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Abstract

Symbolic knowledge representation and reasoning and deep learning are fundamentally
different approaches to artificial intelligence with complementary capabilities. The former
are transparent and data-efficient, but they are sensitive to noise and cannot be applied to
non-symbolic domains where the data is ambiguous. The latter can learn complex tasks from
examples, are robust to noise, but are black boxes; require large amounts of —not necessarily
easily obtained— data, and are slow to learn and prone to adversarial examples. Either
paradigm excels at certain types of problems where the other paradigm performs poorly.
In order to develop stronger Al systems, integrated neuro-symbolic systems that combine
artificial neural networks and symbolic reasoning are being sought. In this context, one
of the fundamental open problems is how to perform logic-based deductive reasoning over
knowledge bases by means of trainable artificial neural networks.

Over the course of this dissertation, we provide a brief summary of our recent efforts to
bridge the neural and symbolic divide in the context of deep deductive reasoners. More specif-
ically, We designed a novel way of conducting neuro-symbolic through pointing to the input
elements. More importantly we showed that the proposed approach is generalizable across
new domain and vocabulary demonstrating symbol-invariant zero-shot reasoning capability.
Furthermore, We have demonstrated that a deep learning architecture based on memory
networks and pre-embedding normalization is capable of learning how to perform deductive
reason over previously unseen RDF KGs with high accuracy. We are applying these mod-
els on Resource Description Framework (RDF), first-order logic, and the description logic
&L respectively. Throughout this dissertation we will discuss strengths and limitations of
these models particularly in term of accuracy, scalability, transferability, and generalizabiliy.
Based on our experimental results, pointer networks perform remarkably well across multiple

reasoning tasks while outperforming the previously reported state of the art by a significant



margin. We observe that the Pointer Networks preserve their performance even when chal-
lenged with knowledge graphs of the domain/vocabulary it has never encountered before.
To our knowledge, this work is the first attempt to reveal the impressive power of pointer
networks for conducting deductive reasoning. Similarly, we show that memory networks can
be trained to perform deductive RDF'S reasoning with high precision and recall. The trained
memory network’s capabilities in fact transfer to previously unseen knowledge bases. Finally
will talk about possible modifications to enhance desirable capabilities. Altogether, these

research topics, resulted in a methodology for symbol-invariant neuro-symbolic reasoning.
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lenged with knowledge graphs of the domain/vocabulary it has never encountered before.
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Chapter 1

Introduction and Background

1.1 Neuro-Symbolic Deductive Reasoning

Approaches in Artificial Intelligence (AI) based on machine learning, and in particular those
employing artificial neural networks, differ fundamentally from approaches that perform log-
ical deduction and reasoning on knowledge bases. The first are connectionist or subsymbolic
Al systems that are able to solve complex tasks over unstructured data using supervised
or unsupervised learning, including problems which cannot reasonably be hand-coded by
humans. Subsymbolic methods are generally robust against noise in training or input data.
And recently, in the wake of deep learning, they have been shown to exceed human perfor-
mance in tasks involving video, audio, and text processing. Symbolic systems, by contrast,
thrive in tasks that use highly structured data, including agent planning, constraint solving,
data management, integration and querying, and other traditional application areas of ex-
pert systems and formal semantics. Classical rule-based systems, ontologies, and knowledge
graphs that power search and information retrieval across the Web are also types of symbolic
Al systems.

Symbolic and subsymbolic systems are almost entirely complementary to each other. For
example, the key strengths of subsymbolic systems are weaknesses of symbolic ones, and vice

versa. Symbolic systems are brittle; they are susceptible to data noise or minor flaws in the



logical encoding of a problem, which stands in contrast to the robustness of connectionist
approaches. But subsymbolic systems are generally black bozes in the sense that the systems
cannot be inspected in ways that provide insight into their decisions (despite some recent
progress on this in the ezplainable Al effort) while symbolic knowledge bases can in principle
be inspected to interpret how a decision follows from input. Most importantly, symbolic and
subsymbolic systems differ in the types of problems and data they excel at solving. Scene
recognition from images appears to be a problem that lies generally outside the capabilities
of symbolic systems, for example, while complex planning scenarios appear to be outside the
scope of current deep learning approaches.!

The complementary nature of these methods has drawn a stark divide in the rich field of
Al The split is technical in nature; symbol manipulation as captured by deductive reasoning
cannot be sufficiently performed using current subsymbolic systems. Moreover, the training
to study subsymbolic systems (involving probability theory, statistics, linear algebra, and
optimization) differs from symbolic systems (involving logic and propositional calculus, set
theory, recursion, and computability) so strongly that AI researchers tend to find a side of
the divide based on their intellectual interests and background. There is even a cultural
aspect to he schism, pitting mindsets and prior beliefs of communities against one another,
that in the past could sometimes split the academic Al research community by provoking
(heated) fundamental discussions. Even geography has an effect: researchers working on
symbolic approaches are more prevalent in the European Union than in the United States.

We are interested in answering fundamental problems needed to build a technical bridge
between the symbolic and subsymbolic sides of the divide. The promises of successfully
bridging of the technological divide are plenty [19, 31, 6, 15]. In the abstract, one could
hope for best-of-both-world systems, which combines the transparency and reasoning-ability
of symbolic systems with the robustness and learning-capabilities of subsymbolic ones. In-
tegrated symbolic-subsymbolic systems may be able to address the knowledge acquisition

bottleneck faced by symbolic systems, learn to perform advanced logical or symbolic reason-

IThe topic is being investigated, of course, with some recent progress being made. For example, [1]
report on an application of deep learning to planning, and explicitly frame it as work towards bridging the
“subsymbolic-symbolic boundary.”



ing tasks even in the presence of noisy or uncertain facts, and even yield self-explanatory
subsymbolic models. More abstractly, bridging the two may also shed insights into how
natural (human) neural networks can perform symbolic tasks as witnessed by people doing
mathematics, formal logic, and other pursuits that we, introspectively, see as symbolic in
nature. This is a basic research problem for Cognitive Science.

Many of the earlier lines of research on neuro-symbolic integration, discussed primar-
ily from a cognitive science perspective, can be found in [8]. Of particular interest is the
integration of deep learning with logics that are not propositional in nature, since proposi-
tional logic is of limited applicability to knowledge representation and reasoning tasks. In
the wake of deep learning breakthroughs, fundamental issues around neuro-symbolic inte-
gration have recently received increased attention with some progress being made as new
approaches emerge. In particular, there has been progress in developing neural networks
that can learn to reason. These include the Neural Theorem Prover (NTP) and its varia-
tions [57, 56, 47, 46|, Logic Tensor Networks (LTN) [61, 9, 3], and the application of memory
networks and LSTMs [22] and others [45, 38]. Yet, there is still much work to do in terms
of new model development and investigation of inductive bias in existing architectures and
their reasoning capability.

This thesis describes the efforts made to investigate our methodologies toward bridging

the neural and symbolic approaches divide, and focused on the following primary tasks.

1. Examining the reasoning capability of pointer networks [68] in emulating deductive

reasoning
2. Investigating the emulation of deductive symbolic reasoning using memory networks

3. Designing a framework for Neuro-Symbolic Deductive Reasoning for Cross-Knowledge

Graph Entailment

4. Examining the generalization power and transfer learning capability of proposed ap-

proaches



The outline of the particular topics researched to accomplish these is provided in the next

section.

1.2 Outline

This thesis is a cumulative dissertation that details the foundational research towards neuro-
symbolic techniques in general and their generalization capability in particular. As men-
tioned in the above introduction, the methods introduced here can be employed for con-
ducting deductive reasoning using neural networks accurately even when challenged with
knowledge graphs of the domain/vocabulary it has never encountered before.

The remainder of this dissertation is outlined as follows:

Chapter 2 provides a background and motivation of our work in the context of techniques,
logics, and logical embeddings that have been used and we summarize related work for our
line of research. In chapter 3 we explore Pointer Networks in the context of deductive reason-
ing tasks, highlighting the properties, weaknesses, and strengths of these models. In chapter
4we outline the experimental results of our memory network based RDF deductive reasoning
system with focus on transferability and generalization. We give concluding remarks and
ideas for future work in Section 5.

The primary contributions referenced in this dissertation are:

e [24] Monireh Ebrahimi, Aaron Eberhart, and Pascal Hitzler. On the capabilities of

pointer networks for deep deductive reasoning. arXiv preprint arXiw:2106.09225, 2021

A pointer attention based neuro-symbolic approach for conducting the symbol-invariant
deductive reasoning over RDF and £L" knowledge bases by formulating the reasoning

task as a pointing problem [24]

e [23] Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, and Pascal Hitzler. Towards
bridging the neuro-symbolic gap: Deep deductive reasoners. Applied Intelligence, pages
1-23, 2021



e [26] Monireh Ebrahimi, Md. Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron
Eberhart, Derek Doran, HyeongSik Kim, and Pascal Hitzler. Neuro-symbolic deductive
reasoning for cross-knowledge graph entailment. In Andreas Martin, Knut Hinkelmann,
Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, and Frank van Harme-
len, editors, Proceedings of the AAAI 2021 Spring Symposium on Combining Machine
Learning and Knowledge Engineering (AAAI-MAKE 2021), Stanford University, Palo
Alto, California, USA, March 22-24, 2021, volume 2846 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2021

e [25] Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron
Eberhart, Derek Doran, and Pascal Hitzler. On the generalization capability of mem-
ory networks for reasoning. ICML 2019 Workshop on Understanding and Improving

Generalization in Deep Learning, 2019

A differentiable end-to-end deep memory based neuro-symbolic approach for conducting
the symbol-invariant deductive reasoning over RDF knowledge bases by formulating the

reasoning task as a memory access problem [23, 26, 25]

Chapter 3 strives to answer two main research questions: “Can Pointer Networks per-
form logical deductive reasoning using pointer attention?”, and more generally, “Can other
attention-based sequence-to-sequence models like self-attention based popular Transformer
architectures successfully perform the same task?”,“How well do pointer network reasoners
perform on completely new knowledge graphs?”, and finally, “How robust is our model to
noise?”. To answer these questions we conduct a set of experiments by applying pointer
networks and transformers to RDFS and ££7 reasoning tasks. We believe, the answer to
our third question is particularly very important since it a very big step toward developing
accurate yet symbol-invariant deep deductive reasoners which generalize very well on unseen
knowledge bases of differing domain or vocabulary.

Our contributions are as follows:

e [24] Monireh Ebrahimi, Aaron Eberhart, and Pascal Hitzler. On the capabilities of

pointer networks for deep deductive reasoning. arXiv preprint arXiv:2106.09225, 2021
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e A novel paradigm for viewing a symbolic reasoning problem as a pointing problem.
e Pointer Networks are used to neurally resolve symbolic reasoning for the first time.

e The proposed approach is able to transfer its reasoning ability to new domain/vocabulary

knowledge graph of same logic.

o We report the state-of-the-art performance of the ELY and RDF reasoning

Chapter 4 demonstrates that a deep learning architecture based on memory networks
and pre-embedding normalization is capable of learning how to perform deductive reason
over previously unseen RDF knowledge graphs with high accuracy.

Our contributions are as follows:

e [23] Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, and Pascal Hitzler. Towards
bridging the neuro-symbolic gap: Deep deductive reasoners. Applied Intelligence, pages
1-23, 2021

e [26] Monireh Ebrahimi, Md. Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron
Eberhart, Derek Doran, HyeongSik Kim, and Pascal Hitzler. Neuro-symbolic deductive
reasoning for cross-knowledge graph entailment. In Andreas Martin, Knut Hinkelmann,
Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, and Frank van Harme-
len, editors, Proceedings of the AAAI 2021 Spring Symposium on Combining Machine
Learning and Knowledge Engineering (AAAI-MAKE 2021), Stanford University, Palo
Alto, California, USA, March 22-24, 2021, volume 2846 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2021

e [25] Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron
Eberhart, Derek Doran, and Pascal Hitzler. On the generalization capability of mem-
ory networks for reasoning. ICML 2019 Workshop on Understanding and Improving

Generalization in Deep Learning, 2019

o We present the construction of memory networks for emulating the symbolic deductive

reasoning.



o We propose an optimization to this architecture using normalization approach to en-
hance their transfer capability. We show that in an unnormalized setting, they fail to

perform well across knowledge graphs.

o We examine the efficacy of our model for cross-domain and cross-KG deductive rea-
soning. We also show the scalability of our model (in terms of reduced time and space

complezity) for large datasets.

Chapter 5 presents concluding remarks through a brief summary that highlights the

overall contributions. Besides, we provide an outlook on future work.



Chapter 2

Background

2.1 Deep Deductive Reasoning

Training artificial neural networks to learn deductive reasoning is a hard machine learning
task that was out of reach before the advent of deep learning. In the last few years, several
publications have shown that deep deductive reasoning — using deep learning methods — is
possible. We will briefly review the core body of existing work. As we will see, it remains a
hard task, even for deep learning.

Before we do so, though, let us point out that our work is different from what is usu-
ally called knowledge graph completion, or the study of knowledge graph embeddings, al-
though we deal with logics relevant for knowledge graphs [34]: Knowledge graph completion
(sometimes called link prediction or knowledge graph refinement) [50] refers to enriching
a knowledge graph with additional relationships that are statistically induced, sometimes
using machine learning methods. In contrast to this, we are studying deductive reasoning,
which is not based on statistics or likelihood, but based on a mathematical, logical calculus
that derives additional statements which were already implicit — in a mathematically pre-
cisely defined sense — in the statements already made. Deductive inference tasks are usually
hard computationally (e.g., for propositional logic, it is NP-complete), and are traditionally

addressed using complex but provably correct algorithms — correctness in this sense is in



relation to the underlying mathematical definitions that determine what is, and what is not,
a deductive logical consequence. The study of knowledge graph embeddings [55], in isolation,
is about the learning of representations of knowledge graphs in multi-dimensional Euclidean
space. While embeddings are often a component of deep deductive reasoning systems, our
goal is the overall functionality of deep deductive reasoning, and not just knowledge graph
embeddings in isolation.

A good overview of existing deep deductive reasoning work is [22]. It appears to be
appropriate to distinguish between the different logics that are addressed in the literature, the
reasonable assumption being that less complex logics are easier to learn, and this resonates
with the as yet limited body of work. We refer to [36] for background on all the mentioned
logics. We know about investigations of RDFs [26, 45], of ££[21], of OWL RL [38], and of
first-order predicate logic (FOL) [9].

paper logic transfer | generative scale performance
[45] | RDFS no yes low high
[21] ELt yes yes moderate low
[38] | OWL RL | mno* no low high
9] FOL no yes very low high

Table 2.1: Ouverview of published deep deductive reasoning work. See the main text for details
on the columns. no* indicates that the paper claims that transfer is possible in principle, but
it was not demonstrated or evaluated to what extent transfer really happens.

paper ‘ logic ‘ transfer ‘ generative ‘ scale ‘ performance
[26] RDFS yes no moderate high
[24] | RDFS & €L yes yes moderate high

Table 2.2: Overview of this dissertation’s contribution to deep deductive reasoning work.
See the main text for details on the columns.

We give an overview of the key aspects of each of these in Table 2.1 — we admit that
some interpretations in this table may be somewhat subjective. The column “transfer” indi-
cates whether the system was demonstrated to have a good transfer capability to previously
unknown and very different knowledge bases. The column “generative” indicates whether
the system generates all (under certain finiteness constraints) deductive inferences in one

run — if not, then it would usually be query-based, i.e. it would be able to tell whether a



given logical expression is a logical consequence of the knowledge base. The column “scale”
indicates how large the input knowledge bases were in the experiments, ranging from a few
logical statements as in the FOL case to RDF graphs with 1,000 triples in [26]. The col-
umn “performance” indicates how well the system learned to reason; “high” indicates 70%
or more in terms of f-measure, while “low” indicates values just a bit better than random
guessing.

For a deep deductive reasoner, we would ideally like to have it on an expressive logic,
with transfer, generative, at massive scale, and with high performance. For all the referenced
works, except the FOL one, the scale aspect has not been systematically explored yet; for
the FOL case, it does look rather unfavorable as discussed in [9]. Otherwise, it is important
to note that only one of the works is both generative and able to transfer, however this was
also the system with very low performance. As we will see, our new approach we report on
in this paper is able to do transfer and is generative, with high performance. This is the key

contribution of this paper.

2.1.1 RDF Reasoning

The Resource Description Framework RDF, which includes RDF Schema (RDFS) [17, 36]
is an established and widely used W3C standard for expressing knowledge graphs. The
standard comes with a formal semantics' that defines an entailment relation. An RDFS
knowledge base (KB) is a collection of statements stored as triples (el,r,e2) where el and
e2 are called subject and object, respectively, while r is a binary relation between el and e2.
In the context of RDF/RDFS, the triple notation (el,r, e2) is more common than a notation
like r(el, €2) as it is suggestive of a node-edge-node piece of a labelled graph, and so we will
use the triple notation.

As a logic, RDFS is of very low expressivity and reasoning algorithms are very straightfor-

ward. In fact, there is a small set of thirteen entailment rules [16], fixed across all knowledge

'In fact, it comes with three different ones, but we have only considered the most comprehensive one, the
RDFS Semantics.
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graphs, which are expressible using Datalog.? These thirteen rules can be used to entail new

facts.

Table 2.3: Selected RDFS Completion Rules

(x, rdfs:subClassOf, y), (y, rdfs:subClassOf, z z, rdfs:subClassOf, 2)

) = ( (2.1)
(x, rdfs:subPropertyOf, y), (y, rdfs:subPropertyOf, z) |= (z, rdfs:subPropertyOf, z)  (2.2)
(z, rdfs:subClassOf, y), (z, rdf:type, x) |= (2, rdf:type, y) (2.3)

) = ( (2.4)

) = ( (2.5)

(a, rdfs:domain, z), (y, a, z y, rdf:type, x)

(a, rdfs:range, x), (y, a, z z, rdf:type, z)

Table 2.3 shows examples for some of these entailment rules. The identifiers z,y, 2, a
are variables. The remaining elements of the triples are pre-fixed with the rdfs or rdf
namespace (a concept borrowed from XML) and carry a specific meaning in the formal
semantics of RDFS. E.g., rdfs:subClassOf indicates a sub-class (or sub-set) relationship, i.e.
Rule 2.1 states transitivity of the rdf:subClassOf binary relation. Likewise, in Rule 2.2,
(x, rdfs:subPropertyOf, y) indicates that x, y are to be understood as binary relations, where
x is a restriction (called a subproperty) of y. In Rule 2.3, the triple (z,rdf:type, z) indicates
that z is a member of the class (or set) z. In Rules 2.4 and 2.5, rdfs:domain and rdfs:range
indicate domain respectively range of a, which is to be interpreted as a binary relation. The
rules are applied exhaustively on an input RDF knowledge base, i.e. inferred triples are

added and then rule execution continues taking the new triples also into account.

2.1.2 ELTeasoning

The standard reasoning task over ££7 is called classification and can be understood as the
computation of all formulas of the form Vx(p(z) — ¢(x)) entailed by the given theory, and
the set of all these formulas, which is called the completion of the input theory, is finite if
the input theory is finite.

Formally, let N be a set of atomic classes (or concepts, or class names), let Ng be a set

2Datalog is equivalent to function-free definite logic programming [37].

11



of roles (or properties), and let N; be a set of individuals. Complex class expressions (or

simply complex classes or classes) in the description logic ££* are defined by the grammar

C 1= A|Cy N Co|3R.C,

where A € No, R € Ng, and C,, Cy, and C are complex class expressions. A TBox in ££7
is a set of general class inclusion axioms (or TBox statements) of the form C' C D, where
C, D are (complex) classes. We use C' = D as abbreviation for the two statements C' C D
and D C C. An RBox in EL£7 is a set of general role inclusion axioms (or RBox statements)
of the form Ry o---0 R, C R, where R, R; € Ny (for all i). An EL£* knowledge base (or
ontology) is a set of TBox and RBox statements.

ELT is in fact a fragment of first-order predicate logic: all statements can be translated
into it, and the inherited semantics is exactly the first-order predicte logic semantics — details
can be found in [36]. Classification is known to be P-complete.

An ELY normal form knowledge base contains only axioms of the following forms.

cCD CinCy,C D CC3R.D

dR.CC D RICR RioRy C R

As usual, every ££ knowledge base can be cast into normal form in polynomial time, and
such that it suffices to perform classification over the normal form knowledge base.

Given an ££" knowledge base K in normal form, the completion comp(K) of K can for
example be obtained from K by exhaustively applying the completion rules from Table 2.4.
There are of course different ways to perform classification using reasoning algorithms, e.g.
reasoning can also be encoded using a larger number of Datalog rules which remain fixed
across input theories [40]. So on the surface this seems similar to RDFS reasoning. However
ELT as a logic has a different look and feel: RDFS reasoning focuses on the derivation of
new facts from old facts, while ££" is about the processing of schema knowledge, in partic-

ular subclass relationships, in the presence of existential quantification (which is completely

12



absent from RDFS). The transformation into Datalog reasoning is also more complicated

than for RDF'S.

Table 2.4: ££7 Completion Rules

(1) ACC CCD = ACD
(3) ACC C C3R.D = AC3RD
(4) AC3R.B BCC JRCCD | ACD
(5) AC3S.D SCR = AC3RD
(6) AC3IR,.C CC3R,.D RioRy,CR E AC3RD

13



Chapter 3

On the Generalization Capability of
Pointer Networks for RDF and ££7

Reasoning

3.1 Overview

In the wake of deep learning breakthroughs, fundamental issues around neuro-symbolic in-
tegration have recently received increased attention with some progress being made as new
approaches emerge. In particular, there has been progress in developing neural networks
that can learn to reason. These include the Neural Theorem Prover (NTP) and its varia-
tions [57, 56, 47, 46], Logic Tensor Networks (LTN) [61, 9, 3], and the application of memory
networks and LSTMs [22] and others [45, 38]. Yet, there is still much work to do in terms
of new model development and investigation of inductive bias in existing architectures and
their reasoning capability.

This dissertation tries to fill this gap by examining the reasoning capability of pointer
networks [68] in emulating deductive reasoning. Pointer Networks and their variations have
been applied successfully to a variety of sophisticated tasks including theoretical computer

science problems (i.e., NP-hard Travelling Salesman Problem (TSP), Delaunay Triangula-
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tion, and Convex Hull) [68] and practical problems like abstractive [60] and extractive [39]
text summarization, code completion [41], and dependency parsing [29, 28, 44]. Neverthe-
less, almost nothing is known about their potential for conducting logical deductive reasoning
accurately. In fact, they have been mainly used for solving discrete combinatorial optimiza-
tion problems because of their variable-size output vocabulary and for resolving the rare or
out-of-vocabulary problem in Natural Language Processing. We hypothesize that using the
pointer attention to decide what elements of the input knowledge base should be chosen as
the output, and in which order, will work well for deductive reasoning tasks. Indeed, using
pointer networks we can mimic human reasoning behaviour where one can learn to choose a
set of symbols in different locations and copy these symbols to suitable locations to generate
new logical consequences based on a set of predefined logical entailment rules. To verify
this, here, we explore the capabilities and limitations of pointer networks for performing
deductive reasoning on Resource Description Framework (RDF) [13] and ££" [2] knowledge
bases in terms of accuracy, and generalizability.Based on our experimental results, pointer
networks perform remarkably well across multiple reasoning tasks while outperforming the
previously reported state of the art by a significant margin. We observe that the Pointer
Networks preserve their performance even when challenged with knowledge graphs of the
domain/vocabulary it has never encountered before. To our knowledge, this work is the
first attempt to reveal the impressive power of pointer networks for conducting deductive
reasoning.

In terms of the logic, in this dissertation we are looking at two logics with different
expressivity, power, and reasoning difficulty. The Resource Description Framework Schema
(RDFS) [13] is non-trivial (and non-propositional), yet one of the simplest widely used logics:
It is a mature W3C Semantic Web standard that is commonly used to express knowledge
graphs and linked data [34], and many corresponding data sets are freely available on the
World Wide Web [54]. The standard carries a model-theoretic semantics which defines
deductive entailment [32, Section 9.2], and reasoning over RDFS is usually done using rule-
based reasoning engines. The second logic is the description logic E£ (or ER) [2] that is
the basis for the W3C standard OWL EL [35]. It is considered to be a rather inexpressive
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but practically useful logic [59] and generally used for expressing ontologies and knowledge

graph schemas [36] particularly in medical domain ontologies.

