A DISJUNCTIVE .GRAPH TECHNIQUE

FOR SHOP SCHEDULING PROBLEMS

KUNG-YING CHIU

B.E. (I.E.), Tunghai University

Taichung, Taiwan, Republic of China, 1968

A MASTER'S REPORT

submitted in partial fulfillment of the

requirement for the degree

MASTER OF SCIENCE

Department of Industrial Engineering
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1971

Approved by:

<z A

Major Professor

¥ ii

ACKNOWLEDGEMENT

I wish to express my deep sense of appreciation to my major
professor, Dr, Said Ashour, for his kind guidance and the personal
interest taken in preparation of this master's report.

I also appreciate Mr, T, E. Moore, Senior Operations Research
Analyst at North American Rockwell Corporation, for his interest in
coding this algorithm and valuable suggestions,

I am also thankful to Dr, F. A. Tillman, Head, Department of
Industrial Engineering; Professor J.J, Smaltz, Department of Industrial
Engineering and Professor A, H, Duncan, Department of Mechanical
Engineering for their kind patronage.

I greatly thank Mrs, Marie Jirak for her assistance in typing.

TABLE OF CONTENTS

ACKNOWLEDGEMENT

LIST OF TABLES

LIST OF FIGURES

CHAPTER I INTRODUCTION
1.1 Graph Theoretical Formulation of the Problem
1.2 Literature Review
1.3 Proposed Research

CHAPTER II DEVELOPMENT OF A DISJUNCTIVE GRAPH ALGORITHM
2.1 Basic Concept
2,2 Sample Prcblem
2.3 Computational Algorithm

CHAPTER III COMPARATIVE EVALUATION

CHAPTER IV SUMMARY AND CONCLUSION

REFERENCES

iii

page
ii

_dv

15
17
17
24

46

68

73
76

Table 1.1
Table 2.1

Table 3.1

LIST OF TABLES

(2x3) Job-Shop Problem

Solution of the Sample Problem

Comparative Evaluation of Various Techniques for Solving
Published Sample Problems

iv

page

65

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.1
1.2

1.3

2.1

2.2

2,3

2.4

2,5

2.6

2.7

2.8

2.9

2,10

2,11

2.12

2.13

2.14

2,15

LIST

OF FIGURES

Graphical Representation of Constraints

Graphical Representation of (2x3) Job-Shop Problem

Graphical Representation of the Selection of the Arcs

{(192) g(5,4)} for
The Initial Graph

A Graph Depicting
Level 1

A Graph Depicting
Level 1

A Graph Depicting

A Graph Depicting
at Lavel 2

A Graph Depicting
at Level 2

A Graph Depicting
at Level 2

A Graph Depicting
at Level 2

A Graph Depicting

A Graph Depicting
at Level 3

A Graph Depicting
at Level 3

A Graph Depicting
at Level 3

A Graph Depicting

A Graph Depicting
at Level 4

A Graph Depicting
at Level 4

(2x3) Job-Shop Problem
of Sample Problem

the Resolution in Favor of Node

the Resolution in Favor of Node

a Feasible Solution at Level 1

the Resolution in Favor of Node

the Resolution in Favor of Node

the Resolution in Favor of Node

the Resolution in Favor of Node

a Feasible Solution at Level 2

the Resolution in Favor of Node

the Resolution in Favor of Node

the Resolution in Favor of Node

a Feasible Solution at Level 3

the Resolution in Favor of Node

the Resolution in Favor of Node

(9) at

(11) at

(1)

(2)

(3)

(%)

(D

(2)

(3)

(D

(2)

page

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Figure 2.16
Figure 2.17

Figure 2.18

A Graph Depicting an Optimal Solution
The Scheduling Tree of the Sample Problem

A Flow Chart for Disjunctive Graph Algorithm

vi

page
64
66

67

CHAPTER I
INTRODUCTION

Scheduling problem is perhaps one of the most frequently occuring
real-world problems., This problem is of interest because, there is no
optimization technique sufficiently powerful to handle one of realistic
size. It is not that these problems are mathematically very complicated
to state, on the contrary, they can usually be formulated into extremely
simple mathematical model for which methods of solution are readily
available, The difficulty, however, is the combinatorial nature of these
problems,

The development of PERT and CPM was a breakthrough in this area
which made it possible for a '"pure" scheduling problem (the problem in
which only the precedence constraints are added) to be numerically solved
for practically any size that might occur. The reason that the above
problems can be solved efficiently is that they can be stated as critical
path or network flow problems., However, for most real-world situations
these models are over-simplified, because they assume unlimited reéources.
That is, the resources required from project i are available whenever
the preceding projects are completed, so that project i could be started
immediately, But resources are usually limited in varying time period.
To make these models more realistic, one has to introduce various types
of resource constraints such as machine availability and capital avail-
ability, But as soon as this is done, the problem ceases to be a simple

loungest path or a network flow problem, and the size of the project for

which an optimal solution can be found is reduced. The interest arises
recently then to find another formulation or structure of the scheduling
problem under resource constraints which should permit the use of network
flow techniques.

The machine sequencing problem can be seen as a special case of a
scheduling problem under resource constraints, It is a problem of de-
termining the sequence, in which a number of jobs to be processed on
various machines in a specified technological ordering such that a
certain objective is optimized. Among the objectives usually considered
are: (1) minimization of maximum completion time; (2) minimization of the
maximum lateness; (3) minimization of in-process inventory; (4) min-
imization of total idle time; (5) maximization of the machine utilization;
(6) minimization of total cost. The machine scheduling problem has been
approached by integer~linear programming, dynamic programming, enumerative
and simulation techniques.

In this research, the machine scheduling problem has been formulated
as a two terminal network flow problem for which the disjunctive con-
straints are binding. These constraints arise, for instance, when both
operations require the same machine during the same period. The objective

is to minimize the schedule time, ie., maximum completion time.

1,1 Graph Theoretical Formulation of the Problem

Suppose we have J jobs to be processed on M machines, Each job is
to be processed on a particular machine according to the given techno-
logical ordering. Such an operation which pertains to job j and machine

m is designated as (jm). Each operation (jm) is represented by a node

(k) such that
(k) = j + (m1)J, J =1, 2, veey J3 m=1, 2, ..., M.

Associated with each operation or node (R), there is a processing time
t(k), that is, the time required to perform the operation (k).

In order to illustrate the above formulation, let us consider an
example having two jobs to be processed on three machines. The data

of this problem is displayed in Table 1.1 as shown below.

Table 1.1 (2x3) Job-Shop Problem

Job j 1 2
Machine m 1 3 2 2 1 3
Operation (jm) (1n (13 (@12 (22) (21) (23)
Operation index number (k) (1) (5) (3) (%) (2) (6)
Processing time t(R) 5 4 1 2 1 3

The first row indicates that we have two jobs, job 1 and job 2. The
second and third rows show the machine ordering for each job. We there-
fore know that job 1 must be processed on machine 1 first, machine 3
second and machine 2 last. However, job 2 must be performed on machine
2 first, machine 1 second and machine 3 last. The fourth row indicates
the index number of each operation. The node index of operations (11),
(13) and (12) can be obtained respectively by the above formula. Simi-
larly, the index number for operations (22}, (21) and (23) are (4), (2)
and (6), respectively, Associated with each operation (R), there is

a processing time t(R) as shown in the last row of table 1.1,

Since it will be necessary to consider the precedence constraints
and the machine availability constraints for our problem, The following
two sets of operations are defined. First, the set of operatioms which

pertain the same job j such that
Mj = {(R) e N}, for each job j

where N is the set of nodes. Thus, the set M., in our example is shown

3

below
My = 1, (), N}
M2 = {(4), (2), (6)}

Ml indicates the precedence relations of operations for job 1 are (1)
directly precedes (5), and (5) directly precedes (3). M2 can be inter~
preted in the same fashion., Next, the set of operations to be performed

on the same machine m is such that

Jm = {(R) e NI, for each machine m

the set jm in our example is shown below

12 = {(3), (&}
75 = (), (&)

Now, our problem may be formulated as follows:

minimize s(mtl) (D

subject to s(£) - s(k) > t(k), (R), (&) e M (2)

s(k) - s(f) > t(D), 7 (3)
or
s(£) - s(R) > t(k), (R), (&) e J_
m=1, 2, ..., M,
and
t(k) > 0, (R) e N

Where s(k) is the starting time of operation (k), for k =0, 1, 2, ... n,
m+l., Nodes (0) and (m+l) are the source and sink of the network. In

the above model, constraint (2) expresses the precedence relation fixed
by the given technological ordering for those operations which pertain
to each job., While comstraint (3) indicates the resource restrictions

or machine availability constraints which translate the requirement that
no time overlap is allowed between any two operations that have to be
performed on the same machine.

Following the convention of representing operations (or activities)
by nodes, the above mathematical formulation has natural graphical de-
scription., Let the set of nodes in the graph, N represents the operations
(k), for k = 0, 1, ..., n, n+l, where node 0 (the source) is the initial
operation, while node mt+l (the sink) is the final operation which in-
dicates that all operations are completed., The conjunctive constraint

(2) is represented by a directed arc from (k) to (£) with length t(k)

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPAIRED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

(k,i)eMj (h,i)e]m
or
(£,k) st
Conjunctive arc Disjunctive pair of arcs

Figure 1.1 Graphical Representation of Constraints

Figure 1.2 Graphical Representation of the (2x3) Job—Shop
Problem

Figure 1,3 Graphical Representation of the Selections of the
Ares {(1,2), (5,4)} for (2x3) Job-Shop Problem

as shown in Figure 1.1. The disjunctive constraint (3) can be represented
by a pairwise disjunctive arcs (k,£) and (£,R) with length t(k) and t(£),
respectively, as shown in Figure 1,1, Considering both constraints (2)
and (3), our example can be expressed as a disjunctive graph G, as

shown in Figure 1.2,

A disjunctive graph G is usually designated as

G = (N,C,D)

where N is the set of nodes, C the set of conjunctive arcs representing
constraint (2) and D the set of pairwise disjunctive arcs representing
constraint (3). A subset of P containing at most one arc of each dis-
junctive pair {(k,£), (£,R)} € D is called a set of disjunctive arcs,
and designated as A. Each set of disjunctive arcs generate a graph of

the form

G'= (N,CUA

Figure 1,3 shows the graphical representation of the set of selected
disjunctive ares {(1,2), (5,6)} for our example,

The machine scheduling problem is then equivalent to one of finding
an optimal set of disjunctive arcs, so that the schedule time of the

graph can be minimized.

