A STUDY OF SPIRAJ TRANSITION CURVES AS REIATED TO THE VISUAL QUALITY OF HIGHWAY ALIGNWEINT
by

JERRY SHELDON MURPHY
 B. S., Kansas State University, 1968

A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1969

Approved by

$\angle D$
2668
12
1969
TABLE OF CONTENTS
1719
© 2 INTRODUCTION 1
LITERATURE SEARCH 3
PURPOSE 5
SCOPE 6

- METHOD OF SOLUTION 7
RESULTS 18
RECOMMENDATIONS FOR FURTHER RESEARCH 27
CONCLUSION 33
REFERENCES 34
APPENDIX 36

LIST OF TABLES

TABLE 1. Geometry of Locations Studied 17
TABLE 2. Rates of Change of Slope Versus Curve Ratings 31

LIST OF FIGURES

FIGURE 1. Definition of Sight Distance and Display Angle 8
FIGURE 2. Perspective Coordinate Transformation 9
FIGURE 3. Spiral Curve Calculation Equations 12
FIGURE 4. Flow Chart 14
FIGURE 5. Photograph and Perspective of Selected Location 15
FIGURE 6. Effect of Spiral Curves at Small Display Angles 19
A. No Spiral (Circular Curve)
B. Completely SpiralizedFIGURE 7. Effects of Spiral Curves (DA $=.015$ Radians,$S D=1000$ Feet, $D=1^{\circ}$ and $\Delta=10^{\circ}$)20
Plate 1A. No Spiral (Circular Curve)B. Spiral Length $=250$ FeetFIGURE 8. Effects of Spiral Curves ($D A=.015$ Radians,$S D=1000$ Feet, $D=1^{\circ}$ and $\Delta=10^{\circ}$)21
Plate 2A. Spiral Length $=500$ FeetB. Spiral Length $=1000$ Feet (CompletelySpiralized)
FIGURE 9. Effects of Display Angle $\left(\mathrm{D}=2^{\circ}, \Delta=10^{\circ}\right.$,$l_{s}=500$ feet, $S D=500$ feet)23Plate 1
A. Display Angle $=.007$ RadianB. Display Angle $=.027$ Radian
FIGURE 10. Effects of Display Angle ($D=2^{\circ}, \Delta=10^{\circ}$, $l_{s}=500$ feet, $S D=500$ feetPlate 2
A. Display"Angle $=.067$ RadianB. Display Angle $=.107$ Radian

FIGUPE 11. Sight Distance Versus Spiral Length ($D A=.02$ Radians, $D=1^{\circ}$)

FIGURE 12. Illustration of Rate of Change of slope 30

The American Association of State Highway Officials' Policy on Geometric Design states that "the appearance aspect of superelevation runoff largely governs its length" when referring to spirals (transition curves) and their use. Likewise, Pushkarev (2) proposes "that a frankly esthetic approach to transition curves is justified, with their length determined not by psuedo-utilitarian minima, but rather by what is visually necessary to achieve a generous, free-flowing continuity of alignment."

Cron (3) adds to this by an analogy to the railroad designer.

The railroad locators liked to altemate right and left curves, but were also careful to keep a good length of tangent between them. This left ample space for the later insertion of spiral transitions into the alignment. Highway designers, likewise, should provide ample tangents between curves in opposite directions, and should also provide for spirals at the beginning and ending of all but the very flattest horizontal curves. The spiral helps the driver to stay in his lane when entering or leaving a curve; it provides a convenient and mathematically correct way to superelevate or "bank" the curve: and it also greatly improves the appearance of the highway, particularly where the edges are sharply defined, as in concrete pavements. Since the application of spirals costs nothing except a little more figuring during the location survey, their use can be fully justified on aesthetic grounds alone.

Indeed, the addition of spirals to the horizontal aligrment of a roadway provides a measurable visual benefit at a very small increase in cost. The main endeavor of this research was to develop criteria for the selection of spiral
lengths based on the visual appearance of the curve so this benefit can be realized.

LITERATURE SEARCH

In addition to the previously mentioned references, the problem of highway alignment coordination has been recognized by numerous other authors (4, 5, 6). Most of the discussion of the problem, however, was limited to general statements concerning the visual appearance of the roadway. Although the comments were general in nature, they did point out areas of possible problems in highway alignment.

Smith and Yotter (7) utilized perspective drawings to determine the minimum acceptable length of sag vertical curves that would provide an aesthetically pleasing roadway. They also investigated the problem of a small change of direction in the horizontal alignment. Their research showed that the distance from which a curve is viewed and the angle from which it is viewed affects the appearance of the curve. Because the main concern of these researchers was the appearance of a sag vertical curve, the results of their research were of limited value in the detailed search for selection criteria of spiral curves.
T. Ten Brummelaar (8) advocates the use of deflection and curvature diagrams to determine locations which can cause discomfort or hazard in roadway design. The technique involves constructing the equivalent to shear and moment diagrams for the deflection and curvature of the roadway alignment. The shape of these diagrams will show areas which are not geonetrically consistent with the adjoining sections of roadway. The use of
these diagrams seems to be limited to the role of comparison of sections of one highway as no indication of the maximurn allowable parameters were given.

Godin et al (5) stated that the length of spiral curve required for visual appearance exceeded both the length needed for superelevation runoff and the length needed to allow a driver to steer a smooth transition from tangent to circular curve.

Only two references contained quantitative information concerning desirable lengths of spiral curves based on the visual aspect of the roadway. Pushkarev (2) recommends that the spiral length should have a ratio to the circular curve of $1: 2: 1$. He further states that spirals whose length becomes too great in relation to the circular curve length cause the total curve to appear to have a sharp bend in the middle. Godin (9) recommended that the minimum length of spiral curve should be $R / 9$, where R is the limiting radius of the spiral.

In a search for additional specific, quantitative criteria concerning what constitutes a visually-pleasing highway alignment, psychology writings were investigated for a clue as to what the human eye "sees" as pleasing and for what reason. Writings on Gestalt Psychology, in particular, were examined (10,11). These investigations failed to uncover any useful quantitative results.

PURPOSE

The purpose of the research described in this paper was to determine criteria for the selection of a spiral length for horizontal curves to aid the highway designer in the creation of a visually pleasing roadway.

SCOPE

The research was limited to:

1. The horizontal curve was studied, with and without a spiral curve, to determine the relationship between the sighting distance, the geometry of the curve and the angle from which the curve is viewed.
2. The length of spiral curve necessary to provide a pleasing appearance was investigated.

METHOD OF SOLUI'IQN

From personal observations and the information gained from the literature search, it was hypothesized that the factors affecting the visual appearance of a horizontal curve were sight distance (SD) display angle (DA) and the geometry of the curve. Sight distance is defined as the distance from the observer to the beginning of the curve, PC or TS whichever is appropriate; display angle is defined as the angle between the observer's line of sight and the plane containing the PC or IS of the curve; and the geometry of the curve is defined as the spiral length, if any, and the limiting radius of the curve. Figure 1 gives a pictorial definition of sight distance and display angle.

Due to the almost total lack of existing highways containing spiral curves as a design element, it was felt that various geometric conditions would have to be simulated to provide sufficient data for analysis of the problem of selecting spiral curve lengths for a pleasing visual appearance.

A computer algorithm (7) was available that would convert three-dimensional coordinates into two-dimensional coordinates which, when drawn, gave a perspective view. Figure 2 gives a graphic illustration of this algorithm. The three-dimensional coordinates of the roadway were used as inputs. Then, after defining the center of interest coordinates and the observer position coordinates, both in three dimensions, the twodimensional perspective coordinates were determined by the

where:

$$
\begin{aligned}
& B=\sqrt{x_{e}^{2}+y_{e}^{2}} \\
& A=\sqrt{x_{e}^{2}+y_{e}^{2}+z_{e}^{2}} \\
& D_{i}=A^{2}-\left(x_{e} x_{i}+y_{e} y_{i}+z_{e} z_{i}\right) \\
& K=\text { Scale Factor, } K>0
\end{aligned}
$$

projection of the roadway coordinates on a plane perpendicular to the line of sight from the observer to the center of interest. The projections on this plane, called the picture plane, form a perspective view of the three-dimensional roadway coordinates. The equations for calculating the perspective plane coordinates are included in Figure 2. The ready access to this algorithm was instrumental in the selection of this approach to the problem of selection of spiral curve lengths for visual appearance.

The only remaining obstacle to the utilization of this approach was the generation of the three-dimensional roadway coordinates. This was more of a problem than was originally anticipated. It was hoped that the COordinate GeOmetry (COGO) portion of the Integrated Civil Engineering System (ICES) developed by the Civil Engineering Systems Laboratory at the Massachusetts Institute of Technology (MIT) could be used to generate the three-dimensional coordinates. The ICES system (12) available for the IBM 360 computer included provision for the calculation of spiral curves. However, after discussion with computing personnel at Kansas State University and the persons in charge of ICES at MIT, it was found to be extremely difficult to secure any form of output other than the standard printed output. This would have necessitated punching all of the three-dimensional coordinates for input into the coordinate transformation program.

Therefore, it was deemed necessary to develop a computer program to generate the roadway coordinates. The equations
for calculating the centerline roadway coordinates are from Hickerson's book (13) Route Surveys and Design. The spiral curve used was approximately a cubic parabola. The general equation for the spiral is $R=K / l$; where, R is the radius of the spiral at any point on the spiral, 1 is the distance along the spiral to the point of radius R and K is a constant. From this equation it can be shown that the radius of the spiral is infinite when $1=0$, at the $T S$ or beginning of the spiral curve, and decreases as 1 increases.

The equations used for calculation of the spiral curve are shown in Figure 3. The equations for x_{s} and y_{s} are very close approximations of the true equations, and the loss of accuracy due to these approximations was not felt to be sufficient to alter the perspective picture.

The edge of roadway and edge of shoulder coordinates were calculated by determining the centerline direction and using sine and cosine functions to locate them at a given offset distance. Again, this approximation to the true coordinates of these points was not felt to be great enough to alter the realism of the perspectives.

The resulting program allows any roadway geometrics to be simulated with a minimum of input data. It can be used to simulate a hypothetical situation or give the coordinates of an actual location. The coordinate generation program was then made a subroutine of the coordinate transformation and plotting program. The program output was a printout of the centerline geometry and data stored on a 7-track computer

$R_{C}-$ limiting radius of the spiral (feet)
$D_{C}-$ limiting degree of the spiral (degrees)
l_{S} - total length of the spiral from TS to SC
θ_{s} - central angle of spiral arc l_{s} (radians)
Y_{S} - offset from the tangent to the spiral at the $S C$ (feet)
x_{s} - tangent distance for the SC (feet)
T_{S} - total tangent distance (feet)
TS - point of change from tangent to spiral
SC - point of change from spiral to circle
Δ - total deflection of the curve
tape which could be mounted on a Calcomp Incremental Plotter for drawing the perspective pictures. A general flow diagram of the program is presented in Figure 4. A printout of the complete program is included in the appendix.