3.2 Contribution

[24] Monireh Ebrahimi, Aaron Eberhart, and Pascal Hitzler. On the capabilities of pointer
networks for deep deductive reasoning. arXiv preprint arXiw:2106.09225, 2021
In the publication, On the capabilities of pointer networks for deep deductive reasoning [24],
we investigate the benefits and limitations of encoder-decoder architectures in general and
pointer networks in particular for developing accurate and generalizable neuro-symbolic rea-
soners. In short this paper strives to answer two main research questions: “Can Pointer
Networks perform logical deductive reasoning using pointer attention?”, and more generally,
“Can other attention-based sequence-to-sequence models like self-attention based popular
Transformer architectures successfully perform the same task?”,“How well do pointer net-
work reasoners perform on completely new knowledge graphs?”, and finally, “How robust is
our model to noise?”. To answer these questions we conduct a set of experiments by apply-
ing pointer networks and transformers to RDFS and ££% reasoning tasks. We believe, the
answer to our third question is particularly very important since it a very big step toward
developing accurate yet symbol-invariant deep deductive reasoners which generalize very well
on unseen knowledge bases of differing domain or vocabulary. The contributions of this work

are fourfold:
1. A novel paradigm for viewing a symbolic reasoning problem as a pointing problem.
2. Pointer Networks are used to neurally resolve symbolic reasoning for the first time.

3. The proposed approach is able to transfer its reasoning ability to new domain/vocabulary

knowledge graph of same logic.
4. We report the state-of-the-art performance of the ££% and RDF reasoning.

RDF and ££* Reasoning using Pointer Networks: We re-frame our entailment prob-
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(a) Sequence-to-Sequence (b) Ptr-Net

Figure 3.1: £L1 Completion Rule (1): ”(a) Sequence-to-Sequence - An RNN (green) pro-
cesses the input sequence to create a code vector that is used to generate the output sequence
(purple) using the probability chain rule and another RNN. (b) Ptr-Net - An encoding RNN
converts the input sequence to a code (green) that is fed to the generating network (purple).
At each step, the generating network produces a vector that modulates a content-based atten-
tion mechanism over inputs. The output of the attention mechanism is a softmaz distribution
with dictionary size equal to the length of the input.”

lem as an input-output mapping task: Given some logic £, for each theory T over L, the set
co(T) ={F | T = F} of all formulas over £ that are entailed by T"; we call ¢(T") the com-
pletion of T. We can then attempt to train a neural network to produce ¢(T') for any given
T over L, i.e., we would use pairs (7, ¢(T")) as input-output training pairs for a generative
deep deductive reasoner.

We have used pointer networks to copy the symbols from the knowledge base via pointing
to generate logical consequences.

In our corpus, each knowledge graph and its completion denoted as (7', ¢(7)) comprises
the sequence of symbols. Given the (7', ¢(T')) pair, we are feeding the pointer network with
(T,C(T)") where T = {Ti,...,T,,} is a sequence of n symbols each refer to an element in
our input knowledge graph and C(T)" = {c¢(T1), ...,c(T},)'} is a sequence of m indices each
between 1 and n. The sequence-to-sequence model then computes the conditional probability

p(c(Ty)'|e(Th), ..., e(Ti—1)', T) changing the Bahdanau [5] attention to the pointer attention
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as follows:

! = " tanh(Wie; + Wad;) for j e (1,....,n) and (3.1)

p(c(T)ie(T),, ..., c(T); — 1,T) = Softmax(u'), (3.2)

where (eq,...,€,) and (dy, ..., d,,) denote the encoder and decoder hidden states respectively,

and v, Wi, and W, are learnable parameters of the output model. The softmax

e(u’b)

Zj e(uj)

Softmax(u;) =

normalizes the vector u’ of length n to be an output distribution over the dictionary of
inputs. Indeed the model uses ué as pointers to the input symbols.

See A for the details on datasets, training process, the baseline models, and the perfor-
mance of our proposed model in terms of correctness, and generalizability in comparison to
existing baselines. Based on our experimental results, pointer networks performs remarkably
well across multiple reasoning tasks while outperforming the previously reported state of the
art by a significant margin. We observe that the Pointer Networks preserve their perfor-
mance even when challenged with knowledge graphs of the domain/vocabulary it has never

encountered before.
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Chapter 4

On the Generalization Capability of
Memory Networks for RDF

Reasoning

4.1 Overview

With the recent revival of interest in artificial neural networks, they have been applied
vastly for the completion of KBs. These methods [49, 53, 63, 14, 73, 66, 67] heavily rely on
the subsymbolic representation of entities and relations learned through maximization of a
scoring objective function over valid factual triples. Thus, the current success of such models
hinges primarily on the power of those subsymbolic continuous real-valued representations in
encoding the similarity /relatedness of entities and relations. Recent attempts have focused
on neural multi-hop reasoners [48, 51, 18, 70, 62] to equip the model to deal with more
complex reasoning. More recently, a Neural Theorem Prover [57] has been proposed in an
attempt to take advantage of both symbolic and sub-symbolic reasoning.

Despite their success, the main restriction common to neural reasoners is that they are

unable to generalize to new domains. This inherent limitation follows from both the rep-

resentation functions used and the learning process. The major issue comes from the mere
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reliance of these models on the representation of entities learned during the training or in
the pre-training phase stored in a lookup table. Consequently, these models have difficulty
to deal with out-of-vocabulary(OOV) entities. Although the small-scale OOV problem has
been addressed in part in the natural language processing (NLP) domain by taking advan-
tage of character-level embedding [43], learning embeddings on the fly by leveraging text
descriptions or spelling [4], copy mechanism [27] or pointer networks [52], still these solu-
tions are insufficient for transferring purposes. [65] shows the success of natural language
inference (NLI) methods is heavily benchmark specific. An even greater source of concern
is that reasoning in most of the above sub-symbolic approaches hinges more on the notion
of similarity and geometric-based proximity of real-valued vectors (induction) as opposed to
performing transitive reasoning (deduction) over them. In short, to the best of our knowl-
edge, to date, there is no sub-symbolic reasoning work, which is able to transfer the learning
capability from one KB to unseen one. In fact, since previous works have focused to conduct
reasoning on the unseen part of the same KB, they have tried to gain generalization ability
through induction and robustness to missing edges[30] as opposed to deduction. Likewise,
recent, years have seen some progress in zero-shot relation learning in sub-symbolic reasoning
domain[48, 72, 58]. Zero-shot learning refers to the ability of the model to infer new rela-
tions where that relation has not been seen before in training set[12]. This generalization
capability is still quite limited and fundamentally different from our work in terms of both

methodology and purpose.

4.2 Contributions

[22] Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, and Pascal Hitzler. Towards
bridging the neuro-symbolic gap: Deep deductive reasoners. Applied Intelligence, 2021.
to appear [26] Monireh Ebrahimi, Md. Kamruzzaman Sarker, Federico Bianchi, Ning
Xie, Aaron Eberhart, Derek Doran, HyeongSik Kim, and Pascal Hitzler. Neuro-symbolic
deductive reasoning for cross-knowledge graph entailment. In Andreas Martin, Knut

Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, and Frank
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van Harmelen, editors, Proceedings of the AAAI 2021 Spring Symposium on Combining

Machine Learning and Knowledge Engineering (AAAI-MAKE 2021), Stanford Univer-

sity, Palo Alto, California, USA, March 22-2/, 2021, volume 2846 of CEUR Workshop

Proceedings. CEUR-WS.org, 2021 [25] Monireh Ebrahimi, Md Kamruzzaman Sarker,

Federico Bianchi, Ning Xie, Aaron Eberhart, Derek Doran, and Pascal Hitzler. On the

generalization capability of memory networks for reasoning. ICML 2019 Workshop on

Understanding and Improving Generalization in Deep Learning, 2019

In the publications, Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph
Entailment [26] and Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners
[22], we investigate the emulation of deductive symbolic reasoning using memory networks.
Memory networks [71] are a class of learning models capable of conducting multiple computa-
tional steps over an explicit memory component before returning an answer. They have been
recently applied successfully to a range of NLP tasks such as question answering [64, 33|, lan-
guage modeling [64], and dialogue tasks [10, 20]. End-to-end memory networks (MemN2N)
[64] are a less-supervised, more general version of these networks, applicable to the settings
where labeled supporting memories are not available. We have selected such networks since
we believe that they are a primary candidate to perform well for deductive logical entailment.
Their sequential nature corresponds, conceptually, to the sequential process underlying some
deductive reasoning algorithms. The attention modeling corresponds to pulling only relevant
information (logical axioms) necessary for the next reasoning step. And their success in NLI
is also promising: while NLI does not follow a formal logical semantics, logical deductive
entailment is nevertheless akin to some aspects of natural language reasoning. Besides, as
attention can be traced over the run of a memory network, we will furthermore get insights
into the "reasoning” underlying the network output, as we will be able to see which pieces
of the input KB are taken into account at each step.

The main contribution of this dissertation, however, is a recipe involving a simple but
effective KB triple normalization before learning their representation within a MemN2N.
To perform logical inference in more abstract level, and thereby facilitating the transfer of

reasoning expertise from one KB to another, the normalization maps entities and predicates
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in a knowledge to a generic vocabulary. Facts in additional KBs are normalized using the
same vocabulary, so that the network does not learn to overfit its learning to entity and
predicate names in a specific KB. This emulates symbolic reasoning by neural embeddings
as the actual names (as strings) of entities from the underlying logic such as variables,
constants, functions, and predicates are insubstantial for logical entailment in the sense that
a consistent renaming across a theory does not change the set of entailed formulas (under the
same renaming). Thanks to the term-agnostic feature of our representation, we are able to
create a reasoning system capable of performing reasoning over an unseen set of vocabularies
in the test phase.

RDF Reasoning using Memory Networks: We wish to train a neural model that will
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Figure 4.1: Diagram of the proposed model, for K=1

learn to reason over one set of theories, and can then transfer that learning to new theories
over the same logic. One of the key obstacles we face with our task is to understand how to
represent training and test data. To use standard neural approaches, symbols will have to be
represented over the real coordinate space R as vectors (points), matrices or tensors. Many
embeddings for KBs have been proposed [11, 42, 67, 69], but we are not aware of an existing
embedding that captures what seems important for the deductive reasoning scenario. Indeed,
the prominent use case explored for KB embeddings is not deductive in nature; rather, it

concerns the problem of the discovery or suggestion of additional links or edges in the graph,
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together with appropriate edge labels. In this link discovery setting, the actual labels for
nodes or edges in the graph, and as such their commonsense meanings, are likely important,
and most existing embeddings reflect this. However, for deductive reasoning the names of
entities are insubstantial and should not be captured by an embedding. Another inherent
problem in the use of such representations across KBs is the OOV problem. While a word
lookup table can be initialized with vectors in an unsupervised task or during training of
the reasoner, it still cannot generate vector representations for unseen terms. It is further
impractical to store the vectors of all words when vocabulary size is huge [43]. Similarly,
memory networks usually rely on word-level embedding lookup tables, i.e., learned with
the underlying rationale that words that occur in similar supervised scenarios should be
represented by similar vectors. That is why they are known to have difficulties dealing with
OO0V, as a word lookup table cannot provide a representation for the unseen, and thus has
difficulty to do NLI over new words [4], and for us this would pose a challenge in the transfer
to new KBs.

We thus need representations that are agnostic to the terms used as primitives in the
KB. To build such a representation, we use syntactic normalization: a renaming of primitives
from the logical symbols to a set of predefined entity names that are used across different
normalized theories. By randomly assigning the mapping for the renaming, the network’s
learning will be based on the structural information within the theories, and not on the actual
names of the primitives. Note that this normalization not only plays the role of “forgetting”
irrelevant label names, but also makes it possible to transfer learning from one KB to the
other. Indeed, the network can be trained with many KBs, and then subsequently tested on

completely new ones.

Model Architecture We consider a model architecture that adapts the MemN2N with
fundamental alterations necessary for abstract reasoning. A high-level view of our model
is shown in Figure 4.1. It takes a discrete set G of normalized RDFS statements (called
triples) tq,...,t, that are stored in memory, a query ¢, and outputs a “yes” or “no” answer

to determine if q is entailed by GG. Each of the normalized ¢; and g contains symbols coming
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from a general dictionary with V' normalized words shared among all of the normalized
RDFS theories in both training and test sets. The model writes all triples to the memory
and then calculates a continuous embedding for G and ¢. Through multiple hop attention
over those continuous representations, the model then classifies the query. The model is
trained by back-propagation of error from output to the input through multiple memory
accesses. More Specifically, the model is augmented with an external memory that stores
the embeddings of the normalized triples in our KB. This memory is defined as an n x d
tensor where n denotes the number of triples in the KB and d is the dimensionality of the
embeddings. The KB is stored in the memory vectors from two continuous representations
of m; and ¢; obtained from two input and output embedding matrices of A and C with size
d x V where V is the size of vocabulary. Similarly, the query ¢ is embedded via a matrix B
to obtain an internal state u. In each reasoning step, those memory slots useful for finding
the correct answers should have their contents retrieved. To enable this, we use an attention
mechanism for ¢ over memory input representations by taking an internal product followed

by a softmax:

p; = Softmax(u” (m;)) (4.1)

Equation (4.1) calculates a probability vector p over the memory inputs, the output vector
o is computed as the weighted sum of the transformed memory contents ¢; with respect to
their corresponding probabilities p; by 0o = >, pic;. This describes the computation within a
single hop. The internal state of the query vector updates for the next hop as u**! = u* 4 o*.
The process repeats K times where K is the number of computational hops. The output of
the K hop is used to predict the label @ by passing o and u® through a weight matrix of

size V x d and a softmax:

a = Softmax(W (u® 1)) = Softmax(W (u* + o")).
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Figure 4.1 shows the model for K = 1. The parameters to be learned by backpropagation
are A, B,C, and W matrices.

Memory Content An RDFS KB is a collection of statements stored as triples (el,r, e2)
where el and e2 are called subject and object, respectively, while r is a relation binding el
and e2 together. Every entity in an RDFS KB is represented by a unique Universal Resource
Identifier (URI). We normalize these triples by systematically renaming all URIs which are
not in the RDF or RDFS namespaces as discussed previously. Each such URI is mapped to
a set of arbitrary strings in a predefined set A = {ay, ..., a,}, where n is taken as a training
hyper-parameter giving an upper bound for the largest number of entities in a KB the system
will be able to handle. Note that URIs in the RDF/RDFS namespaces are not renamed,
as they are important for the deductive reasoning according to the RDFS model-theoretic
semantics. Consequently, each normalized RDFS KB will be a collection of facts stored as
triples {(ai, a;j, ax)}.

It is important to note that each symbol is mapped into an element of A regardless of
its position in the triple. Yet the position of an element within a triple is an important
feature to consider. Thus we employ a positional encoding (PE) [64] to encode the position
of each element within the triple. Each memory slot thus represents the positional-weighted
summation of each triplet. The PE ensures that the order of the elements now affects the
encoding of each memory slot m;.

See A for the details on datasets, training process, the baseline models, and the perfor-
mance of our proposed model in terms of correctness, and generalizability in comparison to
existing baselines. Our experimental results show that a deep learning architecture based on
memory networks and pre-embedding normalization is capable of learning how to perform
deductive reasoning over previously unseen RDFS KBs with high accuracy. We believe that
we have thus provided the first deep learning approach that is capable of high accuracy
RDEFS deductive reasoning over previously unseen KBs. Normalization appears to be a crit-
ical component for high performance of our system. This obviates the need for supervised

retraining over the task of interest or unsupervised pretraining over the external source of
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data for learning the representations when encountered with a new KB.
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Chapter 5

Conclusion

5.1 Summary

This thesis summarizes the author’s contributions in the neuro-symbolic integration research
direction. First in the thesis we evaluated the deductive reasoning capability of Pointer
Networks over RDS and €L logical reasoning. Then we examined the capability of memory-
augmented networks in performing the RDF entailment for cross-knowledge graph deductive
reasoning. We aimed to better understand the effectiveness of each model and the desirable
properties expected with respect to two different logics (RDF, and ££7). Such understanding
would help pave the way for future efforts in this research direction.

Over the course of this dissertation, we have outlined a number of contributions that
have improved the process to what we see today.

First, we significantly enhanced the state-of-the-art model for RDFS and ££7 reasoning
by developing a deep learning architecture based on pointer networks. We designed a novel
way of conducting neuro-symbolic through pointing to the input elements. More importantly
we showed that the proposed approach is generalizable across new domain and vocabulary
demonstrating symbol-invariant zero-shot reasoning capability.

Next, We have demonstrated that a deep learning architecture based on memory networks

and pre-embedding normalization is capable of learning how to perform deductive reasoning
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over previously unseen RDFS KBs with high accuracy. We believe that we have thus provided
the first deep learning approach that is capable of high accuracy RDFS deductive reasoning
over previously unseen KBs. Normalization appears to be a critical component for high
performance of our system. This obviates the need for supervised retraining over the task
of interest or unsupervised pretraining over the external source of data for learning the
representations when encountered with a new KB. It also provides insights into representation
learning for rare or OOV words, transfer learning, zero-shot learning, and domain adaptation
in the reasoning domain.

Altogether, these research topics, resulted in first neural deductive reasoners which are
capable of high accuracy RDFS and ££* deductive reasoning over previously unseen knowl-

edge bases.

5.2 Future Work

There is an immediate next step to address.

1. How can the models introduced in this research be leveraged to different logics such
as W3C Standard OWL RL, Datalog, ALC, and SROZQ for conducting deductive

neuro-symbolic reasoning?

With respect to conducting the reasoning over the other logics, we envision that em-
ploying the Pointer Networks, we are able to perform the reasoning and expanding our
findings on capabilities and limitations of such networks by gaining insights from their

behaviour when encountered with the new logical reasoning tasks.

2. We plan to properly investigate scalability of our approaches and their robustness to

the noise.

3. There is a plethora of different deep learning approaches that could be investigated for
neuro-symbolic dedcutive reasoning. We furthermore intend to investigate the capabil-

ity and limitations of other neural networks model such as Hierarchical Pointer Memory
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Networks, Mem2Seq, Graph Neural Networks, and TPR-Transformer for conducting
logical reasoning in terms of correctness, generalizability, scalability, and robustness to

the noise.

Results from this dissertation have a high potential for impact way beyond the specific
deep learning field. Ways to overcome the symbolic-subsymbolic divide are considered to
be of central interest in Cognitive Science [7]. Ways to overcome this divide furthermore
promise to provide pathways for best-of-both-world scenarios in Al applications, combining
the speed and robustness of deep learning approaches with the transparency of logic-based
systems. As such, outcomes of this dissertation also have an impact on studies of trust
and explainability of deep learning approaches. Broader impact of the results thus lies
potentially in all application areas of deep learning and logic-based expert systems — the
former are currently heavily being investigated in research and industry, and the latter
are well-established in applications, with known limitations which bridging the symbolic-
subsymbolic divide promises to overcome.

We hope our impressive results on these reasoning problems will encourage broader explo-
ration of pointer networks and other neural network architectures’ capabilities for conducting
reasoning over more complex logics and for other neuro-symbolic problems especially in terms

of their generalization power.
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1 Introduction

The study of architectures and methods for artificial neural networks so that
they can learn and perform tasks from the realm of logic-based knowledge
representation and reasoning has a long-standing tradition [6]. This research
area is sometimes referred to as “neuro-symbolic integration” (or “neural-
symbolic integration”) and there are at least two primary rationales that can
be found in the literature on the subject. The first is the desire to arrive at
systems that combine the robustness and trainability of artificial neural net-
works with the transparency and interpretability of knowledge-based systems,
while at the same time making use of structured background knowledge. The
second rationale is more prevalent in cognitive science and lies in addressing
the fundamental gap between symbolic and subsymbolic representation and
processing, based on the observation that humans perceive much of their own
thinking, introspectively, as symbolic, while the physical structure of the brain
gives rise to artificial neural networks as a mathematical and computational
abstraction.

Many of the earlier lines of research on neuro-symbolic integration, dis-
cussed primarily from a cognitive science perspective, can be found in [6]. Of
particular interest is the integration of deep learning with logics that are not
propositional in nature, since propositional logic is of limited applicability to
knowledge representation and reasoning tasks. In the wake of deep learning
breakthroughs, fundamental issues around neuro-symbolic integration have
recently received increased attention with some progress being made as new
approaches emerge. In particular, there has been progress in developing neural
networks that can learn to reason. These include the Neural Theorem Prover
(NTP) and its variations [43,42,36,35], Logic Tensor Networks (LTN) [47,7,
3], and the application of memory networks and LSTMs [13] and others [34,
27]. Yet, there is still much work to do in terms of new model development
and investigation of inductive bias in existing architectures and their reasoning
capability.

This paper tries to fill this gap by examining the reasoning capability of
pointer networks [49] in emulating deductive reasoning. Pointer Networks and
their variations have been applied successfully to a variety of sophisticated
tasks including theoretical computer science problems (i.e., NP-hard Trav-
elling Salesman Problem (TSP), Delaunay Triangulation, and Convex Hull)
[49] and practical problems like abstractive [45] and extractive [28] text sum-
marization, code completion [31], and dependency parsing [17,16,33]. Never-
theless, almost nothing is known about their potential for conducting logical
deductive reasoning accurately. In fact, they have been mainly used for solv-
ing discrete combinatorial optimization problems because of their variable-size
output vocabulary and for resolving the rare or out-of-vocabulary problem in
Natural Language Processing. We hypothesize that using the pointer attention
to decide what elements of the input knowledge base should be chosen as the
output, and in which order, will work well for deductive reasoning tasks. In-
deed, using pointer networks we can mimic human reasoning behaviour where
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one can learn to choose a set of symbols in different locations and copy these
symbols to suitable locations to generate new logical consequences based on a
set of predefined logical entailment rules. To verify this, here, we explore the
capabilities and limitations of pointer networks for performing deductive rea-
soning on Resource Description Framework (RDF) [8] and ££% [2] knowledge
bases in terms of accuracy, and generalizability.Based on our experimental
results, pointer networks perform remarkably well across multiple reasoning
tasks while outperforming the previously reported state of the art by a signifi-
cant margin. We observe that the Pointer Networks preserve their performance
even when challenged with knowledge graphs of the domain/vocabulary it has
never encountered before. To our knowledge, this work is the first attempt
to reveal the impressive power of pointer networks for conducting deductive
reasoning.

In terms of the logic, in this paper we are looking at two logics with dif-
ferent, expressivity, power, and reasoning difficulty. The Resource Description
Framework Schema (RDFS) [8] is non-trivial (and non-propositional), yet one
of the simplest widely used logics: It is a mature W3C Semantic Web standard
that is commonly used to express knowledge graphs and linked data [23], and
many corresponding data sets are freely available on the World Wide Web [40].
The standard carries a model-theoretic semantics which defines deductive en-
tailment [22, Section 9.2], and reasoning over RDFS is usually done using
rule-based reasoning engines. The second logic is the description logic ££7 (or
ER) [2] that is the basis for the W3C standard OWL EL [24]. It is consid-
ered to be a rather inexpressive but practically useful logic [44] and generally
used for expressing ontologies and knowledge graph schemas [25] particularly
in medical domain ontologies.

In short this paper strives to answer two main research questions: “Can
Pointer Networks perform logical deductive reasoning using pointer atten-
tion?”, and more generally, “Can other attention-based sequence-to-sequence
models like self-attention based popular Transformer architectures successfully
perform the same task?”,“How well do pointer network reasoners perform on
completely new knowledge graphs?”, and finally, “How robust is our model
to noise?”. To answer these questions we conduct a set of experiments by ap-
plying pointer networks and transformers to RDFS and ££7 reasoning tasks.
We believe, the answer to our third question is particularly very important
since it a very big step toward developing accurate yet symbol-invariant deep
deductive reasoners which generalize very well on unseen knowledge bases of
differing domain or vocabulary. The contributions of this work are fourfold:

1. A novel paradigm for viewing a symbolic reasoning problem as a pointing
problem.

2. Pointer Networks are used to neurally resolve symbolic reasoning for the
first time.

3. The proposed approach is able to transfer its reasoning ability to new
domain/vocabulary knowledge graph of same logic.

4. We report the state-of-the-art performance of the ££7 and RDF reasoning,.
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The remainder of the paper is organized as follows. In Section 2 we discuss
related research efforts, more precisely an overview of recent work on deep
deductive reasoning over RDFS, ££T, and other logics, followed by a list of
various tasks where pointer networks have been effectively applied. In Sec-
tion 3, we concretely present the deep learning architecture and the logics we
used. In Sections 4, we present an experimental evaluation of our approach
and discuss our findings. We conclude and discuss future work in Section 5.