1.2 Literature Review

A number of approaches for solving shop scheduling problems have
been proposed, The combinatorial nature of the problem suggests the

use of enumerative techniques as methods of solution. The enumerative

method is a search technique designed to obtain a subset of optimal
solutions from a larger set of feasible schedules., Land and Doig [11]
have first developed the enumerative method, It has been named as the
branch-and-bound technique by Little et. al. [12] while solving the
traveling salesman problem,

Brooks and White [6] have proposed a branch-and-bound technique
which is based on the Gantt chart algorithm [9]. They have modified the
algorithm by imbedding a bounding procedure as a criterion for resolving
the conflict among operations. The refined algorithm shows that each
active schedule developed is better than the preceding one, and each
step eliminates solutions for consideration, They have also compared
the experimental results obtained by using lower bound as the criterion
for resolving the conflicts and those obtained by using the shortest
operation time rule and longest remaining time rule, The size of the
problems solved varies between (7x10) and (10x18)., For the objective
of minimization of total schedule time, the results obtained by using
lower bound are better than those when the other two criteria are used,
However, they have reported on their computational experience that their
procedure is too long to adopt on medium size computers, even for
problems of moderate size., According to the comparative evaluation
of various bounding procedures presented by Ashour and Hiremath [1,2].
By their method, it requires 942 second of mean excution time with
13202 nodes explored to solve (6x5) job-shop problems, However, for
(6x4) job-shop problems, the optimal solution has not been reached after

the IBM 360/50 computer spent 3600 seconds of mean excution time.

10

Ashour and Hiremath [1,2] have devised an efficient branch-and-bound
technique by imbedding a powerful bounding procedure to reduce the number
of nodes explored and hence the computational time involved, Their
technique consists of the branching, bounding and backtracking processes
which based on the concept of resolving the conflicts among operations.

A mathematical analysis and comparative evaluation of various bounding
procedures are also presented. A considerable number of experiments

has been conducted on IBM 360/50 computer. The size of the problems
varies between 3 to 12 jobs and 3 to 5 machines. The results reveal that
the job-machine-based bound is more powerful in terms of the number of
nodes explored and the computational time required to obtain the optimal
solution. The quality of solutions obtained without backtracking is
very high, By their method, job-shop problems upto a maximum size of
(12x3) or 36 operations can be solved within a reasonable prespecified
computer time. The solution of these problems require the exploration
of an average number of 4307 nodes and 787 seconds of mean excution time,
In this technique, the number of nodes explorgd can be expected to be
reduced by introducing a better criterion to break the tie among lower
bounds,

Schrage [14] has proposed a branch-and-bound technique which based
on the concept of permutation of the operations., His technique has been
developed for non-redundantly enumerating all active schedules by imbed-
ding a dominat check and a redundant check procedures. Both a resource-
based bound and a precedence-based bound have been devised to allow

backtracking, The algorithm was programmed in FORTRAN for an IBM 7094

11

computer, A wide variety of resource constrained network problems have
been solved., One class of problems solved were the job-shop problems
described in [13]., The largest size of job-shop problem that can be
solved with proving optimality is a (6x6) or 36 operations problem.

It requires 186 iterations to reach the optimal solution. An iteration
is defined to be the scheduling of one activity (or operation). The
results also show that it requires only 113.4 seconds (or 1.89 min.)

of total excution time to solve one (6x6) and two (10x10) job-shop
problems, However, the calculations for the two (10x10) job-shop
problems were terminated at 4,000 and 2,000 iterations, respectively
without proving optimality. Generally speaking, his algorithm repre-
sents a general approach to a wide variety of scheduling problems under
resource constraints,

Balas [3,4] has developed an implicit enumerative method for solving
the machine scheduling problem by finding a mini-maximal path in a dis-
junctive graph, The basic concept of his method is to generate a sequence
of graph and to solve a critical path problem for each graph. Each
graph associated with a critical path is represented as a node in the
search tree. To branch from one graph is equivalent to reverse an arc
on the critical path in the graph. His method starts with a graph in
which one of each disjunctive pairs are included. Four major steps are
involved in his technique: (1) a testing procedure in which a lower
bound is computed and compared with the current solution; (2) an eval-
uation procedure in which an upper bound is computed and compared with
the current solution. In this procedure, all candidate arcs on the

critical path will be evaluated, the one which has the minimum evaluated

12

value is selected for further branching (3) a forward procedure in which
the selected arc is reversed., Accordingly, a new graph associated with
the reversed arc is generated; (4) a backtracking procedure which traces
back to the preceding graph until the graph has no predecessor., WNo
computational experience has been reported for determining the size of
problems this method can solve. The advantage of his algorithm is that
the storage requirement are limited to the data concerned with the cur-
rent node on the search tree, Since a feasible solution is generated at
each stage, one can terminate at any stage when a good solution is ob-
tained, The disadvantage of his algorithm may be considered as follows:
First, it requires more computational effort. One has to compute the
upper and lower bounds for each node in search tree. Then, one has to
evaluate the candidate arcs on the critical path to guide the search.
Second, it requires the examination of the graph at each stage to de-
tect any loop which may exist, Third, from the definition of the lower
bound, more nodes to be explored for proving optimality. Balas [3] has
also proposed a modified mixed-integer programming technique which com-
bines the ideas of Bender's partitioning method with implicit enumer-
ation approach, The proposed algorithm is closely related to [3,4].

He generates constraints on a vector with 0 and 1 components which
characterizes the state of the search for a subset of disjunctive arcs.
The whole procedure of generating those constraints and finding a
feasible solution has been interpreted as a process of generating a
graph with degree constraints on its nodes, and then finding a subgraph

satisfying the degree constraints (the degree of a node is defined as the

13

difference between the number of arcs from and to the node)., No compu—
tational experience has been reported.

Charlton and Death [7] have proposed an algorithm which based on the
concept of resolving the conflicts among nodes on a disjunctive graph.
Their method starts with a graph which has no disjunctive arc included,
The disjunctive constraints are checked for all operations at each stage.
Whenever the disjunctive constraints are not satisfied for some operations
to be processed on the same machine, a conflict exists, At such time,

a pair of arcs is selected and its direction is decided in favoring one
of the operations (nodes) according to their proposed heuristic rule,
Each graph is represented as a node in the search tree, to branch from
a node is equivalent to including a disjunctive arc into a graph. The
branching procedure continues until a feasible solution has been found.
The length of the critical path of a graph is a lower bound on the value
of the objective function., Whenever the lower bound of a node is found
to be less than the value of the current solution, the previously se-
lected arc at that level is reversed., The branching is then proceeded
from that node., If both arcs of the disjunctive pair have been already
examined, the search is traced back one level up the tree. These steps
continue until the initial node has been reached and all others explored.
No computational experience has been reported., However, both a (3x2)
flow~shop and job-shop problems and a (5x4) job-shop problem (that only
has 13 operations) have been comparatively evaluated by manual calcu-
lation., The result shows that their method requires much less compu-

tational effort as well as iterations than that of Balas [3,4]., In

14

addition, their method is easier to calculate by hand than any other
similar techniques, The disadvantages of their method may be considered
as follows: (1) the disjunctive constraints have to be checked for all
operations at each stage to detect any conflicts that may exist. However,
by Ashour and Hiremath's technique [2], only the conflict for unscheduled
operations requires checking; and (3) the proposed heuristic rule is used
only for a binary decision, no criterion has been suggested to guide the
search when there are more than one candidate arcs to be chosen, Charlton
and Death [8] have also developed a general algorithm considering the con-
straints on machine orderings, machine availability, due date and zoining,
Their method can be applied to a wide variety of scheduling problems such
as flow-shop, job-shop, machine scheduling without preassignment, machine
routing and assembly-line balancing problems., All these problems demon-
strate the underlying relation with reference to their graphical repre-
sentation., Their method is essentially a branch-and-bound approach to
enumerate implicitly all feasible solutions by using a search procedure,
where the nodes in the search tree represent partial allocation of oper-
ations to machines, The algorithm can be terminated with a solution
whose objective function value is within a prespecified percentage of
the lower limit on the optimal schedule time. Since their method rep-
resents a general approach to a wide variety of problems, for the solution
of specific problems in practice, a tailored algorithm based on the general
approach can be expected to be more efficient,

Greenberg [10] has presented a mixed-integer linear programming

formulation for the general shop scheduling problem. By applying a

branch-and-bound procedure, a series of non—integer linear programming
problems are reduced to moderate proportions, The basic approach is to
solve a normal linear programming problem with a given objective function
and the precedence constraints. All of these are represented as a node in
the search tree. To branch from one node is equivalent to adding a
disjunctive constraint to the problem. A new explored node with a min-
imum objective function value is then chosen for further branching. The
branching and bounding procedures continue until all sequence on the
machines have been specified. The advantage of his technique is that
when solving the non-integer linear programming problem, the constraints
involving integer variables need not be present, since they are non-
restricted in the non-integer problem. A few small size problems have
been solved using General Electric 265 Time Sharing System. A (3x2)
job-shop problem with 36 possible solutions require the solution of 19
linear programming problems and 143 seconds of computer time, Larger
problems were not attacked because of the memory restriction of the

computer system,

1.3 Proposed Research

In this report, the general shop scheduling problem has been re-
formulated as a disjunctive graph. An algorithm which is based on the
concept of resolving the conflicts has been developed, The proposed al-
gorithm can be expected to be more efficient than the similar technig-
uves by imbedding a proposed upper bound and a set of heuristic rules.

