for starch and protein fractions of the binary blends. It 

is represented as below: 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑜𝑘 % =  
∆𝐻𝑇𝑟𝑎𝑤 − ∆𝐻𝑇𝑒𝑥𝑡𝑟𝑢𝑑𝑒𝑑

∆𝐻𝑇𝑟𝑎𝑤
 ×  100 

      

Where,  ΔHTraw = Total enthalpy of transition of raw binary blend,  

ΔHTextruded = Total enthalpy of transition of extruded binary blend  
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Pasting Properties  

The Rapid Visco Analyzer (RVA) provides a measure of how cooked a sample is by re-

cooking under relatively low shear and in excess water and measuring the pasting 

viscosity throughout the test. Pasting properties of each flour and blends were 

examined using RVA. (RVA 4, Newport Scientific Pvt. Ltd., Warriewood, NSW, 

Australia). The RVA was interfaced with a computer equipped with the software – 

Thermocline for Windows (version 3.15.2.298) for controlling the test and analyzing the 

results. The sample size was 3.5 to 4.0 g and the amount of water added was 24.0 to 

25.0 ml (corrected for 14% moisture basis). Pasting properties were determined after 

running the samples on standard AACC profile (AACC 76-21.01, 1999) with a run time 

of 13 minutes. The temperature range was fixed between the set points; rate of heating 

and cooling was 12°C per min. The paddle was set at 960 rpm for first 10 secs then 160 

rpm for the remaining test time. Peak viscosity (PV), pasting temperature (PTc), trough 

viscosity (TV), breakdown (BD), final viscosity (FV) and setback (SB) were recorded. 

The viscosity measurement was done in cP (centipoise) units. All measurements were 

performed in duplicate for both raw material and extruded products. 

 

Texture Profile Analysis 

The texture properties of the pasta after cooking are extremely important macroscopic 

chemical-physical properties for assessing the quality of the pasta, given the fact that 

they represent some of the characteristics that the consumer is more attentive now 

during consumption. A texture profile analysis (TPA) of pasta was conducted to 

determine firmness and springiness of cooked pasta and brittleness of raw pasta by 

using the method of Voisey et al. (1978) and Tang et al. (1999) with modification. Pasta 

texture was evaluated using a TA.XT plus texture analyzer system (Stable Micro 

Systems, Surrey, UK). The flexural strength or breaking strength/stress of uncooked 

(rigid) samples was determined by performing a three-point bend test. The uncooked 

pasta samples were cut to 5 cm length. The fixture was placed to supports the sample 

across a span to hold the sample horizontally across the test probe (TA46 blind edge). 

A force is applied to the center of the sample (which is also central to the supports) and 
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the breaking stress is determined. The breaking strength (force per unit width) or 

breaking stress (force per unit area) of the sample is taken as the maximum strength or 

stress value of the curve. The distance to break gives an indication of the brittleness of 

the sample as this shows how far a sample can be deformed before fracture. The 

gradient of the slope indicates sample toughness; the higher the gradient, the tougher 

the sample. Test parameters were set as follows: test mode= compression; pretest 

speed= 1.0 mm/sec; test speed= 1.0 mm; post-test speed=10.0 mm/sec; target mode = 

distance; distance= 15.0 mm; trigger type=auto-force; trigger force= 5.0 gm. 

Firmness of the cooked noodles was measured by AACC Approved Method 66–50 

(AACC, 1999). Firmness is defined as the maximum force at the first compression. The 

test is a simulation of the action of jaw by compressing the bite size of food two times. 

The resulting force–time curve is used to extract number of textural parameters. These 

are primary parameters (hardness, springiness and adhesiveness). The parameters for 

the test were set as follows: test mode= compression; pretest speed= 1.0 mm/sec; test 

speed= 1.0 mm; post-test speed=1.0 mm/sec; target mode = strain; strain= 85%; count 

=2; trigger type=auto-force; trigger force= 5.0 gm. A 2" diameter and 20 mm tall 

cylindrical aluminum probe was used for test. To manage the standard deviations, 

results were obtained after taking the average of 25 measurements.  

 

Statistical Analysis 

All the results were analyzed using analysis of variance (ANOVA) with general linear 

model procedure (SAS version 9.1, SAS Institute, Cary, North Carolina, USA). When 

significant effects (p0.05) were indicated by ANOVA, Tukey pairwise comparisons 

were conducted to distinguish which treatments differed significantly (p0.05). Pearson 

Correlations was used to establish correlation values. 
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Results and Discussion 

Proximate Analysis of Raw Materials  

The proximate analysis of raw ram material is represented in Table 2.1. Millet (70.2%) 

was the highest in starch content followed by semolina (65.7%) and teff (64.8%). High 

starch content is most desirable for precooked pasta to form a cooked product matrix. 

Similarly, millet was also rich source fat (4.1%), followed by teff (2.0%) and semolina 

(1.1%). As expected semolina was highest in protein content (13.8%) followed by teff 

(11.7%) and millet (10.4%). Teff had the highest crude fiber content (1.8%) with millet 

stood at second place (0.8%). Hypothetically with high starch, low fiber and moderate 

protein content millet should have resulted into better precooked pasta but our results 

were contrary. The possible reason could be the domination of fat and added lipid (MG) 

into the millet flour may have impaired extrusion cooking resulted into poor quality 

product. The second reason could be the nature of millet starch granules which resulted 

into poor binding. Although, there is limited amount of research work done in these 

grains for affirmative reasoning. 

 

Pasta Production 

The pasta was produced at 28.58% to 31.31% feed moisture. The moisture data for raw 

blends, post extruder and post drying is shown in Appendix B, Table 1. The process 

moisture loss for teff pasta ranged from 3.6% to 17.9% and for millet it ranged from 

5.0% to 16.5%. The process moisture losses in millet were lower over teff because of 

low energy input. The rich fat content of millets and added mono-glycerides into blends 

acted as lipid which lowered process energy input. The motor load variations for teff and 

millet blends as represented in Table 2.2. The increase in mono-glycerides 

concentration of blends decreased motor load. The net motor load ranged from 4.8% to 

11.3% in millet processing and 10.3% to 12.3% in teff processing. Lipids act as a 

lubricant inside extruder barrel, lowers the energy input which led to low shear.  The 

lubricating effect of lipid reduces the friction between feed material and screw surfaces 

(Guy, 2001; Gour and Gautam, 2003). For coarse grains moisture loss was higher in 
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millet than teff. It was observed that both millet and teff coarse grains did not processed 

completely inside extruder barrel. In overall teff pasta has required higher energy inputs 

over millet during processing. 

The moisture content of dried pasta is represented in Appendix B, Table 1. During 

drying the moisture losses of millet pasta ranged from 47.8% to 82.1% and from 52.2% 

to 59.5% for teff pasta (Figure 2.2). Teff processed at higher energy achieved higher 

degree of gelatinization over millet (Table 2.4). The higher degree of cooking in teff 

pasta has formed a strong starch matrix which may have prevented the water 

evaporation during drying. Whereas, low degree of gelatinization in millet pasta led to 

lose starch matrix resulted into higher water evaporation. Bruneel et al. (2010), also 

reported higher moisture loss during wheat pasta drying at lower degree of 

gelatinization and vice versa.  

 

Cooking Loss 

The cooking losses of teff and millet pasta are shown in Table 2.3. The optimal cook 

time of teff and millet was different. The difference between optimal cooking times may 

be attributed to the difference in the gelatinization temperatures of teff and millet starch 

(Singh and Singh, 2002). No information is currently available about the effect of corn 

starch and mono-glycerides addition on optimum cook time and other characteristics for 

teff and millet pasta.  

The cooked pasta characteristics are the results of several phenomena occurring during 

cooking such as hydration, starch gelatinization and interaction with non-starchy 

matrices. Cooking losses below 10% of pasta mass indicates good quality of precooked 

pasta (Kim et al., 1996; Wang et al., 1999). In general, cooking losses of teff and millet 

pasta were comparable to those of lab control wheat pasta. Among teff blends, the 

cooking losses were highest for teff formulated with (10%) native corn starch and 1% 

MG; cooking losses of six treatments out of eight were lower than 10%, indicating their 

good quality (Table 2.3). Overall, the addition of native corn starch and MG controlled 

mean cooking losses of both teff and millet pasta (Figure 2.3). However, the addition of 
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high amylose starch resulted in higher cooking loss. Twenty percent addition of native 

corn starch reduced cooking losses by 23% with 0.5% MG addition and 19.5% at 1% 

MG addition (Appendix A; Figure 1 and 2).  

High starch degradation due to excessive cooking can also be a major factor influencing 

high cooking losses observed during boiling (Abecassis et al., 1994; Kruger et al., 

1996). Regression analysis showed that 21% of variation in cooking losses can be 

explained by the degree of starch gelatinization (R2= 0.21) in teff pasta. The cooking 

losses were higher for high level corn starch formulations (Appendix A; Figure 3 and 4). 

Precooked pasta formulated with high amylose starch resulted in higher mean solid 

losses (Figure 2.4) due to leaching of amylose during cooking (Kim et al., 1996). 

The increase of (0.5%) mono-glycerides concentration increased mean cooking loss 

with both native and high amylose corn starch (Figure 2.3), and due to its effect on 

starch gelatinization. The addition of mono-glycerides produce lubrication between feed 

particles and screw surface which lowers the barrel pressure and shear.  The lower 

energy input inhibits swelling of starch granules in water, and reduces starch 

gelatinization (Table 2.4). The lower motor load torque (Table 2.2) and low degree of 

gelatinization for teff pasta at higher MG levels are represented in Table 2.4. The lower 

degree of cooking results into higher cooking loss (Resmini et al., 1979). Chanpen et 

al., 2007 also found increased cooking loss when emulsifier concentration was 

increased to 1.0 and 1.5 g/100 g blend.  

In millets, cooking losses were higher than 10% indicates the poor quality of millet pasta 

(Table 2.3). Wang et al. (1999) reported 20.5% cooking loss for GF pasta produced 

from pea flour at 110°C, and up to 48.2% for products extruded at low temperature. The 

induction of non-gluten flours in some pasta affects the quality attributes (e.g. higher 

cooking loss, lower breaking energy), that can contribute to the nature of non-gluten 

protein and insoluble fiber which weakens the overall structure of pasta (Petitot et al., 

2010; Petitot et al., 2010). However, the addition of 20% native corn starch and 1% 

mono-glycerides have reduced cooking loss in seven treatments out of eight but still the 

losses were higher than 10% (Appendix A; Figure 2). The possible reason for higher 
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cooking losses may be the formation of amylose-lipid and amylose-mono-glycerides 

helical complexes which impedes degree of gelatinization (Table 2.5). Fifty seven 

percent of cooking losses variation for millet was due to degree of gelatinization (R2= 

0.57). The lower energy inputs decreased the degree of starch gelatinization which 

resulted in higher cooking loss (Table 2.5). Overall teff pasta was of better quality with 

lower cooking losses. The cooking loss for commercial wheat pasta was 3.47±0.3% and 

for rice pasta it was 6.12±0.1%.  

 

Water Absorption 

The weight of a cooked pasta is an indicator of water uptake and corresponds to a 

several macroscopic events involving a complex molecular modification of starch and 

proteins, mainly hydration (Sozer et al., 2007). Swelling of pasta occurs during cooking 

and water uptake shows how well pasta responds to cooking. Table 2.3 represents 

water absorption of all pasta types. Water absorption was significantly affected by the 

formulations; for teff the mean value was 164.4% and 159.1% for millet, for commercial 

wheat pasta it was 227% and 168% for rice pasta. The half percent increase of MG in 

formulations increased mean water absorption significantly for both teff and millet 

(Figure 2.5). The water absorption of finished teff pasta was highly correlated with 

moisture content of dried pasta (R2= 0.83) and MG levels (R2= 0.74) of formulations. 

Similarly, for millet pasta water absorption correlation value with dried moisture content 

was (R2= 0.33) and for MG levels (R2= 0.32).  

Water absorption is a measure of intact starch granules after extrusion processing, and 

it can be used as an index of starch gelatinization (Ding et al., 2005). Water absorption 

of precooked pasta is mainly dependent on the intensity of baro-thermal treatment and 

degree of starch gelatinization during processing (Wojtowicz, 2005). Pasta processed at 

higher motor load had high degree of starch gelatinization and absorbed more water. 

Hence, water absorption values are related to degree of starch gelatinization. The water 

absorption of teff pasta ranged from 133.3% to 196.3%; the highest value was shown 

for the formulation with 20% native corn starch and 1% MG; for millets, it ranged from 
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140.7% to 174.5%; the highest was with 20% high amylose corn starch and 1%MG.  

Twenty-nine percent variation in water absorption can be explain by degree of 

gelatinization (R2= 0.29) in teff and twenty-five percent in millet pasta (R2= 0.25). The 

combination of twenty percent of corn starch and one percent of mono-glycerides had 

significant influence on water absorption (Appendix A; Figure 10, 12 and 14). The 

experiment involved mono-glycerides which inhibits swelling of starch granules during 

gelatinization by forming water-insoluble complexes with amylose.  The addition of one 

percent mono-glycerides lowered the energy input and reduced starch gelatinization. 

The poorly cooked pasta with weak structure formation absorbed less water (Wojtowicz, 

2005).  

 

In both teff and millets the weight of precooked pasta enriched with 20% high amylose 

starch and 1% MG was highest (Appendix A; Figure 12 and 16). It is known that 

amylose has higher water binding capacity than native starch (Zhiqiang et al., 1999). 

Hence, high values of water absorption can be attributed to high levels of amylose in the 

formulation. However, overall the native corn starch formulations yielded high mean 

water absorption over high amylose starch formulations (Figure 2.6). Teff had higher 

degree of gelatinization therefor teff pasta absorbed more water than millet pasta. 

Therefore, teff has high water absorption capacity, which relates to higher swelling 

degree of gel phase of teff starches. The small and uniform size of teff starch granules 

provides larger surface area for higher water penetration this could also be the possible 

reason for high water absorption (Bultosa, 2004; Bultosa et al., 2002).   

 

Thermal Analysis-Differential Scanning Calorimetry 

Starch gelatinization and melting of crystalline structure is an important phenomenon 

occurs in several food processing operations because it delivers unique textural and 

structural characteristics to the products. The native starch granule is partially crystalline 

polymer which losses it’s crystalline and molecular order during gelatinization. The 

gelatinization temperature is a characteristic of the starch type and depends on the 

glass transition of the amorphous region (Eerlingen and Delcour, 1995). It is pertinent to 
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acquire knowledge of the kinetics of starch gelatinization and melting in cooking of 

pastas (Spigno and Faveri, 2004). Starch is a major component of structure and 

firmness in precooked pasta, and is influenced by gelatinized starch properties. 

Table 2.4 and 2.5 shows the mean values for DSC gelatinization (cooking) of semolina, 

teff and millet precooked samples. Teff pasta onset and peak temperatures of 

gelatinization were found between 81.6C and 85.9C; for millet pasta, it was between 

80.5C and 85.3C. The analysis of peak temperatures did not make so much difference 

in teff but for millet samples peak temperature values were significantly different. The 

range for gelatinization temperature was 11.35C for teff and 12.26C for millet. Teff 

starch gelatinization temperature range measured on DSC by Bultosa et al. (2003) was 

64C-80C which is similar to results shown in this study. The onset and peak 

temperature values for semolina were lower than teff and millet. 

The degree of starch gelatinization for teff ranged from 91.1% to 99.9%. The 

gelatinization values for teff pasta variants were significantly different (p<0.05). It has 

been noticed that lipid rich millet blends had lower values of gelatinization. Similarly, 

total cook of the millet pasta blends after considering total enthalpy (starch gelatinization 

and protein denaturation) ranged from 68.5% to 95.5% (Table 2.5). The gelatinization 

values for millet pasta variants were significantly different (p<0.05). In general, the 

percentage of starch in the blends affects the gelatinization percentage. The starch 

content of teff flour was 64.8% and millet flour was 70.2% (Table 2.1). Thus, higher 

starch content of millets could have contributed towards lower transition enthalpy during 

the starch gelatinization process but high inherent fat might have formed amylose –lipid 

complex during thermal transition process and thereby lowering gelatinization when 

compared to teff. Even, formulations with higher MG concentrations led to high 

transition enthalpy resulted into lower degree gelatinization. The lower energy transfer 

to blends during processing because lipids provides a lubricating effect (Feng and Lee, 

2014), that reduces starch cooking in extruder.  
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Pasting Properties 

Rapid Visco Analyzer (RVA) was used for offline control to measure relative starch 

degradation (Ryu et al., 1993). Pasting properties of starch are the phenomena 

involving granular cooking, swelling, and total disruption of granules (Atwell et al., 

1988). It has been used to quantify cold-swelling of 'cooked' component, 'raw' 

component that paste's during test and overall viscosity that indicates degree of starch 

dextrinization. Pasting properties of raw teff blends are shown in Table 2.6, and raw 

millet samples are represented in Table 2.8. The peak viscosity values of control wheat 

were highest 2357±22.6, followed by teff 1985±30 and millet was lowest 1637±50. Peak 

viscosity values for both teff and millet blends were significantly different (p<0.05). The 

inclusion of native corn starch increased peak viscosity for both teff and millets, 

whereas addition of high amylose glucose decreased peak viscosity (Appendix A; 

Figure 18 and 19).  Raw teff flour blends have shown highest mean pasting 

temperature 78±0.1°C, millet was 73.3±0.1°C and wheat was 69±0.1°C. Pasting 

temperatures of both raw teff and millets were significantly different (p<0.05) for each 

treatment. The breakdown viscosity value of control wheat was highest, followed by 

millet and teff. Millet has shown lower peak viscosity, lower peak temperature and 

higher breakdown viscosity over teff flour. High lipid concentration of millets 

facilitates slippage action which impedes starch granule cooking and swelling. The 

restricted swelling of starch granules impact viscoelastic properties adversely and 

results into low pasting and breakdown viscosity values (Raphaelides and Georgiadis, 

2006). Millet pasting property results agree with Qingjie et al. (2014). RVA results 

indicated that teff is more resistant to shear and require higher energy and temperature 

to reach peak viscosity than millets. Bultosa et al. (2002) also reported that teff starch is 

more resistant to shear than maize starch. The findings of this study are also backed by 

motor load data represented in Table 2.2. Teff required higher specific mechanical 

higher to process over millets at same conditions.  

Pasting curves of the extruded samples were significantly different from raw samples. 

These changes in the pasting characteristics indicate that starch molecules had some 

degree of re-association and interaction with non-starch ingredients during high thermal 



34 

and shear processing. It also suggested that shear-stabilization of the starch granule 

was provided by thermal processing, which was like modified starches obtained by 

chemical cross-linking. Pasting properties of extruded precooked pasta for teff and 

millet are shown in Table 2.7 and 2.9. Peak viscosity values of precooked pasta 

treatments were lower than raw material blends which are the indicator of starch 

granule cooking and disintegration during extrusion processing. Appendix A; Figure 20, 

21 and 21, are representing trends of precooked teff samples. Lab control wheat 

showed highest mean peak viscosity figures for cooked products, followed by teff and 

millets pasta. Peak viscosity values of extruded treatments were significantly different 

(p<0.05). Increase of 0.5% mono-glycerides increased peak viscosity among all teff 

pasta treatments.  Addition of native corn starch has increased peak viscosity of cooked 

millet pasta, and high amylose has reduced PV (Appendix A; Figure 26, 27 and 28). No 

such trend was observed in teff pasta. The mean pasting temperature was highest for 

teff 76°C, millet was 60°C, and lab control wheat was 50.5°C. Pasting 

temperatures were significantly different (p<0.05). Millet has shown lower breakdown 

viscosity values which may be attributed to low cooking of millets. The differences of 

pasting characteristics among teff and millets may be attributed to the difference in the 

starch granule structure (Li et al., 2008; Lim et al., 2003), which need further 

investigations in the future. 

 

Textural Properties  

Firmness and springiness are the two most important textural parameters for cooked 

pasta quality. The mean firmness value (10.4kg) of cooked teff pasta samples were 

comparable to control semolina pasta; highest (14kg) was with 10% high amylose 

starch and 0.5% MG; and lowest (8.5kg) was with 10% native starch and 1% MG. 

Firmness of cooked teff pasta with 0.5% MG was 10.4kg, and 10.6kg for semolina, 

Table 2.10. Firmness of a cooked pasta or spaghetti is mainly governed by post cooking 

characteristics of protein and bran of pasta (Matsuo and Irvine, 1970). Data analysis 

showed a positive linear coloration (R2= 0.62) between gelatinization percentage and 

firmness. The possible reason could be higher degree of cooking that might have 
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increased hardness of cooked teff pasta. No literature is available on firmness behavior 

of teff starch and protein post cooking. The firmness values of teff pasta formulated corn 

starch and MG were highly correlated with degree of gelatinization. A trend of increase 

in firmness with increase in gelatinization degree has been noticed, the linear 

correlation between firmness and degree of gelatinization was (R2= 0.61). Similar trend 

of increase in firmness of cooked pasta with higher degree of cooking were reported by 

Soh et al. (2006). Pasta formulated with high levels of MG had lower firmness due to 

less cooking. The addition of emulsifier such as mono-glycerides significantly affected 

the degree of gelatinization in high shear process (Chanpen et al., 2007).  

Millet pasta was less firm than teff, Table 2.10. The mean firmness value of millet pasta 

samples was 7.7 kg; highest (8.7kg) was for 10% native starch and 1% MG; lowest 

(5.5kg) was for 20% native starch and 0.5% MG. It can be concluded that firmness of 

cooked millet pasta is lower than teff. The correlation values of firmness with 

gelatinization was (R2=-0.24); and with native corn starch levels was (R2= -0.58). 

Firmness values for cooked commercial wheat pasta were 5.4 kg and 9.5kg was for 

commercial rice pasta. 

There was a tendency for firmness to increase as amylose starch content increased in 

both teff and millet pasta, but only high amylose samples were significantly higher in 

firmness. Dexter and Matsuo (1979) used blends of semolina starch and amylomaize-7 

starch (a high amylose starch, ≈52%) and found cooked pasta became firmer as 

proportion of amylo-maize starch was increased. In juxtapose, decreasing amylose 

below normal levels causes a decrease in pasta firmness (Gianibelli et al., 2005; 

Vignaux et al., 2005). In high-amylose starches granules are more tightly packed and, 

on swelling, have more resistance to rupture and deformation. Extrusion conditions also 

influenced cooking qualities of pasta. In particular, positive effects of extrusion cooking 

reduced cooking loss and increased cooked product firmness. This behavior could be 

related to formation of a polysaccharide network involving starch and non-starch 

polysaccharide molecules. According to Gualberto et al., (1997), high physical stress 

during extrusion-cooking reduces amount of insoluble fiber. Therefore, formation of a 
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higher amount of soluble fiber after extrusion-cooking could enable a strengthening of 

pasta structure, as supported by Tudorica et al. (2002) in durum wheat pasta. 

Springiness was defined as distance at which a deformed sample went back to its non-

deformed condition after deforming force is removed during second compression. No 

significant difference was observed among springiness of cooked pasta made from 

pasta fortified with corn starch and MG at all levels (Table 2.10). Addition of MG into the 

formulation reduced springiness of cooked pasta but reduction was not significant. 

Springiness values of cooked teff pasta ranged from 1.07 to 1.01; highest was for teff 

with 0.5% MG and for cooked millet pasta it ranged from 1.03 to 1.00. Increase in 

cooking loss observed in pasta was likely due to MG addition, responsible for low starch 

cooking. At same time, inclusion of MG partially reduced firmness and springiness 

found in teff and millet pasta.  

Three-point bend test 

The force required to break the uncooked pasta from three points was presented in 

Table 2.10. The control samples (semolina) required the highest force to break, followed 

by teff and lowest was for millet pasta. Mean values of force for teff were 2.12kg; mean 

value for millet was 0.35kg and for semolina it was 5.38kg. Among teff treatments 

highest forces (3.32kg) required was for 10% high amylose starch and 0.5% MG, lowest 

(0.94kg) was for 10% native starch and 1% MG. A negative correlation (R2=-0.96) for 

force values with MG levels; a positive correlation (R2=0.82) with moisture content of 

dried pasta, and (R2=0.33) with degree of gelatinization was found in teff treatments. 