2 Related Work
2.1 Deep Deductive Reasoning

Training artificial neural networks to learn deductive reasoning is a hard ma-
chine learning task that was out of reach before the advent of deep learning.
In the last few years, several publications have shown that deep deductive
reasoning — using deep learning methods — is possible. We will briefly review
the core body of existing work. As we will see, it remains a hard task, even
for deep learning.

Before we do so, though, let us point out that our work is different from
what is usually called knowledge graph completion, or the study of knowl-
edge graph embeddings, although we deal with logics relevant for knowledge
graphs [23]: Knowledge graph completion (sometimes called link prediction
or knowledge graph refinement) [39] refers to enriching a knowledge graph
with additional relationships that are statistically induced, sometimes using
machine learning methods. In contrast to this, we are studying deductive rea-
soning, which is not based on statistics or likelihood, but based on a mathe-
matical, logical calculus that derives additional statements which were already
implicit — in a mathematically precisely defined sense — in the statements al-
ready made. Deductive inference tasks are usually hard computationally (e.g.,
for propositional logic, it is NP-complete), and are traditionally addressed us-
ing complex but provably correct algorithms — correctness in this sense is in
relation to the underlying mathematical definitions that determine what is,
and what is not, a deductive logical consequence. The study of knowledge
graph embeddings [41], in isolation, is about the learning of representations
of knowledge graphs in multi-dimensional Euclidean space. While embeddings
are often a component of deep deductive reasoning systems, our goal is the
overall functionality of deep deductive reasoning, and not just knowledge graph
embeddings in isolation.

A good overview of existing deep deductive reasoning work is [13]. It ap-
pears to be appropriate to distinguish between the different logics that are
addressed in the literature, the reasonable assumption being that less complex
logics are easier to learn, and this resonates with the as yet limited body of
work. We refer to [25] for background on all the mentioned logics. We know
about investigations of RDFs [14,34], of ££1[12], of OWL RL [27], and of
first-order predicate logic (FOL) [7].
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paper ‘ logic ‘ transfer ‘ generative ‘ scale ‘ performance
[14] RDFS yes no moderate high
[34] RDFS no yes low high
[12] ect yes yes moderate low
[27] | OWL RL no* no low high
7] FOL no yes very low high

Table 1 Overview of published deep deductive reasoning work. See the main text for details
on the columns. no* indicates that the paper claims that transfer is possible in principle,
but it was not demonstrated or evaluated to what extent transfer really happens.

We give an overview of the key aspects of each of these in Table 1 — we
admit that some interpretations in this table may be somewhat subjective. The
column “transfer” indicates whether the system was demonstrated to have a
good transfer capability to previously unknown and very different knowledge
bases. The column “generative” indicates whether the system generates all
(under certain finiteness constraints) deductive inferences in one run — if not,
then it would usually be query-based, i.e. it would be able to tell whether a
given logical expression is a logical consequence of the knowledge base. The
column “scale” indicates how large the input knowledge bases were in the
experiments, ranging from a few logical statements as in the FOL case to
RDF graphs with 1,000 triples in [14]. The column “performance” indicates
how well the system learned to reason; “high” indicates 70% or more in terms of
f-measure, while “low” indicates values just a bit better than random guessing.

For a deep deductive reasoner, we would ideally like to have it on an ex-
pressive logic, with transfer, generative, at massive scale, and with high per-
formance. For all the referenced works, except the FOL one, the scale aspect
has not been systematically explored yet; for the FOL case, it does look rather
unfavorable as discussed in [7]. Otherwise, it is important to note that only
one of the works is both generative and able to transfer, however this was
also the system with very low performance. As we will see, our new approach
we report on in this paper is able to do transfer and is generative, with high
performance. This is the key contribution of this paper.

2.2 Pointer Networks

Pointer Networks and their variations have been applied successfully to a va-
riety of sophisticated tasks including theoretical computer science problems
(i.e., NP-hard Travelling Salesman Problem (TSP), Delaunay Triangulation,
and Convex Hull [49] as well as 0-1 Knapsack problem [19]) and practical
problems like abstractive [45] and extractive [28] text summarization, code
completion [31], dependency parsing [17,16,33], named entity boundary de-
tection [32], conversation disentanglement[50], anaphora resolution [30], para-
graph ordering [38], paraphrase generation for data augmentation [21], entity
linking [5], and airline itinerary prediction [37]. Nevertheless, almost nothing
is known about their possible application and ability for conducting logical
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deductive reasoning accurately. In fact, they have been mainly used for solv-
ing discrete combinatorial optimization problems because of their variable-size
output vocabulary and for resolving the rare or out-of-vocabulary problem in
Natural Language Processing.

3 Methodology

In order to explain more formally what we are setting out to do, let us first re-
frame our entailment problem as an input-output mapping task: Given some
logic L, for each theory T over L, the set ¢(T) = {F | T |= F'} of all formulas
over £ that are entailed by T; we call ¢(T") the completion of T. We can then
attempt to train a neural network to produce ¢(T) for any given T over L, i.e.,
we would use pairs (7, ¢(T)) as input-output training pairs for a generative
deep deductive reasoner.

3.1 Logics

RDF The Resource Description Framework RDF, which includes RDF Schema
(RDFS) [11,25] is an established and widely used W3C standard for expressing
knowledge graphs. The standard comes with a formal semantics' that defines
an entailment relation. An RDFS knowledge base (KB) is a collection of state-
ments stored as triples (el,r, e2) where el and e2 are called subject and object,
respectively, while r is a binary relation between el and e2. In the context of
RDF/RDFS, the triple notation (el,r,e2) is more common than a notation
like r(el, e2) as it is suggestive of a node-edge-node piece of a labelled graph,
and so we will use the triple notation.

As a logic, RDFS is of very low expressivity and reasoning algorithms
are very straightforward. In fact, there is a small set of thirteen entailment
rules [10], fixed across all knowledge graphs, which are expressible using Dat-
alog.? These thirteen rules can be used to entail new facts.

Table 2 Selected RDFS Completion Rules

(z, rdfs:subClassOf, y), (y, rdfs:subClassOf, z z, rdfs:subClassOf, z) (
(z, rdfs:subPropertyOf, y), (y, rdfs:subPropertyOf, z z, rdfs:subPropertyOf, z) (2

) E( )
) E( )
(z, rdfs:subClassOf, y), (z, rdf:type, z) = (2, rdf:type, y) 3)
) E( )
) E( )

—
N

(a, rdfs:domain, z), (y, a, z y, rdf:type, z)

(a, rdfs:range, z), (y, a, z z,rdf:type, z) 5

1 In fact, it comes with three different ones, but we have only considered the most com-
prehensive one, the RDF'S Semantics.
2 Datalog is equivalent to function-free definite logic programming [26].

46



On the Capabilities of Pointer Networks for Deep Deductive Reasoning 7

Table 2 shows examples for some of these entailment rules. The identi-
fiers x,y, z, a are variables. The remaining elements of the triples are pre-fixed
with the rdfs or rdf namespace (a concept borrowed from XML) and carry a
specific meaning in the formal semantics of RDFS. E.g., rdfs:subClassOf indi-
cates a sub-class (or sub-set) relationship, i.e. Rule 1 states transitivity of the
rdf:subClassOf binary relation. Likewise, in Rule 2, (x, rdfs:subPropertyOf, y)
indicates that z, y are to be understood as binary relations, where z is a restric-
tion (called a subproperty) of y. In Rule 3, the triple (z,rdf:type, z) indicates
that z is a member of the class (or set) . In Rules 4 and 5, rdfs:domain
and rdfs:range indicate domain respectively range of a, which is to be inter-
preted as a binary relation. The rules are applied exhaustively on an input
RDF knowledge base, i.e. inferred triples are added and then rule execution
continues taking the new triples also into account.

ELT The standard reasoning task over EL£T is called classification and can be
understood as the computation of all formulas of the form Va(p(z) — ¢(x))
entailed by the given theory, and the set of all these formulas, which is called
the completion of the input theory, is finite if the input theory is finite.

Formally, let N¢ be a set of atomic classes (or concepts, or class names), let
Npg be aset of roles (or properties), and let Ny be a set of individuals. Complex
class expressions (or simply complex classes or classes) in the description logic
ELT are defined by the grammar

C == A|C1 N C2|3R.C,

where A € N¢, R € Ng, and C1, Cy, and C are complex class expressions. A
TBox in L7 is a set of general class inclusion axioms (or TBox statements)
of the form C' T D, where C, D are (complex) classes. We use C = D as
abbreviation for the two statements C T D and D C C. An RBox in ££7
is a set of general role inclusion axioms (or RBox statements) of the form
Rio---0R, C R, where R, R; € Ng (for all i). An ££" knowledge base (or
ontology) is a set of TBox and RBox statements.

ELT is in fact a fragment of first-order predicate logic: all statements can
be translated into it, and the inherited semantics is exactly the first-order
predicte logic semantics — details can be found in [25]. Classification is known
to be P-complete.

An ELY normal form knowledge base contains only axioms of the following
forms.

cCD cincC, D CC3R.D
JRCLCD RiCR RioR;C R

As usual, every ££T knowledge base can be cast into normal form in polyno-
mial time, and such that it suffices to perform classification over the normal
form knowledge base.
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(a) Sequence-to-Sequence (b) Ptr-Net

Fig. 1 ££1% Completion Rule (1): ”(a) Sequence-to-Sequence - An RNN (green) processes
the input sequence to create a code vector that is used to generate the output sequence
(purple) using the probability chain rule and another RNN. (b) Ptr-Net - An encoding
RNN converts the input sequence to a code (green) that is fed to the generating network
(purple). At each step, the generating network produces a vector that modulates a content-
based attention mechanism over inputs. The output of the attention mechanism is a softmax
distribution with dictionary size equal to the length of the input.”

Given an ££7 knowledge base K in normal form, the completion comp(K)
of K can for example be obtained from K by exhaustively applying the com-
pletion rules from Table 3. There are of course different ways to perform clas-
sification using reasoning algorithms, e.g. reasoning can also be encoded using
a larger number of Datalog rules which remain fixed across input theories [29].
So on the surface this seems similar to RDFS reasoning. However LT as
a logic has a different look and feel: RDF'S reasoning focuses on the deriva-
tion of new facts from old facts, while E£7 is about the processing of schema
knowledge, in particular subclass relationships, in the presence of existential
quantification (which is completely absent from RDFS). The transformation
into Datalog reasoning is also more complicated than for RDFS.

Table 3 ££ Completion Rules

(1) ACC CLCD E ACD
(2) ACCy ACCy CinNCCED E ACD
(3) ACC CLC3R.D E ACS3RD
(4) ACS3R.B BLCC 3R.CLCD E ACD
(5) AC3SD SCR E ACS3RD
(6) AC3IR,.C C C 3R,.D RioRo,CR E ALC3RD

3.2 Pointer Networks

Pointer networks is an encoder-decoder architecture based model which uses
attention as a pointer to choose an element of the input in each decoding
time step. The remarkable main advantage of this model compared to other
sequence-to-sequence models like Transfromers is that the learned models gen-
eralize beyond the maximum lengths that they were trained on. Thus, they
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were initially proposed to generate a correct variable size output sequence,
given an input sequence consisting of a variable size combinatorial optimiza-
tion problem. Amazingly, it has even outperformed the fixed input size problem
baseline, showing its potential to be used in wider applications.

Inspired by the above-mentioned advantages, here we have used pointer
networks to copy the symbols from the knowledge base via pointing to generate
logical consequences.

In our corpus, each knowledge graph and its completion denoted as (7', ¢(T"))
comprises the sequence of symbols. Given the (T, ¢(T')) pair, we are feeding
the pointer network with (7,C(T)’) where T = {T1,...,T,} is a sequence
of n symbols each refer to an element in our input knowledge graph and
C(T) = {c(Th),....,c(T)'} is a sequence of m indices each between 1 and
n. The sequence-to-sequence model then computes the conditional probabil-
ity p(¢(T;) |e(T1)’, ..., c(Ti—1)’, T) changing the Bahdanau [4] attention to the
pointer attention as follows:

u; = o tanh(Wye; + Wad,) for j € (1,....,n) and (6)
p(e(T)}|e(T)y, .y e(T); — 1,T) = Softmax(u'), (7)
where (ey, ..., ey,) and (dy, ..., d,,) denote the encoder and decoder hidden states

respectively, and v, W7, and Ws are learnable parameters of the output model.

The softmax
o)

Zj e(uy)

normalizes the vector u’ of length n to be an output distribution over the
dictionary of inputs. Indeed the model uses u; as pointers to the input symbols.

Softmax(u;) =

4 Experimental Setup

In this section, we describe the detail of datasets, training process, the baseline
models, and the performance of our proposed model in terms of correctness,
and generalizability in comparison to existing baselines.

4.1 Datasets
We evaluate different approaches on two benchmarked datasets:

ELT Dataset To provide sufficient training input to our network we followed
the same synthetic generation procedure as proposed in [12] that combines
a structured forced-lower-bound reasoning sequence with a connected ran-
domized knowledge base. This allows us to rapidly generate many normal
semi-random €L knowledge bases of arbitrary reasoning difficulty. For this
experiment we choose the knowledge bases of size 40, 50, and 120 statements
with a moderate difficulty setting so that it can compare with nonsynthetic
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coC Co c2LC C10
CclCC1 Cc2C C11
C2LC C2 C2LC C12
C3CC3 Cc2C C13
caCcC C4 c4C C9
C5C C5 Cc4LC C10
C6C C6 c4C C11
cTcCC7 Cc4LC C12
C8LC C8 C4LC C13
c9C C9 C9LC Cl11
c10C C10 c9LC C12
Cl1C C11 Cc9LC C13
C12C C12 C2 C 3R4.C9
C13C C13 C2C JR4.C11
c2C C9 C2LC 3R5.C9
C4C C2 C2 C 3R5.C11
C8LC CO C2 C JR6.C12
Cc9LC C10 C2 C 3R7.C12
cl0C C11 C4C 3R4.C9
concicor C4C 3R4.C11
c3nceC C8 C4 C 3R5.C9
Cl11nC12C C13 C4 C 3R5.C11
C1LC 3R1.C9 C4C 3R6.C12
C3LC 3R3.C6 C4 C 3R7.C12
C9LC 3R4.C9 C9 C IR4.C11
C9C 3R5.C11 C9C IR5.C9
C9LC JR6.C12 C9 C 3R7.C12
C9LC JR6.C12
C10 C 3R4.C11
C10 C 3R5.C11
JR2.C3C CO
JR3.C7TC C4
JR4.C10 C C12
RAC R5
R2C RO
R40 R6C R7
R30R0OLC R2

Table 4 ££1 Knowledge Graph & Inference Knowledge Graph

data. To ensure that the randomized statements do not shortcut this pattern,
the random statements are generated in a nearly disjoint space and connected
only to the initial seed term. This ensures that at least one element of the
random space will also produce random entailments for the duration of the
sequence, possibly longer. Our procedure also guarantees that each comple-
tion rule will be used at least once every iteration of the sequence so that all
reasoning patterns can potentially be learned by the system. An example of a
graph and its corresponding inference in our ££"dataset is demonstrated in
Table 4.

RDF Dataset For testing the capability of our model in conducting RDF rea-
soning we are using the same two datasets used in [34] namely a synthetic
dataset from ”Lehigh University Benchmark (LUBM) [20] and a real-world
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Scientist dataset from DBpedia. Essentially, the mission for our deep reasoner
is to learn the mapping between input RDF graphs and their inference graphs
generated using Apache Jena APT [9] -a state of the art tool for RDF and OWL
reasoning -. The first dataset is created on top of LUBM ontology developed
for benchmarking Semantic Web knowledge base systems with respect to use
in large OWL applications including deductive reasoning. It conceptualizes 42
classes from the academic domain with 28 properties relating these classes.
Using Univ-Bench Artificial Data Generator (UBA) 3, they yielded LUBM1
containing one hundred thousand triples with 17189 subject resources within
15 classes. For each resource r in the set of these subject-resources, a graph
g (graph description of the resource r) is created by executing the following
SPARQL Query:

DESCRIBE <r>

Listing 1 SPARQL query to retrieve each resource’s description and creating a knowledge
graph describing that resource.

For each knowledge graph g then they have obtained an inference graph i
based on the LUBM ontology using Apache Jena API for applying the RDF
inference rules covered partially in Table 2.

The second dataset namely ”Scientists” is a real-world dataset including
~ 5.5million triples describing 25760 URIs of scientists obtained by applying
following SPARQL query against DBpedia [1] endpoint:

prefix dbo: <http://dbpedia.org/ontology/>
select distinct 7scientist

where {

?scientist a dbo:Scientist

}

Listing 2 SPARQL query for retrieving the scientist from the DBpedia.

The dataset also includes a few other classes related to the Scientist concept
in DBpedia i.e., University and Award related based on set of relationships.
For the sake of our evaluations we will conduct our evaluations in each of these
classes datasets separately. For a more detailed description and statistics of
these two datasets please see [34].

We split each dataset in a ratio of 80% —10% —10% for training, validation,
and testing.

4.2 Training Details
The core of our experiments comprises training a sequence-to-sequence based

model trained on large set of knowledge bases and completions pairs (T, ¢(T)).
We use two single layer LSTMs of 128 hidden units each: an LSTM encoder

3 http://swat.cse.lehigh.edu/projects/lubm/
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for encoding the knowledge graph and and the Pointer LSTM for generating
the completion via pointing to the input knowledge base symbols. It has been
trained with stochastic gradient descent, batch size of 100, random uniform
weight initialization from -0.08 to 0.08, and L2 gradient clipping of 2.0. The
Adam optimizer was used with an initial learning rate of 0.1. Depending on
the maximum knowledge base and completion sizes in our dataset various
maximum input sequence lengths and the maximum output lengths have been
enforced for each of our experiments.

4.3 Input Representation Details

Tokenization For the tokenization of the text we experiment with both Whites-
pace tokenizers and SubWordText tokenizers [46]. Tokenization of the text is
the process of splitting the text into meaningful chunks called tokens. We be-
lieve that experimenting with different types of tokenization not only change
the accuracy of our results but also gives us better understanding about the
nature of reasoning and generalization ability of our network. SubWordText
tokeinzer, which works based on variant of byte pair encoding segmentation al-
gorithm [18], translates rare words into smaller units than words. As an exam-
ple, SubWordText tokenizer tokenizes the triples below into {"http”, "www”,
”department2”, "university0”, ... } while the Whitespace tokenizer splits each
triple into subject, predicate, and object.

<http://www.Department2. University0.edu/GraduateStudentl>
<http://swat.cse.lehigh.edu/onto/univ—bench.owl#takesCourse>
<http://www.Department2. University0.edu/GraduateCourse0> .

Listing 3 Sample RDF Triple

It is worth noting that since the symbols in our synthetic ££7 dataset follow
the [A — Z]\d" regular expression both Whitespace and SubWordText tok-
enizers will lead to the almost same tokens splitting for ££% and hence will
not change the results for E£7.

Normalization To analyze the deductive reasoning capability of our network
as opposed to the inductive reasoning capability usually obtained by learning
a good representation of entities during the training or in the pre-training
phase here we use the normalization[14,15]. Unlike inductive reasoning, in the
deductive reasoning the names of entities are insubstantial and should not
be leveraged by the reasoner. In ££Tthe logical operators (C,3,0,M,.) are
the only elements of the language in each knowledge base that have consis-
tent implicit semantics across knowledge bases. In this sense, two entailments
"ACC, CCDEACD and”PC @, QC R} P C R’ should be
treated as equivalent by the ideal reasoner. Similarly for RDF reasoning, the
actual names (as strings) of entities from the underlying logic such as variables,
constants, functions, and predicates are insubstantial and should not ideally
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be captured by model. The only elements of the language in each knowl-
edge base that have consistent implicit semantics across the knowledge bases
here are the RDF and RDFS controlled vocabulary. Hence, two entailments
7 (a, rdfs:domain, z), (y, a, z) = (y, rdf:type, z)” and ” (b, rdfs:domain, p), (¢,b,r) =
(g, rdf:type,p)” should be ideally considered as equivalent for logical entail-
ment. Therefore, consistent renaming across a theory should not change the
set of entailed formulas (under the same renaming). To encourage models to
capture this invariance, we should either provide the term-agnostic input to our
model or implement a term-agnostic strategy for the reasoning. To implement
the former we use syntactic normalization: a renaming of primitives from the
logical symbols to a set of predefined entity names that are used across differ-
ent normalized theories. By randomly assigning the mapping for the renaming,
the network’s learning will be based on the structural information within the
theories, and not on the actual names of the primitives. Note that this nor-
malization not only plays the role of “forgetting” irrelevant label names, but
also makes it possible to transfer learning from one KB to the other. Indeed,
the network can be trained with many KBs, and then subsequently tested
on completely new ones. To do so, for RDFS reasoning, we normalize all the
triples within the knowledge graph by systematically renaming all URIs which
are not in the RDF or RDFS namespaces. Each such URI is mapped to a set
of arbitrary strings in a predefined set A = {a1,...,a,}, where n is number
of entities in our largest KB. Note that URIs in the RDF/RDFS namespaces
are not renamed, as they are important for the deductive reasoning accord-
ing to the RDFS model-theoretic semantics. Consequently, each normalized
RDFS KB will be a collection of facts stored as set of triples {(a;,a;,ax)}.
Similarly, for the £E£1 we have generated our syntactic dataset randomly such
that only logical operators have consistent semantic meaning across the knowl-
edge graphs. For the latter, later in Section 4.6 we show that - unlike most
of the deep learning architectures which mostly rely on learning the symbols’
representations - Pointer Network is inherently symbol-invariant and hence we
do not need to apply such normalization to the input for Pointer Networks.

4.4 Baselines

Transformers With the recent shift towards using Transformer methods in a
variety of tasks and their tremendous success, achieving the state-of-the-art in
tasks such as language modeling and machine translation, we believe that it
is important to assess their capability in conducting reasoning over the E£7
and RDFS deductive reasoning tasks. As such, for our baseline model, we
use a standard vanilla encoder-decoder Transformers as proposed in [48]. The
transformer architecture is merely based on self-attention mechanism and is
very parallelizable. It follows with the Encoder-Decoder framework in that,
given an input sequence, the network obtain a continuous representation of it
based on the context and decode that context-based representation into the
output sequence. It replaces the LSTMs with Self-Attention layer and encodes
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the order using the sinusoidal Positional Encodings. Our network stacks 2 en-
coder blocks on top of each other where each block consists of 2 sub-layers,
a multi-head self-attention mechanism and a position-wise dense feed-forward
network. Around each sub-layer a residual connection is employed followed a
layer normalization. The 2 decoder blocks has the same structure except it
contains an additional multi-head attention layer that applied on the output
of an encoder block. The multi-head attention that works on output represen-
tations masks all subsequent positions and the output embeddings are shifted
right by one position so that a prediction for the current step depends only on
previously predicted known outputs.

All embedding layers and all sub-layers in the model produce outputs of
size 512. Our Transformer trainer uses the teacher-forcing strategy where the
target output gets passed to the next time step regardless of model’s prediction
at the current time step. The Rectified Linear Unit (ReLU) has been used as
our activation function. The batch size has been set to 64 and the multi-
head attention consist of 8 heads. The dropout with rate Pg.op = 0.1 has been
applied to the output of each sub-layer and also to the embeddings summation
and the positional encodings in both the encoder and decoder stacks.

Graph Words Translation defines layering RDF graphs for each of the relations
in the ontology and encoding them in the form of 3D adjacency matrices where
each layer layout forms a graph word. Each input graph and its entailments
are then represented as sequences of graph words, and RDFS inference can
be formulated as sequence-to-sequences problem, solved using neural machine
translation techinques. In an effort to understand the benefits and drawbacks
of our method compared to Graph words Translation [34] -current state-of-the-
art method in RDF Reasoning-; here we report our results on the same dataset.
Our results show Pointer Networks outperform Graph Words Translation.

Piece-Wise LSTM A deductive reasoning involves the learners being given the
general rule of entailment in the language, which is then applied to specific
knowledge base iteratively. It involves a set of intermediate results added at
each step to the original knowledge base until we cannot generate any new
statement. The Piece-Wise LSTM and its variants proposed in [12] strive to
emulate this reasoning steps by mapping them to each time step in an LSTM
learner. To our knowledge, this is the only work has been done for emulating
deductive reasoning for £L£%logic. As such, here we use the same procedure
for generating our data and compare our result. Our finding show Pointer
Networks outperform Piece-Wise LSTM and its variants by a huge margin.

