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I. Introduction

Nonlinear models have a variety of applications in many fields of

research. Usually, the postulated model is of the form

y'l = f(x-i: _e_) + E'i’ i = ls 2: ceey N 3

where Yis Yps +ees ¥ ArE independent observable random variables, § is a
vector of unknown parameters, and €15 €ps -evs € ATE unobservable random
arrors with zero mean, variance ¢%, and some statistical distribution, F.
f(x, 8) is a known function of X; and 6. In model fitting situations

one wants to obtain estimates of §, denoted by E, and confidence intervals
about the components of §. Conventional methods for constructing confi-
dence intervals rely on the assumptions that €15 €ps +-e5 € ArE indepen-
dent, normally distributed, and that the sample size is large. However,
these assumptions are not usually satisfied; thus, alternative methods

for constructing confidence intervals are also of interest.

One alternative to the normal theory method of obtaining confidence
intervals for the parameters is the bootsirap technique. Work done by
Efron (2) suggests that bootstrap methods may be useful in constructing
confidence intervals for parameters of nonlinear models. This report
consists of an empirical study of the performances of the bootstrap
technique and comparisons to the normal theory method in interval esti-

mation for the parameters of three nonlinear models.



II. The Procedure

A Monte Carlo simulation was conducted to evaluate the properties
of bootstrap and normal theory confidence intervals for the parameters

of three different nonlinear models. The three models are

1. the Michaelis - Menten enzyme kinetic model,
¥ = Bxi/(u + xi) t ey, i=1,2, ..., 20
where 6 = 9.61023 and u = 4.49,

2. the exponential growth model,

y; = AL - C*exp(-Bxiz)) + €, i=1,2, ..., 20

-Il
where A = 90.56989, 8 = .125, and C

1.00025, and

3. the exponential decay model,
¥y = aexp(-Bxi) Tess 1= 1, 25 sy 20
where a = 255.45 and B = ,0926.

The normal theory method and three bootstrap procedures, the percentile
method, the bias-corrected percentile method, and a smoothed percentile
method were used to construct 95% confidence intervals on the parameters
of the model. For all models the errors, €15 s +eey €, Were generated
using Marsaglia's (6) random number generator (superduper) for a normal
distribution with mean 0 and variance, o® = .25. The sample size, n,

was taken to be 20. Observed values of the independent variable, x.,

1

are listed in Table 1.



enzyme exponential exponential
kinetic growth decay
made mode] model
1.00 .120 1.0
1..50 .170 3.0
1.60 .196 8.0
2.50 .230 9.0
3.10 “e73 11.0
4.50 .300 13.0
5.00 .450 15.0
7.50 .675 20.0
8.50 .750 23.0
15.50 .957 24.0
18.50 1.175 25.0
22.25 1.550 27.0
26.00 2,335 32.0
29.00 2.700 35.0
33.00 3.425 38.0
35.00 3.900 40.0
37.00 4.500 43.0
39.00 4.882 46.0
42.00 5.270 50.0
45.00 6.000 55.0

Table 1 Observed values of the independent variable, x;,

20, for each of the three models used.

i



To allow for a comparison of the normal theory and bootstirap methods
when normality does not hold, F also assumed the Student's t, with 4
degrees of freedom, and the negative exponential distribution centered
at zero.

Then for all cases least squares estimates of the parameters were
obtained using the modified Gauss-Newton least squares estimation pro-
cedure. A simulation with 100 trials was conducted and the average

width of the intervals and confidence levels were recorded,



[II. Nonlinear Estimation - Normal Theory Method
1. Parameter Estimation

Given the postulated model

.‘f-i = f(x-i: _e_)+€-is 1T = 1y 25 sesy N ’

we assume that e, €,, ..., €, are uncorrelated, that Var (e;) = a2,
and, usually, that ;v N(0, o®. The modified Gauss-Newton method, as
described by Draper and Smith (1) was used in this report to provide
least squares estimates of the parameters.

Initial values of the parameters, 90’ are generally obtained from
whatever information is at hand, to be improved upon by successive itera-

tions. A Taylor series expansion of the first derivative about the

point 20 is used to approximate f(xi,‘g). So when 6 is close to go

Then letting

and



; af(xi, _@_) ( )
- - e ——— e 3.1-1
ik 3 0 -

= Yk 8=29

the model can be rewritten as

P
y.i - fi = Ezl Z_ikdk + E_i, .i = 1, 2, sy n

The model is now linear in di; therefore, linear least squares can be
used to obtain the components of the correction vector d. The solution

vector which minimizes the sum of squares residual,
P

= ¥

ss(@) = |

can be written as
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where

7 =

1 -

f = (fl, f2""’ fn)‘, and
d = (dl, d2,..., dp)' "



An updated estimate of &, 2& is computed as 9& = gc + A*d. In general,

Ed is updated to &, where

J+1°

vector 8 - 90. Hartley (4) suggests selecting A to minimize

. = 8. + A% i i
gﬂ+1 gﬂ A*d, and d is the correction

SS(EJ+1) = 55(95 + A d). (3.1.2)

This can be approximated by evaluating SS(EJ+1) at A =0, A =%, and ) = 1.
First evaluate SS(§d+1) with A = 1, If SS(EJ+1)IA=1 < S.‘.:(Q_J.4_]_)|;\=0 then

use =8, +d. If SS(EJ+1)|A=1-1 SS(EJ+1)|1=0 evaluate (3.1.2) at

8i+1
A=l If SS(§d+l)|k=% < SS(EJ+1)|A=0 then use 8,,) = 85 + %d; other-

wise, evaluate SS(§d+1) at A = (%)2. The computations continue in this

manner until the final value of A is A* = (%)k, where

SS(EJ'+1H)\=;\* % SS(.eij.l.l)‘)Fo

Thus, SS(EJ+1)[k=k* will approximate the minimum of the sum of squares

residual. Then 6.+1 is updated to where = 8., + A*d. The

iterative cycle begins again and continues until X approaches 0 or d = 0,

EJ'+2
where zero is taken to be scme small number, say, 1.0 x 107%°,

The Teast squares estimator of 8, denoted by 8, is defined to be
that value of 8 which minimizes SS(8). It should be noted that under
the assumption ey v N(O, a?), i=1,2, ..., n, that 6 can also be

shown to be the maximum likelihood estimator of 8.



2. Confidence Intervals

Approximate confidence intervals about individual parameters can be
obtained from the asymptotic distribution of the maximum likelihood esti-

mator of 8. It can be shown that the maximum Tikelihood estimator, 6, is

asymptotically distributed as

8 "~ MVN (8, oCT')

where

Lo ]
1]

n af(xy, 8) af(x,, 8)
@Z —— — ﬁ ;
i=] S r

Here, c?C™' is the inverse of the information matrix, see Milliken (7).
This leads to a (1 - @) 100% asymptotic approximate confidence interval

about £78 which is

ve & 7/ 2oL

(ST Yo

where

17 .
= ""'_p§ (.Y-i = f(xi’ E)) .