Simulation of roadway geometry would be valid only if the perspective picture looks like the actual location. The realism of the perspective pictures can be judged by comparing the perspective drawing and photograph of the same location in Figure 5. The observer position for the perspective picture was approximately the same location from which the photograph was taken. The photograph was taken with a 35 mm , NIKON F, automatic single lens reflex camera with a NIKKOR, f3.5, 43 mm to 86 mm Zoom lens. The lens was set at 86 mm , the focal length judged to provide the most "natural" perspective. It should be noted that only the right hand lanes of the divided highway are represented in the perspective drawing, since there was no provision for drawing a divided highway in the original program. Approximately five-hundred perspective pictures were plotted with varying sightdistances, limiting degree of curve, spiral length and display angle. For any given set of geometric conditions, the sight distance and display angle were varied by moving the observer position. Moving the observer up into space above the roadway created artificial display angles and simulated the case where a sag vertical curve is located between the observer and the horizontal curve without the disruptive element caused by the vertical curve. It was felt that

FIGURE 4. Flow Char'c

FIGURE 5. Photograph and Perspective of Selected Location
if a vertical curve had been used to create a display angle, the appearance of the horizontal curve might be affected by the vertical curve, thus creating a problem of alignment coordination.

A wide range of geometric conditions was investigated. The degree of curve was varied from 30 minutes to 5 degrees. Some of the curves were constructed without a spiral transition so that the visual effect of adding a spiral curve could be tested. The spiral lengths varied from 100 to 2000 feet. An attempt was made to select lengths which would test the theories proposed by Godin and Pushkarev. The lengths of spirals examined at each limiting degree of curve are shown in Table 1.

All curves were rated according to their smoothness of appearance and the rate at which they seemed to diverge from the tangent. The rating scale was: acceptable, questionable or unacceptable. Although this may seem a crude rating scale, it was felt that any refinement beyond this level was not justified because at some point the decision had to be made whether a curve was acceptable or unacceptable.

TABLE 1. Geometry of Locations Studied.

Spiral Lengths Tested for Each Degree of Curve

0.500°	1°	2°	3°	4°	5°
0.	0.	0.	0.	0.	0.
500.	250.	300.	200.	200.	100.
2000.	500.	500.	600.	500	400.
	1000				

RESULTS

One important point discovered while investigating the problem of apparent divergence of a horizontal curve from the tangent was that when the observer is only a small distance, such as 3.5 feet, above the plane of the curve, nothing can be done to make the roadway appear smooth. The two perspectives shown in Figure 6 illustrate this point. Perspective 15 (Fig. 6 A) is a one degree circular curve that traverses a ten degree deflection. Perspective 31 (Fig. 6B) is the same location but a one-thousand foot spiral, resulting in a completely spiralized curve, was used in place of the circular curve. A small difference in the curves can be detected, but neither curve was judged to be visually acceptable.

However, as the observer is raised above the plane of the curve, an increasing display angle, the addition of spiral curves to the horizontal alignment does result in an observable improvement in the appearance of the curve. The effect of different spiral curves can be observed in Figures 7 and 8. The sight distance and display angle are constant for all perspectives. The length of spiral curve is the only variable. Perspective 315 is a circular, curve with no spiral. Perspective 323 has a 250 foot spiral and perspectives 315 and 331 have 500 and 1000 foot spirals, respectively. Note the increased smoothness of curve from perspectives 315 through 331.

The proposal by Pushkarev (2) that a completely spiraled curve will appear to have a sharp bend in the middle was investigated. The perspectives in Figures 7 and 8 illustrate

A. No Spiral (Circular Curve)

B. Completely Spiralized

FIGURE 6. $\begin{aligned} & \text { Effect of Spiral Curves at Small Display } \\ & \text { Angles }\end{aligned}$

A. No Spiral (Circular Curve)

FIGURE 7. Effects of Spiral Curves ($D A=.015$ Radians, $S D=1000$ Feet, $D=1^{\circ}$ and $\Delta=10^{\circ}$)
Plate 1

A. Spiral Length $=500$ Feet

B. Spiral Length $=1000$ Feet (Completely Spiralized)

FIGURE 8. Effects of Spiral. Curves (DA $=.015$ Radians, $S D=1000$ Feet, $D=1^{\circ}$ and $\Delta=10^{\circ}$)
that, contrary to appearing sharp, the completely spiraled curve appears smoothest of all the curves. Therefore, it may be concluded that the length of spiral curve needed at any given location is not related to the ratio of spiral curve to circular arc. There are two cases, however, which were not investigated. The first is when a vertical curve is superimposed on the spiral, a problem beyond the scope of this research, and the case where the observer is located on the curve and views the junction of the two spirals.

An investigation was also undertaken to determine if Godin's recommendation of a spiral length of $R / 9$ was valid. As was pointed out in the previous paragraph, the appearance of any given curve improved with additional length of spiral added. The recommendation to use a length of spiral equal to R/9 is further limited because no mention is made of the display angle. However, for almost all sight distances and display angles, it was felt that this recommendation resulted in a spiral length that was not sufficient to be visually significant.

The effects of various display angles were studied to determine the extent that they affect the appearance of a curve. Figures 9 and 10 pictorially show how the display does affect the appearance of a curve. All perspectives had the same geometry and sight distance. The display angles for each curve are listed with the figure. Note that as the display angle increases, the appearance of the curve improves.

A. Display Angle $=.007$ Radian

B. Display Angle $=.027$ Radian

FIGURE 9. Effects of Display Aingle $\left\langle D=2^{\circ}, \Delta=10^{\circ}\right.$, $I_{S}=500$ feet, $S D=500$ feet)
Plate 1

A. Display"Angle $=.067$ Radian

FIGURE 10. Fffects of Display Angle $\left(D=2^{\circ}, \Delta=10^{\circ}\right.$, $I_{S}=500$ feet, $S D=500$ feet

An attempt was made to construct a graph showing the relationship between sight distance, display angle and the geometry of the curve. However, the wide range of variables used made it extremely difficult to formalize any sort of graph including all of the variables. Figure 11 is a graph illustrating the relationship between sight distance and length of spiral when the display angle and degree of curve are held constant. The display angle and degree of curve for this graph were chosen so that the number of available data points used would be a maximum. A quadratic curve was chosen because it was felt that at long sight distances no spiral would be visually acceptable.

RECOMMENDATIONS FOR FURTHER RESEARCH

Late in the research, while discussing the problem of determining what gives any given curve a bad appearance with my major professor, Dr. Bob L. Smith, it was brought out that the amount of curvature or sharpness of curvature of a curve in the perspective picture plane should be a good indicator of the appearance of that curve. After all, that is exactly what had been done to evaluate the perspectives, i.e. visually measuring the sharpness of the curves. It was decided, therefore, to attempt to use the change of slope in the perspective picture plane as a means of predicting the appearance of the curves. Subsequent discussion made it seem that the rate of change of slope of the curves in the perspective picture plane would be of more value.

A Fortran computer program was prepared that would convert the points of a curve into the perspective picture plane coordinates and calculate the slope between each of the adjacent points. The change of slope between adjacent slopes was then calculated and the rate of change of slope obtained by dividing the change of slope by the average picture plane distance of the two slopes. From the output, change of slope and rate of change of slope, it was hoped to obtain a rate of change of slope, such that, any rate of change greater than the critical rate would not have an acceptable appearance. Only the maximum rate of change for each curve was investigated as this was thought to be the critical point, visually, of the curve.

The initial trial of this hypothesis resulted in unanticipated results. For any given sight distance and curve, the maximum rate-of-change of slope decreased as the appearance of the curves improved, as was expected. However, for a given viewing angle, the relationship did not give the anticipated result. As the sight distance increased, the rate of change of the slope decreased while the appearance of the curve was becoming poorer. Inspection of the change of slopes revealed they did give the relationships which were expected from the rate of change of slope.

After further study, the situation was explained by the fact that the points were all located at equal spacings in the space (x, y, z) coordinate system and, therefore, the changes of slope were actually rates of change. The calculated rates of change from the computer program were calculated from the picture plane distance. Although the points were equal distance apart in the space coordinate system, the coordinate transformation into a perspective view made the picture plane distance of the points near the observer greater than the distance of the points further from the observer. Therefore, the changes of slope of, the near points were divided by a larger number than the more distantly located points. However, the nature of a perspective picture is such that an observer sees all the points as being separated by an equal distance when, in fact, this is not the physical case in the picture plane.

Figure 12 is an illustration showing the logic of using the rate of change of slope to determine the visual appearance of a curve. Slope lines were drawn through corresponding points of each perspective. It can be observed, however, that the change of slope is greater for the unacceptable curve than for the acceptable one. By increasing the frequency of the calculation of the slope lines to the extent that every defined point is the end point of a slope line, the rate of change of slope can be calculated for each point and the maximum value selected for comparison to the critical value.

Table 2 shows the values obtained when this approach was tested. All of the calculations were made using the geometry of one curve; $D=30$ minutes, $\Delta=20$ degrees and length of spiral $=2000$ feet. It can be noted that the numerical values obtained were extremely well segregated into the three visual classifications used for rating these curves.

This approach is not restricted to points which are equally spaced in three dimensions, however. The complexity of the coordinate transformation requires the use of a digital computer and it is a small matter for a computer to calculate the distance between the points in three dimensions. By dividing the change of slopes by half the total distance of the two slope lines, a rate of change of slope can be calculated. If this rate of change is less than the critical value, the curve will appear smooth when constructed in three dimensions. Conversely, if the rate of change is greater than the critical

FIGURE J.2. Illustration of Rate of Change of slope

TABLE 2. Rates of Charige of Slope Versus Curve Ratings

Acceptable	Questionable	Not Acceptable
2.8	3.1	10.6
1.6	3.4	11.7
1.8	2.2	13.2
2.0	3.8	14.6
1.1		
1.2		
1.4		
1.7		
1.0		
1.7		
.8		

value, the three-dimensional curve will appear sharp and "jerk" away from the tangent.

The preliminary investigation was undertaken with the observer stationed three feet to the right and 3.5 feet above the centerline with the centerline used as the line from which the slopes were calculated. Use of any other line, such as one of the edge of pavement lines, would be valid provided the observer is located in the same relative position. The center of interest was on the centerline approximately at the beginning of the curve. The location of the center of interest is not as critical to the analysis of rate of change of slope as is the observer position.

In recommending this particular area of study for additional research, it should be pointed out that the basic concept of using the rate of change of slope in the picture plane seems to be very logical and straight-forward. Whether the formulation presented in this thesis is entirely valid or not can only be proven by additional testing. However, it is felt that this method for determining the visual acceptance of a curve holds great promise.

