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Abstract

Observations conducted over the few decades show that the expansion of the Universe is

accelerating. In the standard model of cosmology, this accelerated expansion is attributed

to a dark energy in the form of a cosmological constant. It is conceivable, however, for the

dark energy to exhibit mild dynamics (so that its energy density changes with time rather

than having a constant value), or for the accelerated expansion of the Universe to be caused

by some mechanism other than dark energy. In this work I will investigate both of these

possibilities by using observational data to place constraints on the parameters of simple

models of dynamical dark energy as well as cosmological models without dark energy. I

find that these data favor the standard model while leaving some room for dynamical dark

energy.

The standard model also holds that the Universe is flat on large spatial scales. The same

observational data used to test dark energy dynamics can be used to constrain the large-scale

curvature of the Universe, and these data generally favor spatial flatness, with some mild

preference for spatial curvature in some data combinations.
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Chapter 1

Fundamentals of theoretical

cosmology

Physical cosmology is the scientific study of the origin, evolution, and fate of the Universe.

More specifically, physical cosmologists use the laws of physics to understand how the Uni-

verse evolves across the largest conceivable length and time scales. Physical cosmologists

concern themselves with such questions as: “Did the Universe have a beginning? If so, how

did it begin?”, “How old is the Universe?”, “What is the composition of the matter in the

Universe, and how is it distributed?”, “What is the overall geometry of the Universe?”, “Will

the Universe ever come to an end?”. It is a testament to the remarkable scientific progress

made in the last several hundred years that these kinds of questions are now beginning to

be answered quantitatively and precisely. Here I will briefly review the key elements of the

theoretical side of physical cosmology, from the basics of general relativity up to the deriva-

tion of the Friedmann equations that govern the background evolution of the Universe on

large scales. I will not attempt to be comprehensive in this chapter, as some results will be

worked out carefully and in detail while others will be stated without proof. I intend merely

to give an overview of the material that I take to be most important for an understanding of

the later chapters; more details can be found elsewhere (e.g. Peebles, 1993; Dodelson, 2003;

Mukhanov, 2005; Weinberg, 2008; Zee, 2013; Thorne and Blandford, 2017).
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1.1 Einsteinian Cosmology

Physical cosmology is based on the general theory of relativity, and Einstein’s great insight

into the nature of gravity begins with the simplest of observations: that the inertial mass

mI, in Newton’s Second Law

~Fnet = mI~a (1.1)

is equal to the gravitational mass mG in Newton’s law of gravity:

~FG =
GMmG

r3
~r. (1.2)

Near the surface of the Earth, the magnitude of the force of gravity acting on a particle

reduces to

FG = mGg (1.3)

where

g :=
GM

R2
E

, (1.4)

and RE is the radius of the Earth. Because mI = mG, it follows that, if the force of gravity

is the only force acting on a particle,

a = g. (1.5)

This is the Equivalence Principle which, stated informally, says that a falling particle

“does not feel its own weight”, owing to the equivalence of gravitational and inertial mass.

Before Einstein, the fact that inertial mass is equivalent to gravitational mass was merely

a curious, unexplained coincidence. General relativity however, takes this principle as its

very foundation, and even provides a framework for explaining it, as we will see in the next

secion.
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1.1.1 The geometry of spacetime

In the special theory of relativity, space and time are unified into spacetime, as expressed by

the infinitesimal line element (in Cartesian coordinates and with c = 1)

ds2 = −dt2 + dx2 + dy2 + dz2. (1.6)

This quantity is invariant under Lorentz transformations, i.e., transformations between iner-

tial frames that satisfy Einstein’s two postulates of special relativity.1 Lorentz transforma-

tions are linear, so to generalize the special theory of relativity we can consider non-linear

transformations between coordinates. Under a general, non-linear transformation, the line

element will be invariant if it takes the form

ds2 = gµν(x)dxµdxν , (1.7)

where gµν(x) is a tensor known as the metric tensor, which depends, in general, on the

spacetime coordinates x. In eq. (1.7) I have employed the Einstein summation convention

whereby matching upper and lower indices are summed.2 To show that eq. (1.7) is invariant

under general coordinate transformations, we must recall that an arbitrary two-index tensor

field Tµν (x) transforms like

T̄µν (x̄) = Tαβ (x)
∂xα

∂x̄µ
∂xβ

∂x̄ν
(1.8)

whenever its coordinates are subjected to a general transformation (Zee, 2013). Similarly,

the coordinate differentials transform like

dx̄α =
∂x̄α

∂xµ
dxµ, (1.9)

1Namely: 1.) the laws of physics are the same in all inertial reference frames, and 2.) all inertial observers
measure the same value for the speed of light in vacuum (Thornton and Rex, 2006)

2In this work, Greek indices run from 0 to 4.
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so

ds2 = gµν(x)dxµdxν

= ḡαβ (x̄)
∂xα

∂x̄µ
∂xβ

∂x̄ν
dxµdxν

= ḡαβ (x̄) dx̄αdx̄β.

(1.10)

This agrees nicely with our intuition, because a line is a geometric object, whose length in

spacetime should not depend on the coordinate system the observer has chosen.

In making the line element dependent on both position and time, we have opened up the

possibility that spacetime can be curved. The line element of special relativity (eq. 1.6),

describes a flat spacetime, or one in which the angles of a triangle always add up to 180o,

and parallel lines always remain parallel. In contrast, in a curved spacetime (described in

general by the line element of eq. 1.7), the angles of a triangle may add up to more or

less than 180o, and parallel lines may either converge or diverge. This is due to the fact

that the coefficients of the coordinate differentials in the general line element (namely, the

components of the metric tensor) depend on x, so depending on one’s location in spacetime,

the relative scale of one coordinate may be greater or less than the relative scale of another

coordinate.

Spacetime curvature is what explains the equivalence principle. While it is possible to

say the equivalence of inertial and gravitational mass explains the fact that objects fall at

the same rate in a vacuum, this is somewhat unsatisfying because the equivalence itself

remains unexplained. General relativity, on the other hand, turns this explanation around:

it says that particles fall at the same rate in vacuum, independently of the materials of which

they’re composed, because they’re following the same (curved) paths in spacetime. More

precisely, two particles freely falling in a vacuum on the surface of the earth will fall toward

the earth’s center at the same rate because they are both following the “straightest-possible”

paths toward the center. Specifically, if we follow one of the particles on its way down, then

we (who occupy a frame co-moving with the particle, having coordinates yν) will describe

the particle’s motion by
d2yν

dτ 2
= 0, (1.11)
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where τ =
∫ √
−ds is the particle’s proper time, that is the time measured by a co-moving

observer. Eq. (1.11) says that the particle follows a straight-line path, with no acceleration.

Observers resting on the surface of the earth, however, will use coordinates xµ to describe the

particle’s motion. To translate eq. (1.11) from the yν coordinate system to the xµ coordinate

system, we must simply express yν in terms of xµ, and then differentiate this quantity:

d

dτ
yν(xµ) =

∂yν

∂xµ
dxµ

dτ
. (1.12)

Taking the second derivative of this expression yields

d2yν

dτ 2
=

d

dτ

(
∂yν

∂xµ

)
dxµ

dτ
+
∂yν

∂xµ
d

dτ

(
dxµ

dτ

)
= 0 (1.13)

From eq. (1.12), we have

d

dτ

(
∂yν

∂xµ

)
dxµ

dτ
=

∂2yν

∂xµ∂xρ
dxρ

dτ

dxµ

dτ
. (1.14)

Plugging this back into eq. (1.13), we get

∂2yν

∂xµ∂xρ
dxρ

dτ

dxµ

dτ
+
∂yν

∂xλ
d2xλ

dτ 2
= 0, (1.15)

where I have renamed a dummy index. After a little rearrangement, this becomes

d2xλ

dτ 2
+
∂xλ

∂yν
∂2yν

∂xµ∂xρ
dxρ

dτ

dxµ

dτ
= 0. (1.16)

where I have used the identity
∂yτ

∂yλ
∂yλ

∂yε
= δτε . (1.17)

Upon making the identification

Γλρµ :=
∂2yν

∂xρ∂xµ
, (1.18)
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the geodesic equation takes the standard form:

d2xλ

dτ 2
+ Γλρµ

dxρ

dτ

dxµ

dτ
= 0 . (1.19)

Γλρµ are known as the Christoffel symbols, and they account for the acceleration produced

by the change in the coordinates (similar to the centrifugal and Coriolis accelerations that

arise in a rotating frame of reference). The effect of gravity on a particle is encapsulated

by the Christoffel symbols, so that a particle moving through empty spacetime, subject

only to gravitational interactions, will follow a trajectory governed by eq. (1.19), called a

geodesic. Geodesic paths are the “straightest-possible” paths alluded to earlier; they are

the analogues, in curved spacetime, of straight lines in flat spacetime. It is possible to show

that the Christoffel symbols can be written, in terms of the metric tensor components,

Γλρµ =
1

2
gλτ (∂ρgµτ + ∂µgρτ − ∂τgρµ) (1.20)

(Zee, 2013). This form will be very useful later. It can also be used to justify the assertion

that the Christoffel symbols account for the action of gravity on the particle. As we have seen,

if no non-gravitational forces act on the particle, then the particle follows a trajectory whose

coordinates xλ (τ) satisfy eq. (1.19). This should reduce to ~a = ~g in the non-relativistic

limit. If the particle moves slowly, then dt
dτ
� dxi

dτ
. This implies

d2xλ

dτ 2
+ Γλ00

dx0

dτ

dx0

dτ
+ Γλij

dxi

dτ

dxj

dτ
≈ d2xλ

dτ 2
+ Γλ00

dx0

dτ

dx0

dτ
= 0 (1.21)

If we further stipulate that the gravitational field is weak, such that gρµ ≈ ηρµ + hρµ where

hρµ is a small perturbation, and that hρµ does not depend on time, then

Γi00 = −1

2
gij∂jh00 ≈ −

1

2
ηij∂jh00 = −1

2
∂ih00, (1.22)
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and

Γ0
00 = −1

2
∂0h00 = 0. (1.23)

Then
d2x0

dτ 2
= 0, (1.24)

and
d2xi

dτ 2
=

1

2
∂ih00. (1.25)

Eq. (1.24) says that dx0

dτ
= dt

dτ
is a constant. We can argue that this constant is approximately

unity because, in the non-relativistic limit v � c,

dτ 2 = dt2
(

1− d~x · d~x
c2dt2

)
= dt2

(
1− v2

c2

)
≈ dt2. (1.26)

Consequently
d2xi

dτ 2
≈ d2xi

dt2
=

1

2
∂ih00 (1.27)

If we define h00 := −2Φ, where Φ is the Newtonian gravitational potential, then

d2~x

dt2
= −~∇Φ, (1.28)

or ~a = ~g, as expected.

1.2 Covariant derivatives

To do physics, we need to be able to take derivatives of functions. For example, to compute

the components of the electric field ~E created by the charge density ρ, we could integrate

Gauss’s Law

~∇ · ~E =
ρ

ε0
, (1.29)

where

~∇ · ~E = ∂xEx + ∂yEy + ∂zEz (1.30)
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in 3-dimensional Cartesian coordinates. In Euclidean space it is easy to compute the differ-

ence of two vectors; simply slide one vector to the location of the other vector until their

tails lie on the same point, and subtract them component-by-component. In flat space the

subtraction of two vectors gives the intrinsic change of the vector, independent of the loca-

tions of the vectors in space or of one’s choice of coordinates. In curved space (or curved

spacetime), the basis vectors associated with the coordinate system have different values at

different points, so to compute the change of a vector in a curved space (or curved spacetime),

we also need to account for the change in the basis vectors when we “slide” one vector over

to the location of the other. This is most easily seen by noting that a 4-vector transforms

like

Aµ̄ =
∂x̄µ

∂xν
Aν (1.31)

under a general coordinate transformation xν → x̄µ(xν) (Zee, 2013). If we differentiate Aν ,

then transform the coordinates of the resulting two-index object, we obtain:

∂ρ̄A
µ̄ =

∂xλ

∂x̄ρ
∂2x̄µ

∂xλ∂xν
Aν +

∂xλ

∂x̄ρ
∂x̄µ

∂xν
∂λA

ν . (1.32)

Recall that an arbitrary tensor T νλ transforms like:

T µ̄ρ̄ =
∂xλ

∂x̄ρ
∂x̄µ

∂xν
T νλ (1.33)

(Zee, 2013). It is clear that eq. (1.32) does not transform like a two-index tensor, because

we have not accounted for the change in the basis vectors of the coordinates (the first term

ruins the transformation). If eq. (1.32) did transform correctly, we could write an equation

of the form

∂λA
ν = T νλ , (1.34)

where T νλ is again an arbitrary tensor, and the equality would be valid in all coordinate

systems (because the ∂xλ

∂x̄ρ
∂x̄µ

∂xν
terms would cancel on both sides of the equation). As physicists,

we seek equations that are valid irrespective of the observer’s arbitrary choice of coordinates;
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only these deserve to be called “laws of physics”. Therefore, if we want to formulate the laws

of physics in curved spacetime, we need a derivative that transforms like a tensor. If turns

out that if we define the covariant derivative according to

DλA
ν := ∂λA

ν + ΓνλτA
τ (1.35)

(Zee, 2013) then DλA
ν will be a tensor. Similarly, the covariant derivative of a vector with

a lower index is

DλAν = ∂λAν − ΓτλνAτ . (1.36)

Covariant differentiation of tensors works in much the same way as the covariant differenti-

ation of vectors. For a tensor with two upper indices,

DλT
µν = ∂λT

µν + ΓµρλT
ρν + ΓνρλT

µρ, (1.37)

whereas a tensor with two lower indices has

DλTµν = ∂λTµν − ΓρµλTρν − ΓρνλTµρ (1.38)

(Zee, 2013). From these equations, we can see that the sign of the Christoffel symbols in the

covariant derivatives of vectors and tensors with lower indices is negative. This generalizes

easily to mixed tensors (that is, tensors with some upper indices and some lower indices)

having any number of total indices. Using eqs. (1.38) and (1.20), we can derive an important

identity, namely

Dλgµν = 0. (1.39)

Writing this out explicitly gives

Dλgµν = ∂λgµν − Γρµλgρν − Γρνλgµρ (1.40)
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where

Γρµλgρν =
1

2
(∂µgλν + ∂λgµν − ∂νgµλ) , (1.41)

and

Γρνλgµρ =
1

2
(∂νgλµ + ∂λgµν − ∂µgνλ) . (1.42)

From these equations, it’s clear that eq. (1.39) is satisfied since gµν = gνµ.