IV. The Bootstrap Technique

The bootstrap technique is applicable to a variety of statistical
problems. For this reason a general description of the problem will be
given first. Let Y = (Yl, ?2, e ﬁ1)’ be a random sample drawn from
the unknown distribution F. Given its observed values y = (yl, Yps eees
yn)‘, the problem is to estimate the distribution of some prespecified
random variable R(Y, F), which is a function of F and Y. For example,
R(Y, F) = (5 - 8)/(var (g))%, where & is an unknown parameter of F and
E is an estimate of 6.

Let Fn be the sample distribution of (yl, Yos eees yn), putting mass
1/n at each Yi Draw a random sample Y* = (Yl*, YZ*, cees Yn*)‘ from Fn'
Then the distribution of R(Y*, Fn) based on Y can be used to approximate
the distribution of R(Y, F). Hence, if R(Y, F) is a pivotal quantity of
some unknown parameter, then the distribution of R{Y*, Fn) can be used to

construct confidence intervals about 5.
1. Bootstrap Confidence Intervals

Let Y = (Yl, Yz, R— Yn)’ be a random sample drawn from F, some
unknown distribution, dependent on ©, an unknown parameter. Given y =
(yl, Yps +ees yn)‘, the observed values of Y and 8, an estimator of 6
obtained by a method such as least squares or maximum likelihood estima-

tion, the objective is to construct confidence intervals about 4.



1.1 The Percentile Method

Construct the sample distribution, Fn’ by putting mass 1/n at each
point (yl, Yps wees yn). Then draw the random sample, Y* = (Yl*, s 0 T
Yn*), of size n, with replacement from Fn. Y* is called the bootstrap
sample. Then the bootstrap estimator of 6 will be 6* = g(Yl*, Yz*,...,
Y.*).

Let CBF (t) be the cumulative distribution function of 8%, Then the

lower and upper bounds of a bootstrap (1 - a) 100% confidence interval are

~

8 (a/2) = COF! (a/2)
and

éu (1- a/2) = COF7'(1 - o/2) ,

respectively. Thus the (1 - ) 100% bootstrap confidence interval about

8 can be constructed as
[GL(G/Z), 8,(1 - a/2)] . (4.1.1)

In practice CBF (t) cannot be expressed explicitly, however, it can
be evaluated by the following simulation technique. Independently, draw
samples of size n from Fn a large number of times, say "N" times, and
obtain o*(1), 8*(2), ..., 6*%(N), the bootstrap rep]ications+ of 8. Then

the proportion of the times 6*(i) <t i=1, 2, ..., N, will be a good

+ “Replication" refers fo the selection of the bootstrap sample,
Yl*, Yz*, iii s Yn* ~ F, whereas "Trial" refers to a new choice
of the data Yl’ Y2, - Yn v F.

10



approximation of COF (t) if N is large. That is,

COF (t) 2 #{e*(;) <t for N large.

Therefore, if 6*%(1) < 6*%(2) < ... 6%(N), the lower bound of the boot-
strap (1 - @) 100% confidence interval about & is the bootstrap replica-
tion with rank IL = [N % a/é], the greatest integer less than or equal

to N x a/2, and the upper bound is the bootstrap replication with rank,

IU=N-1IL+1.
1.2 The Bias-corrected Percentile Method

A correction for bias in the bootstrap replications may be called
for if the replications of 6 are skewed rather than symmetrically dis-
tributed about the value of 8. Efron (3) describes a bias-correction
method for constructing confidence intervals in the following manner.

Let

Z, = o7'[COF (8)] ,

where & is the cumulative distribution function for a standard normal
variate. The (1 - o) 100% bias-corrected bootstrap confidence interval

about 6 is
DF -1 - DF -1
[E0F (022, = 21y _@)))s COFTH(8(224 + 2y %)))j
As before, Z(l _‘%) is the (1 - o/2) percentile point for the standard

11



normal, i.e. @(Z1 ) =1 -a/2. It can be seen that if

o
"2

#ler(i) <8} .

N = then

z, = (COF(B)) = o7'(.5) = o.

Then the bias-corrected bootstrap confidence interval is the percentile

confidence interval in (4.1.1), only using

GL(afz) = CDF'I(@(ZZO = 2(1 - %)))
and

(1 - a/2) = OFTHe(2Z, + 21y _gy))

1.3 The Percentile Method Using a Smoothed Estimate of F

If one is dealing with continuous random variables it may be helpful
to generate bootstrap observations from a smoother distribution than Fn’
see Efron (2). A bootstrap sample is a random sampie from the discrete
distribution Fn' Some smoothness may be attributed to Fn by convoluting
Fn with Fs’ where FS is a known continuous distribution, to obtain a
smoothed bootstrap sample.

The procedure goes as follows: generate wl, NZ, & 5w wn from some

known distribution having mean zero and variance ¢ Possible distri-

2
W
butions include the uniform on the interval <% to % or the standard

normal. Then the izﬂ data point of the bootstrap sample is taken to be

*

Yi = Y+cey(ly) -F+ouw]

12



where the y(Ii) are randomly selected from the observed values Yis Yps sees

Vs Y and G are the sample mean and sample standard deviation respectively,
. -1 .

and ¢ is a constant equal to (1 + 03) ¢, Thus, the Yi*’ 1oL 86 ss5ay Ns

2

have mean zero and variance 8 . Letting F* represent the distribution of

Yi* we are replacing Fn with F*, where F* has the same mean and variance
as Fn‘ Then we can obtain 6% = 5(Y1*, Yz*, 3 6% Yn*), the estimate of 8

based on Yi* and'xi. A (1 - ¢)100% confidence interval about 8 will be

(6 (a/2), 8,(1 - a/2)]

and can be constructed using the percentile method.

2. Bootstrap Confidence Intervals for the Parameters in a Nonlinear Model

The bootstfap technique is applicable to confidence interval construc-

tion for the parameters in a nonlinear model. Given
Y; = f(xi, g) + €5 i = 1,2, «ccon (4.2.1)

where gy v iid F, some unknown distribution, and 6 is the least squares
estimate of 8.
The bootstrap technique takes the following steps.

Step 1. After obtaining the least squares estimator, &, substitute & for

6 in (4.2.1) to obtain e, defined by

g = ¥y - f(x, 8), i o= 1,2, cyn

13



Step 2.

Step 3.