From the limitations imposed by the scope of this study and from the data collected, the following was concluded:

1. Spiral curves do improve the appearance of most circular curves.
2. When the observer is near the plane of the curve, there is no significant difference in the appearance of a spiraled and an unspiraled curve.
3. As the distance from the curve to the observer increases, the length of spiral needed increases for good visual quality.
4. As the height of the observer raises above the plane of the curve, increasing display angle, the length of spiral needed decreases for good visual quality.
5. Curves which consist entirely of spiral curves give the best visual appearance, all other conditions being equal.
6. The rate at which a curve visually appears to diverge from the tangent affects the visual quality of the curve.

REFERENCES

1. A Policy on Geometric Design of Rural Highways. American Association of State Highway Officials, Association General Offices, 1965.
2. Tunnard, Christopher and Pushkarev. Boris. Manmade America. Yale University Press, New Haven, Connecticut, 963.
3. Cron, F. W. Fitting the Highway to the Landscape. In The Highway and the Landscape, Ed., W. B. Snow, Rutgers University Press, New Brunswick, New Jersey, 1959.
4. Smith, B. L., and Fogo, R. D. Some Visual Aspects of Highway Design. Highway Research Record 172, Highway Research Board, 1967.
5. Bernede, J. F., Godin, P., Deligny, J. L., Antoniotti, P., Day, J. A. Visual Quality Studies in Highway Design. Highway Research Record 232, Highway Research Board, 1968.
6. Bugge, W. A., and Snow, W. Brewster. The Complete Highway. In The Highway and the Landscape, Ed., W. B. Snow, Rutgers University Press, New Brunswick, New Jersey, 1959.
7. Smith, B. L., and Yotter, E. E. Visual Aspects of Highway Design. Special Report No. 80 Engineering Experiment Station, Kansas State University, Manhattan, Kansas, 1968. A Research Report prepared for the State Highway Commission of Kansas.
8. Brummelaar, T. Ten. The Deflection Angle, Its Derivatives and Their Relation to Curvilinear Road Alignment. Presented at the 4 th Conference of the Australian Road Research Board, 1968.
9. Godin, P. Avant-projets d'autoroutes et tendances actuelles en matiere de trace autoroutier, Revue Generale des Routes et des Aerodromes, January, 1963.
10. Kohler, Wolfgang. Gestalt Psychology. The American Library, New York, 1947.
11. Hamlyn, D. W. The Psychology of Perception. The Humanities Press, Inc., New York, 1957.
12. COGO (Civil Engineering Coordinate Geometry Computer Program), Department of Civil Engineering, M.I.T., Cambridge, Mass., 1965.
13. Hickerson, Thomas F. Route Surveys and Design. McGrawHill Book Company, New York, 1959.
```
```

\$ J0B

```
```

\$ J0B
JSM:RUM=CHECK,TIME=15;PAGES=300
JSM:RUM=CHECK,TIME=15;PAGES=300
C MAIN PROGRAM

```
C MAIN PROGRAM
```

```
    C MAIN PRGGRAM
```

 C MAIN PRGGRAM
 DIMENSION X(15,90),Y(15,90),2(15,90),H(15,90),V(15,90)
 DIMENSION X(15,90),Y(15,90),2(15,90),H(15,90),V(15,90)
 DIMENSIOV NSKIP(18), BUFF(2000)
 DIMENSIOV NSKIP(18), BUFF(2000)
 COMMCN /CL/ XY1(90),XY2(90),STA(100)
 COMMCN /CL/ XY1(90),XY2(90),STA(100)
 C NSKIP(16)=KEY
 C NSKIP(16)=KEY
 C NSKIP(17)=ISKIP
 C NSKIP(17)=ISKIP
 C NSKIP(18)=HRITE H AND V
 C NSKIP(18)=HRITE H AND V
 CALL PLOTS (BUFF,2OO0)
 CALL PLOTS (BUFF,2OO0)
 CALL PLOT (0.,0.,-3)
 CALL PLOT (0.,0.,-3)
 READ (1,902) LOC,MODE
 READ (1,902) LOC,MODE
 C * SUBROUTINE CLGM CONTAINS READ STATEMENTS
 C * SUBROUTINE CLGM CONTAINS READ STATEMENTS
 1 CALL CLGM (X,Y,Z,N,KEY,NSKIP(17))
 1 CALL CLGM (X,Y,Z,N,KEY,NSKIP(17))
 IF(N)899,899,101
 IF(N)899,899,101
 101 IF(KEY) 899,1C2,103
 101 IF(KEY) 899,1C2,103
 102 CALL OFRD2 (X,Y,Z,N)
 102 CALL OFRD2 (X,Y,Z,N)
 LINE=5
 LINE=5
 NCL=1
 NCL=1
 GO TO 66
 GO TO 66
 103 IF(KEY-6) 104,104,79
 103 IF(KEY-6) 104,104,79
 104 GO TO (70,71,72,73,74,75), KEY
 104 GO TO (70,71,72,73,74,75), KEY
 70 CALL OFRD2 (X,Y,Z,N)
 70 CALL OFRD2 (X,Y,Z,N)
 DO 80 I=1,N
 DO 80 I=1,N
 x(7,1)=x(1,1)
 x(7,1)=x(1,1)
 Y(7,I)=Y(1,I)
 Y(7,I)=Y(1,I)
 80 2(7,1)=2.(1,I)
 80 2(7,1)=2.(1,I)
 CALL CFLN (X,Y,Z,STA,N,KEY)
 CALL CFLN (X,Y,Z,STA,N,KEY)
 LINE=6
 LINE=6
 NCL=7
 NCL=7
 GO TO 66
 GO TO 66
 C KEY=4--FOUR LANE ROAD WITH BACKSLOPE INFLECTION POINTS GIVEN
 C KEY=4--FOUR LANE ROAD WITH BACKSLOPE INFLECTION POINTS GIVEN
 73 CALL OF4L (X,Y,Z,N)
 73 CALL OF4L (X,Y,Z,N)
 CALL OFLN (X,Y,Z,STA,N,KEY)
 CALL OFLN (X,Y,Z,STA,N,KEY)
 LINE=12
 LINE=12
 NCL=13
 NCL=13
 GO TO 66
 GO TO 66
 71 CONTINUE
 71 CONTINUE
 72 CONTINUE
 72 CONTINUE
 7 4 \text { CONTINUE}
 7 4 \text { CONTINUE}
 79 WRITE (3,640) KEY
 79 WRITE (3,640) KEY
 GO TO 899
 GO TO 899
 C * SUBROUTINE OFLNZ CONTAINS A READ STATEMENT
 C * SUBROUTINE OFLNZ CONTAINS A READ STATEMENT
 75 CALL CFLN2 (X,Y,Z,N)
 75 CALL CFLN2 (X,Y,Z,N)
 LINE=6
 LINE=6
 NCL=9
 NCL=9
 66 [F(MODE) 68,68,67
 66 [F(MODE) 68,68,67
 67 WRITE (3.201)
 67 WRITE (3.201)
 WRITE (3,200) ((STA(I),X(K,I),Y(K,I),Z(K,I),K,I,K=1,LINE),I=1,N)
 WRITE (3,200) ((STA(I),X(K,I),Y(K,I),Z(K,I),K,I,K=1,LINE),I=1,N)
 C * READ NUMBER OF OBSERVER POSITIONS
 C * READ NUMBER OF OBSERVER POSITIONS
 68 READ (1,902) NOPS
 68 READ (1,902) NOPS
 C
 C
 C READ FCRMAT
 C READ FCRMAT
 90) FORMAT(3F10.2)
 90) FORMAT(3F10.2)
 901 FORMAT(I5,3F10.2,[5)
 901 FORMAT(I5,3F10.2,[5)
 902 FORMAT(215)
 902 FORMAT(215)
 C
 C
 C WRITE FORMATS
 C WRITE FORMATS
 200 FORMAT(2(4F10.2,2[6,10X))
 200 FORMAT(2(4F10.2,2[6,10X))
 201 FORMAT(2(10H STATION,7X, 1HX,9X,1HY,9X,1HZ,7X,1HK,5X, 1HI,10X)/)
 201 FORMAT(2(10H STATION,7X, 1HX,9X,1HY,9X,1HZ,7X,1HK,5X, 1HI,10X)/)
 620 FORMAT(1H1,16X,13H**PLOT NUMBER,[7,2H**/17X,22(1H*)//)
    ```
    620 FORMAT(1H1,16X,13H**PLOT NUMBER,[7,2H**/17X,22(1H*)//)
```


IF(D) 5,5,10
5 NSKIP(I)=NSKIP(I)+1
$H(I, J)=0$.
$V(I, J)=0$.
GO TO 20
$10 \mathrm{H}(\mathrm{I}, \mathrm{J})=\mathrm{SCALE} A 2 /(\mathrm{B} * \mathrm{O}) *(X E * Y Y-Y E * X X)$
$V(I, J)=S C A L E * A /(B * D) *(B 2 * Z Z-Z E *(X E * X X+Y E * Y Y))$
20 CONTINUE
IF(NSKIP(18)-1) $60,60,50$
50 WRITE $(3,642)$
DO $40 \quad \mathrm{I}=1$, LINE
$\mathrm{NN}=\mathrm{NSKIP}(\mathrm{I})+1$
40 WRITE $(3,632)(I, J, H(I, J), V(I, J), J=N N, N)$
60 PLOTN=NPLOT
CALL NUMEER $(+5 ., 0 ., 1 \ldots$ PLOTN, $90.0,-1)$
CALL DRAW (LINE,N,H,V,NSKIP)
CALL PLOT (1.2.,0.,-3)
NOPS = NOPS -1
IF (NOPS) $30,30,3$
30 LOC=LOC -1
IF(LOC) 898,898,1
898 CALL PLOT (0., 0.,999)
WRITE $(3,638)$
899 STOP
END
SUBRDUTINE CLGR (XX,YY,ZZ, NN, KEY, ISKIP)
C MAIN SUBROUTINE FOR CENTERLINE COORDINATES
C READ FORMAIS
900 FORMAT (10I5)
901 FORMAT(6F10.2)
902 FORMATII3,F10.2)
903 FORMAT (3F5.0,F3.0,F6.2)
904 FORMAT(F5.0,F3.0,F6. $2,6 \mathrm{X}, F 5.0, F 3.0, F 6.2)$
C
C WRITE FORMATS
925 FORMAT(53X,31HEVD OF ROADWAY GEOMETRY PROGRAM//I