1.3 Einstein’s gravitational field equations

In Sec. 1.1.1 we saw that gravity can be attributed to the curvature of spacetime, through

the Christoffel symbol term in the geodesic equation. This tells us how matter moves under

the influence of a given spacetime geometry, but it tells us nothing about how to determine

the geometry in the first place. In Newtonian physics, the gravitational fields are generated

by matter distributions, according to

~∇ · ~g = −4πGρ, (1.43)

where G is the gravitational constant and ρ is a matter density. Given a matter density ρ,

we can solve eq. (1.43) for the gravitational field ~g. The goal, then, is to figure out how

to solve for the relativistic analogue of ~g. Because gravity can be attributed to spacetime

curvature, determining the field equations for gravity in four-dimensional spacetime should

be equivalent to working out a set of field equations for the curvature of four-dimensional

spacetime. One way to do this is to proceed by analogy with the way we derive the relativistic

form of the electromagnetic field equations: we postulate an action which depends on some

scalar function of the coordinates x

S ∝
∫
F (x)

√
−gd4x, (1.44)
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and demand that this action be stationary3 under arbitrary small variations δgµν of the

metric (the dynamical variable being gµν in this case).

One of the consequences of the equivalence principle is that, in locally-flat coordinates,

the Christoffel symbols vanish: Γαβγ = 0. The derivatives of the Christoffel symbols, however,

do not vanish in locally-flat coordinates. Presumably, then, F (x) must somehow be made

from a tensor containing two derivatives of the metric (otherwise F (x), being a scalar func-

tion, would vanish in all frames). The tensor that has the necessary form is the Riemann

curvature tensor

Rα
βµν =

(
∂µΓανβ + ΓαµλΓ

λ
νβ

)
−
(
∂νΓ

α
µβ + ΓανλΓ

λ
µβ

)
. (1.45)

If we contract the first and third indices of this tensor, we obtain the Ricci tensor

Rµ
βµν = Rβν =

(
∂µΓµνβ + ΓµµλΓ

λ
νβ

)
−
(
∂νΓ

µ
µβ + ΓµνλΓ

λ
µβ

)
, (1.46)

which can then be contracted to form the scalar curvature

Rν
ν = R = gβν

[(
∂µΓµνβ + ΓµµλΓ

λ
νβ

)
−
(
∂νΓ

µ
µβ + ΓµνλΓ

λ
µβ

)]
. (1.47)

Being a scalar, R is left invariant by general coordinate transformations. This, combined

with the fact that R contains two derivatives of the metric, means that R is the function

F (x) we seek. Therefore, the action for the gravitational field is

S ∝
∫
R
√
−gd4x. (1.48)

(Zee, 2013). It turns out (and we will justify this later) that the proportionality constant in

this action has the value 1
16πG

in units where c = 1. This is known as the Einstein-Hilbert

3Not extremal! See Gray and Taylor (2007).
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action,

SEH =
1

16πG

∫
R
√
−gd4x, (1.49)

after its discoverers. Given eq. (1.49), we can derive Einstein’s equations governing the

curvature of spacetime by demanding that the variation of SEH with respect to small changes

δgµν in the metric vanish:

δSEH = 0. (1.50)

The variation of eq. (1.49) is:

δSEH =
1

16πG

∫
δ
(
R
√
−g
)
d4x. (1.51)

The first thing to do here is to write R in terms of the metric and the Ricci tensor,

R = gαβRαβ, (1.52)

so that eq. (1.51) becomes

δSEH =
1

16πG

∫
δ
(
gαβRαβ

√
−g
)
d4x. (1.53)

Expand the integrand via the product rule

δ
(
gαβRαβ

√
−g
)

= δgαβRαβ

√
−g + gαβδRαβ

√
−g +Rδ

√
−g, (1.54)

Then use the fact that

δgαβ = −gαµδgµνgνβ (1.55)

to re-write the first term on the RHS of eq. (1.54):

δgαβRαβ

√
−g =

√
−gRµνδgµν . (1.56)
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This already has the form a function multiplied by gµν , so nothing more needs to be done.

The second term on the RHS of eq. (1.54) will require a little more work, because it depends

on the variation δRαβ of the Ricci tensor. This variation is equal to

δRαβ = δ
(
∂σΓσαβ + ΓλτλΓ

τ
αβ

)
− δ

(
∂βΓσασ + ΓλτβΓταλ

)
= ∂σδΓ

σ
αβ + δΓλτλΓ

τ
αβ + ΓλτλδΓ

τ
αβ − ∂βδΓσασ − δΓλτβΓταλ − ΓλτβδΓ

τ
αλ.

(1.57)

Now, we can simplify this expression by using locally-flat coordinates (in which Γαβγ = 0).

Doing this produces

δRαβ = ∂σδΓ
σ
αβ − ∂βδΓσασ,

= DσδΓ
σ
αβ −DβδΓ

σ
ασ,

(1.58)

where the second line follows because covariant derivatives are equivalent to partial deriva-

tives in locally-flat coordinates. After integrating by parts, the second term on the RHS of

eq. (1.54) becomes

∫
gαβ

(
DσδΓ

σ
αβ −DβδΓ

σ
ασ

)√
−gd4x =

∫ (
−Dσg

αβδΓσαβ +Dβg
αβδΓσασ

)√
−gd4x

= 0,

(1.59)

because Dαg
βγ = 0. It follows that the second term on the RHS of eq. (1.54) does not

contribute to the integral on the RHS of eq. (1.53). To bring the third term on the RHS of

eq. (1.54) to the required form, use the fact that

δ
√
−g =

1

2

√
−ggµνδgµν (1.60)

to re-write the third term on the RHS of eq. (1.54) as

Rδ
√
−g =

1

2

√
−ggµνRδgµν (1.61)
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so that the variation of SEH becomes

δSEH =
1

16πG

∫ (
−Rµν +

1

2
Rgµν

)
δgµν
√
−gd4x. (1.62)

We want to make the action stationary, so we require

0 =

∫ (
−Rµν +

1

2
Rgµν

)
δgµν
√
−gd4x, (1.63)

which implies, by the fundamental lemma of variational calculus,

Rµν − 1

2
Rgµν = 0, (1.64)

or

Rµν −
1

2
Rgµν = 0 . (1.65)

These are Einstein’s equations for gravitation in empty spacetime. More precisely, these

equations describe the curvature of spacetime itself in the absence of sources (i.e. non-

gravitational forms of energy).

There is one simple way to generalize the Einstein-Hilbert action, and that is by adding

a constant λ to R in the integrand:

S̃EH =
1

16πG

∫
(R + λ)

√
−gd4x. (1.66)

Now, in Newtonian mechanics (i.e. mechanics with a fixed geometry), adding a constant to

the action wouldn’t change the dynamics because

δ

∫
λd3x =

∫
δλd3x = 0. (1.67)

This is why, in Newtonian mechanics, energy differences (as opposed to absolute energies)

determine dynamics. Einsteinian mechanics, however, is different. Because
√
−g is sensitive
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to changes in the metric (after all, it is a function of the metric), the geometry knows about

“arbitrary” constants. Therefore, when we vary S̃EH, we get

δS̃EH =
1

16πG

∫ [
δ
(
R
√
−g
)

+ λδ
√
−g
]
d4x. (1.68)

We already know what the first term in the integrand looks like, and we can use eq. (1.60)

again to rewrite the second term, so that with almost no extra work, we obtain the most

general form of Einstein’s equations in the absence of sources:

Rµν −
1

2
(R + λ) gµν = 0. (1.69)

In the literature (and most textbooks) this is usually written

Rµν −
1

2
Rgµν + Λgµν = 0 , (1.70)

where Λ is the cosmological constant. Getting our equations into this form is just a

matter of redefining the constant we started out with:

λ := −2Λ, (1.71)

so that the modified Einstein-Hilbert action is

S̃EH =
1

16πG

∫
(R− 2Λ)

√
−gd4x. (1.72)

Neglecting the cosmological constant for a moment, what if our spacetime isn’t empty,

but is rather filled with stuff? After all, stuff gravitates, so there must be a way to describe

how it interacts with geometry. It turns out that this is pretty easy to do. First, write the

total action (action of gravity plus matter) as

S = SEH + SM. (1.73)
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Here I am using the word “matter”, construed in its broadest possible sense, to refer to any

non-gravitational parts of the action. If we define the energy-momentum tensor

T µν :=
2√
−g

δSM

δgµν
(1.74)

(Zee, 2013), then vary the action S with respect to gµν , we obtain

δS =
1

16πG

∫ (
−Rµν +

1

2
Rgµν

)
δgµνd

4x+

∫
δSM

δgµν
δgµνd

4x. (1.75)

Now use eq. (23) to re-write the matter term:

δS =
1

16πG

∫ (
−Rµν +

1

2
Rgµν

)
δgµν
√
−gd4x+

1

2

∫
T µνδgµν

√
−gd4x. (1.76)

Just like before, if we demand that the variation vanishes,

0 =

∫ (
−Rµν +

1

2
Rgµν + 8πGT µν

)
δgµν
√
−gd4x (1.77)

then we find, after invoking the fundamental lemma again,

Rµν −
1

2
Rgµν = 8πGTµν . (1.78)

If we take the trace of this equation, we find

Rν
ν −

1

2
Rgνν = 8πGT νν

R− 4

2
R = 8πGT

−R = 8πGT,

(1.79)

so that

Rµν +
1

2
(8πGT ) gµν = 8πGTµν , (1.80)
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or

Rµν = 8πG

(
Tµν −

1

2
Tgµν

)
. (1.81)

This form will be convenient later. For now, however, let us examine eq. (1.78) again. This

equation has the important property that the covariant divergence of both sides vanishes:

Dµ

(
Rµν − 1

2
Rgµν

)
= DµT

µν = 0 (1.82)

This is important because the equality on the RHS is the generalization of the energy and mo-

mentum conservation laws we know from Newtonian physics; it is the law of conservation

of energy-momentum (“energy-momentum” here referring to the relativistic unification

of energy and momentum, similar to the relativistic unification of space and time). To show

that this conservation law holds, take the covariant derivate of the Riemann tensor:

DλR
α
βγδ = Dλ

[(
∂γΓ

α
βδ + ΓασγΓ

σ
βδ

)
−
(
∂δΓ

α
βγ + ΓασδΓ

σ
βγ

)]
. (1.83)

Because this is a tensor equation, it will also hold in locally-flat coordinates. In such a

coordinate system the connection coefficients vanish (but their gradients do not vanish) so

that

DλR
α
βγδ = ∂λ∂γΓ

α
βδ − ∂λ∂δΓαβγ. (1.84)

If we add DγR
α
βδλ to this equation, we find:

DλR
α
βγδ +DγR

α
βδλ = ∂λ∂γΓ

α
βδ − ∂λ∂δΓαβγ + ∂γ∂δΓ

α
βλ − ∂γ∂λΓαβδ

= ∂γ∂δΓ
α
βλ − ∂λ∂δΓαβγ

= −DδR
α
βλγ.

(1.85)

Therefore

DλR
α
βγδ +DγR

α
βδλ +DδR

α
βλγ = 0. (1.86)
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Contracting both sides of this equation with gγα produces

DλR
γ
βγδ +DγR

γ
βδλ +DδR

γ
βλγ = 0, (1.87)

or

DλRβδ +DγR
γ
βδλ −DδRβλ = 0. (1.88)

Contracting with gβδ produces

DλR−DγRγλ −DβRβλ = 0. (1.89)

or

DβR
β
λ −

1

2
DλR = 0. (1.90)

Contracting one last time with gλα, and noting that Dα = gαβDβ, we obtain

Dβ

(
Rβα − 1

2
Rgβα

)
= 0 . (1.91)

This identity also gives us another way to introduce the cosmological constant, Λ. Because

Dβgµν = 0, it follows that we can add a term Λgµν to Einstein’s equations without altering

the conservation law of eq. (1.91). If we happen to live in a universe with a non-vanishing

cosmological constant, then

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.92)

or

Gµν + Λgµν = 8πGTµν , (1.93)

where

Gµν := Rµν −
1

2
Rgµν , (1.94)

which is usually called the Einstein tensor. It is also common to carry Λ over to the RHS
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of eq. (1.92), so that

Gµν = 8πGTµν (1.95)

where, in this case,

Tµν = TM
µν + TΛ

µν , (1.96)

with

TΛ
µν := − Λ

8πG
gµν . (1.97)

Finally, we can show that the numerical factor 1
16πG

in the Einstein-Hilbert action is

correct by examining the Newtonian limit of Einstein’s field equations. We know that the

Ricci tensor is

Rµν =
(
∂τΓ

τ
µν + ΓλρλΓ

ρ
µν

)
−
(
∂νΓ

τ
µτ + ΓτλνΓ

λ
µτ

)
. (1.98)

In the Newtonian limit, which is the weak field limit gµν = ηµν + hµν where hµν is a small

perturbation to the Minkowski metric, only the derivatives of the Christoffel symbols survive

when we expand Rµν to first order:

Rµν ≈ ∂τΓ
τ
µν − ∂νΓτµτ . (1.99)

The Christoffel symbols, to first order, are

Γτµν =
1

2
ητρ (∂µhνρ + ∂νhµρ − ∂ρhµν) , (1.100)

and

Γτµτ =
1

2
ητρ (∂µhτρ + ∂τhµρ − ∂ρhµτ ) . (1.101)

In the Newtonian limit, hµν has no time dependence (no gravitational waves), and h00 � hij

(so that the hij components can be neglected).4 We can also neglect the diagonal components

4This can be justified on the grounds that, for a non-relativistic particle, dx
dt � c or cdt� dx. Measured

in meters, the “distance” that the particle moves along the time axis is much greater than the distance it
moves along any of the spatial axes. Therefore the particle’s worldline samples a much greater portion of
the time-time component of the metric compared to the space-space components, so hij must be negligible
(I adapted this argument from Price, 2016).
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hi0 = h0i. These conditions result in

Γi00 = −1

2
ηij∂jh00 (1.102)

being the only non-vanishing Christoffel symbols. If we identify h00 = −2Φ (as we did in

the text immediately above eq. 1.28) then

Rµν = R00 = −1

2
∂i∂

ih00 = ∇2Φ, (1.103)

to first order in hµν . The second term on the LHS of eq. (1.78) must be

1

2
Rgµν =

1

2
Rηµν (1.104)

because Rµν is first order in hµν ; since R is the trace of Rµν , it must also be of first order

in hµν , so only the lowest order term in gµν survives. From eq. (1.79), we know that

R = −8πGT , where T is the trace of Tµν . In the Newtonian limit, matter moves non-

relativistically (such that v � c), so the energy density T00 = ρ of the matter distribution

must be much greater than the other components of the energy-momentum tensor. This

implies T = −ρ and R = 8πGρ. Therefore

R00 −
1

2
Rη00 = 8πGT00

∇2Φ− 1

2
(8πGρ) (−1) = 8πGρ

∇2Φ = 4πGρ

~∇ · ~g = −4πGρ,

(1.105)

as expected.
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1.4 The Friedmann equations

1.4.1 The Friedmann-Lemâıtre-Robertson-Walker (FLRW) met-

ric

The metric of a homogeneous, isotropic, expanding spacetime has the form

ds2 = −dt2 + a2(t)γijdx
idxj (1.106)

where i, j = 1, 2, 3 and

γij :=
dr2

1− kr2
+ r2dΩ2. (1.107)