Construct the sample distribution Fn, by putting mass 1/n at
each point (21, 22, - En). Then draw the random sample,
gk = (sl*, 32*, cees gn*) of size n from Fn by the following

selection process. Let

xo= (1), i = 1,1, ..oy n (4.2.2)

&

where Ii is a randomly selected integer between 1 and n. Ran-
dom selection of Ii is accomplished using Marsaglia's random
number generator (6). Select Uss @ uniform (0, 1) random num-
ber, multiply Ui by n, the number of observations, then find
the largest integer less than or equal to U, x n. Thus, I. is

i
computed to be

o= [Uyxn]+1, i =1,2 ..y (4.2.3)

g = (el*, az*, N en*) is called the bootstrap sample of
EI’EZ, s 0y Enl

Compute

yi* = flng B) +es*, 1= 1,2, .n . (4.2.4)

Then by the least squares method utilized in Step 1, obtain 6*

based on X3 and yv:*, 1 =1, &5 s:+q4 N

14



2.1 The Percentile Method

Construction of the (1 - «)100% bootstrap confidence interval for 6
can now be accomplished. Independently, repeat the procedure described
in Steps 2 and 3 N times to obtain bootstrap replications of 6, denoted
by 6*(1), 6*(2), ..., 9*%(N). Rank the bootstrap replications so that

g%(1} < 8%(2) < ... £ o*(N). Define

IL

[ﬁ X (u/2)] (4.2.5)
and

S I

N-IL+1 ,

where IL is the greatest integek less than or equal to N x ¢/2. Then a

(1 - «)100% bootstrap confidence interval about 9 is

[6*(IL), 6*(IU)]

2.2 The Bias-corrected Percentile Methaod

A (1 - )i00% confidence interval for 6 using the percentile method
could be too wide if the bootstrap replications, §*(1), 6*(2), ..., 8%(N),
are not symmetrically distributed about é. In this case a modification
of the percentile method may be called for. Obtain bootstrap replications

ofgby the bootstrap technique. Then define

z, = o7H(COF (8)),

15



#{6* < 5}

where CﬁF(g} g

Next, define the lower and upper percentile points adjusted for bias as

l-a = ¢{2Zo + Z(1 _ a/2)) "

respectively. Here, Z(l - a/2) is the (1 - @/2) percentile point for the
standard normal variate, that is <I’(Z(1 _ a/2)) = (1 - a/2). Now, substi-
tute ay for a in (4.2.5) to find the bootstrap replication with rank IL.
Then a*{IL) will be the lower bound for a (1 - a)l00% confidence interval
about 9. Similarly, substitute (1 - ab) for « in (4.2.5) to find the
bootstrap replication with rank IU. e*(IU) will be the upper bound. Then
as in the percentile method the (1 - «)100% bootstrap confidence interval

using a bias-correction procedure will be
[e*(IL) " 6*(IU)] y
where IL and IU have been adjusted for bias.

2.3 The Percentile Method Using a Smoothed Estimate of F

The smoothed version of the percentile method modifies the distri-
bution Fn so that Ei* in (4.2.2) comes from a smoothed version of Fn'

Then substitute e.*, selected from the smoothed distribution, F_, into

1 n?

16



(4.2.4). The procedure continues as in the unsmocthed confidence interval
construction. The smoothed e;*, i =1, 2, ..., n, are obtained in the
following manner. At (4.2.2) calculate the mean and variance of Ei’

denoted by e and 3; , respectively, where

- n
e = 7 2
i=1
n
and
~ n .
2 _ T 2
g =& €
i
£ 31 |
n-p

Then the smoothed estimate of Ei is

* P ~ ~ . =
&5 * C(S(Ii) -c+ eri) +e ,

where W; is a continuous random variable following some known distribution,

-~

and ¢ is a constant such that Ei* have the same mean and variance as E4»
c is taken to be (1 + c&f'%, where Ui is the variance of W;. For example,
1f‘wim,N(O, 1) then ¢ = 1//2. The e*(li) are selected using the proce-
dure described in (4.2.3). By substituting g;* into (4.2.4) one has

values of g{*drawn from a smoothed version of Fn'

3. Determining the Number of Bootstrap Replications Needed

Due to the magnitude of the calculations involved in even a single

bootstrap trial coming primarily from the bootstrap replications, it was

17



deemed necessary to find the smallest number of bootstrap replications
which would yield satisfactory resuits. To determine the number of repli-
cations, N, needed for adequate confidence intervals, the average width
of the confidence interval from three trials was plotted against values
of N. Three different nonlinear models were used: the enzyme kinetic
model, the exponential growth model, and the exponential decay model.
Trials using sample sizes of 12, 20, and 30 were run for the kinetic
and exponential growth models. The exponential decay model was tested
with only a sample size of 20. The central 95% confidence interval
widths were generated by using both the percentile method and the bias-
corrected percentile method. These widths were then plotted against

N going from 100 through 1000 in increments of 100. The choice of N
was determined by selecting the point where the curves seemed to level
off.

For the kinetic and the exponential growth models 300 to 500 boot-
strap replications appeared to be sufficient and not excessive. The
decay model required more replications; 500 to 700 replications seemed
necessary. The graphs (see Appendix A) point out the need for a larger
number of bootstrap replications when using a smaller sample size. A
sample size of 30 stablized the line more rapidly than the smaller
sample sizes, The line representing n = 12 was the least stable. Use
of a bias-correction technique also helped to stablize the line for a
smaller number of bootstrap replications. Plots D1 and D2 show the

effect of a bias-correction procedure.

18



V. Comparisons and Conclusions

1. Comparisons for Normal and Nonnormal Error Structures

Using only the enzyme kinetic model, F assumed the following distri-
butions: the normal with mean 0 and variance .25, the Student's t with
4 degrees of freedom, and the standard exponential centered about zero.
Tables 1.1 and 1.2 provide a summary of the average widths and cenfidence
levels for each distribution. Table 1.3 records the average upper and
lower bounds for all trials. It should be noted that with a sample of
100 trials the level of confidence is subject to an error of + 2 percen-
tage points.

The normal theory confidence levels were very close to the expected
95% level of coverage for each distribution, F. The widths of the inter-
vals when F was the standard exponential centered about zero were the short-
est yet the coverage was as good as for the other distributions using the
narmal theory method.

The widths of the intervals shortened for all distributions when
applying the bootstrap technique, and the confidence level dropped
slightly. For the normal distribution the percentile method performed
as well as the normal theory method, but under the other distributions
the Tevel of coverage was less than satisfactory. Coverage using the
bias-corrected percentile method was not as good as the normal or the

percentile method for any distribution tested. One reason for the Jow

19



level of coverage may have been that the widths of the intervals were

shorter when using the bias-corrected method.