A more efficient method for checking the conflicts among operations has

been also proposed., A job-machine-based lower bound is used to guide

the search, The algorithm will be illustrated by a sample problem.
A comparative evaluation of various techniques for solving published

sample problems will also be presented.

16

17

CHAPTER II

DEVELOPMENT OF A DISJUNCTIVE GRAPH ALGORITHM

This chapter contains an enumerative algorithm for solving the shop
scheduling problem with the disjunctive constraint. In the context of
the graphic nature of the problem, the enumerative task is to resolve
the conflicts in favor of a particular node by assigning an arc (arcs)
from that node to the other(s) in conflict., An upper bound is used in
conjunction with lower bounds, so that a possible optimal schedule can
be obtained without explicitly enumerating all pogsible sequences. The
algorithm is illustrated by a sample problem and summarized in formal

steps.

2,1 Basic Concepts

This algorithm is developed on the basis of three principal con-
cepts: (1) partitioning of the set of possible solutions into successively
smaller subsets; (2) the application of a lower bound on the value of
the objective function for identification of a subset containing an
optimal solution; and (3) the application of an upper bound in con-
junction with lower bounds to identify that an optimal solution is reached.
The techniques of partitioning the subset of possible solutions are dic-
tated by the structure of the problem to be solved. In this research,
the technique of partitioning the subset of possible solution is based
on the concept of successively resolving the conflicts among operations

to be performed on the same machine at the same time,

18

The main idea of conflict is based on the disjunctive constraints,
that is, no two operations on the same machine may be scheduled at any
common interval of time. A schedule that violates this constraint is
non-feasible, and the operations involved are said to be in conflict,
Whenever there is a set of operations in conflict, resolving the con-
flict in favor of one of them implies that the starting of the remaining
operations must be delayed. Graphical interpretation of resolving a con-
flict infavor of a particular node (operation) is nothing more than as-
signing & disjunctive arc (arcs) from the particular node to the other
node (nodes) in conflict. If a conflict exists between two or more
operations on a particular machine in the same time interval, it should
be resolved in favor of one that gives the best chance to reach the
optimal solution or at least the near-optimal solution. One possible
way is to establish a lower bound on the cbjective function for each
possible resolution , The minimum lower bound of these resolutions
provides a basis for resolving this conflict,

The algorithm starts with a graph which has no assigned disjunctive
arcs, This graph is denoted as G(0,0). The conflict is then checked
for all unscheduled nodes (operations) in the graph. If a conflict
exists, we first select a machine, then we decide to resolve the conflict
in favor of one of the nodes (operations) in conflict on that machine,
Each possible resolution is essentially to assign an arc (arcs) from a
particular node (k) to the other node (nodes) (£) in conflict, Conse-
quently, new graphs associated with the possible resolutions are gener-
ated, These graphs are denoted as G(k',£'). As will be noted, if the

number of the nodes (operations) in the conflict set is |Fm|, the number

of arcs to be assigned in favor of one of the nodes in conflict is

. This

(\le - 1). Accordingly, the number of graphs generated is IFﬁ
procedure may be easier to discuss if a search tree is used. In such a
tree, each node associated with a graph represents a possible resolution
of a conflict, The tree is initialized by a node (graph) G(0,0) repre-
senting the set of all active schedules., Each time, if a conflict is
found to exist, we go down one level on the tree, The possible resolu-
tions for the conflict at that level can be conveniently denoted by nodes
at that level, The node (graph) having the minimum lower bound is se-
lected. That is, a conflict is resolved at that level, This process
of generating a new set of nodes (graphs) at a level from a selected
node (graph) at the preceding level is referred to as the branching of
the tree,

Whenever a node (graph) at certain level has been selected for
branching, we generate possible sequences for operations on machines.
The value of this possible solution is an upper bound on the value of
the objective function, If this value is found to be better than the
previous one, the solution is updated. This solution is compared with
the minimum lower bound at that level, If the lower bound is found
to be equal to the cufrent solution it implies that an optimal solution
may be reached and thus, the branching and bounding processes are
ceased, The search tree is traced back along the same branch, The
graphical interpretation of the backtracking procedure is essentially
to remove the assigned disjunctive arc(s) at each level. The backtracking

procedure continues until an unexplored node having a lower bound less

20

than the current solution is found, In a similar manner, branching and
bounding procedure are repeated until a better solution is obtained. By
a series of such backtrackings, the initial level is eventually reached
and all potential branches in the search tree are exhausted and thus,
the optimal solution is found. The number of conflict levels represents
the number of conflicts to be resolved to obtain an optimal schedule,
As will be noted, the number of conflicts to be resolved to obtain an
optimal solution varies from one problem to another, even for problems
having the same size,

As mentioned earlier, the purpose of using an upper bound with
lower bound at each level is to obtain an optimal solution without
explicitly enumerating all possible sequences., In order to discuss these

two bounds, the following common notation is considered:

L conflict level in the search tree

(k) node index, o= 0y 1y wesy MFL

t(k) processing time of node (k)

s(k) starting time of node (R)

c(k) completion time of node (k)

m(k) machine m which is pertained to node (k)

Fm set of nodes in conflict on machine m

3 set of conjunctive arcsg

Al set of candidate arcs such that A' = {(k',£")}
A% set of chosen arcs such that A* = {(k*,£%)}
Sm sequence of all nodes to be processed on machine m, in which

all nodes are sequenced according to the dispatching rules.

21

Am set of sequenced arcs associated with Sm
G(k',£') graph associated with the arc(s) (k',2')
B(k',L') lower bound for arc(s) (RY, &%)

B(k*,L%) upper bound for the chosen arc(s) (k% £%)

T(S) schedule time
A(S) optimal set of arcs
T transition time, before which no conflict exists, and after

which conflict may exist.

The lower bound on the schedule time for all candidate arcs is

given by
B(k'",£") = max |max c(k') + Xt(i), max (min s(i)+ Z t(i)] .
(Dem(k") m(i) (L) em(i) (i) em(i)
(D)#(R") m(i)#m(k") i
s(mt1)
)

for all unscheduled nodes (i) such that c(i) > 7

This bound is a job-machine-based bound. The value of this bound is the
maximum of two expressions, The first expression is a machine-based bound.
The second expression is a job-based bound, The value of this job-machine-
based bound is computed from the data included in the graph

¢=(N,cUA* U (k',£")). Such a graph represents a possible resolution
in favor of arc(s) (R',£'). This graph is branched directly from the

G = (N,C | A*) in the search tree. The starting time of each node in the

graph can be computed by critical path method such that

22

s(£) = max [s(R) + t(k)], k=0,1, ..., n,
k<<l
£=1, 2, se ey n-'-li

The completion time of each node can be obtained such that

c(k) = s(k) + t(k), B Ty 85 o505 s

The machine based bound is also the maximum of two expressions. The
first expression gives the bound on the particular machine, m(k"). It
consists of two terms. The first term is the completion time of node
(k'"). This is also the earliest time at which an unscheduled node
could be started on machine m(R'), because the other nodes in the con-
flict set, {Fm} could be started on machine m(k') immediately after
the completion of the node (k')., The second term is the sum of the
processing times of the unscheduled nodes (other than node (k')) which
require processing on the same machine m(R'). The second expression
gives the maximum of the bounds on the machine other than m(k'). It
consists of two terms. The first term is the earliest starting time
at which an unscheduled node (i) could be started on machine m(i),
where m(i) # m(k'). The second term is the sum of the processing
times of unscheduled node (i) which requires processing on machine m(i),
where m(i) # m(k").

The upper bound on the schedule time for the chosen arc(s) (R*,L%)

is determined such that

B(k*,L%) = g'"(ntl)

where s'(ntl) is the starting time of the last node of the graph

23

6= (N,CUA)

The objective of using an upper bound at each level is to detect an
optimal or near-optimal solution before all conflicts among oper-
ations have been resolved and thus, the number of nodes explored in
the search tree can be reduced. The upper bound can also be used as
a criterion to break the tie, if it exists between lower bounds,
However, in order to simplify the algorithm, this function is not in-
cluded, Amxdthe tie between lower bounds is simply broken by the one
of the following dispatching rules:
1. Select the node which has the earliest completion time,
i.e., set (R) << (&), if (k) < ().
2, Select the node which has the earliest starting time,
i.e., set (R) << (&), if s(k) < s(d).
3. Select the node which has the smallest index number,

i.e., set (R) << (&), if k) < ().

As mentioned earlier, the idea of this algorithm is somewhat similar
to those reported in [2,7]. However, some sipnificant differences from
the other similar methods should be stated. First, in this method, the
branching and bounding process may be ceased before all conflicts are
resolved, Therefore, the number of nodes explored to reach the optimal
solution can be expected to be reduced, Second, since an actual solution
is obtained at each level, this algorithm allow one to terminate the
search at anytime with a good, but not necessarily optimal, solution.