This form of the metric can be justified on the following grounds (Peebles, 1993, though my

sign conventions are different from his). First, consider a general line element

ds2 = −g00dt
2 + 2g0idtdx

i + gijdx
idxj (1.108)

where g0i is assumed to be equal to gi0. If τ is the proper time of an observer co-moving with

the local motion of matter in his or her vicinity, then the square of the proper time interval

he or she measures on his or her clock will be

dτ 2 = dt2 = g00dt
2 (1.109)

if he or she assigns coordinates (t, xi) to the events within his or her reference frame. Because

the Universe is assumed to be isotropic, g0i must vanish (being a vector). This plus the

assumption of homogeneity further imply (see Peebles, 1993 for more details), that all co-

moving observers can synchronize their clocks. Therefore all co-moving observers use the

time coordinate t and the same spatial coordinates xi (they must occupy the same constant-

time hypersurfaces). Therefore the line element of a homogeneous, isotropic universe has
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the form

ds2 = −dt2 + gijdx
idxj. (1.110)

We can place further restrictions on the form of this line element by noting that a curved

four-dimensional spacetime can be embedded within a flat Minkowski spacetime of one higher

dimension such that

gµνdx
µdxν = −dt2 + dx2 + dy2 + dz2 + dw2 (1.111)

where (x, y, z, w) are Cartesian coordinates in the five-dimensional spacetime. A curved

three-dimensional space is then equivalent to a surface on a four-dimensional spatial hyper-

surface of the larger five-dimensional spacetime. To show this, we note that the coordinates

of the three-dimensional surface must obey the following constraint:

L2 = x2 + y2 + z2 + w2 (1.112)

where L is the surface’s radius of curvature. If we define r2 := x2 + y2 + z2, then w must

satisfy

w2 = L2 − r2, (1.113)

so that

wdw = −rdr. (1.114)

This implies

dw2 =
r2dr2

w2
=

r2dr2

L2 − r2
. (1.115)

Since the Universe is assumed to be isotropic, it is natural to rewrite the line element in

spherical coordinates, so that

dx2 + dy2 + dz2 = dr2 + r2dΩ2, (1.116)

22



where dΩ2 := dθ2 + sin2θdφ2. Inserting eqs. (1.115) and (1.116) into eq. (1.111) then

produces

gijdx
idxj =

(
1 +

r2

L2 − r2

)
dr2 + r2dΩ2

=
dr2

1− r2

L2

+ r2dΩ2.

(1.117)

In general the sign of L2 can be positive, negative, or zero, corresponding to spatially closed,

spatially open, or spatially flat hypersurfaces (Weinberg, 2008; Zee, 2013).5 It is convenient

to define

k :=
|L2|
L2

(1.118)

so that the line element becomes

ds2 = −dt2 +
dr2

1− k r2

|L2|

+ r2dΩ2 (1.119)

with k = 1,−1, 0, corresponding to the cases listed above. If the Universe can expand

or contract homogeneously, then the physical distance xph between any two points will be

related to the coordinate separation x of those two points by

xph (t) = a (t)x, (1.120)

where a(t) is known as the scale factor of the Universe. Therefore the line element of a

homogeneously expanding or contracting universe must be

ds2 = −dt2 + a (t)

[
dr2

1− k r2

|L2|

+ r2dΩ2

]
. (1.121)

It is also common to redefine
r

|L|
→ r. (1.122)

5Here, and in all following portions of this work, the word “hypersurface” refers to three-dimensional
hypersurfaces rather than four-dimensional hypersurfaces.
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If we then absorb |L| into the scale factor,

a (t) |L| → a (t) , (1.123)

the line element takes the form

ds2 = −dt2 + a (t)

[
dr2

1− kr2
+ r2dΩ2

]
, (1.124)

in agreement with eqs. (1.106) and (1.107).

1.4.2 Deriving the Friedmann equations

Given Einstein’s equations,

Rµν = 8πG

(
Tµν −

1

2
Tgµν

)
, (1.125)

we can derive equations that determine how a(t), the scale factor, evolves with time. These

are known as the Friedmann equations.

First, assume that the universe consists only of an ideal fluid with energy density given

by ρ and pressure given by p. This fluid has an energy-momentum tensor given by

Tµν = (ρ+ p)uµuν + pgµν . (1.126)

I wrote Einstein’s equations in terms of the trace of the energy-momentum tensor in eq.

(1.125) because the trace of eq. (1.126) is easy to calculate:

T ≡ T νν = 3p− ρ. (1.127)

Remember that uνν = −1 and gνν = 4.

The final assumption we require is that the observer is in a co-moving reference frame

24



with respect to the fluid (he or she is at rest with respect to the local movement of fluid in

his or her vicinity). This means

uT
µ = (1, 0, 0, 0) . (1.128)

Now we can write down Einstein’s equations in terms of ρ and p:

R00 = 4πG (ρ+ 3p) , (1.129)

R0i = 0, (1.130)

Rij = 4πG (ρ− p) a2γij. (1.131)

R00 is easier to calculate than Rij, so I’ll start with that one. In terms of the Christoffel

symbols, the time-time component of the Ricci tensor is given by

R00 = ∂τΓ
τ
00 + ΓττρΓ

ρ
00 − ∂0Γττ0 − Γτ0ρΓ

ρ
τ0. (1.132)

Remember that the Christoffel symbols are given in terms of the metric by

Γσβα =
1

2
gσλ (∂βgαλ + ∂αgβλ − ∂λgβα) , (1.133)

so, in this case,

Γτ00 =
1

2
gτλ (∂0g0λ + ∂0g0λ − ∂λg00) = 0, (1.134)

Γρτ0 =
1

2
gρλ (∂τg0λ + ∂0gτλ − ∂λgτ0) =

ȧ

a
γij. (1.135)

eq. (1.135) implies

Γτρ0Γρτ0 =

(
ȧ

a

)2

γii = 3

(
ȧ

a

)2

, (1.136)

so that

R00 = −3
ä

a
. (1.137)
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Now we know how the expansion of the universe accelerates with time:

ä

a
= −4πG

3
(ρ+ 3p) . (1.138)

The space-space component of the Ricci tensor requires a little more work. First, divide

Rij = ∂τΓ
τ
ji + ΓττρΓ

ρ
ji − ∂jΓττi − ΓτjρΓ

ρ
τi (1.139)

into

Rij = R
(time)
ij +R

(space)
ij , (1.140)

such that

R
(time)
ij = ∂0Γ0

ji + Γii0Γ0
ji − ∂jΓ0

0i − Γ0
j0Γ0

0i, (1.141)

and

R
(space)
ij = ∂kΓ

k
ji + ΓkknΓnji − ∂jΓkki − ΓkjnΓnki. (1.142)

We already know

Γρ0τ =
ȧ

a
γij, (1.143)

from eq. (1.135). We also need

Γ0
ij = aȧγij, (1.144)

Substituting these into eq. (1.141) yields

R
(time)
ij =

(
ȧ2 + aä

)
γij + ȧ2γij. (1.145)

That was the easy part. The hard part is calculating R
(space)
ij ; we’ll have to go component-

by-component. The non-zero Christoffel symbols that we need are:

Γrrr =
kr

1− kr2
, (1.146)
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Γrθθ = r
(
kr2 − 1

)
, (1.147)

Γrφφ = r
(
kr2 − 1

)
sin2θ, (1.148)

Γθrθ = Γφrφ =
1

r
, (1.149)

Γθφφ = −sinθcosθ, (1.150)

Γφθφ = cotθ. (1.151)

Suppose ij = rr. Then

R(space)
rr = ∂rΓ

r
rr + 2ΓθθrΓ

r
rr − ∂rΓrrr + 2∂rΓ

θ
θr − ΓrrrΓ

r
kr − 2ΓθrθΓ

θ
θr, (1.152)

which is

R(space)
rr = 2kγrr. (1.153)

If, on the other hand, ij = θθ, then

R
(space)
θθ = ∂rΓ

r
θθ + 2ΓθθrΓ

r
θθ − ∂θΓrrθ − 2ΓθθrΓ

r
θθ. (1.154)

The θθ component of the Ricci tensor is, therefore,

R
(space)
θθ = 2kγθθ. (1.155)

Finally, suppose ij = φφ. Then

R
(space)
φφ = ∂rΓ

r
φφ + ∂θΓ

θ
φφ + ΓrrrΓ

r
φφ + 2ΓφφrΓ

r
φφ − ΓφφrΓ

r
φφ + ΓθφφΓφθφ (1.156)

or

R
(space)
φφ = 2kγφφ. (1.157)
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Putting all three components together, we get

R
(space)
ij = 2kγij. (1.158)

When eq. (1.158) is combined with R
(time)
ij , we find that the space-space components of the

Ricci tensor are

Rij =
(
2ȧ2 + aä+ 2k

)
γij (1.159)

so the space-space components of Einstein’s equations are

(
2ȧ2 + aä+ 2k

)
γij = 4πG (ρ− p) a2γij, (1.160)

which implies

2

(
ȧ

a

)2

+
ä

a
+

2k

a2
= 4πG (ρ− p) . (1.161)

Insert eq. (16) into eq. (38) to eliminate ä
a
:

2

(
ȧ

a

)2

+
2k

a2
= 4πG (ρ− p) +

4πG

3
(ρ+ 3p) (1.162)

and simplify to get (
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (1.163)

This equation, which relates the expansion rate of the universe to its energy density, is

commonly known as the first Friedmann equation. The equation for the acceleration of

the expansion rate,
ä

a
= −4πG

3
(ρ+ 3p) , (1.164)

is often referred to as the second Friedmann equation.
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1.4.3 Matter dynamics

To solve either eq. (1.163) or (1.164), we need to know how ρ depends on a. In cosmology, we

typically assume that the various types of matter in the Universe behave, on large scales, like

ideal fluids that are separately conserved. Under this assumption, the energy-momentum

tensor on the RHS of eq. (1.81) takes the form given in eq. (1.126). If we make the

further assumption that the energy density ρ and pressure p of these ideal fluids can each

be described by an equation of state w such that

w :=
p

ρ
(1.165)

then their respective energy-momentum tensors have the form

T µν = (ρ+ p)uµuν + pgµν

= ρ (1 + w)uµuν + ρwgµν .

(1.166)

Because the energy-momentum tensor is conserved according to eq. (1.91):

DµT
µν = 0, (1.167)

it follows that

0 = DµT
µν

= Dµ [(ρ+ p)uµ]uν + (ρ+ p)uµ (Dµu
ν) + (Dµp) g

µν + p (Dµg
µν)

= [∂µ (ρ+ p)]uµuν + (ρ+ p) (Dµu
µ)uν + (ρ+ p)uµ (Dµu

ν) + (∂µp) g
µν ,

(1.168)

where, in going from the second line to the third line, I used the fact that

Dµf = ∂µf (1.169)
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for any scalar function f , and

Dµg
µν = 0. (1.170)

Now, eq. (1.168) is a relation between tensors, so it will hold in any frame. In the rest frame

of the X-fluid, the spatial components of the X-fluid’s four-velocity vanish, and the time

component of its four-velocity equals unity. Therefore µ = ν = 0, and eq. (1.168) becomes

0 = [∂0 (ρ+ p)]u0u0 + (ρ+ p) (Dµu
µ)u0 + (ρ+ p)u0

(
∂0u

0
)

+ (∂0p) g
00

= ρ̇+ wρ̇+ (ρ+ p)
(
∂0u

0 + Γλλ0u
0
)
− wρ̇

= ρ̇+ ρ (1 + w)

(
3ȧ

a

)
.

(1.171)

where, in going from the first line to the second line, I used eqs. (1.165), (1.106), and (1.135).

After a bit of rearrangement, this becomes

dρ

ρ
= −3 (1 + w)

da

a
, (1.172)

which is solved by

ρ = Ca−3(1+w), (1.173)

where C is an arbitrary constant. In the present, ρ = ρ0 and a = a0, by definition, so

ρ0 = Ca
−3(1+w)
0 . (1.174)

With this equation, we can eliminate the constant C from eq. (1.173), which then takes the

form

ρ = ρ0

(a0

a

)3(1+w)

. (1.175)

For non-relativistic matter (i.e. cold dust), w = 0 because p << ρ. For relativistic matter

(i.e. radiation), w = 1
3

(see e.g. Lemons, 2009). Therefore the energy density of non-
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relativistic matter, as a function of a, is

ρm = ρm0

(a0

a

)3

(1.176)

and the energy density of relativistic matter, as a function of a, is

ργ = ργ0

(a0

a

)4

. (1.177)

In these equations, ρm0, ργ0, and a0 are the current values of ρm, ργ, and a, respectively.

To incorporate the cosmological constant Λ, consider eqs. (1.97) and (1.126). The energy-

momentum tensor of the cosmological constant is proportional to the metric tensor, so the

proportionality constant must equal

pΛ = − Λ

8πG
(1.178)

Also, because TΛ
µν does not depend on the four-velocity uν , it must also be the case that

ρΛ = −pΛ =
Λ

8πG
, (1.179)

so the energy density of the cosmological constant does not depend on a (hence the name

“cosmological constant”). Inserting eq. (1.179) into the first Friedmann equation produces

(
ȧ

a

)2

=
8πG

3
(ρm + ργ + ρΛ)− k

a2

=
8πG

3
(ρm + ργ) +

8πG

3

Λ

8πG
− k

a2

=
8πG

3
(ρm + ργ)−

k

a2
+

Λ

3
.

(1.180)

1.5 Scalar field dynamics

The standard model posits that the Universe underwent a period of accelerated expansion,

known as inflation, early in its history (this accelerated expansion creating the initial condi-
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tions for later structure formation). We will not consider the details of inflation in this work;

for our purposes it is sufficient to know that the simplest version of the inflation paradigm

is built on the hypothesis that a scalar field φ powered the early period of accelerated ex-

pansion. It is natural, then, to consider the possibility that the current era of accelerated

expansion might also be driven by one or more slowly evolving scalar fields, rather than a

cosmological constant Λ. I will describe a well-studied model in this class in Sec. (3.1.3),

while here I will derive a few results pertaining to scalar field dynamics in general.