```


```

940 FORMAT(1H1)
945 FORMAT(/////)
S49 FORMAT(1H1/////////)
950 FORMAT(10X,49H*** ALIGNMENT SIZE EXCEEDS DIMENSIONED STORAGE BY, I; 1)
951 FORMAT(5X,54HWARNING *** NUMBER OF POINTS MAY EXCEED DIMENS:ON SI. 1E)
952 FORMAT $10 \mathrm{X}, 62 \mathrm{HTHE}$ TANGENT DISTANCE BETWEEN TWO SUCCESSIVE CURVES 1 S NEGATIVE)
953 FORMAT(1H+,100X,17HTANGENT DIRECTION,F14.2)
954 FORMAT(1H1,27X,25HHORIZONTAL CURVE GEOMETRY/////)
955 FORMAT(28X,23HVERTICAL CURVE GEOMETRY/////)
956 FORMAT(1H1,47X,9HTHERE ARE, $13,24 H$ POINTS IN THE ALIGNMENT)
957 FORMAT(50X,22HSTATION OF FIRST POINT,F10.2)
958 FORMAT(50X,21HSTATION OF LAST POINT,F11.2)
959 FORMAT(10X,5(1H*),38H INVALID CROSS SECTION INDICATOR VALUE)
960 FORMAT $36 \mathrm{X}, 5 \mathrm{HCURVE,I} 3)$

```

```

962 FOKMAT(1Hl,30X,19HCENTERLINE GEOMETRY/)
963 FORMAT (17X, 15,4F10.2)
964 FORMAT(21X,1HI,6X,1HX,9X,1HY,9X,1HZ,8X,3HSTA)
973 FORMAT(//////////)
974 FDRMAT(101X,23HDISTANCE BETWEEN CURVES,F8.2)
975 FURMAT(101X,14HTANGENT LENGTH,F17.2)
976 FORMAT(//48X,23HCROSS LINES DRAWN EVERY,F8.0,5H FEET/48X,24MPOINT: 1 ARE DEFINED EVERY,F7.0,5H FEET)

```

C COMAON AND DIMENSION STATEMENTS
DIMENSION XX(15,90),YY(15,90),ZZ(15,90),Z(100)
DIMENSION SPIR(10), DEFL(10),TANL(11)
COMMON/CL/X(90),Y(90),STA(100)
COMMON/RDI/ DIST,I,N,NDEFL(10),RDEFL(10),DC(10)
read data and initialize values
OO \(1 \mathrm{I}=1,10\)
1 SPIR(I)=0.
DO \(110 \quad I=1,60\)
110 STA(I) \(=0.0\)
C * READ NUMBER OF PIS(NPHI) AND PVIS(NPVI)
READ (1,900) NPHI,NSPIR,NPVI,KEY
C * REAO DISTANCE BETWEEN POINTS AND INITIAL DIRECTION FROM NORTH
READ ( 1,903 ) DIST, XDIST, \(4, B, C\)
THETA \(=(A+B / 60 .+C / 3600) \div\).
NTAN \(=1 ; P H I+1\)
IF(XDIST-DIST) 109,117,115

109 XDIST=DIST
117 I SKI P=1
GO TO 116
115 ISKIP=XDIST/DIST
XDIST=DIST*FLOAT(ISKIP)
116 IF(10-NPHI)100,101,101
100 IXCES=NPHI-10
WRITE \((3,950)\) IXCES
GO TO 899
101 IF(8-NPVI) \(106,105,105\)
106 I XC.ES = NPVI -8
WRITE \((3,950)\) IXCES
GO TO 899
C F READ COORDINATES OF INITIAL POINT AND STATION
105 READ (1,901) X(1),Y(1),STA(1)
C DIRECTION CHANGES ARE READ AS DEFLECTIONS
C CLOCKWISE IS POSITIVE AND COUNTERCLOCKWISE IS NEGATIVE
C * READ DEFLECTION ANGLES (DEFL) AND DEGREES OF CURVE (DC)
OO \(107 \mathrm{I}=1, \mathrm{NPHI}\)
READ (1,904) A, B, C, D, E,F
\(\operatorname{IF}(A) 112,113,113\)
112 DEFL(I) \(=A-8 / 60 .-C / 3600\) 。
GO TO 114
113 DEFL (I) \(=A+B / 60 .+C / 3600\).
\(114 \mathrm{DC}(1)=\mathrm{C}+\mathrm{E} / 60 .+\mathrm{F} / 3600\).
107 CONTINUE
C * READ TANGENT LENGTHS
READ (1,901) (TANL(I), I=1,NTAN)
TOTAL \(=0\).
DO \(102 \mathrm{I}=1\), NTAN
102 TOTAL=TOTAL+TANL(I)
NTOT = TOTAL/DIST
IF(NTOT-90)111,111,103
103 WRITE (3.951)
111 DO \(104 \mathrm{I}=1\),NPHI
RDEFL(I) \(=\) DEFL(I)*. 0174533
NDEFL(I) \(=1\)
IF(DEFL(I))108,104,104
108 NDEFL(I) \(=-1\)
DEFL(I)=-DEFL(I)
104 COVTINUE
IF(NSPIR)211,210,211
C * READ SPIRAL CURVE NUMBER AND LENGTH
\(211 \operatorname{READ}(1,902)(N, S P I R(N), I=1, N S P I R)\)
C
C
C MAIN ROUTINE FOR CENTERLINE COCRDINATES
210 T2=0.
TD1 \(=0\).
\(\mathrm{N}=2\)
Sl=0.
\(\mathrm{I}=1\)
WRITE \((3,954)\)
GO TO 97
\(99 \mathrm{I}=\mathrm{I}+\mathrm{I}\)
DHETA \(=\) THETA*57.3
WRITE \((3,953)\) DHETA
97 IF(SPIR(I)) \(3,3,4\)
    3 IFIITAN-I;20,20,22
    20 TDZ \(=0\).
        GO 1023
    22 TD2 \(=5729.58 * T A N(.0087257 * D E F L(I)) / D C(I)\)
    \(23 \mathrm{TT}=\mathrm{T} 2\)
        \(T B=T A N L(I)-T D 1-T D 2\)
        WRITE \((3,974)\) TB
        WRITE \((3,975)\) TD2
        IF (TB + 10. \() 209,2,2\)
        209 WRITE (3,952)
        GO TO 899
        2 IF(T2)6,6,27
        \(27 \times(N)=P T X+\) T2*SIN(THETA)
        \(Y(N)=P T Y+T 2 * \operatorname{COS}(T H E T A)\)
        STA(N) \(=P T S+T 2\)
        \(\mathrm{N}=\mathrm{N}+1\)
        6 IF (TB-DIST) \(17,8,8\)
            \(8 \mathrm{TT}=\mathrm{TT}+\mathrm{DIST}\)
        IF (TT-TB) 5,7,7
    \(5 X(N)=X(N-1)+D I S T * S I N(T H E T A)\)
        \(Y(N)=Y(N-1)+D[S T * C O S(T H E T A)\)
        \(\operatorname{STA}(N)=S T A(N-1)+D I S T\)
        \(\mathrm{N}=\mathrm{N}+1\)
        GO TO 8
    \(17 \mathrm{Cl}=\mathrm{DIST}-\mathrm{TB}\)
        \(D 1=T B\)
        GO TO 9
            \(7 \mathrm{Cl}=\mathrm{TT}-\mathrm{TB}\)
        D1=DIST-Cl
    9 ANGLE=THETA
    \(P C X=X(N-1)+D 1\) \#SIN(THETA)
    \(P C Y=Y(N-1)+D 1 * C O S(T H E T A)\)
    \(P C S=S T A(N-1)+01\)
    IF(I-NPHI)18,18,799
    \(18 \operatorname{WRITE}(3,940)\)
        WRITE \((3,945)\)
        WRITE \((3,960)\) I
        WRITE \((3,961)\)
        CALL CIRCLE (C1, ANGLE,T2,DEFL(I),PCX,PCY,PIX,PTY,PCS,PTS)
        THETA = THETA + RDEFL(I)
    \(T D 1=T D 2\)
    GO TO 99
C
    C PRELIMINARY SPIRAL CURVE CALCULATIONS
        4 IF(NTAN-I)24,24,25
        24 TD2 \(=0\).
        GO TO 26
        \(25 \mathrm{RC}=5729.58 / \mathrm{DC}(\mathrm{I})\)
    THES IS IN RADIANS
    THES = SPIR(I)/(2.*RC)
    \(Y S=S P I R(I) * T H E S / 3\).
    XS = SPIR(I)-(SPIR(I) *THES**2/10.)
    \(P=Y S-R C\) (1.-COS (THES))
    \(D K=X S-R C * S I N(T H E S)\)
    \(T D 2=(R C+P) * T A N(.0087267 * D E F L(I))+D K\)
    26 TB=TANL (I)-TD1-TD2
        WRITE \((3,974)\) TB
        WRITE \((3,975)\) TD2
        \(\mathrm{T}=\mathrm{T} 2\)
        \(\mathrm{IF}(\mathrm{TB}+10) 10,11,\).

10 WRITE (3.952)
GO TO 899
11 IF (T2)28,28,29
\(29 \mathrm{X}(\mathrm{N})=\mathrm{PTX}+\mathrm{T} 2 *\) SIN \((\) THETA)
\(Y(N)=P T Y+T 2 * C O S(T H E T A)\)
\(S T A(N)=P T S+T 2\)
\(\mathrm{N}=\mathrm{N}+1\)
28 IF (TB-DIST) \(21,12,12\)
\(12 \mathrm{TT}=\mathrm{TT}+\mathrm{DIST}\)
IF (TT-TB) \(13,14,15\)
\(13 X(N)=X(N-1)+D I S T * S I N(\) THETA \()\)
\(Y(N)=Y(N-1)+D I S T * C O S\) (THETA)
\(S T A(N)=S T A(N-1)+D I S T\)
\(\mathrm{N}=\mathrm{N}+1\)
GO TO 12
21 S1=DIST-TB
GO TO 16
\(15 \mathrm{Sl}=\mathrm{T}-\mathrm{TB}\)
GO TO 16
\(14 \mathrm{~S} 1=0\).
16 ANGLE=THETA
IF (I-NPHI) 19, 19,799
19 WRITE \((3,940)\)
WRITE \((3,960)\) I
WRITE (3,961)
CALL SPIRAL (S1,ANGLE,T2,SPIR, THES,PTX,PTY,PTS)
THETA = THETA + RDEFL (I)
\(T D 1=T D 2\)
GO TO 99
\(799 \mathrm{~N}=\mathrm{N}-1\)
WRITE \((3,956) \mathrm{N}\)
WRITE \((3,957)\) STA(1)
WRITE \((3,958)\) STA(N)
WRITE \((3,976)\) XDIST,DIST
WRITE \((3,940)\)
WRITE (3.955)
C * SUBROUTINE VERT CONTAINS READ STATENENTS
CALL VERT (NPVI,N,STA, Z)
WRITE (3,962)
WRITE \((3,964)\)
DO \(30 \quad I=1, N\)
30 WRITE \((3,963)\) I, X(I), Y(I), Z(I), STA(I)
IF (KEY) 31,32,33
31 WRITE \((3,959)\)
WRITE (2.963) N
WRITE \((2,963)(I, X(I), Y(I), Z(I), S T A(I), I=1, N)\)
GO TO 899
\(32 \mathrm{~J}=1\)
GO TO 34
33 IF(KEY-1) 32,32,35
\(35 \mathrm{~J}=9\)
34 DU 920 \(I=1, N\)
\(X X(J, I)=X(I)\)
\(Y Y(J, I)=Y(I)\)
\(920 \mathrm{ZZ}(\mathrm{J}, I)=2(I)\)
999 WRITE \((3,949)\)
WRITE \((3.926)\)
WRITE \((3,925)\)
WRITE \((3,926)\)
WRITE \((3,940)\)
\(\mathrm{N} N=\mathrm{N}\)
RETURN
\(899 \mathrm{NN}=0\)
RETURN
END