Third, so far as the graphical structure concerned, this algorithm is

24

designed such that the number of arcs assigned depends on the number
of operations in conflict at that level, while the existing methods
[4,7] are structured in such a way that only one arc to be chosen at

each level,

2,2 Sample Problem

In order to demonstrate the proposed algorithm, a sample problem
consisting of four jobs and three machines presented in [2] is used,

The problem is given as shown below,

Job j

1

2

3

4

machine m

2

3

1

1

3

2

3

1

2

1

2

3

operation (jm)

(12) (13) (1D

(21) (23) (22)

(33) (31 (32)

(41) (42) (43)

node (k)

(5)

(9)

(D

(2) (10)

(6)

(11) (3)

(N

(4

(8) (12)

processing time t(R)

%

2

3

8 4

5

b 3

9

7

6 2

In order to follow the method of solution easily, Table 2,1 and Figure
2,17 should be followed throughout all steps.

Step 1. Initialize the scheduling tree with node (graph) G(0,0) at
level L = 0, set the transition time T = 0 and schedule time T(S) = 0.
Construct the initial graph, G(0,0) as shown in Figure 2.1, The numbers in
two boxes for each node (k) are, from left to right s(k) and c(k) which

can be computed by critical path method such that

on
|

s(£) = max [s(k) + ©(R)],
k<<l

=0, 1, ..., 12,
ﬂ = 1’ 2’ » 09 13,

and

e(R) = s(k) + t(k), =1, 2, «ou, 12,
s(5) = [s(0) + t(0)] =0,

s(2) = [s(0) + t(0)] = 0O,

s(11) = [8(0) + t(0) = O,

s(4) = [s(0) + t(0)] =0,

5(9) = [s(5) + t(5)] =0+ 4 =4,

s(10) = [s(2) + t(2)] =0+ 8 = 8,

s(3) = [s(11) + t(11)] = 0 + 6 = 6,

s(8) = [s(8) + t(&)]=0+7=17,
s(1) = [s(9) + £(9)] =4+ 2 =6,
s(6) = [s(6) + t(6)] = 8+ 4 =12,
s(7) =[s(+t(N] =6+3=29,

s(12) = [s(8) + t(8)] =7+ 6 =13,

(6¢1) + t(1)) (6 + 3) [9)
s(6) + t(6) 12+ 5 17
5(13) = max = max - ; =
s(7) + t(7) 9+ 9 18
s(12) + £(12) 113 + 2 15,

4

c(5)
c(2)
e(1l) = s(11) + t(11) =0 + 6 = 6,

s(5) + t(5) 0+ 4 = 4,

s(2) + t(2) =0+ 8 = 8,

c(4) = 5(4) + t(4) =0+ 7

7,

c(9) =s(9) + t(9) =4+ 2 =26,

26

c(10) = s(10) + t(10) = 8 + 4 = 12,
e(3) =s(3) +t(3) = 6+3=09,
c(8) =s8(8) +t(8) = 7+ 6-=13,
ef(ly =s8(l) +t(l) = 6+ 3=209,
c(6) = s8(6) + t(6) =12+ 5= 17,
(7)) =s(7) +t(7) = 9+9 =18,
c(12) = s(12) + t(12) = 13 + 2 = 15,

Step 2. Check for conflicts between nodes pertained to the same

machine by the relation
- t() < s(8) - s(k) < t(k), for ¢(£) > 0 and c(k) > O.

Since all nodes (k) and (£) have c(k) and c(£) > 0, so all of them have
to be checked for conflict., We first check conflict between nodes per-

tained to machine 1 as follows:

- t(2) < 8(2) - s(1) < t(1) or -8<0-26< 3,
- t(3) < =(3) - s(2) < t(2) or -3<6-0<38,
- t(4) < s(&) -~ s(3) < t(3) or - 7<0-=206<3,

Therefore, a conflict exists among nodes (1), (2), (3) and (4) on machine

1. Then, check the conflict between nodes pertained to machine 2 as follows:

- t(6) < s(6) - s(3) £ t(5) or - 5<12 - 0 ¢ 4,
- t(7) < 8(7) - s(5) £ t(5) or ~9<9-01¢%4,
- t(8) < s(8) - s(5) £ t(5) or -6<7-0+¢4,
- t(7) < 8(7) - 3(6) < t(6) or -9 <9 212 < 5,
- t(8) < s(8) ~ s(7) < t(7) or -6<7-9<09,

27

Therefore, a conflict exists among (6}, (7) and (8) on machine 2. We

then check the conflict between nodes pertained to machine 3 as follows:

- t(10) < s(10) - s(9) £ t(9) or -8<8-4+¢2,
- t(11) < s(11) - s8(9) < t(9) or -6<0=-4<2,
- t(12) < s(12) - s(9) £ t(9) or -2<13-4+¢2,

- t(11) £ s(11) s(10)< t(10) or 6f0-8<38,

242 -4< 04,

- t(12) £ s(12) - s(10)< t(10) or

- t(12) < s(12) s(11)¢ t(11) or 2 <13-0¢£6,

Therefore, a conflict exists between node (9) and (11) on machine 3.

Now we select a machine m(R) such that

c(k) = min e(£), for =1, 2, 3, 4, 6, 7, 8, 9, 11,

since node (9) has the minimum completion time c(9) or 6, we select
machine 3 on which the conflict will be resolved in favor of node (9)
or node (11), Set L = I#1l, or 1 and T = c(9), or 6.

Step 3. Compute the lower bound for candidate arcs (9,11) and (11,9).
We first compute the lower bound.§ﬁ9,ll) for arc (9,11) from the data

pertained in the graph G(9,11) as shown in Figure 2.2 such that

3

(c(g) + [t(10) + €(11) + t(12)]

rs(l)\
min 25%; + (D) + £(2) + t(3) + t(H]
(3(4))
B(9,11) = max|max|max , s(13)
(s(6))
min|s(7) | + [£(6) + t(7) + £(8)]
(8(8))

[

max | max | max

max [27, 24]

27.

Similarly, the lower bound B(11l, 9) is computed from the data pertained

6+ (4+ 6+ 2)

["GW
ninl 0

i
. 0)

+ (3+8+3+7)

(12)
min|{15| + (5 + 9 + 6)
L L7

0+ 21
, 24

7+ 20

max [max [18, 271, 24]

)

in the graph G(11,9) as shown in Figure 2.3 such that

28

B(11,9)

= max

max

max

max

max

(
c(11l) + [t(9) + t(10) + t(12)]

(
rs(l)T

s(3)
(s(4))

rs(6)1

max

| [|s(8))

(6+ (2+ 4+ 2))

r

min +(3+8+3+ 7

o oo

12

[min[g].‘- (5+9 + 6)

14
0+ 21

max , 18

7+ 20

max (max[14, 27], 18}

max[27, 18]

27.

min|%3) |+ [£(D) + £(2) + t(3) + £(4&)

min|s(7) [+ [t(6) + t(7) + t(8)]

)

» 8(13)

29

Step 4, Since B(9,11) = B(11,9) = 27, a tie exists between the two
bounds. We therefore break the tie by one of the dispatching rules,
We first check the completion time of node (11) and node (9) as shown
in G(0,0). As c(11) = c(9) = 6, a tie still exists, we therefore check
the starting time of them. Since s(11) < s(9), or 0 < 6. We choose the
arc (11,9).

Step 5. Compute the upper bound B(11,9). By following the dis-
patching rules, we generate the sequences for all nodes on machines
from the data pertained in G(11,9) as follows: We first consider the
completion time of all nodes on machine 1. Since
c(4) < e(2) < e(3) < (1) or 7<8<9 <11,
we have the sequence (4) << (2) << (3) << (1) or Sl = {(4) (2) (3) (L}

Similarly, we have

S, = ((5) (8) (6) (N}
and

33 = {(11) (9) (10) (12)}

These sequences are associated with a set of sequenced arcs, Am such that
A = 1(4,2) (2,3), (3,15 (5,8), (8,6), (6,7; (11,9), (9,10), (10,12)}

By assigning the set of arecs, Am into the graph G(0,0), we obtain a
graph G(11,9) as shown in Figure 2,4. The upper bound B(11,9) is com-

puted from the graph G(11,9) such that

B(11,9) = s'(13)

= 33,

31

Since B(11,9) < T(S) or 33 < », we set T(S) = 33 and A(S) = Am.

Step 6. Compare the minimum lower bound with the current solution.

The lower bound B(11,9) < T(S) or

29 < 33, we include the arc (11,9) in

the set of chosen arcs A*, We then branch from the graph G(11,9) and go

to step 2.

Step 2. Check for conflicts between nodes pertained to the same

machine by the relation

- (@) <5 - stk) < t(k),

for ¢(k) > 6 and c(£) > 6.

We first check conflicts between nodes pertained to machine 1 as follows:

- t(2) £ s(2) - s(1) < (1)
- t(3) < s8(3) - s(1) < t(1)
- t(3) < s(3) - s(2) < t(2)
- t(4) < s(4) - s(3) < t(3)

or

or

or

or

-84£0-8<3,
-3<6-8<3,
-3 <6-0c<8,

-7<0=-26c< 3,

Therefore, a conflict exists among nodes (1), (2), (3) and (4) on machine

Then, check the conflict between nodes pertained to machine 2 as follows:

Since the node (5) has completion time c(5) <t or & < 6, we then check

the conflict between the other unscheduled nodes,

- t(7) < s(7) - s(6) < t(6)

- t(8) < s(8) - s(7) < t(7)

or

or

-9 <9 - 12 < 5,

-6<7- 9<9,

Therefore, a conflict exists among nodes (6), (7) and (8) on machine 2.

We then check the conflict between unscheduled nodes (9), (10) and (12)

on machine 2 as follows:
- £(10) < s(10) - s(9) £ t(9)
- £(12) < 8(12) - s(9) £ t(9)

- t(12) < s(12) - s(10)£ t(10)

or

or

or

-4 <8-6¢2
- 2<13-6¢ 2

-2<13-8+¢%4

32

Therefore, no conflict exists among nodes on machine 3. Now we select
a machine m(R) such that

c(k) = min c(£) for £ =1, 2, 3, 4, 6, 7, 8.