LSTM Decoder As an ablation study, we replace the Pointer LSTM decoder in
our encoder-decoder architecture with vanilla LSTM and evaluate its perfor-
mance. This gives us a clear understanding on the contribution of the Pointer
attention in our proposed model.
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Table 5 Exact Match Accuracy Results

Pointer Networks Transformer
Logic | KG Size SubWordText | Tokenizer Normalized S\1bWﬁl(r)(;:I‘]\:;:"m]:IfSenizer LSTM
RDF 3 - 1735 87% 99% 5% 25% 4% 0.17%
40 73% 73% 8% 8% 0.4 % 0%
ER [ 50 68% 68% 1% 1% 0.3% 0%
120 49% 49% 15% NA NA 0%

4.5 Correctness

In order to reflect how well our Pointer Networks have learned to conduct the
reasoning task accurately; here we report the exact matching accuracy for this
model and compared that to the above baselines as shown in 5. As we can
see from the table, our Pointer network model has performed very well (99%
accuracy) in conducting the RDF reasoning outperforming the state-of-the-
art results obtained by Graph Words Translation [34](98% accuracy). Later,
we show another advantage of Pointer Networks over Graph Words Transla-
tion namely its generalization capability to unseen domains. There is also an
added benefit that Pointer Networks can be easily applied to any reasoning
problems by defining that as ”input knowledge base to inferred knowledge
base mapping problem”. In Graph Words Translation case, however, the net-
work is specifically designed and tailored for RDF reasoning. Compared to the
Transformer, our method has shown extraordinarily better accuracy showing
clear significant performance gain of Pointer attention over self-attention in
conducting the neuro-symbolic reasoning. The very poor performance of our
vanilla encoder-decoder LSTM network further corroborate the benefits of us-
ing Pointer attentions. Finally, it is worth noting that the random guess is
only accurate 2.8e-07% of the time for RDF reasoning over LUBM dataset
demonstrating how difficult this task is.

Similarly, for ££T reasoning task, our proposed model performs extraor-
dinarily well across all the dataset, and achieves much better results achiev-
ing 73% accuracy as opposed to 0.16% accuracy reported in [12]. Similarly
to our RDF reasoning experiments, here, we found our Pointer attention
based method has shown extraordinarily better accuracy compared to the
self-attention based Transformers and the vanilla encoder-decoder LSTM net-
work.

4.6 Generalizability: Zero-Shot Reasoning

Using the pointer networks for simply copying from the input knowledge base
to the completed one might seem simple. Despite their simple nature, the
generalizability that they can provide is far more intricate and in our in-
terest. Indeed, the main goal of this paper is to demonstrate the general
symbol/naming-invariant reasoning learning capability of Pointer Networks
when they encounter with the knowledge graph of the new domain/vocabulary
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Table 6 Exact Match Accuracy Results for Transfer Learning/Representation: SubWord-
Text Tokenization Encoding

N‘ ‘ LUBM ‘ Awards | University ‘
Train
LUBM * 75% 78%
Awards 79% * 7%
University 81% 32% *

Table 7 Exact Match Accuracy Results for Transfer Learning/ Representation: Whitespace
Tokenization Encoding

Test . .
m‘ ‘ LUBM ‘ Awards | University ‘
LUBM * 61% 47%
Awards 96% * 84%
University 82% 88% *

in the testing phase. This ensures the model has gained the deep understand-
ing of the logical semantics and reasoning as opposed to merely working based
on the representation learning and induction. As such, we measured exact
matching accuracy of the results yielded by Pointer Networks when trained
on one domain and tested on another without fine-tuning i.e., zero-shot . The
results for its transfer capability for RDFS reasoning is shown in Tables 6
and 7, while for the ££7 the results in Table 5 already shown this capability.
Based on the table, Pointer Network gives surprisingly good and consistent
empirical results when it comes to transfer learning. Indeed, Pointer Networks
have several desirable inherent characteristics leading into this transfer learn-
ing behaviour. They are capable of dealing with dynamic vocabulary length
as opposed to fixed vocabulary output, dealing with rare or out-of-vocabulary
word, and heavy-tailed vocabulary distribution.

Additionally, to further understand the nature of how Transformers learn
to reason?, we have applied normalization and various tokenization on our
RDF dataset and examined the change in the accuracy. Not surprisingly, un-
like Pointer Networks, Transformers are very sensitive to the changes of tok-
enization and the normalization. This is mainly because Transformers heavily
rely on the subsymbolic representation of entities and relations learned by the
network. Indeed the power of Transformers mainly comes from their self/intra-
attention module primarily used to learn the representation of the tokens in
the input based on their relations with other tokens. This explains why our
baseline Transformer model tends to obtain its highest accuracy when trained
on not-normalized SubWordText encoded RDF knowledge base. This way, the
network can learn much better representation for the symbols in the knowledge
base which leads to better reasoning accuracy. Unsurprisingly, the normaliza-
tion decreases the accuracy of the Transformer showing poor symbol-invariant
reasoning capability, as indicated in the Normalized column in Table 5.
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5 Conclusion & Future Works

‘We have shown that a deep learning architecture based on pointer networks is
capable of learning how to perform deductive reason over RDFS and ££ KBs
with high accuracy. We designed a novel way of conducting neuro-symbolic
through pointing to the input elements. More importantly we showed that the
proposed approach is generalizable across new domain and vocabulary demon-
strating symbol-invariant zero-shot reasoning capability. We plan to properly
investigate scalability of our approach and to adapt it to other, more complex
logics. We furthermore intend to investigate the added values which should
arise out of adding subsymbolic deductive reasoning components to more tra-
ditional deep learning scenarios, in particular in the areas of knowledge graph
inference and natural-language-based commonsense reasoning.
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Abstract Symbolic knowledge representation and reasoning and deep learning
are fundamentally different approaches to artificial intelligence with complemen-
tary capabilities. The former are transparent and data-efficient, but they are sen-
sitive to noise and cannot be applied to non-symbolic domains where the data is
ambiguous. The latter can learn complex tasks from examples, are robust to noise,
but are black boxes; require large amounts of —not necessarily easily obtained—
data, and are slow to learn and prone to adversarial examples. Either paradigm
excels at certain types of problems where the other paradigm performs poorly.
In order to develop stronger Al systems, integrated neuro-symbolic systems that
combine artificial neural networks and symbolic reasoning are being sought. In
this context, one of the fundamental open problems is how to perform logic-based
deductive reasoning over knowledge bases by means of trainable artificial neural
networks.

This paper provides a brief summary of the authors’ recent efforts to bridge the
neural and symbolic divide in the context of deep deductive reasoners. Through-
out the paper we will discuss strengths and limitations of models in term of ac-
curacy, scalability, transferability, generalizabiliy, speed, and interpretability, and
finally will talk about possible modifications to enhance desirable capabilities.
More specifically, in terms of architectures, we are looking at Memory-augmented
networks, Logic Tensor Networks, and compositions of LSTM models to explore
their capabilities and limitations in conducting deductive reasoning. We are ap-
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plying these models on Resource Description Framework (RDF), first-order logic,
and the description logic €L respectively.

Keywords Neuro-symbolic reasoning - Deep deductive reasoners - Memory-
augmented networks - Logic tensor networks - LSTM - Logic

1 Introduction & Motivation

Approaches in Artificial Intelligence (AI) based on machine learning, and in par-
ticular those employing artificial neural networks, differ fundamentally from ap-
proaches that perform logical deduction and reasoning on knowledge bases. The
first are connectionist or subsymbolic Al systems that are able to solve complex
tasks over unstructured data using supervised or unsupervised learning, including
problems which cannot reasonably be hand-coded by humans. Subsymbolic meth-
ods are generally robust against noise in training or input data. And recently, in the
wake of deep learning, they have been shown to exceed human performance in tasks
involving video, audio, and text processing. Symbolic systems, by contrast, thrive
in tasks that use highly structured data, including agent planning, constraint solv-
ing, data management, integration and querying, and other traditional application
areas of expert systems and formal semantics. Classical rule-based systems, on-
tologies, and knowledge graphs that power search and information retrieval across
the Web are also types of symbolic Al systems.

Symbolic and subsymbolic systems are almost entirely complementary to each
other. For example, the key strengths of subsymbolic systems are weaknesses of
symbolic ones, and vice versa. Symbolic systems are brittle; they are susceptible
to data noise or minor flaws in the logical encoding of a problem, which stands in
contrast to the robustness of connectionist approaches. But subsymbolic systems
are generally black boxes in the sense that the systems cannot be inspected in ways
that provide insight into their decisions (despite some recent progress on this in the
explainable Al effort) while symbolic knowledge bases can in principle be inspected
to interpret how a decision follows from input. Most importantly, symbolic and
subsymbolic systems differ in the types of problems and data they excel at solving.
Scene recognition from images appears to be a problem that lies generally outside
the capabilities of symbolic systems, for example, while complex planning scenarios
appear to be outside the scope of current deep learning approaches.!

The complementary nature of these methods has drawn a stark divide in the
rich field of AI. The split is technical in nature; symbol manipulation as captured
by deductive reasoning cannot be sufficiently performed using current subsym-
bolic systems. Moreover, the training to study subsymbolic systems (involving
probability theory, statistics, linear algebra, and optimization) differs from sym-
bolic systems (involving logic and propositional calculus, set theory, recursion,
and computability) so strongly that AI researchers tend to find a side of the di-
vide based on their intellectual interests and background. There is even a cultural
aspect to he schism, pitting mindsets and prior beliefs of communities against one

1 The topic is being investigated, of course, with some recent progress being made. For
example, [1] report on an application of deep learning to planning, and explicitly frame it as
work towards bridging the “subsymbolic-symbolic boundary.”
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another, that in the past could sometimes split the academic AI research commu-
nity by provoking (heated) fundamental discussions. Even geography has an effect:
researchers working on symbolic approaches are more prevalent in the European
Union than in the United States.

‘We are interested in answering fundamental problems needed to build a techni-
cal bridge between the symbolic and subsymbolic sides of the divide. The promises
of successfully bridging of the technological divide are plenty [29,33,7,17]. In
the abstract, one could hope for best-of-both-world systems, which combines the
transparency and reasoning-ability of symbolic systems with the robustness and
learning-capabilities of subsymbolic ones. Integrated symbolic-subsymbolic sys-
tems may be able to address the knowledge acquisition bottleneck faced by sym-
bolic systems, learn to perform advanced logical or symbolic reasoning tasks even
in the presence of noisy or uncertain facts, and even yield self-explanatory sub-
symbolic models. More abstractly, bridging the two may also shed insights into
how natural (human) neural networks can perform symbolic tasks as witnessed
by people doing mathematics, formal logic, and other pursuits that we, introspec-
tively, see as symbolic in nature. This is a basic research problem for Cognitive
Science.

This paper provides the brief summary of the authors’ recent efforts toward
bridging the neural and symbolic approaches divide. Indeed, this work is a merged
and expanded version of the authors’ recent publications [26,9,8,25] at conferences
and symposia.2 Throughout the paper we will discuss strengths and limitations of
models in term of the accuracy, scalability, transferability, generalizabiliy, speed,
and interpretability capability and finally will talk about possible modifications
to enhance such desirable capabilities. In terms of architectures, we are looking at
Memory-augmented networks, Logic Tensor Networks (LTNs), and compositions
of LSTM models to explore their capabilities and limitations in conducting deduc-
tive reasoning. We are applying these models to RDF, first-order logic, and the
description logic ELT respectively.

The paper is organized as follows: in section 2 we summarize related work for
our line of research. Section 3 provides a summary of our work in the context of
techniques, logics, and logical embeddings that have been used. In section 4 we
first outline the experimental results of our memory network based RDF deduc-
tive reasoning system with focus on transferability and generalization. Next we
explore LTNs in the context of deductive reasoning tasks, highlighting the prop-
erties, weaknesses, and strengths of these models. We also show that integrating
subsymbolic commonsense representations in the form of pre-trained embeddings
improves the performance of LTNs for reasoning tasks. Finally, we give an overview
of our work on conducting reasoning for the more complex description logic E£7.
We give concluding remarks and ideas for future work in Section 5.

2 Related Work

The research into how subsymbolic systems can perform deductive reasoning is
often referred to as the study of neuro-symbolic integration. It can be traced

2 26] is under review at AAAI-MAKE 2021 symposium at the time of submitting this
journal paper.

63



4 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

back at least to a landmark 1942 article by McCulloch and Pitts [53] showing
how propositional logic formulas can be represented using simple neural network
models with threshold activation functions. A comprehensive and recent state of
the art survey can be found in [7], and hence we will only mention essentials for
understanding the context of our work.

Most of the body of work on neuro-sybmolic integration concerns propositional
logic only (see, for example, [28]), and relationships both theoretical and practical
in nature between propositional logics and subsymbolic systems are relatively easy
to come by, an observation to which John McCarthy refered as the “propositional
fixation” of artificial neural networks [52]. Some of these include Knowledge-Based
Artificial Neural Networks [74] and the closely related propositional Core method
[42,36]. Early attempts to go beyond propositional logic included the SHRUTI
system [70,71] which, however, uses a non-standard connectionist architecture and
thus had severe limitations as far as learning was concerned. Approaches that use
standard artificial neural network architectures with proven learning capabilities
for first-order predicate logic [32] or first-order logic programming [5,4] were by
their very design unable to scale beyond toy examples.

In the past few years, however, deep learning as a subsymbolic machine learning
paradigm has surpassed expectations in machine-learning based problem solving,
and it is a reasonable assumption that these developments have not yet met their
natural limit. Consequently, they are being looked upon as promising for trying to
overcome the symbolic-subsymbolic divide [1,23,67,68,51,41,64] — this list is not
exhaustive. Even more work exists on inductive logical inference, for example [64,
24,59], but this is not what we are investigating in our work.> Recently, neural
theorem provers [64] have shown exciting capabilities [57,56] in link prediction
tasks.

On the issue of logical reasoning using deep networks we mention some se-
lected contributions. Tensor-based approaches for reasoning have been proposed
[23,67,68,64], following [72,31], but present models remain restricted in terms of
logical expressivity and/or to toy examples and limited evaluations. [51] performs
knowledge graph reasoning using RDF(S) [39,19] based on knowledge graph em-
beddings. However evaluation and training is done on the same knowledge graph,
that is, there is no learning of the general logical deduction calculus, and conse-
quently no transfer thereof to new data. Likewise, recent years have seen some
progress in zero-shot relation learning in the subsymbolic domain [58,66]. Zero-
shot learning refers to the ability of the model to infer new unseen relationships
between pairs of entities. This generalization capability is still quite limited and
fundamentally different from our work in terms of both methodology and purpose.
[41] moves away from RDFS to consider OWL RL reasoning [39,38], however again
no general deduction calculus is acquired during training.

There are different approaches from Statistical Relational Learning that do not
integrate neural networks with logic, but rather tackle the problem in a symbolic
manner by also using statistical information. Examples from this category are
ProbLog [21], which is a probabilistic logic programming language, and Markov
Logic Networks (MLNs) are a statistical relational learning model that are effective

3 Induction like in Inductive Logic Programming or Relational Learning has statistical as-
pects and is much closer in nature to a machine learning task, and thus arguably easier to
tackle using machine learning approaches.
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on a large variety of tasks [62,54]. The intuition behind MLNs and LTNs is similar
since they both base their approach on logical languages. MLNs define weights for
formulas and interpret the world from a probabilistic point of view, while LTNs
use fuzzy logic and a neural architectures to generate their inferences.

Finally, in the context of description logic reasoning there are additional unique
challenges for the neuro-symbolic integration task. Not only are variable terms
implicit, or not stated, in expressions, but also the open world assumption means
that there is no fixed set of constants to use in training like in logic programming.
There is promising work that attempts to use neural networks to reason over
description logic profiles that have monotonic reasoning behavior using completion
rules. For ££Tand £L£" T reasoning, for example, some attempt to embed £
with translational embedding (TransE) using a novel concept of n-balls, though it
currently does not consider the RBox as well as certain ££7 T axioms that do not
translate into the embedding [46,14].

3 Summary of our Work

Subsymbolic systems are trained to produce an output given some input, which
may be a label (classification) or a numerical value (regression). For our RDF
reasoning and some experiments for first-order logic reasoning, we re-frame the
task as a classification problem. Any* given logic £ comes with an entailment
relation |=, C T, x Fr, where Fp is a subset of the set of all logical formulas
(or axioms) over L, and T is the set of all theories (or sets of logical formulas)
over L. If T |= F, then we say that F is entailed by T. For a classification task
we can ask whether a given pair (7, F) € Tz x Fr should be classified as a valid
entailment (i.e., T =, F holds), or as the opposite (i.e., T 5. F). We seek to train
a DNN over the sets of examples (7, F') embedded into a vector space amenable
for DNN processing, such that the DNN learns to correctly classify examples as
valid or invalid inferences. Of course, we would have to restrict our attention to
finite theories, which is usually done in computational logic anyway.

Another way to re-frame the deductive reasoning problem (used in our ££%
reasoning task) is by considering, for each theory T € T, the set ¢(T) = {F €
Fr | T = F} of all formulas entailed by T; we call ¢(T') the completion of T. We
can then attempt to train a DNN to produce ¢(T") for any given T' € L, i.e., we
would use pairs (T, ¢(T)) as input-output training pairs. In this case, restricting
to finite 7' may not be entirely sufficient because even for finite 7" it is possible
that ¢(T") may be infinite. In such cases, we will have to restrict our training data
to large but finite subsets of ¢(T').

Figure 1 illustrates the general setting within which the studies in this paper
reside. Under a three dimensional investigative space, whereby the logic under
consideration, the logical embedding, and a DNN model type, we examine capa-
bilities and limits of different DNN architectures to perform deductive reasoning
and to transfer their learning to unseen knowledge bases encoded in the same
logic. Transferability means that a DNN demonstrates reasoning capabilities that

4 Any may be too grandiose a statement, but these are the ones we are looking at.

5 Attempting to find finite representations for infinite sets — in the cases where this would
even be reasonably possible — would add another layer of complication which we are currently
not considering.
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Our Project:
Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners

Investigative Dimensions

Capabilities and Limits

Logics

Transferable Learning
Logical « Can a DNN perform entailment for a « Can we train DNN to learn
Embeddings particular logic? How do logics and transferable knowledge; to
architectures inhibit reasoning? perform reasoning on out-of-

training knowledge bases?
DNN Architectures

Fig. 1 Our work explores the capabilities and limits of subsymbolic systems (DNNs) to per-
form transferrable deductive reasoning. Experiments are carried out along three investigative
dimensions: type of logic, embeddings of logic to a quantitative space, and DNN architectures.

require acquisition of principles (or “inference rules,” if you like) which underlie
the logic and not simply specific answers. If we were to train the DNN such that
it learns only to reason over one theory, then this could hardly be demonstrated.
Theoretical perspectives are derived by studying model performance under par-
ticular constraints in the knowledge bases, for example, the degree or number of
reasoning steps needed to determine an entailment.

Our general line of research can be understood based upon a selection of (i)
candidate logic; (ii) logical embedding method; and (iii) DNN architecture. To
provide context, here, fist we discuss each investigative dimension in more detail:

Logics We have so far looked at three logics of different complexity, as listed
below. Two of them, RDFS and ££1 come from the context of Semantic Web [39]
research, and have direct bearing on current data management practice [34]. The
Semantic Web field indeed provides ample opportunity to instigate neuro-symbolic
integration approaches [35].

(1) RDFS (Resource Description Framework Schema). The Resource Descrip-
tion Framework RDF, which includes RDF Schema (RDFS) [19,39] is an estab-
lished and widely used W3C standard for expressing knowledge graphs. The stan-
dard comes with a formal semantics® that define an entailment relation. An RDFS
knowledge base (KB) is a collection of statements stored as triples (el,r, e2) where
el and e2 are called subject and object, respectively, while r is a binary relation
between el and e2.

As a logic, RDFS is of very low expressivity and reasoning algorithms are very
straightforward. In fact, there is a small set of thirteen entailment rules [18], fixed

6 In fact, it comes with three different ones, but we have only considered the most compre-
hensive one, the RDFS Semantics.
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(z, rdf:subClassOf, y) A (y, rdfs:subClassOf, z) + (z, rdfs:subClassOf, z) (1)

(z, rdfs:subPropertyOf, y) A (y, rdfs:subPropertyOf, z) - (z, rdfs:subPropertyOf, z)  (2)
(z, rdfs:subClassOf, y) A (z, rdf:type, z) F (2, rdf:type, y) (3)

(a, rdfs:domain, z) A (y, a, 2) F (y,rdf:type, z) (4)

(a,rdfs:range, ) A (y, a, 2) F (2, rdf:type, ) (5)

Fig. 2 Some RDFS entailment rules. Explanations can be found in the main text.

across all knowledge graphs, which are expressible using Datalog.” These thirteen
rules can be used to entail new facts.

Figure 2 shows examples for some of these entailment rules. The identifiers
z,y,z,a are variables. The remaining elements of the triples are pre-fixed with
the rdfs or rdf namespace and carry a specific meaning in the formal semantics
of RDFS. E.g., rdfs:subClassOf indicates a sub-class (or sub-set) relationship, i.e.
Rule 1 states transitivity of the rdf:subClassOf binary relation. Likewise, in Rule 2,
(z, rdfs:subPropertyOf, y) indicates that z,y are to be understood as binary re-
lations, where x is a restriction (called a subproperty) of y. In Rule 3, the triple
(z,rdf:type, z) indicates that z is a member of the class (or set) . In Rules 4 and
5, rdfs:domain and rdfs:range indicate domain respectively range of a, which is to
be interpreted as a binary relation.

(2) Real Logic/First-Order Fuzzy Logic. First-order fuzzy logic [45] is a general-
ization of first-order logic in which binary truth values are replaced with continuous
real values in the range of [0, 1]. In [69] the authors introduce Real Logic, the logic
that will be used to define Logic Tensor Networks in the next sections. This logic
allows us to express the degree of truth of a given axiom that is not as crisp as
binary logic. However, moving to continuous values also requires changing the be-
haviour of standard logical connectives such as conjunction: new operations have
to be considered that can accommodate the real values of the logic. For example,
the standard conjunction can be replaced with a t-norm; and different implemen-
tations of t-norms exist, like the Gddel t-norm which, given two values a and b
equals min(a, b). More details about how the connectives are treated can be found
in [69].

(3) ELT. ELT is a lightweight and highly tractable description logic [39]. A
typical reasoning task in E£7 is a sequential process with a fixed endpoint, mak-
ing it a perfect candidate for sequence learning. Unlike RDF, which reasons over
links between instance data in triple format, E£7 reasoning occurs on the predi-
cate level. Thus reasoning requires training the system to actually learn reasoning
patterns and logical structure of E£7 directly from encoded knowledge bases.

The signature X for EL£T is defined as X = (N, No, Ng) with Ny, No, Ng
pairwise disjoint. N7 is a set of individual names, N¢ is a set of concept names
that includes T, and Ng is a set of role names.An ££1 knowledge base consists of
a finite set of statements of the form CC C, RC R and Ro...o R C R, where
C and R are defined by the following grammar.

R == Ng
C == N¢ | CncCc | FRC

7 Datalog is equivalent to function-free definite logic programming [40].
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Table 1 ££F Semantics

Description Expression Semantics
Individual a a€ AT
Top T AT
Bottom 1 0
Concept C T C AT
Role R RT C AT x AT
Conjunction cnbD cTn DT
Existential Restriction 3R.C { a | there is b € AZ such that
(a,b) € R and be CT }
Concept Subsumption cCD cT c DT
Role Subsumption RCS RTZ C ST
Role Chain Rio---oR,CR RIIO~~0R%§RI

with o signifying standard binary composition

The semantics of ££7 is defined by means of interpretations I = (A’ .7) which
map Nj, N¢, Ng to elements, sets, and relations in the domain of interpretation
A’ For an interpretation I and C(), R(i) € ¥, the function -’ is shown in Table 1.

Both RDFS and E£T can be expressed in first-order predicate logic.

Logical embeddings It is essential that symbolic expressions of any logic can be
transformed into a continuous space that is amenable for subsymbolic processing.
Such a transformation must map discrete logical expressions into some continuous
space R" of fixed dimension as an n—dimensional vector. The mapping from
discrete data to a continuous space is often called an embedding. Embeddings have
been studied for many types of data,® including pieces of text (words, sentences,
paragraphs) [48,13,60,55,44], and structured objects like graphs [16], knowledge
graphs represented by a set of RDF triples [15,78,49,81,75],° and types of logical
formulas [23].