Mean force required to break the uncooked millet pasta was 0.35kg; highest (1.39kg) for 

20% native starch and 0.5% MG; lowest (0.11kg) for 10% native starch and 0.5%MG. 

Correlation values for force with MG levels was (R2=0-.14), was (R2=0.32) with dried 

pasta moisture content, and was (R2=0.14) with degree of gelatinization. Firmness 

values for commercial wheat pasta were 1.100.41 kg and 2.210.32 kg for commercial 

rice pasta.  

 



37 

Conclusions 

The present study supported the hypothesis that non-traditional grains flours are useful 

ingredients for producing optimum quality pasta, and for nutritional improvement of 

gluten free products. Using native corn starch and mono-glycerides as a functional 

ingredient resulted in a good quality product with lower cooking loss, high water 

absorption, higher degree of and gelatinization. The cooked teff pasta was comparable 

to control but millet pasta was of inferior quality. The consumption of gluten free 

spaghetti formulated with teff and millet flour can have positive implications for human 

health, due to their increased nutritional quality and favorable food choice to people 

suffering from celiac diseases. The incorporation of non-traditional grain into human 

food chain can open a wide range of solution to economics, climate change, mitigating 

global hunger and malnutrition.  
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Table 2.1:The proximate analyis of raw materials.  

 

Treatments   Crude               Crude     Fat           Ash     Total starch 

            Protein (%)          Fiber (%)       %            %              % 

Semolina            13.8±0.0    <0.2±0.0       1.1±0.0      0.7±0.0     65.7±0.4 

Teff flour  11.7±+0.1     1.8±0.2    2.0±0.0     1.9±0.1      64.8±0.4 

Millet flour  10.4±0.5      0.8±0.2    4.1±0.1     1.2±0.0      70.2±0.5 

    

 

Table 2.2:Net motor load of extruder in teff and millet pasta processing. 

 
Treatments    Motor Load (%) 
    Teff       Millet 

Control   13.0      12.0 

MG(0.5)              10.5       7.0  

CS28AM (10)+MG(0.5)     10.8       6.0 

CS28AM (10)+MG(1) 10.3      4.8 

CS28AM (20)+MG(0.5) 11.5       11.3 

CS28AM (20)+MG(1) 11.0       6.5 

CS55AM(10)+MG(0.5) 12.3       6.3 

CS55AM(10)+MG(1) 11.0       4.8 

CS55AM(20)+MG(0.5) 12.3       10.5 

CS55AM(20)+MG(1) 10.3       6.0 

Coarse Grain                     7.3        9.5 

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-
55% amylose corn starch, MG(0.5)- 0.5% mono-glycerides, MG(01)- 1.0% mono-glycerides  
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Table 2.3:Cooking loss and water absorption of teff and millet pasta.  

 

Treatments        Water absorption (%)  Cooking loss (%)  
           Teff         Millet          Teff            Millet  
 

Control              148.41.2hfg                 07.90.1e 

MG (0.5)                       143.62.4fg     146.04.7bc        11.60.1c     15.60.6bc 

CS28AM (10)+MG (0.5)      162.41.2edf    171.92.1a        10.30.2dc    19.12.2ba  

CS28AM (10)+MG (1)         189.60.6cb     164.76.5ba        14.10.9b     17.80.4bac 

CS28AM (20)+MG (0.5)      147.62.7hgf    152.51.3bac       08.90.4de    10.10.6ed 

CS28AM (20)+MG (1)  196.30.0b      167.20.3ba       09.71.de      09.80.1ed 

CS55AM (10)+MG(0.5)  133.31.0h      157.0 2.4bac     09.40.1de    16.41.0bac 

CS55AM (10)+MG(1)  171.013.6ed  156.92.6bac      11.50.4c      20.61.4a 

CS55AM (20)+MG(0.5)  158.4 0.8egf   140.70.9c        10.40.5dc     14.51.3c  

CS55AM (20)+MG(1)  177.311.8cd  174.52.0a         10.40.4dc     14.01.4dc 

Coarse Grain             224.46.1a    160.416.4bc       26.80.2a      18.10.2e  

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-
55% amylose corn starch, MG(0.5)- 0.5% mono-glycerides, MG(01)- 1.0% mono-glycerides. 
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Table 2.4:Thermal characteristics of teff precooked pasta samples: onset (To), peak (Tp), completion (Tc), 
gelatinization enthalpies (ΔH) and degree of starch gelatinization (Δg).  

 

Treatments                    To              Tp               Tc         ΔH            Δg           

                                                   (°C)               (°C)         (°C)                   (J/g)              (%)   

Control      55.50.11d       60.30.25c      70.70.57b        0.560.14bc         94.31.91dc 

MG (0.5)                80.30.13bc      83.60.26ba     91.50.03a        0.600.07ba        93.70.76dc 

CS28AM (10)+MG (0.5)     80.60.02bac     83.70.16ba     91.20.11a        0.390.01bcd       95.60.65bac 

CS28AM (10)+MG (1)       79.80.40c        83.60.92ba      91.11.14a       0.830.08a          91.20.10d 

CS28AM (20)+MG (0.5)      81.00.08ba      85.30.93b       92.41.42a       0.310.05ed         96.20.48bac 

CS28AM (20)+MG (1)   80.70.21bc      83.00.74b       90.31.73a       0.600.03b          91.11.87d 

CS55AM(10)+MG(0.5)   81.40.16a       86.0 0.04a      91.50.12a       0.070.02f           99.10.34a 

CS55AM(10)+MG(1)   80.10.19bac     84.60.09ba     92.00.25a        0.400.02bcd       93.90.88dc 

CS55AM(20)+MG(0.5)   80.1 0.64ba     85.30.78ba     91.10.68a        0.070.01f           99.10.12a  

CS55AM(20)+MG(1)   81.00.10ba      84.60.05b      91.80.13a        0.090.03fe          98.70.55ba 

Coarse Grain       81.10.43ba      85.71.45ba     93.82.78a        0.360.03cd         95.30.45bc 

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-55% amylose corn starch, MG(0.5)- 0.5% 

mono-glycerides, MG(01)- 1.0% mono-glycerides. Enthalpy ΔH(J/g) of raw flours; semolina 9.020.21, sorghum flour 8.601.65, teff flour 

10.150,18, millet flour 6.840.50 
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Table 2.5:Thermal characteristics of millet precooked pasta samples: onset (To), peak (Tp), completion (Tc), 
gelatinization enthalpies (ΔH) and degree of starch gelatinization (Δg).  

 

Treatments                To                Tp               Tc     ΔH        Δg           

                                           (°C)                 (°C)           (°C)                (J/g)           (%)   

Control           57.71.68b      58.80.25c       63.70.59c       0.270.01e         99.20.10a 

MG (0.5)               80.10.52a      84.00.85ba      90.60.95a       0.610.03dc       92.4+0.81dc 

CS28AM (10)+MG (0.5)  77.60.54a      82.00.54ba      90.40.63a       2.090.12a         71.90.89fe 

CS28AM (10)+MG (1)     78.10.04a      82.40.07ba      89.30.82a       2.30.12a           68.53.53f 

CS28AM (20)+MG (0.5)  80.01.12a      82.41.03ba         90.70.60a          0.580.04dc         94.250.48bdac       

CS28AM (20)+MG (1) 80.60.03a      84.30.66a        91.61.53a      0.710.08dc         92.10.98dc 

CS55AM(10)+MG(0.5) 79.50.32a      83.7 0.73ba     91.60.64a       0.870.02c   89.80.36d       

CS55AM(10)+MG(1) 78.80.08a      82.70.13ba      90.31.28a       1.760.00b   77.60.53e 

CS55AM(20)+MG(0.5) 78.7 0.64a     82.20.57ba      90.70.93a       0.430.06d    95.50.55bac        

CS55AM(20)+MG(1) 80.50.97a      83.71.70ba      91.61.15a       0.510.15d   93.32.64b 

Coarse Grain   78.80.42a      81.20.74b       85.10.18b       0.110.04e          98.50.51ba 

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-55% amylose corn starch, MG(0.5)- 0.5% 

mono-glycerides, MG(01)- 1.0% mono-glycerides. Enthalpy ΔH(J/g) of raw flours; semolina 9.020.21, sorghum flour 8.601.65, teff flour 

10.150,18, millet flour 6.840.50 
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Table 2.6:Pasting properties of raw teff flour blends formulated with corn starch and mono-glycerides. 

 

Treatments        PTc               PTm               PV              TV        BD                SB              FV   

          (°C)  (mins)         (cP)            (cP)        (cP)           (cP)       (cP) 

Control     63.00.6c        5.80.1ba      235823a        164349a        71547a   1970153b  3613194ba 

MG (0.5)                   78.70.2ba       6.00.0c       198530de       160030c        38500b        159333c  319363c 

CS28AM (10)+MG (0.5)      79.40.1a       5.90.0c        222071cd       172157cb      44914ba   153629c  325628c 

CS28AM (10)+MG (1)         78.60.0ba      6.10.0bc      2116146cde   1702141cb    4144b   1646112c  334829c 

CS28AM (20)+MG (0.5)      77.20.1ba      5.90.0c        250628b        190431b        60259a   147043c  337412c 

CS28AM (20)+MG (1)  78.11.1ba      6.20.1bac     228852cb        188374b        40521b   2092106b  3975180b 

CS55AM(10)+MG(0.5)  78.11.0ba      6.2 0.0bac    153825f         133623d         20248c   110323d  243900d 

CS55AM(10)+MG(1)  77.51.1ba 5.90.1c        193381e        169635cb        23747c       291130a  460205a 

CS55AM(20)+MG(0.5)  78.30.1ba  6.30.2bac     139281gf       126852d        12430dc      84579d  2113131d 

CS55AM(20)+MG(1)  76.21.7b        6.20.0bac     139166gf       126052d        13114dc   107025d  233077d 

Coarse grain           79.20.0ba      6.60.2a        124432g       119733d         04701c       106584d  226151d 

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-55% amylose corn starch, MG(0.5)- 0.5% 
mono-glycerides, MG(01)- 1.0% mono-glycerides, PTc- pasting temperature, PTm- pasting time, PV- peak viscosity, TV-trough viscosity, BD- 
breakdown viscosity, SB-setback viscosity, FV-Final viscosity, cP- centipoise, °C-degree Celsius.  
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Table 2.7:Pasting properties of extruded precooked teff flour pasta samples formulated with corn starch and 
mono-glycerides. 

 

Treatments          PTc                    PTm               PV              TV        BD              SB              FV   

           (°C)             (mins)         (cP)             (cP)                 (cP)                (cP)                     (cP) 

Control             50.40.5d        6.30.1c        1413103a     1190101a        22471a 148294a  2672184a 

MG (0.5)                     67.02.2c        6.60.2c         80545cb        74456cb       6111c        8766b    161949b 

CS28AM (10)+MG (0.5)     79.50.6a       7.51.0bac      57953ed        50674ced      7321c    65723cbd  116397cd 

CS28AM (10)+MG (1)         77.51.2a       8.50.1a         80413cb        69916cb       10604bc   80519b  150335cb 

CS28AM (20)+MG (0.5)      77.60.1a        6.70.2c        77642cb         65931cbd      11711bc 80102cb  146029cb 

CS28AM (20)+MG (1)  78.21.1a        8.40.2a       91331b          81635b         9804bc    88603b  170237b 

CS55AM(10)+MG(0.5)  80.01.1a        6.30.0c        502113e       443119ed      5906c    43066ed  87352ed 

CS55AM(10)+MG(1)  80.31.7a        8.40.3a       76343cbd       67626cbd      8717bc       413121e  1088147ed 

CS55AM(20)+MG(0.5)  71.01.3bc      7.20.1bac     51252e         39752e         11605bc      368132e  765179e 

CS55AM(20)+MG(1)  75.93.5ba      8.30.1ba      62101ced       45600ed         16501ba 39328e  84928ed 

Coarse grain           66.31.2d       6.90.3bc      44801e          41502e          03401c       56713ced  98116ed 

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-55% amylose corn starch, MG(0.5)- 0.5% 
mono-glycerides, MG(01)- 1.0% mono-glycerides, PTc- pasting temperature, PTm- pasting time, PV- peak viscosity, TV-trough viscosity, BD- 
breakdown viscosity, SB-setback viscosity, FV-Final viscosity, cP- centipoise, °C-degree Celsius. 
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Table 2.8:Pasting properties of raw millet flour blends formulated with corn starch and mono-glycerides. 

 
Treatments              PTc         PTm               PV                TV               BD             SB                  FV   

              (°C)            (mins)          (cP)              (cP)   (cP)                (cP)                   (cP) 

Control             63.00.6bac    5.80.1c        235823cbd       164349c        71547b           1970153c  3613194cb 

MG (0.5)                    73.00.6bac    5.30.0cb      163749efd         104948c        58801cbd         1279066dfe 2328114cd 

CS28AM (10)+MG (0.5)    73.40.0bac    5.50.0cb      174278cebd       122158bac      52121cebd       1632037dce 285395cbd 

CS28AM (10)+MG (1)       73.10.0bac    5.70.1b       189273cebd       147738ba       41535ced         2630001b 410737a 

CS28AM (20)+MG (0.5)    73.00.6bac    5.30.1cb      213615cb         149479a         64264cb          1206088fe 270208cbd 

CS28AM (20)+MG (1)       74.31.1ba     5.20.0c        235444b          149621a        85964b 1310087dfe 280566cbd 

CS55AM(10)+MG(0.5)      75.40.7a       5.3 0.1cb     1894273cbd      1300165bac    595108cbd       1439120dfce 2735284cbd 

CS55AM(10)+MG(1)         72.01.2bc      5.50.0cb      146759efd        111047c        35712ced          1724202dc 2834249cbd 

CS55AM(20)+MG(0.5)      72.90.1bac    5.30.1cb      138124f           109325c  28801ed           1114165f 2207191d 

CS55AM(20)+MG(1)         72.70.6bc      5.40.0cb      141691ef          1194134bc     22244e 1756058dc 2950192cb 

Coarse grain            71.50.2c      9.40.3a        4584238a         00000d          4584238a         3222200a 3222200b 

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-55% amylose corn starch, MG (0.5)- 0.5% 
mono-glycerides, MG (1)- 1.0% mono-glycerides, PTc- pasting temperature, PTm- pasting time, PV- peak viscosity, TV-trough viscosity, BD- 
breakdown viscosity, SB-setback viscosity, FV-Final viscosity, cP- centipoise, °C-degree Celsius.  
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Table 2.9:Pasting properties of extruded precooked millet flour pasta samples formulated with corn starch and 
mono-glycerides. 

 

Treatments           PTc         PTm          PV           TV      BD                 SB               FV   

            (°C) (mins)    (cP)         (cP)                 (cP)                   (cP)                    (cP) 

Control            50.40.5d 6.30.1bdc      1413103a     1190101a     22471a 148294bc  2672184a 

MG (0.5)                    59.50.3cb      6.80.0bdac      36411cd       33906fde      2505b       101464ecd  135370dc 

CS28AM (10)+MG (0.5)    65.80.6a        7.30.6ba        51049cb  48535cd       2414b  125733bcd  174268bc 

CS28AM (10)+MG (1)       61.12.4b         8.00.6a       69030cb       48609cd       3113b  118677bcd  167168bc 

CS28AM (20)+MG (0.5)  60.30.0cb      6.10.1bdc       69721b         59308cb  9722b  149913ba  209204ba 

CS28AM (20)+MG (1)  59.90.6cb     7.10.2bac       52500b         65923b  3803b  169489a  2353112a 

CS55AM(10)+MG(0.5)  59.50.0cb     6.8 0.6bdac     5234cb         48123cde 4523b  119380bcd  167357bc 

CS55AM(10)+MG(1)  57.00.5c       6.70.2bdac     37120cd       35337fde  1918b          946119ed  1299156dc 

CS55AM(20)+MG(0.5)  68.61.1a       5.90.4dc        24832d 23018f        1813b         39576f    062594e 

CS55AM(20)+MG(1)  59.00.8cb     6.80.1bdac 40207cd       37806fde       251b  98110ecd  135916dc 

Coarse grain           50.00.2d      5.60.0d          41508cd       33252fe        8345b         72918e  106135de 

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-55% amylose corn starch, MG (0.5)- 0.5% 
mono-glycerides, MG (1)- 1.0% mono-glycerides, PTc- pasting temperature, PTm- pasting time, PV- peak viscosity, TV-trough viscosity, BD- 
breakdown viscosity, SB-setback viscosity, FV-Final viscosity, cP- centipoise, °C-degree Celsius.  
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Table 2.10:Textural properties of extruded precooked teff and millet pasta formulated with corn starch and mono-
glycerides. 

 

Treatments        3PBT (Kg)    Firmness (kg)            Springiness (Kg)     

         Teff         Millet           Teff             Millet                Teff                  Millet 

Control             4.271.43a       6.481.71a        10.61.1a      9.861.1a 1.060.0a 1.060.0a 

MG (0.5)                    2.670.59b       0.370.28c  10.41.0a      8.21.3cb       1.070.0a 1.030.0a 

CS28AM (10)+MG (0.5)      2.840.54b       0.110.05c  11.10.9b      7.91.1cb 1.050.0a 1.010.0a 

CS28AM (10)+MG (1)         0.940.42c       0.210.09c  8.51.0c        8.71.0b 1.040.0a 1.000.0a 

CS28AM (20)+MG (0.5)      2.890.92b       1.390.89b  9.3150cd      5.51.1d 1.040.0a 1.010.0d 

CS28AM (20)+MG (1) 1.070.47c       0.230.13c  8.61.3c        6.91.3c 1.040.0a 1.000.0a 

CS55AM(10)+MG(0.5) 3.320.58b       0.16 0.06c  14.00.9e      7.81.3cb 1.050.0a 1.020.0a 

CS55AM(10)+MG(1) 1.190.37c       0.200.10c        10.11.4a      8.61.5b       1.050.0a 1.000.0a 

CS55AM(20)+MG(0.5) 3.270.98b       0.330.22c  10.41.6a      8.11.4cb        1.050.0a 1.010.0a 

CS55AM(20)+MG(1) 0.910.37c       0.120.00c  12.91.1be    8.21.0cb 1.030.0a 1.000.0a 

Coarse grain           0.920.38c       1.961.07b   5.41.4f        8.91.6b          1.010.0a 1.000.0a 

Commercial wheat           1.100.41cb         5.41.5f         1.020.0a  

Commercial GF           2.210.32ba        9.51.1b        1.100.0a 

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-55% amylose corn starch, MG (0.5)- 0.5% 
mono-glycerides, MG (1)- 1.0% mono-glycerides, 3PBT- three-point bend test.  
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Figure 2.1:Scanning electron microscope image of a longitudinal section of teff 
grain with germ and endosperm. 

 

 

 

 

Figure 2.2:Moisture loss of teff and millet pasta during drying at 70°C for 4 hr at 
high relative humidity.  

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-
55% amylose corn starch, MG (0.5)- 0.5% mono-glycerides, MG (1)- 1.0% mono-glycerides 
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Figure 2.3:Average cooking loss of pasta at different levels of mono-glycerides. 

  

 
Figure 2.4 Average cooking loss of pasta with native and high amylose corn 
starch. 
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Figure 2.5:Average water absorption of pasta at different levels of mono-
glycerides. 

 

 
Figure 2.6:Average water absorption of pasta with native and high amylose corn 
starch. 
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Figure 2.7:Screw profile used in this experiment.  
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Chapter 3 - Residence time distribution in twin screw 
extruder at higher moisture and lipid levels in precooked 

sorghum pasta processing 

 Abstract 

 

White sorghum flour formulations were prepared by mixing (0.5%, 1% and 1.5%) mono-

glycerides (MG) and processed in twin screw extruder at three different in-barrel 

moistures (40%, 44% and 48%) to measure mean residence time spread using a color 

trace method. The effect of in-barrel moistures and lipid levels on average residence 

time distribution (RTD), dispersion numbers and flow pattern was investigated. Both 

tested conditions were found to have a significant (p<0.05) effect on the mean 

residence time and other RTD parameters. Increasing the moisture contents 

significantly reduced the mean residence times and narrowed RTD spread. Increasing 

lipid levels from 0.5% to 1.5% resulted in higher mean residence times and wider RTD 

spread. The dispersion number increased with increase in lipid levels, and the flow was 

turning into mixed flow. No trend clear trend of flow pattern and dispersion number was 

observed for in-barrel moisture conditions. 

 

Key words: Residence time, extrusion, in-barrel moisture, lipid content, dispersion 

number, flow patterns 

 

Introduction  

Extrusion processing of foods is one of the most efficient continuous cooking, mixing 

and forming process that has been used increasingly to produce breakfast cereals, 

baby foods, snacks, pasta, meat analogous, rice, bean and cheese analogues, modified 

starches etc. Food processing via extrusion inactivates undesirable enzymes that may 

affect quality and reduce several anti-nutritional factors (Bhandari et al.,2001). Cooking 

is achieved through the application of heat, either indirectly through jacketed barrels or 



60 

directly by steam injection or, and by shearing through mechanical energy (Harper, 

1979; Ding et al., 2006). Although, the use of extrusion technology in food industry has 

increased rapidly but extrusion process is still a complicated multi-input-output system 

that is yet to be measured. Meuser and Van Lengerich (1984) proposed a simplified 

system analysis model that sorts extrusion parameters into three groups, namely, 

process parameters (screw speed, moisture, content, barrel, temperature, screw 

configuration, die dimensions, raw material characteristics etc.), system parameters 

(including energy inputs, residence time etc.), and products properties (including color, 

nutrition, texture, taste etc.). Among these three kinds of parameters, process 

parameters have effects on the properties of final products by means of affecting 

extrusion system parameters. 

 

The utilization of sorghum for human food is gaining momentum rapidly. Sorghum crop 

has qualified as drought tolerance; resistance to mycotoxins and fungi; and survivability 

in relatively adverse climatic conditions. In several parts of the world sorghum is 

consumed as a staple crop, and is used as main ingredient to make traditional foods, 

porridges and alcoholic beverages. In recent developments, the white sorghum grain 

processed into flour and other products such as snack, cookies and other ethnic foods 

in several parts of the world. Sorghum protein is non-gluten which offers food choices to 

gluten allergen consumers.  Hence, sorghum has the potential to address both gluten 

free and sustainability question simultaneously. Pasta is most popular wheat based food 

that is difficult to develop from non-gluten protein cereals. This research study was also 

focused on the development of sorghum based gluten free pasta on twin screw 

extruder. 

 

Pasta is a popular convenience food pan world made from durum wheat or rice using 

extrusion technology. Suherndro et al. (2002) and Liu et al. (2012) produced noodles 

from 100 percent sorghum, while Faure (1992) produced pasta with combination of 

other cereals. Pre-cooked pasta processing is a low shear process performed in twin 

screw extruders with high in-barrel moisture content (IMC). To produce a high-quality 

pasta, low cooking loss and good textural characteristics, it is pertinent to optimize the 
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pasta processing moisture (Fu, 2008; Hou et al., 2010). Similarly, the regulated number 

of mono-glycerides (MG) also protects the starch granules from degradation which 

improves the quality attributes of pasta (Charutigon et al., 2008). Both, IMC and MG 

levels significantly affects the particle process time in extruder.  

RTD is a measure of the length of time materials spends in continuous extruder flow 

system. RTD is one such significant parameter that significantly influences the quality of 

food products. In general discussion RTD is also referred as process time, every 

element of feed material is supposed to be exposed to similar residence time, but 

particles experience variations in residence time due to screw geometry and rheological 

effects. Several desirable and non-desirable chemical reactions occur during this time 

which influences product quality by characterizing the reaction time, temperature and 

shear treatment level of the process (Yu et al., 2014). Meuser et al. (1992) found 

process variables such as the temperature, screw speed, mass flow rate, screw 

configuration influence residence time in twin-screw extrusion.  To understand the flow 

pattern inside extruder barrel it is pertinent to understand the distribution of residence 

time. RTD in extruders also gives information about the degree of mixing, mass flow, 

velocity profile and life expectancy of fluid inside extruder. (Reitz et al., 2013). RTD 

studies were used to characterize mixing conditions, flow patterns, and the extent of 

conversions and reactions of the biopolymers in any plasticizing or cooking extruder 

(Singh and Rizvi, 1998a). RTD inside extruders is mainly characterized by two 

parameters; the mean residence time and the exit age distribution of the material inside 

extruder.  

