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Chapter I

OVERVIEW

1.1 Introduction

A program generator is a software tool that accepts some

specification information from a user and creates what would be

considered a source program in some high level language. Several

different kinds of program generators are surveyed in Chapter II.

The work presented in this thesis extends concepts of two

prototype generators previously developed at Kansas State

University [Bart 85], [Pea 86]. Characteristics of these three

generators are compared in Table 1.1. All three generators

represent the knowledge of a class of programs as a BNF-like

grammar with semantic actions which call for user selection and

information input. The class of programs generated includes

programs involving common algorithms for standard data structures

such as tables, lists, and the like. Thus, these three

generators synthesize library modules in some target language

from algorithms stored in terms of grammar rules. In all these

generators the external grammar was converted into some suitable

internal form for efficient interpretation. The programs

generated by all these prototype generators are in block-

structured languages; [Bart 85] in Pascal, [Pea 86] in Modula II,

and this thesis in a Pascal-like toy language. The dynamically

generated programs are stored in some structured form, displayed,



Table 1.1. Comparison with other Prototype Program Generating
Systems developed at KSU.

1985

Barrett
1986
Peak

1987
Venkatesh

Implementation IBM PC

Pascal
VAX 11/780
C Prolog

IBM PC
Turbo Prolog

Input Grammar BNF-like

with semantic
actions (SA)

BNF-like
with semantic
actions (SA)

BNF-like
with semantic
actions (SA)

Domain Library Module Library Module Library Module

Internal
Representation

Tables

- Definition
- Token
- SA Parameter

Constant
- Identifier

List
+

Rules

Facts

- Definition
- Token
- Choice

Program
Structure

Doubly Linked
List

List
Representation
of Program
Tree

Facts
Representation
of Program
Tree

Target
Language

Pascal Modula II Pascal-like
Toy Language

Program
Development

- Automatic
Expansion

- Display of
Partial

Program
Traces

- Automatic
Expansion

- Final
Program
Display

- One Node

at a time
Expansion

- Display of

Partial
Program
Traces

Interactive

Features
Limited Limited Not-so

Limited



and saved in disk files. These three generators differ in the

internal grammar representation, dynamically generated program

structure, and interactive features during the program

development process.

1.2 Contribution

The work by Barrett [Bart 85] demonstrated the fundamental

concept of grammar representation of program domain knowledge,

but it was an inflexible implementation. The work by Peak [Pea

86] showed the effectiveness of using Prolog for prototyping this

kind of application which is based upon a top-down grammar rule

expansion, but it also showed the limitation of using a pure

functional style of Prolog programming (all dynamic structures

are passed and returned by value). Generating even a small

program using that generator could require a run-stack space of

several megabytes. Both of those generators lacked effective

user interaction. The user could supply specification

information, but could not otherwise control the expansion.

This thesis contributes two major concepts to the program

generators developed by [Bart 85] and [Pea 86]:

1. The internal representation of grammar rules and

program structure in terms of smaller chunks and the

use of a database to overcome run-stack overflow

problem. This also aids in efficient program

structure manipulation during interpretation.



2. The design of a suitable interpreter to incorporate

several interactive features and control during

the development target programs.

(1) Internal Representation

The internal representation of grammar rules developed in

the present work allows efficient manipulation during the program

development. This internal representation handles grammar rules

in smaller chunks than in [Pea 86]. These are stored as facts in

the Prolog database. During the interpretation phase, these

facts are refined one at a time and the results of these

refinements are dynamically stored as program facts simulating

the program tree structure. Storing partial refinements as

program facts in the Prolog database solves the storage problem

of run-stack space during interpretation. The data structure of

program facts in the Prolog database allows interactive program

structure manipulation during program development. Thus, the

internal representation of grammar rules and generated programs

as Prolog facts simulating the tree structure enables interactive

program developement with efficient memory usage.

(2) Interactive Program Development

The following principles [Tei 81] of user interaction are

incorporated as specific features of the program generator which

was implemented.



a. Specialization

Specialization is the process of refining non-terminals to

their equivalent right-side terms. The parameterized algorithms

are abstracted as grammar non-terminals in multiple layers. The

layers should be conceptually clear to the user developing a

program as successive refinements of grammar rules. This feature

is incorporated in the present implementation by displaying the

partially developed program traces with each grammar rule

refinement

b. Constraint

The user's focus of attention is always restricted to

objects on the screen which can be manipulated further. Such

constraints are included in the present work as structured cursor

movements which skip over the parts of program which cannot be

modified. Modifiable components are highlighted as the cursor is

moved to select them.

c. Consistency

All aspects of the user interface are based on a single

concept of the program tree structure represented in terms of

grammar rules. The cursor movements using arrow keys to the

parent, child, left, and right non-terminal nodes in the present

implementation are based on this principle.

d. Manual Control

Manual control is provided in all situations in which a user

may choose an operation amongst many available. An example may

involve choosing any non-terminal for further refinement. Manual



control enhances system flexibility. There are subtle problems

though, such as trying to expand a non-terminal which requires

previous declaration. Some semantic constraints should be

imposed in such situations. Such semantic constraints are not

implemented in the pressent work.

e. Immediate Visual Response

The display is always updated corresponding to any change in

the data structure. The immediate response also included error

reporting in cases such as wrong syntax (e.g., for an identifier

name). These responses allow the user to monitor the state of

program development process.

f. Multiple Conceptual Levels

In order to focus attention in and around some portion of a

program, some details can be omitted from the display. This

allows the presentation of the overall picture of the program in

coarser detail and a particular portion in finer detail. This

shrinking of details and re-displaying of the detailed version on

command reflects the multiple views of the program being

synthesized. The shrinking and re-display of details were

implemented as ellipsis commands in the present work.

Note: Reversibility would have been another important feature,

but was not implemented in the prototype. The reversibility

command "undo" is desirable because it eliminates user anxiety

about making mistakes.



The basic concepts of the present work have been gathered

mainly from the following sources:

1. The paper by Warren [War 80] illustrates a methodology of

logic programming for compiler writing. This idea has been

employed in logic-programming-based program synthesis.

2. The work by Waters [Wat 82, 85] illustrates the usefulness of

storing commonly used algorithms of standard data structure as

program plans during program synthesis. The plans also

incorporate the representation of data flow and control flow in

the programs. This concept has been applied in storing the

algorithms in terms of grammar rules. No attempt has been made to

represent the data flow and control flow.

3. The paper by Teitelbaum [Tei 81] describes a structured editor

environment, the Cornell Program Synthesizer, for program

synthesis. This paper has motivated the use of structured

representation and manipulation of program text during the

synthesis phase.

A. The paper by Olsen [01s 85] describes the organization of a

user interface generation tool for editing templates. The

internal data structure modifications and immediate display of

changes requires close association of screen coordinates with the

data structures. This paper has influenced the selection of

proper data structures for efficient screen manipulation.

The present work is an attempt to integrate some of the key

ideas presented in these papers into a unified framework which

can serve as a basis for interactive program synthesis. It is



hoped that this basis will provide greater flexibility and user-

friendliness during the development of target programs.

1.3 Implementation

A program generating system was developed to incorporate

the concepts discussed in the key papers cited above. The system

was written in Turbo Prolog [Tur 86] and implemented on an IBM PC

compatible personal computer. The main issues were efficient

space utilization and providing a good user interface in a

microcomputer environment.

The programs generated by the system are in a toy language

(block structured Pascal-like language). These generated

programs are representative library modules which incorporate

common algorithms for standard data structures such as tables and

lists. The implementation of the system is merely a

demonstration of feasibility.

Figure 1.1 describes the prototype program generating

system. The program generator uses a translation grammar which

encodes the program templates of the target language as its input

(see Appendix II). The target language program templates are

parameterized through semantic actions which include data type

and associated algorithm selection and the user supplying

identifier names for the variables.
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The main components of the system are the grammar converter

and the interpreter. The grammar converter reads in an external

grammar which is in BNF style and converts it into internal

Prolog facts, one for each terminal, non-terminal and semantic

action. The facts are of three types. A definition fact for

each non-terminal links the left-side of a production to its

right-side tokens. The token facts link each token in the right-

side of productions. The choice facts provide a choice list for

semantic actions in the grammar. These facts can be stored in

external disk files and read into the Prolog database on demand.

Since the grammar converter has not been implemented, the Prolog

facts representing the external grammar are manually entered into

the system.

The interpreter refines the grammar rules represented as

Prolog facts with the help of a user. The interpretation starts

with the fact representing the start-symbol which forms the root

of the program structure. Refinement is done one node (fact) at

a time. The interpreter takes a user command and current node

as input, processes the current node according to the user

provided command, and returns the next node to be processed.

Refinement by expansion is the heart of the processing. The

expansion of a non-terminal node links the corresponding right-

side terms into the program structure. When semantic actions are

executed the user is queried to provide an identifier name or to

choose a grammar rule. The interpreter dynamically builds the

program structure and identifier table. Program structure and
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identifier tables are stored in the Prolog database as program

and symbol-table facts. The refinement is complete when all the

non-terminal nodes in the program structure are expanded. The

leaf terminal nodes of the program structure constitutes the

final program text.

Apart from the refinement command, interactive commands are

provided for changing the current node through structured cursor

movement, and for hiding and opening non-terminal nodes. This

require a close association of screen coordinates with the

program structure. The interpreter stores coordinates only for

non-terminal nodes of the program structure. Updating screen

coordinates along with program structure modification involves a

significant amount of programming and forms the core of the

interactive user-friendly interface. The reversibility command

"undo" has not been implemented in the present work.

The user interface also includes the user dialogue interface

with command menu display and pop-up menus for user selection

with simple key strokes. Appendix I shows several screen dumps

of actual terminal sessions during the development of a target

program.

The continuous display of a partially developed program is

handled by a display routine. This is a utility module called by

the interpreter whenever the program structure is modified or

there is a need for scrolling. The display module traverses the

program tree and displays the program text (or a portion of

program text) including the current node of interest.

11



The program generator is about 1450 lines of Turbo-Prolog

code. The implementation requires 54K bytes of memory to store

the compiler-generated form of the program source text. The run-

time stack requirement was less than 16K bytes. The learning

period for system development was about four months which

included learning Prolog and program generator system concepts.

The design and implementation of the system required about three

months of effort.

1.4 Organization of the Thesis

Chapter II is a categorical survey of literature on program

synthesis. The categories are deductive, very high level

language (VHLL), transformational, programmer assistant and

extended structured editor. The extended structured editor

approach is dealt with in more detail as it directly pertains to

the implementation developed in this thesis.

Chapter III identifies issues in the design of program

generators. These issues include suitability of logic

programming for program synthesis, space utilization, use of

database to miminize the requirement of a large run-stack,

internal representation techniques to store programming knowledge

in the database and structured representation and manipulation of

the generated program. A brief tutorial of the Prolog language

is also included to show its usefulness for program synthesis.

Chapter IV describes the program generating system which was

implemented. The description covers the design approach used to

12



aid good user interface and efficient memory usage, internal

representation used to store the external grammar which

parameterizes the stereotype algorithms for standard data

structures, and the program structure of the final program

generated. The questions faced during this implementation are

typical for any program generator system. As a side effect, the

necessity of employing a procedural style of programming in

Prolog for efficient memory usage became evident. In addition, a

number of lessons learned during implementation are shared.

The Appendix includes a sample input grammar, a hardcopy of

program listing of the toy program generator, and a sample

terminal session. The terminal session demonstrates the

usefulness of a good user interface in the program generation

process.

1.5 Discussion

The key issues of the present work can be summarized as

follows.

a. Suitability of logic programming in Prolog for program
synthesis

b. Space limitation considerations and use of database

c. Interactive features

The symbolic pattern matching and depth-first, left-to-right

sequence of goal evaluation demonstrates the usefulness of

Prolog programming for program synthesis using grammar rules.

13



The Prolog implementation for a program generating system will be

small, modular and easily maintainable.

Space limitation is particularly severe for Prolog programs

handling large data structures. For space efficiency the list

structure should be broken into smaller facts stored in a

database. This allows Prolog to handle larger programs with the

limited space available. This method, however, requires

extensive retrieval of facts from the database with modification

and restoration. The final program will be generated as a side-

effect.

From the very inception, Prolog and input/output have never

blended properly. The built-in predicates offered by many Prolog

systems for input/output are very minimal. However, the

availability of Prolog compilers/interpreters on personal

computers have overcome this deficiency to a large extent by

providing a number of built-in input/output, window, and

graphics predicates. This offers the possibility of exploiting

the powerful pattern matching capability of Prolog along with an

interactive user interface in the development of a program

generating system. A close association of display update

functions corresponding to the structural changes involves

extensive programming to provide an interactive user interface.

It is clear that there are many desirable requirements which

call for different system demands. Pattern matching is extremely

suitable for Prolog programming. Space limitation requires a

procedural style of programming with side effects (such as

14



assignments). A modular and efficient display structure for

monitoring data structure changes suggests the use of access

oriented programming with 'active values' [Bob 86]. A strong

argument in favor of programming with multiple paradigm (Loops)

and the inadequacy of any single programming language including

Prolog for artificial intelligence programming is made in [Bob

85]. Arguments in favor of Prolog programming in the future for

software development with the inclusion of many desirable

modifications and additional features in the Prolog system is

made in [Sub 85]. The availability of Prolog systems with many

built-in predicates supporting interactive programming on cheap

personal computers makes the development of program generating

systems using Prolog a worthwhile effort.
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Chapter II

AUTOMATED PROGRAM GENERATING SYSTEMS

2.1 Introduction

This chapter overviews four basic characteristics of program

development systems: a specification method, a target language, a

problem area (domain), and an approach or method of operation.

Examples of ten major systems are described in section 2.6 to

highlight the various characteristics and approaches taken in

program generation. Table 2.1 summarizes these systems with

respect to the four system characteristics.

2.2 Specification Methods

A specification method is a means for conveying to the

generating system a description of the program which is required.

Four kinds of specification methods are identified in the

literature.

(1) Formal Specification

Formal specification methods are like very high level

programming languages. In general, syntax and semantics of these

methods are complete, that is, the specification completely and

precisely defines the intent of the desired program. These

specification methods are declarative in nature and convey the

"what" of the program; the "how" program to be implemented is

left unspecified. Most of the formal specification methods are

16



Table 2.1. Summary of Automatic Programming Systems

SYSTEM Input Spec. Output Approach Domain
Lang.

PSI Subset of Nat. LISP Transformation Symbolic
Language rules in KB. processing

CHI High level LISP Transformation Symbolic
Lang . V rules in KB. processing,

Graph thry.

PECOS High level LISP Transformation Symbolic
problem rules in KB. processing,
description Graph thry.

DEDALUS Formal High LISP Transformation Numerical

,

Level Problem rules in KB. Set Pgms.

Description

SAFE/ Preparsed LISP TI Transform Scheduling,
TI Nat. Lang. rules in KB. routing

PA Pgm. text for LISP/ Plans in KB. Non numeric
analysis, ADA computing
Algorithmic
description for
pgm. synthesis

CPS Series of cmds.

for program
PL/C Grammar rules

incorporated as
Any problem

synthesis procedures

CPS-G Lang. defn. in Any Attribute gram. Structured
the form of Block transformation editor
attribute Struc.
grammar Lang.

PSG Lang, syntax, Any Interpretation Structured
context rein.

,

Block of rules of editor like
denotational struc. input language environment
semantics Lang. definition

PECAN Series of cmds.

for program
synthesis

Pascal Hand-crafted
procedures
incorporating
target lang.

l syntax and
semantics

Any problem

17



not interactive, that is, the system does not interact with the

user to obtain missing information, to verify hypotheses, or to

point out inconsistencies. Good examples of high level languages

used for formal specifications include SETL [Sch 81], V [Smi 85],

and GIST [Fea 82]. These languages support higher level data

structures such as sets, bags, etc., and the use of existential

and universal quantifiers. The main issue in formal

specification using high level languages is efficient

implementation, i.e., efficient compilation.

(2) Specification by examples

Specification by example involves giving examples of what

the desired program is to do. Sufficient examples allow these

automatic programming systems to construct the desired program.

The specification may consist of examples of the input/output

behavior of the desired program, or it might consist of traces of

how the program processes the input. The main issue in

programming by example is that the specifications are rarely

complete. To make the specification complete, a very large

number of examples might be required which itself render such

specification tedious and wasted effort. Illustration of

programming by examples can be found in [Sum 77], [Bar 79], [Phi

77].

18



(3) Natural Language Specification

Natural language specification, probably the most desired

specification technique, often lacks completeness because of the

ambiguity in the natural language itself. The method of

specifying in natural language involves interactive-checking of

hypotheses, pointing out inconsistencies, and asking for further

information. Examples of systems which acquire specifications

through natural language include PSI [Gre 77], CHI [Smi 85], SAFE

[Bal 76].

(4) Selection Menu

The user specifies the required program by selecting one of

the many available programs catalogued in the system. This

method provides a vehicle for unambiguous specification to the

system. Selection from a menu is usually achieved by simple

command key strokes. The specification is restricted to those

available in the menu.

2.3 Target Language

Most program development systems generate programs in some

target programming language such as Lisp, PL/1, GPSS etc. Some

program development systems are versatile enough to develop

programs in several target languages.

19



2.4 Problem Area

This is the area of intended application of the generated

program. The problem area can be precise as in the case of NLPQ

[Hei 74] which deals with simple queuing simulation problems. On

the other hand, the application areas could be as diverse as I/O

intensive data processing systems of Protosystem I [Rut 78] or

symbolic computation (including list processing, searching and

sorting, data storage and retrieval, and concept formation) as in

PSI. The problem area plays a dominant role in the method of

specification, the method of approach used by the program

development system, and so forth.

2.5 Method of Operation (Approach)

The method of approach overlaps in many program generating

systems. However, these systems can be broadly addressed in

their method of approach such as theorem proving, program

transformation, knowledge engineering, programmer assistant, and

the extended grammar approach.

(1) Theorem Proving Approach

In this approach, the user specifies conditions that must

hold for input data to the desired program and the conditions

that the output data must satisfy. The conditions are usually

specified in some formal language, often the predicate calculus.

A theorem prover is used to prove that for all given inputs

satisfying the input conditions, there exists an output that

20



satisfies the output condition. The proof yields the desired

program as a side effect. Deductive synthesis is the approach

used in such constructive program proving systems yielding the

desired program with the required output assertions. A system

which uses a deductive approach may construct programs

incrementally during the proof process or in a separate post-

proof phase. The basic problem in this methodology is that

program proving is a difficult task and therefore no

simplification is obtained during the program development

process. Deductive program synthesis approach is employed by [Man

80], and [Der 85].

