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Abstract 

The coronary microcirculation is the principle site of blood flow control and myocardium 

oxygen delivery within the coronary artery tree. Coronary arteriole tone is determined by three 

major endothelium derived vasoactive substances: endothelin, nitric oxide (NO), and reactive 

oxygen species (ROS). The effects of these substances change with aging and differ between 

sexes. Endothelin-1 (ET-1), the primary endothelin isoform in the coronary circulation, acts on 

smooth muscle receptors endothelin-A (ETA) and endothelin-B (ETB) to induce vascular smooth 

muscle (VSM) contraction and vasoconstriction. Whereas ET-1 activation of the ETB receptor on 

the endothelium initiates a cascade of events leading to NO production via endothelium derived 

NO synthase (eNOS) enzyme activation and VSM relaxation. Aged males maintain ETA receptor 

expression and higher levels of vasoconstriction than do age-matched females. High levels of 

ETA receptor activity are associated with hypertension, myocardial infarction, coronary artery 

spasm, atherosclerosis, and finally heart failure (HF). Additionally, NO can displace ET-1 from 

the VSM ETA and ETB receptors. Thus, with reduced eNOS activity and decreased NO 

production, there is a simultaneous loss of vasodilatory capacity and increase in vasoconstrictive 

capacity. In both rodent and human models aged males and females ROS production increases 

with age. ROS, such as superoxide, scavenge NO, decreasing its bioavailability and producing 

peroxynitrite. Peroxynitrite is a potent reactive nitrogen species that leads to endothelial cell 

apoptosis and eNOS enzyme dissociation, potentiating superoxide production and NO reduction. 

It has been shown that the reduction in NO bioavailability may be a primary mechanism of 

coronary artery disease. However, the ROS hydrogen peroxide, also increased with aging, 

produces a potent vasodilatory effect in the coronary microcirculation and seems to be one 

mechanism that buffers the loss of NO-induced vasodilation. In postmenopausal women 



  

diminished estrogen levels further reduce eNOS production of NO. Males, however, tend to 

experience decrements in arteriole function a decade before women and estrogen may be one 

mechanism preserving vascular health into middle age that separates the chronology of coronary 

artery disease between sexes. Determining the mechanisms of disease onset that accompany the 

aging process will provide insight into potential therapies to preserve endothelium dependent 

dilation with aging such as exercise, dietary NO supplementation, and increased dietary anti-

oxidant consumption.       
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Chapter 1 - Mechanisms of coronary microvascular tone regulation: 

aging and sex differences 

 Introduction 

Cardiovascular diseases (CVD) are the leading cause of death in both developed and 

developing countries (1). Specifically, coronary artery disease, due to arterial dysfunction, has 

the highest morbidity and mortality rate among cardiovascular diseases (1). The coronary arterial 

tree is tasked with the delivery of nutrients and removal of metabolic byproducts from the 

myocardium. The coronary microcirculation is the principal location in the coronary vascular 

tree responsible for matching oxygen (O2) delivery (QO2) to utilization (VO2) for the network of 

parenchymal cells (i.e. myocardial cells), structural tissue, nerve and other cells types that dictate 

cardiac function and thus metabolic rate. The coronary microcirculation tightly manages arteriole 

tone to ensure that appropriate QO2:VO2 is met. Coronary vascular resistance is determined by 

vascular anatomy, extravascular cardiac compressive forces, and vascular smooth muscle 

contraction. Chilian et al. discovered that around 50% of total coronary resistance in the left 

ventricle resides in arterioles less than 150µm in diameter (2). Figure 37 in Local regulation of 

microvascular perfusion by Davis et al. (2008) illustrates the distribution of resistance along the 

coronary vascular tree, the predominant vasoactive influences within each segment of the 

coronary microcirculation and that the majority of coronary vascular resistance resides in the 

arterioles (3). Coronary arteriole tone is regulated by metabolic, myogenic, endothelial and 

neural influences (4, 5, 6). The relative impact of these mechanisms is dependent upon the size 

of the arteriole. This review will focus on three endothelial and myogenic regulators of coronary 

arteriole tone in healthy aging; a) endothelin (ET) b) endothelium-derived nitric oxide (NO) and 

c) reactive oxygen species (ROS). 
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The relationship between age and cardiovascular disease development is evident (7). It 

can be said that aging alone is a major risk factor for the development of CVD and, as stated by 