Since node (4) has the minimum completion time c(4) or 7, we decide to
resolve the conflict among nodes (1), (2), (3) and (4) on machine 1, Set
L=1L+lor 2 and 7 = c{(4) or 7.

Step 3. Compute the lower boudn for candidate arcs ((1,2), (1,3),
(1,4)), ((2,1), (3,2), (3,4) and ((4,1), (4,2), (4,3)). In a similar
manner, the lower bounds are computed from the graphs which can be ob-
tained by assigning the candidate arcs into the graph G(11,9), respect-
jvely. We first compute the lower bound B ((1,2), (1,3), (1,4)) from
the data pertained in G((1,2), (1,3), @,4)) as shown in Figure 2,5 such

that

[e+ (6D + £3) + £(&)]

f FS(G)
min({s(7) | + [t(6) + t(7) + t(8)]
8(8)

1

§ﬁ(1,2)(1,3),(1,4)) = max |max|max ,s(13)

(8(9)
min{s (10 [£(9) + £(10) + t(12)]
1s(12)

J)

(11 + (8+ 3+ 7) W

r (23]

min|l4| + (5 + 9 + 6)

|18

= max|max|max) ., 28
6

min|19| + (2 + 4 + 2)

24

max | max

]

max [34,

34,

(29

max

28]

14 + 20

max (max[29, 34], 28)

33

Similarly, B((2,1), (2,3) (2,4)) is computed from G((2,1), (2,3) (2,4))

as shown in Figure 2,6 such that

(

B((2,1),(2,3),(2,4)) = max|max|max

= max|max|max

f
min

{min

(e(2) + [t(1) + £(3) + t(H]

s(8)

s(12)

(8+ (3+3+7)

(12 h
11 + (5 + 9 + 6)
(15

,

6

8l + (2+ 4+ 2)
(21

7

s(6)
min|s(7)| + [t(6) + t(7) + t(8)]

s(9)
min{s(lﬂ)] + [£(9) + t(10) + t(12)]

23

)

J

—

223

31.

max

max [31, 23]

11 + 20

6+ 8

max (max [21, 31], 23)

23

34

The lower bound for arcs ((3,1), (3,2), (3,4)) is computed from the data

pertained in G((3,1) (3,2), (3,4)) as shown in Figure 2.7 such that

B((3,1),(3,2),(3,4)) = max

max

max

max

max

[e(3) + [t(D) + t(2) + t(4)]

(E’B(6)
min|s(7)
\5(8)

(s(9)
min|s(10)
L s(12)

(9 + (3+ 8+ 7)

f fz:q
min| 9| +

k16‘

[6)
min|l7| +

\ k224

)

+ [t(6) + t(7) + t(8)] 1

+ [t(9) + t(10) + t(12)

,s(13)

(5+ 9 + 6)

(2+ 4+ 2)

°) J

= 29,

Similarly, the lower bound for arcs ((4,1), (4,2), (4,3)) is computed

from the graph G ((4,1), (4,2), (4,3)) as shown in Figure 2.8 such that

B((4,1),(4,2),(4,3)) = max

27

9 + 20

max)max|max

6 +

max [29, 26])

max |max

max|max

min

min

f
min

2

max(max [27, 29], 26)

8(6)
s(7)
(8(8)

s(9)

(19)
10
L7
[6)
15
13

s(10)
s(12)

26

J + [t(6) + t(7) + t(8)

f 7+ (3+ 8+ 3)

+ (5+ 9 + 6)

+ (2+ 4+ 2)

rCUh) + [£(1) + £(2) + t(3)]

\

1)

} + [t(9) + t(10) + t(12)

35

,8(13)

36

7+ 20

max | max y 24

é

6+ 8

max (max [21, 27], 24)
= max [27, 24]

27,

Step 4. Choose the arcs ((4,1), (4,2), (4,3)) with the minimum lower
bound B((4,1), (4,2),(4,3)) or 27,

Step 5. Compute the upper bound for arc ((4,1), (4,2), (4,3)). By
following the dispatching rules, we generate the sequences for all nodes

on machines from the data pertained in G ((4,1), (4,2), (4,3)) as follows:

tn
(]

;=& (3 (D))}

n
I

, =3 ® (1 (®))

w
i

{(11) (9) (12) (10)}

These sequences are associated with a set of sequenced arcs, Am such that

A = 1(4,3),(3,1),(1,2);(5,8),(8,7),(7,6) 5 (11,9), (9,12), (12,10)}

By assigning the set of arcs, Am into the graph G(0,0), we have a graph
G((4,1) ,(4,2),(4,3)) as shown in Figure 2,9. The upper bound B((4,1),

(4,2),(4,3)) is computed from the graph G({4,1),(4,2),(4,3)) such that

I

B((4,1),(4,2),(4,3)) = 8"(13)

30.

Since B((4,1),(4,2),(4,3)) < T(S) or 30 < 33, we set T(S) = 30 and
AS) = Am_
Step 6. The lower bound B((4,1),(4,2),(4,3)) < T(S) or 27 < 30,
We therefore include the ares ({(4,1), (4,2), (4,3)) into the set A%,
We then branch from the graph G((4,1),(4,2),(4,3)) and go to step 2.
Step 2. Check for conflicts between nodes pertained to the same

machine by the relation

- t(£) < a(f) ~ a(k) < t(k), forc(kR) >7 and c(f) > 7,
We first check the conflicts between unscheduled nodes (1), (2) and

(3) on machine 1 as follows:

- t(2) < 8(2) - s(1l) < t(1) or -8<7~8< 3,

- t{3) < 8(3) - 8(2) < £(2) or -3 < 7~-17¢%<8,

Therefore, a conflict exists among nodes (1), (2) and (3) on machine 1.

We then check the conflict between unscheduled nodes (6), (7) and (8)
on machine 2 as follows:

- t(7) £ 8(N -s(B) <t(6) or -9 +410-19 <35,

- t(8) £ s(8) - s8(6) <t(6) or =-6+¢ 7-19 <35,

- t(8) < s(8) - s8(7) < t(8) or -6< 7 -10 < 6,

Therefore, a conflict exists between nodes (7) and (8) on machine 2,
then check the conflict between unscheduled nodes {9), (10) and (12)

pertained to machine 3 as follows:

37

- t(10) < s(10) - s(9) £ t(9) or
- t(12) < s(12) - s(9) £ t(9) or

- t(12) ¢ s(12) - s(10)< t(10) or

Therefore, no conflict exists between nodes on machine 3.

a machine m(Z) such that

c(k) = min c(£)

Since node (3) has the minimum completion time c(3) or 10, we select

machine 1 on which the conflict will be resolved in favor of one of the

for £ =1, 2, 3, 7, 8,

nodes in the conflict set,

-4<15-614% 2,
-~ 2413=6£2,

- 2 £ 13 - 15< 4,

Now we select

Set L = L+1l, or 3 and 1= ¢(3), or 10.

38

Step 3, Compute the lower bound for arcs ((1,2),(1,3)),((2,1), (2,3))

and ((3,1), (3,2)).

(1,3)). From the data pertained in the graph G((1,2)(1,3)) as shown in

Figure 2.10, we have

B((1,2),(1,3)) = max

We first compute the lower bound for ares ({1,2),

max

max

f

max

ce(l)

[
=

min[
1Y

+ [t(2) + t(3)]
s(6)
s(8)

s(10)
s(12)

(11 + (8 + 3)

max

|

nta

23
12 + (5+ 9 + 6)
7

19
13] + (4 + 2)

J

3(7))+ [t(6) + t(7) + t(8)

]+[t(10) + t(12)]

28

3

, 8(13)

22 3
7+ 20

max | max |max , 28

13+ 6

max (max [22, 27], 28)

max [27, 28)

28.

Similarly, from the data pertianed in 6((2,1),(2,3)), as shown in Figure

2,11, we have

((c(z) + [t(1) + t(3)]
s(6)

s(8)

B((Zsl) 3(233)) = max

max

max

min[s(7)] + [t(6) + t(7) + t(8)

s(12)

(15 + (3 + 3))

19

min|18| + (5+9+6)
7

max

15

min[lB) + (4+2)

J

L min{s(lm]+ [£(10) + t(12)]

, s(13)

4

max

7+ 20

» 27

13 + 6 J

= max(max [21, 27], 27)

27,

1

max {27, 27]

We then compute the lower bound for arcs ((3,1),(3,2)) from the graph

G((3,1)(3,2)) as shown in Figure 2,12 such that

B((3,1),(3,2)) = max

max

max

(e(3) + [t(1) + (2]

s(8)
max

k

a(10)
s(12)

mia|

(10 + (3 + 8)

22
min{10| + (5+ 9 + 6
7

max

L min(igl + (4 + 2)

]

s(6)
min{s(7)| + [t(6) + £(7) + t(8)]

] + [t(10) + t(12)]

27

s s(13)

(21
7+ 20

max | max s 27

é

13 + 6) J

= max {max (21, 27}, 27)

max [27, 27]

27.

41

Step 4. Since B ((2,1), (2,3)) = B((3,1,(3,2)) or 27, a tie exists.

We therefore break the tie by using the dispatching rules. From
G((4.1), (4,3), (4,3)), as shown in Figure 2,8, we find that the com-
pletion time c(3) < ¢(2) or 10 < 15, we therefore choose the arcs
(3,13, (3,2)).

