

Effect of milking frequency on glucose metabolism of early lactation dairy cows

Carrie Cromer*, Caroline Ylioja, Miriam Garcia, Laman Mamedova, and Barry Bradford

Department of Animal Sciences and Industry, Kansas State University, Manhattan

Introduction

- Glucose demand increases drastically in dairy cows following parturition because of the onset of milk production and the glucose that is required for lactose production
- Cows with high levels of milk production are in high risk of hypoglycemia, which may impact their health and performance
- Frequency of milking affects milk yield and subsequently may alter the glucose demand of the cow
 - Less frequent milking may allow the ruminant liver to adapt more easily to the glucose demands of early lactation

Objective

To determine the rate of glucose utilization due to milking frequency in early lactation dairy cows

Methods

- 33 multiparous cows were enrolled within 12 hours of calving and assigned to a milking frequency of one (1X) or three (3X) times daily
- Feed and water intake and milk yield were recorded daily
- On day 3, bilateral jugular catheters were inserted
- On day 5, cows were assessed for glucose utilization:
 - Phase 1 (basal phase): for the first 2 hours, 6,6-D2 was continuously administered intravenously to achieve an approximate 1% enrichment over baseline levels
 - Phase 2 (euglycemic phase): dextrose was continuously infused to achieve and maintain a targeted blood glucose concentration of 60 mg/dL

Blood samples were collected every ten minutes for the last half hour of each phase. Samples were analyzed for glucose and 6,6-D2 concentrations; EGP and GTR were calculated.

Endogenous Glucose Production (EGP)

The amount of glucose that the body is making and releasing into circulation

Glucose Turnover Rate (GTR)

All glucose that appears in circulation, this includes exogenous glucose and EGP

6,6- deuterium Glucose (6,6-D2)

6,6-D2 is a glucose molecule that has two deuterium atoms on the 6- carbon instead of the conventional Hydrogen atoms. This alters the mass of the glucose molecule, allowing us to calculate endogenous glucose production by the cow

Glucose

Results

Effect of Milking Frequency: P = 0.04

Effect of Milking Frequency: P = 0.04

Effect of Milking Frequency P = 0.37 (Phase 1) and P = 0.88 (Phase 2) Effect of Phase P < 0.01 (1X Milking) and P < 0.0001 (3X Milking)

Effect of Milking Frequency P = 0.38 (Phase 1) and P = 0.08 (Phase 2) Effect of Phase P < 0.01 (1X Milking) and P < 0.0001 (3X Milking)

Summary and Conclusion

- Infrequent milking increased basal glucose levels and reduced the amount of exogenous glucose needed to achieve euglycemia
- Milking frequency did not affect endogenous glucose production
- 3X milking tended to increase glucose turnover rate in Phase 2 compared with 1X milking
- Although glucose demand is greater with increased milking frequency (and milk yield),
 gluconeogenesis was not increased to match that demand, leaving higher-producing cows in
 a glucose deficient state

Acknowledgements

This project received funding from the National Science Foundation. We also gratefully acknowledge Mike Scheffel and the employees at the KSU Dairy Teaching and Research Center for their assistance.