20



Bias-corrected

Normal Percentile Percentile

F Parameter Theory Method Method

u 1.87696 1.88462 1.73016
N(O, .25)

8 .983306 .97568 .90061

u 1.84091 1.79157 1.75885
t(4)

e .95965 .93205 .91661

u 1.79407 1.73016 1.74247
exp(l)-1

8 .93083 .90061 .87606

Table 1.1 Average width of central 95% confidence intervals for parameters
of the enzyme kinetic model based on 100 trials. Here, y; =

ox;/(u + xi) + €4, where €1s €ps wres E5q N Fa

Bias-caorrected

Normal Percentile Percentile

F Parameter Theory Method Method

U 94% 93% 93%
N(O, .25)

8 94% 94% 91%

u 94% 82% 90%
t(4)

8 91% 90% 88%

i 93% 90% 90%
exp(l)-1

] 96% 96% 95%

Table 1.2 The confidence level of the central 95% confidence intervals for
the parameters of the enzyme kinetic model based on 100 trials.
Here, y, = Bxi/(u + Xi) + ey, where €15 € +evs Epp Y F. The

coverage is subject to an error of + 2 percentage points.

21



Error

Bias-corrected

Structure Parameter Normal Theory Percentile Method Percentile Method

u (3.55925 5.45360) (3.47634  5.36096) (3.45513 5.35368)
N(0, .25)

) (8.89820 9.90753) (9.06441 10.04009) (9.07167 10.05770)

M (3.517049 5.35796) (3.43340 5.22497) (3.41338 5.17224)
t(4)

0 (9.01019 9.96984) (9.27656 10.20861) (9.28043 10.19704)

H (3.69735 5.1553) (3.67659  5.40675) (3.57313 5.31560)
exp(1l) - 1

0 (9.12149 10.05232) (9.08584 9.98645) (9.10179 9.97785)

Table 1.3 Normal Theory and bootstrap 95% confidence intervals based on the average of 100 trials. Data

was fitted to the enzyme kinetic model where the true parameters were u

4.49 and 0 = 9.61023.

22



2. Comparisons Between Models

From each of the three models used, the enzyme kinetic, the exponen-

tial growth, and the exponential decay, data was generated such that the

g5 N(O, .25), i=1, 2, ..., n and the sample size, n, was 20. Table
2.1 exhibits the average widths of 100 95% confidence intervals and

Table 2.2 records the corresponding coverage of the true parameters.
Table 2.3 records the average of the upper and lower bounds of the inter-
vals for 100 trials.

When using the normal theory method, confidence levels for all three
models were either at 95% or were within 1 percentage point for all param-
eters of the models. However, the level of coverage was not as good when
applying the percentile method. In both the kinetic and exponential decay
models the confidence levels were recorded to be within 2 percentage points
of 95%, but when using the 3-parameter growth model the confidence levels
varied considerably between the different parameters of the model. Use of
the bias-correction factor did not improve on the percentile method as

expected, instead the coverage was lower, due to the shortened lengths of

the confidence intervals.

z3



Bias-corrected

Normal Percentile Percentile

Model Parameter Theory Method Method

u 1.87696 1.88462 1.73016
Kinetic 9 .983306 .97568 .90061

A 1.322913 1.24958 1.24276
Growth B 0058757 .005831 .005447

C .006928 .006916 .006825

Q
Decay 1.82443 1.73698 1.69408

8 .00095 .00091 ,00086

Table 2.1 Average width of central 95% confidence intervals based on 100 trials.
E:l’ 52,-;r, 620 v N(O, ;25)-

Bias-corrected

Nermal Percentile Percentile
Mode! Parameter Theory Method Method
. U 943 93% 93%
Kinetic
8 g4% 94% 91%
A 94% 92% 91%
Growth B 94% 92% 91%
g 95% 95% 91%
4 96%
Decay 87% 96%
B 95% 93% 91%

Table 2.2 Confidence level of the central 95% confidence intervals based on 100

trials. €15 €95 oo N(O, .25)

2 €90 v
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Bi1as-corrected

Model Parameter Normal Theory Percentile Method Percentile Method
Kinetic u (3.55925 5.45360) (3.47634  5.36096) (3.45513 5.35368)
0 (8.89820 9.90753) (9.06441  10.04009) (9.07167 10.05770)
true parameters: n=4.,49 0 = 9,61023
Growth A (89.88182 91.26953) (89.92912 91.17870) (89.91617 90.40930)
B (.125888  .132075) (.121765 .127595) (.121675 .127122)
C (.996386 1.00367) (.996565 1.003480) (.996561 1.003386)
true parameters: A = 90.56989 B =.125 C = 1.00025
Decay o (254.5573 256.38173) (254.5984 256.3354) (254.5987 256.2928)
B (.09214  .093091) (.092158  .093068) (.09217  .093033)
true parameters: o = 255.45 B = .09260

Table 2.3 Normal theory and bootstrap 95% confidence

three models.

intervals based on the average of 100 trials for
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3. Smoothing the Distribution F

In order to add some smoothness to the discrete distribution of the
bootstrap sample, ef’, sgr, wavicy e;' were chosen from a smoothed verson of
Fn‘ Taking advantage of the fact that €15 €os «res€ N(O, .25) the
smoothed version of Fn’ was taken to be the standard normal distribution.
However, the resulting confidence intervals were too wide in the enzyme
kinetic model - the only model tested in this manner. Table 3.1 shows
that the average length of the intervals for both parameters was much
longer than their unsmoothed counterparts, resulting in coverage closer
to 99%. A decrease in the width of the interval and a subsequent improve-
ment on the coverage may be made by decreasing 36. Selecting wi from a
distribution having a smaller variance will decrease the width of the

interval and consequently yield a confidence level closer to the nominal

95% level,
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u

Percent i Percent ;
Coverage Averaged width Coverage Averaged width
Normal theory 94% 1.87696 94% .983306
Percentile 93% 1.88462 949 97568
Method g d
Smoothed
Percentile 98% 3.48378 100% 1.77670
Method
Bias-Corrected
Percentile 93% 1.89717 91% .96847
Method
Smoothed
Bias=-Corrected
Sercenksle 99% 3.45961 99% 1.76491
Method

Table 3.1 Average widths and percent coverage of the true parameter for normal
theory and bootstrap 95% confidence intervals based on 100 trials.
The kinetic enzyme model with normal error structure was used.
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4, Conclusion

information on the average widths and confidence levels for the
three models shows that the confidence intervals based on normal theory
give satisfactory coverage even when the underlying distribution is not
normal. Confidence levels dropped slightly when using the bootstrap per-
centile and bias-;orrected percentile methods presumably due to the
shortened interval widths., Confidence intervals constructed using the
smoothed percentile method were too wide in the case tested, however

modifications could easily be tried that would give satisfactory results.
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Appendix A

The following graphs were made in an effort to determine the minimum
number of bootstrap replications needed per trial. Three models were

investigated

(1) an exponential decay model, Plots D1 - D02
(2) an exponential growth model, Plots Gl - G6

(3) an enzyme kinetic model, Plots K1 - K4.