The relativistic action for a scalar field φ is

Sφ =

∫ [
−1

2
gµν∂µφ∂νφ− V (φ)

]√
−gd4x. (1.181)

where V (φ) is an arbitrary potential energy density associated with the field (see e.g. Wein-

berg, 2008, but note that my sign conventions are different from his). If we vary this action

with respect to φ, we get

δSφ =

∫ [
−1

2
gµν∂µδ (∂νφ)− 1

2
gµν∂νδ (∂µφ)− V ′(φ)

]√
−gd4x. (1.182)

Where the prime denotes differentiation with respect to φ. After renaming dummy indices,

δSφ =

∫
[−gµν∂µφδ (∂νφ)− V ′(φ)]

√
−gd4x. (1.183)

Because

δ (∂νφ) = ∂νδφ, (1.184)

It follows that

δSφ =

∫
[−gµν∂µφ∂νδφ− V ′(φ)]

√
−gd4x, (1.185)

and we can integrate the first term in the integral by parts:

∫
−gµν∂µφ∂νδφ

√
−gd4x =

[
−
√
−ggµν∂µφδφ

]∞
−∞ +

∫
∂ν
(√
−ggµν∂µφ

)
δφd4x. (1.186)
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The boundary term vanishes because δφ is assumed to vanish on the surface at infinity. That

leaves

δSφ =

∫ [
∂ν
(√
−ggµν∂µφ

)
−
√
−gV ′(φ)

]
δφd4x. (1.187)

If we demand that δSφ = 0, then by the fundamental lemma of variational calculus,

∂ν
(√
−ggµν∂µφ

)
=
√
−gV ′(φ) . (1.188)

This can be written in manifestly covariant form by dividing both sides by
√
−g:

Dν (gµν∂µφ) = V ′(φ) , (1.189)

where Dν represents the covariant derivative.

If we define the energy-momentum tensor

T µνφ :=
2√
−g

δSφ
δgµν

, (1.190)

(see e.g. Zee, 2013) and vary the scalar field action with respect to the metric, we find

δSφ = −
∫

1

2
δgαβ∂αφ∂βφ

√
−gd4x−

∫ [
1

2
gαβ∂αφ∂βφ+ V (φ)

]
δ
√
−gd4x. (1.191)

Use

δgαβ = −gαµδgµνgνβ, (1.192)

and

δ
√
−g =

1

2

√
−ggµνδgµν , (1.193)

to re-write eq. (1.191):

δSφ =

∫
1

2

[
gαµgνβ∂αφ∂βφ−

(
1

2
gαβ∂αφ∂βφ+ V (φ)

)
gµν
]
δgµν
√
−gd4x. (1.194)
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Then use the definition of the functional derivative

δSφ =

∫
δSφ
δgµν

δgµνd
4x, (1.195)

(Zee, 2013) in conjunction with eq. (11), to write down the energy-momentum tensor for

the scalar field:

T µνφ = gαµgνβ∂αφ∂βφ−
(

1

2
gαβ∂αφ∂βφ+ V (φ)

)
gµν . (1.196)

A scalar field can be considered to be an “ideal fluid”, so if we compare eq. (1.196) to the

energy-momentum tensor of an ideal fluid,

T µν = (ρ+ p)uµuν + pgµν (1.197)

then we can identify the pressure of the scalar field

pφ = −1

2
gαβ∂αφ∂βφ− V (φ) . (1.198)

Further, if we set

uµ = − gµλ∂λφ√
−gαβ∂αφ∂βφ

, (1.199)

(Weinberg, 2008) then the energy density of the field can be identified as

ρφ = −1

2
gαβ∂αφ∂βφ+ V (φ) . (1.200)
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Chapter 2

Fundamentals of observational

cosmology

2.1 Homogeneity and Isotropy

The FLRW metric of the Universe was derived under the assumption that the Universe is

homogeneous and isotropic (to the lowest order of approximation) on large scales. There

is a large body of evidence in favor of these (not independent) hypotheses.1 In particular,

recent evidence of a homogeneity scale consistent with the prediction of ΛCDM was found

by Gonçalves et al. (2018, 2020) (for earlier results, see e.g. Yadav et al., 2005). The current

strongest evidence of universal isotropy comes from observations of the CMB.2 Over the

last three decades, measurements of the fluctuations in the temperature of the CMB have

consistently shown strong agreement with the hypothesis of isotropy, as predicted by the

ΛCDM model (for recent measurements, see Planck Collaboration et al., 2020; for earlier

results, see e.g. Wu et al. (1999)). Deng and Wei (2018), have also recently found that the

Pantheon sample of SNe Ia measurements (containing 1048 data points) is consistent with

isotropy. These findings are significant because evidence of universal isotropy (at least, to the

1And some contrary findings, as well. See, e.g., Park et al. (2017); Mészáros (2019); Secrest et al. (2021).
2“CMB” = “cosmic microwave background radiation”. This background radiation, in the form of mi-

crowaves, permeates the Universe. It is a relic of the Universe’s early life, and its discovery in the 1960s
provided strong evidence for the Big Bang model.
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lowest order of approximation) is also evidence of homogeneity (Weinberg, 2008). If we make

the reasonable assumption that we are not located at a special place in the Universe (this is

just the extrapolation of the Copernican Principle to cosmic scales), then the fact that we see

an isotropic Universe implies that observers located elsewhere (these locations presumably

also not being special) will do the same. If this is true, however, then the Universe must

be homogeneous because any large-scale homogeneity would be seen, by an observer close

enough to it to see it, as an anisotropic feature on that observer’s sky.

To be sure, the Universe is not completely homogeneous, as there are large, gravitation-

ally collapsed structures (otherwise we would not exist). The CMB is also not completely

isotropic, as there are small anisotropies in the temperature distribution. The existence of

these anisotropies (relics of fluctuations in the matter density of the early Universe) is one

of the key predictions of the ΛCDM model, and their discovery in the early 1990’s was one

of the factors that led to the adoption of the ΛCDM model as the “standard model” of

cosmology (see any of the books cited at the beginning of Chapter 1 and Smoot et al., 1992).

We will not concern ourselves here with the details of structure formation, but will instead

focus on constraining models of the background evolution (that is, models of the evolution

of the average distributions of matter and energy), as described in Chapter 3.

2.2 Cosmic expansion

Investigations conducted by Vesto Slipher and Edwin Hubble in the early part of the last

century showed that distant galaxies are moving away from us, the recession rate increasing

with their distance from us according to

cz = H0d (2.1)

where c is the speed of light, d is the distance to the galaxy, H0 is a proportionality constant

known as the “Hubble constant”, and z is the redshift of the light emitted by the galaxy

(Ryden and Peterson, 2010). Redshift is defined as the fractional difference between the
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wavelength we observe and the wavelength emitted in the galaxy’s rest frame:

z :=
λo − λe

λe

. (2.2)

So a positive redshift in the light received from a distant galaxy indicates that we observe

it to have a longer wavelength than the wavelength observed in the galaxy’s rest frame, a

result of the galaxy moving away from us. A negative redshift (or “blueshift”) means that the

galaxy is moving toward us. By observing the spectra of distant galaxies, we can compute

their redshifts from the shift in the wavelengths of their spectral lines. With a knowledge

of the distance d to the galaxy (see below for a discussion of distance measurements), we

can compute H0, which sets the characteristic scale of the expansion rate of the Universe.

Eq. (2.1) only has approximate validity, however; it works at small redshifts (z � 1), but

for larger redshifts it must be replaced by a relativistic description. This can be seen if we

identify cz with the recessional velocity vrec of the galaxy, so that

vrec = cz = H0d. (2.3)

This implies that galaxies separated from us by distances greater than d = H0/c, such

that their redshifts are greater than 1, are moving away from us with recessional velocities

greater than c! This conclusion, however, is merely a result of the extrapolation of Eq. (2.1)

to distances over which it is not valid, and we need to be careful in how we interpret what

we mean when we say that distant galaxies are “moving”. For large redshifts, the curvature

scale of the Universe must be taken into account (Mukhanov, 2005), and this is where the

aforementioned relativistic effects come into play. At small redshifts, nearby galaxies can be

incorporated into our inertial reference frame (or our inertial frame can be meshed with the

inertial frame of the galaxy to form a larger inertial frame). When the curvature scale of the

Universe (which is set by H0) becomes important, however, this is no longer possible. At

such distances, our inertial reference frame cannot be meshed with the inertial frame of the

galaxy, as a result of spacetime curvature (Thorne and Blandford, 2017). The fundamental
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speed limit set by relativity pertains to speeds measured relative to a given inertial reference

frame, and so can only apply to objects that can be said to be within the same inertial frame

(or, more precisely, objects whose separation is very small compared to the curvature scale

of the Universe). To these objects we can assign coordinate velocities v = dx
dt

measured using

the clocks (dt) and rulers (dx) of the given inertial frame, and it is these velocities which

cannot exceed c. Since objects whose separation is comparable to the curvature scale cannot

be said to be within the same inertial frame, the fundamental speed limit does not apply

to their relative velocity (Mukhanov, 2005). To put it another way, because the large-scale

distribution of matter in the Universe defines the FLRW coordinate system we use to locate

events within the Universe, distant galaxies cannot be said to be moving relative to this

coordinate system; rather, it is the coordinate system itself which is changing (via a(t)), and

the “velocity” associated with this change has nothing to do with the speed limit set by

relativity (so it can exceed c).

At any rate, even though the linear Hubble law of eq. (2.1) does not apply at all redshifts,

the Universe is observed to expand at all redshifts. The concept of redshift is also well-

defined at large separation distances, although the computation of these distances must take

the curvature scale (set by H0) into account. We will see how this works in more detail

below.

2.3 Redshift and the scale factor

We have already seen how the general theory of relativity can be used to derive a set of

equations (the Friedmann equations) that govern the rate of expansion (or contraction)

of a homogeneous, isotropic Universe. For a quantitative science like physical cosmology,

however, theory alone is not enough. We need to make contact with observations so that

we can test our theories. Whenever we observe the Universe, we’re observing it as it was in

the past; it is often said that, when one looks out to a great distance in space, one is also

looking far back in time, owing to the finite speed of light. To learn about the state of the

Universe at some time in past, therefore, we can use observations of very distant objects. As
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I described in Section 2.2, distant objects appear redder and dimmer, the reddening being

represented by the redshift z. It turns out that the scale factor and the redshift are related

by the simple equation
a

a0

=
1

1 + z
(2.4)

That this is so can be seen by considering eq. (1.177) in conjunction with the definition of

redshift given by eq. (2.2). From eq. (1.177), the energy density of a gas of (monochromatic)

photons goes like

ργ(t) =
Nhf

V (t)
∝ f

a3(t)
∝ 1

a4(t)
. (2.5)

where N is the number of photons within the (time-dependent) volume V (t) ∝ a3(t), h is

Planck’s constant, and f is the frequency of the photons. Because f = c/λ, it follows that

λ ∝ a(t). eq. (2.2) then becomes

z =
λ(to)− λ(te)

λ(te)
=
a(to)− a(te)

a(te)
=
a(to)

a(te)
− 1. (2.6)

If we say that the time of observation to is equal to the present time t0 and define a0 := a(t0)

along with a := a(te), then we obtain eq. (2.4).

With eq. (2.4) in hand, we can write the first Friedmann equation as a function of z

thereby completing the bridge between theory and observations. First, we define

H :=
ȧ

a
, (2.7)

then we insert eqs. (1.176), (1.177), and (1.179) into the first Friedmann equation, to obtain:

H2 =
8πG

3

(
ρm0 (1 + z)3 + ργ0 (1 + z)4)− k

a2
0

(1 + z)2 +
Λ

3
. (2.8)

We can write this in a more convenient form by defining

Ωm0 :=
ρm0

ρc
, (2.9)
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Ωγ0 :=
ργ0

ρc
, (2.10)

Ωk0 := − k

(a0H0)2 , (2.11)

ΩΛ :=
ρΛ

ρc
, (2.12)

where ρc := 8πG
3H2

0
and ρΛ is given by Eq. (1.179). ρc is known as the “critical density” because

a universe having an energy density equal to ρc such that

ρm + ργ + ρΛ = ρc, (2.13)

is exactly spatially flat (k = 0). A universe with an energy density greater than ρc is spatially

closed (or positively curved such that k = 1 and Ωk0 < 0), and a universe having an energy

density less than ρc is spatially open (or negatively curved such that k = −1 and Ωk0 > 0).

Dividing both sides of eq. (2.8) by H2
0 and using the definition of the critical density, we

find

H(z) = H0

√
Ωγ0 (1 + z)4 + Ωm0 (1 + z)3 + Ωk0 (1 + z)2 + ΩΛ , (2.14)

where H0, the Hubble constant, is equal to the current value of H(z) (z = 0 in the present,

by definition). It is also common to see this written in the form

E(z) =

√
Ωγ0 (1 + z)4 + Ωm0 (1 + z)3 + Ωk0 (1 + z)2 + ΩΛ (2.15)

where E(z) = H(z)/H0 is sometimes called the “expansion factor”.

2.4 Distances in an expanding universe

Astronomical observations are made by collecting the light that distant sources emit. We

can use this light to infer, among other things, the distances to these sources. Along the

geodesic traveled by a photon during its journey from the site of its emission to us, the line
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element is

0 = c2dt2 − a2

1− kr2
dr2. (2.16)

In the special case that the Universe is flat (k = 0), the coordinate distance between us and

the source is

r =

∫ to

te

dt

a
=

∫ ao

ae

da

a2

a

ȧ
= −

∫ 0

ze

dz

H(z)
=

c

H0

∫ ze

0

dz

E(z)
, (2.17)

where, in the last equality, I have restored the factor of c. If the Universe is not flat, so that

k 6= 0, then we must integrate

∫
dr√

1− kr2
=

∫ to

te

dt

a
. (2.18)

The RHS of this equation is the same as the RHS of eq. (2.17). The LHS is

∫
dr√

1− kr2
=
−1√
k

sin−1
(
−
√
kr
)

(2.19)

if k > 0, and ∫
dr√

1− kr2
=

1√
|k|

sinh−1
(√
|k|r
)

(2.20)

if k < 0 (Gradshteyn and Ryzhik, 2015). For all three cases, we then have

r =



c
H0

∫ ze
0

dz
E(z)

if k = 0,

1√
k
sin
(√

k c
H0

∫ ze
0

dz
E(z)

)
if k = 1,

1√
|k|

sinh
(√
|k| c

H0

∫ ze
0

dz
E(z)

)
if k = −1,

(2.21)
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Following Hogg (1999), this distance function can also be written in the form

DM(z) =



DC if Ωk0 = 0,

c
H0
√

Ωk0
sinh

[√
Ωk0

DCH0

c

]
if Ωk0 > 0,

c

H0

√
|Ωk0|

sin
[√
|Ωk0|DCH0

c

]
if Ωk0 < 0,

(2.22)

which Hogg calls the “transverse co-moving distance”, with

DH :=
c

H0

, (2.23)

and

DC :=
c

H0

∫ z

0

dz′

E(z′)
, (2.24)

In what follows, I will follow Hogg’s notational conventions. With the transverse co-moving

distance in hand, we can define a number of other useful distances scales. The luminosity

distance is one such distance scale, defined as

DL(z) = (1 + z)DM(z) (2.25)

(Hogg, 1999). To see that this is correct, recall that for a source that emits a given luminosity

L, we can define a flux (F ) received through

F =
L

4πr2
, (2.26)

where r is the coordinate distance between the receiver and the source. In a universe that is

not expanding, r would also be called the “luminosity distance”. In an expanding universe,

two corrections must be made to obtain the luminosity distance (Weinberg, 2008). First, we

must correct for the decrease of the energy of the photons as they traverse the distance from

the source to the receiver (see the discussion just below eq. 2.5). This requires us to divide
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eq. (2.26) by 1 + z. Second, the rate at which photons are received by the source will also

decrease by a factor of 1 + z. These two effects then result in

F =
L

4πr2(1 + z)2
(2.27)

If make the identification r(z) = DM(z), then we can define the luminosity distance as in eq.