Moisture content not only affects the product properties but also affects the mean 

residence time, the residence time distribution (RTD), and the flow pattern in extruder. 

The effect of moisture content on the mean residence time for cereal processing in twin 

extrusion was studied by (Liang et al., 2012, Kumar et al., 2008 and Sisay et al., 2017). 

Higher moisture content (19%) resulted in shorter mean residence time and lower RTD 

spread with reduced gluten based formulation in twin screw extruder (Sisay et al., 

2017). Feed moisture had significantly influenced the RTD of particles, and it was 

negatively correlated with mean residence time and variance. The average mean 
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residence time was 80 secs at 17% feed moisture content and reduced to 68.9 sec at 

19% and further reduced to 63 secs at 21% moisture content. The reason was the 

conducive environment inside the extruder barrel filled with superheated water and 

saturated vapor (co-existence) that caused forward push of melt. Chen et al. (2010) 

found shorter residence time at higher moisture content (28% 36%,44%,52%, and 60%) 

for soy protein processed in twin screw extruder. Increase in moisture content 

decreases the viscosity of feed dough in the barrel and lower the energy required to 

push the melt resulted in lower residence time. Other research studies have shown 

contrary results at similar moisture levels. Native starch was as feed material processed 

in twin screw from 16 to 28% moisture content showed increase in mean residence time 

with increase in moisture content (Kumar et al., 2008). Altomare and Ghossi (1986) 

found increase in moisture content from 10% to 28.4% raised residence time from 21 to 

25 secs in twin screw extruder. Both authors have explained the role of water a 

plasticizer and viscosity modifier. High feed moisture increased the fluid content of the 

feed material which caused slippage between screw and barrel resulted in higher 

residence time.   

 The addition of lipids causes slippage inside extruder barrel which not only reduces the 

shear but also increases the mean residence time and RTD spread. An increase in 

residence time was reported by Phillips and Facone (1988) while processing sorghum 

meal at 15% and 30% full peanut fat in twin-screw extruder. The reason was increase in 

lubricity of dough by the higher fat content in formulation. Choudhury and Gautam 

(2003) found significant increase in mean residence time of rice flour for increase in fish 

solids concentrations (5%, 10% and 15%). The longer mean residence time was 

associated with lubricating effect and reduced viscosity of the feed material due to 

addition of lipids. This study was focused to confirm the effect of both moisture and lipid 

concentrations individually on residence time in a low shear extrusion process. 
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 Materials and Methods 

 Raw Materials 

Durum wheat semolina was donated by durum processing and milling operation, Tree 

house, MO. White decorticated coarse sorghum flour with average particle size of 

125m of lot number KSU-170427-09 was purchased from Nulife Market, Scott city, 

Kansas. Distilled mono-glycerides DIMODAN HS K-A was obtained from Danisco USA 

Inc., New Century, Kansas USA Lot number 1142945586, product no 810773. Iodized 

salt was purchased from Morton salt Inc, Chicago IL Lot number 23960049. The 

sorghum flour, salt and mono-glycerides (MG) were blended in appropriate rations – 

(98.5% sorghum flour, 1% salt and 0.5% MG), (98% sorghum flour, 1% salt and 1% 

MG), and (97.5% sorghum flour, 1% salt and 1.5% MG) using a ribbon blender and 

mixed for 5 minutes. The blends were mixed in batches of 176 pounds. The blends 

were collected in multi-layered paper bags from the bottom of the mixer by opening a 

sliding door.  

 

 Extrusion Process 

The blends of sorghum flour, salt and MG were processed in a pilot scale co-rotating 

twin screw food extruder X-52 (Wenger Manufacturing Inc., Sabetha, KS, USA) 

equipped with a differential diameter cylinder preconditioner (DDC2, Wenger 

Manufacturing Inc., Sabetha, KS, USA). The barrel length 1326 mm is made up five 

independent zones, fitted with 52 mm diameter screws with an L/D ratio of 25.5:1 

(Figure 3.6). The barrel temperatures were increased to 60C in zone-1, 70 C in zone-

2, 90C in zone-3, 50C in zone-4, and 50 in zone-5. The barrel was jacketed and 

heating was controlled by oil and heating elements. The loss in weight single screw 

feeder was adjusted to feed 70 kg per hour into the preconditioner. Steam and water 

were added into the preconditioner, and the amount of Steam added into the 

preconditioner was ranged between 19.4-21.9 kg/h and water was 5.3-7.7 kg/h. The 

water flow rate into the preconditioner was controlled by remote flow transmitter, model 

RFT97121PNUR, RFT9712 S/N 59140 and mass flow sensor model-DS012H205SUP, 
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sensor S/N 179066, meter type-21, make Micro Motion Inc., CO, USA. The steam flow 

into the preconditioner was controlled by Digital Pressure High Accuracy Resonate 

Pressure (DPHARP) sensor, model-EJA110A, style-S1, No-JEJAUR683, make 

YOKOGAWA. The preconditioner discharge temperature was always maintained above 

85°C (maximum was 95°C) with the help of right combination of water and steam in the 

preconditioner. The preconditioner screw speed was kept constant at 305 RPM. 

The IMC moisture content of the feed mix was adjusted to 40%, 44% and 48% (wet 

basis) based on initial moisture content (10.01g /100g) and additional water injected into 

the extruder barrel to achieve target moisture levels. The extruder water flow rate in was 

also controlled by remote flow transmitter model-RFT97121PRU, RFT9712 S/N 70307, 

SEN S/N 203177 and mass flow sensor model-DS012S100SU, meter type-1, Micro 

Motion Inc., CO, USA. The steam flow rate into extruder ranged from 7.5 to 9.0 kg/hr, 

controlled by DPHARP sensor, model-EJA110A, style-S1, No-JEJAUR682, make 

YOKOGAWA. The screw speed of extruder was kept constant at 252 RPM.  

Thermocouples mounted at each zone of the extruder barrel were used to record the 

respective (set and actual) zone temperatures from the control panel. The die 

temperature and pressure was also recorded directly using thermocouple and pressure 

gauge respectively. The rotini pasta die, make Maldari, Number- 47637, die head 

number 55376-1 with 19 (insert) face openings was attached at the exit end of the 

barrel. The die open area was 0.01796 square inch per insert. A single blade air 

pressure (75 PSI) rotating face cutter was used to cut the rotini shaped pasta. All the cut 

pasta pieces were pneumatically conveyed to Wenger Double Pass Dryer/Cooler 

(Series 4800, Wenger Manufacturing Inc., Sabetha, KS, USA) operating at 71.12°C. 

The total retention time in the dryer was 59 minutes (8 minutes for top and 40 minutes 

for bottom belts). Cooling was accomplished by room temperature air with 11 minutes’ 

retention time on cooling belt. 

The specific mechanical energy (SME) for each treatment was calculated as follows,  

𝑆𝑀𝐸 =

(𝜏−𝜏0)
100  ×  𝑃𝑟𝑎𝑡𝑒𝑑 ×  

𝑁
𝑁𝑟𝑎𝑡𝑒𝑑

ṁ
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Where,  = operating torque (%); 0 = no-load torque (%); Prated = rated power (37.3 

kW), N = screw speed (rpm); Nrated = rated screw speed (336 rpm), and ṁ = net mass 

flow rate of pasta at die exit (kg/s).  

 

Experimental Design 

 Three different levels of IMC (40% % and 44% wet basis) and three levels of MG 

(0.5%, 1% and 1.5%) were used to observe the influence on residence time distribution. 

Durum wheat lab produced pasta was used as a control, sorghum based precooked 

pasta produced in this study was analyzed for cooking loss, water absorption, 

differential scanning calorimeter (DSC), rapid viscosity analyzer (RVA) and texture 

profiles analyzer (TPA). The objectives of this study were to determine the effect of 

processing conditions such as in barrel moisture content and lipid level on the on the 

RTD and axial mixing behavior (DN) of sorghum flour formulations. The product 

developed was sorghum based precooked pasta. It is prepared as a value-added 

product to replace traditional durum wheat pasta with non-traditional sorghum.  

 

 Determination of Residence Time  

A color tracer was prepared by mixing 5gm of dry food grade green color with 50 gm of 

feed mix. The whole tracer mix was introduced into the extruder at feed zone 

(preconditioner downspout) once it reached study state with all processing conditions as 

indicated by a constant torque, preconditioner steam and water flow, preconditioner 

discharge temperature, product temperature and die head pressure. Reference samples 

were collected at the exit die before tracer introduced. The time (t) was started as the 

tracer introduced into the extruder barrel. Samples were collected as the rotini shaped 

pasta came out at the die exit each 30 second over a period of 16 minutes (32 samples) 

trailing the introduction of the tracer into the extruder barrel. Each 30 second sample 

was collected in a plastic container and placed on an aluminum tray. All the 32 samples 

were arranged on individual aluminum trays for separation and arranged in series. 
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Gathered samples were subjected to visual color intensity identification. The collected 

samples were given scores from 0 to 10 based on the green color concentration, where 

10 represented very dark green/ highest level color intensity) and Zero (0) represented 

no trace of color in the product. The mean value of six reading was considered as a 

measure of tracer concentration of the green dye. 

Fastest particle residence time (FPRT) and extrudate collection time (ECT).  

FPRT indicates to the shortest time an extrudate stays in the extruder barrel. It was 

recorded as the time from the start, when the tracer was introduced into the barrel to the 

time when the first sign of tracer appeared out of the extruder. The time length between 

the first appearance of the tracer at the die exit and the time when all the tracer material 

exited through the extruder is termed as ECT. 

 

Calculating E and F Curves 

Experimental measurement of residence time distribution  

RTD is determined by a stimulus response technique using a color tracer. Generally, it 

is determined E(t)-curves, the age distribution of a material in the extruder; and F(t)-

curves, the exit age over time of a fluid leaving a vessel (Levenspiel, 1972). Stimulus 

response of trace is usually used to plot the RTD curves. A pulse tracer (color dye) was 

introduced into the extruder barrel from feeder at time t=0. The dye concentration in the 

extrudates (Ci) is measured by manual observation. Lee (2012), calculated Ci from color 

values, and used dye concentrations values to plot standard curves.  The tracer 

concentration is required to be normalized at each point (in time) by diving them by the 

summation of tracer concentration passing through the system. The E(t) curve was 

obtained by the following equation (Levenspiel, 1999): 

𝐸(𝑡) =
𝐶(𝑡)

∫ 𝐶(𝑡)𝑑𝑡
∞

0

 ≅
𝐶𝑖

∑ 𝐶𝑖∆𝑡𝑖
∞
𝑖=0

  

            (1) 



67 

 C is the tracer (color) concentration at time t. 

E(t) values were obtained by output concentration C divide by the total concentration 

C0. Ct is the concentration of green color at residence time t, the summation of all C’s 

collected over the extrudates collection time represented the total C. And, the fraction of 

tracer concentration E(t) at various residence time t, is measured by utilizing E-curves. 

The F(t) curve represents the cumulative particle concentration distribution function of 

the exit stream at any time (t). It is obtained as 

𝐹(𝑡) = ∫ 𝐸(𝑡)𝑑𝑡
𝑡

0

 ≅  
∑ 𝐶(𝑡) ∆𝑡𝑖

𝑡
0

∑ 𝐶(𝑡)∆𝑡𝑖
∞
0

 

            (2) 

The mean residence time (tm) is calculated by following equation (Levenspiel, 1999): 

𝑡𝑚 = ∫ 𝐸(𝑡)𝑑𝑡
∞

0

 ≅  
∫ 𝐶(𝑡) 𝑡𝑑𝑡

∞

0

∫ 𝐶(𝑡)𝑑𝑡
∞

0

=
∑ 𝑡𝑖𝐶𝑖

∞
𝑖=0 ∆𝑡

∑ 𝐶𝑖
∞
𝑖=0 ∆𝑡

 

(3) 

The variance (2) is calculated by squaring the spread of distribution (Levenspiel, 1999): 

𝜎2 =  ∑(𝑡𝑖 − 𝑡𝑚)2 𝐸(𝑡𝑖)

∞

𝑖=0

 

(4) 

To compare the flow patterns at different processing conditions, the individual residence 

time was divided by mean residence time to normalized all values of particle residence 

time (Kumar et al. 2008). The normalized time, E-curve and F-curves are obtained as 

follows (Levenspiel, 1999):  

As, 𝜃 =  
𝑡

𝑡𝑚
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E-curve was normalized as follows 

𝐸(𝜃) =  
𝐶𝜃

𝐶0
=  

𝐶𝜃

∑ 𝐶𝜃  ∆𝑡∞
𝜃=0

=  𝑡𝑚 ×  𝐸(𝑡) 

            (5) 

F-curve was normalized as follows 

𝐹(𝜃) = ∫ 𝐸(𝜃)𝑑𝜃 = 
𝑡

0

∑ 𝐶(𝜃)𝑑(𝜃)𝜃
0

𝐶0
=

∑ 𝐶𝑖 ∆𝜃𝜃
𝑖=0

∑ 𝐶𝑖
∞
𝑖=0  ∆𝜃

= 𝐹(𝑡)  

            (6) 

And variance is normalized as follows 

 𝜎2 =  
𝜎2

𝑡𝑚
2            (7) 

Most of the mixing in the extruder is achieved by laminar mixing actions, because it is 

difficult to quantify the axial mixing directly from RTD curves. Kumar et al. (2006) found 

out the dispersion number (DN) is a good index for the measurement of axial mixing in 

an extruder. The dispersion number (DN) is the reciprocal of Peclet number used to 

measure the extent of axial dispersion (Kumar et al., 2006).  

The dispersion number (DN) defined as D/uL,  

where D is the diffusivity, u is the flow rate and L is the length of the vessel.  

The flow is defined as plug flow when DN approaches zero, the dispersion is negligible.  

The flow is mixed flow when dispersion number (DN) approaches infinity, the dispersion 

number is significant to consider.  Extrusion is closed vessel, and for closed vessel, the 

dispersion number (DN) can be calculated using mean residence time and variance 

values of the curve. 

Equation to calculate dispersion using mean residence time and variance values as 

follows: 
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𝜎𝜃
2 =  

𝜎2

𝑡𝑚
2

= 2
𝐷

𝑢𝐿
− 2(

𝐷

𝑢𝐿
)2 (1 − 𝑒−

𝑢𝐿
𝐷 ) 

            (8) 

The dispersion number for each treatment was calculated by error and trial method. The 

RTD and mixing behavior of low shear precooked sorghum pasta has not been studied 

earlier. The objective of this research work was to optimize the sorghum pasta 

processing conditions such as in barrel moisture content and lipids (mono-glycerides) 

levels and its effect on the residence time distribution and mixing behavior (DN) in twin 

screw extruder. 

 

 Statistical Analysis 

All the results were analyzed using analysis of variance (ANOVA) with general linear 

model procedure (SAS version 9.1, SAS Institute, Cary, North Carolina, USA). When 

significant effects (p<0.05) were indicated by ANOVA, Tukey pairwise comparisons 

were conducted to distinguish which treatments differed significantly (p<0.05). Pearson 

Correlations was used to establish correlation values. 

 

 Results and Discussion  

 E and F-curves 

Influence of moisture content 

Figure 3.3, shows the influence of different process moisture contents on E and F 

curves. The Figure 3.3a and b represent the E-distribution and time (t), while Figure 

3.3c and d represents cumulative normalized trace concentration F() with normalized 

time t(). The treatment with 48% moisture content had the fastest particle residence 

time (FPRT) and the shortest spread distribution. Moisture content was found not to be 

significant (p>0.05) for FPRT and ECT (Table 3.1a and b). Liang et al. (2012) reported 
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no significant difference in ECT, FPRT and mean residence time variance at 25%, 30% 

and 35% moisture content in twin extruder. High moisture content (48%) has decreased 

the ECT to spread and shifted the curves towards left, whereas low moisture (40%) 

content has increased the spread distribution. Low moisture resulted in lower E(t) 

peaks, while high moisture resulted higher peaks. As mentioned earlier, at higher 

process moisture there is a less competition for water absorption between starch, 

protein and fiber. The surplus water facilitates lubricating effect inside extruder. Similar 

trends of E(t) at higher moisture content were observed by Omeire et al. (2013) and Yu 

et al. (2014). While the qualitative nature is similar the peaks E(t) increase with increase 

in moisture content but decreased the spread. Similar, decreasing trends of ECT with 

increase in moisture content were observed by Liang et al. (2012).  

The normalized F-curves for different moisture levels are represented in Figure 3.3c and 

d. Increase in moisture content reduced the mean residence time and shifted E and F 

curves on the left. The 48% moisture treatment had the shortest time to reach 100% 

accumulation, while 40% moisture treatment spent the longest time to go out of the 

extruder. Increasing the moisture content resulted in a more rapid accumulation of the 

particles and a higher peak of the normalized output concentration, and in shorter 

residence time of the sample in the extruder (Yu et al., 2014).  

Influence of lipids content 

The effect of different lipids levels on E and F curves are shown in Figure 3.4. E-curves 

are represented in Figure 3.4a and b and normalized F-curve is represented in figure 

3.4c and d. The mean ECT values were not significantly different (p>0.05) for different 

lipid levels.  The treatment with highest lipid content had the largest spread and lowest 

lipid content had the shortest spread. The increase in lipid content from 0.5% to 1.5% 

has increased the ECT spread. However, lipid content has inversely effected the color 

tracer peaks E(t), low lipid content resulted in high peak values and vice-versa. The 

peak of E(t) curves decreased from 0.179 to 0.111 and shifted towards right with 

increasing amount of lipids content in blend. The results agree with the findings of 

Choudhury and Gautam (2003).  
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F() curves clearly differentiate the cumulative particle concentration distribution for 

different levels of lipids. Treatment formulated with 1.5% MG took longest time to reach 

100% accumulation, while lowest lipid content (0.5%MG) took shortest time to exit 

extruder. The increase in lipid content resulted in a slow accumulation of particles and 

leads to higher mean residence time. The SME inputs decreased upon increasing lipids 

content leads to result in viscosity. The addition of lipid caused a lubricating effect 

thereby causing more slippage rather than positive conveyance of the material. 

Choudhury and Gautam (2003) found delayed in particle accumulation and longer time 

to reach complete accumulation by increasing levels of fat. 

 

 Residence Time and Variance at Different In-barrel Moistures  

The mean residence time and variance values of each treatment are shown in Table 

3.1a and b. The mean residence time was significantly affected by increasing the 

moisture content from 40% to 48% (p<0.05). The mean residence time was 4.78 mins at 

40% IMC; 3.59 mins at 44% and 3.87 mins at 48% IMC (Table 3.1a). The results clearly 

shown a trend of decrease in mean residence time as moisture levels increased. Similar 

trend of decrease in residence time by increasing the moisture content was observed in 

repetition. The mean residence time was 4.47 mins at 40% IMC; 3.89 mins at 44% and 

3.74 mins at 48% IMC (Table 3.1b). The values of mean residence time were 

significantly different (p<0.05) for each moisture level (Table 3.1a and b). Yu et al. 

(2012) found significant increase in mean residence time from 62 to 87 secs on 

decreasing the moisture content from 35% to 25%. A significant negative correlation 

(R2=0.54) for first (Figure 3.5a) and second (R2=0.90) experiment (Figure 3.5b) was 

found between moisture content and mean residence time in both experiments. 

Residence time of feed material inside the extruder is supposed to be a degree indicator 

of raw material experiencing shearing, heating, shaping, mixing and reaction. It was 

found that increasing moisture content could result in accelerating the flow speed of 

melt coming out from extruder. The possible reasoning could be the increase in 

moisture content reduces the viscosity of the melt inside the barrel. In other words, the 
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melt is more fluid at higher process moisture content (Flecher et al., 1985). Since we 

have added water directly into the heated barrel it does not provide enough time to feed 

material to absorb added water completely. The extruder barrel is a closed vessel; 

hence it is impossible for the heated water to evaporate. The heated water gets mixed 

with melt, and reduces the restriction of flow which results in lower mean residence 

time. When moisture content is low, majority of it get utilized during protein denaturation 

and starch gelatinization, means less free water is available for melt fluid. Hence the 

particle (lump) formation and forward push motion was suppressed which resulted into 

increase in residence time.  

Seker (2005) explained the effect of moisture content on mean residence time, which is 

usually considered in two opposite ways. First, increasing the moisture content of feed 

material results in the decrease of viscosity of feed material in the barrel of an extruder, 

and reduces the torque required to pump the melt through the die. The short time 

cooking process doesn’t allow the starch granules to swell which further lowers the 

specific energy required to drive the melt through the die (Kirby et al., 1988). Similar, 

trend of drop in SME with increase in moisture content was observed (Table 3.1a and 

b). Second, temperature in the die due to viscous dissipation is lower, and the lower 

temperature of feed increases the viscosity at the die, which tends to increase the 

restriction of flow through the die. The effect of moisture content on the mean residence 

time is expected to be the result of these two-opposite effects of moisture content on 

rheology of feed material in the barrel and die of the extruder. Chen et al. (2010) found 

significant decrease in dough viscosity at the die with moisture content increasing. 

Therefore, increasing the moisture content would result in lowering the residence of 

melt inside extruder. 

High moisture content resulted in lower viscosity of feed material and the relationship 

between feed moisture content and average apparent viscosity was found to be 

exponential (Lo et al., 1998). This is consistent with previous results (Bhattacharya and 

Hanna, 1987; Senouci and Smith, 1988). Increasing feed moisture concentration 

resulted in a decrease in the SME.  This was related to the reduction of both the mean 

residence time from 51.8secs at 17% moisture to 47.8 secs at 19.6% moisture (Lo, 
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1996) and the apparent viscosity of the melted cornmeal in the extruder. These results 

are confirmed by previous studies (Chang and Halek, 1991; Lu, 1992). The non-

evaporation of superheated water and saturated water vapor facilitated forward push of 

particle inside barrel which decreased the mean residence time by 17 secs with 4% 

increase in moisture content (Sisay et at., 2017). Gogoi and Yam (1994) found out 

significant reduction in mean residence time by increasing moisture content but specific 

reason was mentioned.  

However, in some cases, we also observed that residence time could increase with 

moisture content quite significantly. Altomare and Ghossi (1986) reported that water 

acts a plasticizer in extrusion processing; it promotes lubrication between screw and 

barrel. Increasing the moisture content from 10.0% to 28.4% lowered the viscosity of 

feed material resulted in longer mean residence time. Lin and Armstrong (1990) showed 

that decreasing the feed moisture from 30% to 20% in a Brabender DSE35 twin-screw 

extruder increased viscosity and therefore, decreased the mean residence time from 

45.3 secs to 31.7 secs. Similar results were showed by Kumar et al., 2008; when native 

starch was processed in twin screw extruder, caused increase in mean residence time 

by increase in moisture percentages from 16% to 28%. Some studies have been 

inconclusive on the effect of moisture content on mean residence time. Such as, the 

mean residence time was not significantly affected with increase the moisture con-tent 

from 28.5% to 41.2% (Seker, 2005). Gogoi and Yam (1994) reported that moisture 

content had only marginal effect on the residence time. These results contrast from our 

study, which may be due to the use of different moisture contents, raw materials, and 

starch to protein ratio, process conditions, and different design of the extruder system.  

The other possible reason could be the design of extrusion system. Single screw 

extruders are not designed to handle various process conditions such as high moisture 

levels. It may be possible that increase in feed moisture content could cause slippage in 

single screw extruder whereas twin screws can easily covey the material due to its 

intermeshing scrapping effect. Hence, twin screw could perhaps nullify the slippage 

effect of high moisture concentration.  