(2) Program Transformation Approach

The program transformation approach is probably the most

widely used technique in program synthesis. Transformation

refers to the process of converting a specification or

description of a program into an equivalent description of the

program. This is a vertical transformation, that is, a more

abstract input (specification) is transformed into a less

abstract executable source program. A lateral transformation can

be used to work in the same level of abstraction but in a

different perspective for achieving efficiency and removing

redundancy. All these transformations are truth preserving.

Conventional language compilers are, in fact,

transformational systems transforming a source language into

machine interpretable code. However, a compiler differs from an

21



automatic programming system in that it applies transformations

in a rigid, predetermined manner. In an automatic programming

system, the application of transformations may depend on an

analysis and exploration of results of applying various

transformations. Systems like PECOS [Bar 79] and DEDALUS [Man

78] have a knowledge base with many transformation rules that

convert parts of higher level descriptions into lower level

descriptions, closer to the target language implementation. Such

rules are repeatedly applied to parts of the program description

with the goal of eventually producing descriptions within the

target language. These systems develop a tree of possible

descriptions of the program, with each descendent of a node being

the result of a transformation. The goal of program synthesis in

developing the tree is to find a description that is a target-

language implementation of the desired program. The major issue

in transformational systems is to control the application of

transformation rules, in other words, to keep the transformation

tree to a reasonable size. An excellent survey of research in

program transformation is presented in [Par 83].

The transformation approach embodies the knowledge of

program implementation in a library of transformation rules

rather than in procedures. Thus, the implementation using this

approach is modular and can be easily extended or modified.

Transformation systems may apply rules of transformation

either automatically or under user control. Systems which are of

limited power such as TAMPR [Boy 84] or PDS [Che 84] apply

22



transformation rules automatically by restricting the kind of

transformation that can be defined and used. The PSI system is an

example of a complex transformational implementation whose

transformation module PECOS [Bar 79] works under the guidance of

the efficiency module LIBRA [Kan 81].

The transformation approach closely associates with a

knowledge-based approach in encoding programming knowledge as a

set of transformational rules.

(3) Knowledge-Based Approach

A knowledge base is a database of facts about a domain,

rules to manipulate the facts and other rules, and a control

mechanism (inference engine) which controls the application of

rules in a specific way. A knowledge base whose domain knowledge

is "Programming" is indispensable in automatic program

generation.

Building a knowledge base is a knowledge engineering task

and is dependent on the specific goal for which it is built. The

programming knowledge human experts possess is enormous and

exists in different levels of granularity. Representing this

knowledge in machine usable form requires that the various types

of programming knowledge are fully understood. Precise

representation of knowledge in an axiomatized mathematical way

can only be applied to confined problem areas since programming

knowledge is currently not very well understood. Barstow [Bar 79]

argues that human programmers have collected such a wealth of
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programming knowledge, that the only way to represent the

knowledge for a large programming domain is through explicit

rules.

The knowledge-based approach appears to encapsulate all

other approaches discussed earlier. Formal specification and

deductive synthesis approaches use knowledge representation in

logic; the transformational approach uses knowledge

representation in the form of rules and facts. The knowledge-

based approach is getting attention because of it supports

modularity; encoded knowledge (axioms, facts, rules..) can be

added, deleted and changed. For generating a program for a given

problem, the knowledge about the stored knowledge in the database

(meta knowledge) can be used in deriving the applicability of the

knowledge sources for a specific problem.

(4) Programmers Assistant

The basic concern of Programmer's Apprentice (PA) [Wat 82]

system is program understanding and acting as a junior partner to

the programmer. This approach is midway between an improved

programming methodology and an automatic programming system.

Program understanding might be defined as a system being able to

talk about, analyze, modify, or write parts of the program. The

intention of this approach is that the programmer will do the

hard parts of design and implementation while PA will act as an

assistant to the programmer in keeping track of the mundane

details.
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The understanding of programs in PA is through plans. A

plan represents one particular way of viewing the program, or

part of a program. A plan is a representation for a program

which abstracts away from the inessential features of the

program, and represents the basic logical properties of the

algorithm explicitly. Matching the plan to a part of a program

description corresponds to understanding the part in that way.

Several plans can match the same part of a program, corresponding

to different ways of understanding that part. Plans can also be

built in hierarchical fashion.

(5) Extended Grammar Approach

The basic aim of this approach is to provide structured

editing and multiple views of the program being developed. This

approach provides only a supporting environment for program

development rather than the complete synthesis of a program. The

input to these systems is the textual program being developed.

The editor in which the program is developed has the knowledge of

the program structure, context sensitive relations and semantics

of the target language constructs. The generation of these

structured editors is mainly based upon the language definition

in terms of the syntax, context relationships, and operational

semantics of the language constructs. The language definition is

based upon the extended grammar approach: encoding the context

sensitive information in terms of attributes, and the meaning of

language constructs in some form of denotational semantics. From

25



the language description, an editor is generated which stores the

abstract tree as its primary view of program. The textual

program input is converted internally into a concrete program

tree. The correspondence of the abstract syntax to a concrete

program tree allows various analyses including immediate

recognition of syntax errors, some degree of semantic error

checking, and structured editing of the program being developed.

In addition, internally stored program fragments ( or templates)

allow program templates such as declaration, control constructs

etc. to be introduced as program text with a few command key

strokes. Thus, a program may be developed as a series of

commands. The required details are filled in as textual input.

This approach emphasizes the importance of an interactive

environment during program generation. Lucid command menus,

pop-up windows, use of mouse, etc. are common features of systems

based on this approach.

The templates which are provided by systems based on the

extended grammar approach are limited to language constructs

which can be statically analyzed. The application domain of a

program being developed using these systems can be anything. The

programmer gets assistant-like help from these systems. In this

respect, these systems are like the Programmer's Assistant (PA)

system. However, PA also stores the commonly used program

constructs (cliches) in the form of plans and hence is more

powerful. Instead of control templates like WHILE or REPEAT

which can be introduced as program text on command, a complete
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sub-program, say a program for inserting an element to a list,

could be introduced in PA. Thus, PA has a deeper and more

dynamic understanding of a program being developed.

The advantage of a structured editor is that the approach is

based on more formal grounds and hence it is relatively easier to

develop a system by a complete target language definition in

terms of a suitable grammar. The application domain is infinite

and this limits the semantic analysis that a system can perform.

2.6 Example Systems

The example systems surveyed are knowledge-based translation

rule guided systems and systems which provide structured-editor-

like environments for program synthesis.

2.6.1 PSI system

The PSI system was developed by Cordell Green and his

colleagues at Stanford University [Barr 82]. Even though the

system was developed about six years ago, it is described in

greater detail because PSI offers a comprehensive view of the

overall effort required in automating the programming task.

The design goal of PSI was the integration of the more

specialized methods of automatic programming in a total system.

The system incorporates knowledge engineering, model acquisition,

program synthesis, efficiency analysis and specification by

examples, traces or natural language. Research is continuing at

Kestrel Institute and a successor system, CHI has been
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developed.

In PSI, a program is specified by means of an interactive

dialogue which includes partial specifications by examples of

input/output pairs or by traces. Through the specification, the

user furnishes both a description of what the desired program is

to do and an indication of the overall control structure of the

program. The problem domain dealt with is symbolic computation,

including list processing , searching and sorting, data storage

and retrieval, and concept formation. The PSI system includes

(see Fig. 2.1)

a. The PARSER/INTERPRETER Expert
b. The DIALOGUE MODERATOR Expert
c. The EXPLAINER Expert
d. The EXAMPLE/TRACE Expert
e. The TASK DOMAIN Expert
e. The PROGRAM MODULE BUILDER Expert
f. The CODING (PECOS) and EFFICIENCY (LIBRA) Expert.

The overall operation of PSI may be divided into two phases:

a) Acquisition of specification of the desired program
b) Synthesis of the program.

(a) The PARSER/INTERPRETER Expert

In the acquisition phase, the PARSER/INTERPRETER Expert

first parses sentences and then interprets these phrases into

less linguistic and more program oriented terms which are then

stored in the program net. The expert has knowledge about data

structures (sets, records, etc.), control structures (loops,

conditionals, procedures, etc.) and some algorithmic ideas (set

construction, quantification, etc.).

28



English
Sentences
A

Explainer. .

.

User

Loose, very High-Level
Language Statements

I/O Pairs
and Traces

Trace & Example
Inference Expert

Domain
Expert

Program Model

Program Model Builder

Coder

Efficiency Expert
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Conventional Compiler

Machine Language Program

Figure 2.1. Major Paths of Information Flow in PSI.
([Barr 82], page 328)
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(b) The DIALOGUE MODERATOR and EXPLAINER Expert

The DIALOGUE MODERATOR Expert poses questions to the users

in order to guide the system in acquiring specifications of the

desired program. The posed questions are in internal form based

on relations and the EXPLAINER Expert converts the internal form

into English descriptions which are presented to the user.

(c) The EXAMPLE/TRACE Expert

This expert handles simple loops and data structures from

the specification by traces and examples.

(d) The TASK DOMAIN Expert

This expert uses knowledge of the application area to help

the PARSER/INTERPRETER and EXAMPLE/TRACE Experts fill in the

missing information in the program net.

(e) The PROGRAM MODULE BUILDER Expert (PMB)

This expert converts the program net into a complete and

consistent program model. The PMB completes the model by filling

in the various pieces of required information and by analyzing

the model for consistency. Information is filled in by default,

by the inference mechanism, or by queries to other experts, which

may eventually result in a query to the user.
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(f) The CODING (PECOS) and EFFICIENCY (LIBRA) Expert

These two experts are responsible for the synthesis phase.

The CODING expert's knowledge base contains rules that transform

parts of program descriptions into forms closer to the target

language (LISP). The goal of the EFFICIENCY Expert is to guide

the choice of the different rules, so that an efficient target

language implementation eventually results. Because of the

merits of the CODING Expert (PECOS) in program synthesis, it is

described separately in a subsequent section.

2.6.2 CHI System [Smi 85]

The extension of the work on the PSI system has led to the

design and implementation of the CHI knowledge-based synthesis

system at Kestrel Institute. The goal of CHI is to provide not

only a knowledge-based synthesis system, but also a supportive

high level programming environment that includes specification

acquisition, consistency checking, debugging, editing and

maintenance. The CHI system uses a common knowledge base about

the programming process to support all these activities.

The CHI knowledge-based programming environment emphasizes

the use of a very high level language called "V" for specifying

both programs and programming knowledge, and for interacting with

the programming environment. The "V" language includes

constructs for set mappings, relations, predicates, enumeration,

program synthesis rules, and meta-rules for control. The high

level description of knowledge in terms of the "V" language is
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not only used for self compilation, but also for modifying and

extending the environment itself.

The program synthesis is based on transformation refinement

rules for handling data structure selection, enumeration

constructs, and for producing concurrent programs from very high

level program descriptions. These rules are also used for

algorithmic design. Examples of algorithmic design include

derivation of several prime finding and shortest path algorithms.

2.6.3 PECOS [Bar 79] and LIBRA [Kan 81]

PECOS serves as a coding expert of the PSI project. PECOS

can also stand on its own and interact directly with the user.

The problem area of PECOS is basically symbolic programming,

which includes simple list processing, sorting, etc., and

extended to include graph theory and simple number theory.

Programs are specified in terms of very high level constructs

such as data structure (collection, mapping, etc.) and operations

(e.g., testing membership in a collection, computing the inverse

image of an object under a mapping, etc.).

Knowledge about programming in the problem area has been

made explicit and put into machine usable form, primarily as

transformation rules, in PECOS' knowledge base. The system

knowledge base consists of about A00 rules dealing with a variety

of symbolic programming concepts. About 300 rules are general

problem domain rules and the remainder are specific to the target

language (LISP). The implementation techniques covered include
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the representation of collections as linked lists, arrays, and

boolean mappings, and the representation of mappings as tables,

sets of pairs, property list markings and so forth. The

transformational rules are internally represented as condition-

action pairs. The condition parts of rules are partial

configurations of abstract operations and data structures that

are matched against parts of the developing program. When the

match is successful, the rule action replaces parts of the

abstract concepts with refinements of those parts. The complete

program synthesis is obtained through gradual refinement, that

is, repeatedly applying transformational rules which finally

converts the initial abstract concepts into a concrete LISP

program.

At some points during the transformational process, a

conflict may arise because several rules apply to the same part

of the program. Different conflict-resolution techniques

ultimately result in different target language implementations

(some times even dead ends) that often vary significantly in

terms of efficiency. PECOS uses three methods for conflict

resolution: user interaction, heuristic knowledge to choose the

best rule, or if both these methods are not adequate for a

conflict, apply all the rules in parallel.

In the PSI system, when PECOS works as a coding expert,

choices between rules are made by an EFFICIENCY Expert called

LIBRA. LIBRA incorporates more sophisticated analysis

techniques, such as cost function, than the simple heuristics of
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PECOS. PECOS does the synthesis part and LIBRA does the analysis

part during program generation phase.

The success of PECOS demonstrates the viability of the

knowledge-based approach in program generation. The efforts in

developing this system have led to further research in encoding

programming knowledge in different domains (which may result in

convergence of transformation rules applicable to many problem

domain [Bar 85]). Another research direction indicated by PECOS

is the codification of different kinds of programming knowledge.

Two types of knowledge seem particularly important: efficiency

knowledge and strategic knowledge. LIBRA embodies efficiency

knowledge to a limited extent. Much remains to be done in

general strategic knowledge (such as divide and conquer) during

program synthesis.

2.6.4 DEDALUS (DEDuctive ALgorithm Ur-Synthesizer) [Man 80]

This system accepts an unambiguous, logically complete, very

high level specification of a desired program and through

repeated application of transformation rules, seeks to reduce it

on to an implementation in a simple LISP-like target language.

This target language implementation is guaranteed to be correct

and terminate. The programming knowledge is expressed via

transformation rules. The rules which express general

programming principles independent of specification and target

language are of special importance. The DEDALUS knowledge base

rules form conditional statements and recursive and non-recursive
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procedure calls in addition to others.

DEDALUS is implemented in QLISP, an extension of INTERLISP

which includes backtracking facilities. The domain of

representative programs constructed by DEDALUS includes numerical

programs (various GCD algorithms), and set programs (union,

membership, cartesian product, etc.).

2.6.5 SAFE [Bal 78] /TI /GIST [Fea 82]

These systems were developed at the Information Sciences

Institute (ISI) of the University of Southern California by a

team headed by Robert Balzer. The SAFE system produces an

automatic formal description in terms of functions from an

informal problem description. The user of the SAFE system

provides a behavioral description in a preparsed limited subset

of English, including terms from the problem area. SAFE then

seeks to determine a way of resolving all ambiguities and to fill

in all missing information in a way that satisfies the system's

knowledge of constraints that all programs must satisfy. The

result is a complete, unambiguous, very high level program

specification in a functional language called AP2. By employing

its transformational rules, TI converts the functional

specifications produced by SAFE into a high level algorithmic

description in a specification language called GIST. The

transformational rules in TI include UNFOLD, loop merging, rules

for conditionals, and substitution of data structures with their

representation. The transformed specifications in GIST are
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further converted into a target program implementation.

2.6.6 PA (Programmer's Apprentice) [Wat 82], [Wat 85]

PA is a knowledge-based editor. As such, it lies between an

aid to an improved programming methodology and a knowledge-based

automatic programming system.

Programmers and the system work together during all phases

of program development and maintenance. The programmer performs

the difficult task of design and implementation, and PA acts as a

junior partner and critic by keeping track of details and

assisting in documentation, debugging and maintenance.

Program structures are represented as plans which are

primitives or hierarchically composed of other plans. The basic

entity of a plan is a segment defined by input expectations and

output assertions. The relationship between plans is kept by

defining links comprising data flow and control flow and semantic

relations such as knowledge of how the behavior of a plan is

inferred from the behavior of components.

The knowledge stored in PA is a database of common

algorithms and data structure implementations called the plan

library. PA's understanding of a program is embodied in a

hierarchical plan for it. Typical plans include knowledge about

the concept of a loop and its specializations into enumeration

loops or search loops, or general techniques for manipulating

trees, lists, arrays, and the like.
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PA is based on an informal and flexible editing paradigm.

Knowledge representation by plans allows both synthesis and

analysis, and moving from abstract specifications to concrete

programs, or vice versa. By providing a low-level plan structure

from a given program, the system assists in analyzing already

written programs. On the other hand, a user may construct a LISP

(or ADA) program with the assistance from the system by naming a

general algorithm and refining the abstract components into

source code.

The translation approach in PA is not strictly truth

preserving and there is no formal specification in the approach

adopted by PA. Within the bounds of plan compatibility arbitrary

changes to a program can be made. Thus, PA can be considered to

be a transformational system only in a broad sense.

2.6.7 Cornell Program Synthesizer (CPS) [Tie 81]

CPS is a syntax directed editor developed at Cornell

University. The entry and modifications of program text are

guided by a grammar for the host programming language PL/C. The

incorporation of the host language grammar into the editor

guarantees syntactically correct programs and prevents syntactic

errors on entry. The predefined language constructs are

incorporated in the editor as templates. Programs are created

top-down by inserting new templates and phrases in the skeleton

of previously entered templates. Syntax error detection is

immediate because template place holders can only be replaced by
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syntactically correct insertions.

The programs are translated into interpretable form during

editing and are then executed. Execution is suspended when an

unexpanded placeholder is encountered and can be resumed only

after the placeholder has been expanded.

The structured representation of the program (abstract

syntax tree) allows structured cursor movements. This prevents

unwanted cursor movement and quickens the program development

process. The visual cues for template expansion and immediate

visual response of edit and run time errors aid in quick and

correct program development. The program is synthesized as a

series of commands for inserting primitive program templates and

specializing the templates according to the problem requirement.

Although CPS guarantees syntactically correct programs, it

does not address semantics and algorithmic correctness at all.

For this reason, CPS can only be considered to be a primitive

program synthesizing system. Nevertheless, the structured

representation of the program and the interactive features

provided by this system improve the productivity of the

programmers to a considerable extent. The problem domain can be

anything, and hence CPS enjoys a wide usage.

CPS incorporates grammar rules as a set of procedures. These

are distributed throughout the system. For this reason CPS is

not modular and extension/modification requires substantial

rework

.
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2.6.8 CPS-G (Cornell Program Synthesizer Generator) [Rep 84]

The synthesizer generator synthesizes a structured editor

from an input language definition. The language definition is in

the form of an attribute grammar which includes rules defining

abstract syntax, attribution, display format, and concrete input

syntax. From this specification, the generator creates a full

screen editor for manipulating programs according to these rules.

In an editor generated with CPS-G, a program is represented

as a consistently attributed derivation tree. Modification of a

program corresponds to restructuring a derivation tree by

pruning, grafting, and deriving. Incremental analysis is

performed by updating attribute values throughout the tree in

response to modifications. Such structured editors can be

synthesized for any target language by a complete language

definition of the languages in terms of attributed grammar.