Plots G1 - G6 and K1 - K4 were made to represent each parameter for both
the percentile and bias-correction methods. Each plot shows sample sizes
of 12, 20 and 30. Plots D1 - D2 were made for each parameter at sample

size 20. Each plot shows both percentile and bias-correction methods.
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Appendix B

The following program and subroutines were used fo generate nonlinear
confidence intervals and estimates of the standard deviation of the param-
eters. Subroutines NONLIN, GAUSS, DERIV, SSQS, MMULT and FUNC were obtained
from (8). The Sweep subroutine for inverting a matrix was suggested by (5).

Subroutine NDTR and NDTRI are part of IBM's Scientific Subroutine Package.
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o000 O

Ooo0

w & W N

0 e N o

10

11
12

IMPLICIT REAL*8{A-H,0-1)

INTEGER 08S

CCMMCON DELTA(4),BEAT(4) ,0BS)NVAR, NPARM IHALT yNy NCCNST,NCAP,NITER

REAL*8 LCB95(4) (MSE,LCBBYIS(4)

DIMENSION FRMT{20}, F(40), B(4), P(l&l), PT(163), VAR(4), SE{4), B
LETAl4), SIGHAT(4)}, BSS5Q(4), BSUM(4), CLF(4), Lli{4), BMEAN(4), D(500
2)y BSTAR(500+4), AWB95{4), UCBB95{4}, SSCP(4), SSCPC(4), A(2,2), L
3{40), M(40), XMODEL {10}, X{40), E{40}, BSUMC(4), Y{40), YSTAR(4Qi,
4 IRB9S(4), IGBI5(4), IBCTOS(4) .+ WE95(4)s WID9S{4), ICNT95(4], AWBB
595(4), R9514), P95(4), WBBIS(4)s IBPCS%{4), AWID9IE{ 4], UCBSS5L4), G
695(4), PGS5(4]}

DATA ICNT9S5,AWIC95,BSUMC,SSCPC,AWB9S, IECT95,AWBBSS, [BPCS5/4%0,4%0.
1000,12#*0.000,4%0,4*0.000,4%*0/,0J1,0J2,5IGMA2/1.00C,2.00D0, .2500/

JY = 845245731

1Y = 2543&8425

C = .7071067800

IHALT = Q

CALL RSTART (IY.,JY)
READ IN ANG WRITE QUT PARAMETER AND THE DATA CARDS.

READ (5.1) XMODEL

FCRMAT (12A4)

CCNTINUE

READ (S+3+ENO=51] OBSyNPARMyNVARyNITER+NCONST,ITERB,NCAP
FCRMAT (12,12,12,12,12,14,14)

WRITE (6+4) CBS,XMODEL,NITER

FCRMAT (*CNUMBER GF OBSERVATIONS= ',I2//" FORM COF THE MODEL I5: ',
110A4//' MAXIMUM NUMBER OF ITERATICNS POSSIBLE FOR CCNVERGENCE= !',I
22)

WRITE (6,5) NCAP, ITERS

FCRMAT ('ONCAP=',15,2X,"[TERB=?,]5]

READ (5:8) (B{I),I=1,NPARM)

READ (5,61} (BETAUI) I=]1,NPARM]

FCRMAT (8F1C.5}

WRITE (67! (B{Il,I=1,NPARM]

FORMAT {'OORIGINAL PARAMETER ESTIMATES B{I)=!,3(10X,Fl2.5))
WRITE (6+8) (BETA(I}, [=1,NPARM]

FORMAT ('OTRUE PARANETERS BETA{I)=",3(10X.F12.5))
READ (5,9) FRMNT

FCRMAT (20A4)

WRITE {&6.10)

FCRMAT {'OINPUT DATA'}

0C 11 I=1,08BS

NPARMN = NP ARM=*(BS

N = (NVAR-1)#CBS+]

READ (5,FRMT) X{I)

WRITE (6+12) X(1)

FCRMAT (' ",10X+F10.51)

IR95 = ,025CO*NCAP

IG95 = NCAP-[R95+1

0BSINV = 1.0DQ/0FLCAT(0BS)
SIGMA = DSQRT(SIGMA2)

BEGIN ThE MUMBER OF TRIALS
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(g NaNal

OO0 a0

OO0

13

14

15

16

17
18
19

DA 40 IT=1,ITERE

ESUM = 0.0D0

ESQ = 0.000

Dg 13 I=1,0BS

ERROR = S [GMA*RNOR(Q)

Y(I) = BETA(Ll)*0EXP (-BETA{Z2)*X (I} I+ERRCR
CCNTINUE

USE GAUSS NEWTON METHOD TQ GET ESTIMATES OF B(I).

CALL NCNLIN (X3BeP2SS4Y)
NP = CBS—NPARM
MSE = SS/NP

DC 14 I=1,NPARM

BSUMC(I) = BSUMC(I}+B(I}

SQ = DJl=B({I)-BSUMCI(I)
SSCPC{I) = SSCPC(I)+SQ*s5Q/DJ2
CCNTINUE

DJ1 = 0J1+1.000

0DJ2 = DJ1=*(DJ1-1.000)

OBTAIN P TRANSPOSE,PT.
CALL TRANSP (P,PT 0BS5S NPARMs;NPARMN)

MULT IPLY PT*P. CALL IT A.
SUBROUTINE SWEEP TAKES TRE INVERSE CF AN
IROW X IROw MATRIX.

CALL MMULT (A,PT,P,NPARM,0BS,NPARM)
OC 15 XK=1, NPARM

CALL SWEEP (KKysNPARNM,NPARM,A)
CCNTINUE

K = (NPARM—=1)*NPARM

US ING CLASSICAL METHODS TO CCMPUTE STANDARD DEVIATICN
ANC C.l.'S FCR BII)

BC 16 I=1,NPARM

VAR(I) = DSQRTIALL,I)*MSE)

SE(I) = VAR(I)

UCBSS (1) = BIf)+1.9600%SE(I)

LCBSS5(I) = BII)-1.9€00*SE(I}

WID9S(I) = 2.000*%1.9600+SE( )

AWIDSS(I) = AWIDSSI{I)+wIDSS5(I}

[F (LCBSS(I).LT.BETA{I)AND UCSS5(I).GT.IETA(L)) ICNTIS(I) = [CNT9
15(1)+1

WRITE (6,17

FORMAT ('-=1,132('*7))

WRITE (6,18}

FCRMAT (* CLASSICAL METHGD®)

WRITE (6+19) IT.{VAR(J) +J=1,NPARM]