Seals et. al. that CVD are diseases of aging (7). Aging reduces cardiac function (8) as well as 

submaximal coronary blood flow in aged rats (9) and humans (10). Additionally, evidence of sex 

differences with aging in the onset of cardiovascular disease is mounting. Celermajer et al. 

demonstrated that endothelium dysfunction occurs 10 years earlier, on average, in men as 

compared to women (11). In coronary arterioles LeBlanc et al. demonstrated that endothelium-

dependent dilation (EDD) loses effectiveness with age for male (12) and female rats (13); 

however, mechanisms of endothelium dysfunction can be sex specific (14, 15). Males 

demonstrate an increased or preserved responsiveness to vasoconstrictors (16) such as ET-1 (17), 

while post-menopausal females, having reduced estrogen levels, may lose the vasodilatory 

capacity buffer of estrogen allowing for an increased reactivity to vasoconstrictor mechanisms, 

such as ET-1, in coronary arterioles. 

With these insights it is becoming ever clearer that coronary microvascular dysfunction in 

aging plays a critical role in the development of cardiovascular disease with the addition that sex 

may alter the mechanism of disease development. Given the increasing population of older 

adults, understanding the microcirculatory pathologies with healthy aging is essential. Gaining 

insights into the aging coronary microcirculation could deliver insights into therapeutic 

mechanisms for the delay or prevention of CVD as well as a greater understanding of the 

pathologies associated with coronary artery disease (CAD) and heart failure (HF) in the aged.  

 During the aging process, especially into the 6th decade of life, the effectiveness of 

chemical vasoactives at the endothelial and smooth muscle level change. ET-1, endothelium 

derived NO (and/or NO bioavailability), and ROS become out of balance. The endothelin B 
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(ETB) receptor, located on the endothelium, when activated by ET-1, leads to eNOS expression 

and NO production to dilate coronary arterioles, particularly <150µm (18). Functionality of ETB 

on the endothelium increases in value as the endothelin A (ETA) and endothelin B (ETB) 

receptors, located on the vascular smooth muscle (VSM), maintain their potent vasoconstrictive 

capacity throughout the aging processes in male rats (13). Relatively high levels of ETA 

expression lead to a chronic increase in vessel tone which is accompanied by a host of 

pathologies such as hypertension (19), myocardial infarction (20), coronary artery spasm (21), 

atherosclerosis (22), and finally HF (23). The compounding effect of high ETA expression on the 

VSM with an increased buildup of arteriole plaques as humans age, is damaging the endothelium 

and abolishing EDD mechanisms.  

Additionally, there tends to be an increase in the production of ROS such as hydrogen 

peroxide (H2O2) and superoxide (O2-) with aging (24). Superoxide, produced in parallel to 

mitochondrial production of ATP, will scavenge NO rendering it to peroxynitrite (OONO-), a 

more potent oxidant that has no vasodilatory effects and induces cell death (25, 26, 27). On the 

other hand, H2O2, also produced in proportion to mitochondrial ATP production, has significant 

vasodilatory effects and functions to match coronary blood flow to myocardial oxygen demand 

(28). Superoxide can severely damage cell health but H2O2 is important for arteriole tone 

maintenance. They are produced simultaneously and thus the ramifications of both ROS must be 

considered when looking at therapies such as exercise or increasing NO bioavailability in the 

aged.  

In order to understand the mechanisms of, and provide more effective treatments for 

CAD in the aged, we must first separately understand how the healthy aging process leads to 

coronary arteriole endothelial dysfunction because arterioles are the primary site of blood flow 
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regulation. This will provide clarity for what mechanisms of disease are solely due to aging and 

will help elucidate a stratified picture of CAD as diet, sedentary lifestyle, and genetic pathologies 

are layered atop this complex disease.       