There are two key ingredients that we need to consider for logical embeddings.
First, note that logical expressions are highly structured, symbolic, and discrete.
Structure refers to the ordering of logical operations, the type of each symbol in
the expression, arity of predicates, variable bindings, etc. In fact, it is essentially
the structure that deductive reasoning operates over.'® An embedding should thus
(1) consider structure, in the sense that similarly structured logical statements
should be located “close” to each other within the embedding. Furthermore, the
actual symbols representing entities in a knowledge base (for example the string
name of an entity) representing variables, constants, functions, and predicates
are insubstantial for deductive reasoning in the sense that a consistent renaming
across a logical theory does not change the set of entailed formulas (under the same
renaming). An embedding should thus (2) disregard all textual features of a
logical statement: an embedding based on textural features may cause a DNN to
learn to reason based on common text-based patterns in logical statements, rather
than by its logical semantics. This may cause a DNN to overfit to knowledge

8 nttps://github.com/thunlp/KRLPapers has an extensive listing of existing work on knowl-
edge embeddings.
9 See [11,76] for a recent survey.
10 Some deductive entailment algorithms can even be understood as simply a type of syntax
rewriting systems.
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specific to a single knowledge base and, more importantly, would train the DNN
to make decisions in ways that are not representative of how a symbolic system
processes information.

In determining adaptations of existing embeddings (or when devising new em-
beddings) for our tasks, we have considered the interplay of the embedding ap-
proach with the structure of statements encoded in a particular logic. A simple
translation of existing embeddings may not be fruitful, as the overwhelming use
case explored for knowledge graph embeddings (knowledge graphs are commonly
expressed in RDF(S)) is not deductive in nature, but concerns the problem of the
discovery or suggestion of new edges in a knowledge graph. In this edge discov-
ery setting, the actual labels for nodes or edges in the graph and their meaning
matter, as reflected in most embedding methods, and this is contradictory to key
ingredient (2) discussed above. Generic graph embeddings [16] also appear to be
insufficient since structural aspects like the importance of specific node or edge
labels from the RDF(S) namespaces to the deductive reasoning process would not
get sufficient attention. We further do not anticipate a “one-embedding-fits-all”
phenomenon to emerge, instead we expect different embedding methods to be
necessary for different logics.

In looking at embeddings that consider the structure of logic, we can turn
to inspiration from past work demonstrating how simple logic operations can be
simulated over vectors in a real space [30]. The approach is able to model quanti-
fiers in a logic language and thus many of its characteristics could be generalized
to other logics. Nevertheless, this representation is completely symbolic: a vector
representation of a logical entity and relation is just the one-hot encoding, and so
little information about similarity is preserved. For embeddings in RDF reasoning,
RDF2Vec [63] is an intriguing algorithm that maps RDF entites and relationships
into vector space by a virtual document that contains lexicalized graph walks. A
natural language embedding algorithm is then applied to the documents based on
token co-occurrences. RDF2Vec ignores language semantics, but could be used to
study the distributional properties of RDF and to build pre-trained embeddings
for use in DNN architectures. The fundamental method that RDF2Vec employs
should be extendable to other types of logics as well. Another inspiring approach
to be taken into consideration is an embedding of facts and relations into matrices
and tensors [77] found by a matrix factorization derived from proof graphs. Proof
graphs may be used to describe the relationships of statements encoded in any
logic, and hence might be a starting point for logics such as Datalog, ACL and
SROZQ [39].

To incorporate the second ingredient where textural features of a logical state-
ment should not be considered by an embedding, we explore normalizations of
statements before embedding in our RDF reasoning work. Normalizations that we
explore have two different types. In the first case, normalization done before in-
voking logical reasoning algorithms will usually control the structural complexity
of the formulas and theories producing entailments. Secondly, we explore name
label normalization, by which we mean a renaming of the primitives from a log-
ical language (variables, constants, functions, predicates) to a set of pre-defined
entity names which will be used across different theories. While simple, such a
normalization would not only play the role of “forgetting” irrelevant label names,
but also make it possible to transfer learning from one knowledge graph to the
other. Moreover, a deep network will be limited to learning only over the structural
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information within the theories, and not on the actual names of the primitives,
which would be insubstantial for an entailment task.

In our work with Logic Tensor Networks (LTNs), we focus on the Real Logic
that we defined in the previous sections. We follow [69] in the definitions of LTNs.
In LTNs, constants are grounded to vectors in R™ and predicates are grounded to
neural network operations which output values in [0, 1]. The neural network learns
to define the truth value of an atom P(ci, ..., cn) as a function of the grounding of
the terms ci, ..., cpn [69]. For a predicate of arity m and for which vi,..., v, € R"
are the groundings of m terms, the grounding G of the predicate P is defined as

G(P)(v) = o(ub(tanh(vT WEHv + Vv + Bp))), (6)

where v = (v1,...,Vvy) is the concatenation of the vectors v;, o is the sigmoid
function, W, V', B and u are all parameters learned by the network during training,
and k is the tensor layer size.

Learning in LTNs comes from interpreting the problem as the one of finding
the weights in such a way that they better satisfy the formulas. Thus, the task is to
find values for all the weights in such a way that the satisfiability of the formulas
in the knowledge base is maximized. We make this more clear with an example:
Suppose we have an atom like mammal(cat), learning to satisfy this atom means
that the network has to update the representation of the parameters in such a
way that the parameters of the tensor network mammal, given in input the vector
representation of the constant cat returns a value that is as close as possible to 1.
In this way, given multiple atoms, LTNs can learn the best weights to satisfy
them. As long as the atoms are combined through the use of fuzzy connectives,
the optimization works similarly: given mammal(cat) — animal(cat), the values
of the two atoms are obtained separately and then combined using the fuzzy
interpretation of —. Again, this value can be maximized during the optimization.

LTNs also support learning of quantified formulas. For example, universally
quantified axioms (for example, Vz mammal(z) — animal(x)); are computed by
using an aggregation operation [69] defined over a subset 7' of the domain space
R™; different aggregation operations, such as min, average or harmonic average
can be considered. Hence, the optimization comes from aggregating the truth
value of each formula, instantiated with the values in the domain, and then the
maximization of this value, as we want Y& mammal(xz) — antmal(z) to be true
forallz € T.

Another important quality of LTNs is that they can be used to do after-training
reasoning over combinations of axioms on which they were not trained: we can ask
the truth values of queries like V& —mammal(z) — species(z); this is important
because it allows us to explore the space of the results using logical axioms.

To train LTNs we need to define fuzzy connectives (e.g., Godel, Lukasiewicz,
etc.) for the logic, the dimension of constant embeddings, the size of the tensor
layer, and the aggregation function used for the V formulas. LTNs can be trained
until they reach a certain level of satisfiability (ideally 1) or for a given number of
epochs.

Finally, in the case of our ££7 reasoning, we use the following encoding scheme:
The maximum number of role and concept names in knowledge bases are used
to scale all of the integer values for names into a range of [—1,1]. To enforce
disjointedness of concepts and role names, we map all concepts to (0, 1], all roles
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Table 2 Translation Rules

KB statement Vectorization
CX C CY - (00, £, X 00]
CXnNCcYcoz — (X, X Z 00]
CX C 3RY.CZ - 0.0, X, =X, Z]
IRXCYCCZ - [=X, X Z o0
RX C RY - (0.0, =%, =X 0.0]
RXoRYCRZ — [=X,=X =£ 00

¢ = Number of Possible Concept Names
r = Number of Possible Role Names

to [-1,0).  Each of the six possible normalized axiom forms is encoded into a
4-tuple based on the logical encodings defined in Table 2. Tuples are concatenated
end-to-end for each axiom in a knowledge base or reasoning step then duplicated
across a new dimension to match the desired tensor shape where ragged tensors are
padded with zeros. We refer to this as an encoding rather than embedding because,
except for noise in the conversion back and forth from integer to floating point
number, it produces a faithful logical encoding of arbitrary integer names without
needing to embed structure. The correct structure of normalized E£T expressions
is known, not inferred, so the system enforces an approximate representation of this
without the added assistance of moving similar predicate names closer together in
an embedding.

3.1 Investigative dimension 3: DNN architectures

The design space of DNN architectures is vast. Rather than taking a “walking
in the dark” strategy where we consider arbitrary constructions of multi-layered
perceptrons, convolutional architectures, recurrent architectures, and architectures
with combinations thereof, we will focus our exploration on: (i) models that can
recall previously consumed information; and (ii) variants of models already shown
in the literature to achieve some level of subsymbolic processing. In the former
case, we are motivated by the basic idea that deducing new facts from existing
ones requires consideration of the entire set of facts consumed thus far. In the
latter case, we seek to build on the shoulders of past researchers who have also
tried to bridge the neuro-symbolic divide, but we of course have no expectation
that a simple port or copy of such reported DNN architectures will be completely
(or even barely) capable of deductive reasoning. This is especially true because
our investigations utilize multiple types of logic and logical embeddings.

Models with recollection. A common type of DNN architecture able to recall
previous consumed information is memory networks [79]. Memory networks denote
a family of models consisting of ‘memory cells’, which are defined essentially as
embeddings over the set of training data. Multiple memory cells can be chained to-
gether to model multiple “memory lookups”, where the embedding of a subsequent
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cell in a chain can be thought of as representing a view of the memory during a
lookup conditioned on the previous lookup. The idea of memory lookups naturally
extends to a deductive reasoning task: whether or not a hypothesis is entailed by
facts in a knowledge base is logically determined by deducing if the hypothesis is
a consequence of all known facts and their entailments. This suggests a strategy
of multiple ‘lookups’ of known facts conditioned on previous facts that have been
evaluated thus far. We have selected memory networks since we believe that they
are a good candidate for performing deductive logical entailment. Their sequen-
tial nature corresponds, conceptually, to the sequential process underlying some
deductive reasoning algorithms. The attention modeling corresponds to pulling
only relevant information (logical axioms) necessary for the next reasoning step.
And their success in natural language inferencing is also promising: while natural
language inferencing does not follow a formal logical semantics, logical deductive
entailment is nevertheless akin to some aspects of natural language reasoning.
Besides, as attention can be traced over the run of a memory network, we will fur-
thermore glean insights into the "reasoning” underlying the network output, as we
will be able to see which pieces of the memory (for example, the input knowledge
graph) are taken into account at each step.

Some limitations of memory networks need to be overcome to make them
applicable for deductive reasoning. The most crucial limitation will be how most
memory networks rely on some word-level embedding with a fixed size lookup
table over a vocabulary to represent memory cells. They are thus known to have
difficulties dealing with out-of-vocabulary terms as a word lookup table cannot
provide a representation for the unseen, and thus cannot be applied to natural
language inference over new sets of words [6], and for us this will pose a challenge
in the transfer to new knowledge bases. Additionally, learning good representations
for rare words is challenging as these models require a high frequency of each word
to generalize well. One option may be to pursue variants of the copy mechanism
and pointer networks [27,61] to refer to the unknown words in the memory in
generating the responses. Another option is utilizing character-level embeddings
[50] to compose the representation of characters into words. Despite the success of
these mentioned methods in handling few unknown words absent during training,
transferability and the ability of these models to generalize to a completely new
set of vocabulary is still an open research question. Similarly, using character-level
embeddings may prove to be an inelegant solution in our case, since one of our
hypothesized key ingredients of an embedding is independence of the strings used
to represent logical statements.

Building on proven models. Besides exploring the design space of memory
networks, we have also identified models from the literature that have shown some
ability to perform symbolic tasks. This includes Logic Tensor Networks (LTN) [67,
68,23] which are based on Tensor Networks [72]. In the LTN setting, first-order
fuzzy predicate logic primitives are embedded as tensors (an n-dimensional array
of reals), and complex predicates and formulas are built by applying tensors as
functions of other tensors. LTNs have been shown to handle deductive reasoning,
but only under small toy examples and simple inferences [67,68]. The scalability
of LTNs has not been addressed other than in qualitative arguments which would
need quantitative evaluation. Our work has explored LTNs in greater detail re-
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garding their performance, scalability, and reasoning ability over different logic
types.

Reasoning Structure Emulation In a logic-based system there is transparency
at any stage in the reasoning. We cannot, of course, expect this in most neural
networks. With a network that aims to emulate reasoner behavior rather than out-
put, however, we can impose a degree of intermediate structure. This intermediate
structure allows us to inspect a network part-way through and perform a sort of
“debugging” since we know exactly what it should have learned at that point. This
is a crucial break from current thinking that advocates more and deeper opaque
hidden layers in networks that improve accuracy but detract from explainability.
Inspection of intermediate answers could indicate whether a proposed architecture
is actually learning what we intend, which should aid development of more correct
systems.

We will look at this for the simple logic ££F, reason over knowledge bases
in that logic, and then extract supports from the reasoning steps, mapping the
reasoner supports back to sets of the original knowledge base axioms. The support
thus consists of the set of original axioms from which a reasoning step conclusion
can be drawn. This allows us to encode the input data in terms of only knowl-
edge base statements. It also provides an intermediate answer that might improve
results when provided to the system. This logic data is fed into three different
LSTM architectures with identical input and output dimensionalities. One archi-
tecture, which we call “Deep”, does not train with support data but has a hidden
layer the same size as the supports we have defined. Another architecture, called
“Piecewise”, trains two separate half-systems, the first takes knowledge bases and
learns supports, and the second takes correct supports provided by the reasoner
and learns reasoner answers. The last system, called “Flat”, simply trains to map
knowledge base inputs directly to reasoner outputs for each reasoning step.

4 Summary of our Experimental Settings & Evaluations
4.1 RDFS Reasoning with Memory Networks
4.1.1 Problem Setting

We begin with reasoning for the simplest logic under consideration: RDFS. A
plethora of embeddings for RDFS have been proposed [15,78,49,81,75], but we
were not aware of an embedding that has the two key ingredients (considering
logical structure and ignoring entity strings) we consider necessary for the de-
ductive reasoning task. We thus first consider a hand-coded embedding where all
RDFS URIs not in the RDF or RDFS namespaces are mapped to a random inte-
ger from a pre-defined set {a1,...,an}, were n is the upper bound of the size of
any knowledge base to be considered. URIs in the RDF/RDFS namespace are not
renamed as the ‘types’ of entities and relationships are important to the deductive
reasoning process using the RDFS deduction rules as exemplified in Figure 2. This
normalization not only plays the role of “forgetting” irrelevant label names, but
also makes it possible to transfer learning from one knowledge graph to the other.

After normalization, we must map a knowledge graph of RDFS triples to a
numerical multi-dimensional tensor. This could be done in several ways. Here, we
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map each normalized URI to a vector in R%, where d is the embedding size. Then
we can map each element in the RDF triple to a corresponding (d-dimensional
vector, and finally the full knowledge graph into a (d X k)-tensor, where k is the
number of triples in the knowledge graph. We use an end-to-end memory network
architecture (MemN2N) [73] where the network learns memory cell embeddings at
the same time as the rest of the model weights, including attention mechanisms.

For this and for other approaches, we conjecture that reasoning depth ac-
quired by the network will correspond to both: (i) the number of layers of the
DNN model; and (ii) the ratio of deep versus shallow reasoning required to per-
form the deductive reasoning. This is because forward-chaining reasoners (which
are standard for RDF(S), ££T, and Datalog) iteratively apply inference rules in
order to derive new entailed facts. In subsequent iterations, the previously derived
facts need to be taken into account. The number of sequential applications of the
inference rules required to obtain a given logical consequence can be understood as
a measure of the “depth” of the deductive entailment. Typically, one expects the
number of entailed facts over the number of inference rule applications to follow
a long-tail distribution, which means that in training data, “deep” entailments
would be underrepresented, and this may cause a network to not actually acquire
deep inference skills. Thus, we have conducted experiments with different training
sets, possibly overrepresenting “deep” entailments, to counter this problem. Fur-
thermore, a naive expectation on the trained network would be that each layer
performs something equivalent to an inference rule application. If so, then the
number of layers would limit the entailment depth the network could acquire, but
we have yet to assess this assumption experimentally.

In terms of scalability, we have put a global limit on the size of knowledge
graphs a trained system will be able to handle, as required training time can be
expected to grow super-linearly in the size of the knowledge graphs. A practical
solution to this problem may be to use a clustering or path ranking algorithm [47]
that filters away irrelevant triplets or extracts sets of all paths that connect query-
entity pairs. This way we may be able to decrease the memory size substantially
and attempt to train on knowledge graphs with tens of thousands of triples. The
contribution of our work, however, is on the fundamental capabilities of deep
learning approaches to perform deductive reasoning, so we do not yet report on
scalability aspects.

4.1.2 Evaluations

‘We now present and discuss our evaluation and results. We obtain training and
test data from Linked Data Cloud website!! and LOD laundromat'?. The can-
didate entailments are composed of true entailments inferred by Jena!'® and false
entailments generated by replacing a random element of a present or entailed triple
with another random element of the same rdf:type. The specifics of the datasets,
memory network architecture and training hyper-parameters are detailed in [26].
Our evaluation metrics are average of precision and recall and f-score for all the
KGs in the test dataset, obtained for both inferred and non-inferred sets of triples.

11 https://lod-cloud.net/
12 http://lodlaundromat.org/
13 https://jena.apache.org
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Training Datasct oot Datanot Valid Triples Class Tvalid Triples Class Acouracy
Precision Recall F-measure | Precision Recal

/Sensitivity /Specificity
T-Centric Dataset Tinked Data 03 98 96 98 93 9% 96
Dataset (90%) | OWL-Centric Dataset (10%) | 88 91 89 90 88 89 90
ow ric Dataset OWL-Centric Test Set 79 62 68 70 84 7% 69
Synthetic Data 49 40 52 54 42 52
Linked Data * 98 70 o1 16 27 86
2 Linked Data * 72 67 67 56 61 91
(90%) * 72 75 74 81 77 80
68 62 62 50 54 58
. 57 65 66 82 73 73
OWL-Centric 51 40 17 52 38 51
OWL-Centric Dataset * 23 25 52 80 62 50

Bascline

OWL-Centric 73 98 3 o1 6 [ 3
OWL- (90%) 81 83 81 81 81 81 82
OWL-Centric Dataset, 62 84 70 80 40 8 61
OWL-Centric Dataset 35 41 32 48 55 45 48

“ More Tricky Nos & Balanced Dataset  ”Completely Different Domain

Table 3 Experimental results of proposed model

We also report the recall for the class of negatives (specificity) by calculating the
number of true negatives. Besides, we have done zero-padding to the batches of
100 queries. Thus we need to introduce another class label for zero paddings in
the training and test sets. We have not considered the zero-padding class in the
calculation of precision, recall and f-measure. Through our evaluations, however,
we have observed some missclassifications from/to this class. Thus, we report ac-
curacy as well to show the impact of any such mistakes.

To the best of our knowledge there is no architecture capable of performing de-
ductive reasoning over unseen RDFS KGs. Hence, we have used a non-normalized
embedding version of our memory network as a baseline. Our technique outper-
forms the baseline as depicted in Table 3.

A further, even more prominent advantage of utilizing our normalization model
is its training time duration. Indeed, this huge time complexity difference is because
of the notable size difference of embedding matrices in the original and normalized
cases. For example, the size of embedding matrices for the normalized OWL-
Centric dataset is 3,033 x 20 compared to 811,261 x 20 for the non-normalized
one (and 1,974,062 x 20 for Linked Data which is prohibitively big). This causes
a significant decrease in training time and space complexity and hence has helped
improve the scalability of our memory networks. In the OWL-Centric dataset, for
instance, the space required for saving the normalized model is 80 times less than
the intact model (= 4G after compression). Nevertheless, the normalized model
is almost 40 times faster to train than the non-normalized one for this dataset.
Our normalized model trained for just a day on OWL-Centric data but achieves
better accuracy, whereas it trained on the same non-normalized dataset more than
a week on a 12-core machine.

To further investigate the performance of our approach on different datasets,
we have run our approach on multiple datasets with various characteristics. The
performance across all variations are reported in Table 3. As the table shows,
beside our strikingly good performance compared to the baseline, there are a
number of other interesting findings: Our model shows even better performance
on the Linked Data task while it has trained on the OWL-Centric dataset. We
believe that this may be because of a generally simpler structure of Linked Data,
but validating this will need further investigation. The majority of our few false
negative instances relates to the inability of our approach to learn reflexivity, that
is, to infer that any class is a subclass of itself.
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Valid Triples Class Tnvalid Triples Class

Training Dataset Test Dataset Procision | Recall | Fmeasure | Precision | Recall | F-mmeasure | ACCUray
OWL-Centric Dataset Linked Data 9 97 95 97 93 95 28
OWL-Centric Dataset (90%) | OWL-Centric Dataset (10%) | 85 92 88 92 83 87 76
OWL-Centric Dataset OWL-Centric Test Set * 73 80 75 80 67 71 61
OWL-Centric Dataset Synthetic Data 52 43 16 51 60 54 51

“ Completely Different Domain.
Table 4 Ablation Study: No Positional Encoding
F— Top 1 Top 2 Tiop 3 Top 1 Tiop 5 Top 6 Top 7 Tiop 8 Tiop 0 Top 10
atase T% | D% | F% | D% | F% | D% | F% | D% | F% | D% | F% | D% | F% | D% | F% % | F% ] D% [F% [ D%
OWLContric®| - | 8 | - [ 67 | - [2a | - | 1 [ - [ - | - - 5 5 5
OWL-Centric® | 42 5 78 | 64 | 44 | 30 6 1 -
Tinked Data® | 88 | 31 | 03 | 50 | 86 | 10 - -
Linked Data® | 86 | 34 | 93 | 46 | 88 | 20 - - - - - - - - B B B B B B
Synthotic 3% [ 003 | 44 | 142 | 32 | T | 33 | 156 | 33 | 300 | 33 | 6.03 | 33 | 1146 | 31 | 2048 | 31 [ 3125 | %8 | B.65%
* Training set " Completely different domain ¢ LemonUby Ontology @ Agrovoc Ontology

Table 5 F-measure and Data Distribution over each reasoning hop

Our algorithm shows poor performance when it has trained on the OWL-
Centric dataset and tested on the tricky Linked Data. In that case our model
has classified a majority of the triples to the “yes” class and this has caused
the low specificity (recall for “no” class) of 16%. This seems inevitable since the
negative triples are very similar to the positives ones, making differentiation more
complicated. However, training the model on the tricky OWL-Centric dataset has
improved that by a large margin (more than three times).

For our particularly challenging synthetic data, performance is not as good,
and this may be the result of the unique nature of this dataset that includes
much longer reasoning chains compared to non-synthetic data. We have trained
our model only on real-world datasets; it may be interesting to investigate the
results of training on synthetic data, but that was out of scope of our work.

It appears natural to analyze the reasoning depth acquired by our network.
We hypothesize that the reasoning depth acquired by the network will correlate
with both the network depth, and the ratio of deep versus shallow steps required
to conduct the deductive reasoning. Forward-chaining reasoners iteratively apply
inference rules in order to derive new entailed facts. In subsequent iterations, the
previously derived facts need to be taken into consideration. To gain an intuition
of what our model has learned in this respect, we have emulated this symbolic
reasoner behavior in creating our test set. We first started from our input KG Ko
in hop 0. We then produced, subsequently, KGs of K7i,..., K, until no new triples
are added (i.e. Kn41 is empty) by applying the RDFS inference rules from the
specification: The hop 0 dataset contains the original KG’s triples in the inferred
axioms, hop 1 contains the RDFS axiomatic triples. The real inference steps start
with K, where n >= 2. Table 5 summarizes our results in this setup.

Unsurprisingly, the result for synthetic data is poor. This may be because of
the huge gap between the distribution of our training data over reasoning hops
and the synthetic data reasoning hop length distribution as shown in the first row
of Table 5. From that, one can see how the distribution of our training set affects
the learning capability of our model. Apart from our observations, previous studies
[20,65,82] also acknowledged that the reasoning chain length in real-world KGs
is limited to 3 or 4. Hence, a synthetic training toy set would have to be built as
part of follow-up work, to further analyze the reasoning depth issue.