SUGROLTINE OFRDZ \((X, Y, Z, N P P L)\)
DIMENSION \(X(15,90), Y(15,90), 2(15,90)\)
DO \(10 \mathrm{I}=\mathrm{I}\), NPPL
\(X(9,1)=X(1, I)\)
\(10 Y(3,1)=Y(1, I)\)
NL INE \(=5\)
\(N M 1=N P P L-1\)
DO \(50 \mathrm{~K}=2\), NLINE
\(D=-22.0\)
IF(K.EG.3) \(D=-12.0\)
IF(K.EQ.4) \(D=12.0\)
IF(K.EQ.5) \(D=22.0\)
\(0040 \quad \mathrm{I}=2, \mathrm{NMI}\)
\(\mathrm{L}=\mathrm{I}+1\)
\(\mathrm{J}=\mathrm{I}-1\)
CALL CELTA \((X, Y, L, J, D, C X, C Y)\)
\(X(K, I)=X(1, I)+C X\)
\(40 \quad Y(K, I)=Y(1, I)+C Y\)
CALL DELTA \((X, Y, 2,1, D, C X, C Y)\)
\(X(K, 1)=X(1,1)+C X\)
\(Y(K, 1)=Y(1,1)+C Y\)
CALL DELTA \((X, Y, N P P L, N M 1, D, C X, C Y)\)
\(X(K, N P P L)=X(1, V P P L)+C X\)
\(50 \mathrm{Y}(\mathrm{K}, \mathrm{NPPL})=\mathrm{Y}(1, N P P L)+C Y\)
DO \(60 \mathrm{~K}=2\), NLINE
\(C Z=1.0\)
IF(K.EG.3.OR.K.EQ.4) CZ=0.25
DO \(60 \mathrm{I}=1\),NPPL
\(60 \mathrm{Z}(\mathrm{K}, \mathrm{I})=\mathrm{Z}(1,1)-\mathrm{CZ}\)
RETURN
END

SUEROUTINE DELTA ( \(A, B, M, L, D I, C X, C Y\) )
C CALCulate COORDinate changes for all points from centerline DIMENSION A(15,90), B(15,90)
\(\operatorname{IF}(A(9, M)-A(9, L)) 30,31,30\)
31 THETA \(=1.5708\) GO TO 32
\(30 \operatorname{ANGLE}=\operatorname{ABS}((B(9, M)-B(9, L)) /(A(9, M)-A(9, L)))\) THETA=ATAN(ANGLE)
\(32 \mathrm{CX}=\mathrm{DI}\) *SIN(THETA)
\(C Y=D I * \operatorname{COS}(T H E T A)\)
RETURN
END

SUBROUIINE OFLN2 \((X, Y, 2, N P P L)\)
C DFFSET SUBROUTINE FOR A TWO LANE ROADWAY
DIMENSION STA(90),X(15,90),Y(15,90),Z(15,90), DR(90),OL(90)
DIMENSION BSR(9)),BSL(90)
102 FORMAT(4F10.3)
\(N M 1=N P P L-1\)
CUT \((-)\) FILL \((+)\) FROM CENTERLINE OF ROADWAY
DEPTH OF CUT OR FILL ON RIGHT(DR) AND LEFT(DL) SIDE OF ROAOWAY BACKSLOPE ON RIGHT(BSR) AND LEFT(BSL) SIDE OF ROADWAY
* READ depths and backslopes

READ (1,102) (DR(I),BSR(I), DL(I), BSL(I), I=1,NPPL)
WRITE (3,102) DR(NPPL), BSR(NPPL), DL(NPPL),BSL(NPPL)
CALCULATIONS
NLINE \(=6\)
DO \(50 \mathrm{~K}=1\), NL. INE
IF(K.EQ.2) \(D=-22\).
IF(K.EQ.3) \(D=-12\).
\(\operatorname{IF}(K . E Q .4) \quad D=12\).
IF(K.EG.5) D=22.
DO \(40 \quad \mathrm{I}=2\), NMI
IF(K.EQ.1) \(D=-22 .-A B S(D L(I) * B S L(I))\)
IF(K.EQ.6) \(D=22_{0}+A B S(D R(I)\) \&BSR(I))
\(\mathrm{L}=\mathrm{I}+1\)
\(\mathrm{J}=\mathbf{I}-1\)
CALL CELTA \((X, Y, L, J, D, C X, C Y)\)
\(X(K, I)=X(9, I)+C X\)
\(40 Y(K, I)=Y(9, I)+C Y\)
CALL DELTA \((X, Y, 2,1, D, C X, C Y)\)
\(X(K, 1)=X(9,1)+C X\)
\(Y(K, 1)=Y(9,1)+C Y\)
CALL DELTA \((X, Y, N P P L, N M 1, D, C X, C Y)\)
\(X(K, N P P L)=X(9, N P P L)+C X\)
\(50 Y(K, N P P L)=Y(9, N P P L)+C Y\)
DO \(60 \mathrm{~K}=1\), NLINE
DO \(60 \mathrm{I}=1\), NPPL
IF(K.EQ.1) CZ=DL(I)
IF(K.EQ. 2 . OR.K.EQ. \(51 \quad C Z=1.0\)
IF(K.EQ. 3 . OR.K.EQ.4) CZ \(=.25\)
\(\operatorname{IF}(K . E Q .6) \quad C Z=D R(I)\)
\(60 Z(K, I)=Z(9, I)-C Z\)
RETURN
END

SURRCUTI U CILN \((X, Y, 7, S T h, \downarrow P, K E Y)\)


\(\mathrm{NO}=\mathrm{ND}-1\)
IF（KEY．C．T．4） \(30 \mathrm{~T} \| 101\)
GO TR \((1,1,1,1 C 1,2), K E Y\)
\(1 \mathrm{ED}=27\) ．
NCL＝1
（1）113
2．LL＝ \(\boldsymbol{r}^{\prime}\) 。
VCL \(=13\)
3 ĹO \(3 \quad 1=1,!!\)
\(1+(x(\because 61,1+1)-x(\because C L, 1)) 2 \div, 1: \cdot 20\)
le Tliff（1） \(1.57-9\)
G！10 3

THIT：（I）＝ATA．（AンSLE；


［ir ait \(!=\) ？，in？


RFi，（1（1，）？）そR，H1

R［A！\((1,1,1)(S I A 1(1,1),+L=v(1,1), 1=1\), ，（K）
\(K\left[\cdots(1,+j)\left(S T A I(2,1), \bar{Z}, F V(2,1), I=1,{ }^{\prime} L\right)\right.\)
ES：C．
DE 1 \(\quad \mathrm{K}=1,2\)
SIr， \(1=+1\). ？
\(\mathrm{A}_{\mathrm{i}}=\mathrm{S}\)

＊ \(\mathrm{ic} \mathrm{L}={ }^{\circ} \mathrm{F}+1\)
かッジ品
（＇（K，1）5 ），55，5\％
hu \(\because \cdot i=\because 1\) ．
\(\hat{v}=1\)
S \([5, \cdots=-\cdots]\)
5；iこ \(1 \because i=1\) ，a
L（ 6 ： \(1=2, \cdots\)
［FISTA（I）－；1：1（1，，1），7，d），6
for cr＂iT I＂＊＂
n？ITE（3，ソ．．．）
Kだ「いい

1नII（，，J－，T：fi．，．．－1）

Cr Ir \(\rightarrow\)

CIST＝？



s？IU：～


1） 3 「も 」い ！
306：5 ：\(\because\) ：T I：I ．


940 FORMAT (10X, 'ERROR STATEMENT NO. 69 OFLN SUBRDUTINE') ENE

SURRQUTINE OFCUR \((A, B, M, L, D I, C X, C Y)\)
CALCULATE COCROINATE CHANGES FOR ALL POINTS FROM CENTERLTNE DIMENSICN A(15,90),B(15,90)
IF (A(13,M)-A(13,L)) 30,31,30
31 THETA \(=1.5708\)
CO TO 32
30 ANGLE = APS \(((B(13, N i)-B(13, L)) /(A(13, M)-A(13, L)))\)
THET \(A=A\) MAV(AVGLE)
\(32(X=0)\) \#SIN(THETA)
\(C Y=0\) ) \(\uparrow\) CUS (THETA)
RETURY
ENO

417

COMMON/RDI/ DIST,I,N,NDEFL(10),RDEFL(10),DC(10)
COMMON/CL/X(90), Y(90),STA(100)
951 FORMAT(////31X,14HCIRCULAR CURVE/)
952 FORMAT( \(31 \mathrm{X}, 1 \mathrm{HX}, 16 \mathrm{X}, 1 \mathrm{HY}, 15 \mathrm{X}, 3 \mathrm{HSTA/)}\)
953 FORMAT( \(16 \mathrm{X}, 2 \mathrm{HPC}, 3 \mathrm{~F} 17.2)\)
954 FORMAT \((16 \mathrm{X}, 2 \mathrm{HPT}, 3 \mathrm{~F} 17.2)\)
955 FORMAT(//24X,23HDEFLECTION TO THE RIGHT,F7.2,8H DEGREES)
956 FORMAT(//24X,22HDEFLECTION TO THE LEFT,F7.2.8H DEGREES)
937 FORMAT(/32X,7HRADIUS \(=, F 10.2)\)
958 FORMAT(/30x,17HDEGREE OF CURVE \(=, F 5,2)\)
959 FORMAT \(/ / 32 \mathrm{X}, 7 \mathrm{HLENG} T H=, F 10.21\)
\(R A D=5729.58 / 0 C(I)\)
\(C U R=100\). \(* D E F L / D C(I)\)
\(\mathrm{T}=\mathrm{C} 1\)
IF(CUR-TC) 6,8,8
8 IF(Cl) 3,3,1
1 DA=TC*DC(1)*.000087267
IF(NDEFL(I))5,5,4
\(5 D A=-D A\)
4 BNGLE=ANGLE+DA
\(X(N)=P C X+T C * S I N(B N G L E)\)
\(Y(N)=P C Y+T C * C O S(B N G L E)\)
STA \(N\) ) \(=P C S+T C\)
\(\mathrm{N}=\mathrm{N}+1\)
IF (CUR-TC) \(6,3,3\)
3 TC=TC+DIST
2 IF (CUR-TC) 6,1,1
6 T2 \(=\) TC-CUR
\(D A=C U R * D C(I) * .000087267\)
IF(NDEFL(I))9,9,10
\(9 D A=-D A\)
10 ANGLE=ANGLE +DA
\(P \int X=P C X+S I N(A N G L E) * C U R\)
\(P T Y=P C Y+C O S(A N G L E) * C U R\)
PTS = PCS +CUR
C WRITE CURVE GEDMETRY
WRITE (3.951)
WRITE \((3,952)\)
WRITE \((3,953)\) PCX,PCY,PCS
WRITE \((3,954)\) PTX,PTY,PTS
IF(NDEFL(I))23,23,24
23 WRITE \((3,956)\) DEFL
GO ro 25
24 WRITE \((3,955)\) DEFL
25 WRITE \((3,958)\) DC(I)
WRITE \((3,957)\) RAD
WRITE (3,959) CUR
RETURN
END