 Endothelin 

Endothelin is a 21-amino acid vasoactive peptide produced by coronary endothelial cells 

(28). While three isoforms of endothelin have been discovered (ET-1, ET-2, and ET-3) (28). ET-

1 is the most abundant isoform in the coronary circulation, and plays a critical role in regulating 

basal coronary arteriole tone during periods of basal metabolism (29). However, its role in 

regulating the coronary circulation is then reduced with increases in metabolic demand (13, 30). 

ET-1 is primarily produced via cleavage of its non-active precursor preproendothelin and big ET 

(bET) (31, 32). bET is converted to ET-1 via endothelin-converting enzyme (33, 34) as 

demonstrated by Khimji et al. in Endothelin – Biology and Disease (2010) figure two (35).  

ET-1 is released by endothelial cells with approximately 80% being released albuminally 

toward the vascular smooth muscle (32). The local release and utilization ET-1 leads to the belief 

that ET-1 functions primarily in a local paracrine rather than in a circulating endocrine, fashion 

(33). Some research suggests that ET-1 may act in an autocrine fashion, as well (33). ET-1 

receptors type A (ETA) and type B (ETB) are expressed on vascular smooth muscle cells of 

coronary arterioles, but only ETB receptors reside on the endothelium (34). ET-1 will bind to the 

Gq-protein-coupled ETA and ETB receptors on vascular smooth muscle cells resulting in 

vasoconstriction. Whereas, ETB receptors activated by ET-1 on the endothelium lead to 

prostacyclin (PGI2) and NO production which cross the vascular space attaching to guanylyl 

cyclase on the vascular smooth muscle. Guanylyl cyclase activates the cyclic guanosine 

monophosphate (cGMP) to protein kinase G (PKG) pathway which leads to smooth muscle 
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relaxation and vasodilation, as demonstrated in figure 4 of Endothelin-Biology and disease by 

Khimji et al. (2010) (35, 36, 37, 33, 38).  

Recent evidence supports the role of ET-1 in mediating endothelial dysfunction with 

aging (39). Data from aged humans indicate that ET-1 vasoconstrictor activity is augmented with 

aging (40, 41) and contributes, at least in part, to diminished EDD in older adults (42). In human 

vascular endothelial cells Donato et al. demonstrated that ET-1 plasma concentrations and 

expression increase with age and are inversely associated with EDD (40). While Donato et al. 

obtained these results from the brachial artery, studies have suggested that brachial artery flow 

mediated dilation can serve as an index of coronary conduit artery endothelial function (43).  

Responsiveness to ET-1 changes with age differently depending upon sex. In the human 

coronary circulation, reports indicate that age-related differences in ET-1 induced 

vasoconstriction occur principally as a result of decreased ETA receptor protein levels. However, 

older men had a greater ETA receptor-mediated vasoconstrictor tone than age-matched women 

(44, 45). Female rat responsiveness to ET-1 in the aorta declines with age (46). Contrarily, male 

rats have an increased responsiveness to ET-1 in large coronary arteries (47). These results are 

reversed in the coronary microcirculation.  LeBlanc et al. discovered that aged male rats 

demonstrate a decreased responsiveness to ET-1 induced vasoconstriction in coronary resistance 

arterioles (46, 13). In aged male rats these age-related decrements in ET-1 induced 

vasoconstriction are accompanied by a decrease in ETA receptor protein expression on the 

vascular smooth muscle, with a coinciding increase in ETB receptor protein expression on the 

vascular arteriole endothelium (13). In addition, the ETB receptor on the endothelium has been 

shown to modulate the vasoconstrictor effects of ET-1 bound to ETA or ETB receptors on the 