Attribute propagation in the derivation tree is carried out

by semantic equations. These semantic equations are part of the

input grammar. Attributes can either be synthesized or

inherited. Each semantic equation defines a value for a

synthesized attribute of a left-side non-terminal or an inherited

attribute of a right-side non-terminal. Context information is

provided as an environment which is a set of identifier-binding

pairs. The display of a program is defined by an unparsing scheme

given for each grammar production. The display is generated by a

pre-order traversal of the tree that interprets the unparsing

scheme

.
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2.6.9 The PSG - Programming System Generator [Bah 85]

This system was developed at the Technical University of

Darmstadt in West Germany. PSG generates sophisticated

interactive programming environments from formal definitions of

the target language. The formal language definition is a non-

procedural definition of the language syntax, context conditions,

and denotational semantics. The syntax is defined in BNF grammar

style. The syntax definition includes a format definition, which

is a tree-to-string transformation grammar. The format

definition helps in constructing an external textual

representation of an abstract tree. The syntax definition also

includes definitions of headers and menu texts which are used to

generate textual representations of templates and menus.

The context information is represented as "context

relations" and a relational algebra defines context information

for any particular node of the abstract tree. The context

conditions are obtained by specifications of scope and visibility

rules of the target language. The dynamic semantics of the

language is defined in a denotational style. The semantics

functions are defined as an extension of a type free lambda

calculus. These semantic functions generate an interpreter for

the language.

Parsing (building an abstract tree from textual input) and

unparsing (textual output from an the abstract tree) are done

incrementally to suit interactive development of target programs.
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Using PSG, syntax directed editor-like environments have

been generated from the language description of Algol60, Pascal,

and MODULA II.

2.6.10 PECAN [Rei 85]

PECAN is a family of program development systems which

support multiple views of user programs. These views can be

representations of a program or the corresponding semantics. The

primary program view is a syntax directed editor as in CPS. The

semantic views include expression trees, data type diagrams,

flow graphs, and symbol table. The system is implemented on

Apollo workstations with a range of interactive features and

graphic display capabilities.

The features provided by PECAN include

- immediate feedback of semantic and syntactic errors during
program editing

- structured templates for building the program, available as
commands

- the use of pop-up menus as alternative to typing most of the
commands

- a multiple window display to make effective use of the screen

- incremental compiling.

Thus, in the PECAN environment, a program can be synthesized as a

series of commands and with the details being filled up later.

The semantic analysis is limited to structural primitives whose

meanings can be derived statically. An algorithmic semantics is

not included in the system. The system is hand-crafted and hence
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is not modular. PECAN is similar to CPS, but has additional

features for representing programs in many ways for the user.

The interactive features of this system are far superior to the

CPS system.
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Chapter III

LOGIC PROGRAMMING FOR PROGRAM GENERATION

3.1 Introduction

This chapter outlines techniques for program gerneration

using Prolog. Declarative and procedural semantics of the Prolog

language are described and basic concepts of logic programming

for top-down processing of a grammar are presented. The problem

of space utilization in pure functional style logic programming

is identified, and the alternative style using dynamic data

structures in the database space is explained. Some methods for

supporting user interaction with stored structures are also

presented in this chapter. These methods form the basis for the

implementation described in Chapter 4.

3.2 Prolog

Prolog is an implementation of predicate logic as a

programming language. Prolog handles a subset of logic

represented as "Horn clauses". Prolog is a declarative language.

This means that, given the logic part of an algorithm in terms of

facts and rules, the Prolog system will provide the control part.

Prolog uses a fixed algorithm for evaluating goals and

instantiating variables. This is sometimes referred to as

"backward chaining"; it is equivalent to the top-down LL(1)

parsing algorithm in compiler theory. The programmer essentially

provides the 'what' of the algorithm in terms of logic and the
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Prolog system provides the control component -'how' the logic is

to be executed [War 80].

Clauses in Prolog are of the form:

Goal if SubGoall and SubGoal2 and SubGoaln.

There are two different ways of looking at the meaning of a

Prolog program. In the declarative interpretation the Prolog

clauses specify relationships between objects.

Example:

Concat([],L,L). /* fact */

Concat([X|Ll],L2,[X|L3]) :- Concat(Ll ,L2,L3) . /* rule */

The declarative semantics of the above clauses can be read as:

"The empty list concatenated with any list L is simply
L. A non-empty list consisting of X followed by the
remaining elements LI concatenated with list L2 is the
list consisting of X followed by remaining elements L3
where LI concatenated with L2 is L3."

The alternate interpretation is obtained by considering the

sequence of steps which is followed when the program is executed.

The procedural semantics can be described as [War 80]:

"To execute a goal, the system searches for the first
clause whose head matches or unifies with the goal. If
a match is found, the matching clause instance is then
activated by executing in turn, from left to right each
of the goals of its body (if any). If at any time the
system fails to find a match for a goal, it backtracks,
that is rejects the most recently activated clause
undoing any substitutions made by the match with the
head of the clause. Next it reconsiders the original
goal which activated the rejected clause, and tries to

find a subsequent clause which also matches the goal."

This procedural semantics can be explained with the "Concat"

example. Consider the goal

Concat([l,2],[3,4],Z).
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The result of the execution will be to substitute the required

value of the variable Z. The goal matches only the second

clause, and becomes

Concat([l,2],[3,4],[l|Zl]) :- Concat([2]
, [3,4] ,Z1)

.

The variable name 'Zl' is purely arbitrary. The process is

repeated a second time giving rise to a further goal:

Concat([2],[3,4],[2|Z2]) :- Concat( [ ] , [3,4] ,Z2)

.

Finally Z2 gets its value from the first clause:

Concat([],[3,4],[3,4]).

Thus Zl is [2|Z2] which evaluates to [2,3,4] and Z is [l|Zl]

which evaluates to [1,2,3,4].

The above example illustrates the evaluation of

concat(Ll,L2,L3) with LI, L2 as inputs and L3 as output. If LI,

L2, and L3 are all inputs, the clauses check for correctness. If

only L3 is input, the program generates all possible combinations

of values for LI and L2 whose concatenation yields L3 by the

built-in backtracking mechanism.

3.3 Applications using Grammars

The use of Prolog in compiler development is very

appropriate because the system provides:

a. high level symbolic pattern matching of logic
variables through unification

b. top-down left-to-right (depth first) application of
clauses to evaluate the goal.

In particular, top-down recursive-descent parsing closely follows

the Prolog system control mechanism. The clauses which are

evaluated will be grammar rules of a target language and the
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input is the program text in that language. Excellent

illustrative examples are provided in [War 80], [Ste 86], and

[Clo 82].

A grammar for a language is a set of rules for specifying

the sequence of words (tokens) which are acceptable as a sentence

in that language. Given a grammar for a language, any sequence

of tokens could be examined to check whether it meets the

criteria for being an acceptable sentence. This is done by

establishing the underlying sentence structure. This is

typically a parsing procedure in which the 'parse tree' of an

input list of tokens is established.

Consider the example of an LL(1) grammar (left factorized

and made deterministic to avoid unnecessary backtracking) as

shown in Figure 3.1. The validity of the sentence '( a + b )
*

c' can be found by building a derivation tree as shown in figure

3.2.

Many Prolog systems allow the grammar rule notation '— >'

which can parse a BNF-type grammar directly. The input to each

rule is typically a list of tokens. Each rule consumes a part of

the list (from left to right) and builds a structure

corresponding to the consumed token. When parsing is

successfully completed, the list left over should be the null

list.
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1. E —> T El

2. El —> + T El

3. El —> null
A. T —> F Tl

5. Tl —> * F Tl

6. Tl —> null
7. F -> ( E )

8. F — > a

9. F —> c

10. F —> c

Figure 3.1. An LAn LL1 Grammar for Simple Expressions.
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Figure 3.2. Derivation Tree for ' ( a + b ) * c'
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One such representation may look as follows:

E(InList,RestList,e(Structure)) :-

T( InList , List 1 , Structurel )

,

El(Listl,RestList,Structure2),
Concat( [Structurel]

,
[Structure2] .Structure).

T( InList, RestList,t( Structure)) :-

El ( InList , RestList , el (Structure) ) :

-

These rules build the structure as a list. For a given goal:

E([(,a,+,b,),*,c],_,ParseTree)

the clause returns the structure of ParseTree as shown in

Figure 3.3.

The natural representation of grammar rules as Prolog rules

makes parsing and building the derivation tree a simple task.

The process of parsing can be summarized as shown in Figure 3.4.

Program generation in a restrictive domain can be visualized

as the inverse of parsing, i.e., from a set of grammar rules, it

is required to generate an instance of 'program text' in the form

of a list through the application of grammar rules. From the

example grammar (Fig. 3.1), each grammar rule can be written as

follows:

E(Program) :-

T(Pgml),El(Pgm2),
Concat(Pgml,Pgm2,Pgm).

T(Program) :-

El (Program) :-
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e([ t( _ ), el( ) ])r ~\

I \

[f( ), tl( _ )] []

r \

I \

[(, e( ), )] [*, f( ), tl( )]

[t( ), el( _ )] [c] []

r \

i \

[f( ), tl( )] [+, t( ), el( )]

\

[a] [] [f( ), tl( )] []

[b] []

Figure 3.3. Parse Tree as a Structured List for '(a+b)*c'

Input
List of Tokens

Prolog rules
representing
grammar rules

Parse Tree

-> as a Structured
List

Figure 3.4. A Parser in Prolog
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The components of Program which are Pgml and Pgm2 get bound

to a value by subsequent applications of grammar rules to

terminal token values. The values are propagated to the head of

each clause (rule) and thereby Program is synthesized. All the

work is done by the Prolog unification and control mechanisms.

The synthesized sub-units may be simple lists, in which case the

final program obtained will simply be a list of tokens

constituting a valid program according to the grammar rules.

Additional structuring can be imposed to get a trace of the

derivation. This trace is a 'program tree' as shown in figure

3.3.

The following is an example of a set of rules for obtaining

a program tree:

E(e(Pgm)) :-

T(Pgml),El(Pgm2),
Concat([Pgml],[Pgm2],Pgm)

T(t(Pgm)) :-

El(el(Pgm)) :-

Unlike parsing, program synthesis requires further guidance

in choosing one of the grammar alternation rules during top-down

expansion. An interpreter can be visualized as providing

functionalities such as guiding the application of grammar rules,

obtaining values of identifiers from users, etc. Additional

functions such as manipulation of the program tree being

synthesized can be provided by the interpreter. Therefore, the
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interpreter can process many other commands in addition to the

expansion of non-terminals in the grammar rules. One such

interpreter can be relationally represented as follows:

Interpreter(Command , InPgmList ,ModifiedPgmList)

.

Interpreter modifies the 'InPgmList' according to 'Command'

to get 'Modif iedPgmList'. If 'Command' has the value 'expand'

(which is the central function of the interpreter), the

'InPgmList' could be a list of one element, viz. the start

symbol. For the example grammar of Figure 3.1, an interpreter

might be invoked for expansion as follows:

Interpreter(expand,[e(_)] ,Pgm)

.

The expansion action starts from the leftmost item of

'InPgmList'. Any terminal in the list is left unchanged. A non-

terminal represented as a functor of a compound-term gets a value

for its term bound to the right-side terms of the grammar rule.

For example, after one unfolding of a grammar rule, e(_) will

become e([ t(_),el(_)]). All non-terminals can be expanded in a

depth-first sequence, e.g., expanding t(_) next in the above

example by calling the interpreter recursively with appropriate

'InPgmList'. When all non-terminals are expanded, the recursive

calling stops and unwinds from the recursion. The value for the

program structure is obtained at each recursion unwinding to

synthesize the final value of 'Pgm'. The module development

system developed by [Pea 86] was based on this approach.
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3.4 Program Generation using the Prolog Database.

For a large program structure, the process of program

generation described in the preceding section requires a large

amount of run-stack space because of the recursive calls to the

interpreter. Furthermore, this recursive programming leads to

complete expansion of all grammar rules before the final program

is returned. Although the program structure is maintained during

refinements, the structured operations on the program tree can be

incorporated only after a complete program is developed.

Therefore, this approach is unsuitable for interactive generation

of programs of reasonable size.

In order to overcome the run-stack space problem, the

program structure should be handled as small chunks. Each non-

terminal and terminal of grammar rules and program structure may

be represented as individual facts in the Prolog database. The

expansion of grammar rules can be done one fact at a time in the

following manner:

Interpreter ( expand , Node , NewNode ) :-

isNt(Node) , ! , /* "Node" is a non-terminal */

linkRHS(Node),/*graft RHS terms of "Node"topgm tree */

getNextNode(NewNode), GetCmd(Cmd),
! , /* return next node

to be expanded "NewNode" and next command "Cmd" */

Interpreter(Cmd, NewNode, NextNode). /* recursive call */

The interpreter begins with the start symbol as "Node"; this

is asserted in the Prolog database as a fact of the program

structure. For expanding non-terminals, the interpreter retracts

the facts corresponding to non-terminals, and stores the right-

side of the non-terminal (corresponding to a grammar rule) as
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facts of the program tree ("linkRHS(Node)"). At any given time,

the Prolog interpreter will be handling only one node. This

style of Prolog programming with extensive use of the system

database and corresponds to programming based on side effects.

The fracturing of program structure into smaller nodes aids in

efficient memory utilization.

Turbo-Prolog is a statically typed language which is

compiled before execution. The static features of Turbo-Prolog

require that the facts which need dynamic modifications should be

declared separately as database facts. Turbo-Prolog allows only

those facts to be retracted, changed, and reasserted during

execution.

The representation of terms in grammar rules (non-terminals

and terminals) as nodes (facts) involves the additional effort of

explicitly linking each node. The natural sequencing obtained

from the list structure is no longer available. These links

(such as parent and sibling node link) can be obtained by

additional terms in the facts representing the nodes. Each fact

representing a node is like a variant record in a procedural

language. The terms representing the relationship between nodes

correspond to the pointer fields in the records of a procedural

language. The representation of grammar rules and program

structure in terms of nodes and explicit links and the use of

this representation for program synthesis using a procedural

language interpreter can be found in [Bart 85].
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Data structure representation in terms of small units such

as nodes and explicit links requires procedurally oriented data

manipulation. An excellent summary of various techniques for

procedurally oriented programming in Prolog can be found in [Mun

86]. A detailed description of grammar and program tree

representation in terms of facts in a Prolog database can be

found in Chapter IV of this thesis.

3.5 Interactive Loops in Prolog

An interpreter working interactively on input commands can

be devised as a tail recursive loop:

Interpreter (quit ,_,_) :- !.

Interpreter(Cmd,Args,NewArgs) :-

Read(Cmd),ProcessCmd(Cmd,Args,NewArgs)

,

! , Interpreter (Cmd ,NewArgs ,NArgs)

.

Note the special built-in predicate ! (read as cut). This

predicate prevents backtracking. The operational semantics of

cut can be described as follows [Ste 86]:

The goal (cut predicate) succeeds and commits Prolog to
all choices made since the parent goal was unified with
the head of the clause the cut occurs in. Thus, cut
prunes all the alternative clauses below and
conjunctive clauses to the left of the cut.

In the interactive loop, "Cmd" is read from the terminal,

processed on "Args" to get "NewArgs", and the read/process cycle

is repeated recursively. As described in previous sections,

implementations based on recursive loops require larger memory

spaces. Although many Prolog systems incorporate tail recursive
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optimization, interactive loops can be represented as "failure

driven" loops which guarantee a constant system memory

requirement.

Interpreter :-

Repeat, Read(Cmd) ,ProcessCmd(Cmd,Args,NewArgs)

,

Cmd="quit", !.

Repeat.
Repeat :- Repeat.

The goal, Repeat, is always true. When "Cmd" is not "quit", the

failure invokes the system backtracking mechanism by which a new

"Cmd" is read. Note that the predicate "ProcessCmd" must be

deterministic for every "Cmd" (i.e., no alternatives for a given

"Cmd"). When the command is "quit", the cut succeeds and the

repetition is stopped.

3.6 Display Update

Program generation from a given set of rules is obtained by

successive refinement of non-terminals to their right-side terms.

Commencing from the start symbol, which will be the root of the

program tree, refinements build a concrete program tree.

Additional functions of the system interpreter act on the

underlying program tree and update/modify the tree. The

challenge in the design of an interactive user interface is the

immediate update of the program textual display corresponding to

the structure modification.

There are two aspects of an interactive interface: input

dialogue interaction with the user, and display update. Input
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interaction with the user. is relatively easy as compared to

display update. The input dialogue interaction provides command

menus, designated keys for predefined commands, help menu

display, etc. The designated keys for commands simplify command

entry and eliminate the necessity of memorizing a complex command

syntax. The display update traverses the data structure and

displays it on the screen. In order to associate a component of

a data structure with a location on the screen, either the

position can be calculated on demand or stored in the data

structure as an attribute. Storing the screen location has the

advantage of quicker response to commands, such as cursor

movement, which do not modify the underlying structure. On the

other hand, structure update commands have to do additional work

in storing the screen locations along with other processing such

as the expansion of a tree node. As a compromise, the screen

location can be stored for those nodes which can be modified such

as non-terminal nodes in the program tree.

A sophisticated "User Interface Management System" (UIMS)

for editing templates of programs has been suggested in [01s 86].

A simple approach is presented in Figure 3.5 which is suitable

for synthesizing small programs.

In this implementation, the screen is updated by refreshing

the entire screen. This method can be slow if the program

generated is large. However, for small modules this approach will

be satisfactory and is easy to implement.
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Chapter IV

IMPLEMENTATION OF THE PROTOTYPE PROGRAM GENERATOR

4.1 Introduction

This chapter describes the program generator in considerable

detail. First, the external grammar input to the system is

described. Next, the data structures of the internal

representation of the grammar rules and the program tree

structure are explained. Finally, algorithms of important

predicates used in the system are presented.

Ideally, the program knowledge input should be in the form

of a BNF style translation grammar. The grammar will be

converted into a suitable internal form on which the system

interpreter operates. The grammar conversion module has not been

implemented in this system, but the algorithms required by the

converter are included in this chapter.

4.2 External Grammar

The external grammar which is in BNF style encodes program

templates of the target language. The templates are

parameterized through semantic actions. This grammar is

internally represented as Prolog facts. The grammar syntax is as

follows:

1. The top production must be the start symbol.

2. The left-side of all grammar production must be a unique non-
terminal. The non-terminals are enclosed in angle brackets
'<' and '>' and are separated from the left-side terms by
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1— >'. The uniqueness of the left-side non-terminals helps
unambiguous grammar rule application by the interpreter. The
alternation in the grammar must be rewritten as a separate
non-terminal deriving a semantic action "choose" to select one
of the alternation rules.

3. The terminals in the right-side of production rule appears in
single quotes. E.g., 'Program'.

A. The non-terminals in the right-side are enclosed in angle
brackets '<' and '>'. E.g., <dcls>.

5. The format statements used for pretty printing that indicate
new line and amount of absolute indentation is represented as
nl(tab). E.g., nl(3).