The mean residence time variance values were not significantly different (p>0.05) for 
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three moisture levels (Table 3.1a and b). A trend of increase in residence time variance 

with increase in mean residence time and vice versa was observed at different in-barrel 

moisture conditions. This could be due to the change in mixing behavior. The mixing 

pattern might be moving towards plug flow from mixed flow at high in-barrel moisture 

which could have led to high variance at high mean residence time and vice-versa. 

Hence, higher in-barrel moisture resulted into low mean residence time, low variance 

and plug flow. This is in agreement with Sisay et al. (2017) and van van Zuilichem et al. 

(1988), they reported the flow approached plug flow at higher feed moisture contents. 

The mean variance was 626 at 40% moisture, 169 at 44% moisture content and 210 at 

48% moisture content (Table 3.1a). The average mean variance values decrease by 

66.5% when moisture content was raised from 40% to 48%. The mean values of 

variance are 321 at 40% moisture content, 465 at 44% at moisture content and 260 at 

48% moisture content (Table 3.1b). The mean variance decreased by 23.6% when 

moisture content was increased from 40% to 48%. Similar trends of drop in mean 

variance (550, 412 and 342) at higher moisture content (17%, 19% and 21%) were also 

found by (Sisay et al., 2017). The reason explained by Sisay et al. (2017) was that an 

increase in feed moisture content decreases the SME required to push wet mass 

through the die, and results in reducing the friction between the raw material and screw 

shaft and extruder barrel. Similar trends of decrease in variance at higher moisture 

levels (25%, 30%, and 35%) were reported Yu et al. (2012). 

 

 Residence Time and Variance at Different Lipid Levels 

The average values of mean residence time were 3.87 mins at 0.5% MG, 4.48 mins at 

1% MG and 4.70 mins 1.5% MG (Table 3.2a). A significant positive correlation 

(R2=0.93) during first (Figure 3.5c) and (R2=0.94) in second experiment (Figure 3.5d) 

was found between mean residence time and lipid percentage. The average values of 

mean residence time were 3.74 mins at 0.5% MG, 3.98 mins at 1% MG and 4.58 mins 

at 1.5% MG in second experiment (Table 3.2b). The average values of residence time 

were not significantly different (p>0.05). A trend of increase in mean residence time of 

particles with increase in lipid content was observed in both the experiments. The 
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addition of lipids produced a lubricating effect and increases the slippage of the melt. 

The lubricating effect that cause slippage rather than positive conveyance of melt, 

lowered the SME input, and resulted in longer residence time (Kirby et al., 1988).  

A trend of lowered SME inputs and higher mean residence time were represented due 

to higher percentages of lipids (Table 3.2a and b). Residence time is inversely related to 

flow rate in the extruder, the latter being a function of extruder and die dimensions-

geometry; directly proportional to dough viscosity in the metering flights and inversely 

proportional to viscosity in the die for Newtonian flow (Harper, 1981). Since flow rate, 

screw RPM and screw-die geometry were constant through this experiment, residence 

time should have been purely a function of dough viscosity and slippage inside the 

barrel. Phillips and Falcone (1988) found longer residence time at higher fat content of 

feed composition due to lubrication of melt.  Similar results of longer residence time at 

higher levels of lipids were reported by Choudhury and Gautam (2003), Altomare and 

Ghossi (1986) and Lin and Armstrong (1990).  

The mean residence time variance values were 210 at 0.5% MG, increased by 259% -

753 at 1%, and increased by 19% -896 at 1.5% MG (Table 3.2a). The mean residence 

time variance values were not significantly different (p-value>0.05) for three lipid levels 

(Table 3.2a and b). A trend of increase in residence time variance with increase in mean 

residence time at higher lipid concentration was observed. The possible reason could 

be the change in mixing behavior. Dispersion number increased as the lipids content 

was increased and the flow patterns was turning into mixed flow. Therefore, higher lipid 

levels resulted into high mean residence time, high variance and mixed flow. The 

average residence variance values were 260 at 0.5% MG, 371 at 1% MG, and 657 at 

1.5% MG in repetition (Table 3.2b). The mean variance values increased by 43% when 

lipid content was increased from 0.5% to 1% and 77% increase from 1% to 1.5% rise in 

lipid levels. The possible reason for increase in variance with increase lipid levels could 

be drop in barrel pressure caused a lubricating effect thereby causing more slippage 

rather than positive conveyance of the material. The slippage effect may have resulted 

in discontinuous flow of colored material at the die.  Choudhary and Gautam (2003) also 

reported increasing trends of variance with increasing percentage of lipid.  
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 Dispersion Number and Flow Pattern 

The dispersion numbers (DN) are shown in Table 3.3. The dispersion numbers ranged 

from 553 to 9094 for first experiment. The lowest DN of 553 at 44% moisture content 

and highest was 4294 at 40% moisture content. During the second experiment the 

lowest DN of 1205 was at 48% moisture content and highest was 3571 at 44% moisture 

content. There was no clear trend of DN with increase or decrease in process moisture 

concentrations.  

The lowest DN for different lipids was 734 at 0.5% MG and highest 9094 at 1.5% MG for 

first experiment; and lowest 1205 at 0.5% MG and highest 5141 at 1.5% MG for second 

experiment. A trend of increase in DN with increase in lipid content was observed during 

both experiments. The flow was moving toward a mixed flow with an increase of lipid 

concentration and toward plug flow with a decrease of lipid concentration.  

 

Conclusion  

The mean residence time and its variance of sorghum flour mix formulated salt and 

mono-glycerides was influenced significantly by increase in process moisture content 

from 40% to 48% and lipid content from 0.5% to 1.5% in the twin screw extruder. 

Increasing moisture content reduced the mean residence time and its variance. While 

by increasing lipid content in the formulation increased the mean residence time. The 

RTD spread was wider at low moisture and higher lipid levels.  

Increasing in the moisture content decreased the ECT spread and resulted in higher 

tracer concentration peaks. The ECT and F() curves were shifted towards right at 

higher moistures, the 48% moisture treatment took shortest time to reach 100% 

accumulation to exit the die. Increase in lipid content of treatments slower the 

accumulation of particles and resulted in higher mean residence time. The treatment 

with 1.5% MG content took the highest time to reach 100% accumulation whereas 0.5% 
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MG content took shortest time to exit the extruder. The residence time results obtained 

in this study can be used for modeling; scale-up of extrusion process; defining proper 

cooking and microbial inactivation time for low shear processed like pasta.  
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Table 3.1:Operating conditions at different moisture contents. 

a): Operating conditions for first experiment and results at different moisture contents.  

Run  IMC      MG  tm          2       SME FPRT             ECT       

1  40       0.5 4.78a         626a       162 105a  810a 

2  44       0.5 3.59b         169a        91 105a  540a 

3  48       0.5 3.87ab          210a        56 105a  540a 

IMC- In-barrel moisture content (%), MG- mono glycerides (MG), tm – mean residence time (mins),  2-

variance, SME- specific mechanical energy (kj/kg), FPRT-Fastest particle residence time and ECT- 
extrudate collection time.  

 

b): Operating conditions for second experiment and results at different moisture 

contents.  

Run  IMC      MG tm          2      SME FPRT            ECT 

1  40       0.5 4.47a          321a          176 135a  600a 

2  44       0.5 3.89b          465a       130 105a  690a 

3  48       0.5 3.74ab          260a        91 105a  510a 

IMC- In-barrel moisture content (%), MG- mono glycerides (MG), tm – mean residence time (mins),  2-

variance, SME- specific mechanical energy (kj/kg), FPRT-Fastest particle residence time and ECT- 
extrudate collection time.  
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Table 3.2:Operating conditions at different lipid contents 

a): Operating conditions for first experiment and results at different lipid contents.  

Run  IMC      MG    tm             2      SME FPRT           ECT       

1  48       0.5 3.87b           210a        56 105a  540a 

2  48       1.0 4.48ab           753a        58 75a  870a 

3  48       1.5 4.70a           896a        51 75a  870a 

IMC- In-barrel moisture content (%), MG- mono glycerides (MG), tm – mean residence time (mins), 2-

variance, SME- specific mechanical energy (kj/kg), FPRT-Fastest particle residence time and ECT- 
extrudate collection time.  

 

b): Operating conditions for second experiment and results at different lipid contents. 

Run  IMC      MG tm          2      SME FPRT           ECT 

1  48       0.5 3.74b          260a        91 105a  510a 

2  48       1.0 3.98ab          371a        71 105a  630a 

3  48       1.5 4.58a          657a        65 105a  840a 

IMC- In-barrel moisture content (%), MG- mono glycerides (MG), tm – mean residence time (mins),  2-

variance, SME- specific mechanical energy (kj/kg), FPRT-Fastest particle residence time and ECT- 
extrudate collection time.  
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Table 3.3:Dispersion numbers for both experiments. 

Run   IMC       MG  DN1            DN2  

1   40        0.5  4294  1292   

2  44        0.5  553  3571 

3   48       0.5  734  1205  

4   48        1.0  7055         2169 

5   48        1.5  9094   5141 

IMC- In-barrel moisture content (%), MG- mono glycerides (MG), DN1- dispersion numbers for first 
experiment, DN2- dispersion number for second experiment. 
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Figure 3.1:Effect of different conditions of mean residence time. 

a) Effect of in-barrel moisture content on mean residence time. 

 

 
b) Effect of in-barrel lipid content on mean residence time. 
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Figure 3.2:Effect of different conditions of mean variance. 

a) Effect of in-barrel moisture content on mean variance time.  

 

b) Effect of in-barrel lipid content on variance time.  
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Figure 3.3:Effect of different in barrel conditions on E(t) and F(θ) curves. 

a) Effect of in-barrel moisture content on E(t) curves distribution with time for first 
experiment. 

 

b) Effect of in-barrel moisture content on E(t) curves distribution with time for second 
experiment. 
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c) Effect of in-barrel moisture content on F(θ) curves distribution with normalized time 
for first experiment. 

 

d) Effect of in-barrel moisture content on F(θ) curves distribution with normalized time 
for the second experiment. 
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Figure 3.4:Effect of different lipid contents on E(t) and F(θ) curves. 

a) Effect of lipid content on E(t) curves distribution with time for first experiment. 

 

 

b) Effect of lipid content on E(t) curves distribution with time for second experiment. 
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c) Effect of lipid content on F(θ) curves distribution with normalized time for first 
experiment. 

 

d) Effect of lipid content on F(θ) curves distribution with normalized time for second 
experiment. 
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Figure 3.5:Correlation of mean residence time with different in-barrel moisture 
and lipid content.  

a) Correlation between moisture content and mean residence time for first experiment. 

 

 

b) Correlation between moisture content and mean residence time for second 

experiment. 
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c) Correlation between lipid content and mean residence time for first experiment. 

 

 

d) Correlation between lipid content and mean residence time for second experiment. 
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Figure 3.6:Screw profile used in residence time study. 
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Chapter 4 - Quantification of process moisture and mono-
glycerides levels for the development of sorghum, teff and 

millet precooked pasta 

 

Abstract 

Precooked pasta was prepared using sorghum at different mono-glycerides 

concentrations (0.5%, 1%, and 1.5%) and in-barrel moistures (40%, 44%, and 48%) in 

pilot scale twin screw extruder. Optimized mono-glycerides (1%) concentration and 

process moisture (48%) was further used to produce teff and millet pasta. The produced 

pastas were analyzed for cooking loss, water absorption, gelatinization, pasting and 

textural properties. Increase in process moisture significantly reduced solid losses and 

water absorption (p<0.05). Higher concentrations of mono-glycerides significantly 

increased cooking losses and water absorption of sorghum pasta (p<0.05). Sorghum 

pasta formulated with 1% mono-glycerides and produced at 48% moisture was of the 

superior quality over teff and millet pasta. Addition of mono-glycerides significantly 

affected pasting and textural properties (p<0.50). Control wheat pasta resulted in higher 

firmness and teff pasta was higher in stickiness post cooking. 

 

Introduction  

Sorghum (Sorghum Bicolor L. Moench) is an imperative tropical crop belonging to 

Poaceae family that is grown in many parts of Asia, Africa, and Latin America (Anglani, 

1998). Sorghum’s comparative advantage is its drought tolerance; resistance to 

mycotoxins and fungi; and survivability in relatively adverse climatic conditions. The 

annual sorghum production in 2016/2017 was 58.6 million tons. Sorghum is the fifth 

most important crop in the world after wheat, rice, corn and barely. Sorghum outclasses 

other cereals under various environmental stresses and is thus generally more 

economical to produce. Around 35% of sorghum is now grown for human consumption. 

The rest of the crop is used for animal feed, alcohol and other industrial products. 

Sorghum (or milo) represents the third largest cereal grain in the United States. The 
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United States is the largest producer accounting for 20% of world production, and 57% 

of world sorghum exports in 2010/11 (USDA-FAS, 2012). 

 

Starch is the main component of sorghum grain, followed by protein, other non-

polysaccharides (NSP) and fat (Dicko et al., 2006). BSTIN-NRC, 1996 found that the 

average energy value of whole sorghum flour is 356 kcal/100g. Sorghum has maize and 

wheat like macromolecular composition of sorghum. Sorghum is a rich source of various 

phytochemicals (including phenolic compounds, plant sterols and policosanols) that are 

integral cellular components. These phenols act a natural barrier of plant against pests 

and diseases, while plant sterols and policosanols are components of wax and plant 

oils. The phytochemicals content of sorghum has gained increased interest around the 

world due to their antioxidants activity, cholesterol lowering properties and other 

potential health benefits. The sorghum phenols are of two major categories; phenolic 

acids and flavonoids.  

 

Sorghum is used in a variety of foods for human consumption. In general, white 

sorghum grain processed into flour and other products such as snack, cookies and 

other modern foods. In United States, the use of white sorghum products is limited to 

consumers who are allergic to gluten. In current scenario, white sorghum is being used 

as a substitute to wheat products for produce gluten free products. Several other 

varieties of sorghum are also used for food application in Africa, China, India, Central 

and South America. In Eastern and southern Africa, various sorghum varieties with 

tannin content are extensively grown and used for the preparation of traditional staple 

foods, porridges and alcoholic beverages. Some African cultures particularly prefer high 

tannin sorghum porridges because it remains longer in stomach and farmers/ field 

workers feels full throughout the day.  Other pigmented sorghum varieties are also 

preferred based on color characteristic they offer in different foods. Some of dark red 

color sorghum is used due to traditional health benefit phenomenon in pregnant women 

and are therapeutic against diseases of digestive system. However, in developed 

countries the use of pigmented sorghum is almost non-existent. The scientific 
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community needs to develop innovative ways of incorporating sorghum into mainstream 

food chain to utilize health benefits they offer. 

 

The formation and presence of resistant starch in sorghum based food products impairs 

its digestibly in infants (FAO, 1995). The protein content ranges from 7 to 15% for 

sorghum grain (FAO, 1995; Beta et al., 1995). Sorghum proteins are classified solubility 

basis, and further divided into albumins, globulins and kafirins (aqueous-soluble 

prolamins), cross linked kafirins and glutelins (Jambunathan et al., 1975). Hamaker et 

al. (1995) and Duodu et al. (2003) found kafirins compromise about 50-70% of total 

proteins. α-Kafirins (23 and 25 kDa) are considered as the principle storage proteins 

and make up about 80% of the total kafirins. While, β-kafirins (16, 18, and 20 kDa), and 

γ-kafirin (28 kDa) comprise about 5% and 15% of total kafirins. 

The presence of protease resistant reduces sorghum protein digestibility (Oria et al., 

1995; Anglani, 1998). Axtell et al. (1981), Taylor and Taylor (2002) have shown 

decreased protein digestibility upon cooking. The reason for low protein digestibility is 

the interaction between protein-protein, protein-carbohydrate, protein-(poly) phenol and 

carbohydrate-(poly) phenol (Axtell, 1981; Taylor and Taylor, 2002). Sorghum grain is a 

rich source of more than 20 essential minerals (BSTID-NRC 1996), like iron, zinc, 

potassium and phosphorous (Glew et al., 1997; Anglani, 1998). It is also naturally 

enriched with various Vitamin-B compounds such as thiamin, riboflavin, vitamin B6, 

biotin and niacin (Hegedus et al., 1985). Sorghum is storehouse of nutrients, minerals 

and vitamins but still sorghum products are nutritionally deficient and organoleptically 

inferior. The possible reason could be anti-nutritional factors (ANF) such as tannin, 

phytic acid, and polyphenol and trypsin inhibitors. These anti-nutritional binds vitamins, 

proteins, mineral in food complexes making them unavailable for human nutrition 

(Elsheik et al., 2000; Gilani et al., 2005; Idris et al., 2007). Yoon et al. (1983), Knuckles 

et al. (1998) and Mohammed et al. (2011) found that the presence of anti-nutritional 

factors limits digestibility of proteins and carbohydrates by inhibiting proteolytic and 

amylolytic enzymes. All these qualities make sorghum a very healthy functional grain. 

The objectives of this study were to engineer a white sorghum precooked pasta based 

and compare with other non-traditional grains such as teff and millet. 
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Teff (ivory) 

Teff (Eragrostis tef) an ancient grain from the lands of Ethiopia is on the smallest grain 

on earth (Adebowale et al., 2011). There are several varieties of teff available from dark 

red to white teff grain; nutritional properties of teff vary according to type of teff. In this 

research study, we have white (ivory) teff grain to produce precooked pasta formulated 

with salt, starch and mono-glycerides (MG). The carbohydrate content of teff is close to 

80%, teff starch granules are very small 2.6 µm with 20-26% amylose content (Bultosa, 

2007). The average crude protein of teff is in the range of 8 to 11 percent, teff is a store 

of amino acids such as glutamine, alanine, leucine, and proline (Adebowale et al., 

2011). Red teff has a higher iron and calcium content than mixed or white teff (Abebe et 

al., 2007). Teff is a protein and iron rich grain; a rich iron source can be used as good 

alternative (Adish et al., 1999). Alaunyte et al., (2012) found that iron content of wheat 

reached more than double with 30% teff flour supplementation. The smaller starch 

granules size and large surface area are more susceptible to enzymatic attack (Tester 

et al., 2004). Wolter et al. (2013) reported glycemic index of teff (74) significantly lower 

than that of white wheat (100) but comparable to that of sorghum (72) and oats (71). A 

detailed profile of teff is explained earlier in chapter 1. 

Millet (proso) 

Millets are a type of cereal usually grown in Asian and African countries and some parts 

of Europe. They are consumed as a staple food by most people of arid and semi- arid 

tropics of the world. Proso millets (Panicum miliaceum L.) are the oldest cultivated millet 

crops and are majorly cultivated in harsh conditions as an alternative to maize because 

of their better adaptability to arid and barren lands than other crops (Panaud, 2006). 

Millets are gaining importance because they offer several nutraceuticals, minerals and 

vitamins to the people with low purchasing power (Taylor and Emmanbux, 2008). Proso 

millet has excellent nutritional properties and can become a basic resource for food 

diversification (Young et al., 2010). Proso millet is called millet, hog millet and yellow 

hog can be used in many different fields such as food, feed and functional ingredients. 

(Badau et al., 2005) used ground millet flour to bake flatbreads and brew beer. The 
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proso millet is a rich source of protein, minerals, and vitamins, and its nutritive 

parameters are comparable or better than common cereals. Furthermore, the quantities 

of nutrients in proso millet are very like to the recommended ratio of protein, saccharide, 

and lipids (Kalinova and Moudry, 2006). Proso millets protein has a valuable influence 

on metabolism of cholesterol and has been reported to raise the plasma high-density 

lipoprotein (HDL) without increasing the low-density lipoprotein (LDL) levels (Nishizawa 

and Fudamoto, 1995). It is another preventive food for liver injury (Nishizawa et al., 

2002) and is a suitable foodstuff for patients requiring gluten-free diet (de la Barca et al., 

2010).  

Sorghum, teff and millet four was used independently to enrich non-gluten precooked 

pasta. Gluten-free (GF) foods are typically based on rice and maize, and have a 

comparatively low content of quality proteins, and are low in fiber, calcium, and iron. GF 

products also have a high fat and caloric content, to compensate for decreased 

sensorial acceptability (Thompson, 2009). Micronutrient content of teff and millet is 

higher than wheat and corn, whereas as sorghum offers several health benefits such as 

has lower glycemic index, high protein and antioxidants.  

To produce high quality GF pasta requires additives or processing techniques to modify 

in a suitable way the properties of macromolecular components (starch and proteins) 

relevant to the structure of the final product (Lai, 2001). Pagani (1986) improved rice 

pasta textural properties by improving gelatinization or steaming of pasta. Extrusion 

cooking process was developed for the starting flour was followed by conventional 

pasta-making process to produce rice pasta (Marti et al., 2010). Extrusion-cooking 

causes starch gelatinization followed by retro-gradation, forming a rigid starch network 

and improving the cooking quality of the product. 

The goal of this work was to prepare high quality precooked pasta based on sorghum, 

teff and millet flour. The finished product was analyzed for various quality attributes 

such as cooking loss, water absorption, gelatinization, rapid viscosity analysis and 

texture profiles of both cooked and uncooked pasta. 

 



98 

Materials and Methods  

Raw Materials 

Durum wheat semolina was donated by durum processing and milling operation, Tree 

house, MO. White decorticated coarse sorghum flour with average particle size of 

125m of lot number KSU-170330-09 was purchased from Nulife Market, Scott city, 

Kansas. Ivory teff flour was obtained from “Maksal Teff”, The Teff company, Idaho, lot 

number 1801607 (MFD:03/08/2017). Distilled mono-glycerides DIMODAN HS K-A was 

obtained from Danisco USA Inc., New Century, Kansas USA Lot number 1142945586, 

product no 810773. Iodized salt was purchased from Morton salt Inc., Chicago IL Lot 

number 23960049. Hulled proso millets were obtained from Red River commodities 

USA, Lot number 16128FC. Millets were further ground into flour by using hammer mill, 

Schutte Buffalo Hammer mill (Buffalo, NY, USA) fitted with 0.23 mm (230 μm) screen. 

The milled flour was collected in a tub and cooled to room temperature. The cooled flour 

was packed directly into 50 lb, three layered paper bags and sealed till further use. 

Coarse sorghum flour was obtained by hammer milling of sorghum meal (Lot# 1835-

170217-27) purchased from Nulife Market, Scott city, Kansas. A screen of size 510 μm 

was used to obtain targeted flour particle size of coarse sorghum flour. Three different 

flours, salt and mono-glycerides (MG) were blended in appropriate rations – (98.5% 

flour, 1% salt and 0.5% MG), (98% flour, 1% salt and 1% MG), and (97.5% flour, 1% 

salt and 1.5% MG) using a ribbon blender and mixed for 5 minutes. The blends were 

mixed in batches of 176 pounds. The blends were collected in multi-layered paper bags 

from bottom of the mixer by opening a sliding door. 

 

Experimental Design 

Three different grains flours sorghum, teff and milled were used as a base material to 

process precooked pasta in a twin-screw extruder. The first experiment was design to 

optimize sorghum pasta process moisture conditions (40%, 44% and 48%) at three 

different MG levels (0.5%, 1% and 1.5%). Sorghum flour with two different particle sizes 

(125 and <510 μm) was also used. The final product was compared with durum wheat 
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semolina particle size (238 μm) pasta obtained as lab control. 

The optimized conditions of sorghum pasta were used to run second experiment, where 

durum semolina, sorghum, teff and millet was processed at same conditions. The 

optimized MG level was 1% and process moisture content was 48%. Teff and millet 

were additionally deigned for treatments with 10% native corn starch formulations. 

Table 4.1 and 4.2 representing experiment designs used for this study. 

 

Extrusion Process 

The blends of flour, salt and MG were processed in a pilot scale co-rotating twin screw 

food extruder X-52 (Wenger Manufacturing Inc., Sabetha, KS, USA) equipped with a 

differential diameter cylinder preconditioner (DDC2, Wenger Manufacturing Inc., 

Sabetha, KS, USA). A five-independent zoned 1326 mm long barrel fitted with 52 mm 

screw diameter screws with an L/D ratio of 25.5:1 was equipped in extruder assembly. 