VSM primarily through NO production (48, 49). In age-matched female rats, LeBlanc et al 
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demonstrated an increased vasoconstrictive response to ET-1. However, in contrast to male rats, 

the coronary arterioles of aged female rats demonstrated an increased responsiveness to ET-1 

despite unchanged ETA or ETB receptor protein expression levels (13), exemplifying that 

alterations in coronary EDD and constriction are heavily dictated by sex and age. Interestingly, 

this age related increased responsiveness to the vasoconstrictive effects of endothelin may 

provide some protection to the aging heart (12) as vasoconstriction can redirect coronary blood 

flow to the subendocardium, preventing excessive back flow from the coronary circulation 

during systole (45). This sex difference in vasoconstrictor tone to ET-1 via differences in ETA 

expression may be a mechanism responsible for the sex differences in CAD between male and 

female older adults (44). However, endothelium-independent mechanisms, such as calcium (Ca+) 

handling, may also be responsible for the vasoconstrictive differences, as exemplified by young 

and aged female rats’ vasoconstrictive differences in arteries remaining even after blood vessel 

denudation and ETB blockade (50). Finally, inhibition of ET-1 signaling with ETA receptor 

antagonist improved EDD in old, but not young, mice (47). These results indicate that older mice 

either have an increased or preserved sensitivity to the vasoconstrictive effects of ETA and/or that 

supportive mechanisms of vasodilation are not preserved in the aging process.   

 Endothelin and Nitric Oxide 

In 1990, Boulanger and Luscher discovered that endothelium-derived NO production 

inhibited the production of endothelin through a cyclic GMP-dependent pathway (51), indicating 

that a reduced NO production or bioavailability, via eNOS inhibition, could lead to exacerbated 

production of endothelin and thus chronic vasoconstriction. NO, has also, been demonstrated to 

displace ET-1 from ETA and ETB receptors on VSM, inhibiting their vasoconstrictive effects 

(49). NO can also bind to thiol groups on the endothelin receptors producing s-nitrosothiols 
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which act as vasodilators (52, 53). Kang et al. have demonstrated impaired NO-mediated 

vasodilation in aged female rat coronary arterioles that were believed to be due to decreased 

circulating estrogen levels. (54). Contrarily, aged male rats exhibit an increase in eNOS mRNA 

(17), although, mRNA is not always indicative of protein expression. These sex-specific NO 

regulatory mechanisms could, in part, be responsible for the inverse ET-mediated constriction 

seen between aged male and female rat coronary arterioles (13).   

 Endothelium Derived Nitric Oxide  

In vivo and in vitro studies have demonstrated that endothelium dependent release of NO 

is imperative for controlling coronary vascular resistance. NO protects the vascular system and is 

primarily produced by the enzyme eNOS on the endothelium. eNOS is activated by vascular 

shear stress induced by BF, chemical mediators, and/or calcium-calmodulin binding due to 

increased Ca+ signaling from VSM shear stress. Shear stress in the coronary circulation is 

principally regulated at the level of small arteries and arterioles <150µm in diameter, providing 

further evidence of eNOS activation primarily at these sites (55). eNOS produces NO via 

reduction of molecular oxygen by a two-step process. Firstly, eNOS, bound to co-factor (6R)-

5,6,7,8-tetrahydro-L-biopterin (BH4), hydroxylates L-arginine to Nw- hydroxy-L-arginine which 

remains bound to eNOS. Secondly, eNOS oxidizes Nw- hydroxy-L-arginine to L-citrulline and 

NO (56). NO dilates arterioles by stimulating soluble guanylyl cyclase to produce cGMP which 

activates PKG in smooth muscle cells to promote VSM relaxation. In addition, NO has been 

shown to inhibit platelet aggregation and adhesion, reducing VSM exposure to platelet-derived 

growth factors and thus fibrous plaque formation, leukocyte adhesion, DNA synthesis, 

mitogenesis, and proliferation of VSMC (57). These effects make NO one of the most important 

vasoprotective chemicals especially for healthy aging. However, several human and animal 
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studies correlate aging with endothelium dysfunction and secondarily with a decreased NO 

production and thus a depressed ability to regulate arteriole vessel tone (58, 59). 

In porcine coronary resistance arterioles antagonists of eNOS produce vasoconstriction at 

rest, suggesting that a tonic release of NO is necessary for maintaining arteriole tone (60). 

Additionally, in isolated porcine coronary arterioles it has been demonstrated that clonidine (61), 

serotonin (61), and substance P (60) produce VSM relaxation through endothelium release of 

NO. In human and rat ventricular arterioles acetylcholine initiates EDD mediated by NO (62). 