6. Semantic actions are delimited by dots. Eg. .sa(X).

7. The end of production is indicated by the slash '/'.

The absolute indentation of the format statements simplifies

the implementation of the "display" routine and the program

structure update functions which record the co-ordinates of

program nodes. Usage of absolute indentation is possible only

because operations such as "cutting" and "pasting" of program

node sub-trees during program generation are not permitted in the

implementation of the interpreter.

Semantic action representation is performed in a special

way. A non-terminal deriving a semantic action as its right-side

term will not have any other term. In other words, semantic

actions will be the only terms in the right-side of grammar

rules. This restriction simplifies the translation and execution

of semantic actions during interpretation.

Figure 4.1 shows the example input grammar. The grammar

encodes the table and the list algorithms of a toy language. An
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<pgm> —> 'Prog' <pgmid> nl(3) <dcls> nl(0) 'end' <pgmid> /

<pgmid> —> .id(pgmid). /

<dcls> —> .choose(abstractty,[table,list]). /

<table> —> <tabletydef> nl(0) nl(3) <tableprocs> nl(3)

<moretableprocs> /

<tabletydef> —> 'type table' /

<tableprocs> —> .choose(tableprocs, [tableinit.tablesort]) . /

•

<moretableprocs> —> .more(tableprocs) . /

Figure 4.1. Representation of External Grammar.
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alternation rule in the grammar is implemented by the CHOOSE

semantic action. The CHOOSE semantic action provides a list of

alternate grammar rules for a particular type of choice. The

execution of choice SA (Semantic Action) results in the selection

of one of the grammar rules by the user. This provides a way of

guiding translation rules during interpretation. A repetition

loop of a grammar rule is encoded by MORE SA. This SA is

executed only on user demand. The execution of MORE SA allows

application of a grammar rule several times.

A. 3 Internal Grammar Representation

The internal representation involves three types of Prolog

facts: "definition" facts corresponding to the left-side of a

grammar rule, "token" facts corresponding to the right-side

terms, and "choice" facts for all alternations in grammar rules.

Examples of these three types of facts are shown below.

Definition fact:

d(Non_terminal_name, Right_side_index)

.

E.g., d(pgm,l).

Token fact:

t(Token_index, Token_node, Sibling_index)

.

Token-node: nt(Non_terminal_name); E.g., t(4,nt(dcls) ,5).

const(Terminal); E.g., t(l,const("Prog") ,2)
nl(Tab) E.g., t(3,nl(3),4)

.

sa( SAname , SA_Parm_type )

.

SAname: getid; E.g., t(8,sa(getid,pgmid) ,0)

.

choose; E.g., t(9,sa(choose,abstractty) ,0)

.

more; E.g., t(17,sa(more,tableprocs) ,0).

Choice fact

:

c(ChoiceType,List_of_choices)

.

E.g., c(abstractty, [table, list]).
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The Right_side_index in a definition fact points to the

first right-side token of a grammar rule. The Sibling_index in

the token fact links the right-side tokens of grammar rules. The

end of a grammar production rule is denoted by null(O) Sibling-

index of the last token. The choice facts provide a link between

CHOOSE SA token fact and a list of grammar rule choices. Storing

the grammar rule choices as separate facts enables pop-up menu

presentation of choices by the interpreter. This makes the system

more user friendly. The internal form of the grammar rules are

shown in Figure 4.2.

The translation of grammar to the internal form is easily

automated. This involves get_right_side and get_left_side terms,

and explicitly linking them together. The following algorithms

show how this can be implemented.

Top level algorithm:

Loop till EOF
Get_left_side term,

Get_right_side terms,

end Loop.

Get_left_side
read_non_term(ntname)

,

assert d(ntname,TokNdx)

,

end Get left side.

TokNdx is a unique global index which provides an index to
token facts and provides an explicit link between definition and
token facts.
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t(TokNdx,Node,SiblingNdx)

Figure 4.2. Internal Representation of Grammar Rules as Prolog
facts.
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Get_right_side terms:

This is more complicated as the tokens may be terminals,
non-terminals, SA, and format tokens.

Get_right_side terms
Loop

read token,

case token of

SA
delimiter : read Sa_name

,

case Sa_name of

choose: read Choice_ty, Choice_List,
assert

t(TokNdx,sa(choose,Choice_ty) ,0)

,

c (Choice__ty , Choice_List )

;

more: read More_ty,
assert

t(TokNdx,sa(more,More_ty) ,0)

;

id : read Id_ty

,

assert
t(TokNdx,sa(getid,Id_ty),0);

end case
update TokNdx;

terminal,
non_term,
format :SiblingNdx is TokNdx + 1 ,

case token of
terminal : read Const_name,

assert
t(TokNdx,const(Const_name)

,

SiblingNdx)

;

non-term: read Ntname,
assert

t(TokNdx,nt(Ntname),
SiblingNdx);

format: read Tab,
assert

t(Tokndx,nl(Tab) .SiblingNdx)

;

end case
TokNdx is SiblingNdx;

End of
Production:Set the previously asserted last token-fact

SiblingNdx to 0,

Decrement TokNdx,
Exit,

end case
end Loop

end Get_right_side terms.
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The global variables (TokNdx and SiblingNdx) can be

implemented as Prolog database facts. The values of these

variables can be changed by retrieving the fact and re-asserting

back with a new value. This is like an assignment statement in a

procedural language.

The grammar conversion algorithm is described in a fair

amount of detail to guide the implementation of a future grammar

converter as an extension to the program generator. The

availability of the built-in Turbo-Prolog predicate "fronttoken"

enables a straight-forward implementation of the algorithm.

4.4 Interpreter

The interpreter operates on the internally stored grammar

rules in generating a program structure. The main functions of

the interpreter are to parse through the grammar rules starting

from the start symbol one node at a time and then to link the

right-side terms of non-terminals in creating the program

structure.

It is necessary to understand the program structure

represented in the form of Prolog facts in order to understand

the various functions that the interpreter provides.

Programs which are generated dynamically during

interpretation are maintained as tree structures. A tree

structure is formed by explicitly linking "program" facts which

get asserted dynamically. A program tree node (fact) is

represented as follows.
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p(ProgNdx , Node , ParentLink , SiblingLink)

.

ProgNdx: unique number for each program node.
Node: const(ConstName) ; for terminals

nl(Tab); for format nodes
nt (Ntname , ChildLink , Visible , Expanded , Row , Col

)

ChildNdx: Program node index pointing to the first
RHS term or non-terminal grammar rule.

Visible : Boolean flag (y/n) which is used by
"display" function to show or hide the
subtree corresponding to the non-terminal.

Expanded: Boolean flag (y/n) to indicate wheather a
non-terminal node is expanded or not.

Row, Col: Screen position of a non-terminal with
reference to (0,0) start location.
Different parts of the program tree can be
displayed by changing the reference from
zeroth row to any other row. This forms
the basis of scrolling.

It is clear from the description of program facts that the

representation is geared towards interactive program manipulation

and display.

The interpreter also generates one more data structure in

order to keep track of identifier names provided by the user in a

symbol table of facts

s(Idtype, Value)

.

Note that the scope information is not included and identifiers

are global to the entire program.

4.4.1 Interpretation

The logic of the interpreter module is described in terms of

algorithms which cover the important predicates used in the

system. For a detailed presentation of the interpreter logic

refer to Appendix III at the end of this thesis.
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The interpreter is invoked by a top level predicate "go"

which reads in the Prolog facts (representing the grammar) from

an external file, asserts the start symbol as a "program" fact,

initializes the screen location, sets up a command help menu, and

calls the interpreter. The algorithm for "go" is presented

below.

go()
consult(Prolog^ramma^fact_file)

,

Init(ProgNdx) , Init(Screen_location)

,

assert Start_symbol

,

set_up(Command_help_window)

,

display (in :ProgNdx), /* display start index */
interp,

end go

.

The interpreter ("interp") reads and processes user commands in a

failure driven loop. The following text describes the "interp"

algorithm.

interpO
Repeat

read Cmd,
Process_cmd ( in : Cmd , in : Pnode , out : NewPnode)

,

until Cmd='q'

,

Save_Pgm( )

,

end interp.

The interpreter calls "Process_cmd" and passes it the user "Cmd"

and the current program node to be processed. The interpreter

loops until the user types *q* to quit the system. The program

text generated is saved in a predefined disk file by the

interpreter before quitting as a precautionary measure.
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4.4.2 Command Processing

The commands which are processed by the "Process__cmd" can be

described as follows:

Process_cmd( in : Cmd , in : Pnode , out : NewPnode)
case Cmd of

Structure__move : Struc_move( in : Cmd , in : Pnode , out : NewPnode)

;

(i.e., arrows)
ellipsis (' .

' ):hide_children( in: Pnode, out : NewPnode);
open_ellipsis ( 'o' ) :open__children( in: Pnode, out: NewPnode)

;

expand_node ('e' ) :expand( in: Pnode, Out: NewPnode)

;

save_pgm ( '

s
'
) : save_pgm

;

end case
end Process cmd.

4.4.3 Structured Cursor Movement

The "Struc_move" predicate allows movement to the child,

parent, left, or right non-terminal nodes of a program tree.

The current node of interest is highlighted by an inverse video

display.

Struc_move( in : Cmd , in : Pnode , out : NewPnode)
case Cmd of

uparrow : move_out (in: Pnode, out: NewPnode )

;

downarrow : move_in (in: Pnode, out: NewPnode )

;

leftarrow : move_lef t( in: Pnode, out: NewPnode)

;

rightarrow: move_right( in: Pnode, out: NewPnode)

;

end case
end Struc move.

The predicates move_in, move_out, move_left, and move_right

invoke other predicates that move to the child, parent, left, and

right non-terminal nodes respectively. The algorithms for all

these movement predicates are similar.
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move_in , out , left , right ( in : Pnode , out : NewPnode )

;

get_child
,
parent , left , right

non_term_node( in: Pnode, out: NewPnode)

,

Chk_display(in:NewPnode)

,

end move

.

The check display ("Chk_display") predicate checks whether

the new program node ("NewPnode") co-ordinates are within the

current screen window or whether there is a need for scrolling.

If "NewPnode" is within the current window then the cursor

(inverse video bar) is changed from "Pnode" to "NewPnode".

Otherwise, a display procedure is called ("display(in:NewPnode)")

to display the program text containing "NewPnode".

4.4.4 Ellipsis and Open_Ellipsis

Open and hide_children predicates operate on the flag

"Visible" of the program node for non-terminals. This flag is

turned on or off (open or hide) for the current program non-

terminal node. The co-ordinates for all other non-terminal

program nodes to the right of the tree from the current non-

terminal node need to be updated ("modify_righttreeRC(in:Pnode,

in:RowDiff ,in:ColDif f )") and the program text is then re-

displayed.

open(hide)_children (in :Pnode, out: Pnode)
turn_on(off) the display flag for Pnode,
calculate the co-ordinate diff. RowDiff, ColDiff,
modify_righttreeRC( in : Pnode , in : RowDiff , in : ColDiff )

,

display(in:Pnode)

,

end open(hide) children.
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4.4.5 Expand

The expansion ("expand(in:Pnode,out:NewPnode)") is the heart

of the processing. This command grafts the right-side terms

corresponding to the current non-terminal node ("Pnode") into the

program tree with "Pnode" as the root and the right-hand terms as

the branches of the tree. The expansion refines one node at a

time and returns the next node ("NewPnode") to be refined. The

selection of "NewPnode" for further expansion is based on a

depth-first sequence. The expand was implemented as a single-

step function rather than as an automatic recursive loop in order

to increase the flexibility and manual control during expansion.

The algorithm for "expand" is described below.

expand ( in : Pnode , out : NewPnode

)

case Pnode_type of

constant,
format

,

Pnode already
expanded : NewPnode = Pnode;

NtNode:Get RHS Token Node "TNode",
assert "Pnode" as Ntnode, expanded, and not visible ,

case Tnode_type of
SAtype : Semact ( in : Tnode , in : Num , in : Pnode )

,

chk_more_choose( in : Tnode , in : Pnode

,

out: NewPnode)

;

others : Link_rhs ( in : Tnode , in : Num , in : Pnode )

,

compute the difference "RowDiff" and

"ColDiff" of screen co-ordinates,
modify_righttreeRC( in : Pnode , in : RowDiff

,

in: ColDiff),

expand_next ( in : Pnode , out : NextNode )

,

chk_expand ( in : Pnode , in : NextNode

,

out: NewPnode)

;

end case
end case

end expand

.
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The "expand" skips over terminals, already refined non-

terminal nodes, and format statements. For a non_terminal

program node ("Pnode") which is not expanded, the token_node

("Tnode") is first examined to check if any semantic action needs

to be performed. The semantic action ("semact(in:Tnode,in:Num,

in:Pnode)") takes the token and program node as well as the

current index ("Num") which is used for explicit linking as its

input. The execution of a semantic action results in the system

asking the user to choose a production or to furnish an

identifier value. The results of a "semact" execution are stored

in the program and/or symbol_table database. The algorithm for

"semact" is given below.

semact ( in : Tnode , in : Num , in : Pnode

)

case Tnode sa_type of
getid : idget(in:Idtype,in:Num,in:Pnode)

;

choose: choice node(in:Choicetype,in:Num,in:Pnode)

;

more : moresaTin:Moretype,in:Num,in:Pnode)

;

end case
end semact.

(1) Semantic Action Idget

idget ( in : Idtype , in : Num , in : Pnode)
chk_symtab(in:Idtype,out:Val)

,

assert "Val" as a terminal program node
with "Num" as its index and "Pnode" as parent link,

calculate "ColDiff",
modify_righttreeRC( in : Pnode , in : , in : ColDiff )

,

chk_getid( in : Idtype , in : Val)
end idget.

Idget first calls "chk_symtab" to get a value for "Idtype"

either from the symbol table (if it exists) or from the user.

The syntax and the uniqueness of user supplied values for

71



identifiers are checked by this predicate. The user-obtained

identifier value is asserted as the symbol table fact in the

database. The difference in the column co-ordinate due to the

addition of an identifier value is propagated. Additionally, all

other program nodes requiring a value for the same identifier

type are automatically expanded by "chk_jgetid".

(2) Semantic Action Choose

choice_node( in : Choicetype , in : Num , in : Pnode

)

get list of choices from choice fact

c( in :Choicetype, out: Choicelist)

,

menu(in:Topleftrow,in:TopleftCol,in:Choicelist,
out: Choice)

,

get_choice_nt ( in : choice , in : 1 , in : Choicelist , out : Ntname )

,

assert Ntname as a program fact

end choice_node.

The list of alternate grammar rules (left-side of grammar

rules) is obtained by the choice fact in the database. The

"Choice" is obtained as a position in the list from the user by

the predicate "menu". The "menu" sets up a self adjusting pop-up

window in which the size of the window is adjusted to display all

the items in the "Choicelist". The pop-up window is positioned

close to the program node being expanded. User chooses the

"Choice" from the menu list by pointing to it and then hitting

return. From the user "Choice" which is a position in the

"Choicelist", the predicate "get_choice_nt" obtains the string

value "Ntname" corresponding to that position. The chosen

"Ntname" is asserted into the Prolog database as a program fact.
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(3) Semantic Action More

moresa( in : Moretype , in : Num , in : Pnode)
get left Not-terminal node "Lnode" of "Pnode",
change "Lnode" index to "Num",
assert program nodes "Moretype" of nonterminal type

and format "nl" node between "Lnode" and "Pnode",
adjust the co-ordinates of "Pnode" and all non-terminal

nodes in the right_tree of "Pnode",
end moresa.

The execution of "moresa" results in the insertion of a non-

terminal node, "Moretype", to the left of "Pnode". As an

example, the execution of "moresa(in: TableProcs, in: Num, in:

MoreTableProcs)" inserts a non-terminal node "<TableProcs>" to

the left of "<MoreTableProcs>" node in the program tree.

(4) Next Node to be Expanded After Semantic Action

chk_more_choose( in : Tnode , in : Pnode , out : NewPnode)
case Tnode_type of

getid :expand_next(in:Pnode,out:NextNode)

,

chk_expand( in : Pnode , in : NextNode , out : NewPnode )

;

choose : expand_next ( in : Pnode , out : NextNode)

,

expand ( in : NextNode , out : NewPnode ) ; /*indirect
recursion*/

more :get left non-terminal node "Lnode" of "Pnode"
expand(in: Lnode, out: NewPnode) ; /*indirect

recursion*/
end case

end chk_more_choose

.

The next node to be expanded is obtained through depth first

sequencing by the predicate "expand_next". In the case of

"getid" semantic action, "NextNode" may be null. In such cases,

chk_expand returns "NewPnode" which is the same as "Pnode". The

"choose" semantic action undergoes one more expansion of the
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previously chosen non-terminal node before "NewPnode" is

returned. For the case of the semantic action, "more", the

previously-inserted non-terminal node ("Lnode") to the left of

"Pnode" gets expanded once more before "NewPnode" is returned.

(5) Expanding Non-Terminal Node. (Other than those which

derive Semantic Action Node)

The right side terms corresponding to the non-terminal node

are obtained from the stored grammar rules and grafted into the

program tree using "link_rhs(in:Tnode,in:Num,in:Pnode)". The

change in screen co-ordinates is propagated to the right of

"Pnode". The next node to be expanded, "NewPnode", is obtained

through the predicates "expand_next" and "chk_expand".

4. A.

6

Save_Program

The predicate "Save_pgm" first prompts the user for the disk

file name. "Save_pgm" does a pre-order traversal of the program

tree and writes all terminal nodes into the disk file. The

format statement advances to the next line and indents the

program text.

4.4.7 Program Tree

Figure 4.3 shows an example program tree stored as facts in

the Prolog database. The various terms in the program facts are

described in section 4.3.
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p(Pndx, Node, ParentLink , SiblingLink)

p(l, nt("pgm", 2, n, y, 0, 0), -1, -1)

7 1 *
xl

p(2, const("prog"), 1, 3)

J
p(3, nt("pgmid", 9, n, y, 0, 5), 1, 4)

p(4, nl(3), 1, 5)

p(5, nt("dcls", 11, n, y, 1, 3), 1, 6)

f(6, nl(0), 1, 7)

p(7, const("end"), 1, 8)

p(8, nt("pgmid", 10, n, y, 10, 4), 1, 0)

p(9, const ("testpgm"), 3, 0)

p(10, const("testpgm"), 3, 0)

)(11, nt("table", 12, n, y, 1, 3), 11, 13)

s(Idtype, IdValue

sC'pgmid", "testpgm")

Figure 4.3. Dynamically asserted program tree

75



A. 4. 8 Program Display

The display of the program starts with the start symbol non-

terminal being displayed within angle brackets and highlighted by

an inverse video. The cursor is represented as an inverse video

bar on the screen. The program generated is represented as a

series of partially developed program displays on the screen.