SUBRDUTINE SPIRAL (SI, ANGLE, TZ,SPIR, THES,STX,STY,STS)
COMMCN/RDI/ DIST,I,N,NDEFL(10),RDEFL(10), DC(10)
COMMON/CL/X(90),Y(90),STA(100)
DIMENSION SPIR(12)
952 FORMAT ( \(31 \mathrm{X}, 1 \mathrm{HX}, 16 \mathrm{X}, 1 \mathrm{HY}, 15 \mathrm{X}, 3 \mathrm{HSTA} /)\)
953 FORMAT(16X,2HCS,3F17.2)
954 FORMAT(16X,2HST,3F17.2)
955 FORMATI////28X, 2OHSPIRAL CURVE (AHEAD)/)
956 FORMAT(////28X,21HSPIRAL CURVE (BEHIND)/)
964 FORMAT(16X,2HTS, 3F17.2)
965 FORMAT(//27X,25HLIMITING DEGREE OF CURVE \(=, F 5.2\) )
966 FORMAT(/30X, 14HSPIRAL LENGTH \(=, F 10.2)\)
967 FORMAT \(/ 31 X\), 9HTHETA(S) \(=, F 5.2,8 H\) DEGREES)
974 FORMAT(16X,2HSC,3F17.2)
DHES \(=\) THES \(\$ 57.30\)
DISTS \(=100\).
IF(DIST-100.) 26,27,27
26 DISTS=CIST
C CALCULATIONS FOR SPIRAL IO CIRCULAR CURVE
27 IF(S1) 1, 1,2
1 TSX=X(N-1)+DIST*SIN(ANGLE)
\(T S Y=Y(N-1)+D I S T \neq C O S(A N G L E)\)
TSS \(=\) STA \((N-1)+D I S T\)
\(X(N)=T S X\)
\(Y(N)=T S Y\)
\(S T A(N)=T S S\)
\(\mathrm{N}=\mathrm{N}+1\)
\(\mathrm{T} S=0\).
GO TO 7
2 TI=DIST-SI
TSX=X(N-1)+T1*SIN(ANGLE)
\(T S Y=Y(N-1)+T 1 * C O S(A N G L E)\)
\(T S S=S T A(V-1)+T 1\)
\(D A=(S 1 / S P I R(I))\) ** 2 *THES \(/ 3\) 。
IF(NDEFL(I))5,5,4
\(5 D A=-D A\)
4 ANGS \(=A N G L E+D A\)
\(X(N)=T S X+S I\) *SIN(ANGS)
\(Y(N)=T S Y+S 1 * C O S(A N G S)\)
STA \((N)=T S S+S 1\)
\(\mathrm{N}=\mathrm{N}+1\)
\(T S=S 1\)
7 IF(SPIR(I)-TS)6,6,3
3 TS=TS+DISTS
IF(SPIR(I)-TS)6,6,8
8 DA=(TS/SPIR(I))**2*THES/3.
IF(NDEFL(I) ) \(11,11,12\)
\(11 D A=-D A\)
12 ANGS=ANGLE+DA
\(X(N)=T S X+T S * S I N(A N G S)\)
\(Y(N)=T S Y+T S * C O S(A N G S)\)
STA \((N)=T S S+T S\)
\(\mathrm{N}=\mathrm{N}+1\)
GO TO 3
6 Cl=TS-SPIR(I)
\(D A=T H E S / 3\).
IF(NDEFL(I))9,9,10
\(9 D A=-D A\)
10 ANGS=ANGLE+DA
\(S C X=T S X+S P I R(I) * S I N(A N G S)\)

525
526
527
528
529
530
531
532
533
534
535
536

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
\(S C Y=T S Y \div S P(R(I) * C O S(A N G S)\)
C WRITE SPIRAL AHEAD GEOMETRY
WRITE \((3,955)\)
WRITE \((3,952)\)
WRITE \((3,964)\) TS
WRITE \((3,974)\) SC
WRITE 3,965\()\) DC
WRITE \((3,966)\) SP
WRITE \((3,967)\) DHES
IFINDEFL \((1)) 21,2\)
21 ANGLE ANGLE-THES
GO TO 25
24 ANGLE ANGLE +THES

C
\(25 \mathrm{CDEL}=(\mathrm{ABS}(\operatorname{RDEFL}(\mathrm{I}))-2\). *THES \() * 57.30\)
ANGLA=ANGLE
CALL CIRCLE (C1,ANGLA,S1,CDEL,SCX,SCY,CSX,CSY,SCS,CSS)
CDEL=CDEL*. 0174533
IF(NDEFL(I))19,19,13
\(19 \mathrm{CDEL}=-\mathrm{CDEL}\)
13 ANGLE \(=\) ANGLE + CDEL
C CALCULATIONS FOR CIRCULAR CURVE TO TANGENT
\(T S=S 1\)
IF(S1)14,14,15
14 TS=TS+DISTS
15 IF(TS-SPIR(I))18,20,20
\(18 \mathrm{DA}=\mathrm{TS}\) * \(\mathrm{DC}(\mathrm{I}) * .000087267-(\mathrm{TS} / \mathrm{SPIR}(\mathrm{I})) * * 2 * T H E S / 3\).
IF(NDEFL(I))16,16,17
\(16 D A=-D A\)
17 ANGS=ANGLE+DA
\(X(N)=C S X+T S * S I N(A N G S)\)
\(Y(N)=C S Y+T S * C O S(A N G S)\)
STA \((N)=C S S+\) TS
\(\mathrm{N}=\mathrm{N}+1\)
GO TO 14
20 T2=TS-SPIR(I)
\(D A=2\). \(\mathrm{THES}^{\mathrm{T}} / 3\).
IF(NDEFL(I))22,22,23
\(22 D A=-D A\)
23 ANGS=ANGLE+DA
STX \(=\) CSX + SPIR(I) *SIN(ANGS)
\(S T Y=C S Y+S P I R(I) * C O S(A N G S)\)
STS = CSS + SPIR(I)
C WRITE SPIRAL BEHIND GEOMETRY
WRITE \((3,956)\)
WRITE \((3,952)\)
WRITE \((3,953)\) CSX,CSY,CSS
WRITE \((3,954)\) STX,STY,STS
WRITE \((3,965)\) DC(I)
WRITE \((3,966)\) SPIR(I)
WRITE \((3,967)\) DHES
RETURN
END

C ELEVATION SUBROUTINE


END POIVTS MUST BE BEYOND STATIONED POINTS
C * READ STATIONS AND ELEVATIONS OF PVI'S INCLUDING END POINTS
DO 10 K=KK, KKK
10 READ (1,900) STA(K), ELEV(K)
C
THE END PVI'S ARE ASSIGNED A CURVE LENGTH OF ZERO SO THAT THE FIRS AND THE LAST PVC WILL NOT BE ON THE HORIZONTAL ALIGNMENT
\(\operatorname{XLVC}(1)=0\) 。
\(X \operatorname{LVC}(J N)=0\).
IF(NPVI) \(30,30,15\)
C * ASSIGN LENGTHS OF VERTICAL CURVES AT EACH PVI
15 DO \(20 \mathrm{~J}=2\), NP
\(20 \operatorname{READ}(1,901)\) XLVC(J)
C CUMPUTE STATICNS OF PC'S AND PT'S
\(300040 \mathrm{~K}=\mathrm{KK}, \mathrm{KKK}\)
C2=XLVC(K-NNVI/2.
PCSTA \((K-N N N)=S T A(K)-C 2\)
PTSTA \((K-N N N)=S T A(K)+C 2\)
40 CONTINUE
C WRITE STATION AND ELEVATION OF BEGINNING POINT
WRITE \((3,953)\)
WRITE \((3,954)\) STA \((K K)\), ELEV \((K K)\)
IF(NPVI) \(46,46,42\)
C WRITE VERTICAL CURVE GEOMETRY
42 DO \(45 \mathrm{I}=2\), NP
\(\mathrm{K}=\mathrm{I}-1\)
45 WRITE \((3,960) \mathrm{K}, \mathrm{XLVCII})\), PCSTA(I), PTSTAII)
HRITE STATION AND ELEVATION OF END POINT
46 WRITE 13,955\()\)
WRITE \((3,954)\) STA(KKK), ELEV \((K K K)\)
C COMPUTE ELEVATIUNS AT EACH POINT
\(00100 \mathrm{I}=1\), NN,
\(0060 \mathrm{~K}=\mathrm{KK}, \mathrm{KKK}\)
IF (PCSTA K KVVN) -STA(I) \(50,70,70\)
50 IF(PTSTA(K-NNN)-STA(I)) \(60,60,80\)
60 CONTINUE
POINT CN TAVGENT
\(70 \operatorname{ELEV}(I)=(S T A(I)-S T A(K-1)) *(E L E V(K)-E L E V(K-1)) /(S T A(K)-S T A(K-1))\)
\(\operatorname{ELEV}(1)=E L E V(I)+\operatorname{ELEV}(K-1)\)
GO TO 100
C \(80 \operatorname{ELEV}(I)=(\operatorname{STA}(1)-S T A(K-1)) *(\operatorname{ELEV}(K)-\operatorname{ELEV}(K-1)) /(S T A(K)-S T A(K-1))\) \(\operatorname{ELEV}(1)=\operatorname{ELEV}(1)+\operatorname{ELEV}(K-1)\)
\begin{tabular}{|c|c|c|}
\hline 61\% & & G2=\{ELEV\{K+1)-ELEV(K) )/\{STA\{K.1\}-STA(K) \\
\hline 618 & & \(\mathrm{G1}=(\operatorname{ELEV}(\mathrm{K})-\operatorname{ELEV}(\mathrm{K}-1)) /(S T A(K)-S T A(K-1))\) \\
\hline 619 & &  \\
\hline 620 & & \(Y=Y /(X L V C(K-N N N) * 2\). \\
\hline 521. & & \(\operatorname{ELEV}(1)=\operatorname{ELEV}(1)+Y\) \\
\hline 62.2 & 100 & COVTINUE \\
\hline S23 & & RETURN \\
\hline 624 & & END \\
\hline
\end{tabular}