However, in pigs, where acetylcholine acts as a vasoconstrictor, the release of endothelium 

derived NO is used to modulate the constrictive effects of acetylcholine (62). The 

vasoconstrictive effects of 𝛼1- and 𝛼2-adrenergic agonists in the coronary microcirculation are 

also attenuated by endothelium derived NO (63).  

In one study, coronary arteriole flow-induced vasodilation was abolished by eNOS 

inhibition with L-NMMA, an L-arginine analog, obstructing the production of NO. These results 

were then reversed in the presence of excess L-arginine, demonstrating the necessity of the 

cofactor L-arginine in eNOS production of NO (60). Additionally, it is an insufficiency of L-

arginine which can cause the eNOS enzyme to dissociate and produce superoxide instead of NO. 

This mechanism of superoxide production will be discussed further in the ROS section.    

While some studies suggest that age enhances endothelial production of NO via increased 

eNOS protein expression, it is likely that the aged have a greater reliance on NO to mediate 

vessel tone due to other mechanisms of EDD not being preserved into old age. This is 

demonstrated well by Shipley et al. where young and old rats given NG-nitro-L-arginine methyl 

ester (L-NAME), a non-selective NOS inhibitor, both had significant increases in percent 

arteriole constriction. However, a statistically significant difference in percent constriction 
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remained between young and old. Additionally, with denudation of the arteriole no constrictive 

differences remained. This indicates that other EDD mechanisms buffer the loss of NO in the 

young, but these mechanisms are likely not preserved in healthy aged male rats (17).    

Sex also seems to play a role in eNOS expression. Recent research suggests that 

decreased circulating estrogen levels in postmenopausal women lead to the downregulation of 

estrogen receptor alpha (ERa) and reduced EDD (64, 11). ERa, which modulates vascular 

function through estrogen (65), is shown to be reduced in postmenopausal women as compared 

to premenopausal women (66). This reduction in ERa activation impairs EDD in part due to a 

reduced eNOS expression. However, with estrogen administration EDD improves in some 

postmenopausal women (67) as a result of increased NO bioavailability (68). However, these 

results have been variable in the literature and more research is needed to confirm these results.   

 Reactive Oxygen Species and Nitric Oxide Bioavailability 

 Superoxide 

The primary mechanism of endothelium damage and inhibition of the eNOS enzyme in 

aged humans and animals is production of ROS, in particular O2-, without anti-oxidant 

compensation (69-71). Superoxide is generated by nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase (85), the mitochondrial respiratory chain (73,74), as well as eNOS uncoupling 

(75).  Current research supports the hypothesis that aging exacerbates the production of 

superoxide (7). This supports the theory that the age-related reduction in NO is principally due to 

superoxide scavenging NO to produce the potent reactive nitrogen species (RNS) peroxynitrite, 

and/or uncouple eNOS, both of which produce superoxide anions (24). The superoxide anions 

reduce endothelium dependent production of NO and reduce NO bioavailability (76, 7). 

Reduction in NO bioavailability is likely a primary mechanism of reduced EDD with aging. 
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eNOS uncoupling, which leads to the production of a superoxide anion instead of NO, is the 

product of either reduced BH4 bioavailability, reduced L-arginine bioavailability, and/ or ROS or 

RNS damage as demonstrated by figure three in The Coronary Circulation in Health and 

Disease by Muller-Delp (2013) (7, 24, 77, 78). BH4 is easily oxidized by superoxide and 

peroxynitrite making it no longer functional as an eNOS cofactor (79). While the primary 

mechanism(s) causing reduced BH4 levels with aging is up for debate, it is likely that the 

production of BH4 remains the same in aged humans. This is supported by studies on aged 

rodents (80) where it has been demonstrated that increases in ROS are oxidizing BH4 reducing 

its bioavailability. Studies have demonstrated that BH4 administration causes an improvement in 

EDD in aged individuals that is not observed in young subjects. The vasodilatory effects of BH4 

administration are blocked NOS inhibition, confirming that BH4 is a required eNOS cofactor for 

NO production (81, 82). Additionally, age-related differences in EDD when NOS was inhibited 

were abolished (82-85).  