Furthermore, a naive expectation would be that each network layer would
perform processing equivalent to an inference rule application. If this is the case,
then the number of layers would limit the entailment depth the network could
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Fig. 3 PCA projection of embeddings for the vocabulary

acquire. We assessed this assumption experimentally. For this purpose, we have
done 10 experiments (K=1 to 10) to assess the effect of changing the number of
computational hops on our results, over the OWL-Centric Dataset. Interestingly,
our results suggest that our model is able to get almost the same performance with
K=1, and furthermore the F-measure remains almost constant when increasing K
stepwise from 1 to 10. This shows us that multi-hop reasoning can already be
done using one-hop attention of memory networks over our training set, and that
increasing the of number of hops does not hurt performance. This suggests that
each attention hop of our network is able to conduct more than one naive deductive
reasoning step. At the same time, this also demonstrates robustness of our method
against change of its structure.

General Embeddings Visualization The PCA projections of the embedding learned
in the first memory cell of the network are shown in Figure 3. The PCA projection
reveals how the network learns to differentiate RDF/RDFS namespace relations
from the random strings assigned to entity and relational names, and that it learns
meaningful similarities between RDF/RDFS relations expected when performing
deductive reasoning.

Ablation Study We further performed an ablation study where we remove posi-
tional encoding from embeddings and compare the results to assess their impact.
The idea behind positional encoding is keeping order of elements in the triples
into account. Here instead we are using bag of words and do not take ordering of
elements in each triple into account. The results have been listed in Table 4. As
anticipated, removing the positional encoding results in a performance decrease for
all of our experiments in terms of accuracy. Indeed, through more detailed analysis
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of the result for our first model, we found that it classifies all zero-paddings to the
negative class. That is the explanation for the huge gap of accuracy and f-measure
in that model. Nevertheless, removing positional encoding does not decrease the
performance for some of our experiments substantially. Indeed, this is not prac-
tically surprising in light of the fact that orderless representations have always
shown tremendous success in the NLP domain even when order matters.

4.2 Deductive Reasoning Capabilities of Logic Tensor Networks
4.2.1 Problem Setting

Logic Tensor Networks (LTNs) are meant to provide a logical framework grounded
in a vector space. However, learning in machine learning happens by reducing
errors, and the logic learned in the space might not be as perfect and consistent
as expected. Nevertheless, being able to logically query the vector space is an
important asset of LTNs that makes the model very useful under an interpretability
point of view.

In the next section we are going to evaluate LTNs on two different tasks: the
first one, deductive reasoning is meant to show how effective LTNs are as a
deductive reasoning tool. We will train LTNs and use them to infer facts about an
unseen predicate, checking how well LTNs can learn using rules. In the second task,
reasoning with pre-trained entity embeddings we will show that that it is
possible to combine LTNs with pre-trained entity embeddings [10] to account for
both logical reasoning and a more general similarity based reasoning. Eventually,
we are going to show a few more details about LTN scalability.

4.3 Evaluations

Deductive Reasoning. The first task we want to test for LTNs is deductive
reasoning: given some data in the form of instantiated axioms and a set of rules,
how well can LTNs combine these two to infer new knowledge? The experiment
we describe here has been obtained after searching for the best parameters, as
described in [9]. The results we show use the harmonic mean as aggregator, 10
dimensional embeddings and 10 neural tensor layer. All the experiments described
in this section can be replicated using code, data and parameters we release and
describe in the online repository.'*

The setting we are going to consider is described in Figure 4, where we show
nodes that represent people and edges that represent parental relationships (for
example, P is parent of S and thus parent(P,S)).

Our objective in this context is another predicate, ancestor. What we want
to test is the ability of LTNs in generalizing towards this new predicate, without
having access to data that describe it: can LTNs, from the set of all parent instan-
tiated atoms and with the aid of some transitivity axioms, deduce the ancestor
relations? For example, can LTNs, after training, correctly deduce ancestor(C, S)
and ancestor(D, N)? We will refer to this set of ancestor instantiated axioms as

14 nttps://github.com/vinid/ltns-experiments
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Fig. 4 Representation of the parental relationships in the P dataset

K B®. We also test how the model performs over the set of ancestor formulas that
require multi-hop inferences (that is, those that cannot be directly inferred from
Va,b € P : parent(a,b) — ancestor(a,b)), and those ancestors pairs for which
the parent pair is false (for example, ancestor(C, S)). We will refer to this set of
axioms as K Bf;jsereq- This operation is done to check if LTNs are able to pass
information from the parent predicate to the ancestor predicate and whether this
is enough to give to the network the ability to make even more complex inferences
that are related to chains of ancestors.

The representation for the ancestor predicate should be generated from knowl-
edge in the axioms, since no data about it is provided.

LTNs will thus be trained on all parent atoms and to the following universally
quantified rules. These rules are enough to complete the knowledge base in first-
order logic, and we want to see if we can do the same with LTNs.

— Va,b € P : parent(a,b) — ancestor(a,b)

— Va,b,c € P : (ancestor(a,b) A parent(b, c)) — ancestor(a, c)
— Ya € P : —parent(a, a)

— Va € P : —ancestor(a, a)

— Va,b € P : parent(a,b) — —parent(b,a)

— Va,b € P : ancestor(a,b) — —ancestor(b, a)

After training, LTNs on K B® have an F1 score of 0.77. However, if we only
consider K B%;jcreq, the model correctly infers 22 ancestors while generating 25
false positives, thus generating an F1 that is equal to 0.62. The network seems to
be able to fit the data well, but multi-hop inferences are still difficult to predict.

To provide a better understanding of this experiment we decided to add two
novel axioms to the previous set of axioms. The two axioms we add explicitly
describe the relationships between the two predicates:

— Va,b,c € P : (ancestor(a,b) A ancestor(b, c)) — ancestor(a,c)
— Va,b,c € P: (parent(a, b) A parent(b, c)) — ancestor(a,c)
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Table 6 Ancestor completion task with different number of axioms. Value out of the paren-
theses are computed over the complete ancestor knowledge base, K B%, while those within
the parenthesis are computed only on those axiom that require require multi-hop inferences,

a
KBfmltered'

Type F1 Precision Recall

Six Rules  0.77 (0.62)  0.64 (0.47)  0.96 (0.92)
Eight Rules  0.85 (0.72)  0.80 (0.66)  0.89 (0.79)

Table 6 shows what happens when we extend the previous set of rules (Siz

Rules) with the two novel rules (Eight Rules), tested again on the ancestor dataset.
‘We use F1 measure, precision and recall as evaluation metrics. Results show that
the added rules are beneficial to the learning process. This result offers an in-
teresting point of view: adding more rules that under a logical point of view are
redundant (they can be inferred from the six rules), is helpful to a model that
is trained in a machine learning context. This is because the model will see the
examples more times, given that there are now more axioms.
Reasoning with Pre-trained Entity Embeddings. When we use logics it is
difficult to encode knowledge represented by a more general, commonsense under-
standing of the world. For example, realizing that cats are similar to tigers might
help in inferring something about cats. This fact allows for extended reasoning: if
we know that tigers are mammals, then even though we know nothing about cats
we can use its similarity to infer that also cats are mammals. This similarity can
be captured by pre-trained embeddings [55] commonly used to give a vector repre-
sentation to each word; in these embeddings words that occur in similar contexts
will have similar vectors.

However, we are interested in the embedding of logical constants. Here, we make
use of Knowledge Graph Distributional Entity Embeddings described in [10], where
Entity Embeddings (EEs) are generated from entity-to-entity co-occurrence in text
that has been annotated with an entity linker. Since both dbr:tiger'® and dbr:cat
appear in similar contexts, they will have similar vectors. These embeddings are
100-dimensional and the entities come from DBpedia.'®

The question that is left to answer is: “how do we combine these embeddings
with LTNs?” LTNs treat constants as vectors and thus it is possible to use pre-
trained embeddings in place of those vectors. If we freeze these representations,
we can use LTNs in a zero-shot fashion: at test time, novel entities for which we
have an embedding can be used to test the system, even though they were never
seen in training. This makes LTNs more general and more interesting to use. All
the experiments described in this section can be replicated using code, data and
parameters we release and describe in the online repository.”

We follow this procedure to generate our reference knowledge base to test
the combination between LTNs and entity embeddings: we query the DBpedia
SPARQL endpoint for entities of the following classes: Mammal (0.38%), Fungus
(0.17%), Bacteria (0.03%), Plant (0.42%). Note that some classes are much more
frequent than others. We generate the transitive closure with respect to the pred-

15 We will use the prefix dbr: to refer to DBpedia entities.
16 https://wiki.dbpedia.org/
17 nttps://github.com/vinid/logical_commonsense
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icates Animal, Eukaryote, and Species, collecting the class memberships for each
entity (for example, -mammal(dbr:cat), eukaryote(dbr:cat), species(dbr:cat) . In-
deed, we also generate all the negative instantiated atoms like, = fungus(dbr:cat).
Considering positive and negative instantiated atoms, the knowledge base used in
these experiments contains 35,133 elements.

We now describe the three settings that we have defined to evaluate our pro-
posal. The idea behind these three settings is to show three different aspects of
how inference can be supported by the combination of LTNs and embedded rep-
resentations.

— S1. In training, we have 1,400 positive atoms. In the test phase we ask the
models to find all the other 7,077 atoms that are exclusively related to the
entities found in the 1,400 atoms. Models have to infer something about the
instance “dbr:cat” even if the only atom that was present in the training set was
Species(dbr : cat). Objective: evaluate the performance of the algorithms in
a task in which the models have only access to positive atoms and not negative
ones.

— S2. In training, we have 7,026 atoms both positive and negatives. In the test
phase we ask the models to find all the other 20,890 atoms (positive and nega-
tive). Objective: evaluate the performance in a task in which the models can
access to both positive and negative atoms. Also, note that each entity in the
test set appears also in the training set.

— S3. In training, we have 1,756 atoms. The models are now asked to infer the
value of the rest of the entire dataset 33,377 atoms (positive and negative).
Objective: evaluate the performance in a task in which both positive and
negative atoms are given, but the test set will also contain atoms of entities
that were not present in the training set. The models will need to rely on the
pre-trained embeddings to infer the values of predicates with respect to unseen
entities.

To support logic models, we define 22 universally quantified rules that are used
to support inference, here is a sample of the rules we give to the model.

Vz(plant(z) — eukaryote(z))
Vz(mammal(z) — animal(z))
Vz : (mammal(z) — Animal(z))
Va(plant(xz) — ~mammal(z))
Vz : (mammal(z) — —plant(z))
Vz : (mammal(z) — - fungus(x))

(
(
(
Yz : (mammal(x) — —bacteria(x))
Vz : (bacteria(z) — ~Animal(z)
(

Va(fungus(x) — —animal(x))

We are going to refer to our proposed approach, the LTNs model initialized
with entity embeddings, as LT Ngg.
Baseline. We consider the following three algorithms as alternative methods on
the setting we have defined:
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— Simple LTN architecture not initialized with pre-trained embeddings.

— Probabilistic Soft Logic [2] will be trained on both atoms and universally quan-
tified formulas. We use the tool provided by the authors with default parame-
ters.'®

— A simple deep neural network (DNN) that takes as input the entity embeddings
and it is trained to assign 0 or 1 to instantiated atoms, we explored several
architectures often obtaining similar results. The DNN separately embeds the
pre-trained representations of entities and a one-hot representation of predi-
cates in 20 dimensions, concatenates them and applies another transformation
to 1 dimension plus a sigmoid function to predict a binary score. We use 20%
of the input dataset for validation and it is used to early stop the training with
a patience of 10. The DNN is not able to use the domain theory and will need
to rely on the data.

Table 7 F'1 score per tested class.

S1 Ap1 Fpr Mp1i Ppi Brp1 Ep1 Ski

LTNggp 0.81 0.74 0.84 0.66 0.52 0.97 1.00
LTN 0.40 0.14 0.12 0.10 0.03 093 1.00
PSL 0.54  0.19 0.15 0.14 0.07 0.93 1.00

S2 Arp1 Fp1 Mpi Ppi Brp1 Er1 Spi

LTNgg 0.91 0.86 0.91 0.86 0.63 0.99 1.00
DNN 0.93 0.82 0.93 0.87 0.54 0.99 1.00
PSL 0.56 0.20 0.20 0.17 0.10 0.88 0.98

S3 Ap1 Fpr Mp1 Prpi Brp1 Erp1 Sri

LTNgp 0.88 0.80 0.89 0.82 0.60 0.99 1.00

DNN 0.87 0.64 0.85 0.77 0.47 0.98 1.00

In Table 7 we report the results of the various models using the F1 measure.
To give a better understanding of the results, the F1 is reported on a predicate
level.
Experiments on S1 In this setting we compare LT Ngg with LTN and PSL.*°
The LT Ngg approach is the best performing one. Interestingly, while PSL seems
to have better results than LT N, their difference is not huge. Also note that as
simple rule-based baseline model that can use the 22 axioms we previously defined
would have been able to infer only 45% of the atoms correctly (with a 100%
precision)
Experiments on S2 In this setting, the models are trained on both positive and
negative atoms and the test set contains atoms of seen entities. PSL performance
is close to the one seen in the setting S1, and it is not at the level of the other
two models used. The performances of LT Ngg and DNN are comparable. Thus,
in this settings the domain theory does not seem to provide increases in perfor-
mance. However, with LTNs we can now logically query the model, showing better
explainablity.

18 https://psl.lings.org/
19 DNNSs cannot be used because the training consists of just positive instantiated atoms, the
network would eventually just learn to output 1 for every input.
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Experiments on S3 In this setting, the models are trained on both positive and
negative atoms, however the test set might contain atoms of entities that have
never been seen in the test set. The only element that can be used for inference is
the pre-trained embedding representation. LT Ng g generalizes slightly better than
the DNN. It is interesting to see that the LT Ng g model shows better performances
for the classes Fungus and Bacteria, even if the general F1 is lower than the one
shown in the previous setting.

After-training Inference in LTNs One last experiment we ran was meant to
show a different perspective on this kind of exploration, including axioms that are
more relevant. Table 8 reports some examples. In the first part of the table we
show results related to the task of the previous section. It is possible to see that
the model is able to effectively learn that some species are not overlapping.

Table 8 The truth values of novel axioms.

Axiom Truth
Vz(species(xz) — animal(x)) 0
Vz(eukaryote(z) — —bacteria(z)) 0.73
Jz(eukaryote(z) A —plant(z)) 1

Vz,y, z(nationality(x, y) A locatedIn(y, z) — bornin(z, z)) 0.33
Jz(nationality(z, Canada) AbornIn(z, Montreal)) 1
Va(bornIn(z, New York) — nationality(z, United States)) 0.88

We additionally extended this experiment by considering KG triples from DB-
pedia of the following types: nationality(Person, Country), bornIn(Person, City)
and locatedIn(Clity, Country). In total, we collected 200 training examples and we
defined some simple axioms like

Yz, Vy, Vz(bornIn(z,y) A locatedIn(y, z) — nationality(z, z))

to be used during training (the ones shown in the Table are not present in this
set). Even with a few training samples, it is interesting to look at the results:
LTNs can learn to reason on non-trivial properties of the data. For example, if
you are born in New York, you are American. Though this small experiment
is constrained by current implementation limitations of LTNs [8], it also shows
the promising quality of this model. These results show that the combination
of subsymbolic pre-trained information, entity embeddings, and logical reasoning
capabilities provided by LTNs are an effective way to solve completion tasks even
in contexts in which there is missing information.

4.4 Scalability

This last experiment is meant to show how long training with different combina-
tions of predicates and arguments can take with LTNs. To do this, we generate
different universally quantified rules, with a variable number of arguments and
with different predicate arity and test how long LTNs needs to do do the training
epochs. In detail, we consider n predicates with arity that goes from 1 to 3:
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— Vz : predy(z)
— Vz,y: predn(z,y)
- V:E, Y,z p’rEdn(zv Y, Z)

Also, we introduce k different constants that will be the domain of the Vpredx ().
In our setting k and n will take the following values [4, 8, 12, 20, 30]. This means
that in the setting with k = 4 constants and n = 8, for predicates of arity 3 we in-
troduce 4 constants (a, b, ¢, d) in the model and 8 predicates (predi, preda, ..., preds)
and each predicate is universally quantified (e.g., Vz,y, z : predi(z,y, z)). We run
the model for 5000 epochs with an embedding size equal to 10.
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Figures 5, 6, 7 show the seconds needed to complete the learning phase for each
setting. These results clearly show that what impacts the most in the models is
the arity of the predicate: this requires the model to create multiple combinations
of the inputs to pass to the network, slowing the entire training procedure.

4.5 Reasoning Emulation for the Description Logic ££7

A major roadblock to progress for neuro-symbolic reasoning is that solutions and
evaluations which work well for logic, or for deep learning and machine learning,
do not work well in the opposite, and likely do not further the goal of integra-
tion. In this section we demonstrate an approach that embraces the liminality of
integrating deep learning and deductive logic. Our approach is by its very nature
ill-suited to either neural networks or logic alone. But it tries to avoid the pitfalls
of unintentionally favoring one paradigm over the other, aiming instead to grasp
at something new in the space between.

4.5.1 Problem Setting

In a deductive reasoning system the semantics of the data is known explicitly.
Why then would we want to blindly allow such a system to teach itself what is
important when we already know what and how it should learn? Possibly we don’t
know the best ways to guide a complex network to the correct conclusions, but
surely more, not less, transparency is needed for integrating logic and deep learn-
ing. Transparency often becomes difficult when we use extremely deep or complex
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Table 9 ££1 Completion Rules

(1) ACC CcCCD =EACD
(2) ACCy ACCy; CinNC;EDEACD
3) ACC CC3R.D EAC3RD
(4) AC3R.B BCC JRCCD EALCD
(5) AC3S.D SCR EAC3RD
(

6) AC3IR,.C CC3R2.D RioRaC RI=ALC3R.D

Table 10 Support Generation

New Fact | Rule | Support
Step 1 Cl1C C3 (1) ClC C2,C2C C3
ClC C4 (4) C1LC C2,C1 C3R1.C1,3R1.C2 C C4
C1 C 3R1.C3 (3) C1 C C2,C2 C 3R1.C3
C1 C 3R2.C1 (5) C1 C 3R1.C1,R1 C R2
C1 C 3R4.C4 (6) C1 C 3R1.C1,R1 o R3 C R4,C1 C 3R3.C4
Step 2 ClC Cs (2) C3nc4cC C5C1LC C2,C2C C3,C1 C C2,C1 C3R1.CI,IRL.C2C C4

networks that cannot be reduced to components. It also makes things difficult
when we pre-process our data to improve results by training the system to learn
embeddings. When we do this we struggle to tell if it was the embedding or the
system itself or one of a dozen other things that might have caused an improve-
ment. In response to these and other concerns we have performed an evaluation
that tests whether a neural network is in fact capable of learning the structure,
and not just the output, of a ££7 reasoning task without assistance.

It is a well established result that any ££7 knowledge base has a least fixed
point that can be determined by repeatedly applying a finite set of completion rules
that produce all entailments of a desired type [7,43]. In other words, we can say
that reasoning in £ L often amounts to an interconnected sequence of applications
of a set of pattern-matching rules. One such set of rules, the set we have used in
our experiment, is given in Table 9. The reasoning reaches completion when there
are no new conclusions to be made. Because people are usually interested most in
concept inclusions and restrictions, those are the types of statements we choose to
include in our reasoning.

After reasoning finishes we are able to recursively define supports for each
conclusion the reasoner reaches. The first step, of course, only has supports from
the knowledge base. After this step supports are determined by effectively running
the reasoner in reverse, and replacing each statement that is not in the original
knowledge base with a superset that is, as you can see by the colored substitutions
in Table 10. When the reasoner proved the last statement it did not consider all
of the supports, since it had already proved them. It used the new facts it had
learned in the last iteration. But we have drawn their supports back out so that
we can define a fixed set of inputs exclusively from the knowledge base.

To provide sufficient training input to our system we use a synthetic generation
procedure that combines a structured forced-lower-bound reasoning sequence with
a connected randomized knowledge base. This allows us to rapidly generate many
normal semi-random £ knowledge bases of arbitrary reasoning difficulty that
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Initial Axioms:

ClC C2 C1 C 3R1.C1 C2 C 3R1.C3 JR1.C2 C C4
C2LC C3 C1 C 3R2.C3 C1 C 3R3.C4 R1 C R2
C3nc4cC Cs C2 C 3R2.C3 C2 C 3R1.C3 R1oR3LC R4
Entailments Step 1:

Cl1C C3 C1 C 3R1.C3 C1 C 3R2.C1

ClC C4 C1 C 3R4.C4

Entailments Step 2:

seed; = C1 C C5

Fig. 8 First Iteration of Sequence in an Example

always use all of the ££7 completion rules. An example of one iteration of the
two-part sequence is provided in Figure 8. We also import data from the SNOMED
2012 ontology and sample connected subsets with a minimum of reasoning activ-
ity to ensure that our method is applicable to non-synthetic data. SNOMED is a
widely-used, publicly available, ontology of medical terms and relationships [22].
SNOMED 2012 has 39392 logical axioms, some of which are complex, but this can
be normalized in constant time to a logically equivalent set of 124,428 normal form
axioms. We require that the samples be connected because any normal knowledge
base is connected, and it improves the chances that the statements will have entail-
ments. The reasoning task for SNOMED is more unbalanced than for the synthetic
data. It is trivial for a reasoner to solve any ££1 knowledge base type. However,
we observe that random connected sampling tends to favor application of rules 3,
5, and 6 (see Table 9) much more heavily than others, so the neural system will
have a more difficult time learning the overall reasoning patterns. This imbalance
is likely an artifact from SNOMED because it seems to recur in different sample
sizes with different settings, though we acknowledge that it could be correlated
somehow with the sampling procedure.

4.5.2 Evaluation

Our system attempts to learn the structure of a reasoning task rather than rea-
soning answers. This is not to say we do not care about reasoning answers, or
that they do not matter. Those values are reported for our system. However if
reasoning structure is learned well enough then a system should emulate the same
behavior and correct answers should follow.