SUBROUTINE INTERP (AI,AEDGE,A2,B1,B2,C2)
631
\(C 2=B 1+(B 2-B 1) *(A E D G E-A 1) /(A 2-A 1)\)
RETURN
END

DIMENSION NSKIP(i8), Hi(15,300), V(15,300), INPIC(15,300)
C ISKIP IS TWO TIMES THE INTERVAL NUMBER FOR CROSS LINES
LSAVE=L
ISKIP=NSKIP(1.7)*2
WRITE \((3,505)\)
505 FORMAT(7(/),16H DRAH SUBROUTINE)
HMAX \(=10.0\)
HMIN \(=-10.0\)
\(V M A X=5.0\)
VMIN \(=-5.0\)
C. PROGRAM DRAUS LINES BACK AND FORTH

DO \(100 \quad \mathrm{I}=1, \mathrm{~L}, 2\)
\(I \mathrm{H} \mid=0\)
IV1=0
NFRST \(=0\)
IHV3 \(=0\)
NN=NSKIP(I)
IF(NN.EQ.O) GO TO 46
DO \(7 \mathrm{~K}=1\), NN
\(7 \operatorname{INPIC}(I, K)=1\)
\(46 N N=N N+1\)
C DRAWS LINES \(1,3,5,7\) FROM 1 TO \(N\)
DO \(98 \mathrm{~J}=\mathrm{NN}, \mathrm{N}\)
C NEXT POINT H2, V2
\(\mathrm{H} 2=\mathrm{H}(1, J)\)
\(\mathrm{V} 2=\mathrm{V}(\mathrm{I}, \mathrm{J})\)
\(\operatorname{INPIC}(I, J)=0\)
I \(\mathrm{H} 2=0\)
C HMIN CHECK
IF(H2-HMIN)1,2,2
\(1 \quad\) I \(\mathrm{H} 2=1\)
INP [C(I,J)=1
IF(NFRST)2,18,2
2 [F(TH1-1)3,3,4
3 IF(IH2-IH1)5,4,6
5 CALL INTERP(H1,HMIN,H2,V1,V2,V1)
\(\mathrm{HI}=\mathrm{HMIN}\)
IF(V1-VMIN) 31,9,8
8 IF (VMAX-V1)47,9,9
31 IVI=1
GO TO 10
47 IVI=2
GO TO 10
9 IVI=0
10 I Pl=1
GO TO 18
\(6 \mathrm{H}_{3}=\mathrm{H}_{2}\)
V3 \(=V_{2}\)
1 HV3 \(=1\)
CALL INTERP(H1,HMIN, H2,V1,V2,V2)
H2=HMIN
\(I \mathrm{H} 3=\mathrm{I} \mathrm{H} 2\)
I \(\mathrm{H} 2=0\)
GO TO 18
C HMAX CHECK
4 IF (HMAX - H2 ) 11,12,12
11 IH2 \(=2\)
\(\operatorname{INPIC}(I, J)=1\)
IF(NFRST)12,18,12

12 IF(IH2-[H1)13,18,14
13 CALL INTERP(H1,HMAX,H2,V1,V2,V1)
\(\mathrm{Hl}=\mathrm{HMAX}\)
IF(V1-VMIN)48,17,15
15 IF (VMAX-V1)49,17,17
\(48 \mathrm{IVI}=1\)
GO TO 16
49 IVI=2
GO 1016
17 IVI \(=0\)
16 I \(P 1=1\)
GO TO 18
\(14 \mathrm{H} 3=\mathrm{H} 2\)
\(\mathrm{V} 3=\mathrm{V} 2\)
I HV \(3=1\)
CALL INTERP \((H 1, H M A X, H 2, V 1, V 2, V 2)\)
H2 \(=\) HMAX
\(1 H 3=I H_{2}\)
\(\mathrm{I} \mathrm{H} 2=0\)
18 IV2=0
C VMIN CHECK
IF(V2-VMIN) 19,20,20
19 IV2=1
\(\operatorname{INPIC}(1, J)=1\)
IF(NFRST) \(20,37,20\)
20 IF(IV1-1)21,21,22
21 IF (IV2-IV1)41,22,42
41 IF (IH2) 37, 23,37
23 CALL INTERP(V1,VMIN,V2,H1,H2,H1)
\(\mathrm{VI}=\mathrm{VMIN}\)
\(|P|=1\)
GO TO 32
42 IF(IH2) \(37,24,37\)
\(24 \mathrm{H} 3=\mathrm{H} 2\)
V3 \(=V_{2}\)
IHV3 = 1
I \(\mathrm{H}_{3}=\mathrm{I} \mathrm{H}_{2}\)
CALL INTERP (V1, VMIN, V2, H1, H2, H2)
\(\mathrm{V} 2=\mathrm{VMIN}\)
GO ro 32
C VMAX CHECK
22 IF (VMAX-V2)25,26,26
25 IV2=2
\(\operatorname{INPIC}([, J)=1\)
IF(NFRST)26,37,26
26 IF(IV2-IV1)43,29,44
43 IF(IH2)37,27,37
27 CALL INTERP \((V 1, V M A X, V 2, H 1, H 2, H 1)\)
\(\mathrm{V} 1=\mathrm{VMAX}\)
\(|P|=1\)
GO ro 32
44. IF( H 2 ) \(37,28,37\)
\(28 \mathrm{H} 3=\mathrm{H} 2\)
V3 \(=\) V2
I HV3 \(=1\)
I \(\mathrm{H} 3=1 \mathrm{H} 2\)
CALL INTERP(V1,VMAX,V2,H1,H2,H2)
\(\mathrm{V}_{2}=\mathrm{V}\) MAX
GO TO 32
29 [F(IH2) \(37,30,37\)

30 IFIIV2137,32,31
\(C\) ORIGINAL POINT OUT OF PICTURE
32 IF (NFRST) \(34,33,34\)
33 CALL PLOT \(1-V 2,+H 2,31\) GO ro 37
34 IFIIP1)36,36,35
35 CALL PLOT \((-V 1,+H 1,3)\)
36 CALL PLOT \((-V 2,+112,2)\)
37 IF(IHV3) 38,38,39
\(38 \mathrm{HI}=\mathrm{H} 2\)
\(\mathrm{V} 1=\mathrm{V} 2\)
GO TO 40
\(39 \mathrm{HI}=\mathrm{H} 3\)
\(\mathrm{VL}=\mathrm{V}_{3}\)
I \(\mathrm{H}_{2}=\mathrm{I} \mathrm{H}_{3}\)
40 NFRST \(=1\)
\(I \mathrm{HI}_{1}=\mathrm{I} \mathrm{H}_{2}\)
IVI = IV2
IHV3 \(=0\)
\(I P I=0\)
98 CONTINUE
C
DRAWS LINES 2,4,6,8 FROM N TO 1
NFRST \(=0\)
\(\mathrm{I} \mathrm{I}=\mathrm{I}+\mathrm{I}\)
IF(II.GT.L) GO TO 100
\(I \mathrm{HI}=0\)
\(\mathrm{I} V \mathrm{l}=0\)
\(N N=N S K I P(I+1)\)
\(J=N+1\)
IF(NN.EQ.O) GO TO 97
DO \(197 \mathrm{~K}=1\), NN
197 INPIC(I \(+1, K)=1\)
\(97 \mathrm{NN}=\mathrm{NN}+1\)
DO \(99 \mathrm{~K}=\mathrm{NN}, \mathrm{N}\)
\(\mathrm{J}=\mathrm{J}-1\)
C NEXT POIVT H2, V2
\(H 2=H(I+1, J)\)
\(V 2=V(I+1, J)\)
\(\operatorname{INPIC}(I+1, J)=0\)
\(\mathrm{I} \mathrm{H}_{2}=0\)
C HMIN CHECK
IF(H2-HMIN)51,52,52
51 1 \(\mathrm{H} 2=1\)
\(\operatorname{INPIC(I+1,J)=1}\)
IF(NFRST)52,68,52
52 IF (IH1-1)53,53,54
53 IF(IH2-IHI)55,54,56
55 CALL INTERP \((H 1, H M I N, H 2, V 1, V 2, V 1)\)
\(\mathrm{Hl}=\mathrm{HM}\) IN
IF(VI-VMIN) 50,59,58
58 IF (VMAX-V1)81,59,59
50 [Vl=1
GO TO 60
81 IVI=2
GO TO 60
59 IVI=0
60 I \(P 1=1\)
GO TO 68
\(56 \mathrm{H} 3=\mathrm{H}_{2}\)
\(\mathrm{V} 3=\mathrm{V} 2\)
[ HV3 = 1
CALL INTERP(H1,HMIN, II2,V1,V2,V2)
H2 \(=\) HMIN
I \(\mathrm{H}_{3}=\mathrm{I} \mathrm{H} 2\)
I \(\mathrm{H} 2=0\)
GO 1068
C HMAX CHECK
54 IF (HMAX-H2)61,62,62
61 I \(\mathrm{H} 2=2\)
(NPIC(I+1,J)=1
IF (NFRST) 62,68,62
62 IF (IH2-IH1) \(63,68,64\)
63 CALL INTERP(H1,HIMAX,H2,V1,V2,V1)
Hl = HMAX
IF(VI-VMIN)96,67,65
65 IF (VMAX-V1) \(118,67,67\)
96 IVI=1
GO 1066
118 IVI=2
GO 1066
\(67 \mathrm{IVI}=0\)
\(66 \quad|\mathrm{P}|=1\)
GO 1068
\(64 \mathrm{H} 3=\mathrm{H} 2\)
\(\mathrm{V} 3=\mathrm{V} 2\)
I HV \(3=1\)
CALL INTERP(H1, HMAX,H2,V1,V2,V2)
H2 \(=\) HMAX
I \(\mathrm{H} 3=\mathrm{I} \mathrm{H} \mathbf{2}\)
I \(\mathrm{H} 2=0\)
68 IV2=0
VMIN CHECK
IF(V2-VMIN)69,70,70
69 IV2=1
\(\operatorname{INPIC}(I+1, J)=1\)
IF(NFRST)70,87,70
70 IFIIV1-1)71,71,72
71 IF (IV2-IV1)91,72,92
91 IF(IH2) \(87,73,87\)
73 CALL INTERP(V1,VMIN,V2,H1,H2,H1)
\(\mathrm{VI}=\mathrm{VMIN}\)
\(|P|=1\)
GO TO 82
92 IF(IH2) 87,74,87
\(74 \mathrm{H} 3=\mathrm{H} 2\)
V3 \(=\mathrm{V}_{2}\)
IHV3 \(=1\)
I \(\mathrm{H} 3=1 \mathrm{H}_{2}\)
CALL INTERP(V1,VMIN,V2,H1,H2,H2)
\(\mathrm{V} 2=\mathrm{VMIN}\)
GO TO 82
C VMAX CHECK
72 IF (VMAX-V2)75,76,76
75 IV2=2
\(\operatorname{INPIC}(I+1, J)=1\)
IF(NFRST)76,87,76
76 IF(IV2-IV1)93,79,94
93 IFIIH2187,77,87
77 CALI. INTERP(V1,VMAX, V2, H1, H2, H1) \(V 1=V M A X\)
\(I P 1=1\)
GO TO 82
94 IF(IH2)87,78,87
\(78 \mathrm{H} 3=\mathrm{H}_{2}\)
V3 \(=\) V2
1 HV3 \(=1\)
I \(\mathrm{H} 3=\mathrm{I} \mathrm{H}_{2}\)
CALL INTERP(V1,VMAX,V2,H1,H2,H2)
\(\mathrm{V} 2=\mathrm{VMAX}\)
GO TO 82
79 IF(IH2) 87, 80, 87
80 IF(IV2) \(87,82,87\)
C ORIGINAL POINT OUT OF PICTURE
\(82 \mathrm{IF}(\mathrm{NFRST}) 84,83,84\)
83 CALL PLOT \((-\mathrm{V} 2,+\mathrm{H} 2,3)\)
GO TO 87
84 IFIIP1)86, 86,85
85 CALL PLOT \((-\mathrm{V} 1,+\mathrm{H} 1,3)\)
86 CALL PLOT \((-\mathrm{V} 2,+\mathrm{H} 2,2)\)
87 IF(IHV3) \(88,88,89\)
\(88 \mathrm{Hl}=\mathrm{H} 2\)
\(\mathrm{V} 1=\mathrm{V} 2\)
GO TO 90
\(89 \mathrm{Hl}=\mathrm{H}_{3}\)
\(\mathrm{V}=\mathrm{V}_{3}\)
\(\mathrm{I} \mathrm{H} 2=\mathrm{I} \mathrm{H} 3\)
90 NFRST=1
\(\mathrm{IHI}=\mathrm{I} \mathrm{H}_{2}\)
IVI \(=\) I V2
IHV3 \(=0\)
\(I P 1=0\)
99 CONTINUE
100 CONTINUE
IF(NSKIP(18)) 147,147,148
148 WRITE \((3,501)\)
501 FORMAT(1H1,6(13H I J INPIC,8X)//)
WRITE \((3,502)((I, J, I N P I C(I, J), J=1, N), I=1, L)\)
502 FORMAT(6(1x,2I3,I5,9X))
C
147 IF(NSKIP(16)) \(140,140,142\)
140 L=4
\(00141 \mathrm{~J}=1,3\)
GO TO \((143,144,145), J\)
\(143 \mathrm{JJ}=1\)
\(K K=2\)
GO TO 146
\(144 \mathrm{JJ}=3\)
\(K K=1\)
GO TO 146
\(145 \mathrm{JJ}=2\)
\(K K=3\)
146 NN=NSKIP(JJ)+1
DO \(141 \quad \mathrm{I}=\mathrm{N}, \mathrm{N}, \mathrm{N}\)
INPIC(KK,I) \(=I N P I C(J J, I)\)
\(H(K K, I)=H(J J, I)\)
\(141 \mathrm{~V}(\mathrm{KK},[)=\mathrm{V}(\mathrm{JJ}, \mathrm{I})\)
NSKIP(2) \(=\) NSKIP(1)
NSKIP(1) \(=\operatorname{NSKIP(3)}\)
NSKIP(3)=NSKIP(2)
C ORAHS CROSS LINES AT EVERY STATION BACK AND FORTH