(2.25). It is also possible to define an “angular diameter distance” DA(z), through

DA(z) =
DM(z)

1 + z
. (2.28)

When observing a distant object that subtends an angle θ on the sky, the transverse size of

the object will be

s = a(t)rθ, (2.29)

where a(t)r is the physical distance from the observer to the object. If we define

DA(z) := a(t)r =
r

1 + z
(2.30)

such that

s = DA(z)θ, (2.31)

then eq. (2.28) follows after identifying r with DM(z). Finally, one can define a “volume-

averaged angular diameter distance”

DV(z) =

[
cz

H0

D2
M(z)

E(z)

]1/3

, (2.32)

(Farooq (2013)) which is useful in studies of cosmological constraints from baryon acoustic

oscillation data (about which, see below).
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2.5 Accelerated expansion

Stars can be classified by their flux, and astronomers do this by comparing their apparent

magnitudes (Ryden and Peterson, 2010). Two stars (or other light sources, in general),

having apparent magnitudes mi and mj that differ by unity have fluxes that differ by a factor

of 100, by definition. In general,

mi −mj = 2.5log

(
Fi
Fj

)
. (2.33)

We have already seen that the flux received from a source depends on the distance between

the source and the receiver. In a static universe, this distance is the coordinate distance r;

in an expanding (or contracting) universe, this distance is the luminosity distance DL(z).

Thus given a knowledge of the apparent magnitudes of two light sources, and a knowledge of

their luminosities (and redshifts), we can compute the distance between them. To compute

the distance d to a single source, astronomers use the distance modulus

m−M = 5log

(
d

10 pc

)
(2.34)

where the absolute magnitude M is defined as the source’s apparent magnitude at a

distance of 10 pc (and 1 pc = 3.086×1016 m). Given a knowledge of the source’s luminosity,

it is possible to compute the apparent and absolute magnitudes, and thereby obtain the

distance to the source. Such sources are known as standard candles, and they can be

used to study the dynamics of the Universe’s expansion. As an example, consider Type Ia

supernovae. Supernovae come in three flavors (Ryden and Peterson, 2010): Type Ia, Type

Ib, and Type II. The differences between them have to do with the absorption lines they show

in their spectra. Type Ia supernovae have no hydrogen or helium lines, Type Ib supernovae

have helium lines but no hydrogen lines, and Type II supernovae have hydrogen lines. A

Type Ia supernovae is the end result of a process by which a white dwarf in a binary system

accretes mass from its partner (Weinberg, 2008; Ryden and Peterson, 2010). Over time, the
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mass of the white dwarf increases until it reaches the Chandrasekhar mass

MC := 1.4Msun (2.35)

where Msun = 1.989 × 1030 kg is the mass of our sun. Once the mass of the white dwarf

exceeds MC, electron degeneracy pressure can no longer prevent the gravitational collapse of

the dwarf; the collapse initiates rapid nuclear fusion, creating an explosion with a luminosity

that does depend strongly on where or when in the Universe the explosion happens (because

the masses of the white dwarfs are always close to MC). Therefore, if an analysis of a

supernova’s spectrum shows it to be of Type Ia, then its luminosity can be determined from

the decay time of its light curve (along with empirical corrections for the metallicity of the

white dwarf; Weinberg, 2008), and that supernova can be used as a standard candle. In an

expanding universe, with source fluxes given by

F =
L

4πD2
L(z)

, (2.36)

the luminosity distance DL(z) depends on the cosmological model through eqs. (2.25), (2.24),

(2.22) and (2.14). After making the appropriate unit conversions (DM(z) and all distance

scales derived from it are typically measured in Mpc), we can write the distance modulus in

the form

m−M = 5logDL(z) + 25. (2.37)

By examining the apparent magnitudes of Type Ia supernovae (or any other kind of standard

candle) as a function of z, it is possible to place constraints on the dimensionless energy

density parameters of eqs. (2.9)-(2.12), thereby revealing the dynamics of the background

expansion. Two independent teams (Riess et al., 1998; Perlmutter et al., 1999) did just

this at the turn of the last century, finding persuasive evidence that the expansion of the

Universe is accelerating, in a fashion consistent with that of a Universe whose energy budget

is dominated by dark energy (in the form of a cosmological constant Λ). Since then,

measurements of the small temperature anisotropies in the cosmic microwave background
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(CMB; see e.g. Planck Collaboration, 2018) z ∼ 1100 have corroborated this paradigm. In

what follows, we will be concerned with the constraints that can be placed on simple models

of dark energy from measurements having relatively low redshifts (z . 8).
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Chapter 3

Models of cosmic acceleration

Most cosmologists today attribute the currently-accelerated phase of cosmic expansion to

a “dark energy”, an additional component of the Universe’s energy budget (beyond matter

and radiation) which has yet to be satisfactorily explained in terms of fundamental theory.

It is typical to study the behavior of dark energy phenomenologically, by constructing mod-

els for its dynamics and using observational data to place constraints on the parameters of

these models. Many models of this kind can be found in the literature. The simplest, the

cosmological constant model, is a key part of the standard model of cosmology known as

ΛCDM.1 Others include the XCDM parametrization (Farooq, 2013), the CPL parametriza-

tion (Chevallier and Polarski, 2001; Linder, 2003), holographic dark energy (Wang et al.,

2017a), the Ratra-Peebles quintessence model (Peebles and Ratra, 1988; Ratra and Pee-

bles, 1988; Pavlov et al., 2013), K-essence (Armendariz-Picon et al., 2000, 2001), the Chap-

lyin gas model (Kamenshchik et al., 2001; Bento et al., 2002), and many others (see e.g.

Copeland et al., 2006; Yoo and Watanabe, 2012). In this work, I will examine three mod-

els of dark energy, namely the cosmological constant model, the XCDM parametrization,

and the Ratra-Peebles quintessence model (also known as φCDM), as well as two models of

cosmic acceleration which, properly speaking, do not belong to the “dark energy” category,

but which nevertheless make testable predictions that can be compared to the predictions

1See the textbooks cited at the beginning of Chapter 1, in addition to, e.g., Planck Collaboration (2018);
Peebles and Ratra (2003); Ratra and Vogeley (2008); Planck Collaboration (2020).
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of dark energy models. These are a model of emergent cosmic acceleration due to Gregory

Ryskin (which I’ll call “Ryskin’s model”; Ryskin, 2015), and the power law model (in which

the scale factor is proportional to the cosmic time raised to a constant exponent; see Chapter

10 for references to the literature). Different models of dark energy can be characterized by

the values that they assign to the equation of state parameter

w :=
p

ρ
. (3.1)

For our purposes, however, it will be more useful to characterize dark energy models through

their Hubble parameter functions H(z) (defined in Chap. 2). This approach also has the

virtue of being applicable to models of cosmic acceleration that do not incorporate dark

energy, as we will see in Secs. 3.2.1 and 3.2.2 below.

3.1 Dark Energy Models

3.1.1 ΛCDM

As we have seen, the energy density of the cosmological constant is equal to the negative of

its pressure, so the equation of state in the ΛCDM model is

wΛ =
pΛ

ρΛ

= −1. (3.2)

In terms of the present values of the dimensionless energy density parameters, the Hubble

rate function in the ΛCDM model is

H(z) = H0

√
Ωm0 (1 + z)3 + Ωk0 (1 + z)2 + ΩΛ. (3.3)

Note that I have set Ωγ0 = 0, which I will do in all following analyses. This is justified given

the relatively low redshifts of the data I use. The energy density parameters are constrained
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by

Ωm0 + Ωk0 + ΩΛ = 1, (3.4)

so the free parameters in the ΛCDM model are p = (H0,Ωm0,Ωk0). In the special case that

the Universe is taken to be exactly spatially flat, the free parameters are p = (H0,Ωm0).

3.1.2 XCDM

In the previous section, we saw that the cosmological constant has an equation of state

parameter equal to −1. It is possible, however, that the equation of state of dark energy has

a value that is different from −1; this is the simplest way to generalize the ΛCDM model,

and it is known as the XCDM model (or parametrization) of dark energy. If we allow the

equation of state parameter (call it wX) to take values different from −1, then by eqs. (1.174)

and (2.4) the dimensionless energy density of the X-fluid must have the form

ΩX = ΩX0 (1 + z)3(1+wX) , (3.5)

where ΩX0 is the present value of the X-fluid’s dimensionless energy density. Therefore, the

Hubble parameter function in the XCDM parametrization takes the form

H(z) = H0

√
Ωm0 (1 + z)3 + Ωk0 (1 + z)2 + ΩX0 (1 + z)3(1+wX). (3.6)

Because the energy density parameters are constrained by

Ωm0 + Ωk0 + ΩX0 = 1 (3.7)

the XCDM parametrization has, in general, four free parameters: p = (H0,Ωm0,Ωk0, wX). In

the special case that the Universe is taken to be exactly spatially flat, the free parameters

are p = (H0,Ωm0, wX). If wX = −1, then eq. (3.6) reduces to eq. (3.3).
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3.1.3 φCDM

In Sec. 1.5 I derived the equation of motion of a general, cosmological scalar field in a

universe that is homogeneous, isotropic, and expanding with time. Here I specialize those

results to a scalar field model that has been extensively studied in the literature: the Ratra-

Peebles “quintessence” model, which provides a simple, physically consistent description of

dynamical dark energy (Peebles and Ratra, 1988; Ratra and Peebles, 1988; Pavlov et al.,

2013). In this model, the scalar field has a potential energy density of the form

V =
1

2
κm2

pφ
−α (3.8)

where α > 0, m2
p := G−1 is the Planck mass in units where ~ = 1 and c = 1, and

κ =
8

3

(
α + 4

α + 2

)[
2

3
α (α + 2)

]α/2
(3.9)

(Farooq, 2013). The homogeneous part of the scalar field is a function only of time, so its

equation of motion is

Dν

(
g0ν∂0φ

)
= V ′(φ) (3.10)

or

∂ν
(
g0ν∂0φ

)
+ Γννσg

σ0∂0φ = V ′(φ). (3.11)

Because the metric of a homogeneous, isotropic spacetime has the form

ds2 = −dt2 + a2 (t) γijdx
idxj, (3.12)

where γij is given by eq. (1.107), eq. (3.11) reduces to

−∂2
0φ− Γνν0∂0φ− V ′ (φ) = φ̈+

ȧ

a
γii φ̇+ V ′ (φ)

= φ̈+ 3Hφ̇+ V ′ (φ) ,

(3.13)
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where H ≡ ȧ/a is the Hubble rate and I have used eq. (1.135). After inserting eq. (3.8), the

scalar field’s equation of motion takes the form

φ̈+ 3
ȧ

a
φ̇− 1

2
καm2

pφ
−α−1 = 0. (3.14)

The energy density and pressure of the scalar field are simple to derive from eqs. (1.198)

and (1.200). They are:

ρφ =
1

2
φ̇2 + V, (3.15)

and

pφ =
1

2
φ̇2 − V, (3.16)

respectively. It follows that the equation of state parameter of φCDM is

wφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

, (3.17)

which, unlike in the ΛCDM model and the XCDM parametrization, changes with time.

Given eq. (3.15), it is also easy to show that the Hubble rate function H(z) in the φCDM

model is

H(z) = H0

√
Ωm0 (1 + z)3 + Ωk0 (1 + z)2 + Ωφ(z, α), (3.18)

where

Ωφ(z, α) :=
8πGρφ
3H2

0

. (3.19)

In contrast to ΩX , Ωφ is not an explicit function of a power of (1 + z); it must be determined

by solving the dynamics of the scalar field numerically. This can be done by solving eq.

(3.14) together with the first Friedmann equation

(
ȧ

a

)2

=
8πG

3
(ρm + ρφ)− k

a2
, (3.20)

after which the parameters p = (H0,Ωm0,Ωk0, α) of the φCDM model can be fitted to the
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available data. In the special case that the Universe is taken to be exactly spatially flat,

the free parameters are p = (H0,Ωm0, α). If α = 0, then the φCDM model reduces to the

ΛCDM model.

An evaluation of the relative quality of ΛCDM, XCDM, and φCDM through an analysis

of their respective fits to observational data forms the main part of this work, and is the

subject of Chapters 4, 5, 6, 7, and 8.

3.2 Cosmic acceleration without Dark Energy

This section is based on Ryan (2020, 2021)

3.2.1 Ryskin’s model

As we have seen in Sec. 3.1.1, the ΛCDM model holds that the accelerated expansion of the

Universe is powered by a spatially homogeneous energy density in the form of a cosmological

constant, Λ. Although this model has successfully explained many observations to date (see

e.g. Planck Collaboration (2018, 2020)), a number of theoretical problems remain unsolved

(see e.g. Weinberg (1989, 2000); Straumann (2002); Martin (2012)). Many researchers have

therefore attempted to construct models of cosmic acceleration that do not incorporate the

cosmological constant, or any other form of dark energy (for a review of which, see e.g.

Clifton et al. (2012)). One such model (not covered in Clifton et al. (2012)) is Gregory

Ryskin’s model of emergent cosmic acceleration (presented in Ryskin (2015)). In this model,

the observed acceleration of the universe is argued to emerge naturally as a consequence of

applying a mean-field treatment to Einstein’s gravitational field equations on cosmic scales.

In this way, Ryskin claims to have arrived at an explanation of cosmic acceleration that does

not require any fundamentally new physics.

The main idea behind Ryskin’s paper is that the standard gravitational field equations

of General Relativity,

Rµν −
1

2
Rgµν = κTµν , (3.21)
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where κ := 8πG, which are well-tested on the scale of the solar system, must be modified

when applied to cosmological scales. Ryskin contends, in Ryskin (2015), that moving from

sub-cosmological scales (in which matter is distributed inhomogeneously) to cosmological

scales (in which matter is distributed homogeneously) introduces emergent properties to the

description of the Universe (such properties being “emergent” in the sense that they are not

apparent on sub-cosmological scales) and that the observed large-scale acceleration of the

Universe may be one such emergent property. According to Ryskin’s model, the emergence

of cosmic acceleration is therefore analogous to the emergence of properties like temperature

and pressure that result from averaging over the microscopic degrees of freedom of an ideal

fluid, thereby moving from a length-scale regime in which kinetic theory is valid to a length-

scale regime in which the fluid must be described with continuum hydrodynamics; in the

same way, Ryskin contends, cosmic acceleration “emerges” from Einstein’s field equations

when these are applied to cosmological scales. Ryskin’s model, therefore, purports to offer

an explanation of the origin of cosmic acceleration that does not require the introduction of

dark energy. In his paper, Ryskin introduces a mean-field tensor with components κΦµν into

the right-hand side of eq. (1.78), so that the (large-scale) field equations read

Rµν −
1

2
Rgµν = κ (Tµν + Φµν) . (3.22)

It can be shown (see Ryskin (2015) for details) that when the standard gravitational field

equations are modified in this way, and that if the Universe has flat spatial hypersurfaces

and is dominated by non-relativistic matter, then the total rest energy density and pressure

of the averaged, large-scale cosmic fluid are

ρ = 4ρm, (3.23)

and

p = −3ρm, (3.24)

respectively, where ρm and pm are the rest energy density and pressure of the non-relativistic
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matter. Energy conservation then implies that ρm ∝ a−3/4, from which a(t) ∝ t8/3 follows.