If we examine the example output from the synthetic data inputs in Table 11,
it is clear that it is getting very close to many correct answers. When it misses it
still appears to be learning the shape, and this makes us optimistic about its future
potential. The fact that most answers are close but not exact fits with our strategy
of training to learn structure rather than answers. The SNOMED predictions are
much more dense and do not fit well into a table, but we have included a few good
examples with the original data labels translated into English sentences.
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Table 11 Example Synthetic Output

Correct Answer | Predicted Answer

Step 0 | C9 C C11 C8 C C9
C2 E C10 ClEC9
C9 C C12 Cc8 C C9
C7 E C6 C8 C JR4.C9

C9 C 3R4.C11 C1 C 3R5.C9
C2 C 3R4.C9 C8 C 3R4.C9
C9 € 3R5.C9 C9 C 3R5.C9
C2 C 3R5.C11

C9 C IR7.C12
C2 C 3R6.C12

Step 1 | C9C C13 C8 C C12
C2C Cll C2C C10
C2C C12 C1C Cll

C2 C 3R4.C11 | C1 C 3R3.C12
C2 C 3R5.C9 C1 C 3R4.C8

C2 C 3R7.C12
Step 2 | C2 C C13 C1C C12

Table 12 Example SNOMED Outputs

Correct Answer | C6 C JR4.C1

Meaning if something is a zone of superficial fascia, then
there is a subcutaneous tissue that it is PartOf

Prediction C6 C JR4.C3

Meaning if something is a zone of superficial fascia,

then there is a subcutaneous tissue of palmar
area of little finger that it is PartOf

Correct Answer | C8 C JR3.C2

Meaning if something is a infrapubic region of pelvis,
then there is a perineum that it is PartOf

Prediction C9 C JR3.C2

Meaning if something is a zone of integument,

then there is a perineum that it is PartOf

For our evaluations we use three unique edit-distance measurements. Edit dis-
tance is used because it captures the degree to which each predicted statement
misses what it should have been better than a simple accuracy number. We have a
naive “Character” Levenshtein distance function that takes two unaltered knowl-
edge base statement strings and computes their edit distance [80]. However, be-
cause some names in the namespace are one digit numbers and other names are
two digit numbers, we include a modified version of this function, called “Atomic”,
that uniformly substitutes all two digit numbers in the strings with symbols that
do not occur in either. Since there cannot be more than eight unique numbers
in two decoded strings there are no issues with finding enough new symbols. By
doing the substitutions we can see the impact that the number digits were having
on the edits from the Atomic Levenshtein distance. Finally we devise a distance
function that is based on our encoding scheme. The “Predicate” Distance method
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Table 13 Average Statement Edit Distances with Reasoner

Atomic Levenshtein Distance | Character Levenshtein Distance | Predicate Distance

From To | Average | From | _To | Average | From | _To | Average

Synthetic Data

Piecewise Prediction| 1.336599 | 1.687640 | 1.512119 | 1.533115 | 1.812006 | 1.672560 | 2.633427 | 4.587382 | 3.610404

Deep Prediction 1.256940|1.507150| 1.382045 | 1.454787|1.559751 | 1.507269 | 2.504496 | 3.552074 | 3.028285
Flat Prediction 1.344946 | 1.584674 | 1.464810 | 1.586281 | 1.660409 | 1.623345 | 2.517655 | 3.739770 | 3.128713
Random Prediction | 1.598016 | 1.906369 | 1.752192 | 1.970604 | 1.289533 | 1.630068 | 5.467918 | 10.57324 | 8.020583

SNOMED Data

Piecewise Prediction| 1.704931 [2.686562]2.195746] 2.016249 | 2.862737 | 2.439493 | 6.5
Deep Prediction 1.759633 | 3.052080 | 2.405857 | 2.027190 | 3.328850 | 2.678020 |4.5
Flat Prediction 1.691738 | 2.769542 | 2.230640 |1.948757 | 2.991328 | 2.470042 | 5.5
Random Prediction | 1.814656 | 3.599629 | 2.707143 | 2.094682 [1.621700| 1.858191 | 5.1

56592 [ 5.857769 | 6.207181
77427 | 6.179389 |5.378408
48226 | 6.665659 | 6.106942
1169093 |12.392325 | 8.780709

Table 14 Average Precision Recall and F1l-score For each Distance Evaluation

Atomic Levenshtein Distance | Character Levenshtein Distance | Predicate Distance

Precision | Recall | Fl-score | Precision | Recall | Fl-score | Precision | Recall | Fl-score

Synthetic Data

Piecewise Prediction| 0.138663 | 0.142208 | 0.140412 | 0.138663 | 0.142208 | 0.140412 | 0.138646 | 0.141923 | 0.140264
Deep Prediction 0.154398 | 0.156056 | 0.155222 | 0.154398 | 0.156056 | 0.155222 | 0.154258 | 0.155736 | 0.154993
Flat Prediction 0.140410 | 0.142976 | 0.141681 | 0.140410 | 0.142976 | 0.141681 | 0.140375 | 0.142687 | 0.141521
Random Prediction | 0.010951 [0.0200518| 0.014166 | 0.006833 | 0.012401 | 0.008811 | 0.004352 | 0.007908 | 0.007908

SNOMED Data

Piecewise Prediction| 0.010530 | 0.013554 | 0.011845 | 0.010530 | 0.013554 | 0.011845 | 0.010521 | 0.013554 | 0.011839
Deep Prediction 0.015983(0.0172811|0.016595 | 0.015983 | 0.017281 | 0.016595 |0.015614 | 0.017281 |0.016396
Flat Prediction 0.014414 |0.018300 | 0.016112 [0.0144140|0.018300| 0.016112 | 0.013495 |0.018300| 0.015525
Random Prediction | 0.002807 | 0.006803 | 0.003975 | 0.001433 | 0.003444 | 0.002023 | 0.001769 | 0.004281 | 0.002504

disassembles each string into only its predicates. Then, for each position in the
4-tuple, a distance is calculated that yields zero for perfect matches, absolute
value of (guessed number - actual number) for correct Class and Role guesses, and
(guessed number + actual number) for incorrect class and role matches. So, for
instance, guessing C1 when the answer is C2 will yield a Predicate Distance of 1,
while a guess of R2 for a correct answer of C15 will yield 17. Though this method
is specific to our unique encoding, we believe it detects good and bad results quite
well because perfect hits are 0, close misses are penalized a little, and large misses
are penalized a lot.

For each method we take every statement in a knowledge base completion and
compare it with the best match in the reasoner answer and random answers. While
we compute these distances we are able to obtain precision, recall, and F1-score
by counting the the number of times the distance returns zero and treating the
statement predictions as classifications. Each time the system runs it can make any
number of predictions, from zero to the maximum size of the output tensor. This
means that, although the predictions and reasoner are usually around the same
size, we have to generate random data to compare against that is as big as could
conceivably be needed by the system. Any artificial shaping decisions we made to
compensate for the variations between runs would invariably introduce their own
bias in how we selected them. Thus the need to use the biggest possible random
data to compare against means the precision, recall, and F1-score for random are
low.

Our system is trained using randomized 10-fold cross validation at a learning
rate of 0.0001 to 20000 epochs on the deep and flat systems and 10000 epochs
each for the parts of the piecewise system. The data in Table 14 shows the edit
distances calculated for the predictions against the correct answers, and 13 show
the precision, recall, and F1-score numbers that result from those distance calcu-
lations.
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It is interesting to note that by comparing Table 14 with Table 13 we can see
that on the much harder SNOMED data the deep system appears to have a better
result because of the higher F1 score, but the average edit distance, which is our
preferred alternative measure for evaluation, is not obviously correlated with the
Fl-score. This is reflective of the shift in focus from purely accuracy optimizing
systems and a more semantic type of structural learning. The “best” result will
depend on which criteria is preferred.
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Fig. 10 SNOMED Training
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A cause for this difference may be the higher training difficulty for reaching
the completion versus reaching the supports in the SNOMED data, which you can
see in Figures 9 and 10. We can speculate on the degree to which various factors
are contributing to this by comparing the piecewise architecture we have designed
with the more traditional flat and deep systems. Forcing the network to conform to
transparency-improving strategies like the piecewise network involves many trade-
offs, some of which likely sacrifice a degree of accuracy, but for a highly structured
task like neuro-symbolic reasoning, the ability to stop halfway and inspect answers
has great potential for improving integration.

Source code and experiment data is available on GitHub.2? Additional details
can be found in the original publication [25].

5 Conclusions

This paper summarizes the authors’ contributions in the neuro-symbolic integra-
tion research direction. First in the paper we examined the capability of memory-
augmented networks in performing the RDF entailment for cross-knowledge graph
deductive reasoning. Then we evaluated the deductive reasoning capability of LTNs
over first-order fuzzy logic. Finally, we examined the strengths and weaknesses of
variations of LSTM networks for ££1 reasoning. We aim to better understand
the effectiveness of each model and the desirable properties expected with respect
to three different logics (RDF, first-order fuzzy, and ££7). Such understanding
would help pave the way for future efforts in this research direction.

Indeed, the results reported herein, while providing advances on the topic of
neuro-symbolic deductive reasoning, also expose significant gaps in both the foun-
dational methods used, and in terms of issues to be solved before practical ap-
plications can be built. For the RDFS approach, precision and recall values are
good, but scalability is far beneath practical requirements. For the LTN approach,
scalability is limited to mostly toy examples. For the ££7 approach, precision and
recall values are good enough to stimulate further investigation, but are still way
below any application needs.

There is a plethora of different deep learning approaches that could be inves-
tigated for neuro-symbolic dedcutive reasoning. The verdict is still open, though
whether deductive reasoning, at reasonable scale and precision, is a problem class
that can indeed be tackled using deep learning. On a fundamental level, deductive
reasoning is known to be formally akin to topological dynamical systems (a.k.a.,
chaotic systems) [12,3,37], and thus pose a particularly hard challenge.
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Abstract

A significant and recent development in neural-symbolic learning are deep neural networks that can
reason over symbolic knowledge graphs (KGs). A particular task of interest is KG entailment, which is
to infer the set of all facts that are a logical consequence of current and potential facts of a KG. Initial
neural-symbolic systems that can deduce the entailment of a KG have been presented, but they are
limited: current systems learn fact relations and entailment patterns specific to a particular KG and
hence do not truly generalize, and must be retrained for each KG they are tasked with entailing. We
propose a neural-symbolic system to address this limitation in this paper. It is designed as a differentiable
end-to-end deep memory network that learns over abstract, generic symbols to discover entailment
patterns common to any reasoning task. A key component of the system is a simple but highly effective
normalization process for continuous representation learning of KG entities within memory networks.
Our results show how the model, trained over a set of KGs, can effectively entail facts from KGs excluded
from the training, even when the vocabulary or the domain of test KGs is completely different from the

training KGs.

Keywords

deep learning, deductive reasoning, knowledge graph entailment, neuro-symbolic

1. Introduction

For many years, reasoning has been tackled as the task of building systems capable of infer-
ring new crisp symbolic logical rules. However, those traditional methods are too brittle to
be applied to noisy automatically created KGs. [1] provides a taxonomy of noise types in web
KGs with respect to its effects on reasoning and shows the detrimental impact of noises on
the result of the traditional reasoners. With the recent revival of interest in artificial neural
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networks, the more robust neural link prediction models have been applied vastly for the com-
pletion of KGs. These methods [2, 3, 4, 5, 6] heavily rely on the subsymbolic representation
of entities and relations learned through maximization of a scoring objective function over
valid factual triples. Thus, the success of such models hinges primarily on the power of those
subsymbolic representations in encoding the similarity/relatedness of entities and relations.
Recent attempts have focused on neural multi-hop reasoners [7, 8] to equip the model to deal
with more complex reasoning where multi-hop inference is required. More recently, a Neural
Theorem Prover [9] has been proposed in an attempt to take advantage of both symbolic and
sub-symbolic reasoning.

Despite their success, the main restriction common to machine learning-based reasoners is
that they are unable to recognize and generalize to different domains or tasks. This inherent
limitation follows from both the representations used and the learning process. The major issue
comes from the mere reliance of these models on the representation of entities learned during
the training or in the pre-training phase stored in a lookup table. Consequently, these mod-
els usually have difficulty to deal with out-of-vocabulary (OOV) entities. Although the OOV
problem has been addressed in part in the natural language processing (NLP) domain by tak-
ing advantage of character-level embedding [10], subword units [11], Byte-Pair-Encoding [12],
learning embeddings on the fly by leveraging text descriptions or spelling [13], copy mecha-
nism [14] or pointer networks [15], still these solutions are insufficient for transferring pur-
poses for reasoning. [16] shows that the success of natural language inference (NLI) methods is
heavily benchmark specific. An even greater source of concern is that reasoning in most of the
above sub-symbolic approaches hinges more on the notion of similarity and geometric-based
proximity of real-valued vectors (induction) as opposed to performing transitive reasoning (de-
duction) over them. Nevertheless, recent years have seen some progress in zero-shot relation
learning in sub-symbolic reasoning domain[17]. Zero-shot learning refers to the ability of the
model to infer new relations where that relation has not been seen before in training set[18].
This generalization capability is still quite limited and fundamentally different from our work
in terms of both methodology and purpose.

Inspired by these observations, we take a different approach in this work by investigating
the emulation of deductive symbolic reasoning using memory networks. Memory networks
[19] are a class of learning models capable of conducting multiple computational steps over an
explicit memory component before returning an answer. Their sequential nature corresponds,
conceptually, to the sequential process underlying some deductive reasoning algorithms. The
attention modeling corresponds to pulling only relevant information (logical axioms) necessary
for the next reasoning step. Besides, as attention can be traced over the run of a memory
network, we will furthermore get insights into the "reasoning" underlying the network output.

This paper contributes a recipe involving a simple but effective KG triple normalization be-
fore learning their representation within an end-to-end memory network. To perform logical
inference in more abstract level, and thereby facilitating the transfer of reasoning expertise
from one KG to another, the normalization maps entities and predicates in a KG to a generic
vocabulary. Facts in additional KGs are normalized using the same vocabulary, so that the net-
work does not learn to overfit its learning to entity and predicate names in a specific KG. This
emulates symbolic reasoning by neural embeddings as the actual names (as strings) of entities
from the underlying logic such as variables, constants, functions, and predicates are insub-
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stantial for logical entailment in the sense that a consistent renaming across a theory does not
change the set of entailed formulas (under the same renaming). Thanks to the term-agnostic
feature of our representation, we are able to create a reasoning system capable of performing
reasoning over an unseen set of vocabularies in the test phase.

Our contributions are threefold: (i) We present the construction of memory networks for
emulating the symbolic deductive reasoning. (ii) We propose an optimization to this architec-
ture using normalization approach to enhance their transfer capability. We show that in an
unnormalized setting, they fail to perform well across KGs. (iii) We examine the efficacy of our
model for cross-domain and cross-KG deductive reasoning. We also show the scalability of our
model (in terms of reduced time and space complexity) for large datasets.

Related Work  On the issue of doing logical reasoning using deep networks, we mention the
following selected recent contributions: Tensor-based approaches have been used [20, 9, 21],
following [3]. However, approaches are restricted in terms of logical expressivity and/or to
toy examples [22, 20]. [1] perform Resource Description Framework (RDF) reasoning based
on KG embeddings. [23] considers OWL RL reasoning [24]. There is a fundamental difference
between these contributions and our approach, though: We train our model once, and then
the model transfers to all other RDF KGs with good performance. In the above mentioned
publications, training is either done on (a part of the) KG which is also used for evaluation, or
training is explicitly done on similar KGs, in terms of topic. More precisely, in case of [23], it
requires re-training for obtaining embeddings for new vocabularies.

2. Problem Formulation

To explain what we are setting out to do, let us first re-frame the deductive reasoning problem
as a classification task. Any given logic £ comes with an entailment relation Fp c Ty x Fg,
where Fr is a subset of the set of all logical formulas (or axioms) over £, and T is the set of
all theories (or sets of logical formulas) over L. If T k Fg, then we say that F is entailed by T.
Re-framed as a classification task, we can ask whether a given pair (T, F) € Tp x Fp should be
classified as a valid entailment (i.e., T k¢ F) holds, or as the opposite (i.e., T ¥ F). We would
like to train a model on sets of examples (T, F), such that it learns to correctly classify them as
valid or invalid inferences.

We wish to train a neural model that will learn to reason over one set of theories, and can
then transfer that learning to new theories over the same logic. This way, our results will
demonstrate that the reasoning principles (entailment under the model-theoretic semantics)
that underlie the logic have been learned. If we were to train a model such that it learns only
to reason over one theory, or a few very similar theories, then that could hardly be demon-
strated. One of the key obstacles we face with our task is to understand how to represent
training and test data so that they can be used in deep learning settings. To use standard deep
learning approaches, formulas - or even theories — will have to be represented over the real
coordinate space R as vectors, matrices or tensors. Many embeddings for RDF (i.e., KGs) have
been proposed [25, 6, 26], but we are not aware of an existing embedding that captures what
seems important for the deductive reasoning scenario. Indeed, the prominent use case explored
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for KG embeddings is not deductive in nature; rather, it concerns the problem of the discovery
or suggestion of additional links or edges in the graph, together with appropriate edge labels.
In this link discovery setting, the actual labels for nodes or edges in the graph, and as such
their commonsense meanings, are likely important, and most existing embeddings reflect this.
However, for deductive reasoning the names of entities are insubstantial and should not be cap-
tured by an embedding. Another inherent problem in the use of such representations across
KGs is the OOV problem. While a word lookup table can be initialized with vectors in an unsu-
pervised task or during training of the reasoner, it still cannot generate vector representations
for unseen terms. It is further impractical to store the vectors of all words when vocabulary
size is huge [10]. Similarly, memory networks usually rely on word-level embedding lookup
tables, i.e., learned with the underlying rationale that words that occur in similar supervised
scenarios should be represented by similar vectors in the real coordinate space. That is why
they are known to have difficulties dealing with OOV, as a word lookup table cannot provide
a representation for the unseen, and thus cannot be applied to NLI over new words [13], and
for us this would pose a challenge in the transfer to new KGs.

We thus need embeddings that are agnostic to the terms (i.e., strings) used as primitives in
the KG. To build such an embedding, we use syntactic normalization: a renaming of primitives
from the logical language (variables, constants, functions, predicates) to a set of predefined
entity names that are used across different normalized theories. By randomly assigning the
mapping for the renaming, the network’s learning will be based on the structural information
within the theories, and not on the actual names of the primitives. Note that this normalization
does not only play the role of “forgetting” irrelevant label names, but also makes it possible
to transfer learning from one KG to the other. Indeed, for the approach to work, the network
should be trained with many KGs, and then subsequently tested on completely new ones which
had not been encountered during training. Our results show that our simple but very effective
normalization yields a word-agnostic system capable of deductive reasoning over previously-
unseen RDF KGs containing new vocabulary.

3. Model Architecture

We consider a model architecture that adapts the end-to-end memory network proposed by
[19] with fundamental alterations necessary for abstract reasoning. A high-level view of our
model is shown in Figure 1. It takes a discrete set G of normalized RDF statements (called
triples) t, ..., t, that are stored in memory, a query g, and outputs a “yes” or “no” answer to
determine if q is entailed by G. Each of the normalized t; and q contains symbols coming from
a general dictionary with V normalized words shared among all of the normalized RDF theories
in both training and test sets. The model writes all triples to the memory and then calculates
a continuous embedding for G and g. Through multiple hop attention over those continuous
representations, the model then classifies the query. The model is trained by back-propagation
of error from output to the input through multiple memory accesses. We discuss components
of the architecture in more detail below.
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Figure 1: Diagram of the proposed model, for K=1

Model Description The model is augmented with an external memory component that
stores the embeddings of the normalized triples in our KG. This memory is defined as an n x d
tensor where n denotes the number of triples in the KG and d is the dimensionality of the
embeddings. The KG is stored in the memory vectors from two continuous representations of
m; and ¢; obtained from two input and output embedding matrices of A and C with size d x V'
where V is the size of vocabulary. Similarly, the query g is embedded via a matrix B to obtain
an internal state u. In each reasoning step, those memory slots useful for finding the correct
answers should have their contents retrieved. To enable this, we use an attention mechanism
for g over memory input representations by taking an internal product followed by a softmax:

pi = Softmax(u” (m;)) W
ela)
where Softmax(a;) = S—5-
Y, e

Equation (1) calculates a probability vector p over the memory inputs, the output vector o is
then computed as the weighted sum of the transformed memory contents ¢; with respect to
their corresponding probabilities p; by o = Y, pic;. This describes the computation within a
single hop. The internal state of the query vector updates for the next hop as u**! = u* + oF.
The process repeats K times where K is the number of computational hops. The output of the
K hop is used to predict the label a by passing oX and uX through a weight matrix of size
V x d and a softmax:

a = Softmax(W (uX*1)) = Softmax(W (u* + o*)).

Figure 1 shows the model for K = 1 (1 hop). The learning parameters are the matrices A, B, C,
and W.

Memory Content There is a plethora of logics which could be used for our investigation.
Here we use RDF. The RDF [27] is an established and widely used W3C standard for expressing
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KGs. An RDF KG is a collection of statements stored as triples (el, r, e2) where el and e2 are
called subject and object, respectively, while r is a relation binding el and e2 together. State-
ments can constitute base facts (logically speaking, in this case el and e2 would be constants,
and r a binary predicate) or simple logical axioms (e.g., el and e2 could identify unary prediates
or classes, and r would be class subsumption or material implication). Every entity in an RDF
KG is represented by a unique Universal Resource Identifier (URI). We normalize these triples
by systematically renaming all URIs which are not in the RDF/RDFS (Schema) namespaces as
discussed previously. Each such URI is mapped to a set of arbitrary strings in a predefined set
A = {ay, .., a,}, where n is taken as a training hyper-parameter giving an upper bound for
the largest number of entities in a KG the system will be able to handle. Note that URIs in
the RDF/RDFS namespaces are not renamed, as they are important for the deductive reasoning
according to the RDF model-theoretic semantics. Consequently, each normalized RDF KG will
be a collection of facts stored as triples {(a;, a;, ax)}.

It is important to note that each symbol is mapped into an element of A regardless of its
position in the triple, and whether it is a subject or an object or a predicate. Yet the position
of an element within a triple is an important feature to consider. Thus we employ a positional
encoding(PE) [19] to encode the position of each element within the triple. Let jth element of
ith triple be t;;. This gives us memory vector representation of each triple as m; = 3, iot;,
where o is the Hadamard (element-wise) product and J; is a column vector with the structure
Ixj = (1-j/3) - (k(1-2j/3)/d) (assuming 1-based indexing), where d is the size of the embedding
vector in the memory embedding matrix and the 3 in the denominator corresponds to the num-
ber of elements in an RDF triplet. Each memory slot thus represents the positional-weighted
summation of each triplet. The positional encoding ensures that the order of the elements now
affects the encoding of each memory slot.

4. Evaluation

The RDF semantics standard specification [28] describes a prodecural semantics based on 13
completion rules, which can be used to algorithmically compute logical consequences. The
completion of an RDF KG is in general infinite because, by definition, there is an infinite set
of facts (related to RDF-encodings of lists) which are always entailed — however for practi-
cal reasons, and as recommended in the standard specification, only certain finite subsets are
computed as completions of RDF KGs, and we do the same.

Dataset There are many RDF KGs available on the World Wide Web that can be used to
create our own dataset. For this purpose, we have collected RDF datasets from the Linked Data
Cloud' and the Data Hub? to create our datasets.® Our training set (which by coincidence was
based on RDF data conforming also to the OWL standard [24] and which we call an “OWL-
centric” dataset) is comprised of a set of RDF KGs each of size 1,000 triples, sampled from
populating around 20 OWL ontologies with different data. In order to test our model’s ability

'https://lod-cloud.net/
“https://datahub.io/
*https://github.com/Monireh2/kg-deductive-reasoner
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to generalize to completely different datasets, we have collected another dataset which we call
the OWL-Centric Test Set. Furthermore, to assure our evaluation represents real-world RDF
data completely independent of the training data, we have used almost all RDF KGs listed in
a recent RDF quality survey [29]; we call this the Linked Data test set. Further, to test the
limitations of our model on artificially difficult data, we have created a small synthetic dataset
which requires long reasoning chains if done with a symbolic reasoner.

For each KG we have created the finite set of inferred triples using the Apache Jena* APL
These inferred triples comprise our positive class instances. For generating invalid instances
we used the following two methods. In the first, we generated non-inferred triples by random
permutation of triple entities and removing those triples which were entailed. In the second
scenario, which serves as our final quality check for not including trivially invalid triples in our
dataset, we created invalid instances using the rdfitype predicate. More specifically, for each
valid triple in the dataset, we replaced one of the elements (chosen randomly), with another
random element which qualifies for being placed in that triple based on its rdf:type relation-
ships. The datasets created by this strategy are marked with superscript “a” in Table 1.

Training Details Trainings were done over 10 epochs using the Adam optimizer with a
learning rate of 1 = 0.005, a learning rate decay of /2, and a batch size of 100 over triples. For
the final batches of queries for each KG, we have used zero-padding to the maximum batch
size of 100. The capacity of the external memory is 1,000 which is also the maximum size of
our KGs. We used a linear starting of 1 epoch where we have removed the softmax from each
memory layer except for the final layer. L2 norm clipping of max 40 was applied to the gradient.
The memory input/output embeddings are vectors of size 20. The embedding matrices of A, B,
and C therefore are of size |V|xd = 3,033 x 20, where 3,033 is the size of the normalized generic
vocabulary plus RDF(S) namespace vocabulary. Unless otherwise mentioned, we have used
K = 10. Adjacent weight sharing was used where the output embedding of one layer is the
input embedding of the next one, as in A¥*! = C. Similarly, the answer prediction weight matrix
W gets copied to the final output embedding CX and query embedding is equal to the first layer
input embedding as in B = Al. All the weights are initialized by a Gaussian distribution with
p=0and o = 0.1. We would like to emphasize again that one and the same trained model was
used in the evaluation over different test sets. We did not retrain, e.g., on Linked Data for the
Linked Data test set.

Quantitative Results We now present and discuss our evaluation results. Our evaluation
metrics are average of precision and recall and f-measure over all the KGs in the test set, ob-
tained for both valid and invalid sets of triples. We also report the recall for the class of neg-
atives (specificity) to interpret the result more carefully by counting the number of true nega-
tives. Additionally, as mentioned earlier, we have done zero-padding for each batch of queries
with size less than 100. This implies the need for introducing another class label for such zero
paddings both in the training and test phase. We have not considered the zero-padding class in
the calculation of precision, recall and f-measure. Through our evaluations, however, we have
observed some missclassifications from/to this class. Thus, we report accuracy as well.

*https://jena.apache.org/
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To the best of our knowledge there is no architecture capable of conducting deductive rea-
soning on completely unseen RDF KGs. In addition, NTP and LTNs appear to have severe
scalability issues, which means we cannot compare them to our system at scale. Neighbour-
hood approximated Neural Theorem Provers [30] heavily rely on entity embeddings, making
it unsuitable for our goal, as discussed. That is why we have considered the non-normalized
embedding version of our memory network as a baseline. Similarly, Graph-to-Graph learning
architecture [1] is ontology-specific model. In fact, after training such model on one domain,
you need to adapt the model hyper-parameters for another one and start the training from
scratch on a different width model. Beside that, the Graph-to-Graph model is not scalable to
large ontologies like DBpedia; instead it restricts the vocabulary to small restricted domain
datasets. These inherent limitations for cross-ontology adaptation and the generative nature
of the model (as opposed to classification in our setup) makes the comparison impossible.