The barrel temperatures were increased to 60C in zone-1, 70C in zone-2, 90C in 

zone-3, 50C in zone-4, and 50 in zone-5. The heating of jacketed barrel was controlled 

by oil and heating elements. A loss in weight single screw feeder (Wenger 

Manufacturing Inc., Sabetha, KS, USA) was adjusted to feed 70 kg per hour into 

preconditioner. Steam and water were added into preconditioner, and the amount of 

steam added into preconditioner was ranged between 19.4-21.9 kg/h and water was 

5.3-7.7 kg/h. The steam flow into preconditioner was controlled by Digital Pressure High 

Accuracy Resonate Pressure (DPHARP) sensor, model-EJA110A, style-S1, No-

JEJAUR683, make YOKOGAWA. The water flow rate into preconditioner was controlled 

by remote flow transmitter, model RFT97121PNUR, RFT9712 S/N 59140 and mass 

flow sensor model-DS012H205SUP, sensor S/N 179066, and meter type-21; make 

Micro Motion Inc., CO, USA. Preconditioner discharge temperature was always 

maintained above 85°C (maximum was 93°C) with the help of right combination of water 

and steam in the preconditioner. Screw speed of differential diameter cylinder 

preconditioner was kept constant at 305 RPM. 
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Process moisture content of feed mix was adjusted to 40%, 44% and 48% (wet basis) 

based on initial moisture content of blends and additional water injected into extruder 

barrel to achieve target moisture levels. Extruder water flow rate was also controlled by 

remote flow transmitter model-RFT97121PRU, RFT9712 S/N 70307, SEN S/N 203177 

and mass flow sensor model-DS012S100SU, meter type-1, Micro Motion Inc., CO, 

USA. Steam flow rate into extruder ranged from 7.5 to 9.0 kg/h, was controlled by 

DPHARP sensor, model-EJA110A, style-S1, No-JEJAUR682, make YOKOGAWA. 

Screw speed of extruder was kept constant at 252 RPM.  Thermocouples mounted at 

each zone of extruder barrel were used to record respective (set and actual) zone 

temperatures from control panel. Die temperature and pressure was also recorded 

directly using thermocouple and pressure gauge respectively. Rotini pasta die, make 

Maldari, Number- 47637, die head number 55376-1 with 19 (insert) face openings was 

attached at the exit end of barrel. The die open area was 0.01796 square inch per 

insert. A two-blade air pressure (75 PSI) rotating face cutter was used to cut rotini 

shaped pasta. The cut pasta pieces were pneumatically conveyed to Wenger Double 

Pass Dryer/Cooler (Series 4800, Wenger Manufacturing Inc., Sabetha, KS, USA) 

operating at 71°C. The total retention time in dryer was 59 mins (8 mins for top and 40 

minutes for bottom belts). Cooling was accomplished by room temperature air with 

11mins retention time on cooling belt. 

Specific mechanical energy (SME) for each treatment was calculated as follows:  

𝑆𝑀𝐸 =

(𝜏−𝜏0)
100  ×  𝑃𝑟𝑎𝑡𝑒𝑑 ×  

𝑁
𝑁𝑟𝑎𝑡𝑒𝑑

ṁ
 

 = operating torque (%); 0 = no-load torque (%); Prated = rated power (37.3 kW), N = 

screw speed (rpm); Nrated = rated screw speed (336 rpm), and ṁ = net mass flow rate 

of pasta at die exit (kg/s).  
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Cooking Process  

Optimum cooking time for precooked pasta was the time required for opaque central 

core of the pasta to disappear when squeezed gently between two glass plates, AACC 

Approved Method 66–50 (AACC, 2000). This scientific approach was used to determine 

optimal cooking time for durum semolina, sorghum, teff and millet. An optimal cooking 

time of 5 min 36 secs was for durum pasta, 4 mins 42 secs for sorghum, 4 mins 36 secs 

for teff and 3 mins 46 secs for millet. Commercial wheat and rice pasta control was 

cooked as per cooking instructions which was 10 to 12 mins. An optimal cooking time of 

5mins for all pasta variants was used for determination of cooking loss, water 

absorption/ weight gain, firmness and stickiness. 

 

Cooking Loss 

Dry/ solid matter losses during cooking were determined by AACC Approved Method 

66–50 (AACC, 2000). Weighed pasta samples (25g) were cooked to optimum time in 

300 mL of distilled water in a beaker, rinsed in a stream of cold water for 30 secs and 

drained for 2 mins. Cooked pasta and rinse water were collected, and volume made to 

500 mL. The beakers carrying liquid were evaporated to dryness (constant weight) in air 

oven at 100±1°C for approximately 24h but may vary with oven capacity, load, etc. After 

complete dry beakers were taken out from oven, and cooled in desiccator to room 

temperature and weighed. Duplicate samples were carried out for precise results. 

Formula used to calculate cooking loss is as follows: 

Cooking loss =
𝐷𝑟𝑖𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 
 ×  100 

 

Water Absorption capacity  

Water absorption or water uptake is the amount of water absorbed or retained by pasta. 

It is related to functionality parameters such as cooking time and texture following 

cooking. Water uptake in pasta products is one the most important parameter post 
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cooking which also affects weight gain and textural properties. It can be measured 

during cooking or solid loss analysis. Pasta samples (25g) were cooked to optimum 

time in 300 mL of distilled water in a beaker, rinsed in a stream of cold water for 30 secs 

and drained for 2 mins. The drained pasta weight was measured for water uptake. All 

the samples were subjected to duplicate for precise data. Formula used to calculate 

water absorption/uptake is as follows. 

 

𝑊𝑎𝑡𝑒𝑟 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 % =  
(𝐶𝑜𝑜𝑘𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝐷𝑟𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑤𝑒𝑖𝑔ℎ𝑡)

𝐷𝑟𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑤𝑒𝑖𝑔ℎ𝑡
 ×  100 

 

Thermal Analysis-Differential Scanning Calorimetry 

To comprehend physical transformation of starch and proteins termed as starch 

gelatinization and protein denaturation, a calorimetric measurement was carried out for 

each raw material blend and extruded products. A differential scanning calorimeter 

(DSC) instrument Q100 DSC (TA Instruments, New Castle, DE, USA) was used to for 

analysis. A sample of 8-10 mg was weighed into large volume stainless steel DSC pans 

(Part no.03190029, Perkin Elmer Health Sciences Inc., Shelton, CT, USA). Distilled 

water was added to samples in the pan to obtain a solid to water ratio of 1:2 (Stevens 

and Elton, 1971; Zhu et al., 2010). To prevent water leakage pans were hermetically 

sealed and samples allowed to equilibrate overnight. The instrument was calibrated 

using indium as reference material. An empty sealed pan was used as reference for all 

experiments. 

The program used consisted of several steps which includes both heating and cooling 

steps is as follows. First, is to equilibrate at 10°C, heating pans from 10°C to 140°C the 

at rate of 10°C/min, mark end of cycle 1, cooling down the sample from 140°C to 10°C 

at the rate of 25°C/min, mark end of cycle 2 with nitrogen gas flow rate of 50mL/min. 

The samples were again rescanned with heating from 10°C to 140°C at the rate of 10°C 

as final phase of the test; mark end of cycle 3. DSC data for each gelatinization and 

denaturation endotherm was analyzed for transition temperatures, onset (To), peak (Tp), 
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and endpoint or completion (Tc) and enthalpy (∆H) using TA Instruments Universal 

Analysis Software (version 5.4.0). All reported data were subjected to duplicates. 

Total cook (%) was calculated as a ratio of total enthalpy transition difference which 

includes transition enthalpies for starch and protein fractions of binary blends. It is 

represented as below: 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑜𝑘 % =  
∆𝐻𝑇𝑟𝑎𝑤 − ∆𝐻𝑇𝑒𝑥𝑡𝑟𝑢𝑑𝑒𝑑

∆𝐻𝑇𝑟𝑎𝑤
 ×  100 

      

Where,  ΔHTraw = Total enthalpy of transition of raw binary blend,  

ΔHTextruded = Total enthalpy of transition of extruded binary blend  

 

Pasting Properties  

Rapid Visco Analyzer (RVA) provides an index of how cooked a sample is by re-cooking 

under relatively low shear and in excess water and measuring pasting viscosity 

throughout test. Pasting properties of each flour and blends were examined using RVA. 

(RVA 4, Newport Scientific Pvt. Ltd., Warriewood, NSW, Australia). The RVA interface 

was equipped with software – Thermocline for Windows (version 3.15.2.298) for 

controlling test and analyzing results post-test. The sample size was 3.5 to 4.0 g and 

amount of water added was from 24.0 to 25.0 ml (corrected for 14% moisture basis). 

Pasting properties were determined after running samples on standard AACC profile 

(AACC 76-21.01, 1999) with a run time of 13 minutes. The temperature range was fixed 

between set points; rate of heating and cooling was 12°C/min. The paddle speed was 

set at 960 rpm for first 10 secs then 160 rpm for remaining test time. Peak viscosity 

(PV), pasting temperature (PT), trough viscosity (TV), breakdown (BD), final viscosity 

(FV) and setback (SB) were recorded. The viscosity values were measured in cP 

(centipoise) units. All measurements were performed in duplicate for both raw material 

and extruded products.  
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Texture Profile Analysis 

The texture properties of pasta after cooking are extremely vital macroscopic chemical-

physical and sensory properties for assessing quality of pasta. They signify some of the 

features that consumers are more observant during consumption. Pasta textural 

properties were evaluated using a TA. XT plus texture analyzer system (Stable Micro 

Systems, Surrey, UK).  

The flexural strength or breaking strength/stress of uncooked (rigid) samples was 

determined by performing a three-point bend test. Uncooked pasta samples 

approximately 5 cm in length were placed on fixture attached to the instrument. The 

fixture was placed to supports samples across a span to hold sample horizontally 

across test probe (TA46 blind edge). A force (5.0 gm) was applied to the center of 

sample (which is also central to the supports) and breaking stress was determined. The 

breaking strength (force per unit width) or breaking stress (force per unit area) of 

sample is taken as the maximum strength or stress value of the curve. The distance to 

break gives an indication of brittleness of sample as this show how far a sample can be 

deformed before fracture. The gradient of slope indicates sample toughness; the higher 

the gradient the tougher the sample. The test parameters set were as follows: test 

mode= compression; pretest speed= 1.0 mm/sec; test speed= 1.0 mm; posttest 

speed=10.0 mm/sec; target mode = distance; distance= 15.0 mm; trigger type=auto-

force; trigger force= 5.0 gm. 

Firmness of cooked noodles was measured by AACC Approved Method 66–50 (AACC, 

1999) for pasta with modifications. Firmness or two bite test is defined as the maximum 

force at first compression (first peak force). Stickiness is defined as the maximum 

negative peak force to separate the probe from sample surface upon retraction (the 

higher the negative force values the sticker is the sample). The test parameters set for 

the test were as follows: test mode= compression; pretest speed= 1.0 mm/sec; test 

speed= 1.0 mm; posttest speed=1.0 mm/sec; target mode = strain; strain= 85%; count 

=2; trigger type=auto-force; trigger force= 5.0 gm. A 2" diameter and 20 mm tall 

cylindrical aluminum probe was used to perform the test. To manage the standard 

deviations, results were obtained after taking the average of 25 measurements.  
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Statistical Analysis 

All the results were analyzed using analysis of variance (ANOVA) with general linear 

model procedure (SAS version 9.1, SAS Institute, Cary, North Carolina, USA). When 

significant effects (p0.05) were indicated by ANOVA, Tukey pairwise comparisons 

were conducted to distinguish which treatments differed significantly (p0.05). Pearson 

Correlations was used to establish correlation values. 

 

Results and Discussion 

Pasta Production  

The process parameters of experiment are summarized in Table 4.3, 4.4 and 4.5; 

indicating process moisture, post drying product moisture and SME. The process was 

designed to run moisture ranged from 39.5% to 47.9% meeting study objectives of low 

to high process moisture contents. The dried moisture of pasta was from 9.80% to 

12.23%. The moisture content of dried pasta ranged from 9.8% to 12.23%, highest was 

for wheat pasta and lowest for millet pasta. Sorghum, millet and teff pasta were dried at 

same conditions, for dried sorghum pasta the moisture content ranged from 10.36% to 

11.77%, teff pasta 10.83% to 11.05% and millet pasta 9.80% to 10.07%. The final 

moisture was similar to of commercial pasta Barilla Wheat Rotini (11.13%) and Barilla 

Penne rice pasta (10.56%).  

The calculated values of SME consumed during the experiment were represented in 

Table 4.3, 4.4, 4.5. The SME values ranged from 43 to 162 kilo joules per kilogram. 

Among three grains at same processed at conditions teff pasta took highest energy 80 

kJ/kG, followed by sorghum 64.3 kJ/kG and millet 57.8 kJ/kG. The teff starch granules 

are densely packed require higher energy to cook (Bultosa, 2007; Bultosa et al., 2002). 

The higher lipid content of millets has reduced shear and caused lubricating affect 

which lowered energy required in extruder (Ravindran, 1991; Kalinova, 2002). Gour and 

Gautam (2003) found drop in SME input by increasing fat levels in twin screw extrusion 

of rice flour.  
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Sorghum pasta was developed at three different levels of moisture (39%, 44% and 

48%). The SME input increase with reducing in process moisture levels and vice versa 

(Figure 4.10). Treatment with 39% moisture content consumed highest energy (162.3 

kJ/kG); followed by 44% (91.2 kJ/kG); and 48% (56.2 kJ/kG). In extrusion process water 

works as a plasticizer. The plasticizing effect of water lowers the viscosity of the melt, 

resulted in lower SME. Akdogan (1996) also reported significant increase (p<0.05) in 

SME with decrease in moisture. Decline in SME with increasing moisture agrees with 

findings of Van Lengerich (1984), Van Zuilichem et al. (1975), Faubion et al. (1982), 

Bhattacharya and Hanna (1987), and Likimani et al. (1991) although moisture 

conditions used in these studies were lower. The second part of the experiment was 

three different levels (0.5%, 1% and 1.5%) of MG (Table 4.4). There was no significant 

difference in SME input at different levels mono-glycerides in formulations. 

 

Cooking Loss 

Several phenomena are occurring during cooking such as hydration, starch 

gelatinization and interaction with non-starchy matrices. The optimal cooking time of 

sorghum, teff and millet pasta was different. The differences between cooking time 

could be attributed to different gelatinization temperatures of starches (Singh, Singh et 

al., 2002). All pasta samples were cooked for 5.0 mins to measure cooking losses, 

Cooking loss values were lower than 10% of pasta mass which indicates good quality of 

precooked pasta (Kim et al., 1996; Wang et al., 1999). Cooking losses sorghum, teff 

and millet pasta were comparable to those of wheat pasta, which was used as control 

(Table 4.5). Cooking losses of only sorghum pasta processed at different moisture and 

MG levels ranged from 4.0% to 6.8% (Table 4.3 and 4.4). The lowest was for treatment 

formulated with 0.5% MG processed at 48% moisture content and highest at 44% 

moisture. Cooking loss values were significantly different (p<0.05). Use of food 

emulsifier (MG) in blends resulted in higher cooking losses (Figure 4.1b). Treatment 

with 0.5% MG had 4% cooking loss; 1% MG was 5.22%; 1.5% MG was 5.85% (Table 

4.4). The high cooking loses were due to higher water solubility of sorghum flour, results 

shown in Table 4.3 and 4.4. Increase in MG results in higher cook weight (water 
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absorption) (Table 4.4). A 0.5% increase in MG in sorghum resulted in significant weight 

gain post. This may be due to the ability of MG to form complexes with amylose which 

prevents the starch granules from gelatinization. The uncooked sorghum starch might 

have leached out fast and resulted in higher cooking loss. Similar results were reported 

by Chapen et al. (2008) for extruded rice vermicelli formulated with MG. A negative 

effect of MG on cooking loss of sorghum pasta was observed. Treatment with larger 

particle size resulted in higher cooking loss (6.43%). Sorghum pasta yielded lowest 

cooking loss (5.24%), teff pasta (7.40%) and millet pasta (7.26%) processed at same 

moisture (48%) and MG (1%), (Figure 4.1c). Addition of corn starch lowered cooking 

loss by 27.2% for teff but increased 13.1% for millet.  

 

Water Absorption 

Hydration of cooked pasta is an indicator of water uptake during cooking, and relates to 

various macroscopic molecular changes takes place in starch and protein bodies (Sozer 

et al., 2007). Water absorption (WA) values of sorghum, teff and millet pasta are 

represented in (Table 4.5). The WA of cooked pasta was significantly affected by 

process water and MG levels (p<0.05) (Table 4.3 and 4.4). Ding et al. (2006) also 

reported significant drop in water absorption index by increase in feed moisture of 

expanded snack in twin screw extruder. The range of WA values was from 125.86% to 

244%; highest was for millet formulated with 1% MG and processed at 48% moisture. 

Millet pasta disintegrated rapidly during cooking which increased the surface area of 

pasta resulted in higher water absorption. The low gelatinization percentage could be 

the possible reason for rapid disintegration of millet pasta (Table 4.6). A trend of 

decrease in hydration with increase in process moisture was observed in sorghum 

pasta treatments (R2=-0.99). Sorghum processed at 40% moisture gained highest 

weight over 44% and 48% (Figure 4.2a).  

The WAI measures the amount of water absorbed by starch and can be used as an 

index of gelatinization (Anderson et al., 1969). The conversion of raw starch to a cooked 

and digestible material by the application of water and heat is one of the important 

effects that extrusion has on the starch component of foods. It may be expected that as 

starch granule structure is disrupted more water is bound to starch molecule resulting in 
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higher WA. The higher SME inputs generates more shear which lead to complete 

disruption of protein networks and starch granules, resulted in higher penetration of 

water during cooking (Mercier and Fillet, 1975). The increased accessibility to the 

protein polar amino-acid groups during cooking because of the denaturation of proteins, 

especially albumins, could have enhance the affinity for water (Alonso et al., 2000) thus 

resulting in greater WA.  

The WA of cooked pasta was found to increase with increasing levels of MG for 

sorghum pasta (R2=0.96) (Figure 4.4a). Sorghum pasta with 0.5% MG gained weight by 

126%; 1% MG- 170%, 1.5% MG- 191% (Figure 4.2b). The addition of MG inhibits starch 

swelling and lowers gelatinization of starch granules, for such starch granules most of 

the water absorption takes place during secondary cooking (Donelly and Ponte, 2000; 

Eliasson and Krog, 1985). Chapen et al. (2008) reported increase in spaghetti hydration 

formulated with higher MG percentages. Sorghum pasta with 1% MG gained maximum 

weight with lowest solid loss over wheat teff and millet (Figure 4.2c). Giuberti et al. 

(2015) reported high WA index of spaghettis made from non-wheat flours.  Adding 

native corn starch into teff and millet pasta decreased hydration.  

 

Thermal Analysis-Differential Scanning Calorimetry 

Gelatinization represents the degree of cook or degree of starch transformation in any 

cereal based cooked product (Patton and Sprat, 1981). Gelatinization temperature 

represents the melting of crystalline structure of starch granules, loss of birefringence 

and other transformations. The medium temperature, high moisture, and relative long 

residence time made it a gentle cooking process for cereal-based pasta. Raw flour 

blends were scanned to determine onset temperature, peak temperature, and 

completion temperature and gelatinization enthalpy (Table 4.6 and 4.7). The 

gelatinization temperatures were not significantly different (p>0.05). The highest 

enthalpy input was observed for control wheat blend, followed by teff, sorghum and 

millet blends was the lowest (Table 4.7). Gelatinization enthalpy values were 

significantly different (p<0.05). 
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It was observed that starch gelatinization of all pasta formulations post extrusion ranged 

from 92.7% to 100% (Table 4.6 and 4.7). The lowest degree of gelatinization was for teff 

with 1% MG (92.7%) followed by teff with 10% starch and 1%MG (93.4%), sorghum 

with 1% MG (96.0%), millet with 1% MG (96.9%) and millet with 10% starch and 1% MG 

(97.7%), (Table 4.7). In sorghum pasta, increase in MG levels have decrease the 

gelatinization percentages (R2=0.75) (Figure 4.5a), these values were statically different 

(p<0.05) (Table 4.6). Both teff and millet formulated with 1% MG remained lower in 

cooking percentages (Table 4.7). The presence of fiber and fat in whole grain teff and 

millet formulations cause a reduction in SME (Table 4.5) and thus led to less cook 

(Table 4.7). Feng and Lee (2014) reported that in extrusion lipids work as a lubricant led 

to lowering SME input. Lin et al. (1997) also observed that increase in fat content in 

extrudates decreased the degree of starch gelatinization.  

 

Pasting Properties  

Pasting properties of starch is the phenomena involving granular swelling, exudation of 

molecular components from granules and eventually, total disruption of granules (Atwell 

et al., 1988). Offline pasting viscometer was used to measure the degree of cook in 

starch gelatinization (Harper, 1994). Rapid Visco Analyzer (RVA) was used for offline 

control to measure relative starch degradation (Ryu et al., 1993). The RVA method 

involves recooking and monitoring viscosity changes. This has been used to quantify 

cold-swelling 'cooked' component, the 'raw' component that pastes during test, and the 

overall viscosity that indicates degree of starch dextrinization. Pasting properties 

depends upon variety and source of starch (Lineback, 1984). Pasting properties of raw 

flour blends are represented in Table 4.8. Sorghum flour blends show highest peak 

viscosity (S+MG 0.5%) 289199, followed by control heat 276713, sorghum coarse 

flour blend (SC+MG 0.5%) 239719, teff (T+MG 1%) 224045, and millet (M+MG 1%) 

220920. Raw flour treatment’s peak viscosity values were significantly different 

(p<0.05). Pasting temperature of raw flours blends were significantly different (p<0.05). 

Semolina (control) displayed highest pasting temperature 88C, followed by coarse 
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sorghum flour 83.8C, teff– 79.6C, sorghum- 78.7C and millet- 76.8C. Likewise, the 

pasting time values also displayed similar trend, and were significantly different 

(p<0.05). Sorghum coarse flour found to be having higher pasting temperature and 

pasting time than sorghum flour, the possible reason could be the larger particle size of 

coarse flour. Larger particles require more time for water and heat to penetrate into the 

granule, slow and delayed swelling of starch granules delays breakdown viscosity.  

 

Millet blend showed the highest breakdown in viscosity- 1273 cP, followed by sorghum- 

1004 cP, control semolina 675 cP and teff- 647 cP. All breakdown viscosity values were 

significantly different (p<0.05). Highest setback was observed in sorghum blends, 

followed control semolina, millet and teff. Final viscosity and set back represents the 

tendency of rapid retro gradation of starch granules, sorghum blends shown highest set 

back followed by control semolina, millets and teff. Similar trends were observed for 

final viscosity. Different individual flours were subjected to RVA test without any 

blending’s, the addition of salt and MG affected the pasting prosperities but trends 

remained same in raw blends (values not shown). 

 

Pasting properties of extruded pasta formulated with three different flours are 

represented in Table 4.10. For sorghum variants, increase in process moisture 

increased peak time significantly (p<0.05) (Table 4.9), but highest peak time was 

observed for control semolina. Decorticated coarse sorghum pasta took less time to 

reach peak than decorticated fine sorghum flour (Table 4.9). Both these properties were 

directly affected by the SME input (Table 4.4), higher energy input let to lower peak time 

and cold swelling. Higher SME caused greater starch damage and starch gelatinization 

resulted higher particle hydration at ambient temperature (Ozcan and Jackson, 2005; 

Whalen et al., 1997). Rapid granular swelling with high water absorption rates leading to 

starch solubilization and leaching of amylose below 90°C could have possibly increased 

viscosity. Further increase in temperature and mechanical stress during the holding 

phase causes further disruption of the starch granule and the remaining amylose is 

leaches out (Ragaee and Abdel, 2006). Thus, sorghum treatments processed at low 

process moisture levels had significantly lower peak time and lower final viscosity. 
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These observations agree with Mahasukhonthachat et al. (2010) reported in the effects 

of extrusion kinetics on pasting properties. Among different grains teff had significantly 

(p<0.05) higher peak time, followed by control semolina, sorghum and millet was the 

lowest (Table 4.10).  