Rykin’s model therefore predicts that the Hubble parameter takes the simple form

H(z) = H0 (1 + z)3/8 , (3.25)

where the definitions of the Hubble parameter H(t) := ȧ(t)
a(t)

and redshift 1 + z := a(0)
a(t)

have

been used. Ryskin’s model therefore has only one free parameter: H0. We will investigate

the quality of this model’s fit to cosmological data in Chapter 9.

3.2.2 The power law model

Another alternative to the dark energy paradigm comes in the form of the power law model

(of which Ryskin’s model is a special case), in which the scale factor takes the form of a

power law a(t) ∝ tβ with a constant exponent β. One of the virtues of this model is its

simplicity: it only depends on the single parameter β, and the functional form tβ is easy

to integrate analytically when it appears in the form
∫

dt
a(t)

(as in the computation of the

co-moving distance scale). Additionally, the power law model with β ≥ 1 does not suffer

from the horizon or flatness problems,2 and produces a universe whose age is compatible

with the ages of the oldest known objects in the Universe (these being globular clusters

and high-reshift galaxies; Dev et al., 2008; Sethi et al., 2005). Power law expansion is

also a predicted feature of some alternative gravity theories that are designed to solve the

cosmological constant problem dynamically (Dev et al., 2008; Sethi et al., 2005).

2The horizon problem is based on the observation that distantly separated portions of the CMB sky could
not have had time to reach thermal equilibrium when the CMB itself was emitted (that is, these regions are
outside of each other’s respective horizons, and so could not have come into causal contact). The flatness
problem stems from the apparent fine-tuning required to make the Universe spatially flat to the degree
we observe today. In the standard model, inflation solves both of these problems by positing a phase of
accelerated expansion during the earliest moments of the Universe’s life which: 1.) rapidly expands the sizes
of causally connected regions, explaining the observed thermal equilibrium of the CMB and 2.) redshifting
away the spatial curvature component of the early Universe’s energy budget, so that the Universe is flat (or
very nearly flat) on large scales. By saying that the power law model does not suffer from the horizon or
flatness problems, I mean that it is a model which is purported to describe the evolution of the Universe on
large scales without requiring an “accessory” like inflation, which was not a part of the original Big Bang
model.

54



In the power law model, the scale factor a(t) takes the form

a(t) = Ctβ, (3.26)

where C and β are constants. From the definition of redshift, a0

a(t)
:= 1 + z (a0 is the current

value of the scale factor and z is the redshift) and eq. (3.26), we can write

a0

Ctβ
= 1 + z, (3.27)

from which it follows that
1

t
=

[
C

a0

(1 + z)

]1/β

. (3.28)

The definition of the Hubble parameter, H(t) :=
˙a(t)

a(t)
, with the overdot denoting the time

derivative, implies H(t) = β
t
. Therefore eq. (3.28) can be written in the form

H(z) = H0 (1 + z)1/β , (3.29)

where I have defined the present value of the Hubble constant to be H0 := β
(
C
a0

)1/β

. The

power law model therefore has two free parameters: H0 and β. The comparison of the power

law model to cosmological data will be taken up in Chapter 10.
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Chapter 4

Constraints on dark energy dynamics

and spatial curvature from Hubble

parameter and baryon acoustic

oscillation data

This chapter is based on Ryan et al. (2018).

4.1 Introduction

The consensus ΛCDM model assumes flat spatial hypersurfaces, but observations don’t rule

out mildly curved spatial hypersurfaces; observations also do not rule out the possibility that

the dark energy density varies slowly with time. In this chapter we will examine, in addition

to the general (not necessarily spatially flat) ΛCDM model, the XCDM parametrization of

dynamical dark energy, and the φCDM model in which a scalar field φ is the dynamical

dark energy (see Chapter 3 for details).1 In the XCDM and φCDM cases we allow for both

1While cosmic microwave background (CMB) anisotropy data provide the most restrictive constraints on
cosmological parameters, many other measurements have been used to constrain the XCDM parametrization
and the φCDM model (see, e.g., Samushia et al., 2007, Yashar et al., 2009, Samushia and Ratra, 2010, Chen
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vanishing and non-vanishing spatial curvature.

Ooba et al. (2019) have recently shown that, in the spatially flat case, the Planck 2015

CMB anisotropy data from Planck Collaboration (2016) (and some baryon acoustic oscilla-

tion distance measurements) weakly favor the XCDM parametrization and the φCDM model

of dynamical dark energy over the ΛCDM consensus model. The XCDM case results have

been confirmed by Park and Ratra (2019a) for a much bigger compilation of cosmological

data, including most available Type Ia supernova apparent magnitude observations, BAO

distance measurements, growth factor data, and Hubble parameter observations.2 Also, spa-

tially flat XCDM and φCDM both reduce the tension between CMB temperature anisotropy

and weak gravitational lensing estimates of σ8, the rms fractional energy density inhomo-

geneity averaged over 8 h−1Mpc radius spheres, where h is the Hubble constant in units of

100 km s−1 Mpc−1 (Ooba et al., 2019; Park and Ratra, 2019a).

In non-flat models nonzero spatial curvature provides an additional length scale which

invalidates usage of the power-law power spectrum for energy density inhomogeneities in

the non-flat case (as was assumed in the analysis of non-flat models in Planck Collaboration

(2016)). Non-flat inflation models (Gott, 1982; Hawking, 1984; Ratra, 1985) provide the only

known physically-consistent mechanism for generating energy density inhomogeneities in the

non-flat case; the resulting open and closed model power spectra are not power laws (Ratra

and Peebles, 1994, 1995; Ratra, 2017). Using these power spectra, Ooba et al. (2018a) have

found that the Planck 2015 CMB anisotropy data in combination with a few BAO distance

measurements no longer rule out the non-flat ΛCDM case (unlike the earlier Planck Collab-

oration (2016) analyses based on the incorrect assumption of a power-law power spectrum

and Ratra, 2011a, Campanelli et al., 2012, Pavlov et al., 2014, Avsajanishvili et al., 2015, Sola Peracaula
et al., 2016, Solà Peracaula et al., 2018; Solà et al., 2017a,b,c, Avsajanishvili et al., 2017, Gómez-Valent and
Solà, 2017, Zhai et al., 2017, Mehrabi and Basilakos, 2018, Sangwan et al., 2018).

2For earlier indications favoring dynamical dark energy over the ΛCDM consensus model, based on smaller
compilations of data, see Sahni et al. (2014), Ding et al. (2015), Solà et al. (2015), Zheng et al. (2016), Solà
et al. (2017c), Sola Peracaula et al. (2016), Solà et al. (2017a), Zhao et al. (2017), Solà Peracaula et al.
(2018), Zhang et al. (2017a), Solà et al. (2017b), Gómez-Valent and Solà (2017), Cao et al. (2017a), and
Gómez-Valent and Solà (2018). However, more recent analyses, based on bigger compilations of data, do not
support the significant evidence for dynamical dark energy indicated in some of the earlier analyses (Ooba
et al., 2019; Park and Ratra, 2019a).
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in the non-flat model).3 Park and Ratra (2019b) confirmed these results for a bigger com-

pilation of cosmological data, and similar conclusions hold in the non-flat dynamical dark

energy XCDM and φCDM cases (Park and Ratra, 2019a; Ooba et al., 2018b,c).

Additionally, the non-flat models provide a better fit to the observed low multipole CMB

temperature anisotropy power spectrum, and do better at reconciling the CMB anisotropy

and weak lensing constraints on σ8, but do a worse job at fitting the observed large multi-

pole CMB anisotropy temperature power spectrum (Park and Ratra, 2019a,b; Ooba et al.,

2018b,b,c). Given the non-standard normalization of the Planck 2015 CMB anisotropy like-

lihood and that the flat and non-flat ΛCDM models are not nested, it is not possible to

compute the relative goodness of fit between the flat and non-flat ΛCDM models quantita-

tively, although qualitatively the flat ΛCDM model provides a better fit to the current data

(Park and Ratra, 2019a,b; Ooba et al., 2018b,b,c).

In the analyses discussed above, the Planck 2015 CMB anisotropy data played the major

role. Those authors found consistency between cosmological constraints derived using the

CMB anisotropy data in combination with various non-CMB data sets. CMB anisotropy

data are sensitive to the behavior of cosmological spatial inhomogeneities.

Here we derive constraints on similar models from a combination of all available Hub-

ble parameter data as well as all available radial and transverse BAO data.4 Unlike the

CMB anisotropy data, the H(z) and these BAO data are not sensitive to the behavior of

cosmological spatial inhomogeneities.

The models that we study here are the flat and nonflat ΛCDM model, the flat and

nonflat XCDM parametrization, and the flat and nonflat φCDM model. See Chapter 3 for

a description of these models and of their free parameters.5 These models, and the methods

3Currently available non-CMB measurements do not significantly constrain spatial curvature (Farooq
et al., 2015; Chen et al., 2016; Yu and Wang, 2016; L’Huillier and Shafieloo, 2017; Farooq et al., 2017; Wei
and Wu, 2017; Rana et al., 2017; Yu et al., 2018; Mitra et al., 2018).

4The H(z) and radial BAO data provide a unique measure of the cosmological expansion rate over a wide
redshift range, up to almost z = 2.4, well past the cosmological deceleration-acceleration transition redshift.
These data show evidence for this transition and can be used to measure the redshift of the transition (Farooq
et al., 2017; Yu et al., 2018; Farooq and Ratra, 2013; Farooq et al., 2013; Capozziello et al., 2014; Moresco
et al., 2016a; Jesus et al., 2018; Haridasu et al., 2018).

5In this chapter we do not treat H0 as a free parameter, treating it instead as a prior to be marginalized
over. See below for a description of these priors, and of the marginalization procedure we employ.
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we use to analyze our data, are the same as those presented in Farooq et al. (2015, 2017).

Some of the measurements we use are the same as the measurements used in those papers,

although our data set is more up to date.

The constraints we derive in this chapter are consistent with, but weaker than, those

of the papers cited above; this provides a necessary and useful consistency test of those

results. In particular, we find that the consensus flat ΛCDM model is a reasonable fit, in

most cases, to the BAO and H(z) data we study here. However, depending somewhat on

the Hubble constant prior we use, consensus flat ΛCDM can be 1σ away from the best-fit

parameter values in some cases, which can favor mild dark energy dynamics or non-flat

spatial hypersurfaces.

4.2 Data

Baryon acoustic oscillations provide observers with a “standard ruler” which can be used to

measure cosmological distances (see Bassett and Hlozek, 2010 for a review). These distances

can be computed in a given cosmological model, so measurements of them can be used to

constrain the parameters of the model in question. The BAO distance measurements are

listed in Table 4.1. See Chapter 2 for the definitions of the various distance functions listed

in Table 4.1.

All of the measurements in Table 4.1 are scaled by the size of the sound horizon at the

drag epoch (rs). This quantity is (see Eisenstein and Hu, 1998 for a derivation):

rs =
2

3keq

√
6

Req

ln

[√
1 +Rd +

√
Rd +Req

1 +
√
Req

]
(4.1)

where Rd ≡ R(zd) and Req ≡ R(zeq) are the values of R, the ratio of the baryon to photon

momentum density,

R =
3ρb
4ργ

(4.2)

at the drag epoch and matter-radiation equality epoch, respectively. Here keq is the scale of
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Table 4.1: BAO data. DM (rs,fid/rs) and DV (rs,fid/rs) have units of Mpc, while
H(z) (rs/rs,fid) has units of km s−1Mpc−1 and rs has units of Mpc.

z Measurement Value σ Ref.
0.38 DM (rs,fid/rs) 1518 22 Alam et al. (2017)
0.51 DM (rs,fid/rs) 1977 27 Alam et al. (2017)
0.61 DM (rs,fid/rs) 2283 32 Alam et al. (2017)
0.38 H(z) (rs/rs,fid) 81.5 1.9 Alam et al. (2017)
0.51 H(z) (rs/rs,fid) 90.4 1.9 Alam et al. (2017)
0.61 H(z) (rs/rs,fid) 97.3 2.1 Alam et al. (2017)
0.106 rs/DV 0.336 0.015 Beutler et al. (2011)
0.15 DV (rs,fid/rs) 664 25 Ross et al. (2015)
1.52 DV (rs,fid/rs) 3855 170 Ata et al. (2018)

2.33 (DH)0.7(DM )0.3

rs
13.94 0.35 Bautista et al. (2017)

2.36 c/ (rsH(z)) 9.0 0.3 Font-Ribera et al. (2014)

the particle horizon at the matter-radiation equality epoch, and ρb and ργ are the baryon

and photon mass densities. In this analyses, where appropriate, the original data listed in

Table 4.1 have been rescaled to a fiducial sound horizon rs,fid = 147.60 Mpc (from Table 4,

column 3, of Planck Collaboration (2016)). This fiducial sound horizon was determined by

using the ΛCDM model, so its value is model dependent, though not to a significant degree

(as can be seen by comparing the computed rs of the Planck Collaboration (2016) baseline

model to that measured using the spatially open ΛCDM and flat XCDM parametrization of

Planck Collaboration (2016)).

Table A.1 lists 31 H(z) measurements determined using the cosmic chronometric tech-

nique, which are the same as the cosmic chronometric H(z) data used in Yu et al. (2018)

(see e.g. Moresco et al., 2012 for a discussion of cosmic chronometers). With this method,

the Hubble rate as a function of redshift is determined by using

H(z) = − 1

(1 + z)

dz

dt
. (4.3)

Although this determination of H(z) does not depend on a cosmological model, it does

depend on the quality of the measurement of dz/dt, which requires an accurate determination

of the age-redshift relation for a given chronometer. See Moresco et al. (2012) and Moresco

60



(2015) for discussions of the strengths and weaknesses of this method. While their approach

requires accurate knowledge of the star formation history and metallicity of massive, passively

evolving early galaxies, and although the two different techniques they use give slightly

different values, they also point out that the measurement of H(z) from this method is

relatively insensitive to changes in the chosen stellar population synthesis model.