The "display" is a utility predicate which is called

whenever the underlying program structure is updated/changed or

when the current program node to be displayed lies outside the

screen window. The algorithm for "disp" is presented below.

disp(in:Pnode)
clearwindow,
assert "Pnode" as "CurrentNode",
TempNode=l

,

calc_diff(out : dif f )

,

case Diff of

: assert CursorRC as 0,0,
set_disp_flag(in:true)

,

StartNode=l

,

display__now( in : TempNode , in : StartNode )

;

not : find_start ( in : Pnode , out : StartNode , out : Indent )

,

assert CursorRc as 0, indent ,

set_display_flag(in: false)

,

display_now( in : TempNode , In : StartNode )

;

end case
end disp.

The predicate "calc_dif f(out:Dif f
)" determines whether

"Pnode" can be displayed from the beginning of the program tree.

If "Diff" is equal to zero, "display_now" is invoked to display

the program starting from the root node. If the current "Pnode"

cannot be displayed starting from root node then "find start"
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gets the start program node from which the "display_flag" should

be turned on (and so also the screen display).

Display_now performs preorder traversal always from the root

and displays the nodes starting from the "StartNode" until the

cursor co-ordinates exceed the screen window co-ordinates.

"Pnode" is displayed at the near center of the window and is

highlighted. The predicate "chk_write(in:Node)" writes the terms

on the screen and highlights "Pnode" if it is "CurrentNode".

Angle brackets are added while writing non-terminals whose

"Visible" flag is on. The depth-first traversal ignores the

children nodes of a non-terminal whose display flag is "on"

although the node is expanded. This is the effect of the

"ellipsis" command which hides the subtree display of a non-

terminal program node.

4.5 Limitations and Extensions

The system implementation was intended only to demonstrate

the feasibility of developing an interactive program generating

system in a microcomputer environment using the Prolog language.

The following text lists the system limitations and guidelines

for future extensions.

- The programs are generated in a toy language. The target
language should be a practical high level language suitable for
library modules such as Modula or Ada.

- The grammar converter which converts input BNF style grammar
representing program template into internal Prolog facts was
not implemented. A detailed algorithm presented in this
chapter for grammar converter should be implemented so that
many more algorithmic program templates could be developed and
interpreted to obtain tailor made program from the template.
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Additional module to convert a running module into template
form in terms of grammar rules should be developed to avoid
template coding in terms of grammar rules by programmers.

Scope checking of identifiers is omitted in this
implementation. A method of encoding scope information in the
input grammar and a suitable interpretation should be
implemented as an extension to the present work.

Order of expansion of program nodes is left to users' choice.
In some cases, the expansion of a node requires prior expansion
of other nodes. Such semantic connections should be
incorporated in the interpreter.

Command "undo" for reverting back to the program structure and
displaying the previous stage(s) should be implemented.

The screen is redrawn for every modification of the program
structure. A "smarter" display procedure should be implemented
to enhance the system response.

4.6 Conclusions

Prolog offers a modular system development environment for

problems involving the manipulation of grammar rules. The

transformational approach appears to be the most productive

method for automatic programming. Representation of algorithms

for commonly used data structures in terms of grammar rules and

refining the grammar rules to the specification at hand is a

restrictive application of the transformational approach.

Storage space problems and flexibility of the program generation

process (interactive features) are the two major limitations in

Prolog language systems. The present implementation effectively

addresses these two issues through suitable internal

representation in terms of database facts and interactive

manipulation of the internal representation.
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Ideally, a program generator should be a part of a software

development environment within which many more functionalities

and assistance features are provided to programmers in order to

increase their productivity.
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Appendix I

SAMPLE TERMINAL SESSION

The following pages present a hard-copy listing of an actual
terminal session using Prototype Program Generator with the
sample grammar. The current "node" is actually highlighted with
an inverse video bar, but this highlight is not transimitted to

the paper while printing.
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Line 1 Col 1 Indent Insert THESIS. PRO

code-3500
novarnings
/******
/*
shorttrace

go
•/
/* tracing of expand
/*
menu
menul

tracing

Trace I

*/

Goal: go,

Dialog

^M Message

Load THESIS. PRO
Compiling THESIS. PRO

F8:Previoua line F9:Edit S-F9:View windows S-F10:Resize window EscrStop exec

I Toy
<pgm>

Program Generator

ttiwtttw
ype new command: e

rn£K!?
ED

.

M
?
V
£
MENT " t

R ?°WS "> UP = P"ent Down:Child Left .Right :Sibling It'COMMANDS: 'e':Expand '.' Ellipsis '

o
' :Open-Ellipsis 'q':Quit 's':Save
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SB Toy Program Generator
Frog <pgmiB>

<dcls>
end <pgmid>

COMMAND
|Type new command: e

STRUCTURED MOVEMENT - ARROWS «> Up:Parent Down:Child Left .Right : Sibling Nt's
COMMANDS: 'e':Expand '.^Ellipsis 'o ' :Open-Ellipsis *q':Quit 's*:Save

W Toy Program Generator
Prog <pgmid>

<dcls>
end <pgmid>

*** GET ID *** 1
Type Identifier for pgmid and enter: testpgm Z3

STRUCTURED MOVEMENT - ARROWS --> Up:Parent Down:Child Left .Right : Sibling Nt's
COMMANDS: 'e':Expand '.^Ellipsis '

o
' :Open-Ellipsis 'q':Quit 's':Save
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Toy Program Generator
Prog testpgm

<dcls>
end testpgm

COMMAND
[Type new command: e

^SH?^ED
.

M0VEMENT " ARR0WS "> Up:Parent DownrChild Left .Right rSibling Nt's
COMMANDS: 'e^Expand '.^Ellipsis ' o ' :Open-Ellipsis 'q':Quit ' 3 ':Save

I Toy Program Generator
Prog testpgm

<dcls>
end testpgm

Arrows : Choose
Cr :Select

SmmSED
.

M°V
p
MENT," **?°S? "> U P :Parent Down:Child Left .Right :Sibling It',COMMANDS: 'e^Expand '.^Ellipsis 'o ' :Open-Ellipsis 'q':Quit 's'iSave
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Toy Program Generator
Prog testpgm

<tabletydef

>

<tableproca>
<moretableprocs>

end testpgm

COMMAND
ype new command:

STRUCTURED MOVEMENT - ARROWS --> Up:Parent Down:Child Left .Right : Sibling Nt's
COMMANDS: 'e*:Expand *

.
' :Ellipsis '

o
' :Open-Ellipsis 'q':Quit *s':Save

Toy Program Generator
Prog testpgm

type table

<tableprocs>
<moretableprocs>

end testpgm

COMMAND
|Type new command: e

STRUCTURED MOVEMENT - ARROWS -«> Up:Parent Down:Child Left .Right : Sibling Nt's
COMMANDS: *e' .-Expand '.':Ellipsis * o ' :Open-Ellipsis *q*:Quit 's'rSave
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Toy Program Generator
Prog testpgm

type table

<tableprocs>
<moretableprocs>

end testpgm

"1
tableprocs

Itableinit
ftablesort I

Arrows :Choose
Cr :Select

STRUCTURED MOVEMENT - ARROWS --> Up:Parent Down:Child Left .Right :Sibling Nt's

COMMANDS: 'e':Expand *.':Ellipsis '
o

' :Open-Ellipsis *q':Quit 's':Save

Toy Program Generator
Prog testpgm

type table

proc <tinitprocid>
<tinitprocbody>

end <tinitprocid>

command nn
(Type new command: g I

STRUCTURED MOVEMENT - ARROWS «»> Up:Parent Down:Child Left .Right : Sibling Nt's
COMMANDS: 'e':Expand '.':Ellipsis '

o
' :Open-Ellipsis 'q':Quit 's':Save
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Toy Program Generator
Prog testpgm

type table

proc <tinitprocid>
<tinitprocbody>

end <tinitprocid>

*** GET ID ***
Type Identifier for tinitprocid and enter: tableinit

STRUCTURED MOVEMENT - ARROWS «-> Up:Parent Dovn:Child Left .Right :Sibling Nt*s
COMMANDS: 'e':Expand *.':Ellipsis 'o ' :Open-Ellipsis 'q':Quit 's':Save

Toy Program Generator
Prog testpgm

type table

proc tableinit
<tinitprocbody>

end tableinit

COMMAND
jType new command: e

STRUCTURED MOVEMENT - ARROWS — > Up:Parent Down:Child Left .Right :Sibling Nt's
COMMANDS: 'e':Expand '.':Ellipsis '

o

'

:Open-Ellipsis 'q':Quit 's':Save
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Toy Program Generator
proc tableinit

t initstmt s

end tableinit
<moretableprocs>

end testpgm

COMMAND
|Type new command : C

STRUCTURED MOVEMENT - ARROWS — > Up:Parent Down:Child Left .Right :Sibling Nt's
COMMANDS: 'e':Expand '.':Ellipsis 'o ' :Open-Ellipsis *q':Quit 's':Save

I Toy Program Generator
proc tableinit

tinitstmts
end tableinit tableprocs
<moretableprocs> Itableinit

end testpgm |tablesort

tableprocs MH
Itableinit
[tablesort I

£n

Arrows

:

Choose
Cr rSelect

STRUCTURED MOVEMENT - ARROWS — > Up:Parent Down:Child Left .Right rSibling Nt's
COMMANDS: 'e' .-Expand ' .

' :Ellipsis ' o ' :Open-Ellipsis *q*:Quit 's':Save
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Toy Program Generator
proc tableinit

tinitstmts
end tableinit
proc <tsortprocid>

<tsortprocbody>
end <tsortprocid>

COMMAND
|Type new command: Q.

STRUCTURED MOVEMENT - ARROWS --> Up:Parent Down:Child Left .Right .-Sibling Nt's
COMMANDS: *e*:Expand *.*:Ellipsis *o ' :Open-Ellipsis 'q':Quit 's*:Save

Toy Program Generator
proc tableinit

tinitstmts
end tableinit
proc <tsortprocid>

<tsortprbcbody>
end <tsortprocid>

*** GET ID ***
[Type Identifier for tsortprocid and enter: tablesort

^^iHHBiMHHHL-
STRUCTURED MOVEMENT - ARROWS — > Up:Parent Down:Child Left .Right : Sibling Nt's
COMMANDS: 'e':Expand *.':Ellipsis 'o * .-Open-Ellipsis 'q':Quit 's':Save
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Toy Program Generator
tinitstmts

end tableinit
proc tablesort

<tsortprocbody>
end tablesort
<moretableprocs>

STRUCTURED MOVEMENT -

COMMANDS: 'e':Expand

COMMAND HHHB
|T ype new command: 6

|

ARROWS »-> Up:Parent Down:Child Left .Right : Sibling Nt's
'.':Ellipsis '

o
' :Open-Ellipsis *q':Quit 's':Save

Toy Program Generator
proc tablesort

tsortstots
end tablesort
<moretableprocs>

end testpgm

COMMAND«
|Type new command: S

|

STRUCTURED MOVEMENT - ARROWS --> Up:Parent Down:Child Left .Right : Sibling Nt's
COMMANDS: 'e':Expand *.':Ellipsis '

o
' :Open-Ellipsis 'q*:Quit 's':Save
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Toy Program Generator
proc tablesort

tsortstmts
end tablesort
<moretableprocs>

end testpgm

IaHMHBMBBHMHMOM *** SAVE *** BH
Type File name (no extensions): testpgm

STRUCTURED MOVEMENT -

COMMANDS: 'e':Expand
ARROWS ~> Up:Parent Down:Child Left .Right :Sibling Nt '

s

'.':Ellipsis '
o

' :Open-Ellipsis 'q':Quit 's*:Save

FINAL PROGRAM

Prog testpgm
type table

proc tableinit
tinitstmts

end tableinit
proc tablesort

tsortstmts
end tablesort

end testpgm
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Appendix II

TEST GRAMMAR

<pgm> —> 'Prog' <pgmid> nl(3) <dcls> nl(0) 'end' <pgmid>/

<pgmid> —> .id(pgmid)./

<dcls> —> .choose(abstractty, [table, list])./

/#***** TABLE *****/

<table> — > <tabletydef> nl(0) nl(3) <tableprocs> nl(3)
<moretableprocs>/

<tabletydef> —> 'type table'/

<tableprocs> —> .choose(tableprocs [tableinit, tablesort]) ./

<moretableprocs> —> .more(tableprocs) ./

/*****# TABLE INIT *******/

<tableinit> —> 'proc' <tinitprocid> nl(6) <tinitprocbody>
nl(3) 'end' <tinitprocid>/

<tinitprocid> —> .id(tinitprocid)./

<tinitprocbody> —> 'tinitstmts'/

/**** TABLE SORT *****/

<tablesort> — > 'proc' <tsortprocid> nl(6) <tsortprocbody>
nl(3) 'end' <tsortprocid>/

<tsortprocid> —> .id(tsortprocid)./

<tsortprocbody> —> 'tsortstmts'/
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/####** LIST *****/

<list> — > <listtydef> nl(0) nl(3) <listprocs> nl(3)
<morelistprocs>/

<listtydef> —> 'type list'/

<listprocs> —> .choose(listprocs [listinit, listinsert]) ./

<morelistprocs> —> .more(listprocs) ./

/*#*#** LIST INIT ****#*#/

<listinit> —> 'proc' <linitprocid> nl(6) <linitprocbody>
nl(3) 'end* <linitprocid>/

<linitprocid> —> .id(linitprocid)./

<linitprocbody> —> 'linitstmts'/

/**** LIST INSERT *****/

<listinsert> — > 'proc' <linsertprocid> nl(6) <linsertprocbody>
nl(3) 'end' <linsertprocid>/

<linsertprocid> —> .id(linsertprocid) ./

<linsertprocbody> —> 'linsertstmts'/
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Appendix III

PROGRAM LISTING

code=3500
nowarnings

/* domains for readkey */

domains
file = pgmfile
key = cr ; esc ; break ; tab ; btab ; del ;bdel; ins; end; home;

fkey(integer);up;down;left;right;char(CHAR) ;other

/* domains for display */

domains
dbvars. = progndx; curr_RC; dbrowcol; tempRC; diff

;

maxline; p; curr_str; disp_flag; curr_num;

s

visible, expanded = y;n /* for nt's */

t_or_f = t;f /* for display flag */

node = nt( symbol, integer, visible, expanded, integer .integer)

;

/* nt(ntname,chldndx, vis, exp,plink, slink) */

const(string)

;

sa ( saname , symbol )

;

/* sa( saname, satype) */
nl(integer)

/* nl(abstab) */

dbfact = progndx( integer )

;

maxline(integer)

;

curr_RC (integer , integer )

;

dbrowcol(integer .integer)

;

tempRC( integer , integer)

;

diff(integer)

;

p(integer , node , integer , integer)

;

curr_str( string)

;

disp_flag(t_or_f )

;

d( symbol, integer)

;

t(integer,tnode, integer)

;

c( symbol, symlist)

;

curr_num( integer)

;

s( symbol , string)

/* domains for menu system */

domains
symlist = symbol*
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/* domains for expansion */

domains
saname = getid

;

retrid;
choose;
more

tnode = nt(symbol);
const( string)

;

nl( integer);
sa( saname, symbol)

/* database for display routines */

database
progndx( integer)

/* current prog_index under development */

/* Progndx(Pndx) */

maxline( integer)
/* number of lines for one screen */

/* maxline(line) */

curr_RC( integer .integer)
/* curr_RC(row,col) */

/* row col of current node */

dbrowcol ( integer , integer

)

/* dbrowcol(row,col) */

/* row col of cursor on screen */

tempRC( integer , integer)
/* tempNdxRC(pndx,row,col) */

/* row, col of temp, prog index.

used in finding row col of a given

index, or given row, find the first

prog index which has that row coordinate */

diff(integer)
/* diff of data structure Row and

current screen row */

p( integer , node , integer , integer

)

/* program node */

/* p(p_node_ndx,node,parent_link,sibling_link) */

curr str(string)
7* used to highlight curr_str

while structural movement */

disp_f lag ( t_or_f )

/* used to start displaying in display_now */
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/* database for expand */

d( symbol, integer)
/* d(ntname,rhsndx) */

/* definition of nt */

t(integer ,tnode, integer)
/* t(index,tnode,siblingndx) */

/* tokens in the database */

c ( symbol , symlist

)

/* c(choicetype,choicelist) */

/* chice list for sa choose */

curr_num( integer)
/* current max prog index */

s(symbol , string)
/* s(Idtype.IdVal) */

/* music */

/* */

domains
pitch=high;low

predicates
music(pitch, integer)
bell

clauses
bell:-
music(high , 500)

.

music(high,F):-
F<1500,!,sound(l,F),
Fl=F+300,music(high,Fl).

music(high,F) :-

music ( low, F).

music(low.F) :-

F>500,!,/* sound(l,F), */

Fl=F-300,music(low,Fl).
music(low,_)

.

/* */
/* readkey */
/* */

predicates
readkey(key)

/* readkey(outrkey) */
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key_code(key , char , integer

)

/* key_code(out:Key , in:asciikey, in:key_int) */

key_code2 ( key , integer

)

/* key_code2(out:key , in:key_int) */

clauses
readkey(Key) :-

readchar(T),char_int(T,Val),key_code(Key,T,Val).

key_code(Key,_,0) :-

readchar(T),char_int(T,Val),key_code2(Key,Val),!.

key_code(break,_,3):-!

.

key_code(bdel,_,8) :-!

.

key_code(tab,_,10) :-!

.

key_code(cr,_, 13):-!

.

key_code(esc,_,27) :-!

.

key_code(char(T) ,T,_) :-!

.

key_code2(btab,15):-!.
key_code2 ( home ,71):-!.

key_code2(up,72) :-!

.

key_code2(left,75):-!.
key_code2( right, 77) :-!

.

key_code2(end,79):-!.
key_code2(down,80) :-!

.

key_code2(ins,82):-!

.

key_code2(del,83):-!.
key_code2(fkey(N),V):- V>58, V<70, N=V-58,!.
key_code2 ( other ,_) .

/* */

/* utils */

/* */
predicates

str_symbol( string, symbol)
clauses

str_symbol(X,Y) :-X=Y.

/* display */

/* Predicates for display routines */
predicates
get_dbvar(dbfact)

/* gets the first value */

retract_fst ( dbfact

)

/* retracts first occurance of db fact */

100



calc_diff ( integer

)

/* calc_diff(out:Diff) */

brace nt(symbol, string)
/* brace_nt(in:ntname, out:braced_ntstr) */

/* puts angle brackets to nt */

del_all(dbvars)
/* del_all(in: dbvarname) */

/* retracts all asserted facts of a

db global var predicate */

set_progndx( integer)
/* update_progndx(in:Pndx) */

update_currStr (string)
/* update_currStr(in:Str) */

disp(integer)
/* disp(in: curr_node_ndx) */

/* displays the program nodes including

p(index ,_,_,_) . If the node of interest

is within screen RC, display from the
begining. Else find start index,

difference starting from start index.