FCRMAT (" ITER=',[4,5X," SD{B{[)})=",4(F15.101))
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oo

oo n (n]

20
21

23

24

25

26
27

28

DC 21 I=1,NPARM

WRITE (6,20) LCB9S{I),I.UuCB95(1)

FGRMAT (*095%1003 Cole 3'¢SXe"(*yF1l7.7s" < BU"sI1l4') <" 4F15.7,")")
CCNTINUE

DC 22 [=1,NPARM
COFLI) = 0.0D0
BHAT(I) = BI(I)
BssSQUI) = 0.0C0
BSCM{I) = 0.0CQ
DNl = 1.3C0

ON2 = 2.000

FRCM VECTOR OF EHAT VALUES, E(I[), SELECT N EHAT TO
FORM VECTOR ESTARI(I)

0C 23 I=1,08S :

E(I) = Y({1)=(BHAT(1)*DEXP(-BHAT(2)*X(I)})
ESUM = ESUM+E(T])

ESQ = ESQ+E(IV*E(])

CCNTINUE

EMEAN = ESUM*QBSINV

SIGMAE = ESQ/OSQRT(CBS-NPARM)

BEGIN BOOTSTRAP REPLICATICNS.

00 27 IB=1,NCAP

DC 24 I=1,08S

U = UNI(D)

Iw = CBS*=U

JW = W+l

ESTAR = ElJdw}

YSTAR(I} = BHAT{1)*0DEXP(-BHAT(2)*X(I))+ESTAR
CCNTINUE

CALL NONLIN (XsB¢PsSS+YSTAR)

INSERT THE BOOTSTRAP ESTIMATES, 8(I) INTC

THE MATRIX 8STAR(IB,I)

= KEEPING A RUNNING SUM.

- CALCULATE THE SUMS OF SQUARES FOR EACH REPLICATIGN.

0C 25 I=1 ,NPARM

BSTAR(IBy I) = B(I1)

BSUMII) = BSUM(I}+B(I)

BSQ = DNL1*B(I)-BSLMI(I)
BSSQ(I) = BSSC()+85Q*8SQ/DN2Z
CCNTINuUE

DNl = CN1+l.000

DN2 = CN1*(DN1-1.000)

DC 26 TI=1.NPARM

IF (BSTAR(IB+I}.LT.BHAT(I)) COF(Il) = CCF(1}+1.0C0
CCNT INUE

CONTINUE

WRITE (6&,28) IHALT

FCRMAT ('OIHALT=',IT)
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a o0o0n

O OO0

DG 29 I=1,NPARM
COF{I) = CDFII}/NCAP
VAR(I) = DSQRT(BSSQ(I)I/NCAP)
BMEAN(I) = BSUMI(I)/NCAP
29 CLCNTINUE

MODIFICATICNS FOR THE B8IAS-CORRECTED
PERCENTILE METHOO

CALL NOTRI (CCFsZ+D+1E)

DC 30 I=1,NPARM

R9S(I) = (2.000%Z(I}))-1.9600

GSS(I) = (2.000*Z{I))+1.9600
30 CONTINUE

CALL NDTR {RS$5,P95,DsNPARM)

OC 31 I=1,NPARM
IRESS I} = PIS(1I*NCAP
1GB95(I1 = PGSSILI®NCAP
31 CCNTINUE
CALL NDTR {G95,PGS5,D+NPARM)

0Q 33 I=1,NPARM

SESTAR = VARI(I)

0C 32 [B=1,NCAP

D(IB) = BHATIII-BSTARIIB,I}
32 CONTINUE

CONSTRUCT BOOTSTRAP CCNFIDENCE INTERVALS.
CALL CIS (DsNCAP,C}

LCB9S(I} = D(IRSS)+BHATI(I)
UCB95(1) = DI IGS5)+BHATII)
WB95(1) = D{IGI5)-D(IRT5)
AWBSS(I) = AWBSIS(I)+WBI5(I)
LCBBS5(I) = D(IRBSS5(I1)+BHATI(I)
UCBBYS5(L) = DIIGBIS(I))+BHATI [}
WEBSS{I) = LCBBSS(I}-LCBBISI(I}
AWBB9S(I) = AWBBIS({I)+wWBBSS5(I}
IF (LCB95(I)4LT.BETA(I} AND.UCBIS(I).GT.BETALI)) IBCT95(I) = [BCT9
15(I)+1
IF (LCBBIS(I).LT.BETA(I).AM?.UCBBSS(I).GT.BETA(I)) I[BPCS5(I) = IBP
1CS5(1)+1
33 CONTINUE

WRITE (46+34)
34 FCRMAT ('0BCOTSTRAP METHOD')
WRITE {6,35) IT,(VAR(J),J=1,NPARM}
35 FCRMAT (' ITER=',14,5X,?' SD(B(I))=",4(F15.10Q))
OC 36 I=1,NPARM
WRITE {&6,20) LCBSE(1) ,I,UCBS95(I)
36 CCNTINUE
WRITE (6,37)
37 FGRMAT ('OBIAS - CORRECTION PERCENTILE HMETHCD')
D0 38 1=1,NPARM
WRITE (6,39) LCBBSS(I),I,UCBBY9S5I(I)
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39 FCRMAT ('095+100% Cole 2" ¢5Xs " (', F1lTeTs?® < BU',[1,%) <',Fl5.74"}*)
38 CCNTINUE
40 CCNTINUE
DO 42 i=1,NPARM
SIGHAT{I) = SSCPCII}/ITERS
WRITE {6,41) SIGHAT(I)
41 FGRMAT ('OSIGHATII) IS THE 5SS OF THE DEVIATICNS GF ALL BHAT FROM T
1HEIR MEAN SIGHAT{I}=",F16.8)
AWID9S(I) = AWICOSSII)/ITERS
AWB9S(1) = AWBSS{I) /ITERB
AWBBSS(I) = AWBB9S5( 1)/ ITERB
42 CCNTINUE
WRITE {6,17)
DO 45 I=1,NPARM
WRITE (&:43) I,ICNTS5(I1)
43 FCRMAT ('OFCR ALPFA = .05 B{" I1.,1) IS IN THE CLASSICAL C.I.
1 "yl4y' TIMES.')