Our technique shows a significant advantage over the baseline as shown in Table 1. A further
even more important benefit of using our normalization model is its training time. In fact,
this considerable time complexity difference is the result of the remarkable size difference of
embedding matrices in the original and normalized cases. For instance, the size of embedding
matrices to be learned by our algorithm for the normalized OWL-Centric dataset is 3,033 x20 as
opposed to 811,261 x 20 for the non-normalized one (and 1, 974, 062 x 20 for Linked Data which
is prohibitively big). That has caused a remarkably high decrease in training time and space
complexity and consequently has helped the scalability of our memory networks. In case of the
OWL-Centric dataset, for instance, the space required for saving the normalized model is 80
times less than the intact model (~ 4GB after compression). Nevertheless, the normalized model
is almost 40 times faster to train than the non-normalized one for this dataset. Our normalized
model trained for just a day on OWL-Centric data but achieves better accuracy, whereas it
trained on the same non-normalized dataset more than a week on a 12-core machine. Hence,
the importance of using normalization cannot be emphasized enough.

To further get an idea of how our model performs on different data sources, we have applied
our approach on multiple datasets with various characteristics. The result across all variations
are given in Table 1. From this Table we can see that, apart from our strikingly good perfor-
mance compared to the baseline, there are number of other interesting points: Our model gets
even better results on the Linked Data task while it has trained on the OWL-Centric dataset.
We hypothesize that this may be due to a generally simpler structure of Linked Data, but vali-
dating this will need further research.

The large portion of our few false negative instances come from the inability of our model
to infer that all classes are subclass of themselves. Another interesting observation is the poor
performance of our algorithm when it has trained on the OWL-Centric dataset and tested on a
tricky version of the Linked Data. In that case our model has classified most of the triples to the
“yes” class and this has led to low specificity (recall for “no” class) of 16%. This seems inevitable
because in this case the negative instances bear close resemblance to the positives ones, making
differentiation more challenging. However, training the model on the tricky OWL-Centric
dataset has improved that by a substantial margin (more than three times). In case of our
particularly challenging synthetic data, performance is not as good, and this may be due to the
very different nature of this dataset which would require much longer reasoning chains than
the non-synthetic data. Our training so far has only been done on real-world datasets; it may
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Training Dataset Test Dataset Valid Triples Class Invalid Triples Class Accuracy
Precision Recall F-measure | Precision Recall F-measure
/Sensitivity /Specificity
OWL-Centric Dataset Linked Data 93 98 96 98 93 95 96
OWL-Centric Dataset (90%) | OWL-Centric Dataset (10%) | 88 91 89 90 88 89 90
OWL-Centric Dataset OWL-Centric Test Set 79 62 68 70 84 76 69
OWL-Centric Dataset Synthetic Data 65 49 40 52 54 42 52
OWL-Centric Dataset Linked Data # 54 98 70 91 16 27 86
OWL-Centric Dataset Linked Data ® 62 72 67 67 56 61 91
OWL-Centric Dataset(90%) 2| OWL-Centric Dataset(10%) 2| 79 72 75 74 81 77 80
OWL-Centric Dataset OWL-Centric Test Set 2P 58 68 62 62 50 54 58
OWL-Centric Dataset * OWL-Centric Test Set 2 77 57 65 66 82 73 73
OWL-Centric Dataset Synthetic Data ? 70 51 40 47 52 38 51
OWL-Centric Dataset # Synthetic Data 2 67 23 25 52 80 62 50
Baseline
OWL-Centric Dataset Linked Data 73 98 83 94 46 61 43
OWL-Centric Dataset (90%) | OWL-Centric Dataset (10%) | 84 83 84 84 84 84 82
OWL-Centric Dataset OWL-Centric Test Set P 62 84 70 80 40 48 61
OWL-Centric Dataset Synthetic Data 35 41 32 48 55 45 48

2 More Tricky Nos & Balanced Dataset P Completely Different Domain.

Table 1
Experimental results of proposed model

be interesting to more closely investigate our approach when trained on synthetic data, but
that was not the purpose of our study.

It appears natural to analyze the reasoning depth acquired by our network. We conjecture
that reasoning depth acquired by the network will correspond both to (1) the number of layers
in the deep network, and (2) the ratio of deep versus shallow reasoning required to perform
the deductive reasoning. Forward-chaining reasoners iteratively apply inference rules in order
to derive new entailed facts. In subsequent iterations, the previously derived facts need to
be taken into account. To gain a first understanding of what our model has learned in this
respect, we have mimicked this symbolic reasoner behavior in creating our test set. We first
started from our input KG Kj in hop 0. We then produced, subsequently, KGs of Kj...., K, until
no new triples are added (i.e. K,.; is empty) by applying the RDF inference rules from the
specification: The hop 0 dataset contains the original KG’s triples in the inferred axioms, hop
1 contains the RDF(S) axiomatic triples. The real inference steps start with K, where n >= 2.
Table 2 summarizes our results in this setup. Unsurprisingly, we observe that result over our
synthetic data is poor. This may be because of the huge gap between the distribution of our
training data over reasoning hops and the synthetic data reasoning hop length distribution as
shown in the first row of Table 2. From that, one can see how the distribution of our training
set affects the learning capability of our model. Apart from our observations, previous studies
[31, 9, 32] also corroborate that the reasoning chain length in real-world KGs is limited to 3 or
4. Hence, a synthetic training toy set would have to be built as part of follow-up work.

General Embeddings Visualization Inorder to gain some insight on the nature of our nor-
malized embeddings, we have plotted a Principal Component Analysis (PCA) two-dimensional
vector visualization of embeddings computed for the RDF(S) terms and all normalized words in
the KGs, in Figure 2. The embeddings were fetched from the matrix B (embedding query lookup
table) in the hop 1 of our model trained over the OWL-Centric dataset. Words are positioned in
the plot based on the similarity of their embedding vectors. As anticipated, all the normalized
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Hop 1 Hop 2 Hop 3 Hop 4 Hop 5 Hop 6 Hop 7 Hop 8 Hop 9 Hop 10
F% | D% | F% | D% | F% | D% | F% | D% | F% | D% | F% | D% | F% D% F% | D% | F% D% | F% D%
OWL-Centric®| - | 8 | - | 67 | - |24 | - | 1 - - |- - - - - - - - - -
OWL-Centric® | 42 5 78 64 44 30 6 1 - - - - - - - - - - - -

Linked Data® 88 31 93 50 86 19 - - - - - - - - - - - - - -

Linked Data | 86 | 34 [93 [ 46 [88 [ 20 | - | - [ -] -1-1-1-+- - - -

Synthetic 38 1003 ) 44 | 142 | 32 1 33 | 1.56 | 33 | 3.09 | 33 | 603 | 33 | 11.46 | 31 | 2048 | 31 | 31.25 | 28 | 23.65%

Dataset

a Training set " Completely different domain € LemonUby Ontology 4 Agrovoc Ontology

Table 2
F-measure and Data Distribution over each reasoning hop
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Figure 2: PCA projection of embeddings for the vocabulary

words tend to form one cluster as opposed to multiple ones. The PCA projection illustrates the
ability of our model to automatically organize RDF(S) concepts and learn implicitly the rela-
tionships between them. For instance, rdfs:domain and rdfs:range have been located very close
together and far from normalized entities. rdf:subject, rdf:predicate and rdf:object vectors are
very similar, and the same for rdf:seeAlso and rdf:isDefinedBy. Likewise, rdfs:container, rdf:bag,
rdf:seq, and rdf:alt are in the vicinity of each other. rdf:langstring is the only RDF(S) entity which
is inside the normalized entities cluster. We believe that it is because rdf:langString’s domain
and range is string and consequently it has mainly co-occurred with normalized instances in
the KGs. Another possible reason for this is its low frequency in our data.

5. Conclusions and Future Work

We have demonstrated that a deep learning architecture based on memory networks and pre-
embedding normalization is capable of learning how to perform deductive reason over previ-
ously unseen RDF KGs with high accuracy. We believe that we have thus provided the first
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deep learning approach that is capable of high accuracy RDF deductive reasoning over previ-
ously unseen KGs. Normalization appears to be a critical component for high performance of
our system. We plan to investigate its scalability and to adapt it to other, more complex, logics.
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On the Generalization Capability of Memory Networks for Reasoning
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Abstract

A significant and recent development in neural-
symbolic learning are deep neural networks that
can reason over symbolic knowledge bases (KBs)
and perform scalable reasoning tasks. Initial
neural-symbolic systems that can deduce the en-
tailment of a KB have been presented, but they
are theoretically and practically limited: current
systems learn fact relations and entailment pat-
terns specific to a particular KB and hence do not
truly learn to reason, and must be retrained for
each KB they are tasked with entailing. To ad-
dress this generalization limitation, we propose a
differentiable end-to-end deep memory network
that learns over abstract, generic symbols to dis-
cover entailment patterns common to any reason-
ing task. A key component of the system is a
simple but highly effective normalization process
for continuous representation learning of KB enti-
ties within memory networks. Our results show
how the model, trained over a set of KBs, can
effectively entail facts from test KBs, even when
the domain of test KBs is completely different
from the training KBs.

1. Background

With the recent revival of interest in artificial neural net-
works, they have been applied vastly for the completion
of KBs. These methods (Chang et al., 2014; Nickel et al.,
2012; Riedel et al., 2013; Socher et al., 2013; Toutanova
et al., 2015; Trouillon et al., 2016; Yang et al., 2014) heav-
ily rely on the subsymbolic representation of entities and
relations learned through maximization of a scoring objec-
tive function over valid factual triples. Thus, the current
success of such models hinges primarily on the power of
those subsymbolic continuous real-valued representations in
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encoding the similarity/relatedness of entities and relations.
Recent attempts have focused on neural multi-hop reasoners
(Das et al., 2016; Neelakantan et al., 2015; Peng et al., 2015;
Shen et al., 2017; Weissenborn, 2016) to equip the model to
deal with more complex reasoning. More recently, a Neural
Theorem Prover (Rocktischel & Riedel, 2017) has been
proposed in an attempt to take advantage of both symbolic
and sub-symbolic reasoning.

Despite their success, the main restriction common to neu-
ral reasoners is that they are unable to generalize to new
domains. This inherent limitation follows from both the
representation functions used and the learning process. The
major issue comes from the mere reliance of these models
on the representation of entities learned during the train-
ing or in the pre-training phase stored in a lookup table.
Consequently, these models have difficulty to deal with
out-of-vocabulary(OOV) entities. Although the small-scale
OOV problem has been addressed in part in the natural
language processing (NLP) domain by taking advantage
of character-level embedding (Ling et al., 2015), learning
embeddings on the fly by leveraging text descriptions or
spelling (Bahdanau et al., 2017), copy mechanism (Eric &
Manning, 2017) or pointer networks (Raghu et al., 2018),
still these solutions are insufficient for transferring purposes.
(Talman & Chatzikyriakidis, 2018) shows the success of
natural language inference (NLI) methods is heavily bench-
mark specific. An even greater source of concern is that
reasoning in most of the above sub-symbolic approaches
hinges more on the notion of similarity and geometric-based
proximity of real-valued vectors (induction) as opposed to
performing transitive reasoning (deduction) over them. In
short, to the best of our knowledge, to date, there is no
sub-symbolic reasoning work, which is able to transfer the
learning capability from one KB to unseen one. In fact, since
previous works have focused to conduct reasoning on the
unseen part of the same KB, they have tried to gain general-
ization ability through induction and robustness to missing
edges(Guu et al., 2015) as opposed to deduction. Likewise,
recent years have seen some progress in zero-shot relation
learning in sub-symbolic reasoning domain(Neelakantan
et al., 2015; Rocktdschel et al., 2015; Xiong et al., 2017).
Zero-shot learning refers to the ability of the model to infer
new relations where that relation has not been seen before in
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training set(Bordes et al., 2011). This generalization capa-
bility is still quite limited and fundamentally different from
our work in terms of both methodology and purpose.

Inspired by these observations, we take a different approach
by investigating the emulation of deductive symbolic rea-
soning using memory networks. Memory networks (Weston
et al., 2014) are a class of learning models capable of con-
ducting multiple computational steps over an explicit mem-
ory component before returning an answer. They have been
recently applied successfully to a range of NLP tasks such
as question answering (Hill et al., 2015; Sukhbaatar et al.,
2015), language modeling (Sukhbaatar et al., 2015), and di-
alogue tasks (Bordes et al., 2016; Dodge et al., 2015). End-
to-end memory networks (MemN2N) (Sukhbaatar et al.,
2015) are a less-supervised, more general version of these
networks, applicable to the settings where labeled support-
ing memories are not available. We have selected such
networks since we believe that they are a primary candidate
to perform well for deductive logical entailment. Their se-
quential nature corresponds, conceptually, to the sequential
process underlying some deductive reasoning algorithms.
The attention modeling corresponds to pulling only rele-
vant information (logical axioms) necessary for the next
reasoning step. And their success in NLI is also promis-
ing: while NLI does not follow a formal logical semantics,
logical deductive entailment is nevertheless akin to some
aspects of natural language reasoning. Besides, as attention
can be traced over the run of a memory network, we will
furthermore get insights into the “reasoning” underlying the
network output, as we will be able to see which pieces of
the input KB are taken into account at each step.

The main contribution of this paper, however, is a recipe
involving a simple but effective KB triple normalization
before learning their representation within a MemN2N. To
perform logical inference in more abstract level, and thereby
facilitating the transfer of reasoning expertise from one KB
to another, the normalization maps entities and predicates
in a knowledge to a generic vocabulary. Facts in additional
KBs are normalized using the same vocabulary, so that the
network does not learn to overfit its learning to entity and
predicate names in a specific KB. This emulates symbolic
reasoning by neural embeddings as the actual names (as
strings) of entities from the underlying logic such as vari-
ables, constants, functions, and predicates are insubstantial
for logical entailment in the sense that a consistent renaming
across a theory does not change the set of entailed formulas
(under the same renaming). Thanks to the term-agnostic fea-
ture of our representation, we are able to create a reasoning
system capable of performing reasoning over an unseen set
of vocabularies in the test phase.

2. Problem Formulation

‘We wish to train a neural model that will learn to reason
over one set of theories, and can then transfer that learning
to new theories over the same logic. One of the key obsta-
cles we face with our task is to understand how to represent
training and test data. To use standard neural approaches,
symbols will have to be represented over the real coordinate
space R as vectors (points), matrices or tensors. Many em-
beddings for KBs have been proposed (Bordes et al., 2013;
Lin et al., 2015; Trouillon et al., 2016; Wang et al., 2014),
but we are not aware of an existing embedding that captures
what seems important for the deductive reasoning scenario.
Indeed, the prominent use case explored for KB embeddings
is not deductive in nature; rather, it concerns the problem
of the discovery or suggestion of additional links or edges
in the graph, together with appropriate edge labels. In this
link discovery setting, the actual labels for nodes or edges
in the graph, and as such their commonsense meanings, are
likely important, and most existing embeddings reflect this.
However, for deductive reasoning the names of entities are
insubstantial and should not be captured by an embedding.
Another inherent problem in the use of such representations
across KBs is the OOV problem. While a word lookup table
can be initialized with vectors in an unsupervised task or
during training of the reasoner, it still cannot generate vector
representations for unseen terms. It is further impractical to
store the vectors of all words when vocabulary size is huge
(Ling et al., 2015). Similarly, memory networks usually
rely on word-level embedding lookup tables, i.e., learned
with the underlying rationale that words that occur in sim-
ilar supervised scenarios should be represented by similar
vectors. That is why they are known to have difficulties
dealing with OOV, as a word lookup table cannot provide a
representation for the unseen, and thus has difficulty to do
NLI over new words (Bahdanau et al., 2017), and for us this
would pose a challenge in the transfer to new KBs.

We thus need representations that are agnostic to the terms
used as primitives in the KB. To build such a representa-
tion, we use syntactic normalization: a renaming of primi-
tives from the logical symbols to a set of predefined entity
names that are used across different normalized theories.
By randomly assigning the mapping for the renaming, the
network’s learning will be based on the structural informa-
tion within the theories, and not on the actual names of the
primitives. Note that this normalization not only plays the
role of “forgetting” irrelevant label names, but also makes
it possible to transfer learning from one KB to the other.
Indeed, the network can be trained with many KBs, and
then subsequently tested on completely new ones.
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Figure 1. Diagram of the proposed model, for K=1

3. Model Architecture

We consider a model architecture that adapts the MemN2N
with fundamental alterations necessary for abstract reason-
ing. A high-level view of our model is shown in Figure 1.
It takes a discrete set G of normalized RDFS statements
(called triples) t1, ..., t,, that are stored in memory, a query
¢, and outputs a “yes” or “no” answer to determine if ¢ is
entailed by GG. Each of the normalized ¢; and ¢ contains sym-
bols coming from a general dictionary with V' normalized
words shared among all of the normalized RDFS theories in
both training and test sets. The model writes all triples to
the memory and then calculates a continuous embedding for
G and g. Through multiple hop attention over those continu-
ous representations, the model then classifies the query. The
model is trained by back-propagation of error from output to
the input through multiple memory accesses. More Specifi-
cally, the model is augmented with an external memory that
stores the embeddings of the normalized triples in our KB.
This memory is defined as an n x d tensor where n denotes
the number of triples in the KB and d is the dimensionality
of the embeddings. The KB is stored in the memory vectors
from two continuous representations of m,; and ¢; obtained
from two input and output embedding matrices of A and C
with size d x V' where V is the size of vocabulary. Similarly,
the query ¢ is embedded via a matrix B to obtain an internal
state u. In each reasoning step, those memory slots useful
for finding the correct answers should have their contents
retrieved. To enable this, we use an attention mechanism for
¢ over memory input representations by taking an internal
product followed by a softmax:

p; = Softmax(u” (m;)) M

Equation (1)calculates a probability vector p over the mem-
ory inputs, the output vector o is computed as the weighted
sum of the transformed memory contents ¢; with respect to
their corresponding probabilities p; by o = >, pic;. This

describes the computation within a single hop. The inter-
nal state of the query vector updates for the next hop as
uFF1 = u¥ 4 o*. The process repeats K times where K is
the number of computational hops. The output of the K"
hop is used to predict the label @ by passing o€ and u’
through a weight matrix of size V' x d and a softmax:

& = Softmax (W (u+1)) = Softmax (W (u* + o).

Figure 1 shows the model for K = 1. The parameters to be
learned by backpropagation are A, B, C, and W matrices.

Memory Content An RDFS KB is a collection of state-
ments stored as triples (el, 7, e2) where el and e2 are called
subject and object, respectively, while r is a relation binding
el and e2 together. Every entity in an RDFS KB is rep-
resented by a unique Universal Resource Identifier (URI).
We normalize these triples by systematically renaming all
URIs which are not in the RDF or RDFS namespaces as
discussed previously. Each such URI is mapped to a set of ar-
bitrary strings in a predefined set A = {a, ..., a, }, where
n is taken as a training hyper-parameter giving an upper
bound for the largest number of entities in a KB the system
will be able to handle. Note that URIs in the RDF/RDFS
namespaces are not renamed, as they are important for the
deductive reasoning according to the RDFS model-theoretic
semantics. Consequently, each normalized RDFS KB will
be a collection of facts stored as triples {(a;, a;j, ax)}.

It is important to note that each symbol is mapped into an
element of A regardless of its position in the triple. Yet
the position of an element within a triple is an important
feature to consider. Thus we employ a positional encoding
(PE) (Sukhbaatar et al., 2015) to encode the position of each
element within the triple. Each memory slot thus represents
the positional-weighted summation of each triplet. The

PE ensures that the order of the elements now affects the
encoding of each memory slot m;.
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Training Dataset Test Dataset Our mo‘/;g]cumc{%ase]ine
OWL-Centric Linked Data 96 43
OWL-Centric(90%) OWL-Centric (10%) 90 82
OWL-Centric OWL-Centric Test Set 69 61
OWL-Centric Synthetic Data 52 48

rdfs:range

rdfs:domain
)

rdfs:subpropertyof

" Completely Different Domain.

Table 1. Experimental results of the proposed model

4. Evaluation

Dataset We have collected RDFS datasets from the
Linked Data Cloud' and the Data Hub”.Our training set
(“OWL-centric”) is comprised of a set of RDFS KBs each of
size 1,000 triples, sampled from populating around 20 OWL
ontologies with different data. In order to test our model’s
ability to generalize to completely different datasets, we
have collected another dataset called the OWL-Centric Test
Set. To assure our evaluation represents real-world RDFS
data completely independent of the training data, we have
used almost all RDFS KBs listed in (Sam et al., 2018); we
call this the Linked Data test set. Furthermore, to test the
limitations of our model on artificially difficult data, we
have created a small synthetic dataset which requires long
reasoning chains if done with a symbolic reasoner. For each
KB we have created the finite set of inferred triples using
the Apache Jena® API. These inferred triples comprise our
positive class instances. We generated non-inferred triples
by random permutation of triple entities and removing those
triples which were entailed.

Results Trainings were done over 10 epochs using the
Adam optimizer with a learning rate of = 0.005, a
learning rate decay of 77/2, and a batch size of 100 over
triples. All embeddings are vectors of size 20. We have
used K = 10. Adjacent weight sharing was used where the
output embedding of one layer is the input embedding of the
next one. All the weights are initialized by a Gaussian distri-
bution with n = 0 and o = 0.1. Here we report the average
accuracy over all the KBs in the test set, obtained for both
valid and invalid sets of triples. We have considered the non-
normalized embedding version of our memory network as a
baseline. Our technique shows a significant advantage over
the baseline as shown in Table 1. A further even more impor-
tant benefit of using our normalization model is its training
time. In fact, this considerable time complexity difference
is the result of the remarkable size difference of embedding
matrices in the original and normalized cases. For instance,
the size of embedding matrices to be learned by our algo-
rithm for the normalized OWL-Centric dataset is 3, 033 x 20
as opposed to 811, 261 x 20 for the non-normalized one (and
1,974,062 x 20 for Linked Data which is prohibitively big).
That has caused a remarkably high decrease in training time
and space complexity. In case of the OWL-Centric dataset,
for instance, the space required for saving the normalized
model is 80 times less than the intact model. Likewise, the

normalized model is almost 40 times faster to train than the
non-normalized one for this dataset. Hence, the importance

of using normalization cannot be emphasized enough.

"https://lod-cloud.net/
2https://datahub.io/
*https://jena.apache.org/
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Figure 2. PCA projection of embeddings for the whole vocabulary

General Embeddings Visualization We have plotted a
Principal Component Analysis (PCA) two-dimensional vec-
tor visualization of embeddings computed for the RDF(S)
terms and all normalized words in the KBs, in Figure 2.
The embeddings were fetched from the matrix B (embed-
ding query lookup table) in the hop 1 of our model trained
over the OWL-Centric dataset. Words are positioned in
the plot based on the similarity of their embedding vectors.
As anticipated, all the normalized words tend to form one
cluster as opposed to multiple ones. The PCA projection
illustrates the ability of our model to automatically orga-
nize RDF(S) concepts and learn implicitly the relationships
between them. For instance, rdfs:domain and rdfs:range
have been located very close together and far from nor-
malized entities. rdf:subject, rdf:predicate and rdf:object
vectors are very similar, and the same for rdf:seesAlso and
rdf:isDefinedBy. Likewise, rdfs:container, rdf:bag, rdf:seq,
and rdf:alt are in the vicinity of each other.

5. Conclusions and Future Work

We have demonstrated that a deep learning architecture
based on memory networks and pre-embedding normaliza-
tion is capable of learning how to perform deductive reason-
ing over previously unseen RDFS KBs with high accuracy.
‘We believe that we have thus provided the first deep learning
approach that is capable of high accuracy RDFS deductive
reasoning over previously unseen KBs. Normalization ap-
pears to be a critical component for high performance of
our system. This obviates the need for supervised retraining
over the task of interest or unsupervised pretraining over
the external source of data for learning the representations
when encountered with a new KB. It also provides insights
into representation learning for rare or OOV words, transfer
learning, zero-shot learning, and domain adaptation in the
reasoning domain. We plan to properly investigate scalabil-
ity of our approach and to adapt it to other, more complex,
logics.
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