Diff will be used to calculate
screen pos of nt's & constants */

getRC( integer , integer , integer)
/* get row & col of p(index,..) */

/* getRC(in:curr_ndx, out: row, out: col) */

getlRC(integer , integer , integer)
/* get row & col similar to getRC except

p node nt case being tested. Used in

expand predicate */

/* getlRC(in:curr_ndx, out:row, out:col) */

find_start( integer , integer , integer)
/* find_start(in:Cndx,out:Sndx,out:Indent) */

/* find Sndx such that Row of Sndx-Diff=0 */

get_fst_parent ( integer , integer

)

/* get_fst_parent(in:Cndx,out:Parndx) */

/* Parndx is first parent which falls outside

current screen, i.e. Row(Parndx)-Diff<0 */
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computeRC( integer , integer , integer , integer)
/* computeRC(in:tempndx, in:curr_ndx,

outrcurrR, outrcurrC) */

/* when second index = first index then

second row & col will get the value
from first row & col from db tempRC. */

getlen( integer .integer)
/* getlen(in: index, outrlength) */

/* length of nt or const, nl(tab) returns -ve length */

display_now( integer , integer

)

/* display_now(in:Tempndx,in:Start_ndx) */

/* display from start index. Highlight
current index node, diff helps in

computing the screen position from
the stored RC of p nodes. */

updatedbrc(integer, integer)
/* updatedbrc(inout:row, inout: col) */

setdbcol( integer)
/* setdbcol(in:col) */

setdbrow( integer)
/* setrow(in:row) */

chk_write( string)
/* chk_write( in: string) */

/* check the currRC=dbRC.
if so, highlight while writing
use diff to adjust currRC */

set_disp_flag ( t_or_f )

/* set_disp_flag(in:TF) */

update_disp_flag( integer .integer)
/* update_disp_flag(in:Tempndx,in:Startndx) */

/* sets dbase disp_flag(t) if Tempndx=Startndx */

next_line
/* update dbrowcol by a row and change

cursor position */

/* clauses for display routines */

clauses

maxline(6)

.

/##### del all ^^^^^

/

del_all(disp_flag):-
retract(disp_flag(_)) , fail.

del_all(disp_flag) :- !.
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del_all(dbrowcol) :-

retract( dbrowcol(_,_) ) , fail

.

del_all(dbrowcol):- !.

del_all(curr_RC):-
retract(curr_RC(_,_) ) , fail

.

del_all(curr_RC):- !.

del_all ( curr_str ) :
-

retract(curr_str(_) ) , fail

.

del_all(curr_str):- !.

del_all(tempRC):-
retract(tempRC(_,_)) .fail.

del_all(tempRC):- !.

del_all(diff):-
retract( dif f (_) ) , fail

.

del_all(diff):- !.

del_all(maxline) :-

retract(maxline(_) ) , fail

.

del_all(maxline) :-
!

.

del_all(progndx):-
retract( progndx(_) ) , fail

.

del_all ( progndx ) : - !

.

del_all(p):-
retract( p(_,_,_,_) ) , fail

.

del_all(p):- !.

"

del_all(curr_num) :-

retract (curr_num(_)) ,fail.
del_all(curr_num) :- !.

del_all(s):-
retract( s(_,_) ) , fail

.

del_all(s):- !.

/#*#**
get ^bvar *****/

/** gets the first value of global db fact */

get_dbvar(p(Ndx,Node,Pl,Sl)):-p(Ndx,Node,Pl,Sl),!.
get_dbvar(d(Ndx,Rl)):-d(Ndx,Rl),!.
get_dbvar(t(Ndx,Tnode,Sl)):-t(Ndx,Tnode,Sl),!.
get_dbvar(dbrowcol(Row,Col)) :-dbrowcol(Row,Col) , !

.

get_dbvar(curr_RC(Row,Col)):-curr_RC(Row,Col), !

.

get_dbvar(tempRC(Row,Col)):-tempRC(Row,Col), !

.

get_dbvar(disp_flag(TrueFalse)) :-disp_flag(TrueFalse) ,

!

get_dbvar(diff(Diff)):-diff(Diff),!.
get_dbvar(curr_str(Str)):-curr_str(Str), !

.
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get_dbvar(progndx(Ndx)) :-progndx(Ndx), !

.

get_dbvar(maxline(Ndx)) :-maxline(Ndx) , !

.

/$$$$$ rgtract fst ^•^•^•^•^f

retract_fst(p(Ndx,Node,Pl,Sl)):-
retract(p(Ndx,Node,Pl,Sl)),!.

/$###* brace nt ******/

brace_nt(NtlTNt2):-
concat("<",Ntl,N),concat(N,"> ,, ,Nt2).

/$$$$$$$ QnjJ^^g CUXTStl* 'fc^^'fc^^'fc^ /

update_currStr(Str) :-

del_all(curr_str) ,asserta(curr_str(Str)).

/$$$$$$$ gg^ nrosndx ********/

set_progndx(Pndx) :-

del_all(progndx) ,asserta(progndx(Pndx)).

/%$:$:$:% chk WTltG ^^^^^ /

chk_write(St.r):-

get_dbvar(diff(Diff)),
get_dbvar(dbrowcol(R,C) ) ,get_dbvar(curr_RC(Rl ,C1))

,

R2=Rl-Diff,R=R2,C=Cl, !,

Str_len(Str,Len),
update_currStr(Str)

,

field_attr(R,C,Len,28),
field_str ( R , C , Len , Str )

.

chk_write(Str):-
write(Str).

/#***#* calc di ££ #*****/

calc_diff(DiIf):-
get_dbvar(curr_RC(R,_)),get_dbvar(maxline(L)),R<L,!

,

Diff=0,del_all(diff),asserta(diff(Diff)).

calc_diff(Diff):-
get_dbvar(curr_RC(R, )),get_dbvar(maxline(L))

,

Diff=R-(L-3) ,del_all(dif f ) ,asserta(dif f (Diff ))

.

/****** next_line ******/

next_line:-
!,setdbcol(0),updatedbrc(l,0),

get_dbvar(dbrowcol(Rf,Cf)),cursor(Rf,Cf).

/****** set_disp flag ******/

set_disp_flag(TFj:-
del_all(disp_flag),asserta(disp_flag(TF)).
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/****** update_disp_flag ******/

update_disp_flag(Tempndx,Startndx):-
Tempndx=Startndx , !

,set_disp_flag(t)

.

update_disp_flag(_,_)

.

disp(Curr_ndx) :- /* p(Curr_ndx, . . . .) should be

either nt or const */

shiftwindow( 1 ) , clearwindow

,

getRC(Curr_ndx,R,C), /* get row col of current node */

del_all(curr_RC), /* deletes all currJRC if present */

asserta(curr_RC(R,C)),
del_all(dbrowcol) , /* deletes all dbrowcol if present */

asserta(dbrowcol(0,0)), /*display starts from top left */

calcjdiff(Diff),
Diff=0,

!
,set_disp_flag(t),

Start_ndx=l , /* display from begining */

Tempndx=l , display_now(Tempndx,Start_ndx) ,next_line, !

.

disp(Curr_ndx):-
find_start(Curr_ndx, Start_ndx, Indent),

/* get window start index */
del_all( dbrowcol)

,

asserta(dbrowcol(0, Indent)), /* maintain the indentation of
start token */

set_disp_flag(f ) ,Tempndx=l

,

display_now(Tempndx,Start_ndx) ,next_line, !

.

/$$$$$ £ind start •^•^•^•^^Z

find_start(Cndx,Sndx, Indent) :-

get_fst_parent(Cndx,Parndx)

,

get_dbvar(p(Parndx,nt(_,Cl,_,_,Rp,Cp),_,_)),
del_all(tempRC),asserta(tempRC(Rp,Cp)),
get_dbvar(diff(Diff)),computeRC(Cl,Sndx,Diff,Indent),!.

/***** get_fst_parent *****/

get_fst_parent(Cndx,Parndx) :-

get_dbvar (p(Cndx ,_,Parndx ,_) )

,

get_dbvar(p(Parndx,nt(_,_,_,_,Rp ,_),_,_)),
get_dbvar(diff(Diff)),(Rp-Diff)<0,!.

get_fst_parent(Cndx,Parndx) :-

get_dbvar(p(Cndx,_,Cl,_)),
!

,

get_fst_parent(Cl ,Parndx)

.

/##### pgtRC *****/

getRC(Curr_ndx,R,C):-
get_dbvar(p(Curr_ndx,nt(_,_,_,_,R,C),_,_)),!.

getRC(Curr_ndx,R,C):-getlRC(Curr_ndx,R,C).
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/###** get IRC *****/

getlRC(Curr ndx.R.C):-
get_dbvar~Tp(Curr_ndx,_,Pndx,_)) .

get_dbvar(p(Pndx,nt(_,Chldndx,_,_,PR, PC) ,_,_)),
del_all(tempRC),asserta(tempRC(PR,PC)),
computeRC(Chldndx,Curr_ndx,R,C) , !

.

/***** computeRC *****/

computeRC(_,Cndx,Cr ,Cc) :-

bound ( Cr ) , bound ( Cndx ) , bound ( Cc ) , ! .

computeRC(Vndx ,_,_,_) :-

Vndx<=0,!. /* trying to follow null sibling link */

computeRC ( Vndx,Cndx,Cr,Cc) :

-

bound(Cr),get_dbvar(tempRC(Vr,Vc)),Vr=Cr,!,
Cndx=Vndx,Cc=Vc.

computeRC(Vndx,Cndx,Cr ,Cc) :-

bound(Cndx),Vndx=Cndx, !

,

get_dbvar(tempRC(Vr,Vc)),Cr=Vr,Cc=Vc.

computeRC(Vndx,Cndx,Cr ,Cc) :-

get_dbvar(p(Vndx,nl(Tab),_,Nvndx)), !

,

get_dbvar(tempRC(Vr,_)),Vrl=Vr+l,Vcl=Tab,del_all(tempRC),
asserta( tempRC(Vrl , Vcl ) )

,

computeRC (Nvndx, Cndx, Cr ,Cc)

.

computeRC(Vndx,Cndx,Cr ,Cc) :-

get_dbvar(p(Vndx,const(Str),_, Nvndx)) , !

,

str_len(Str ,Len)

,

get_dbvar(tempRC(Vr,Vc)),Vcl=Vc+Len+l,del_all(tempRC),
asserta(tempRC(Vr,Vcl)),
computeRC(Nvndx,Cndx,Cr ,Cc)

.

computeRC(Vndx,Cndx,Cr ,Cc) :-

get_dbvar(p(Vndx,nt(Str,_,y,_,_,_),_, Nvndx)), !

,

str_len(Str,Len),get_dbvar(tempRC(Vr,Vc)),
del_all(tempRC),
Vcl=Vc+Len+3, /* 2+1: 2 for braces, 1 for blank */

asserta(tempRC(Vr,Vcl))

,

computeRC(Nvndx,Cndx,Cr ,Cc)

.

computeRC (Vndx , Cndx , Cr , Cc ) :

-

get_dbvar(p(Vndx,nt(_, CI, n,_,_,_),_, Nvndx)), ! ,

computeRC(Cl,Cndx,Cr,Cc),
computeRC( Nvndx, Cndx, Cr ,Cc)

.
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/***## getlen *****/

getlen(Ndx,Len):-
get_dbvar(p(Ndx,nl(Tab),_,_)),! ,Len=-Tab.

getlen(Ndx,Len) :-

get_dbvar(p(Ndx,nt(Ntname ,_,_,_,_,_) ,_,_)), ! ,

str_len(Ntname,Lenl) ,Len=Lenl+2.

getlen(Ndx,Len) :-

get_dbvar(p(Ndx,const(Const),_,_)), !

,

str__len(Const , Lenl ) , Len=Lenl

.

/***** display_now *****/
/* display_now stops when cursor row=max window line */
display_now(_,_) :-

get_dbvar(maxline(X)),get_dbvar(dbrowcol(R,_)),
R>=X,!.

display_now(Tempndx,^) :-

Tempndx<=0, !. /* trying to follow null link */

display_now(Tempndx,Start_ndx):-
/* nt not visible, expanded */

get_dbvar(p(Tempndx,nt(_,Cl,n,y,__,_) ,_,S1)) , !

,

update_disp_flag(Tempndx,Start_ndx),
display_now(Cl,Start_ndx)

,

display_now(Sl,Start_ndx).

display_now(Terapndx,Start_ndx) :-

/* either nt visible or const or nl but not yet
reached start_ndx and hence not displayed */

get_dbvar ( p(Tempndx ,_,_, SI ) )

,

update_disp_flag(Tempndx,Start_ndx)

,

get_dbvar(disp_flag(f )), !

,

display_now(Sl,Start_ndx)

.

display_now(Tempndx,Start_ndx):-
/* nt visible */

get_dbvar ( p(Tempndx , nt( Ntname ,_, y ,_, R , C) ,_, SI ) )

,

!,get_dbvar(diff(Diff)),
Newr=R-Diff ,cursor(Newr,C),brace_nt(Ntname,Nt),
chk_write(Nt)

,

str_len( Ntname , Slen) , Ntlen=Slen+3

,

updatedbrc(O.Ntlen)

,

display_now(Sl,Start_ndx).

display_now(Tempndx,Start_ndx) :-

get_dbvar(p(Tempndx,const(Constname) ,_,S1)), ! ,

get_dbvar(dbrowcol(R,C)) ,cursor(R,C)

,

chk_write(Constname)

,

str_len(Constname,Slen) ,Constlen=Slen+l

,

updatedbrc(0,Constlen)

,

display_now(Sl,Start_ndx)

.
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display_now(Tempndx,Start_ndx) :-

get_dbvar(p(Tempndx,nl(AbsTab) ,_,S1)) , !

,

updatedbrc(l,0).setdbcol(AbsTab),
display_now(Sl,Start_ndx)

.

/***** updatedbrc *****/

updatedbrc(R.C):-
retract(dbrowcol(Rl,Cl)),! ,

R2=R1+R,C2=C1+C,
asserta(dbrowcol(R2,C2))

.

/***** setdbcol *****/

setdbcol(C):-
retract(dbrowcol(Rl ,_)),! ,asserta(dbrowcol(Rl ,C) )

.

/***** setdbrow *****/

setdbrow(R):-
retract(dbrowcol(_,Cl)),

!
,asserta(dbrowcol(R,Cl)).

/* */

/* interpreter */
/* _ */

/* Predicates for interpreter */
predicates

8°

interp
/* interp(inout:pindex, inout:cmd) */

chk_interp(key)
/* chk_interp(in:key) */

process_cmd(key, integer, integer)
/* process_cmd(in:Cmd,in:Pndx,out:Npndx) */

is_cursor(key)
/* is_cursor(in:key) */

is_ellipsis(key)
/* is_ellipsis(in:key) */

is_save(key)
/* is_save(in:key) */

is_out_ellipsis(key)
/* is_out_ellipsis(in:key) */
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update_currRC( integer, integer)

/* update_currRC(in:Row,in:Col) */

chk dummyPar( integer, integer)
7* chk_dummyPar(in:Ndx,out:Parndx) */

hide_children( integer .integer)
/* hide_children(in:Pndx,out:Newpndx) */
/* ellipsis which doesn't display children */

open_children( integer .integer)
/* open_children(in:Pndx,out:Newpndx) */

/* expand ellipsis so as to display children */

struc_move(key , integer , integer

)

/* struc_move(in:Cursor ,in:Pndx,out:Newpndx) */

move_out ( integer , integer

)

/* move_out(in:Pndx,out:Newpndx) */

move_in( integer .integer)
/* move_in(in:Pndx,out:Newpndx) */

move_right ( integer , integer

)

/* move_right(in:Pndx,out:Newpndx) */

move_left ( integer , integer

)

/* move_left(in:Pndx,out:Newpndx) */

get_rightnt ( integer , integer

)

/* get_rightnt(in:Pndx,out:Newpndx) */

get_leftnt(integer .integer)
/* get_leftnt(in:Pndx,out:Lpndx) */

chk_rightnt( integer , integer , integer

)

/* chk_rightnt(in:Chldndx,in:Pndx,out:Lpndx) */

get fst_ntchld(integer, integer)
7* get_fst_ntchld(in:Pndx,out:Cntndx)*/

get last_ntchld(integer .integer)
7* get_last_ntchld(in:Pndx,out:Lntchld) */

get final_ntrc ( integer , integer , integer

)

7* get_final_ntrc(in:Ntndx,out:Rf ,out:Cf) */

restRC( integer , integer , integer , integer , integer

)

/* restRC(in:S,in:Rs,in:Cs,out:Rf ,out:Cf) */

chk display(integer)
7* chk_display(in:Pndx) */
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chk in_disp( integer .integer)
7* chk_in_disp(in:Pndx,in:Newpndx) */

get_fst_str( integer .string)
7* get_fst_str(in:Pndx,out:Str) */

update_curr_str (string

)

/* update_curr_str(in:Str) */

modify_RC( integer .integer .integer)
/* modify_RC(in:Pndx,in:Rd,in:Rc) */

chk uptree(integer , integer , integer)
7* chk_uptree(in:Pndx,in:Rd,in:Cd) */

modify_righttreeRC( integer , integer , integer)
/* modify_righttreeRC(in:Pndx,in:Rd,in:Cd) */

mod col ( integer , integer , integer , integer

)

7* mod_col(in:R,in:C,in:Cd,out:Cl) */

repeat
/* provides new goal for failure driven loops */

expand ( integer , integer

)

/* expand(in:Ndx, outrNewndx) */
/* expands the program node Ndx if it is nt and

not already expanded. Newndx is prog index
to be expanded next */

save_pgm
/* writes the program to a file */

save_all( integer)
/* save_all(in:Pndx) */

chk syntax(string, string)
/* chk_syntax(in:Vall,out:Val2) */

write_blanks( integer , integer

)

/* write_blanks(in:Tab,in:S) */

/* clauses for interpreter

clauses

/##*# repeat *****/

repeat.
repeat:- repeat.
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/**** g
#####/

/** start the interpreter with help **/
go:-
consult("toktree.dba"),
del_all(curr_num) ,Ndx=l,

assertz(curr_num(Ndx)) , /* used for unique program index */
del_all(p),assertz(p(Ndx,nt("pgm",-l,y,n, 0,0), -1,-1)),
del_all(progndx) , set_progndx(Ndx)

,

del_all(s), /* symbol table values */

makewindow(99,7,0,"",0,0,25,80),
makewindow(l,7,7," Toy Program Generator ",0,0,10,30),
disp(Ndx)

,

makewindow(21,112,0,"",23,0,2,80),

write( "STRUCTURED MOVEMENT - ARROWS ==>

Up: Parent Down: Child Left, Right: Sibling Nt's"),
nli
write("COMMANDS: 'e':Expand '.':Ellipsis ?

o' :Open-Ellipsis
'q'rQuit 's':Save"),

interp.