4.3 Methods

To determine the values of the best-fit parameters, we minimized

χ2(p) ≡ −2lnL(p), (4.4)

where L is the likelihood function and p is the set of parameters of the model under consid-

eration. If the likelihood function L(p, ν) depends on an uninteresting nuisance parameter

ν with a probability distribution π(ν), we marginalize the likelihood function by integrating

L(p, ν) over ν

L(p) =

∫
L(p, ν)π(ν)dν. (4.5)

In our H(z) analyses H0 is a nuisance parameter. We assumed a Gaussian distribution for

H0

π (H0) =
1√

2πσ2
H0

exp

[
−
(
H0 − H̄0

)2

2σ2
H0

]
(4.6)

and marginalized over it. We considered two cases: H̄0 ± σH0 = 68± 2.8 km s−1 Mpc−1 and

H̄0 ± σH0 = 73.24± 1.74 km s−1 Mpc−1.6

Most of the data we analyzed are uncorrelated, however six of the data points (those

6The lower value, 68 ± 2.8 km s−1 Mpc−1 is the most recent median statistics estimate of the Hubble
constant (Chen and Ratra, 2011b). It is consistent with earlier median statistics estimates (Gott et al., 2001;
Chen et al., 2003). It is also consistent with many other recent measurements of H0 (Planck Collaboration,
2016; L’Huillier and Shafieloo, 2017; Chen et al., 2017; Wang et al., 2017b; Lin and Ishak, 2017; Haridasu
et al., 2017a; Gómez-Valent and Amendola, 2018; Yu et al., 2018; Park and Ratra, 2019a; Haridasu et al.,
2018). The higher value, 73.24 ± 1.74 km s−1 Mpc−1, comes from a local expansion rate estimate (Riess
et al., 2016). Other local expansion rate estimates find slightly lower H0’s with larger error bars (Rigault
et al., 2015; Zhang et al., 2017b; Dhawan et al., 2018; Fernández Arenas et al., 2018).
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from Alam et al., 2017), are correlated. For uncorrelated data points,

χ2(p) =
N∑
i=1

[Ath(p; zi)− Aobs(zi)]
2

σ2
i

, (4.7)

where Ath(p; zi) are the model predictions at redshifts z, and Aobs(zi) and σi are the central

values and error bars of the measurements listed in Table A.1 and the last five lines of Table

4.1. The correlated data (the first six entries in Table 4.1) require

χ2(p) =
[
~Ath(p)− ~Aobs

]T
C−1

[
~Ath(p)− ~Aobs

]
(4.8)

where C−1 is the inverse of the covariance matrix

C =



484.0 9.530 295.2 4.669 140.2 2.402

9.530 3.610 7.880 1.759 5.983 0.9205

295.2 7.880 729.0 11.93 442.4 6.866

4.669 1.759 11.93 3.610 9.552 2.174

140.2 5.983 442.4 9.552 1024 16.18

2.402 0.9205 6.866 2.174 16.18 4.410


(4.9)

(Alam et al., 2017). ~Aobs (in eq. 4.8) are the measurements in the first six lines of Table 4.1.

In addition to χ2, we also used the Bayes Information Criterion

BIC ≡ χ2
min + klnN (4.10)

and the Akaike Information Criterion

AIC ≡ χ2
min + 2k (4.11)

(Liddle, 2007). In these equations χ2
min is the minimum value of χ2, k is the number of

parameters of the given model, and N is the number of data points. BIC and AIC provide
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means to compare models with different numbers of parameters; they penalize models with

a higher k in favor of those with a lower k, in effect enforcing Occam’s Razor in the model

selection process.

To determine the confidence intervals rn on the 1d best-fit parameters, we computed

one-sided limits r±n by using ∫ r±n
p̄
L(p)dp∫ ±∞

p̄
L(p)dp

= σn, (4.12)

where p̄ is the point at which L(p) has its maximimum value, such that n = 1, 2 and

σ1 = 0.6827, σ2 = 0.9545. Because the one-dimensional likelihood function is not guaranteed

to be symmetric about p̄, we compute the upper and lower confidence intervals separately.

In the ΛCDM model, for example, the 1-sigma confidence intervals on Ωm0 are computed

by first integrating the likelihood function L(Ωm0,ΩΛ) over ΩΛ to obtain a marginalized

likelihood function that only depends on Ωm0,

∫ 1

0

L(Ωm0,ΩΛ)dΩΛ = L(Ωm0), (4.13)

and then inserting this marginalized likelihood function into eq. (4.12).

The ranges over which we marginalized the parameters of the ΛCDM model were 0 ≤

ΩΛ ≤ 1 and 0.01 ≤ Ωm0 ≤ 1. For the spatially flat XCDM parametrization, we used

−2 ≤ wX ≤ 0 and 0.01 ≤ Ωm0 ≤ 1, and for the spatially flat φCDM model we used

0.01 ≤ α ≤ 5 and 0.01 ≤ Ωm0 ≤ 1. For 3-parameter XCDM, we used −0.7 ≤ Ωk0 ≤ 0.7,

0.01 ≤ Ωm0 ≤ 1, and −2.00 ≤ wX ≤ 0. For the 3-parameter φCDM model we considered

−0.5 ≤ Ωk0 ≤ 0.5, 0.01 ≤ Ωm0 ≤ 1, and 0.01 ≤ α ≤ 5. 7

We analyzed the data with two independent Python codes, written by Sanket Doshi

and Joseph Ryan, that produced almost identical results for all 2-parameter cases as well

as the 3-parameter XCDM parametrization, and results that agreed to within 1% in the

3-parameter φCDM case.

7Ωm0, α = 0.01 were excluded because our codes ran into difficulties at those points.
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Table 4.2: Best-fit values for 2-parameter models. ∆χ2 is evaluated relative to χ2 of ΛCDM
for each H0 prior.

H0 prior
(
km s−1Mpc−1

)
Model Ωm0 ΩΛ wX α χ2 ∆χ2 AIC BIC

68± 2.8 ΛCDM 0.29 0.68 - - 25.35 0.00 29.35 32.83
flat XCDM 0.29 - -0.94 - 25.04 -0.31 29.04 32.52
flat φCDM 0.29 - - 0.16 25.05 -0.30 29.05 32.53

73.24± 1.74 ΛCDM 0.30 0.77 - - 26.92 0.00 30.92 34.40
flat XCDM 0.29 - -1.13 - 28.26 1.34 32.26 35.74
flat φCDM 0.30 - - 0.01 32.62 5.70 36.62 40.10

Table 4.3: Best-fit values for 3-parameter models. ∆χ2, ∆AIC, and ∆BIC are evaluated
relative to χ2, AIC, and BIC of ΛCDM for each H0 prior.

H0 prior
(
km s−1Mpc−1

)
Model Ωm0 Ωk0 wX α χ2 ∆χ2 AIC ∆AIC BIC ∆BIC

68± 2.8 XCDM 0.31 -0.18 -0.76 - 23.65 -1.70 29.65 0.30 34.86 2.03
φCDM 0.31 -0.22 - 0.96 23.82 -1.53 29.82 0.47 35.03 2.20

73.24± 1.74 XCDM 0.32 -0.21 -0.84 - 26.48 -0.44 32.48 1.56 37.69 3.29
φCDM 0.32 -0.26 - 0.62 26.30 0.95 32.30 1.38 37.51 3.11

4.4 Results

The confidence contours for the models we considered are shown in Figs. 4.1, 4.2, and 4.3.

The solid black contours indicate the H̄0 = 68 ± 2.8 km s−1 Mpc−1 prior constraints, the

dashed black contours indicate the H0 = 73.24± 1.74 km s−1 Mpc−1 prior constraints, and

the red dots indicate the best-fit point in each prior case. Our results for the parameter

values of the unmarginalized and marginalized cases are collected in Tables 4.2-4.5, along

with their χ2, AIC, and BIC values. Wherever ∆χ2, ∆AIC, and ∆BIC are given, these are

computed relative to the χ2, AIC, and BIC of the corresponding ΛCDM model of each prior

case.

In the 2-parameter case, the spatially flat XCDM parametrization has the lowest value

of χ2 if the prior on H0 is chosen to be H̄0 = 68 ± 2.8 km s−1 Mpc−1. If, on the other

hand, the H0 prior is chosen to be H̄0 = 73.24 ± 1.74 km s−1 Mpc−1 then the spatially flat

ΛCDM model has the lowest value of χ2. These models also have lower AIC and BIC values

than the 3-parameter XCDM parametrization and the 3-parameter φCDM model (see Tables

4.2 and 4.3). On the other hand, the 3-parameter models typically have a lower χ2 than

the 2-parameter ΛCDM case. These differences, however, are not statistically significant.
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Table 4.4: 1σ and 2σ parameter intervals for 2-parameter models.

H0 prior
(
km s−1Mpc−1

)
Model Marginalization range Best-fit 1σ 2σ

68± 2.8 ΛCDM 0 ≤ ΩΛ0 ≤ 1 Ωm0 = 0.29 0.27 ≤ Ωm0 ≤ 0.31 0.26 ≤ Ωm0 ≤ 0.32

0.01 ≤ Ωm0 ≤ 1 ΩΛ0 = 0.68 0.63 ≤ ΩΛ0 ≤ 0.73 0.58 ≤ ΩΛ0 ≤ 0.77
flat XCDM −2 ≤ wX ≤ 0 Ωm0 = 0.29 0.28 ≤ Ωm0 ≤ 0.31 0.26 ≤ Ωm0 ≤ 0.33

0.01 ≤ Ωm0 ≤ 1 wX = −0.94 −1.02 ≤ wX ≤ −0.87 −1.10 ≤ wX ≤ −0.80
flat φCDM 0.01 ≤ α ≤ 5 Ωm0 = 0.29 0.28 ≤ Ωm0 ≤ 0.31 0.26 ≤ Ωm0 ≤ 0.33

0.01 ≤ Ωm0 ≤ 1 α = 0.16 0.06 ≤ α ≤ 0.43 0.02 ≤ α ≤ 0.72

73.24± 1.74 ΛCDM 0 ≤ ΩΛ0 ≤ 1 Ωm0 = 0.30 0.29 ≤ Ωm0 ≤ 0.32 0.27 ≤ Ωm0 ≤ 0.33

0.01 ≤ Ωm0 ≤ 1 ΩΛ0 = 0.77 0.73 ≤ ΩΛ0 ≤ 0.81 0.69 ≤ ΩΛ0 ≤ 0.84
flat XCDM −2 ≤ wX ≤ 0 Ωm0 = 0.29 0.28 ≤ Ωm0 ≤ 0.31 0.26 ≤ Ωm0 ≤ 0.32

0.01 ≤ Ωm0 ≤ 1 wX = −1.13 −1.20 ≤ wX ≤ −1.06 −1.27 ≤ wX ≤ −1.00
flat φCDM 0.01 ≤ α ≤ 5 Ωm0 = 0.31 0.29 ≤ Ωm0 ≤ 0.32 0.28 ≤ Ωm0 ≤ 0.34

0.01 ≤ Ωm0 ≤ 1 α = 0.01 0.01 ≤ α ≤ 0.09 0.01 ≤ α ≤ 0.20

Focusing on the H̄0 = 68± 2.8 km s−1 Mpc−1 prior case, the χ2 differences indicate that the

non-flat φCDM model and non-flat XCDM parametrization provide a 1.2σ and 1.3σ better

fit to the data, respectively, while from ∆AIC we find that these two models are 79% and

86% as probable as the 2-parameter ΛCDM model, respectively.

In Table 4.4 (4.5), we list the 1σ and 2σ confidence intervals on the parameters of each of

the 2-parameter (3-parameter) models. We obtained these by marginalizing the 2-parameter

(3-parameter) likelihood function as described in Sec. 4.3. The best-fit points in these tables

correspond to the maximum value of the relevant one-dimensional marginalized likelihood

function. Table 4.2 (4.3) lists the corresponding two-dimensional (three-dimensional) best-fit

points.

From the figures and tables, we see that the spatially flat ΛCDM model is a reasonable

fit to the H(z) and BAO data we use (although the flat XCDM parametrization and flat

φCDM model provide slightly better fits in the H̄0 ± σH0 = 68± 2.8 km s−1 Mpc−1case). In

particular, from the figures, for the H̄0 ± σH0 = 68± 2.8 km s−1 Mpc−1prior, flat ΛCDM is

always within about 1σ of the best-fit value. However, the H̄0 ± σH0 = 73.24± 1.74 km s−1

Mpc−1case favors some larger deviations from flat ΛCDM. For example in the middle panel

of Fig. 4.1 for the flat XCDM parametrization it favors a phantom model over flat ΛCDM

at a little more than 1σ, while in the center and right panels of Fig. 4.3 for the non-flat

φCDM case it also favors a closed model at a little more than 2σ. Similar conclusions may

be drawn from the parameter limits listed in Tables 4.4 and 4.5.
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Table 4.5: 1σ and 2σ parameter intervals for 3-parameter models.

H0 prior
(
km s−1Mpc−1

)
Model Marginalization range Best-fit 1σ 2σ

68± 2.8 XCDM −0.7 ≤ Ωk0 ≤ 0.7 Ωm0 = 0.31 0.28 ≤ Ωm0 ≤ 0.33 0.25 ≤ Ωm0 ≤ 0.36

wX = −0.70 −0.93 ≤ wX ≤ −0.62 −1.27 ≤ wX ≤ −0.57
0.01 ≤ Ωm0 ≤ 1 Ωk0 = −0.11 −0.36 ≤ Ωk0 ≤ 0.06 −0.59 ≤ Ωk0 ≤ 0.19

wX = −0.70 −0.93 ≤ wX ≤ −0.62 −1.27 ≤ wX ≤ −0.57
−2 ≤ wX ≤ 0 Ωm0 = 0.31 0.28 ≤ Ωm0 ≤ 0.33 0.25 ≤ Ωm0 ≤ 0.36

Ωk0 = −0.11 −0.36 ≤ Ωk0 ≤ 0.06 −0.59 ≤ Ωk0 ≤ 0.19
φCDM −0.5 ≤ Ωk0 ≤ 0.5 Ωm0 = 0.31 0.29 ≤ Ωm0 ≤ 0.33 0.27 ≤ Ωm0 ≤ 0.35

α = 1.12 0.51 ≤ α ≤ 1.59 0.11 ≤ α ≤ 1.97
0.01 ≤ Ωm0 ≤ 1 Ωk0 = −0.22 −0.38 ≤ Ωk0 ≤ −0.07 −0.48 ≤ Ωk0 ≤ 0.03

α = 1.16 0.53 ≤ α ≤ 1.61 0.12 ≤ α ≤ 2.01
0.01 ≤ α ≤ 5 Ωm0 = 0.31 0.29 ≤ Ωm0 ≤ 0.33 0.27 ≤ Ωm0 ≤ 0.35