 Hydrogen Peroxide 

Hydrogen peroxide has been proposed to function as a feedforward mechanism coupling 

myocardial demand to coronary BF and O2 delivery due to its direct relationship to O2 utilization 

(24). In part, this is due to increased electron transport chain utilization resulting in greater 

production of ROS such as superoxide which is disumtated to H2O2. The vasodilatory effects of 

endothelium derived H2O2 were initially discovered in porcine and human coronary arterioles 

(86, 87, 25). Some work from Saitoh et al. indicates that a portion of H2O2 is produced in VSM 

mitochondria with increased metabolic demand. However, mitochondrial derived H2O2 is also 

produced in endothelial cells where, in a paracrine manner, it is taken up by the surrounding 

coronary arteriole VSM cells activating PKG opening Ca+ activated potassium channels which 
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hyperpolarize the arteriole VSM and induce relaxation as demonstrated by figure three in The 

Coronary Circulation in Health and Disease by Muller-Delp (2013) (24, 88, 89).      

More studies are needed to clearly identify what proportion of H2O2 comes from the 

VSM versus the endothelium during resting conditions, where metabolic demand is relatively 

low (25). For aged, sedentary individuals where minimal work could cause an increase in 

metabolic demand and thus mitochondrial superoxide production, H2O2 may be an important 

regulator of arteriole tone moment to moment as it may be used in a compensatory manner for 

NO. However, H2O2 is proinflammatory (90), and H2O2 production that supersedes the 

superoxide dismutase (SOD) buffering capacity of the endothelium or is dismutated in the 

presence of catalytic transition metals such as iron (Fe2+) could impair endothelial function due 

to excess hydroxide (OH-) production (24). Arteriole dilation is mediated by NO into the seventh 

decade of life (91). However, H2O2 may provide an ulterior mechanism for regulating coronary 

arteriole tone in the aged for both sexes. This production of H2O2 appears to be advantageous in 

producing a vasodilation in the coronary circulation versus the anticipated detrimental effects 

that it may have as a ROS (89).  

 Potential Therapies 

 Anti-oxidants 

Askurza et al. demonstrated that anti-oxidants such as ascorbic acid and superoxide 

scavengers can restore EDD in the peripheral (brachial) conduit arteries of older sedentary 

human males but had no effect on both young and old endurance-exercise trained subjects (92, 

10). Additional evidence in coronary resistance arteries of aged rats, where NO-mediated dilation 

is reduced, demonstrates significantly improved BF with treatment of scavengers of superoxide 

(i.e. SOD) (10). Future research will need to determine if it is the increased bioavailability of NO 
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or the increased production of H2O2 that mediates coronary BF improvements. Importantly, 

Donato et al. demonstrated that antioxidant enzyme expression in vascular endothelial cells was 

similar between young and old healthy adults (93). This indicates that the increase in ROS 

production during aging, without compensatory increase in anti-oxidant bioavailability, is likely 

a major contributing factor to hampered EDD and decreased NO bioavailability. Zhao et al. 

contend that animal cell apoptosis, programed cell death, can be prematurely induced by ROS 

and RNS such as O2- and peroxynitrite (ONOO-). Peroxynitrite is formed through the 

combination of NO and O2- (26) and produces endothelial cell apoptosis which accelerates 

vascular endothelium dysfunction and thus impaired EDD (94). Accordingly, a therapy to 

preserve EDD in the coronary arterioles with aging would necessitate a dietary increase in anti-

oxidant containing foods such as fruits and vegetables to reduce ROS and RNS which will 

preserve endothelial cell health and reduce NO scavenging.           

 Exercise 

The literature has demonstrated a clear link between sedentary behaviors in aged 

individuals and a depressed coronary microvascular BF response to acute exercise (95). Studies 

consisting of both cross-sectional comparisons and interventional studies show that consistent 

aerobic exercise enhances EDD in older men likely through maintained basal NO production via 

eNOS, a reduction in NADPH oxidase activity, and an increase in SOD activity (95-98, 83). 