/*#*# interp *#**/
/** quit interp if command is char('q').

For any other cmd, process the cmd.
Process command acts on current program index
according to input cmd, modifies the program
tree in most cases, gets new program index for
further processing. Continue interpreter by
getting a new cmd and interpreting the new cmd. **/

interp:-
repeat,

makewindow(2,7,7," COMMAND ",20,28,3,22),
write("Type new command: ") .Readkey(Key)

,

removewindow,get_dbvar(progndx(Pndx)),
process_cmd(Key ,Pndx,Newpndx)

,

set_progndx(Newpndx)

,

chk_interp(Key) , !

.

chk_interp(char(
'

q
' ) ) :-

! ,bell,save("test.dba") ,nl,

makewindow(7,7,0,"",20,20,2,40),
write(" *** goodbye ***"), nl,
write(" *** Type any key to Exit *** "),

readkey(_) ,removewindow.
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/**** process cmd ****/

/** process prog tree at pndx ace to cmd resulting
in modified prog tree. Newpndx will be the
index for further processing **/

/** Move to next nt Newpndx to be processed **/

process_cmd(Cmd, Pndx, Newpndx) :-

is_cursor(Cmd)

,

struc_move(Cmd, Pndx, Newpndx) , !

.

/** Ellipsis: All expanded children of Pndx in

remains in the program tree, but aren't
displayed. This is done by turning display
flag of nt off. Next prog index is the

the same as the present **/

process_cmd(Cmd, Pndx, Newpndx) :-

is_ellipsis(Cmd)

,

hide_children(Pndx, Newpndx) , !

.

/** Out_Ellipsis: Opposite of Ellipsis.
The display flag of nt is turned back on.

No change in prog index **/

process__cmd(Cmd, Pndx, Newpndx) :-

is_out_ellipsis(Cmd)

,

open_children(Pndx, Newpndx) , !

.

process_cmd( Cmd, Pndx, Newpndx) :-

is_save(Cmd),
save_pgm,Newpndx=Pndx, !

.

process_cmd(char( 'e' ), Pndx, Newpndx) :-

expand (Pndx, Newpndx) , !

.

/** unknown command. Don't do anything **/

process_cmd(_, Pndx, Newpndx) :-

Newpndx=Pndx, !

.

/**** is_cursor & others ****/

/** classify the command types **/
is_cursor(up) :-!

.

is_cursor(down) :- !.

is__cursor(left) :-!

.

is_cursor(right) :- !.

is_ellipsis(char( '.')):-!.

is_out_ellipsis(char('o')):- !.

is save(char( 's' )):-!

.
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/******* savepgm *******/

save_pgm:-
makewindow(6,7,7," *** SAVE *** ",20,10,3,60),
write("Type File name (no extensions): "),

readln(Fnl),
chk_syntax(Fnl ,Fn2) , concat(Fn2 ,

"
.
pgra" , Fn)

,

shiftwindow(6) ,removewindow,
openwrite(pgmfile,Fn) ,writedevice(pgrafile)

,

save_all(l)

,

closefile(pgmfile)

,

writedevice(screen)

,

makewindow(7,7,0, ,M
',20,20,l,40),

write("*** Type any key to continue *** "),

readkey(_) ,removewindow.

/^c^c^e^e^sfe^e Save all sfc^^'fc^ 5!^ /

save_all(Pndx) :-

Pndx<=0,!.
save_all(Pndx):-
p(Pndx,const(Str) ,_,S1) , !

,

write(Str), write(" "),

save_all(Sl)

.

save_all(Pndx):-
p(Pndx,nl(Tab),_,Sl),!,
nl, write blanks(Tab,0)

,

save_allTSl)

.

save_all(Pndx) :-

p(Pndx ,nt(_,Cl ,_,_,_,_) ,_,S1) , ! ,

save_all(Cl) ,save_all(Sl). /* recursive calls */

/****** write_blanks *******/

write_blanks(Tab,S) :-

S=Tab , !

.

write_blanks(Tab,S):-
Sl=S+l,write(" "), write_blanks(Tab,Sl).

/**** update_currRC ****/
/** update Row Col of current prog index. **/
update_currRC(R,C):-
del_all(curr_RC),asserta(curr_RC(R,C)).

/**** chk_dummyPar ****/

/** If the Parent has no other child other than
the current nt prog Ndx, then Parent is dummy **/

chk_dummyPar(Ndx,Parndx) :-

get_dbvar(p(Ndx,nt(_,_,_,_,_,_) ,Pndx,Sndx))

,

Sndx=0
,
get_dbvar ( p(Pndx , nt(_, Ndx ,_,_,_,_) »_,_) ) , ! ,

chk_dummyPar(Pndx,Parndx)

.

chk_dummyPar(Ndx,Parndx) :-

Parndx=Ndx.
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/**** struc_move ****/

struc_move(up,Pndx,Newpndx) :-

! ,move_out(Pndx,Newpndx)

.

struc_move(down,Pndx,Newpndx) :-

! ,move_in(Pndx,Newpndx)

.

struc_move( right, Pndx.Newpndx) :-

! ,move_right(Pndx,Newpndx).
struc_raove(left,Pndx,Newpndx) :-

! ,move_left(Pndx,Newpndx)

.

/****** mod_col ******/
/** col modification is done only for all nt's

in the same row as current_row. **/

raod_col(R,C,Cd,Cl):-
get_dbvar(curr_RC(Rc,_)),Rc=R,

! ,C1=C-Cd.
mod_col(_,C,_,C)

.

/***** modify_RC ******/

/** reduces the Pndx's RC by Rd.Cd; continues
with child and sibling link of Pndx **/

modify_RC(Pndx ,_,_) :

-

Pndx<=0,!.

modify_RC (Pndx, Rd.Cd):-

get_dbvar(p(Pndx,nt(Nt,Cl,n,E,R,C),Pl,Sl)),
retract fst(p(Pndx ,_,_,_)) ,Rl=R-Rd,mod_col(R,C,Cd,Cl),
assertaTp(Pndx,nt(Nt,Cl,n,E,Rl,Cl),Pl,Sl)),
get_rightnt(Pndx,Rndx),get_fst_ntchld(Pndx,Cndx),
modify_RC(Cndx,Rd,Cd), modify_RC(Rndx,Rd,Cd).

modify_RC(Pndx,Rd,Cd):-
get_dbvar(p(Pndx,nt(Nt,Cl,y,E,R,C),Pl,Sl)),
retract_fst(p(Pndx ,_,_,_) ),Rl=R-Rd,mod_col(R,C,Cd, CI),
asserta(p(Pndx,nt(Nt,Cl,y,E,Rl,Cl),Pl,Sl)),
get_rightnt(Pndx,Rndx), modify_RC(Rndx,Rd,Cd).

/****** chk_uptree ******/

/** If the Plink of Pndx is not <=0
then modify_righttree of Plink,
else do nothing. **/

chk_uptree(Pndx,Rd,Cd):-
get_dbvar(p(Pndx,_,Pl,_)).Pl>0,!,
modify_righttreeRC(Pl,Rd,Cd).

chk_uptree (_,_,_)

.

/****** modify_righttreeRC ******/

modify_righttreeRC(Pndx,Rd,Cd):-
get_rightnt(Pndx,Rndx)

,

modify_RC(Rndx,Rd,Cd),
chk_uptree(Pndx,Rd,Cd).
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/**** hide_children ****/

/** Ellipsis of nt. Turn off display flag **/
/* modify RC's of all the nt's in the right

tree of current Pndx. Col change stops
once a newline is encountered. The diff
is found by calculating the total R & C

taken up due to the expansion of Pndx. **/

hide_children(Pndx,Newpndx) :-

get_dbvar(p(Pndx,nt(Ntname,Cl,n,y,R,C),Pl,Sl)),!,
get_final_ntrc ( Pndx , Rf , Cf ) , Rd=Rf-R , Cd=Cf-C

,

retract_fst(p(Pndx,_,_,_))

,

asserta(p(Pndx,nt(Ntname,Cl,y ,y ,R,C) ,P1,S1))

,

raodify_righttreeRC(Pndx , Rd , Cd )

,

Newpndx=Pndx,disp(Pndx)

.

hide_children (Pndx , Newpndx ) :

-

! ,bell,Newpndx=Pndx.

/**** pen_children ****/

/** Expand ellipsis. Turn on display flag **/

open_children( Pndx, Newpndx) :-

get_dbvar(p(Pndx,nt(Ntname,Cl,y,y,R,C),Pl,Sl)),
retract_fst(p(Pndx ,_,_,_))

,

asserta(p(Pndx,nt(Ntname,Cl,n,y ,R,C) ,P1,S1) )

,

get_final_ntrc (Pndx , Rf , Cf ) , Rd=R-Rf , Cd=C-Cf

,

raodify_righttreeRC(Pndx,Rd,Cd),
Newpndx=Pndx , disp(Pndx)

.

open_children(Pndx, Newpndx) :-

! , bell , Newpndx=Pndx

.

/**** get_fst_ntchld ****/

/** if child link of nt points to another
nt then Cntndx=Clink.
Otherwise, get the child index, traverse

right using sibling link till a nt

index Cntndx is obtained. **/

get_fst_ntchld(Pndx,Cntndx) :-

get_dbvar (p(Pndx,nt(_, Cntndx, n,_,_,_) ,_,_)),

get_dbvar(p(Cntndx,nt(_,_,_,_,_,_) ,_,_)), !

.

/** no nt child. get_rightnt returns index <=0 **/

get_fst_ntchld( Pndx, Cntndx) :-

get_dbvar ( p(Pndx , nt (_, Constndx , n ,_,_,_) »_»_) ) f

get_rightnt(Constndx, Cntndx)

.

/**** get_last_ntchld ****/

/** Def: Lntchld is the last nt child of Pndx.

if Pndx doesn't have ntchild, then

Lntchld is set to **/

get last_ntchld(Pndx,Lntchld):-
p(Lntchld,nt(_,_,_,_,_,_),Pndx,_),
get_rightnt(Lntchld,Rndx),Rndx<=0, !

.

get_last_ntchld(_, Lntchld) :-

!,Lntchld=0.
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/****** get_final_ntrc ******/

/** should be only used with expanded nt's .

whose child link is open **/

get_final_ntrc(Ntndx,Rf ,Cf):-
get_last_ntchld(Ntndx,Lndx) ,Lndx<=0, !

,

/** no nt child **/

get_dbvar(p(Ntndx,nt(_,Cl,n,_,R,C) ,_,_)),
restRC(Cl,R,C,Rf,Cf).

get_final_ntrc ( Ntndx , Rf , Cf ) :

-

get_last_ntchld(Ntndx,Lndx)

,

get_dbvar(p(Lndx,nt(_,_,y,_,Rs,Cs) ,_,_)), !

,

restRC(Lndx,Rs,Cs,Rf ,Cf).

get_final_ntrc( Ntndx, Rf.Cf) :-

get_last_ntchld(Ntndx,Lndx) , !

,

/** nt whose child link to be followed **/

get_final_ntrc(Lndx,Rf 1 ,Cf 1)

,

get_dbvar ( p(Lndx , nt(_,_, n ,_,_,_) ,_, SI ) )

,

restRC(Sl,Rfl,Cfl,Rf,Cf).

/####*# restRC ******/

/** used to find get_final_ntrc
Rf and Cf are row and col of parent node
of S index after its expansion **/

restRC(S,Rs,Cs,Rf ,Cf):-

S<=0,!,Rf=Rs,Cf=Cs. /* end of sibling link */

restRC(S,Rs,_,Rf,Cf):-
get_dbvar(p(S,nl(Tab),_,Sl)),!,Rsl=Rs+l,Csl=Tab,
restRC(Sl , Rsl ,Csl ,Rf ,Cf )

.

restRC(S,Rs,Cs,Rf,Cf):-
/** either displayable nt or const **/

! ,getlen(S,Len),Csl=Cs+Len+l,
get_dbvar(p(S,_,_,Sl)),restRC(Sl,Rs,Csl,Rf,Cf).

/**** get_leftnt ****/

/** Get parent and its first nt chlid.

Chkjrightnt takes this nt child, follows

sibling link to get left nt.

No left nt means Lpndx=0 */

get_leftnt(Pndx,Lpndx) :-

get_dbvar(p(Pndx,_,Plink,_)),Plink<=0, !

,

Lpndx=0. /* root node */

get_leftnt(Pndx,Lpndx) :-

get_dbvar(p(Pndx,_,Plink,_))

,

get_fst_ntchld(Plink,Chldndx)

,

chk_rightnt(Chldndx,Pndx,Lpndx).
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/**** chk_rightnt ****/

/** def : Lpndx is the right index of Chldndx
and left index of Pndx **/

chk_rightnt(Chldndx,_, Lpndx) :-

Chldndx<=0,! ,Lpndx=0. /* no left sibling */

chk_rightnt(Chldndx,Pndx,Lpndx):-
Chldndx=Pndx,! ,Lpndx=0. /* no left sibling */

chk_rightnt(Chldndx, Pndx, Lpndx) :-

get_rightnt(Chldndx,Rndx)

,

Rndx=Pndx,
!
,Lpndx=Chldndx.

chk_rightnt (Chldndx , Pndx , Lpndx ) :

-

get_rightnt(Chldndx,Rndx),
!

,

chk_rightnt(Rndx ,Pndx , Lpndx)

.

/**** get_rightnt ****/

/** Def: Rpndx is right nt of Pndx. If Pndx

doesn't have right nt, then Rpndx <=0 **/

get_rightnt ( Pndx , Rpndx ) :

-

get_dbvar(p(Pndx,_,_, Rpndx))

,

get_dbvar(p(Rpndx,nt(_,_,_,_,_,_) ,_,_)), !

.

get_rightnt (Pndx, Rpndx) :-

get_dbvar(p(Pndx,_,_, Rpndx) ),Rpndx<=0, !

.

get_rightnt(Pndx, Rpndx) :-

get_dbvar(p(Pndx,_,_, Slink)),
!
,get_rightnt(Slink, Rpndx)

/**** chk_display ****/

/** If the Pndx is within screen, only highlight
need to be changed. **/

chk_display(Pndx) :-

get_dbvar(curr_RC(Rc,Cc)) ,get_dbvar(maxline(L))

,

get_dbvar(diff(01d_diff)),
Rcl=(Rc-01d_diff),Rcl>=0,Rcl<L,
! , /* node in same screen */

get_fst_str(Pndx,Str) ,update_curr_str(Str)

,

str__len(Str,Len)

,

field_attr(Rcl,Cc,Len,28),
field_str(Rcl,Cc,Len,Str) , !

.

chk_display(Pndx) :-

!,disp(Pndx).

/**** chk_in_disp ****/

/** If prev index and current prog index are
the same, do nothing. Otherwise remove
the highlight from prev index, check
if the new index is within screen, dislay
and highlight the newpndx contents **/

chk_in_disp(Pndx,Newpndx) :-

Pndx=Newpndx , !
,bell.

117



chk_in_disp(_,Newpndx) :-

get_dbvar(diff(Diff)),
get_dbvar(curr_RC(Rc,Cc)),Rcl=Rc-Diff,
get_dbvar(curr_str(Str) ) ,cursor(Rcl ,Cc) ,write(Str)

,

getRC(Newpndx,Rl,Cl),
update_currRC(Rl ,C1) ,chk_display(Newpndx)

.

/**** move_in ****/

/** If not expanded(i.e. ,Clink<=0), or not to

be displayed because of Ellipsis, return
New prog index the current one and do
nothing. Otherwise, get first nt and

highlight the new index. **/

move_in(Pndx,Newpndx) :-

get_dbvar(p(Pndx,nt(_,Clink,_,_,_,_) ,_,_)), Clink<=0,!

,

bell,Newpndx=Pndx. /* no child, not expanded */

move_in(Pndx,Newpndx) :-

get_dbvar(p(Pndx,nt(_,_,y,_,_,_),_, )), ! ,

bell,Newpndx=Pndx. /* Ellipsed nt *7

move_in(Pndx,Newpndx) :-

get_dbvar(p(Pndx,nt(_, Clink,_, ,_,_) »_._))

.

get_dbvar(p(Clink,const(_) ,_,_)),
get_fst_ntchld(Pndx,Newpndxl)

,

Newpndxl<=0, !, /* no nt child */

bell , Newpndx=Pndx

.

move_in (Pndx, Newpndx) :-

get_dbvar(p(Pndx,nt(_,Clink,_,_,_,_) ,_»_)) ,

get_dbvar(p(Clink,const(_) ,_,_)) » !

»

get_fst_ntchld(Pndx,Newpndx)

,

chk__in_disp( Pndx, Newpndx)

.

/** If first child is nt, move another level in **/

move_in(Pndx,Newpndx) :-

get_dbvar(p(Pndx,nt(_,Clink,_,_,_,_) ,_»_)),
get_dbvar(p(Clink,nt(_,_,_,_,_,_) ,_»_)) . ! i

move_in(Clink,Newpndx)

.

/**** move_out ****/

/** Def: Newpndx is parent nt of Pndx and is

currently highlighted on the screen.

If the Pndx is the first child of its

parent, move to grand parent and so on **/

move_out( Pndx, Newpndx) :-

get_dbvar(p(Pndx,_,Plink,_)),Plink<=0,!,
bell,Newpndx=Pndx. /* root node */

move_out(Pndx, Newpndx) :-

get_dbvar(p(Pndx,_,Newpndxl,_)), /* Pndx RC = Newpndxl RC */

get_dbvar(p(Newpndxl ,nt(_, Pndx ,_,_,_,_) ,_»_)) » ! »

move_out( Newpndxl, Newpndx)

.

move_out ( Pndx , Newpndx ) :

-

get_dbvar( p( Pndx ,_, Newpndx ,_)) , !

,

chk_in_disp(Pndx, Newpndx).
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/**** moveJLeft ****/

/** Def: Newpndx is the new nt prog index
which is left nt of Pndx & is currently
highlighted on the screen. **/

move_left(Pndx, Newpndx) :-

get_leftnt(Pndx,Newpndxl)

,

Newpndxl<=0, !
,bell,Newpndx=Pndx.

move_left (Pndx, Newpndx) :-

get_leftnt( Pndx, Newpndx)

,

chk_in_disp(Pndx, Newpndx)

.

/**** move_right ****/

/** Def: Newpndx is right nt of Pndx which is

currently highlighted on the screen **/

move_right(Pndx, Newpndx) :-

get_dbvar(p(Pndx,_,_,Newpndxl)) ,Newpndxl<=0, !