Peak viscosities of sorghum pasta samples were significantly (p<0.05), sorghum 

treatments processed at lower moisture was lower peak viscosity; 40%- 464cP, 44%- 

669cP, and 48%- 1718cP (Table 4.9). Decorticated coarse sorghum pasta had higher 

peak viscosity than decorticated fine sorghum flour. For different flour pasta’s control 

semolina resulted in highest peak viscosity- 3847 cP, sorghum- 2612 cP, teff- 2213 cP, 

millet- 1152cP. The final viscosities of millet were found to be lower than that of all other 

grains. The presence of lipids in whole millet flour has been reported to lower the peak 

viscosity due to amylose-lipid complex formation (Singh et al., 2007 and Singh et al., 

2003). The addition of emulsifier greatly affects the degree of gelatinization in high 

shear process by providing lubricating effect (Chanpen et al., 2007). The low breakdown 

viscosity indicates that millet starches had more resistance to high temperature and 

shearing and that it has higher pasting stabilities.  

After the breakdown, the increase in viscosity during cooling period is indicative not only 

of normal inverse relationship between viscosity and temperature of suspensions but 

also of the tendency for swollen granules, dispersed and dissolved starch molecules to 

retrograde with decrease in temperature (Singh et al., 2007). The addition of MG 

lowered the setback viscosities in sorghum formulations (Table 4.10). The setback 

viscosities of control semolina were highest 5468 cP as compared to other grains, millet 

5002 cP, sorghum- 3671 cP, and teff was 3478 cP. The millet starch re-absorbed water 

rapidly and resulted into higher setback (Table 4.10). Similar behavior of proso millet 

was reported by Yanez et al. (1991). The lower setback viscosity values could be due to 

lower extent of retro-gradation of amylose during cooling (Singh et al., 2009). 
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Textural properties 

Three-point bend test 

Hardness is the average force require for a probe to penetrate the uncooked pasta. The 

harness values for uncooked pasta were observed and documented in Table 4.11 and 

4.12. In Sorghum pasta variants increase in process moisture increased pasta hardness 

significantly (p<0.05); 40%- 1.38±0.22 kg, 44%- 1.75±0.49 kg, 48%- 2.47±0.97 kg. 

Hardness was positively correlated with process moisture content (R2=0.91) (Figure 

4.6a). During extrusion process, the melt swell effect and bubble growth effect both 

contribute to the structure change. The moisture content during extrusion processing 

directly affects the starch gelatinization and extrudate expansion to product 

(Panmanabhan and Bhattachayrya, 1989). The water acts as a plasticizer to the starch-

based material reducing its viscosity and the mechanical energy dissipation in the 

extruder and thus the product becomes dense and bubble growth is compressed (Liu et 

al., 2000). This was confirmed in this study as the recorded SME inputs was found to be 

negatively correlated with process moisture (Table 4.3).  The reduced starch conversion 

and compressed bubble growth would result in a dense product and reduced crispness 

of pasta, as observed in this work. Previous studies also reported that the hardness of 

extrudate increased as the feed moisture content increased (Badrie and Mellowes, 

1991; Liu et al., 2000). 

 

Results suggested that the pasta structuring agents such as MG tested in this study 

significantly (p<0.05) affected the stress resistant properties of decorticated white 

sorghum pasta three-point bend test (Table 4.10). The drop-in compression force with 

increasing levels of MG (R2=0.89) (Figure 4.6b). The lowering of break force for 

sorghum pasta samples containing different levels of MG can be attributed to two 

things, a) decrease in the rate of starch retro-gradation due to the formation of amylose-

lipid complexes (Kaur et al., 2005), b) a weak interaction between structuring agents 

and sorghum flour components (protein and starch binding) induces a reduction in the 

stress at break values due to lower gelatinization (Chillo et al., 2009).In both the 

experiments control semolina pasta exhibited highest break force, followed by teff, 

sorghum and millet pasta (Table 4.11). Semolina pasta resulted was of highest firmness 
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due to strong gluten-starch network, whereas small teff starch granules tightly binds 

starch granules to make strong structure matrix of pasta (Bultosa et al., 2002). Higher 

lipids content of millets may have led to the soft texture of millet pasta (Jones et al., 

1970; Ravindran,1991; Kalinova, 2002).  

 

Firmness and Stickiness  

Textural parameters especially firmness and adhesiveness are important for pasta 

cooking quality. The hardness values of cooked pasta were statically different (p<0.05). 

Firmness and adhesiveness values of cooked pasta are represented in Table 4.11 and 

4.12. The hardness of cooked sorghum pasta significantly increased with an increase in 

process moisture (R2= 0.83) (Figure 4.7a). Similarly, increase in MG percentages in the 

formulations resulted in lowering firmness post cooking (R2=-0.89) (Figure 4.7b). 

Differences in firmness values mainly arise due to the cooking of starch granules and 

different protein networks. Higher gelatinization of starch granules yielded into higher 

firmness and vice-versa. The firmness values of cooked pasta were moderately 

correlated with gelatinization (R2= 0.54) (Figure 4.7c). Adhesiveness or stickiness is 

related with the amount of starch and starch gelatinization (Matsuo and Irvine, 1970). 

During cooking, severe changes in the microstructure of pasta occurs. The uniformity of 

dry pasta starts to change by the diffusion of water from outside to the core. Closer to 

the surface of the pasta strand the changes are more drastic, starch granules are no 

longer intact as in the core and protein matrix starts to break down due to denaturation.  

Firmness results of cooked pasta evaluated in this study are in agreement with Sozer et 

al., (2007) who reported lower firmness values of cooked spaghettis at higher 

gelatinization. The firmness values control pasta was highest, followed by sorghum, 

millet and teff (Table 4.12). The strong gluten matrix and protein network could be the 

possible reason for higher firmness. The inclusion of bran from whole millet flour might 

be the possible reason for higher hardness (Sozer et al., 2007). The firmness value of 

teff pasta produced on pilot scale was lower than millet pasta whereas the results were 

opposite in lab scale pasta. The possible reason could be the low gelatinization of teff 

pasta. The incomplete cooking failed to form strong starch-protein matrix of product, 
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which disintegrates quickly during cooking and further on textural instrument.  

Stickiness figures of cooked pasta were significantly different (p<0.05). The teff pasta 

was the stickiest 0.58 kg; control and millet 0.22 kg; sorghum pasta was least sticky- 

0.12 kg. Similar, results were obtained in lab scale pasta where teff pasta had higher 

stickiness values over semolina and millet pasta. The likely reason that makes millets 

less sticky is the higher percentage of lipids than teff and sorghum. 

 

Conclusion  

In this study, twin screw extruder was successfully used to identify the optimal 

formulation for precooked pasta from sorghum, teff and millet flours. Cooking losses 

and water absorption of sorghum pasta were shown to be better, and teff and millet 

were comparable to the lab produced durum wheat based semolina pasta. Different 

process moistures and addition of different MG percentages into the raw formulation 

have significantly affected cooking loss, water absorption, gelatinization, viscosity 

properties and textural properties. Optimum process moisture and MG levels resulted in 

a good quality product with higher water absorption and lower cooking loss. Addition of 

native corn helped to improve teff pasta quality attributes but not millet flour. Higher 

process moisture increased the hardness of uncooked pasta, whereas addition of MG 

lowered hardness pasta sorghum pasta. Raw teff pasta was higher in hardness than 

sorghum and millet. For cooked pasta inclusion of MG lowered firmness, and teff pasta 

was the stickiest product. The results obtained from this study can further utilized to 

proliferate the use of drought resistant crops (sorghum, teff and millets) to develop 

human food through food processing industry and research. 
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Table 4.1:Pilot scale experimental design for the optimization of sorghum pasta 
processed at different moisture conditions and mono-glycerides levels.  

 

Ingredients Control 
S+MG 

(0.5%) 

S+MG 

(0.5%) 

S+MG 

(0.5%) 

S+MG 

(1%) 

S+MG 

(1.5%) 

SC+MG 

(1.5%) 

Semolina 98.5 
      

Sorghum Flour 
 

98.5 98.5 98.5 98 97.5 
 

Sorghum coarse 

flour       
98.5 

Mono-glycerides 0.5 0.5 0.5 0.5 1 1.5 0.5 

Salt 1 1 1 1 1 1 1 

Process Moisture 46.8 44.7 39.5 47.9 47.5 47.9 47.5 

*All values are represented in percentages (%) of total. 

 

Table 4.2:Pilot scale experimental design of precooked wheat, sorghum, teff, and 
millet pasta. 

 

Ingredients Control 
S+MG 

(1%) 

T+MG 

(1%) 

T+CS 

(10%)+MG 

(1%) 

M+MG 

(1%) 

M+CS 

(10%)+MG 

(1%) 

Semolina  98.5 
     

Sorghum Flour 
 

98 
    

Teff Flour 
  

98 88 
  

Millet Flour 
    

98 88 

Corn starch 
   

10 
 

10 

Mono-glycerides 1 1 1 1 1 1 

Salt 1 1 1 1 1 1 

Process Moisture  46.8 48.6 48.1 47.3 47.5 47.5 

S-sorghum flour, SC-Sorghum coarse flour, control- durum semolina, T-teff flour, M-millet flour, MG-
mono-glycerides, CS- corn starch. 

*All values are represented in percentages (%) of total 
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Table 4.3:Pasta moisture, SME, WA and CL of sorghum pasta processed at 
different in-barrel moistures. 

 Treatments    Moisture       SME          WA      CL  

     Process      Dried KJ/KG        (%)            (%)          (%)  

Control              46.8         11.710.15a     62.5     136.170.9b 5.130.2c 

S+MG (0.5%)  39.5          10.880.14ba        162.3    160.165.3a 6.340.1b 

S+MG (0.5%)  44.7        10.490.0bba         91.2     136.632.6b 6.850.6a 

S+MG (0.5%)  47.9          11.770.01a          56.2     125.862.7c     4.00.2d 

Moisture in percentage, SME- Specific mechanical energy, S-sorghum flour, SC-Sorghum coarse flour, 
control- durum semolina, T-teff flour, M-millet flour, MG-mono-glycerides, WA-water absorption (%), CL- 
cooking loss (%). 

 

Table 4.4:Pasta moisture, SME, WA and CL of sorghum pasta processed at 
different mono-glycerides levels. 

Treatments    Moisture       SME        WA  CL  

            Process      Dried KJ/KG            (%)          (%)      (%)     

S+MG (0.5%) 47.9         11.770.01a     56.2    125.862.7c     4.00.2d 

S+MG (1%)  47.5         11.190.05ba          57.7    169.792.7ba   5.220.0c 

S+MG (1.5%) 47.9         10.360.07b          57.0    191.283.4a    5.850.4b 

SC+MG (1.5%) 47.5         11.110.03ba          72.2     166.852.3b    6.430.2a 

Moisture in percentage, SME- Specific mechanical energy, S-sorghum flour, SC-Sorghum coarse flour, 
control- durum semolina, T-teff flour, M-millet flour, MG-mono-glycerides, WA-water absorption (%), CL- 
cooking loss (%). 
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Table 4.5:Pasta moisture, SME, WA and CL of sorghum, teff and millet. 

 

Treatments    Moisture          SME          WA     CL  
                Process    Dried KJ/KG       (%)     (%)             (%)    

 Control          46.8       12.230.10a         69.1    136.160.2d     4.470.3d 

S+MG (1%)          48.6       10.750.08bc       64.3     204.189.3b      5.240.2c 

T+MG (1%)           48.1      10.830.0bc         80.5    165.769.1c     7.401.0b 

T+CS (10%)+MG (1%)   47.3       11.050.26b      73.1     153.7612.2c   5.390.2c 

M+MG (1%)         47.5       10.090.07c           57.8     244.54a1.6a    7.260.0b 

M+CS (10%)+MG (1%)   47.5       09.800.05c       43.7     197.6110.8b   8.210.3a    

Moisture in percentage, SME- Specific mechanical energy, S-sorghum flour, SC-Sorghum coarse flour, 
control- durum semolina, T-teff flour, M-millet flour, MG-mono-glycerides, CS- corn starch, WA-water 
absorption (%), CL- cooking loss (%). 
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Table 4.6:Thermal characteristics of precooked sorghum pasta samples: onset 
(To), peak (Tp), completion (Tc), gelatinization enthalpies (ΔH) and degree of starch 
gelatinization (Δg). 

 

Treatments   To (°C) Tp (°C)          Tc (°C)           ΔH(J/g)       Δg (%) 

Control             57.20.8b    65.01.7b       76.02.5b      0.00.0d          1000.0a 

S+MG (0.5%)* 69.80.2a     75.00.0a      86.70.2a        0.00.0d     1000.0a 

S+MG (0.5%)** 69.80.2a     75.00.0a      86.70.2a      0.00.0d     1000.0a 

S+MG (0.5%)***      69.80.2a     75.00.0a      86.70.2a      0.00.0d     1000.0a 

S+MG (1%)  70.80.8a     75.80.7a      85.91.4a      0.00.0d     1000.0a 

S+MG (1.5%) 69.70.4a     74.40.2a      83.80.4a      0.20.0cb      96.00.8b 

SC+MG (1.5%) 70.51.2a     75.71.2a      87.51.4a      0.30.0b      96.00.0b 

S-sorghum flour, SC-Sorghum coarse flour, control- durum semolina, T-teff flour, M-millet flour, MG-
mono-glycerides, enthalpy (ΔH) for raw semolina ≈9.1±0.2, Sorghum coarse flour≈10.4±0.8, sorghum 
flour≈8.6±1.6, teff flour≈10.2±0.2, and millet flour≈6.9±0.5. 

* At process moisture 39.5% 
** At process moisture 44.7% 
*** At process moisture 47.9% 
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Table 4.7:Thermal characteristics of precooked sorghum, millet and teff pasta 
samples: onset (To), peak (Tp), completion (Tc), gelatinization enthalpies (ΔH), and 
degree of starch gelatinization (Δg) 

 

Treatments            To (°C)         Tp (°C)        Tc (°C)       ΔH(J/g)   Δg(%) 

Control           57.20.8b    65.01.7b      76.02.5b       0.00.0d    1000.0a 

S+MG (1%)           70.80.8a    75.80.7a      85.91.4a       0.00.0d    1000.0a 

T+MG (1%)          70.20.8a     77.00.9a      88.30.6a     0.60.1a     92.70.7dc 

T+CS (10%)+MG (1%)   71.31.1a     78.11.1a     88.70.9a     0.50.1a     93.40.6c 

M+MG (1%)         70.90.7a     75.80.9       85.40.9a     0.20.0cb   96.90.4b 

M+CS (10%)+MG (1%)   71.51.2a       76.61.5a      85.41.9       0.10.0c    97.70.4b 

S-sorghum flour, SC-Sorghum coarse flour, control- durum semolina, T-teff flour, M-millet flour, MG-
mono-glycerides, CS- corn starch, enthalpy (ΔH) for raw semolina ≈9.1±0.2, Sorghum coarse 
flour≈10.4±0.8, sorghum flour≈8.6±1.6, teff flour≈10.2±0.2, and millet flour≈6.9±0.5. 
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Table 4.8:Pasting properties of raw pasta blends formulated with salt, MG and corn starch.  

 

Treatments    PTc          PTm          PV               T         BD        SB       FV 

           (°C)    (mins)      (cP)          (cP)                 (cP)     (cP)      (cP) 

Control              88.00.6a 8.70.3a 276713bc 2092167a 675180ef 3290117c 538249ce 

S+MG (0.5%)  78.70.8d 7.80.0bdec 289199ba 188873ba 100426dc 503819b 692592b 

S+MG (1%)   77.80.6d 7.70.2dec 286311bac 1859132bac  1004120dc 520538ba 7064170b 

S+MG (1.5%)  78.31.3d 7.80.2bdec 283640bc 19978ba 83948ed 5532133a 7529125a 

SC+MG (1.5%)  83.80.0bc 8.20.3bdac 239719edf 196072ba 43753f 5575126a 753554a 

T+MG (1%)    79.60.8d 8.20.1bac 224045edf 159415c 64730ef 2540214d 4133229e 

T+CS (10%)+MG (1%) 80.10.1dc 8.40.0ba 210188gf 157837dc 52450f 1798230fe 3375192f 

M+MG (1%)   76.80.6d 7.60.0e 220920ef 93716f 127336bac 285772d 379456ef 

M+CS (10%)+MG (1%) 79.12.8d 7.70.2dec 244056ed 110476ef 133621ba 275845d 386232e 

S-sorghum flour, SC-Sorghum coarse flour, control- durum semolina, T-teff flour, M-millet flour, MG-mono-glycerides, CS corn starch. 
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Table 4.9:Pasting properties of extruded sorghum pasta formulated with salt, MG and processed at different 
moistures. 

  

Treatments       PTc         PTm             PV            TV         BD            SB           FV 

               (°C)             (mins)               (cP)          (cP)               (cP)            (cP)               (cP) 

Control              250.1a 4.30.1a 321767a 316578a 5311a 47217d 863761a 

S+MG (0.5%)*  250.1a 3.20.2c 46400e 45610d 0810c 68028d 113618e 

S+MG (0.5%)**  250.1a 3.00.3c 6695d 65857d 1204c 54015d 119742e 

S+MG (0.5%)***  250.1a 3.60.3b 171840c 171840c 0000d 499506a 671346b 

S+MG (1%)   250.1a 3.80.2ba 274733b 27137b 3440b 3652715b 6365722c 

S+MG (1.5%)  240.1a 3.90.6ab 183157c 181736c 1521a 3022650c 4838686d 

SC+MG (1.5%)  250.1a 4.40.4a 175520c 175520c 0000d 5039401a 6794381b 

S-sorghum flour, SC-Sorghum coarse flour, control- durum semolina, MG-mono-glycerides.  

* At process moisture 39.5% 
** At process moisture 44.7% 
*** At process moisture 47.9% 
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Table 4.10:Pasting properties of extruded pasta made from different flours formulated with salt, MG and corn 
starch.  

 

Treatments       PTc         PTm             PV            TV         BD            SB           FV 

               (°C)             (mins)               (cP)          (cP)               (cP)            (cP)               (cP) 

Control    250.1a 4.10.1b 384760a 379532a 5328a      5468725b 9263757a 

S+MG (1%)    250.1a 3.80.1c 261224b 261224b 0000c      36711152c 62831176b 

T+MG (1%)    250.0a 4.20.3b 2213110bc 2189105c 2406b      3478530c 5667426c 

T+CS (10%)+MG (1%) 250.0a 3.90.3bc 254465b 251558b 2907b      3859355c 6374413b 

M+MG (1%)   250.2a 4.90.0a 154210c 115210d 0000c      500264b 6154074c 

M+CS (10%)+MG (1%) 250.2a 4.50.0ab 94617d 94617d 0000       7874456a 8820473a 

S-sorghum flour, SC-Sorghum coarse flour, control- durum semolina, T-teff flour, M-millet flour, MG-mono-glycerides, CS corn starch.  
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Table 4.11:Hardness of uncooked sorghum pasta, firmness and stickiness of 
values of cooked sorghum pasta.  

 

Treatments       3PBT (Kg)   Firmness (kg) Stickiness (Kg)  

Control              3.000.80a  5.581.82a  0.580.04a 

S+MG (0.5%)*  1.380.22d  4.551.67b  0.210.02bc 

S+MG (0.5%)**  1.750.49c  5.602.00a  0.290.36b 

S+MG (0.5%)***  2.470.97b  5.541.82a  0.160.00c 

S+MG (1%)   1.160.28e  4.471.73b  0.120.00c 

S+MG (1.5%)  1.100.31e  4.201.09c  0.100.00c 

SC+MG (1.5%)  1.340.49de  4.011.47d  0.180.00bc 

S-sorghum flour, SC-Sorghum coarse flour, control- durum semolina, MG-mono-glycerides. 

* At process moisture 39.5% 
** At process moisture 44.7% 
*** At process moisture 47.9% 
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Table 4.12:Hardness of uncooked pasta, firmness and stickiness of values of 
cooked pasta formulated with sorghum, millet and teff flour.  

 

Treatments       3PBT (Kg)   Firmness (kg) Stickiness (Kg)  

Control    3.350.77a  7.531.51a  0.220.02c 

S+MG (1%)    1.330.40c  5.221.80b  0.120.00d 

T+MG (1%)    1.600.48b  3.201.09d  0.370.03a 

T+CS (10%)+MG (1%) 1.660.67b  3.871.37c  0.300.01bc 

M+MG (1%)   0.730.19d  4.611.45cb  0.220.01c 

M+CS (10%)+MG (1%) 0.880.23d  4.411.79c  0.180.01cd 

S-sorghum flour, SC-Sorghum coarse flour, control- durum semolina, T-teff flour, M-millet flour, MG-
mono-glycerides, CS corn starch 
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Figure 4.1:Cooking loss comparison of different pasta processed at different 
process conditions and with different flours. 

a) Average solid loss of sorghum pasta at different process moistures.   

 

b) Average solid loss of sorghum pasta at different MG levels.   
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c) Average solid loss of pasta prepared from wheat, sorghum, teff and millet flour. 

 

d) Average solid loss of teff and millet pasta formulated 10% native corn starch.  
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Figure 4.2:Water absorption comparison of different pasta processed at different 
process conditions and with different flours. 

a) Average water absorption of sorghum pasta at different process moistures. 

 

b) Average water absorption of sorghum pasta at different MG levels.   
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c) Average water absorption of pasta prepared from wheat, sorghum, teff and millet 
flour. 

 

d) Average water absorption of teff and millet pasta formulated 10% native corn 
starch.  
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Figure 4.3:Correlations for solids loss for cooked pasta.  

a) Correlation between solids loss (%) and mono-glycerides (%) for sorghum pasta. 
 

 

b) Correlation between solids loss (%) and process water (%) for sorghum pasta. 
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c) Correlation between solids loss (%) and process water (%) for all pasta variants. 

 

 

d) Correlation between solids loss (%) and mono-glycerides (%) for all pasta 
variants. 
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e) Correlation between solids loss (%) and gelatinization (%) for all pasta variants. 

 

 

Figure 4.4:Correlations for water absorption for cooked pasta.  

a) Correlation between water absorption (%) and mono-glycerides (%) for sorghum 
pasta. 
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b) Correlation between water absorption (%) process water (%) for sorghum pasta. 

 

 

c) Correlation between water absorption (%) and mono-glycerides (%) for all pasta 
variants.  
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d) Correlation between water absorption (%) and process water (%) for all pasta 
variants.  

 

 

e) Correlation between water absorption (%) and gelatinization (%) for all pasta 
variants.  
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Figure 4.5:Correlations for gelatinization of precooked pasta.  

a) Correlation between gelatinization and mon-glycerides (%) for sorghum pasta. 
 

  

b) Correlation between gelatinization and mon-glycerides (%) for all pasta variants. 
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c) Correlation between gelatinization SME (KJ/KG) for sorghum pasta variants. 

 

 

Figure 4.6:Correlations for hardness of uncooked pasta.  

a) Correlation between hardness and process moisture (%) for sorghum pasta 
variants. 
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b) Correlation between hardness and mono-glycerides (%) for sorghum pasta 
variants. 

 

c) Correlation between hardness and gelatinization (%) for all pasta variants. 
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d) Correlation between hardness and mono-glycerides (%) for all pasta variants. 

 

 

Figure 4.7:Correlations for firmness of cooked pasta.  

a) Correlation between firmness and process moisture (%) for cooked sorghum 
pasta variants. 
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b) Correlation between firmness and mono-glycerides (%) for cooked sorghum 
pasta variants. 

 

 

c) Correlation between firmness and gelatinization (%) for all cooked pasta variants. 
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Figure 4.8:Correlations for stickiness of cooked pasta.  

a) Correlation between stickiness and process moisture (%) for cooked sorghum 
pasta variants. 