Step 5. Generate the sequences for all nodes on machines from the
data pertained in the graph G((3,1),(3,2)), as shown in Figure 2.12,

The sequence Sm is obtained by following the dispatching rules such that

n
]

OO RGNS,

tn
I

{(5) (8 (7) (6)}

72
]

{(11) (9 (12) (10)}

these sequences are associated with a set of sequenced arcs Am such that

Am = {(4!3)!(3,1):(112); (5,8),(8,7),(7,6); (11,9),(9,12),(12,10)}

42

Similarly, the graph G((3,1), (3,2)), as shown in Figure 2.13, is obtained

by assigning Aﬁ into G(0,0)., The upper bound is then computed such that

B((3,1),(3,2)) = s"(13)
= 30.

Since B((3,1),(3,2)) = T(S) or 30 = 30, we go to step 6.

Step 6. Since the lower bound B((3,1),(3,2)) < T(S) or 27 < 30, we
include the arecs ((3,1), (3,2)) into the set of chosen arcs Ak, We
therefore branch from the graph G((3,1),(3,2)) and go to step 2,

Step 2, Check for conflicts between nodes pertained to the same

machine by the relation
- t(g) < s(g) =~ s(k) < t(k) for ck) > 10 and c() > 10

We first check for the conflict between unscheduled nodes (1) and (2) on

machine 1 as follows:

- t(2) < sg(2) -~ s(1) < £(1) or -8 <10 - 10 < 3,

Therefore, a conflict exists between nodes (1) and (2) on machine 1. We
then check the conflict between unscheduled nodes (6), (7) and (8) on

machine 2 as follows:

- t(7) £ s(7) -~ 8(6) < t(6) or -9 410 - 22 < 5,
- t(8) ¢ s(8) ~ s8(6) < t{6) or -64 7 -22<35,

- t{8) < s(8) ~ s(7) < (7 oxr -6< 7~-10 < 9,

Therefore, a conflict exists between nodes (7) and (8) on machine 2. We
then check the conflict between unscheduled nodes (10) and (12) on machine

3 as follows:

43

- t(12) { s(12) - s(10) < t(10) or -2 ¢ 13 - 18 < 4,

Therefore, no conflict exists between nodes on machine 3. Now we select

a machine m(kR) such that

c¢(R) = min c(f) for £o= 1, 2. 7; 8,

Since node (1) has the minimum completion time c(1l) or 13, we select machine
1 on which the conflict will be resoved in favor of node (1) or node (2).
Set L = L+l, or 4 and 1T =¢(11), or 13.

Step 3. We first compute the lower bound for ares (1,2). From the data

pertained in the graph G(1,2) as shown in Figure 2.14, we have

w
f (c(1) + t(2)]
min(zgg] + [t(7) + t(8)
B(1,2) = max|max|max s, 8(13)
s(10)
\ \ mi“[a(lZ)]+ [£(10) + t(12)] ‘ |

(13 + 8

min[lg] + (9 + 6)

21)
7 + 15

= max|max|max s 30

| 21+ 6)) |

= max{max [21, 27], 30)

max [27, 30]

= 30.

We then compute the lower bound for arc (2, 1) from the graph G(2,1) as

shown in Figure 2.15 such that

[(e + v) W

min[zgg} + (D) + £(8)]

B(2,1) = max|max|max » 8(13)

t min[:Eigg} + [£(10) + t(12)]

(18 + 3

min(lg] + (9 + 6)

= max|max|max s 27
| min{ls] + (4 + 2) J

13

45

21)
7 + 15

= max|max|max s 27

13+ 6))

max (max [21, 22], 27)

max [22, 27]

27.

Step 4. We choose the arc (2,1) which has the minimum lower bound
of 27,

Step 5. Generate the sequences for all nodes on machines from the
data pertained in the graph G(2,1), as shown in Figure 2.9. The sequences

Sm is obtained by following the dispatching rules such that

s1 = {(4) (3) (2) (D}
S, = 1(5) (8) (1) (&)}
33 = {(11) (9) (12) (10)}

these sequences are associated with a set of sequenced arcs Amrsuch that

A=((4,3), (3,2), (2,1); (5,8), (8,7, (7,6)5 (11,9), (9,12), (12,10))

Similarly, the graph G(2,1), as shown in Figure 2,16, is obtained by as-

signing Am into G(0,0). The upper bound is then computed such that

46

B (2,1) = s'(13)

27.

As B(2,1) < T(8) or 27 < 30, we set T(S) = 27 and A(S) = Am.

Step 6. Since the lower bound B(Z,1) T(8) or 27, we backtrack.
Step 8, Backtrack along the search tree by setting L = I-1 or 3.
Step 9., Since the two unexplored nodes have lower bounds greater
or equal to the schedule time T(S) or 27, we go to step 7.
Step 7. Backtrack along the search tree by removing the are ((3,1)
(3,2)) from the set A*,
Step 8, Set L = L-1 or 2,
At this point, the backtracking continues until level 1 is reached.
Since all unexplored nodes have lower bounds greater or equal to the

schedule time T(S) or 27, The computation is stopped at level 1 with

an optimal solution of 27 and the sequenced arcs A(S) such that

A(S) = 1(4,3),(3,2),(2,1);(5,8,(8,N,(7,6) 5 (11,9),(9,12),(12,10)}

2.3 Computational Algorithm

The algorithm discussed above is stated below in formal steps:
Step 1, Initialize the scheduling tree
1.1 Set conflict level L = 0, transition time 1 = 0, and schedule
time T(S) = =,
1.2 Construct the initial graph, including conjunctive arcs only,
¢ =~N,O.
1.3 Compute the starting time, s(k) and the completion time, c(R)

for all nodes in the graph.

Step 2.

2.1

2.2

Step 3.

Step 4.

47

Check for conflicts

- t(&) < s(f) - s(k) < t(k)

where

(ky, &) eJ_

for c(k) > 1, () > 1

If the above relation holds, a conflict exists betweein node (k)

and node (£), set L = I+1 and select a machine m(R) such that

c(k) = min [e(L)]
(ﬁ)eFm

then set T = c(k) and go to step 3,

If the above relation does not hold, no conflict exists, and
go to step 7.

Compute the lower bound B(k',L') for (R*), (L") ¢ Fm such that

B(k',£') = max (max(c(k') + ! t(1), max

(1) em(k) m(1)

(1)#(R") m(i)#m(k")
(min s(i) + 7 t(1)1), s(n+l))
(1) em(1) (1) em(i)

for all (i) such that e(i) > 7

Select arc(s) (kR*,£%) having the minimum lower bound, If a

tie exists, check the completion time of nodes (k#*) and (£%).

4,1
4,2

4,3

Step 5.

Step 6.
6.1

6.2

Step 7.

Step 8.

Step 9.

9.1

9,2

In order

shown in

48

If c(kR*) < c(£*), select arc (kR*,l%),
If s(k*) < s(L¥*), select arc (k*,£%),

1f (k%) < (£%), select arc (k*,£%),

Compute the upper bound B(k*,2%) by generating a set of sequenced
arcs Am, then check it with the schedule time T(S). If
B(k*,£%) < T(8), set T(S) = B(k*,£%) and A(S) = A
Compare the minimum lower bound with the current schedule time
1f B(k*,£%) > T(S), go to step 7,
If B(k*,£%) < T(8), include the arc(s) (R*,£%) in the set of
chosen arcs A* and branch from the graph G(k*,£%), go to
step 2,
Remove the arc (k,£) from the set of chosen arcs A%,
Backtrack by setting L = L-1
If L>1, go to step 9.
1f L=1, T(S) is an optimal schedule time with a set of se-
quenced arcs A(S).
Compare the lower bound for unexplored node(s) at conflict level
in the scheduling tree
If B(k,L) > T(S), terminate the branch and go to step 7.

1f B(k,£) < T(S), go to step 4.

to follow the steps easily, a flow chart of the algorithm is

Figure 2,18,

49

werqoid o7dwes jo ydead TETITUI 3YL T°C 2an811

* (Y0 auyy uofjerduoo pue ()s 2url Juriiels
3y8711 031 3IFOT WOIJ 9B (3) @pou yoes 103 gox0q OM] UT iaqunu 2y 930N

(0°0)2

4

BO

i

Blo

@

©

50

T TeAeT 3® (6) °PON JO IOABI UT UOEINTOSAY 33 Suryordeq ydeap v z°z =2ind1d

*(y)s =url Supjaels ST Auu 2pou UoB® I0J XO0q UT Iaqumu Byl 330N

(11°6)9

()
(&)

51

T 1oa@7 3® (IT) °PON

Jo IoABJ UT UOTINTOSAY 243 Supaojdeq ydean v g°7 2an3 T4

(6°1TT)D
®)

&)
[]

52

T ToA®
1 3 uotanrog @Tqrsesi ' Suyiordsq yderd v 4°C 3
21n314

(6°1TT) 2

83

Z ToA9T 3® (T) 9PON JO I0AB4 UT UOTINTOSAY 23yl Surayotrdeq ydean v ¢*z 2and1g

() €D TND
D . v
¥ [e1] [

o7
Ll . 9 i\ 0
3] [o]

5 6 9 0
‘Bl % S o / Lol
m\Ln] 2

El © A
e

54

7 ToA®T1 3I® (7) 9PON 3JO 10ABJ UT uofanTosey 9yl Sur3zopdeq ydein v 9°¢ 2an814

(F D E D T

2|) . ,@L. - V.