WRITE (6444) [,AWIDSS(I)
44 FORMAT (*OFCR ALPHA = .05 THE AVERAGE WiDTH GF THE C.l. USING THE
1 CLASSICAL METHCC FOR Bi{*'yI1,') IS ', Fl0.5)
45 CCONTINLE
DC 48 [=1,NPARM
WRITE {&,46) [,IBCTSSIT]
46 FCRMAT ('OFGR ALPHA=.05 Bl'yI1s1) IS IN THE BCOTSTRAP C.l.
1% ,14," TIMES.")
WRITE l6,47) 1,ARB9S(I)
47 FCRMAT ('OFOR ALPhA=.,05 THE AVERAGE ®kIDTH OF THE C.Il. USING THE P
LERCENTILE METHOD FOR B('.[1ls') IS ' ,Fl0.5)
48 CCONTINUE
WRITE (6,37)
DC 50 I=1,NPARM
WRITE (6446) I,IBPCSS(I}
WRITE (6,49) [,AnBB95([)
49 FCRMAT ('OFCR ALPHA=.05 THE AVERAGE WIOTH OF THE C.I. USING THE 31
1AS - CORRECTION PERCENTILE METHGD FOR B('yI1,°) IS ',Fl0.5)
50 CCNTINUE
GC TC 2
51 CCNTINUE

STGP
END
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SUBROUTINE GAUSS (P+FsB, IERR3+55,XsY}

SUBROUTINE GAUSS PERFORMS THE GAUSS—-NEWTON METHOD TO
JBTAIN PARAMETER ESTIMATES FGR NONLINEAR MODELS.

IMPLICIT REAL#*5(A-H.0-Z1}

INTEGER QBS

CCMMON DELTA(4) +8HAT{4),0BS4NVAR, NPARM + I[HALT N, NCONSTNCAP,NITER
DIMENSION P{1&Q0), F(40), B(4), A(2,2), PT(160), YF(40), TEMP(41, L
1{40}), M(40), Bli4), B2(4)y W{24)y X(4C), Y{4Q)

CBTAIN PT, TRANSPQSE OF P. P IS THE VECTOR
OF PARTIALS EVALUATED AT X AND AT BQ.

NCBS = Q8BS
CALL TRANSP (P,PT,08S,NPARMsNPARMN}

YF = Y-F.

0d 1 I=1.NOBS
YFL{I] = Y(I)=F(I])

MULTIPLY PT®YF. CALL IT TEMP.
CALL MMULT (TEMPPT ,YF,NPARM,NOBS,1]
MULTIPLY PT*P. CALL IT A.

CALL MMULT (AsPT,P,NPARM,NOBS.NPARMI}

CBTAIN INVERSE{PT*Pl. USED TO CALCULATE
DELTA = [NVERSE(PT*P)*PT*(Y-F)

DC 2 KK=1,NFARN
CALL SHEEP (KK NPARK,NPARM,A}
CCNT INUE

MULTIPLY INVERSE(PT*P)#PT#YF. CALL IT DELTA.

CALL MMULT (DELTA:A.TEMP NPARM,NPARM,1)
Vv = 1.00

V1 = ,5D0=V

CQ 4 I=1,NPARM

B1(I) = S(I)+V1=*0ELTA(I]

B2(I} = B(I)+VSDELTA(I)

CALL FUNC (Bl,F,x)

CALL $5QS5 (SS1,F,Y)

CALL FUNC (B2,F.X1}

CALL S5QS (SS2.,F,Y)

TEMPS = 552=581-551+S$S

IF (TEMPS.LT.1.00=-14&) GO TO 5

V1 = (.500+.2500*%(55-552) /TEMPSi=V
D0 & I=1,NPARM

Blii) = B{I)+V1*DELTA(I)

CALL FUNC {Bl,F,X)

CALL E55QS (S5S1.F.,.Y)

IF (551.LT7T.55) GO 7O 7

IF (V.LT..01D0) GC TQ 9

V = ,500%Y

49.



ao0on [ OOOO

ooon

abon

oo O

OO n

@ =N W

SUBROUTINE NONLIN (X,8,P+53,4Y)
IMPLICIT REAL*8(A-H,0-1)
INTEGER 0BS

CCMMON DELTA(4) ,BHATI{4) ,0BS+NVAR«NPARM,[HALT s Ny NCCNST,NCAP,NITER

DIMENSICN F(4Q), 8{4), P(160], PT(160), A(2+2)s L{4Q), M{40),
1), E{4Q}, Y(40)

FUNC: RETRIEVES FUNCTION VALUES FOR INITIAL GUESSES
CF THE PARAMETERS,B(I1}.
55Q5: CALCULATES ESS FOR INITIAL GUESSES GF B(I).

CALL FUNC (B4F,X}
CALL S§S5Q5 (S3,F.Y)

N = NPARME=NPARM
ITER = 0

BEGIN ITERATIONS OF GAUSS—NEWTON METHOD TC QBTAIN
PARAMETER ISTIMATES. MAXIMUM ITERATICNS IS NITER.

[TER = ITER+l
IF [ITER.GT.NITER) €O TQ 4

OBTAIN VECTOR OF PARTIALS EVALUATED AT BO,CURRENT
PARAMETER ESTIMATES.

CALL DERIV (P,FyB.X)

IERRZ = 1

ITERM = 0

CALL GAUSS (PsF+BoIERR3,55¢X+Y)

CHECK FOR CONVERGENCE. SET ITERM=1 IF CONVERGENCE
CONF [RMED.

00 2 I=1,NPARM

IF ({CABS(DELTA(I))}/1.001D0+DABS(B(I)}}))aGT,.,1.00-6) GO TQ 3
CONTINUE

GC TC &

ITERM = 1

CONTINUE

GG TG (S5,8), IERRZ
END GAUSS—-NEWTON METHOD ITERATIONS
IF (ITERM.GT.Q) GO TO 1

GO TQ 9
WRITE (6,7) NITER

X{40

FORMAT ('—-PROCEDURE DUES NOT CCNVERGE AFTER ', [3,'ITERATIONS.')

GC TO §
{HALT = IHALT+]

EVALUATE MCDEL AT FINAL PARAMETER ESTIMATES ANC CBTAIN

VECTCR CF PARTIALS+?.

CALL FUNC (B4+F,X)
CALL CERIV (P ¢F8,:X)
RETURN

END
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GC TC 3

DO 8 I[=1,NPARM
B(I} = B1(1}
55 = §s51

GC TO 10

IERR3 = 2
RETURN

END
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SUBACUTIME S55QS5 (SS,F,Y)

SUBROUTINE 355QS CALCULATES THE ESS BASED TN SIVEN
VALUES CF THE PARAMETERS, B{I).

IMPLICIT REAL=*3(A-H,.0-2)
INTEGER D8s

CCMMON DELTA(4) +BHAT(4) ,GBS,NVAR, NPARM)IHALT JN,NCCNST ¢yNCAP,NITER
DIMENSION F {40}, Y(4D)
NCBS = OBS

CALL ERRSET (27752569 -1,11

$5 = 0.300

UC 1 I=1,ND8S

35 = SSH{Y(LI-FII}))*{Y(L)-F(I})
CALL GVERFL (J}

IF (J.EQ.1) GO T3 2

CCMTINUE

GO TD 2

$S = 1.074

CALL ERRSZT (277,2568,256,2]
RETURN

END
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SUBROUTINE DERIV (P,F,B,X}

SUBROUTINE DERIV COMPUTES THE MATRIX CF
PART IAL DERIVATIVES, P.