 

b) Correlation between stickiness and mono-glycerides (%) for all cooked sorghum  
pasta variants. 
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c) Correlation between stickiness and process moisture (%) for all cooked pasta 
variants.  

 

 

d) Correlation between stickiness and mono-glycerides (%) for all cooked pasta 
variants.  
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Chapter 5 - Resistant starch retention in expanded snack 
formulated with tannin sorghum and sumac bran in twin 

screw extrusion  

 

 Abstract  

Different sorghum varieties and bran were extruded on pilot scale and lab scale to 

produce expanded extrudate. The effects of sorghum types and bran concentrations on 

extrudate expansion, specific mechanical energy (SME), piece density and retention of 

resistant starch (RS) were studied. The use of sumac sorghum and bran lowered 

process energy input, reduced expansion ratio, increased extrudate density and 

retained higher resistant starch over white sorghum flour. Increase in RS content 

retention for sumac flour and sumac bran extrudates were not significant (p>0.05), all 

the RS values were less than 1%. Extrudates processed at low shear and low energy 

input retained high RS in final products but RS values were not significantly higher 

(p>0.05). The use of sumac bran into sorghum flour significantly (p<0.05) lowered 

specific mechanical energy input (SME) into process. High fiber treatments were low in 

starch content which lowered viscosity lead to increase decrease in SME. Drop in SME 

can also be due to lubricating effect of high fat content of sumac bran. However, 

increase of bran percentage from 10% to 20% augmented SME but the increase was 

not significant (p>0.05). 

 

Introduction  

Sorghum (Sorghum bicolor (L.) Moench) is a significant food cereal in semi-arid tropics 

worldwide. The distinct advantage of sorghum is being drought-resistant and 

environment sustainability. With rising world population and declining water supplies, 

sorghum represents important crops for future. It is consumed as staple crop in many 

parts of the Africa and Asia (Murty and Kumar, 1995). Hence, sorghum acts as a 

principle source of energy, protein, vitamins and minerals for millions of the poorest 

people living in these regions (Klopfenstein and Hoseney, 1995). The food uses of 
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sorghum are mostly traditions, and methods of processing may involve use of wet or dry 

heat (Joseph and Rooney, 2004).  Traditionally, sorghum was used to prepare 

fermented and non-fermented porridges, flat breads and other alcoholic beverages. 

Sorghum grains are also popped and consumed as snacks or delicacies. In recent 

years, use of sorghum in human foods has surged because of its superiority in 

nutritional profile. The use of sorghum is extended to a variety of food products. It is 

milled into white flour to make expanded snacks, cookies breads and other ethnic foods. 

 

Still sorghum remains as an underutilized crop in most developed countries, with being 

primarily used as animal feed (ICRISAT/FAO, 1996). Sorghum has considerable 

potential to be used in human food and beverages. In developing countries, commercial 

processing of these locally grown grains into value-added food and beverage products 

is an important driver for economic development (Taylor, 2004). In the developed 

countries, today there is a growing demand for gluten-free foods and beverages from 

people with coeliac disease and other intolerances to wheat gluten. Sorghum 

particularly could play an important role in area of food and beverage products.  

 

Apart from being recommended as a safe food for coeliac patient’s (Kasarda, 2001), 

sorghum contain substantial levels of a wide range of phenolic compounds. The health 

benefiting properties, especially antioxidant activity, and their use as nutraceuticals and 

functional foods are extraordinary (Dykes and Rooney, 2006). Tannins are such 

uniquely important phytochemical components of sorghum. They contain properties that 

have significant impacts on human health. Mostly tannins are associated with sorghum 

however 99% of sorghum varieties produced in United States are tannin free. Tannins 

protects sorghum plant from pest and diseases, tannin sorghum varieties are more 

tolerant to diseases than non-tannin varieties (Tipton et al., 1970; Rooney and Sullins, 

1977 and Waniska et al., 1989). There is growing interest in sorghum natural anti-

oxidants, polyflavans (tannins), and their potential health benefits. Special sorghum 

varieties containing high levels of condensed tannins (proanthocyanidins) are 

associated with various health benefits such as slow starch digestibility and antioxidants 

activity (Awika and Rooney, 2004; Awika et al., 2009). Hageman et al. (1998) and Tain 
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et al. (2012) reported that high molecular weight condensed tannins have more powerful 

antioxidant activity in vitro and in vivo over simple phenols and other natural 

antioxidants. Tannin concentration also reduces nutrient digestibility by interacting with 

proteins and digestive enzymes (Davis and Hoseney, 1979).  

Starch is the major component and main source of calories in cereal products. Amylose 

is the main starch component responsible in decreasing starch digestibility by forming 

resistant starch (Leeman et al., 2006). Decreasing starch digestibility is important 

phenomenon because it helps lower calorific intake, and generate health benefits 

against obesity and type 2-diabetes.  Sorghum has shown lowest raw starch digestibility 

among cereals due to strong association between starch granules and endosperm 

proteins (kafirins). The presence of kafirin impedes α- amylase accessibility to starch 

(Rooney et al., 1986). The interaction between starch and cross-linked kafirins lowered 

cooked sorghum flour starch digestibility compared to corn (Zang et al., 1998). 

Other components of sorghum such as polyphenols also decrease in vitro starch 

digestibly by inhibiting enzymes by interacting with starch (Hargrove et al., 2011; 

Thompson and Yoon, 1984). Lower molecular weight phenolic compounds including 

gallic acid, ferulic acid, and catechins were reported to change functional properties of 

starch by interacting with starch molecules (Wu et al., 2009; Beta and Corke, 2008). 

Barros et al. (2012) reported that interaction between proanthocyanidins (condensed 

tannins) and starch increased resistant starch and decreased in vitro digestibility. They 

demonstrated that sorghum tannins interacted with amylose component of starch and, 

decreasing enzymatic starch digestibility. Mkandawire et al. (2013) presented that high-

molecular- weight proanthocyanidins reduced α-amylase activity more significantly than 

lower-molecular-weight proanthocyanidins. This study is aimed to evaluate effects of 

different extrusion processing conditions on resistant starch retention in sorghum based 

snacks formulated with different concentrations of tannins rich sumac sorghum and 

sumac bran. 
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 Materials and Methods 

 Raw Materials  

Coarse white pearled decorticated sorghum flour with average particle size of 125m of 

lot number KSU-17042709, sumac sorghum bran lot number KSU-170613-24 and 

sumac whole grain sorghum flour lot number KSU-170613-24 were purchased from 

Nulife Market, Scott city, Kansas. Distilled mono-glycerides DIMODAN HS K-A was 

obtained from Danisco USA Inc., New Century, Kansas USA Lot number 1142945586, 

product no 810773. Dry ingredients were premixed in a Hobart planetary mixer and 

water was added simultaneously to achieve target feed moisture. Total mixing time was 

5 mins for all treatments. All mixed hydrated ingredients were transferred into sealed 

plastic zipper and were let to hydrated overnight in a refrigerator to achieve uniform 

water hydration. The tannins content of whole sumac flour was 21.970.45 and in 

sumac bran was 58.4410.27 (Awika et al., 2003). The white sorghum coarse flour was 

tannin free. 

 

Experimental Design 

Lab Extrusion  

Various blends of white sorghum flour, sumac flour and sumac bran (20%) were 

processed at three different moisture contents (20%, 28% and 36%). Expanded snack 

was produced using a lab scale co-rotating twin screw (American Leistritz, Somerville, 

NJ) with L/D ratio of 30:1, screw diameter of 18 mm equipped with a die diameter of 

holes 4 mm. Raw materials mix were metered into extruder with a twin screw volumetric 

feeder (K-Tron, Model K2VT20, North America, Pitman, NJ, USA). The feed rate was 

calibrated for each treatment independently and was kept at 3 kg/h. The screw speed 

was kept constant at 500 RPM and barrel temperatures were between 50- 100 degree 

Celsius. Once out from die the product was cut into long strands (25 cm) with the 

stainless-steel kitchen knife and packed into zipper pack plastic bags. The product was 

immediately stored in freezer to prevent starch retro-gradation. Drying was carried out 
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at 70°C for 40 mins in hot air oven. Net motor load (torque) was used to represent the 

energy input going into the process. 

 

Pilot Extrusion 

Puffed expanded pillow shaped shells were produced in an industrial twin screw 

extruder X-52 (Wenger Manufacturing Inc., Sabetha, KS, USA) equipped with a 

differential diameter cylinder preconditioner (DDC2, Wenger Manufacturing Inc., 

Sabetha, KS, USA). A five-independent zoned 1326 mm long barrel fitted with 52 mm 

screw diameter screws with an L/D ratio of 25.5:1 was equipped in extruder assembly. 

A loss in weight single screw feeder (Wenger Manufacturing Inc., Sabetha, KS, USA) 

was adjusted to feed 60 kg/h into the preconditioner.  The barrel temperatures were in 

the range of 33 to 78C. The heating of jacketed barrel was controlled by oil and heating 

elements. Water was added into the preconditioner, and the amount of water added into 

the preconditioner was ranged between 2.3 to 2.7 kg/h. The water flow rate into the 

preconditioner was controlled by remote flow transmitter, model RFT97121PNUR, 

RFT9712 S/N 59140 and mass flow sensor model-DS012H205SUP, sensor S/N 

179066, meter type-21, make Micro Motion Inc., CO, USA. The preconditioner 

discharge temperature was in the range of 25 to 28°C. The screw speed of differential 

diameter cylinder preconditioner was kept constant at 297 RPM. 

The process moisture content of the feed mix was adjusted in between 18.9% to 21.5% 

based on initial moisture content of blends and additional water injected into extruder 

barrel to achieve target moisture levels. The extruder water flow rate was also controlled 

by remote flow transmitter model-RFT97121PRU, RFT9712 S/N 70307, SEN S/N 

203177 and mass flow sensor model-DS012S100SU, meter type-1, Micro Motion Inc., 

CO, USA. No steam was added into preconditioner and extruder during whole 

experiment. The screw speed of extruder was kept constant at 397 RPM. 

Thermocouples mounted at each zone of the extruder barrel were used to record 

respective (set and actual) zone temperatures from the control panel. The die 

temperature and pressure was also recorded directly using thermocouple and pressure 
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gauge respectively. The die temperature was in the range of 167 to 191C and die head 

pressure ranged from 650 to 1100 per square inch gauge (psig). A cylindrical shaped 

die of diameter 8.0 mm was fitted on the die head. The expanded shell was sealed and 

crimped with the help of crimper cutter. 

 

All the cut extrudates pieces were pneumatically conveyed to Wenger Double Pass 

Dryer/Cooler (Series 4800, Wenger Manufacturing Inc., Sabetha, KS, USA) operating at 

76.7°C. The total retention time in the dryer was 30 minutes (8 minutes for top and 14 

minutes for bottom belts). Cooling was accomplished by room temperature air with 8 

minutes’ retention time on cooling belt. 

The specific mechanical energy (SME) for each treatment was calculated as follows:  

𝑆𝑀𝐸 =

(𝜏−𝜏0)
100  ×  𝑃𝑟𝑎𝑡𝑒𝑑 ×  

𝑁
𝑁𝑟𝑎𝑡𝑒𝑑

ṁ
 

Where,  = operating torque (%); 0 = no-load torque (%); Prated = rated power (37.3 

kW), N = screw  

speed (rpm); Nrated = rated screw speed (336 rpm), and ṁ = net mass flow rate of 

pasta at die exit (kg/s).  

 

Extrudate Macrostructure  

For every treatment, length (le), diameter (de) and mass (me) of 20 extrudates were 

measured and used to obtain radial expansion ratio (ER), specific length (lsp) and piece 

density (PD), as described below.  

where, Expansion ratio (ER), 

𝐸𝑅 =
𝑑𝑒

2

𝑑𝑑
2 
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where, dd = die diameter  

Specific length (lsp), 

𝑙𝑠𝑝(
𝑚

𝑘𝑔
) =

𝑙𝑒

𝑚𝑒
 

Piece density (PD), 

𝑃𝐷 (
𝑘𝑔

𝑚3
) =  

4𝑚𝑒

𝜋𝑑𝑒𝑙𝑒
 

 

Determination of Resistant Starch 

Quantification of the RS content was performed according to method certificated 

by AACC (2001) and AOAC (2000) using RS assay kit supplied by Megazyme 

International Ireland Ltd (Wicklow, Ireland). Briefly, enzymatic hydrolysis of non-

resistant starch (NRS) was performed through the simultaneous action of pancreatic α-

amylase (10 mg/mL) and amyloglucosidase (3 U/mL) by incubating sample for 16 h at 

37°C. Subsequently, the NRS was separated by centrifugation, and pellet containing RS 

was purified with ethanol and solubilized with 2 mol/L KOH. The concentration of RS 

was measured at 510 nm, and the content was expressed as g/100 g sorghum flour on 

a dry weight basis. The results were obtained in analytical duplicate and are presented 

as mean ±standard deviation. 

 

Proximate Analysis of Raw Materials  

The proximate composition of raw ingredients was determined using standard methods. 

This included determination of moisture (135°C for 2h; AACC 44-19), crude protein 

(based on nitrogen by combustion, 6.25X; AOAC 920.176), crude fat (petroleum ether 

extract method; AOCS Ba 3-38), ash (600oC for 2h; AOAC 942.05), crude fiber (AOAC 

962.09); and total starch (glucoamylase method; AOAC 979.10). Starch, protein, fat, 

http://www.sciencedirect.com/science/article/pii/S0308814615300984?via%3Dihub#b0005
http://www.sciencedirect.com/science/article/pii/S0308814615300984?via%3Dihub#b0015
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ash and crude fiber contents were reported on dry basis percentage (% db) from 

replicates. Total carbohydrate was calculated by the difference method (Merrill and 

Watt, 1973). 

 

Statistical Analysis  

All the results were analyzed using analysis of variance (ANOVA) with general linear 

model procedure (SAS version 9.1, SAS Institute, Cary, North Carolina, USA). When 

significant effects (p0.05) were indicated by ANOVA, Tukey pairwise comparisons 

were conducted to distinguish which treatments differed significantly (p≤0.05). Pearson 

Correlation was determined between SME, BD, ER, and PD.  

 

Results and Discussion  

Proximate Composition of Binary Blends  

The proximate compositions for blends were calculated from the proximate composition 

of the individual raw materials in the blend (Table 5.1). It can be inferred from the table 

that decorticated sorghum flour was had highest starch content (72.9%) and lowest 

crude fiber content (0.54%). Sumac flour had starch content (67.9%) and crude fiber 

content (0.9%). Whole sumac flour formulated with 20% bran had highest crude fiber 

content (1.79%). Decorticated white sorghum flour had (0.54%) crude fiber content and 

(1.5%) with 20% sumac bran. The proximate analysis shown that bran had highest fat 

content (6%), followed by sumac flour (2.7%), least for decorticated white sorghum flour 

(1.8%). The blends formulated with 20% bran had highest overall fat content (3.34%), 

followed by (2.69%) in sumac flour, (2.64%) for decorticated white sorghum flour with 

20% bran, and (1.81%) without bran. The ash content is mostly dependent of fiber 

content. The sumac flour blends formulated with 20% bran had highest overall ash 

content (1.51%), (1.33%) for decorticated white sorghum flour with 20% bran, (1.0%) in 

sumac flour, and (0.78%) for decorticated white sorghum flour. 



158 

Specific Mechanical Energy 

Lab scale extrusion  

The energy input during extrusion process of cereals is dependent on resistance to flow 

or flow temperature (Tf) of the melt inside extruder barrel (Alavi et al., 2011). Process 

SME input values are represented in term of net motor load or torque in Table (5.3 and 

5.4). White sorghum flour formulated with 20% sumac bran has shown highest motor 

load values (25%), S (100%) was 24%, SF (80%)+Bran (20%) was 22, and SF (100%) 

was 21 at same process conditions. The higher motor load was due to high starch 

content of flours. The inclusion of bran increased energy input. The starch present in 

blend is the primary contributor to viscosity of the blend and higher viscosity leads to 

higher Tf and vice versa. The increase in feed moisture resulted in lower torque input; 

12% torque for 28% moisture content and 9% torque for 36% moisture (Table 5.4). 

Water acts as plasticize inside extruder which reduces viscosity and Tf (Chen et al. 

2010). Increase in feed moisture also decreased die head pressure (data not shown). 

The presence of water decreases viscosity of dough in extruder, reduces conversion 

ratio of extruder mechanical energy into heat energy, and consequently reduces motor 

torque input (Akdogan, 1996; Lin et al., 2000 and Wang, 2005). Similar results were 

reported by Hayashi et al. (1992) and Chen et al. (2010). MG also contributed towards 

high lipid content in the feed blend as it acts as lubricant and decrease Tf. 

Torque trends with sorghum bran/fiber addition 

It can be seen from Table 5.3, that decorticated white sorghum blend with 20% sumac 

bran had highest torque of 35% and for sumac sorghum flour with 20% sumac bran was 

32%. The proximate composition of these flours show that sumac bran had highest 

crude fiber content (5.3%), followed by sumac flour (0.9%) and white sorghum flour 

(0.5%). Fibers pose resistance to flow and higher fiber content has higher resistance to 

flow and thereby highest torque is observed in blend with highest fiber content.  

In decorticated blends, the role of total starch present in the blends becomes important 

as fiber is removed and from Table 5.3, decorticated white sorghum had higher total 

starch content (72.9%), followed by sumac flour (starch content 67.9%), decorticated 



159 

white sorghum with 20% bran (starch content 65.11%), and sumac flour with 20% bran 

(starch content- 61.15%). The starch is the primary contributor of viscosity in the melt 

(Alavi et al., 2011). The increases in resistance to flow with increase in starch content 

leads to an increase in torque proportional to starch content. The torque values for 

decorticated white sorghum with total starch content (72.9%) was 24, followed by 

sumac flour with total starch content 67.95% was 21, decorticated white sorghum with 

20% bran with total starch content- 65.11% was 25, and sumac flour with 20% bran with 

starch content- 61.15% was 22 at same feed moisture. 

Pilot scale extrusion  

The SME trends for pilot scale extrusion are represented in (Table 5.5). The highest 

energy input was 578 kJ/kG for corn flour (90%) blend and lowest SME values were for 

decorticated white sorghum flour formulated with 10% bran (366 kJ/kG) and 20% bran 

(380 kJ/kG). The higher SME in formulations was due to high starch content as 

compared to low starch formulations (Table 5.1). Corn flour and decorticated white 

sorghum flour are rich source of starch whereas whole sumac flour and condensed 

sumac tannins are good source of bran (fiber) and lipids and their respective 

incorporation into the blends impacted SME input. Increase in crude fiber content 

increased fat content of the blends that lowered energy inputs. Sumac bran was main 

source of fat (5.96%) in formulations. Effect of use of sumac bran (fiber) on SME input is 

represented in Figure 5.9.  The 10% inclusion of sumac bran has significantly reduced 

energy input by 36% and 34% on 20% addition. Lipid works as a lubricant and reduces 

the friction between particles in the mix and between screw surfaces (Guy, 2001). The 

lubricating effect of oil contributes towards higher resistance to flow but decreases Tf 

and thereby lowers SME.  

Fiber content and SME found to be inversely correlated (Figure 5.9). The SME input 

tends to increase with increase in fiber content of formulations. As the bran levels 

reached 1% SME input starts declining rapidly. The one percent fiber level could be 

potential threshold beyond which energy inputs adversely get effected by bran and its 

constituents. The possible reason could be low starch content of these formulations and 
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partially with increase in lipids from bran. The use of fiber effects energy input into two 

forms. First, high fiber bran lowered starch content of formulation which cause lowering 

of viscosity led to lowering energy input. Second, fibers need more energy to cook and 

process through extruder over starch so increase in fiber content increases SME input. 

In conclusion fiber and starch had more control over SME than lipids. Findings of this 

study clearly indicates that after a certain level extrusion energy inputs get effected by 

feed material compositions which affects the product attributes. 

 

Extrudate Macrostructure 

Lab scale extrusion  

Expansion in extrusion process at die exit is a function of SME input and extensibility of 

starch matrix (Alavi et al., 2011). The extrudate expansion takes place due to the water 

vapor pressure inside nucleating bubbles as primary contributor for expansion. The 

water vapor pressure is also a function of melt temperature (Alavi et al., 2011). The 

higher SME input led to higher melt temperatures at die-exit resulted into greater driving 

force for expansion (Zhu et al. ,2010).  

The values of expansion ratio (ER), and piece density (PD) are represented in Table 5.3 

and 5.4.  The ER was found to be higher in decorticated sorghum flour when compared 

to their respective whole sumac flour treatments (Table 5.3). Highest expansion was for 

decorticated white sorghum flour (6.71), followed by sumac flour (5.13), and 

decorticated white sorghum flour with 20% sumac bran (5.05), sumac flour with 20% 

sumac bran (3.91) (Table 5.4). The ER values were significantly different (p<0.05). The 

higher expansion observed in decorticated sorghum flour was due to its higher torque 

inputs and higher starch content than whole sumac flour. Higher starch content 

facilitates extensible matrix results into higher expansion. The inclusion of sumac bran 

has clearly reduced the extrudates expansion. The 20% addition of bran into the 

formulation decreased the expansion ratio by 24.8% in decorticated sorghum flour 

formulation and 23.7% in sumac flour formulation (Figure 5.8). The presence of 1% 
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lipids in the form of mono-glycerides also reduced the expansion of extrudates to lowest 

(2.01) (Table 5.3). The lubricating effect of lipids lowered the torque, increases the melt 

slippage inside the extruder barrel and inhibits the sufficient pressure buildup inside the 

extruder leads to lower expansion (Singh et al., 2007). The fiber content acts as diluents 

of starch which decreases the expansion of extrudates (Bustos et al., 2011). In another 

study, Guy and Horne (1988) found that addition of fibers lead to fragmentation of cell 

membranes, and prevented the gas bubbles from expanding to their maximum capacity. 

The increase in moisture concentration lowered expansion ratio (Table 5.4). Water act 

as plasticizer inside extruder, increase in water levels decreases the viscosity and 

torque which led poor expansion (Figure 5.7).  

Formulation with mono-glycerides had the highest piece density 0.93, followed by 0.69 

for 36% feed moisture, 0.54 for 28% moisture content, 0.44 for sumac with 20% bran, 

0.42 for decorticated white sorghum flour with 20% bran, 0.34 for decorticated white 

sorghum flour and least for sumac flour. Piece density of extrudates were significantly 

different (p<0.05). The lower expansion reduced the volume of extrudates resulted into 

higher density. Piece density was a direct reflection of expansion ratio. The addition of 

sumac bran into sorghum flours made extrudates denser which increased the piece 

density for both decorticated sorghum flour and sumac flour (Table 5.3). The addition of 

sumac bran increased the expansion ratio of extrudates significantly (p<0.05). 

Pilot scale extrusion  

The expansion ratio of the extrudates was affected by the type of grain and fraction 

used. Expansion values of extrudates produced on pilot scale extruder were 

represented in Table 5.5. The expansion values were ranged from 6.0 to 7.9; highest 

was for corn flour and lowest was for decorticated white sorghum formulated with 10% 

sumac bran. Whole sumac flour (99%) extrudate has shown the highest expansion 

among all sorghum formulations. The product expansion in extruder is directly 

depended of energy input and starch content (Horn, 1977). Corn meal is highly refined, 

composed primarily of starch (e.g. lower ash, fiber, and oil), giving maximum expansion 

and gelatinization. The decortication of white sorghum extruded with 10% and 20% 
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sumac bran decreased the expansion significantly (p<0.05). This could be due to the 

low energy inputs because of high fat content in the bran formulations. The second 

reason could be the larger particle size of sumac bran. Acosta (2003) reported larger 

particle size of decorticated sorghum meal caused decrease in expansion upon 

extrusion.  

Piece density was lowest for corn meal extrudates and highest for decorticated white 

sorghum with 20% bran. The piece density of extrudates was significantly affected by 

sorghum varieties and fractions in the formulation (Table 5.5). The extrudates with high 

expansion ration had lower piece density. Nyombaire (2007) and Fletcher et al. (1985) 

have all reported an inverse relation between ER and extrudate density. 