C DETERMINES MINIMUM NSKIP
142 WRITE \((3,504)\)
504 FORMAT(\%/I,12H CRUSS LINES)
NSKIP=NSKIP(1)
DO \(101 \mathrm{~K}=2, \mathrm{~L}\)
IF(NSKIP(K)-MSKIP)102,101,101
102 MSKIP=NSKIP(K)
101 CONTINUE
MSKIP \(=\) MSKI \(P+1\)
IF(NSKIP(16)-4) 302,300,302
\(300 \mathrm{~L}=14\)
DO \(301[=1, N\)
\(H(14,1)=H(12,1)\)
\(V(14, I)=V(12, I)\)
\(H(13, I)=H(11, I)\)
\(V(13, I)=V(11, I)\)
\(H(12, I)=H(10, I)\)
\(V(12, I)=V(10,1)\)
\(H(11, I)=H(9,1)\)
\(V(11, I)=V(9, I)\)
\(\mathrm{H}(10,1)=\mathrm{H}(9,1)\)
\(V(10, I)=V(9,1)\)
\(H(9, I)=H(8,1)\)
\(V(9, I)=V(8, I)\)
\(H(8, I)=H(7, I)\)
\(V(8,1)=V(7,1)\)
\(H(7, I)=H(6, I)\)
\(V(7, I)=V(6, I)\)
\(H(6,1)=H(5, I)\)
\(V(6,1)=V(5,1)\)
\(H(5,1)=H(4,1)\)
\(V(5,1)=V(4,1)\)
INPIC(14,I) \(=\) INPIC(12,I)
INPIC(13,I)=INPIC(11,I)
INPIC(12,I)=INPIC(10,I)
INPIC(11,I) \(=\) INPIC(9,I)
\(\operatorname{INPIC}(10, I)=\operatorname{INPIC}(9,1)\)
INPIC(9,I)=INPIC(8,I)
\(I N P I C(8, I)=I N P I C(7, I)\)
\(\operatorname{INPIC}(7, I)=\operatorname{INPIC}(6,1)\)
INPIC(6,I) \(=\operatorname{INPIC(5,1)}\)
\(301 \operatorname{INPIC}(5,1)=1 \operatorname{NPIC}(4,1)\)
C STARTS CROSS LINES AT BOTTOM OF PICTURE, PROGRESSES TO TOP
302 DO 200 JJ=MSKIP, N, ISKIP
\(\mathrm{J}=\mathrm{JJ}\)
NFRST \(=0\)
ID=1
\(\mathrm{I}=\mathrm{L}+1\)
C DRAWS MSKIP, MSKIP+2,ETC, LINES RIGHT TO LEFT
DO \(198 \mathrm{~K}=1, \mathrm{~L}, 2\)
\(\mathrm{I}=\mathrm{I}-1\)
IF(NFRST)104,103,104
103 IF(INPIC(I, J))106,105,106
\(105 \operatorname{SAVEV}=-V(1, J)\)
SAVEH=H(I,J)
\(K H=I\)
\(K \mathrm{~V}=\mathrm{J}\)
I \(0=0\)
106 NFRST=1
GO TO 112
    104 IF(I0)107,108,10?
    107 IF(INPIC(I, J))1112,109,112
    109 SAVEV=-V(I,J)
        SAVEH=H(I,J)
        \(K H=1\)
        \(K V=J\)
        I \(D=0\)
        GO TO 112
    108 IF(INPIC(I,J))110,111,110
    110 I \(D=1\)
        GO TO 112
    111 CALL PLOT (SAVEV,SAVEH,3)
        CALL PLOT(-V(I,J),+H(I,J),2)
    \(112 \mathrm{I}=\mathrm{I}-1\)
        IF(10)198,114,198
    114 IF(INPICII, J))117,116,117
    116 CALL PLOT (SAVEV,SAVEH,3)
    CALL PLOT(-V(I,J),+H(I,J),2)
    117 I \(D=1\)
    198 CONTINUE
        J=JJ+NSKIP(17)
        IF(J.GT.N) GO TO 200
        NFRST \(=0\)
        I \(D=1\)
        \(\mathrm{I}=0\)
        C DRAWS MSKIP+1, MSKIP+3, ETC, LINES LEFT TO RIGHT
        DO \(199 \mathrm{~K}=1, \mathrm{~L}, 2\)
    \(\mathrm{I}=\mathrm{I}+1\)
    IF(NFRST)154,153,154
    153 IF(INPIC(I,J))156,155,156
    \(155 \operatorname{SAVEV}=-V(I, J)\)
        SAVEH=H(I,J)
        \(K H=I\)
        \(K V=J\)
        \(I D=0\)
    156 NFRST=1
    GO TO 162
    154 IF(ID)157,158,157
    157 IF(INPIC(I, J))162,159,162
    159 SAVEV \(=-V(I, J)\)
        SAVEH=H(I, J)
        \(K H=I\)
        \(K V=J\)
        [ \(D=0\)
        GO TO 162
    158 IF(INPIC(I,J)1160,161,160
    160 ID \(=1\)
        GO TO 162
    161 CALL PLOT (SAVEV,SAVEH,3)
        CALL PLOT(-V(I,J),+H(1,J),2)
    \(162 \mathrm{I}=\mathrm{I}+1\)
        IF(ID)199,164,199
    164 IF(INPIC(I,J))167,166,167
    166 CALL PLOT (SAVEV,SAVEH,3)
        CALL PLOT(-V(I,J),+H(I,J),2)
    167 ID=1
    199 CONTINUE
    200 continue
        L=LSAVE
        WRITE \((3,506)\) MSKIP

A STUDY OF SPIRAL TRANSITION CURVES AS RELATED TO THE VISUAL QUALITY OF HIGHWAY ALIGNMENT

\section*{by}

\title{
JERRY SHELDON MURPHY \\ B. S., Kansas State University, 1968
}

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

The purpose of this study was to investigate the importance of the spiral curve in the visual appearance of \(a\) horizontal curve. This was to be accomplished by simulating actual and theoretical conditions of roadway geometry and rating the visual appearance of each location. The simulation involved converting three-dimensional coordinates into two dimensional perspective coordinates and plotting these coordinates thus giving a perspective drawing of the roadway.

Many different combinations of sight distance, display angle and roadvay geometry were simulated and rated in an attempt to determine the factors which affect the visual appearance of a roadway. It was found that increasing sight distance caused the appearance of a curve to become less acceptable. The display angle was found to be proportional to the appearance of the curve, i.e. an increase in the display angle resulted in an improved visual appearance of the curve. The geometry of the curve, spiral length, likewise affected the visual acceptability of the curve. The longer the length of spiral used, the more visually acceptable it became.

A preliminary investigation was undertaken to determine the feasibility of using the rate of change of slope of a curve in the perspective picture plane as a means of determining the visual appearance of a curve without drawing a perspective view. This investigation indicated that this approach does warrant further study.```