55

7 ToA?T 3® (g) 9PON JO I0ABJ UT UOTINTOSdY 943 Supjordeq ydean v [L°7 9andTd

(FE) @ (1))

(D)
&)=

56

7 T°A®T 3B (y) SPON JO IoaBJ UT UOTINTOSIY 33 Surjopdeq ydeas v g°z 2indTd

(N @M (%)

1O\ :
@ - i

57

7 TeA®71 18 UOTINTOS ITqFse=d ® gut3otdeq
(€N @*N 9N
(@)

ydezn v 6°¢ 2In8Td

9 L
[~]

58

€ ToaeT 3¢ (T) °PON JO IoABj UT uoTInTosey 943 Sujiofdeq ydeag v QOT°Z 2andTd

(' @19

-

— _ 9 /m\ LM ¥,

21
€] 2] [0}

59

€ T9A9T 3B (Z) 9pON JO IoAej UT UCTINTOS3Y 93Y3 guriordeq ydezs v TI1°z °2aInBrd

() a'e))o

(T
(&)=

-

60

, *7 2In3T4
¢ ToA97T 38 (£) 9PON FO IoABj U uofInTosey oyl Fuylordeq ydeas v z1°z T

((Z*e) (1°e))9

Y .
2/ 1

61

€ ToAe1

38 uofINTos 9TqFse=2d ® gupiordeq ydeap v ¢r°¢ @andHd

((Z*e) (1eN2

—(Q) _ F

62

y ToA®] J® (T) SPON JO IoAej] UT UOFINTOSEY 343 Sup3yordeq ydern v #1°7 2IndTd

(z‘1)o

63

y TeA?T 38 (Z) °PON JO Ioaej U UOFINTOSaY 3yl 8uyyopdeq ydeans v GT°*7 °and1d

(t°z)o

64

=

|

uoanTos Teutidp ue Surp3zofdeq ydeis v 91°z 2andtd
(1‘2)9

O . ¥

F

65

i uotantos fumiido 5_.._.

¢ L
2 1 0
((6°11)) L
8 Z
T %)
9 (1'y) (' 11)) L
8 s
S i . L]
_ iz - - - Lz (r'z)o v
- - - 0s (z'ns £
(@) £y 2 v
(z's)*(1'g)*(s°y)
“(z*9) (1'9) ‘ (6°T1)) 9
of 0g
L - - ot i (z*s) *(1°'5))o v
- - st iz (g2 (1*2))s
- - - 82 (s nz*'n)o £
- {s) 2 (1)) o1l 2 £
1av
‘(2w (1'r)(6°11)) 9
as g §
e - - - It (s M @M o ¥
- - - 62 ((r'g) (z'e)"(1'e))o
- - - £ ((ra)'g*2)*(1°2))d
- - - e (P (s N @2'o £
(W) @' L z [4
{(6'10) . _
§§ £€ 3
i - 0 9 Lt . (6'11)0 ¥
- 2 9 LT (11'6)n £
{(n)*(6)} 9 z 1
- R) 0 1 0
L | v) (s | Gt e " | e 1 T
L ‘a3)e . punog] a| (7' 9)e
am:. .u_..i.._wm <.u..< om0 |1 L) h:_ ...m«... w_.hs Gr'ay)o 398 | uon3y tea0q | Bupyoesa
anpayog 2eddn ussoy) jo 395 | wnmmtup| xepup| IuTIZeis | uoyrerduan dano SpoN 310713u0) |-sues)|delg | 32713u0) -yoeq

we(qold efdums oyl jo uoyaniog 'z eIqel

66

lz=(s>L

oe={gHL

okE=(B)L

ceE=(gryL

o =(grL

woTqoag aydueg 2y3 jo 231l Sup[NpeYd§ BYL [T*T 9AN3TA
iz=g 0E =g
(=2yb zub ey
12=g
12=8 ‘se=g 1z2=G
(CONGHE (SOYCIDT gz ens e
Qe =g
L2=8 62 =3 1€e=¢ ¥e=9
(RN (L) QORI E) @2 0)n @ EDE)D 2
og =B
lz=F 1z =g
(6'nd Oorey b v
ce=g
[-%-}% Y e Q
T2A91

IDFTFUC)

67

1

Set L=D, TWEI=
Set TU=0
G=CNCy; A=®
Find SCh, cChy; fe)”

-

Ate AL ED

G = (J\CC UAY)
|

[set] L

Select mck)
Set L=+, T=clR)

] 3
Compute BCRILD
For RILTYE Fm

Z

Chocse (8% soch what

B@®3% =min (RIX)
W€ Fmn

yes
+ic exist

Break the tie br
Dispatehing Rules
'

no

5

Generate _Am
Compute B (< ¥ !.*)

T = B TH
AlS)= _Am

¥

Wy T > X2

A= Uit
S =W CuA)
!

‘Figure 2.18 A Flow Chart for Disjunctive Graph
' Algorithm

68

CHAPTER III

COMPARATIVE EVALUATION

In this chapter, ten published shop scheduling sample problems are
solved by five existing methods. These methods have been proposed
seperately by Brooks and White [6], Balas (4], Ashour and Hiremath [2],
Schrage [14] and Charlton and Death {7]. The results obtained by these
methods are comparatively evaluated with that by the proposed method.
The sizes of the problems vary between 2 to 5 jobs and 2 to 4 machines.
The criterion for this evaluation is based on the number of nodes ex-
plored to prove optimality,

The results obtained for solving these problems by wvarious tech-
niques are summarized in Table 3,1, The first problem is presented in
Balas [3]. His method requires exploration of 12 nodes. In his method,
one has to compute the lower bound and upper bound for each graph. Then,
one has to evaluate the candidate arcs on the critical path to guide the
search. Charlton and Death's method requires much less computational
effort than that by Balas. The reason is that their method employs a
heuristic rule to guide the search. Lower bound is used only when one
backtracks., Their method requires the exploration of 7 nodes to obtain
optimal solution to the same problem. Both Brooks and White and Ashour
and Hiremath methods require the setting of 3 conflict levels and the
exploration of 7 nodes to prove the optimality. However, by the pro-
posed method, it only requires two conflict level and 5 nodes. This
improvement is achieved by applying an upper bound in conjunction with
a lower bound at each level, Therefore, the optimal solution could be
recognized before all the conflicts had been resolved, Schrage's method

requires 6 iterations to prove optimality. An iteration is defined to

69

be the scheduling of one activity (operation). This happens once at each
conflict level at which two or more nodes are explored.

The second problem is alsc presented in Balas [3]. By his method,
the computation is not terminated after 149 nodes had been explored.
Charlton and Death's method require the exploration of 13 nodes. Schrage's
method requires at least 40 iterations., Brooks and White's and Ashour
and Hiremath methods require the exploration of 77 and 14 nodes, re-
spectively. However, the proposed method only requires 13 nodes. The
third problem is presented in Charlton and Death [7]. Schrage's method
requires 7 iteration to solve the problem, While, all the other methods
require 4 nodes, the proposed method requires 2 nodes only.

The fourth problem is presented in Brooks and White [6]. Both their
method and Ashour and Hiremath's method require the exploration of 17
nodes. However, in Balas method, the computation is not terminated
after 40 nodeshave been explored, This fact may be attributed to the
definition of the lower bound [4]., In this procedure, one has to explore
more nodes to prove optimality. Schrage's method requires 23 iterations;
however, the solution cbtained is not optimal. Charlton and Death's
method requires the exploration of 20 nodes., While, the proposed method
requires only 13 nodes to be explored. For problems5 there is no sig-
nificant difference among the results obtained by the different techniques.

Problem 6 is our sample problem appearing in Chapter 2, By Balas'
method, the graph of this problem is too complicated to solve by manual
calculation. As mentioned earlier, this method requires a solution of a

critical path problem involving a complete set of disjunctive arcs in each

70

graph., Whenever, a job-shop problem has a moderate size, the graph which
displays this problem would be very complicated, In Charlton and Death's
method, it was not terminated after exploring 41 nodes, This fact
may be explained by two reasons. First, their method is based on the
concept of resolving the conflicts among nodes in a graph. At each
stage, a pair of arcs is chosen and its direction is decided in favor of
a particular node in the conflict set. However, when there are more
than two nodes in conflict on the same machine, chosing an arc in favor
of a particular node may not necessarily mean that the conflict has been
resolved for that node. Therefore, it may be necessary to resolve the
conflict in favor of that node again in the next stage., In such cases,
some of the schedules may be generated several times, Second, the lower
bound used in his method is defined as the length of the critical path,
As a result, it is found that the value of this bound may not always
be high enough to prove optimality when one backtracks, Consequently,
more nodes need to be explored. Brooks and White's method requires the
exploration of 52 nodes for solving this problem., While Ashour and
Hiremath's method requires only 21 nodes. This improvement is achieved
by implementing a more powerful bounding procedure. The proposed method
assists in improving the bounding procedure by imbedding heuristic rules
to break the tie between lower bounds. As observed, the number of nodes
explored is reduced almost to half of that by Ashour and Hiremath's
method.