 

Resistant Starch  

Lab scale experiment 

In extrusion cooking, high-temperature and high-shear forces cause a high degree of 

starch, degradation and gelatinization. Extrusion cooking increases starch digestibility 

by making it more susceptible to enzymatic hydrolysis (Holm et al., 1985), therefore, low 

levels of RS were expected. Breakfast cereals have low (1%-2.5%) to intermediate 

(2.5% to 5%) RS content depending upon process conditions (Goni et al., 1996). In 

agreement to literature, RS of lab scales extrudates was low as expected, and 

digestible starch part was high for all samples. RS fraction of lab scale extrudates are 

shown in Table 5.3 and 5.4, on dry matter basis. Decorticated white sorghum flour 

extrudate had lowest (0.45g/100g) amount of RS among all samples because it was 

highly-refined product. For sorghums, whole sumac and tannin extrudates had higher 

amounts of RS compared to white sorghum extrudates due to increased concentration 

of tannins (Figure 5.3). The condensed tannin products had significantly (p<0.05) higher 

amounts of RS compared to the rest of samples. Addition of 20% condensed tannins 

concentration have increased RS by 40.4% in decorticated white sorghum and by 
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11.1% in whole sumac sorghum extrudates (Table 5.3). A positive linear correlation of 

R2=0.93 was found with tannin concentration of the formulations (Figure 5.3). 

 

Sorghum tannins have potential to bind amylose present in starch, and increase the RS 

by lowering enzymatic hydrolysis. Higher molecular weight tannins interacted with 

amylose and high amylose starch resulted in higher RS formation (Barros et al., 2013).  

The addition of sumac bran (tannins) also lowered the total starch (TS) content of the 

formulations (Table 5.2). Other studies have also reported increase in RS content by the 

inclusion of condensed sorghum tannins. Khan et al. (2013) reported increase in RS 

content of wheat pasta of formulating with red sorghum and white sorghum. The RS of 

wheat increased from 0.36% to 0.80%, 1.10% and 1.44% at 20%, 30% and 40% 

addition of red sorghum and to 0.64%, 0.97% and 1.16% with white sorghum addition. 

Similar results were found in studies by Mkandawire et al. (2013), Barros et al. (2012), 

Englyst et al. (2005) and Englyst et al. (2007).  

 

Whole sumac flour formulated with 20% bran and processed at higher feed moisture 

conditions did not significantly (p>0.05) increased RS content. RS fraction was 

increased by 3.81% when feed moisture was increased from 22.5% to 31.4%. Similarly, 

RS content was increased by 0.15% at 38.4% feed moisture (Table 5.4). The reason 

could be decrease low shear/ energy inputs at high feed moisture (Table 5.4); shear 

rate is represented in term of motor load. High shear in extrusion process reduces 

tannins concentrations, especially higher molecular weight procyanidins (tannins) 

(Awika et al., 2003). Higher molecular weight procyanidins have shown higher tendency 

to form RS content. Therefor increase in feed moisture content lowered shear rate 

which resulted in higher RS (Figure 5.1). The possible reason for insignificant increase 

in RS content could be loss of higher molecular weight procyanidins. Tannin 

percentages based on theoretical calculations of each raw ingredient are presented in 

Table 5.2. Khan et al. (2013) have reported lower RS fraction formation in extruded 

wheat pasta over bread formulated with sorghum tannins. Addition of 1% mono-

glycerides lowered motor load but it didn’t raise RS content (Table 5.3). The possible 
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reason could be unavailability of amylose for tannins to interact because of amylose-

lipid complex formation. 

  

A comparison of RS before and after extrusion is represented in Figure 5.5. Resistant 

starch of formulations before extrusion were calculated theoretically based on RS 

fractions of individual flours. Sorghum flour RS content was 0.72g/100g before, sumac 

flour was 17.74g/100g before extrusion, RS was 0.45g/100gm for sorghum flour and 

0.83 g/100gm sumac flour in expanded extrudates. Similarly, RS values of all 

formulations were reduced to less than one percent post extrusion (Figure 5.5). Awika 

et al. (2003) reported 76% loss of RS content (from 20.51g/100 to 4.86g/100gm) in 

extrusion processing. The processing conditions effect overall distribution of tannins 

(procyanidins) polymers units and their content in food. Extrusion processing of 

sorghum tannins breakdown higher molecular weight polymers to their lower molecular 

weight constituents. 

 

 Pilot Scale extrusion  

RS values of pilot scale extrudates ranged from 0.07g/100gm to 0.74g/100gm on dry 

matter basis (Table 5.5). Corn flour had lowest amount of RS in products. Corn flour 

extrudate had highest amount of total starch among all samples because it was a 

highly-refined product. Whole sumac flour extrudates had highest RS may be because 

of highest tannins concentration (2.18%). Tannin concentrations of each raw ingredient 

were calculated theoretically using Awika et al. (2003) published sorghum tannin results 

(Table 5.2). Tannin have shown a high propensity to interact with amylose starch in RS 

formation and lowered starch enzymatic digestion. Barros et al. (2013); reported 

0.152% of RS when normal starch was cooked with tannins and 0.069% RS for 

precooked starch cooked with tannins in auto clave cooking method.  Also, reported RS 

content of 0.391%-high tannin and 0.331%-sumac tannins with high amylose. The RS 

content increased from 0.437% to 0.472% when pure tannins were oven cooked with 

high amylose. Similarly, 0.425%-high tannin and 0.367%-sumac tannin with high 

amylose starch in oven cooking method. RS of cooked sorghum with tannins was in the 

range of 3.6% and 15.4% (Mkandawire et al., 2013). Englyst et al. (2005, 2007) 
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reported 2% to 10% RS in cooked whole grain sorghum. Similarly, RS content of 3% to 

14% was reported Austin et al. (2012) in sorghum bread formulated with sorghum bran. 

In this study, we found a very strong positive linear correlation (R2=0.64) of RS 

formation with tannin concentrations of formulations (Figure 5.4). RS contents of 

samples were significantly (p<0.05) different. Similarly, addition of 10% sumac bran 

(tannins) in decorticated white sorghum increased RS content to 0.42g/100gm by 15% 

and 20% bran addition increase to 0.53g/100g by 26% (Figure 5.2). Results of this 

study agree with Barros et al. (2012) and Khan et al. (2013). The 49% addition of corn 

flour into whole sumac sorghum has lowered RS by 10% due to drop in (1.1%) tannin 

concentrations (Table 5.4). 

Drop in RS content post extrusion was also found in pilot scale extruded samples. The 

range of RS fraction in raw material was between 0.45g/100g to 17.56g/100g. A 

significant drop in RS content was observed post extrusion; values ranged from 

0.07g/100g to 0.74g/100g (Figure 5.6). High SME input in pilot scale extrusion could 

have destroyed polymerized tannins molecules which were no longer able to prevent 

enzymatic hydrolysis of starch. Similar, results of low RS contents post processing were 

reported by Awika et al. (2003), Khan et al. (2013) and Goni et al. (1996).     

 

Conclusion 

In conclusion first study demonstrates specific finding on resistant starch formation with 

condensed tannins in extrusion process. The study also determines effect of (motor 

load) energy input on resistant starch formation in expanded snack. Sorghum 

condensed tannins are more effective in interacting with total starch content through 

hydrophobic and hydrogen bonding, significantly increased RS content. The data 

demonstrates that sorghum and sorghum fractions rich in procyanidins can be 

processed into various cereals based foods and retains a significant amount of levels of 

RS content that may have functional properties. This study also confirms addition of 

whole sumac sorghum and condensed tannins into expanded snack at all incorporation 

levels effectively enhanced RS content; of possible benefits in diets to help prevention 
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of chronic eased related to oxidative stress such as type-2 diabetes mellitus and for 

improved intestinal health. Additional studies are now required to evaluate consumer 

acceptability.   
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Table 5.1:Proximate analysis of raw material used in this study.   

Samples Crude protein        Crude fiber          Fat        Ash Total starch  

         (%)   (%)           (%)        (%)       (%)   

Corn flour      5.0±0.0        <0.2±0.0       1.9±0.0     0.5±0.0 78.2±0.2 

Sorghum flour   9.7±0.0         0.5±0.1        1.8±0.1    0.8±0.0 72.9±0.0 

Sumac flour      0.2±0.0         0.9±0.1        2.7±0.3    1.0±0.1 68.0±0.4 

Sumac bran      0.8±0.0         5.3±0.0        6.0±0.1    3.6±0.1 34.0±0.4 

Corn flour- degermed yellow corn flour, Sorghum flour- decorticated white sorghum flour, Sumac flour- 
whole sumac flour. 

 

 

 

Table 5.2:Tannins, resistant starch, and total starch in raw ingredients (on dry 
mass basis).  

 

Samples          Tannins        RS           Total Starch  

          (g/100g)           (g/100g)  (g/100g) 

Corn Flour   0.00  0.47±0.02    65.2±0.2 

Sorghum flour  0.00  0.72±0.09    62.1±0.0 

Sumac flour     0.022  17.74±0.19    60.8±0.4 

Sumac bran   0.058  15.93±0.68      24.8±0.4 

RS-resistant starch, tannins values are calculated theoretically based on the findings of Awika et al., 
2004. Tannins for whole sumac flour ≈ 0.022 g/100gm, for condensed tannin bran≈ 0.058 g/100. 
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Table 5.3:Process moisture, net motor load, expansion ration, piece density, resistant starch of lab scale 
extrudates produced with different sorghum varieties and sumac bran.  

 

Treatments      Moisture      Net motor    ER            PD         RS (g/100g)               

         (%)    load (%)      (g/cm3)       Aft. Ext          Bef. Ext 

SF(100%)     22.20.1c 241.4a     6.70.8a     0.340.5e      0.450.01c         0.72 

SF(80%)+Bran(20%)   21.60.3c 250.0a     5.10.7b     0.420.0d      0.630.08bc        3.76 

SuF(100%)     21.50.0c      210.0a     5.11.2b     0.270.1e     0.810.02ba        17.74  

SuF(80%)+Bran(20%)   21.70.4c      220.7a     3.90.9c      0.440.1d     0.900.02a          17.37  

SuF(79%)+Bran(20%)+MG(1%)  21.80.3c      111.4b     2.00.4d     0.930.2a     0.790.02ba        17.20 

Moisture is represented in percentage, ER-expansion ratio, PD- Piece density, SF-decorticated white sorghum flour, SuF- whole sumac flour, 
Bran- sumac bran, RS-resistant starch as dry matter basis (material), Aft. Ext.- after extrusion, Bef. Ext. – before extrusion (predicted values based 
on theoretical calculation). 
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Table 5.4:Process moisture, motor load, expansion ration, piece density, resistant starch for lab scale extrudates 
processed at different process moisture conditions. 

 

Treatments     Moisture       Net Motor     ER              PD                  RS (g/100g)           

        (%)     load (%)         (g/cm3)         Aft. Ext       Bef. Ext   

SuF(80%)+Bran(20%)  21.70.4c     220.7a     3.90.9c          0.440.1d       0.900.02a   17.37 

SuF(80%)+Bran(20%)  31.40.9b     122.8b      2.70.2d        0.540.0c       0.940.10a   17.37  

SuF(80%)+Bran(20%)  38.40.1a     92.1b       2.40.3d         0.690.0b       0.940.00a   17.37 

Moisture is represented in percentage, ER-expansion ratio, PD- Piece density, SF-decorticated white sorghum flour, SuF- whole sumac flour, 
Bran-sumac bran, RS-resistant starch as dry matter basis (material), Aft. Ext.- after extrusion, Bef. Ext. – before extrusion (predicted values based 
on theoretical calculation). 
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Table 5.5:SME, process moisture, expansion ration, piece density and resistant starch of pilot scale extrudates.  

 

Treatments       Process        SME         ER               PD             RS (g/100g)  

      Moisture    (KJ/KG)      (g/cm3)      Aft. Ext       Bef. Ext   

CF(99%)+Salt(1%)                 19.0±1.2ab    578±12a    7.9±0.1a 0.43±0.0c      0.07±0.01e 0.45     

SF(99%)+Salt(1%)           20.3±1.5a    543±27ba   7.3±0.3ab 0.65±0.0b      0.37±0.02d 0.71 

SuF(99%)+Salt(1%)       17.7±0.8b    573±21a    7.7±0.2a 0.57±0.0bc      0.74±0.04a 17.56 

CF(49%)+SuF(50%)+Salt(1%)     20.8±1.0a    500±17b   7.0±0.4ab 0.46±0.0c      0.67±0.02a 9.09 

CF(49%)+SF(50%)+Salt(1%)     21.5±1.2a    506±33ba   7.5±0.3a 0.60±0.0b      0.48±0.04cb 0.58 

SF(89%)+Bran(10%)+ Salt(1%)     19.9±0.6a    366±24c   6.0±0.9b 0.69±0.1ab      0.42±0.02cd 2.23 

SF(79%)+Bran(20%)+ Salt(1%)     19.5±0.8a    388±36c   6.4±0.7b 0.79±0.1a        0.53±0.01b 3.75      

CF- corn flour, SF-decorticated white sorghum flour, SuF- whole sumac flour, Bran- sumac bran, process moisture in percentages, SME- Specific 
mechanical energy, ER- expansion ratio, PD- piece density, RS-resistant starch as dry matter basis (material), Aft. Ext.- after extrusion, Bef. Ext. – 
before extrusion (predicted values based on theoretical calculation). 
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Figure 5.1:Resistant starch content of lab scale extrudates (on dry matter basis). 

 

 

SF-decorticated white sorghum flour, SuF- sumac flour, Bran- sumac bran, MG- mono-glycerides. 
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Figure 5.2:Resistant starch content of pilot scale extrudates (on dry matter basis).  

 

 

SF-decorticated white sorghum flour, SuF- sumac flour, Bran- sumac bran, MG- mono-glycerides. The1% 
residual is salt that makes the formulations add to 100%.  
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Figure 5.3:Correlation between resistant starch content and tannin concentration 
for lab scale extrudates. 

 

 

 

Figure 5.4:Correlation between resistant starch content and tannin concentration 
for pilot scale extrudates. 
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Figure 5.5:Resistant starch content of lab scale extrudates before and after 
extrusion processing. 

 

SF-decorticated white sorghum flour, SuF- sumac flour, Bran- sumac bran, MG- mono-glycerides. 

 

Figure 5.6:Resistant starch content of pilot scale extrudates before and after 
extrusion processing. 
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Figure 5.7:Effect of moisture content on average expansion ratio of lab scale 
extrudates formulated with sumac sorghum (80%) and sumac bran (20%) 
processed at different feed moistures. 

 

Figure 5.8:Effect of different sorghum varieties and bran on average expansion 
ratio of lab scale extrudates. 

 

SF-decorticated white sorghum flour, SuF- sumac flour, Bran- sumac bran, MG- mono-glycerides. 
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Figure 5.9:SME variation with fiber content of the formulations in pilot scale 
extrusion. 

 

 

CF- Corn flour, SF-decorticated white sorghum flour, SuF- sumac flour, Bran- sumac bran, MG- mono-

glycerides. 
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Chapter 6 - Conclusion and Future Work 

Teff have potential to produce high quality pasta with addition of texture enhancers. 

Bench top extruded teff flour pasta was of superior quality with low cooking loss, high 

water absorption and good textural properties. Proximate analysis has shown that 

higher protein content, fiber content and mineral content makes teff pasta a nutritionally 

excellent product. High lipid content of millet pasta degrades its physico-chemical 

characteristics and shelf life.  

 

Sorghum pasta was of top quality than teff and millet on pilot scale extrusion, with lower 

cooking losses, higher water absorption and textural properties. The optimum 

concentration of mono-glycerides was found to be 1% for sorghum pasta. The optimum 

process moisture was found to be 48% for sorghum pasta. The addition of native corn 

starch did not help in lowering cooking losses for teff and millet flour significantly. Millet 

pasta produced on pilot scale disintegrated during cooking reflects extremely poor 

quality.  

 

The residence time significantly decreased by increase in in-barrel moisture content 

during sorghum pasta processing. Low in-barrel moisture decreased feed material 

residence time inside extruder barrel also increased RTD spread. Addition of lipids in 

the form of mono-glycerides into formulation has significantly increased mean residence 

time and residence time spread. The flow was moving toward a mixed flow with 

increase of lipid concentration and toward plug flow with decrease of lipid concentration.  

The addition of sumac bran into formulations lowered the SME input during processing 

of expanded snack. Sumac bran inclusion raised lipid content that increased lubrication 

in extrusion process resulted into lower energy input. Sumac sorghum based expanded 

snack had higher resistant starch content over white sorghum extrudates. Whole sumac 

flour and sumac bran formulation increased resistant starch in extrudates but it 

remained lower than 1%. Addition of sumac sorghum varieties doesn’t significantly 

increase the resistant starch of extrudates. 
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Future work 

Results obtained in this study opens new horizons in processing research of sorghum, 

millet and teff. The study provides a detailed information to the world of food science 

where every day new cereals products are becoming part of our daily life.  

Experiment to analyze the addition of gluten in teff and millet based formulations to see 

its effect on strengthening starch-protein matrix. The optimized in-barrel moisture and 

lipid level results of this can be applied to other cereals for product development. Pasta 

produced in this study still not subjected to sensory study. The consumer study can give 

great information on consumer insights such as product taste, liking, perceptibility etc. 

Additionally, shelf life study of sorghum, millet and teff pasta can also be included in 

future work. 
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APPENDIX A - Figures 

Figure A.1:Cooking loss at 0.5% MG and with two levels of 28% amylose corn 
starch of teff and millet pasta. 

 

 

Figure A.2:Cooking loss at 1% MG and with two levels of 28% amylose corn 
starch of teff and millet pasta. 
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Figure A.3:Cooking loss at 0.5% MG and with two levels of 55% amylose corn 
starch of teff and millet pasta. 

 

Figure A.4:Cooking loss at 1% MG and with two levels of 55% amylose corn 
starch of teff and millet pasta. 
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Figure A.5:Cooking loss at 10% addition of 28% amylose corn starch of teff and 
millet pasta. 

 

Figure A.6:Cooking loss at 20% addition of 28% amylose corn starch of teff and 
millet pasta. 
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Figure A.7:Cooking loss at 10% addition of 55% amylose corn starch of teff and 
millet pasta. 

 

Figure A.8:Cooking loss at 20% addition of 55% amylose corn starch of teff and 
millet pasta. 
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Figure A.9:Water absorption at 0.5% MG and with two levels of 28% amylose corn 
starch of teff and millet pasta. 

 

Figure A.10:Water absorption at 1% MG and with two levels of 28% amylose corn 
starch of teff and millet pasta. 
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Figure A.11:Water absorption at 0.5% MG and with two levels of 55% amylose 
corn starch of teff and millet pasta. 

 

Figure A.12:Water absorption at 1% MG and with two levels of 55% amylose corn 
starch of teff and millet pasta. 
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Figure A.13:Water absorption at 10% addition of 28% amylose corn starch of teff 
and millet pasta. 

 

Figure A.14:Water absorption at 20% addition of 28% amylose corn starch of teff 
and millet pasta. 
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Figure A.15:Water absorption at 10% addition of 55% amylose corn starch of teff 
and millet pasta. 

 

Figure A.16:Water absorption at 20% addition of 55% amylose corn starch of teff 
and millet pasta. 

 

120

140

160

180

200

MG(0.5) CS55AM(10)+MG(0.5) CS55AM(10)+MG(1)

Teff Millet Control

(10%) 55AM Starch

W
at

er
 a

b
so

rp
ti

o
n

 (
%

)

120

140

160

180

200

MG(0.5) CS55AM(20)+MG(0.5) CS55AM(20)+MG(1)

Teff Millet Control

(20%) 55AM Starch

W
at

er
 a

b
so

rp
ti

o
n

 (
%

)



 

 

192 

RVA pasting curves of different teff flour based raw material and blends used in 

experiment. 

Figure A.17:Pasting curve of raw teff flour, teff and semolina with 0.5% mono-
glycerides. 

 

Figure A.18:Pasting curve of raw teff flour blends formulated mono glycerides 
and 55% amylose corn starch. 
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Figure A.19:Pasting curve of raw teff flour blends formulated mono glycerides 
and 28% amylose corn starch. 

 

Figure A.20:Pasting curve of extruded precooked pasta products teff flour, teff 
flour with 0.5% mono-glycerides, semolina with 0.5% mono-glycerides. 
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Figure A 21:Pasting curve of extruded teff pasta blends formulated mono 
glycerides and 55% amylose corn starch. 

 

 

Figure A.22:Pasting curve of extruded teff pasta blends formulated mono 
glycerides and 28% amylose corn starch. 
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RVA pasting curves of different millet flour based raw material and blends used in 
experiment. 

Figure A.23:Pasting curve of raw millet flour, millet flour with 0.5% mono-
glycerides, semolina with 0.5% mono-glycerides. 

 

Figure A 24:Pasting curve of raw millet flour blends formulated mono glycerides 
and 55% amylose corn starch. 
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Figure A.25:Pasting curve of raw millet flour blends formulated mono glycerides 
and 28% amylose corn starch. 

 

 

 

 

 

 

 

 

 

Figure A.26:Pasting curve of extruded precooked millet flour, millet flour with 
0.5% mono-glycerides and semolina with 0.5% mono-glycerides. 
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Figure A.27:Pasting curve of extruded millet pasta blends formulated mono 
glycerides and 55% amylose corn starch. 

 

Figure 28:Pasting curve of extruded millet pasta blends formulated mono 
glycerides and 55% amylose corn starch. 
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Differential scanning calorimeter (DSC) curves of different raw flours 

Figure A.29:DCS curves of raw semolina. 

 

 

Figure A.30:DCS curves of raw sorghum flour. 
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Figure A.31:DCS curves of raw teff flour. 

 

 

 Figure A.32:DCS curves of raw millet flour. 
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Figure A.33:Effect of in-barrel moisture content on specific mechanical energy 
(SME) in sorghum pasta processing. 
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APPENDIX B -Tables 

Table B.1: Moisture loss of pasta during oven drying. 

Treatments    Raw blend (%)   After extrusion (%)            After Drying (%)        

      Teff               Millet             Teff               Millet           Teff           Millet       

Control              30.50.2a              27.40.4b                    12.670.1a             

MG(0.5)              31.50.5a      29.70.2a     27.20.0b    25.50.1a    12.30.1a       11.00.2d   

CS28AM (10)+MG(0.5)     31.30.1a      29.70.7a       25.70.1a   27.70.8b     12.10.3a       06.00.1b  

CS28AM (10)+MG(1) 31.00.2a      28.90.2a       28.10.1b    24.60.1a     11.40.1b      04.40.6c   

CS28AM (20)+MG(0.5) 31.00.1a      28.60.6a       27.40.1b    24.60.2a     12.50.0a      12.80.1a        

CS28AM (20)+MG(1) 30.60.1a      28.70.3a       27.30.1b    27.30.6b     11.60.0b      11.10.1d   

CS55AM(10)+MG(0.5) 28.90.3b      29.50.6a       26.50.1b    24.70.6a     12.70.0a      10.00.1d   

CS55AM(10)+MG(1) 30.70.9ab     29.50.0a      26.60.1ab    24.71.4a    11.70.0ab    04.70.2c     

CS55AM(20)+MG(0.5) 30.51.0ab     29.41.8a       27.20.1b    25.50.9a     12.20.1a      12.10.1da      

CS55AM(20)+MG(1) 30.50.2ab     27.90.1b       27.20.1b    25.30.9a     11.80.1ab     07.50.0b        

Coarse Grain                    28.60.2b      33.70.1c       27.60.1b    28.80.5b     10.40.0b      12.60.6a         

Legends: Control wheat- durum wheat semolina pasta, CS28AM-28% amylose corn starch, CS55AM-55% amylose corn starch, MG(0.5)- 0.5% 
mono-glycerides, MG(01)- 1.0% mono-glycerides. 
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