Coronary microvascular resistance is determined by VSM contractility in coronary 

arterioles. Delp et al. have demonstrated that VSM contractile function is impaired in coronary 

arterioles from aged rats (95). In aged male rats, VSM exhibited a secretory phenotype and VSM 

proliferation in the arteriolar wall, decreased arteriole VSM myosin heavy chain 1, and increased 

expression of both phosphohistone H3 and synthetic ribosomal protein S6. Demonstrating that 
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the age-related contractile dysfunction of coronary arteriole VSM via these mechanisms may be 

in part responsible for the hampered BF responses to acute exercise. However, exercise training 

reversed all of these responses in age male rats restoring VSM contractile responsiveness (95). 

Taddei et al. and Eskura et al. demonstrated that regular aerobic exercise augments EDD through 

a reduction in ROS with a concurrent increase in NO bioavailability, in part due to the 

preservation of BH4 in aged men (96, 97). Mechanisms of EDD preservation are likely shear 

stress driven as exercise increases vascular shear stress inducing eNOS expression, maintenance 

of NO bioavailability which acts as both a vasodilator and endothelium protector, and a 

retardation of plaque buildup (100, 101). This research demonstrates that exercise, even late in 

life, can reverse many of the deleterious effects of sedentary aging. Unfortunately, research has 

not demonstrated a similar effect of aerobic exercise on EDD preservation and recovery in aged, 

postmenopausal women in any arteries let alone coronary arterioles (102, 103). The mechanisms 

differentiating male and female EDD responses to exercise will be significant areas of further 

research.            

 Inorganic Nitric Oxide Supplementation  

Numerous investigations demonstrate a decreased NO-mediated vasodilation with age 

due to a reduction in NO bioavailability (104, 85, 105). Even though eNOS protein expression 

has been demonstrated to increase with age (40), aging blunts NO production in response to 

increased shear stress (106) and aging is associated with an increase in ROS scavenging for NO. 

Thus, the increased eNOS protein expression is likely an attempt to compensate for the reduced 

NO bioavailability. Inorganic nitrate (NO3-) supplementation (e.g. beetroot juice) has become a 

therapy of extensive research due to its ability to be broken down into nitrite (NO2-) and NO via 

a step-wise, NOS independent mechanism (107). While much of the research has been conducted 
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in skeletal muscle, the systemic increase in plasma NO3- concentrations indicates that NO 

bioavailability is likely also increased in coronary arterioles. Increasing NO bioavailability 

through a NOS independent mechanism may provide an excellent therapeutic mechanism for 

improving coronary microvascular resistance in the aged.        

 Conclusion 

In conclusion, the coronary artery is tasked with the delivery of O2 and nutrients and 

removal of metabolic byproducts. The coronary microvasculature is the primary site of BF 

regulation which is determined by arteriole tone. Arteriole tone is regulated by VSM constriction 

and relaxation which is primary regulated by three strong vasoactive substances all working in 

tandem to control arteriole tone, namely ET-1, NO, and ROS. ET-1 works on ETA and ETB 

receptors on the VSM to induce vasoconstriction, whereas the ETB receptor on the endothelium 

activates the eNOS pathway to produce NO and relax the VSM eliciting vasodilation. In the 

aged, ETA receptors are typically preserved but ETB receptors on the endothelium decrease in 

number typically due to endothelium damage via arteriole plaques and ROS and RNS damage. 

ROS, such as O2-, production is increased with age and uncouples eNOS and scavenges for NO, 

reducing its bioavailability, forcing the use of H2O2 as the primary vasodilator in coronary 

arterioles of the aged. Decreasing ROS via increased dietary intake of anti-oxidants, increased 

dietary inorganic nitrate consumption, and increased exercise in the aging can all preserve the 

health of the endothelium ensuring sustained vasodilatory capacity during the aging process. 