Problem 7 to 10 are illustrative examples presented in Greenberg
[10], Problem 7, 8 and 9 which are solved by various techniques indi-

cates no significant difference in the number of nodes explored, but

are presented here for purpose of comparison. The tenth problem,
Greenberg's method required the solution of 19 linear programming
problems, Charlton and Death's method require the exploration of 11
nodes, Balas' method require 5 nodes. Both Brooks and White's method
and Ashour and Hiremath's method require 6 nodes respectively., However,
the method proposed here only requires the exploration of 3 nodes to

prove optimality,

71

72

‘rewt3do J0uU ST YITYM p§ ST PuUnNOF UOFINIOS BYL
L

¥

poylon sereg Suysn puey Aq 3A[0s 03 pe3Iedo¥rdwod sT weyqoad sTyl yo ydead o:k-;

*sopou JO Jaqunu uTe3isd Jutrordxe Ielje pe3lBUTWLS] JoU ST sanpasoxd oyl
»

‘pelo7dxe oJe SOpOU JXOW IO OMI YITYm 3B TOAdT IDT[FUOD YJ¥d 3B BDUO suaddey

sTyL ‘(uoraeiado) A31AT3IOE duo Jo BUTINPAYDS oY ©q O3 POUTIOP ST UOTIBISIT Uy "SUOTIBISIT JO Iaqunu ST mﬁ:h++
*suotyerado ¢1 3o s3sTsuod wayqoxd mﬁsw+
€ 11 €1 9 S 9 8 (8961) 8xaqueaay| doys-qor (zxg) | OT
z Z 9 z € Z vl (8961) Baoquesxp| doys-qor (£xz) | 6
z z v Z z Z 6 (8961) Bxequeesxy| doys-qor (zxz) | 8
Z 1% v 4 Z ¥ o1 (8961) Baaquesxn|doyg-mord (zxz) | ¢
14 wIb< (174 ¢4 - zZs Lz woiqoxq oydues| doys-qor (gx¥) | 9
4 v 9 14 € 4 €1 (£961) anoysy| doys-qor (£xz) | §
(S961) @3TUM
€1 0z P ot L1 »0F< L1 3y pue syooxq|doys-mord (vxg) | v
(0L61) vaeaq
z 14 L v v v 91 pue uoyrxeyy| doys-qor (gx7) | €
6 €1 *0¥< v1 #6P1< LL €1 (£961) sered +ao:m-aow (vxs) | ¢
S ¢ 9 L Z1 L 145 (£961) sereg|doys-mord (zxg) | 1
(oL61) (0L61) (6961) | (8961) (5961)
POYISK| POYISN Yieaq POYISN| POY3IBW YIBWSITH| POYISW|POYISW 3ITYM |UOTINTOS
pesodoad|pue uolziIey) " ,_.ouu.Eum pue xnoysy| seieg| pue s)yooxg rewtradp se0UaIaI Y 398 qor | *OoN
paxordxy SOpoN JO Jdaqumpy

swatqoxd orduwes paysiiqnd Sutaios xoj
sonbTuyoa] SNOTIBA JO UOTIEBNTBAZ OAT3RIRdWO) T[°E 9IqEL

73

CHAPTER IV

SUMMARY AND CONCLUSIONS

The basic objective of this report is to develop an implicit en-
umerative technique for solving shop scheduling problems. A shop
scheduling problem can be formulated as a two-terminal network flow
problem for which the disjunctive constraints are binding. These con-
straints arise, for instance, when both operations require the same
machine during the same period, The enumerative task in this algorithm
is to successively resolve the conflict among operations which viclate
the disjunctive constraints., Resolving the conflict in favor of a par-
ticular operation is called a possible resolution, Graphically, each
possible resolution is equivalent to assigning an arc (or arc9d from that
particular node (operation) to the other(s) in the conflict set. Con-
sequently, graphs associated with the possible resolutions are generated.
In order to obtain an optimal solution without explicitly enumerating
all possible resolutions, three main processes are included in this al-
gorithm, These are: (1) branching process which generate a new set of
graphs (or possible resolutions) from a previously selected graph; (2)
bounding process which helps one select a graph for further branching,
and thus makes it possible to achieve reduction in generating graphs at
each level; (3) backtracking process which tests the solution for opti-
mality.

In Chapter I, the various existing enumerative techniques are com-

prehensively reviewed with reference to their basic concepts, computational

74

experience, advantages and disadvantages. In Chapter II, the basic con-
cept of the proposed algorithm is presented. The computational algorithm
for the proposed method is summarized in formal steps., The sample
problem is solved to illustrate the computational algorithm. In Chapter
III, ten published shop scheduling sample problems have been solved by
five existing techniques. The results obtained by these methods have
been comparatively evaluated with that by the proposed method., The
sizes of these problems vary between 2 to 5 jobs and 2 to 4 machines.
The criterion for this evaluation is based on the number of nodes ex-
plored to prove optimality. The results show that the proposed method
requires relatively smaller number of nodes explored tham that by the
other techniques. This fact may be attributed to the better quality

of the proposed bounding procedure. In this bounding procedure, heu-
ristic rules are applied to assist the lower bound in guiding the
search when a tie exists between lower bounds. In addition, an upper
bound is used in conjunction with the lower bound at each level and
therefore, an optimal solution can be recognized before all the comn~
flicts have been resolved. The other features of this algorithm worth
mentioning are as follows:

1. The conflicts need only to be checked for the unscheduled nodes
by a simplified constraint equation at each level, Thus, the more
nodes that have been scheduled, the less the computational effort re-
quired to check for conflicts,

2, The storage requirements are limited to the data pertained to
the current nodes in the search tree., All the lower-bounds of possible

resolutions can be computed by using the same storage space for a graph.

75

3, By the virtue of a graph, it permlts one to use an efficient
critical path method.

4, An actual solution is obtained at each level, this algorithm
permits one to terminate the search at anytime with a good, but not
necessarily optimal solution.

5. Combining the above four features, problems of larger size
could be solved within a reascnable time,

In conclusion, it is suggested that more computational experi-
ence is necessary before more reliable results can be obtained. Further
investigations which would be recommended are as follows:

1, The number of nodes explored to prove optimality using upper
bounds versus not using upper bounds.

2, The quality of the solution obtained without backtracking using
the heuristic rules when the lower bound fails in guiding the search.

3. The computational time required to obtain an optimal solution
for all above cases.

To generalize this algorithm by imbedding more constraints such as
due date and concurrency requirements (certain operations must be per-

formed concurrently) is alsoc recommended,

(1]

[2]

131

[4]

[5]

[6]

[7]

[8]

[91

REFERENCES

Ashour, S, "A Branch-and-Bound Algorithm for Flow-Shop Scheduling

Problems," AIIE Transactions, Vol., II, No. 2, June, 1970.

Ashour, S, and S.R. Hiremath, "Branch-and-Bound Approach for Job-
Shop Scheduling Problems,”" presented before the 37th National
Meeting of the Operations Research Society of America, Washingtonm,
D.C., April 20-22, 1970,

Balas, E., "Discrete Programming by the Filter Method," Operations
Research, Vol, 15, 1967, pp. 915-957.

Balas, E., "Machine Sequencing Via Disjunctive Graphs: An Implicit

Enumeration Algorithm," Operations Research, Vol. 17, No. 6, 1968,

Pp. 941-956.

Balas, E., "Machine Sequencing: Disjunctive Graphs and Degree-
Constrained Subgraphs, "IBM, New York Scientific Center Report No.
320-2971, April 1, 1969.

Brooks, G.H. and C, White, "An Algorithm for Finding Optimal or Near

76

Optimal Solutions to the Production Scheduling Problem, "The Journal

of Industrial Engineering, Vol. 16, No., 1, 1965, pp. 34-40.

Charlton, J. M, and C. C. Death, "A Generalized Machine - Scheduling

Algorithm, "Operations Research Quarterly, Vol. 21, No. 1, 1970,

PP. 127-134.
Charlton, J. M. and C, C. Death, "A Method of Solution for General

Machine-Scheduling Problems, "Operations Research, Vol. 18, No. 4,

1970, pp. 689-706.
Giffler, B, and G. Thompson, "Algorithms for Solving Production

Scheduling Problems," Operations Research, Vol., 8, No. 5, 1960,

pp. 487-503.

[10]

[11)

[12]

[13]

[14]

77

Greengberg, H. H.,, "A Branch-and-Bound Solution to the General

Scheduling Problem," Operations Research, Vol, 16, No, 2, 1968,

pp 353-36.
Land, A. H. and A, Doig, "An Automatic Method of Solving Dis-

crete Programming Problems, "Econometrica, Vol. 28, No. 3, 1960,

pp. 497-520,
Little, J. D, C., K, G. Morty, D. W, Sweeney and C. Karel, "An

Algorithm for the Traveling Salesman Problem," Operations

Research, Vol, 11, No. 6, 1963, pp. 972-989,

Moth, J. F., and G, L, Thompson, Industrial Scheduling, Prentice-

Hall, Englewood Cliffs, N.J. 1963,
Schrage, L., "Solving Resource - Constrainted Network by Implicit

Enumeration -~ Nonpreemptive Case, '"Operations Research, Vol, 18,

No. 2, 1970, pp. 263-278.

A DISJUNCTIVE GRAPH TECHNIQUE

FOR SHOP SCHEDULING PROBLEMS

by

KUNG=YING CHIU

B.E. (I.E.,), Tunghai University

Taichung, Taiwan, Republic of China, 1968

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirement for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1971

The shop scheduling problem is formulated as a two—terminal network
flow problem for which the disjunctive constraints are binding, These
constraints arise when both operations require the same machine during
the same period. An enumerative technique is proposed to solve the
problem by successively resolving the conflicts among those operations
which violate the disjunctive comnstraints, Graphical interpretation of
resolving the conflict in favor of a node (operation) is equivalent to
assigning an arc (arcs) from that node to the other(s) in conflict.
Consequently, each possible resolution is represented as a graph. A
branch-and-bound procedure is included in this disjunctive graph al-~
gorithm, so that an optimal solution can be obtained without explicitly
enumerate all possible resolutions.

This algorithm utilizes some heuristic rules to guide the search
when a tie exists between lower bounds. An upper bound is also used in
conjunction with lower bounds to detect an optimal solution before all
the conflicts have been resolved, An actual solution is obtained at
each level, thus one can terminate the search at any time with a good,
but not necessarily optimal, solution, Storage requirement are mostly
limited to the data pertained to a graph.

Ten published shop scheduling sample problems have been solved by
five existiﬁg techniques. The results obtained by these methods have
been comparatively evaluated with that by the proposed method. The
criterion for this evaluation is based on the number of nodes explored
to prove optimality. The results show that the proposed method requires
relatively smaller number of nodes explored than that by the other tech-

niuges,