[MPLICIT REAL*8({A-H,0-2)

INTEGER 3J8S

COMMON DELT Al4) +BHAT(4) »0BS,NVAR, NPARM,THALT s N; NCCNST NCAP,; NI TER
OIMEMNSION 8(4), BO(4), F(42), FO{4D), PL16I), X[4&))
NCBS = 0BS

0C 3 I=1,NPARM

09 1 J=1l,NPARM

8)Jr =8B(J)

H = B(I)1*.031C2

Hl = 1.02/H

BOlI) = B(I)+H

CALL FUNC (BO.FQ.X)

0Q 2 J=1,NOBS

P{{I=-11*M0BS+JY) = (F Y (J)=-F(J))*HL

CCNTINUE

RETURN

END
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SUBROUTINE FUNC (B,F.X)

SUBRCUTINE FUMC EVALUATES THE MODEL FGR INPUT
MATRIX GIVEN PARAMETER VALUES.B(1I).

[MPLICIT REAL*8(A-r,0-1)

INTEGER OBS

CCMMON OELTA(4),BHAT(4),085 ,NVAR,NPARM, {HALT M, NCONST,NCAP,NITER
DIMENSIOH B{+), F(4Q), X(42)

Do 1 I=1,08S

F{I) = BUL)*DEXP(-B(2)*X([))

CONTINUE

RETURN

END
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SUBROUTINE TRANSP (YV,YVT, [ROW,)JCCLM,NPARMN)

SUBROUTINE TRANSP TAKES THE TRANSPGSE CF A
IROW X JCOLM MATRIX Y. CALL IT ¥T.

INPLICIT REAL*8(A-H,0-1)
DIMENSION YV(NPARMN}, YVT(NPARMN]
J1 = 3

00 1 I=1, IRQOW

I[J = I-IROW

0C 1 J=1,JCOLM

IJ = [J+[ROW

JI JI+1

YNTIJI) = YVITJ)
CCNTINUE

RETURN

END
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SUBROUTINE MMULT (ABsAsB.L MsN)

SUBROUTINE MMULT MULTIPLIES 2 INPUT MATRICES,
A AND B, TOGETHER. THE RESULT IS af.

IMPLICIT REAL*8(A-H,0-1)
DIMENSION AB(L,N}, A{L.™M), B{M:N)
0g 3 I=Ll,L

DO 2 J=14N

AB(I,J) = 2.2

00 L K=1.M

AB(I,d) = A{L,K)I*B(K,J)+AB{I,J)
CCNTINUE

CCNTINUE

CCNTINUE

RETURN

END
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SUBRCUTIME SWEEP [K,IROW,JCOLM,A}
IMPLICIT REAL*B[A-H.O-1)

REAL*3 A{ IRCW,JCCLM) ,CFDIAG.,CIAG
N = IROW-1

CIAG = A(K,K)

DO 1 J=1,JCCLM

AlKpd) = ALK, J)}/DIAG

D0 3 I=l.IRCW

IF (I.EQ.K) GO TO 3

OFDIAG = AlI,K)

pg 2 J=LlrJCCLM

A{Isd41 = AT, J)-OFDIAG*ALK,J)
A(l.K) = -QFDIAG/DIAG

CCNTINUE

A{K,K) = 1,000/0[4G

RETURN

END

57



SUBROUTINE DIS (K.N¢RI}
IMPLICIT REAL=*8 (A=-H.0=Z)
INTEGER T,SyHsHL,SS
REAL®8 K(N} sRIN}+KK,RR
XN = 2%N®]

T = OLCGIXN)/DLOG(3.700)-1.0001D0)
IF (TekTo1) T = 1

D2 4 S§S=1,T7

S = T=55+1

H = (3%%5-1)/2

H1 = Hel

DC 3 J=HL.N

1 = J-H

RR = R{J}

KK = K(J)

[F (KK.GE.K(I)) GQ TO 2
R{I+H]) = R(I)

K([+H} = K( 1)

([} = KK
R{I} = RR
I = I-H

IF (I.6T«2) GO TC 1
K(I+H) = KK

R(I+H} = RR
COGNTINUE

CONTINUE

RETURN

END
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SUBROUTINE NOTRI [P:Z2,+D,IE)

IMPLICIT REAL#*8(A-H,0-1)
CCMMON OELTA(4),8HAT{4),08S,NVAR, NPARM;IHALT N, NCCNST +NCAP,NITER
DIMENSION Pi4), Z(4)

20 10 I=L.NCAP

IE =2

Z(I} = .99999E+T4

D= Z(I)

IF (P(I)) 1.3,2

IE = =1
GO Ta 12

IF (P{I)=1.70]} S5s4+1

Il = -,999999E+T4

0 = 0.303

GC TO 10
50 = P}

[F (D=0.5001 T»7:6

D = l.700-D

T2 = DLOGI(1.0D3/(D=0))

T = DSQRTI(T2)

ZIT) = T=1{2.51551700+0.80285300*T+0.0190328D0*T21/(1.200+1.43273800
1=7+0.18926900*72+0.001308D0*T*T2)

IF (P({I)=-7.503) 8,8,9

8 Zi{I) = -Z()

9 D = D.39894230030EXP(-Z(1}*Z(11/2.70")
10 CONTINUE

RETURN
END
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SUBRCUTINE NDTR (X+PyDsNPARM)
IMPLICIT REAL®*R(A-H,0-1)
DIMENSICN XINPARM), P(NPARM)
90 2 I=1,NPARM
AX = DABS(X(I))
T = 1.2D0/(1.007+.2316419%4X)
0 = 0.398G423=DEXP{-X{I)=X(])}/2.u0DD)
PIT} = 1.000-D=T7#{{ ((1.33027400*T7-1.3212560-))*T+1,.T81478010)*T-),35
16563800)1*T+3,319361500)
IF (X{I)) 1,2,2
1 P(I) = 1.203-P(1}
2 CONTINUE
RETURN
END
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Abstract

Confidence intervals for the parameters of three nonlinear models
were constructed using beoth the classical normal theory approach and
a percentile method, which is an empirical method using the bootstrap
technique. Comparisons were made basgd on the proportion of times the
confidence interval contained the true parameter and the average width
 of the interval using a Monte Carlo simulation. Models with both nor-
mal and nonnormal error structure showed the normal theory method
performing well with confidence levels within 1% of the nominal 95%
Tevel, Hoyever, the bootstrap confidence intervals had lower coverage

presumably due to their shorter average width.