,

bell , Newpndx=Pndx

.

move_right (Pndx, Newpndx) :-

get_rightnt(Pndx, Newpndx) , !

,

chk_in_disp(Pndx, Newpndx)

.

/**** update_curr_str ****/

/** curr_str is the one highlighted on the screen **/

update_curr_str(Str) :-

del_all(curr_str) ,asserta(curr_str(Str))

.

/**** get_fst_str ****/

/** def: Str is the displayable string of Pndx **/

get_fst_str(Pndx,Str):-
get_dbvar(p(Pndx,nt(Ntname,_,y ,_,_,_) ,_._)) , ! ,

brace_nt(Ntname,Str)

.

get_fst_str(Pndx,Str):-
get_dbvar(p(Pndx,nt(_,Chldndx,_,_,_,_) ,_,_))

»

get_dbvar(p(Chldndx,nt(Ntname,_,y ,_,_,_) »_._)) . ! »

brace_nt(Ntnarae,Str)

.

get_fst_str( Pndx, Str) :-

get_dbvar(p( Pndx, nt(_,Chldndx,_,_,_,_) »_»_))»
get_dbvar(p(Chldndx,const(Str) ,_,_)) i !

•

get_fst_str(Pndx,Str):-
get_dbvar(p(Pndx,nt(_,Chldndx,_,_,_,_) ,_,_)),
get_dbvar(p(Chldndx,nt(_,_,_,_,_,_) »_»_))» ! >

get_fst_str(Chldndx,Str).

/* */

/* menu system */

/* */

predicates
maxlen( symlist , integer , integer

)

/* maxlen(in:SymbolList,in:InitCol,out:WidestCol) */

listlen( symlist, integer)
/* listlen(in:SymbolList,out:Numofitems) */
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writelist (integer, integer .symlist)
/* writelist( in: Star tRow, in :StartCol, in: SymbolList) */

menu( integer , integer , string , symlist , integer

)

/* menu(in:Topleftrow,in:Toplef tcol,
in : Windowtext , in : Listofchoices , out : Choice) */

menul (integer , symlist , integer , integer , integer)
/* menul ( in : InitRow , in : SymbolList

,

in : MaxRows , in : MaxCol , out : Choice) */

menu2( integer , symlist , integer , integer , integer , key

)

/* menul ( in : InitRow , in : SymbolList , in : MaxRows

,

in:MaxCol,out:Choice,in:Key) */

/* clauses for menu system */

clauses

/####### maxien #*##*##*/

maxlen([H|T],Max,Maxl):-
str_len(H,Len) ,Len>Max, !

,

maxlen(T,Len,Maxl).
maxlen([_|T] ,Max,Maxl):-
maxlen(T,Max,Maxl).

maxlen([ ] ,Len,Len).

/####### iistlen *******/

listlen([],0).
listlen([_|T],N):-
listlen(T,X),N=X+l.

/######* writelist *******/

writelist(_,_, []).
writelist(IRow,ICol,[H|T]):-

field_str ( IRow , , ICol ,H) , IRowl=IRow+l

,

writelist(IRowl,ICol,T).

/******* menu ^sjeajc***/

menu ( IRow , ICol , Tx t , SymList , Choice ) :

-

maxlen(SymList,0,FCol)

,

listlen(SymList ,Len) ,FRow=Len,Len>0,
MRow=FRow+2,MCol=FCol+10, /* height & width of popup window */

IRowl=IRow,IColl=ICol, /* adjust popup window for prog window coords */

PopR=IRowl+MRow,
makewindow(5,112,0,"",PopR,IColl ,2,MCol) , /* info menu for pop up menu */

write(" Arrows : Choose" ) ,nl,

write(" Cr iSelect"),

makewindow(4 , 7 , 7 ,Txt , IRowl , ICol 1 ,MRow ,MCol )

,

PColl-FCol,
writelist(0,FColl .Symlist) , cursor(0,0)

,

menu 1(0, SymList, FRow.FCol.Ch)

,
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Choice=Ch+l

,

removewindow, /* pop up menu */
removewindow, /* info menu for pop up menu */

shiftwindow(99) , /* background masking window */

shiftwindow(21) ,
/* command info menu */

shiftwindow(l) . /* shift back to program disp window */

/nc&spncsp^^ menul ^^^^^^^

/

menul ( IRow , SymList , FRow , FCol , Choice) :

-

field_attr(IRow,0,FCol,112),
cursor(IRow,0),readkey(Key)

,

menu2( IRow , SymList , FRow , FCol , Choice , Key)

.

/####### menu2 *******/

menu2 (IRow ,_,_,_, Ch.cr):-
!,Ch=IRow.

"

menu2( IRow, SymList, FRow, FCol, Choice, up) :-

IRow>0, !,field_attr(IRow,0,FCol,7),
IRowl=IRow-l

,

menul ( IRowl , SymList , FRow , FCol .Choice)

.

menu2 ( IRow , SymList , FRow , FCol , Choice , down ) :

-

IRow<FRow-l,!,field_attr(IRow,0,FCol,7),
IRowl=IRow+l

,

menul (IRowl, SymList, FRow, FCol, Choice).
menu2 ( IRow , SymList , FRow , FCol , Choice ,_) :

-

/* no action for all other keys */

menul ( IRow .SymList , FRow , FCol , Choice )

.

/* */

/* expansion */

/* */

predicates
get_next_num( integer)

/* get_next_number(out: NextPndx) */

expand_next( integer , integer)
/* expand_next(in:Ndx,in:Newndx) */

get_chldnode( integer , integer)
/* get_chldnode(in:Ndx,out:Next) */

get_rnode( integer .integer)

/* get_rnode(in:Ndx,out:Next) */

chk_expand( integer , integer , integer)

.

/* chk_expand(in:Ndx,in:Next,out:Newndx) */

link__rhs( integer , integer , integer)
/* link_rhs(in:Tndx,in:Num,in:ParNdx) */

/* links rhs of nt into the prog tree. */
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semact ( integer , integer , integer

)

/* semact(in:Tndx,in:Num,in:Ndx) */

chk_more_choose( integer , integer , integer)
/* chk_more(in:Tndx,in:Ndx,out:Newndx) */

idget(symbol , integer , integer)
/* idget(in:Idtype,in:Num,in:Parndx) */

chk_getid ( symbol , string

)

/* chk_getid(in:Idtype,in:Val) */

chk symtab(symbol, string)
/* chk_symtab(in:Idtype,out:Val) */

chk_uniqueld( symbol, string, string)
/* chk_uniqueId(in:Idtype,in:Val2,out:Val) */

choice_node( symbol .integer .integer)
/* choice_node(in:Choicetype,in:Num,in:Parndx) */

get_choice_str ( integer , integer , symlist , symbol

)

/* get_choice_str( in: Choice, in: Count,
in:Choicelist,out:ChStr) */

moresa(symbol .integer , integer)
/* moresa(in:Saparm,in:Num,in:Parndx) */

/* clauses for expand */

clauses

/****** get_next num ******/

get_next_num(NumT :
-

retract ( curr_num( Numl )),!, Num = Numl+1

,

asserta(curr_num(Num) )

.

/*##### eX pancj ******/

expand (Ndx , Newndx ) :

-

/* can't expand constant */

p(Ndx,const(_) ,_,_), !
,bell,Newndx=Ndx.

expand(Ndx, Newndx) :-

/* can't expand nl */

p(Ndx,nl(_) ,_,_),!, bell, Newndx=Ndx.

expand (Ndx, Newndx) :-

/* nt already expanded */

p(Ndx,nt(_,_,_,y,_,_),_,_), ! ,bell,

Newndx=Ndx.
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expand(Ndx, Newndx) :-

get_dbvar(p(Ndx,nt(Ntname,_,_,n,R,C),Pl,Sl)),
get_dbvar(d(Ntname,Tndx)),
get_dbvar(t(Tndx,sa(_,_),0)),!,
get_next_num(Num)

,

retract_fst(p(Ndx,_,_,_))

,

assertz(p(Ndx,nt(Ntname,Num,n,y,R,C) ,P1,S1))

,

seraact(Tndx,Num,Ndx)

,

chk_more_choose(Tndx , Ndx , Newndx)

.

expand(Ndx, Newndx) :-

/* Note: Db Num will be Current max+1 before predicate

link_rhs is called because to get the Child

link of a nt, the next available number is to

be used. */

p(Ndx,nt(Ntname,_,_,n,R,C),Pl,Sl),!,
get_dbvar(d(Ntname,Tndx)),get_next_num(Nura),
retract_fst(p(Ndx,_,_,_)),
assertz ( p ( Ndx , nt ( Ntname , Num ,n,y,R,C),Pl,Sl)),

link_rhs(Tndx,Num,Ndx)

,

get_final_ntrc (Ndx , Rf , Cf ) , Rd=R-Rf , Cd=C-Cf

,

modify_righttreeRC( Ndx , Rd , Cd )

,

expand_nex t (Ndx , Next )

,

chk_expand( Ndx, Next, Newndx)

.

/##*## chk more #**#*#*/

chk_raore_choose(Tndx , Ndx , Newndx) :

-

t(Tndx,sa(getid,_),_),! ,

expand_next( Ndx, Next)

,

chk_expand ( Ndx , Next , Newndx)

.

chk_more_choose(Tndx , Ndx , Newndx) :

-

t(Tndx,sa(choose,_) ,_) , !

,

expand_next( Ndx, Next) ,Next>0,

expand(Next, Newndx). /* indirect recursion */

chk_more_choose(Tndx , Ndx , Newndx) :

-

t(Tndx,sa(more,_) ,_) , !

,

get_leftnt(Ndx,Lndx),
get_dbvar(p(Lndx,nt(_,_,y ,n,_,_) ,_,_)).
expand(Lndx, Newndx) . /* indirect recursion */

/***** chk_expand ******/

chk_expand(_, Next, Newndx) :-

Next>0, !
,Newndx=Next,disp(Newndx).

chk_expand( Ndx,_, Newndx) :-

bell,Newndx=Ndx,disp(Newndx), !

.
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/5jc^c^cs{c5}c^:jjc og£ chldnode ^^^^Z^nr^^ I

get_chldnode(Ndx,Next) :-

Ndx<=0,!,Next=0.

get_chldnode ( Ndx, Next ) :-

get_fst_ntchld (Ndx, Next),
p(Next,nt(_,_,y,n,_,_),Ndx,_),!.

get_chldnode(Ndx,Next) :-

get_fst_ntchld (Ndx , Nextl )

,

get_rnode(Nextl .Next).

/***#### t rnocje ##***##**#/

get_rnode ( Ndx , Next ) :

-

Ndx<=0,!,Next=0.

get_rnode( Ndx, Next) :-

get_rightnt(Ndx,Next),
p(Next,nt(_,_,y,n,_,_),_,_), !.

get_rnode( Ndx, Next) :-

get_rightnt (Ndx , Next 1 )

,

get_rnode(Nextl ,Next) . /* recursive call */

/$$$$$£$ gxDand next ^'fc^ 5^ 5^/
expand_next( Ndx, Next) :-

get_chldnode(Ndx,Next) ,Next>0, !

.

expand_next (Ndx, Next) :-

get_rnode(Ndx,Next),Next>0, !

.

expand_next(Ndx,Next):-
get_dbvar(p(Ndx,nt(_,_,_,_,_,_),Pl,_)),
Pl>0,expand_next(Pl,Next). /* recursive call */

expand_next(_,0). /* reached the root */

/***** link_rhs *****/

link_rhs(Tndx,Numl ,Ndx) :-

Tndx<=0, /* end of rhs tokens */

/* adjust Db curr_num */
Num = Nural-l,retract(curr_num(Numl)),

!

,

asserta(curr_num(Num))

,

/* adjust the sibling link of prev p node to */
retract_fst(p(Num,Node,Ndx,Nural))

,

assertz(p(Num,Node,Ndx,0)).
/* The terminating case of Ts=0 is handled

seperately by the first rule above */
link_rhs(Tndx,Num,Ndx) :-

t(Tndx,const(Str),Ts),!,
get_next_num(Numl )

,

assertz(p(Num,const(Str),Ndx,Nural))
f
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link_rhs(Ts,Numl,NdX). /* recursive call */

link_rhs(Tndx,Num,Ndx) :-

t(Tndx,nl(Tab),Ts),!,
get_next_num(Numl )

,

assertz(p(Nura,nl(Tab) ,Ndx,Numl)),
link_rhs(Ts,Numl ,NdX). /* recursive call */

link_rhs(Tndx,Num,Ndx):-
t(Tndx,nt(Ntname) ,Ts) , !

,

get_next_num(Numl )

,

assertz(p(Num,nt(Ntname,-l ,y ,n,-l ,-1) ,Ndx,Numl))

,

getlRC(Num,R,C),
retract_fst(p(Num,nt(Ntname,-l ,y,n,_,_) ,Ndx,Numl))

,

assertz(p(Num,nt(Ntname,-l
, y ,n,R,C) ,Ndx,Numl)),

link_rhs(Ts,Numl ,Ndx) . /* recursive call */

/* Note: The semantic action token will not have any
sibling link. i.e. the definition nt token
which leads to SA token will only have SA

token as its rhs */

semac t (Tndx , Num , Parndx ) :

-

t(Tndx,sa(getid,Idtype) ,0), !

,

idget(Idtype, Num, Parndx)

.

semact (Tndx , Num , Parndx ) :

-

t(Tndx,sa(choose,Choicetype) ,0) , !

,

choice_node(Choicetype, Num, Parndx).

semact (Tndx, Num, Parndx) :-

t(Tndx,sa(more,Moreparm) ,0), !

,

moresa(Moreparm, Num, Parndx)

.

/5}C3{C3[C5|«5JC3jcSjc flQOreSa ^^^^^^^ I

moresa(MoreParm, Num, Parndx) :-

retract_fst(p(Ndx, Node, PI, Parndx)),
assertz(p(Ndx,Node,Pl,Num)),
retract_fst ( p(Parndx , nt (Pname ,_, n , y , Rm , Cm) , Pm , Sm) )

,

get_next_num(Numl )

,

assertz ( p( Num , nt (Moreparm , -1 , y , n , Rm , Cm) , Pm , Numl ) )

,

assertz(p(Numl ,nl(Cm) ,Pm, Parndx))

,

Rml=Rm+l

,

assertz( p(Parndx , nt(Pname , -1 , y , n , Rml , Cm) , Pm , Sm) )

,

modify_righttreeRC(Parndx,-l ,0). /* propagate RC change */

/******* get choice Str *******/
/* Assumption: Choice <= total elements in the list */

get_choice_str (Choice , Choice
,

[ H |_] , H) : - !

.

get_choice_str (Choice .Count
, [_| T ] , ChStr ) :

-

Countl=Count+l

,

get_choice_str(Choice,Countl,T,ChStr). /* recursive call */
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/^cs}c5j:5}c5|cs}c^c choice nodG £#3fc:fc#sfcnS /

choice_Node(Choicety ,Num,Parndx) :-

c(Choicety ,Listchoice) , !

,

str_symbol(Txt,Choicety)

,

concat(" ",Txt,Txtl),concat(Txtl," ",Txt2),
get_dbvar(p(Parndx,nt(Ntname,Num,_,_,R,C) ,_,_)),
get_dbvar(diff(D)),Rl=R-D, /* menu window row */

str_len(Ntname,Len) ,Cl=C+Len+8,
menu(Rl ,C1 ,Txt2,Listchoice, Choice)

,

get_choice_str (Choice, 1 ,Listchoice,Str),
assertz(p(Num,nt(Str,-l ,y ,n,R,C) ,Parndx,0))

.

/#*###*## idget ********/

idget(Idtype, Pndx, Parndx) :-

chk_symtab(Idtype,Val)

,

assertz(p(Pndx,const(Val) ,Parndx,0))

,

get_dbvar(p(Parndx,nt(_,_,_,_,R,C),_,_)),
get_final_ntrc (Parndx , Rf , Cf ) , Rd=R-Rf , Cd=C-Cf

,

modify_righttreeRC(Parndx,Rd,Cd),
chk_getid(Idtype,Val)

.

/******* chk_jgetid **##**#*/

chk_getid ( Idtype , Val ) :

-

retract(p(Parndx,nt(Idtype,_,y,n,R,C),Pl,Sl)), /* has backtrack points */

get_next_num(Num)

,

assertz(p(Parndx,nt(Idtype,Num,n,y,R,C),Pl,Sl)),
assertz(p(Nura,const(Val) , Parndx, 0))

,

get_final_ntrc( Parndx, Rf ,Cf ) ,Rd=R-Rf ,Cd=C-Cf

,

modify righttreeRC(Parndx,Rd,Cd)

,

fail. 7* force backtracking */

chk_getid(_,_)

.

/******* chk_symtab *******/

chk_symtab(Idtype,Val) :-

s(Idtype.Val), !

.

chk_symtab(Idtype,Val):-
bell,makewindow(3,7,7," *** GET ID *** ",19,10,4,60),
write("Type Identifier for ",Idtype," and enter: "),

readln(Vail ) , chk_syntax(Vail , Val2 )

,

chk_uniqueId(Idtype,Val2,Val)

,

asserta(s(Idtype,Val)),removewindow.

/%%%%%% q[^j^ syntax ^^^^^^^

/

chk_syntax (Val 1 , Val2 ) :
-

isname(Vall),!,Val2=Vall.
chk_syntax(_,Val2) :-

bell,write("*** Syntax Error ***"), nl,
write("Try Again: ") ,readln(Val3)

,

chk_syntax(Val3,Val2). /* recursive call */
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/****** chk_uniqueld ******/

chk_uniqueId(Idtype,Val2,Val):-
s(_,Val2),!,bell,
write("The identfier already exists. "),

write("Try again: "),

readln ( Val4 ) , chk_syntax ( Val4 , Val5 )

,

chk_uniqueId(Idtype,Val5,Val)

.

chk_uniqueId(_,Val2,Val) :-

Val=Val2.
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ABSTRACT

Automatic program generators provide an environment for assisting

program generation typically in a target language. Such program

generators use a knowledge base of generic program algorithms on

data structures stored as program plans. In a very limited
sense, structured editors incorporating syntactic knowledge of

target language, provide such an environment. The programming

activity involves knowledge of syntax, semantics, and pragmatics.

This thesis includes a categoric survey of various program
generators according to the internal knowledge representation
schemes

.

This thesis reports on a structured representation of programming

plans in a logic programming environment. The research includes

an investigation of logic programming paradigms for program
generation, representation of program plans as database facts,
and the design of user interfaces. The representation of program
focuses on issues such as efficiency and manipulative power. The
proposed representation is compared with two others: functional
style in Prolog using lists, and list representation in an
imperative language.

A prototype program generation system was implemented in Turbo
Prolog to experiment with some of the issues in program
generation. A description of the implementation is included.