Unfortunately, female research is lagging far behind research in males and thus the 

mechanism(s) preserving coronary arteriole health in aging females is still to be revealed.   
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 Future Research 

While eNOS plays a major role in coronary arteriole BF regulation, neuronal NOS 

(nNOS) has also recently been demonstrated to play a role in controlling basal coronary BF and 

microvascular tone (108). Coronary nNOS is expressed on the VSM and coronary perivascular 

nerves in rats and humans (109, 110). Lamping et al. and Huang et al. have both demonstrated in 

the mouse coronary circulation the use of nNOS for EDD generated through NO in eNOS 

knockout mice (111, 112). No literature, to our knowledge, concerning how nNOS changes with 

age or sex in the coronary circulation currently exists. However, due to its newly discovered 

significance in the coronary circulation, it is another mechanism of regulation that deservers 

further exploration. Additionally, several studies indicate that inducible NOS (iNOS) expression 

and function in VSM increase with age (113, 59, 104, 114). However, results by Shipley et al. 

refute these findings demonstrating no significant alterations in vasoconstrictive responsiveness 

in coronary arterioles from old male rats (17). Research to clarify the functionality of each 

enzyme eNOS, nNOS, and iNOS within the coronary circulation as it relates to aging and sex is 

necessary to understand the EDD dysfunction that arises with age. 

Finally, the sex specific response to ET-1 is comprised by a multifactorial response 

system. However, one major possible mechanism decreasing female vasoconstrictive 

responsiveness to ET-1 could lie within the VSM Ca2+ release and reuptake. ET-1 induced Ca2+ 

release has a long lasting vasoconstrictive effect. Therefore, it is reasonable to hypothesize that 

aged females have either a blunted Ca2+ release or a rapid Ca2+ reuptake that hampers the 

vasoconstrictive effects of ET-1. However, further research is needed to clearly identify and 

explain the mechanism of action.    
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Chapter 2 - Reflection 

As I review my time at Kansas State University it is humbling to imagine where I would 

be without the encouragement and mentorship of my professors and peers. Entering Kansas State 

as an undergraduate in Athletic Training I knew I had a passion for physiology. My first 

semester I enrolled in Basic Nutrition and discovered my interest in nutrition. Second semester 

freshman year I switched my major to Nutrition and Health and joined Drs. Timothy Musch and 

David Poole’s Clarenburg Cardiopulmonary Research Laboratory. Through the combination of 

nutrition and chemistry heavy course work and my time researching the ramifications of heart 

failure on peripheral circulation I obtained an understanding of how the components of human 

health intersect to maintain proper physiological function. However, I struggled through my 

chemistry coursework throughout my time as an undergraduate. It is amazing now to look back 

at the chemistry I struggled with and see how I am applying it through my research today. As a 

sophomore taking organic chemistry, and struggling, I wanted to take a year off of college to 

spend time studying on my own. Through the encouragement of my mom I stuck with my 

studies and it is amazing to think I am now graduating with a Master of Science degree, a 

Certificate in Public Health, and continuing my research interests through a Fulbright to 

Semmelweis Medical School in Budapest, Hungary. Wanting to stop attending college for a year 

to pursue my own studies demonstrated to me one thing, I have a deep and pure passion for 

understanding physiology, unattached to academic success that might come with it. Sticking with 

my education taught me that persisting through the struggle leads to a stronger mindset on the 

other side and is the foundation for an iron-will to accomplish what I start.  

At the end of the day I did get my time off. Taking a semester off half way through my 

master’s program to travel around the globe, only to come back and finish, was one of the best 
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decisions I made. Against the will of my parents, I knew that time away was essential to my 

personal growth and health. It is only through my time abroad that I gained perspective on my 

educational process, I made the connection to establish my Fulbright in Hungary, and I 

strengthened my focus on a career in international health care.  

 College is a process of maturing mentally, emotionally, and spiritually. It is humbling to 

look back and imagine where I would be without the support of professors and peers around me. 

However, I’ve learned to trust myself. In many ways research has taught me how to question 

dogma in the literature and dogma in my own life. I am grateful for my time at Kansas State 

University in the Department of Nutrition, Dietetics and Sensory Sciences in the College of 

Human Ecology. I have found no better people than here and will miss them dearly.          

 