Ωk0 = −0.21 −0.38 ≤ Ωk0 ≤ −0.07 −0.48 ≤ Ωk0 ≤ 0.04

73.24± 1.74 XCDM −0.7 ≤ Ωk0 ≤ 0.7 Ωm0 = 0.32 0.29 ≤ Ωm0 ≤ 0.34 0.26 ≤ Ωm0 ≤ 0.36

wX = −0.82 −1.08 ≤ wX ≤ −0.71 −1.44 ≤ wX ≤ −0.63
0.01 ≤ Ωm0 ≤ 1 Ωk0 = −0.11 −0.33 ≤ Ωk0 ≤ 0.03 −0.55 ≤ Ωk0 ≤ 0.14

wX = −0.82 −1.08 ≤ wX ≤ −0.71 −1.44 ≤ wX ≤ −0.63
−2 ≤ wX ≤ 0 Ωm0 = 0.32 0.29 ≤ Ωm0 ≤ 0.34 0.26 ≤ Ωm0 ≤ 0.36

Ωk0 = −0.11 −0.33 ≤ Ωk0 ≤ 0.03 −0.55 ≤ Ωk0 ≤ 0.14
φCDM −0.5 ≤ Ωk0 ≤ 0.5 Ωm0 = 0.32 0.30 ≤ Ωm0 ≤ 0.34 0.29 ≤ Ωm0 ≤ 0.35

α = 0.76 0.31 ≤ α ≤ 1.14 0.06 ≤ α ≤ 1.41
0.01 ≤ Ωm0 ≤ 1 Ωk0 = −0.25 −0.40 ≤ Ωk0 ≤ −0.14 −0.48 ≤ Ωk0 ≤ −0.07

α = 0.79 0.32 ≤ α ≤ 1.16 0.06 ≤ α ≤ 1.43
0.01 ≤ α ≤ 5 Ωm0 = 0.32 0.30 ≤ Ωm0 ≤ 0.34 0.29 ≤ Ωm0 ≤ 0.35

Ωk0 = −0.24 −0.40 ≤ Ωk0 ≤ −0.14 −0.48 ≤ Ωk0 ≤ −0.07
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Figure 4.1: Confidence contours for 2-parameter models. Solid (dashed) 1, 2, and 3σ contours
correspond to H̄0 ± σH0 = 68 ± 2.8 (73.24 ± 1.74) km s−1 Mpc−1 prior, and the red dots
indicate the location of the best-fit point in each prior case. Left: ΛCDM. The blue dashed
line indicates the spatially flat ΛCDM model; points above (below) the line correspond to
models with closed (open) spatial hypersurfaces. Center: flat XCDM. The blue dashed line
(for which wX = −1) demarcates the flat ΛCDM case. Right: flat φCDM. The horizontal
α = 0 axis corresponds to the flat ΛCDM model.
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Figure 4.2: Confidence contours for 3-parameter XCDM. Solid (dashed) 1, 2, and 3σ contours
correspond to H̄0±σH0 = 68±2.8 (73.24±1.74) km s−1 Mpc−1 prior, and the red dots indicate
the location of the best-fit point in each prior case. Left: Ωk0 marginalized. The blue dashed
line indicates the ΛCDM model. Points above (below) the green dot-dashed curve near the
top of the panel correspond to models with late-time (decelerating) accelerating expansion.
Center: Ωm0 marginalized. The horizontal blue dashed line (for which wX = −1) demarcates
the ΛCDM case, and the vertical green dot-dashed line demarcates the spatially flat XCDM
case. Right: wX marginalized. The horizontal green dot-dashed line indicates the spatially
flat XCDM case.

When both dynamical dark energy and spatial curvature are present (as opposed to cases

with only dynamical dark energy or only spatial curvature) it is not as easy to constrain both

parameters simultaneously. This can be seen by comparing the center and right panels of

Fig. 4.1 to the left panels of Figs. 4.2 and 4.3, respectively. When spatial curvature is

allowed to vary, the confidence contours in the 3-parameter XCDM parametrization and the

φCDM model expand along the wX and α axes (these are the parameters that govern the

dynamics of the dark energy).

The consensus model, spatially flat ΛCDM, is consistent with current H(z) + BAO data,

but these data allow some nonzero spatial curvature. In particular, we find that the best-fit

values of the parameters in the ΛCDM model imply a curvature energy density parameter

of Ωk0 = 0.03 for the H̄0 ± σH0 = 68 ± 2.8 km s−1 Mpc−1 prior case, and Ωk0 = −0.07 for

the H̄0 ± σH0 = 73.24 ± 1.74 km s−1 Mpc−1 prior case. More precisely, using the Ωm0 and

ΩΛ best-fit values and error bars for flat ΛCDM from Table 4.4, and combining the errors in

quadrature, an approximate estimate is Ωk0 = 0.03(1±1.8) and Ωk0 = −0.07(1±0.59) for the
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Figure 4.3: Confidence contours for 3-parameter φCDM. Solid (dashed) 1, 2, and 3σ contours
correspond to H̄0±σH0 = 68±2.8 (73.24±1.74) km s−1 Mpc−1 prior, and the red dots indicate
the location of the best-fit point in each prior case. Left: Ωk0 marginalized. The horizontal
α = 0 axis corresponds to the ΛCDM model. Center: Ωm0 marginalized. The vertical α = 0
axis corresponds to the ΛCDM model and the horizontal blue dashed line here and in the
next panel correspond to the spatially flat φCDM case. Right: α marginalized.

H̄0±σH0 = 68±2.8 km s−1 Mpc−1and H̄0±σH0 = 73.24±1.74 km s−1 Mpc−1priors, with the

data favoring a closed model at a little over 1σ in the second case. The 3-parameter models,

in both prior cases, favor closed spatial hypersurfaces, but the error bars are so large that

these results only stand out in the H̄0 ± σH0 = 73.24± 1.74 km s−1 Mpc−1prior case of the

φCDM model (see the center and right panels of 4.3). While not very statistically significant,

we note that these results are not inconsistent with those of Ooba et al. (2018b,b,c) and

Park and Ratra (2019a,b), who found that CMB anisotropy data, in conjunction with other

cosmological data, were not inconsistent with mildly closed spatial hypersurfaces.

The current data are also not inconsistent with some mild dark energy dynamics, although

the size of the effect varies depending on the choice of H0 prior and whether or not Ωk0 is

allowed to vary as a free parameter. In the flat φCDM model, for instance, α can be different

from zero only in the H̄0±σH0 = 68±2.8 km s−1 Mpc−1 prior case, whereas α can be different

from zero in both prior cases if Ωk0 is allowed to vary (see the right panel of 4.1 and the left

panel of 4.3).

68



4.5 Conclusions

We analyzed a total of 42 measurements, 31 of which consisted of uncorrelated H(z) data

points, with the remainder coming from BAO observations (some correlated, some not),

to constrain dark energy dynamics and spatial curvature, by determining how well these

measurements can be described by three common models of dark energy: ΛCDM, the XCDM

parametrization, and φCDM.

The consensus flat ΛCDM model is in reasonable agreement with these data, but de-

pending on the model analyzed and the H0 prior used, it can be a little more than 1σ away

from the best-fit model. These data are consistent with mild dark energy dynamics as well as

non-flat spatial hypersurfaces. While these results are interesting and encouraging, more and

better data are needed before we can make definitive statements about the spatial curvature

of the universe and about dark energy dynamics.
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Chapter 5

Baryon acoustic oscillation, Hubble

parameter, and angular size

measurement constraints on the

Hubble constant, dark energy

dynamics, and spatial curvature

This chapter is based on Ryan et al. (2019).

5.1 Introduction

As discussed in the last chapter, the standard ΛCDM model assumes flat spatial hypersur-

faces. It has been argued that cosmic microwave background (CMB) anisotropy measure-

ments show that spatial hypersurfaces are very close to being flat, but the recent Planck

Collaboration (2016) and Planck Collaboration (2020) CMB anisotropy data analyses in

the non-flat case are based on a somewhat arbitrary primordial power spectrum for spatial

inhomogeneities. A physically consistent primordial inhomogeneity energy density power
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spectrum can be generated by inflation, and non-flat inflation models exist which can be

used to compute such a power spectrum (for the models, see Gott, 1982, Hawking, 1984, and

Ratra, 1985; for the power spectra, see Ratra and Peebles, 1995 and Ratra, 2017).1

When these power spectra (Ratra and Peebles, 1995; Ratra, 2017) are used in a non-

flat ΛCDM model analysis of CMB anisotropy data (Planck Collaboration, 2016) and a

large compilation of non-CMB data (Ooba et al., 2018a; Park and Ratra, 2019b), a mildly

closed ΛCDM model with ∼1% spatial curvature contribution to the current cosmological

energy budget is favored at over 5σ. A similar spatial curvature contribution is favored in

dynamical dark energy XCDM and φCDM models (in which dark energy is modelled as an

X-fluid and scalar field, respectively; see Ooba et al., 2018b,c, Park and Ratra, 2019a, 2018).

These closed models provide better fits to the low multipole CMB anisotropy data, but the

flat models are in better agreement with the higher multipole CMB anisotropy data. The

non-flat models are in better agreement with weak lensing measurements, but do a worse

job fitting higher redshift cosmic reionization data (Mitra et al., 2018, 2019) and deuterium

abundance measurements (Penton et al., 2018).2

It has also been found that spatially-flat dynamical dark energy XCDM and φCDM

models provide slightly better overall fits (lower total χ2) to the current data than does flat

ΛCDM (in the best-fit versions of these models the dark energy density has only very mild

time dependence; see Ooba et al., 2019, Park and Ratra, 2019a, 2018, and Solà Peracaula

et al., 2019).3

The constraints on spatial curvature and dark energy dynamics discussed above make use

of CMB anisotropy data, which requires the assumption of a primordial spatial inhomogene-

ity power spectrum. As mentioned above, the only currently known physically motivated

1These non-flat inflation models are slow-roll models, so quantum mechanical fluctuations during inflation
in these models result in an untilted primordial power spectrum. It is possible that these power spectra are
too simple, but they are physically consistent; it is not known if the power spectrum used in the Planck
non-flat CMB analyses are physically consistent.

2Overall the standard tilted flat ΛCDM model has a lower total χ2 than the non-flat models, lower by
∆χ2 ∼ 10-20, depending on the data compilation and non-flat model used. However, the tilted flat ΛCDM
model is not nested inside any of the three untilted non-flat models, so it is not possible to convert these
∆χ2 values to relative goodness-of-fit probabilities (Ooba et al., 2018a,b,c; Park and Ratra, 2019a,b, 2018).

3For studies of other spatially-flat dynamical dark energy models that fit the data better than does flat
ΛCDM, see Zhang et al. (2017a), Wang et al. (2018), and Zhang et al. (2018).
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power spectra in non-flat models are untilted power spectra generated by slow-roll inflation.

Such power spectra might not be general enough, so the CMB anisotropy data constraints

on spatial curvature derived using these power spectra could be misleading. It is therefore of

great importance to constrain spatial curvature and dark energy dynamics using non-CMB

data that does not require the assumption of a primordial spatial inhomogeneity power spec-

trum. For recent studies along these lines, see Chapter 4, as well as Farooq et al. (2015),

Chen et al. (2016), Yu and Wang (2016), Farooq et al. (2017), Wei and Wu (2017), Rana

et al. (2017), Yu et al. (2018), Qi et al. (2018), Park and Ratra (2019c), Mukherjee et al.

(2019), DES Collaboration (2019a), Zheng et al. (2019), and Ruan et al. (2019).4

In Chapter 4 we used Hubble parameter and baryon acoustic oscillation (BAO) measure-

ments to constrain spatial curvature and dark energy dynamics.5 Here we improve upon and

extend the analyses of that chapter. To do this, we:

• Consider a sixth cosmological model, flat ΛCDM.

• Update our BAO measurements.

• More accurately compute the size of the sound horizon at the drag epoch for the BAO

constraints.

• Treat the Hubble constant H0 as an adjustable parameter to be determined by the

data we use.

• Use milliarcsecond quasar angular size versus redshift data (Cao et al., 2017b), alone

and in combination with H(z) and BAO data, to constrain cosmological parameters.

We note that, in our analyses here, we make use of the baryon density determined from the

Planck 2015 TT + lowP + lensing CMB anisotropy data (Planck Collaboration, 2016), as

4For possible constraints on spatial curvature from future data, see Witzemann et al. (2018) and Wei
(2018).

5Hubble parameter data span a large enough redshift range to be able to detect and study the transition
from early matter dominated cosmological deceleration to the current dark energy dominated accelerated
expansion (see, e.g., Farooq et al., 2017; Farooq and Ratra, 2013; Farooq et al., 2013; Moresco et al., 2016a;
Jesus et al., 2018; Gómez-Valent, 2018). For other uses of Hubble parameter data, see Chen and Ratra
(2011a), Chen et al. (2015), Anagnostopoulos and Basilakos (2018), Mamon and Bamba (2018), Geng et al.
(2018), and Liu et al. (2018).
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computed in each of the six cosmological models we consider by Park and Ratra (2019a,b,

2018), in order to calibrate the scale of the BAO sound horizon rs (which scale is necessary

for the computation of distances from BAO data; see below). This means that the con-

straints we obtain from the BAO data are not completely independent of the Planck 2015

CMB anisotropy data. That said, the baryon density determined from the CMB anisotropy

data in the spatially flat models is very consistent with the baryon density determined from

deuterium abundance measurements, although it is a little less consistent with these mea-

surements in the non-flat models (Penton et al., 2018).

The new data set that we incorporate in this chapter consists of measurements of quasar

angular size from Cao et al. (2017b).6 Measurements of the milliarcsecond-scale angular

size of distant radio sources, from data compiled in Gurvits et al. (1999), have been used in

the past to constrain cosmological parameters; see Vishwakarma (2001), Lima and Alcaniz

(2002), Zhu and Fujimoto (2002), and Chen and Ratra (2003). There is, however, reason

to doubt some of these earlier findings. Angular size measurements are only useful if radio

sources are standard rulers, as accurate knowledge of the characteristic linear size lm of the

ruler is necessary to convert measurements of the angular size distance into measurements

of the angular size, and the estimates of lm used by Vishwakarma (2001), Lima and Alcaniz

(2002), and Zhu and Fujimoto (2002) were inaccurate. To account for the uncertainty

in the characteristic linear size lm, Chen and Ratra (2003) marginalized over lm, finding

only weak constraints on the cosmological parameters they studied from the angular size

data. More recent studies, such as Cao et al. (2017c) and Cao et al. (2017b), based on a

sample of 120 intermediate-luminosity quasars recently compiled by Cao et al. (2017b), have

more precisely calibrated lm, and these angular size versus redshift data have been used to

constrain cosmological parameters (Cao et al., 2017b; Li et al., 2017; Qi et al., 2017; Xu et al.,

2018). Here we use these data, in conjunction with H(z) measurements and BAO distance

measurements, to constrain cosmological parameters. We find that when the QSO angular

size versus redshift data are used in conjunction with the H(z) + BAO data combination,

6For other angular size versus redshift data compilations and constraints, see Daly and Guerra (2002),
Podariu et al. (2003), Bonamente et al. (2006), and Chen and Ratra (2012).
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Table 5.1: Baryon densities for the models we studied.

Model Ωbh
2 Ref.

Flat ΛCDM 0.02225 Park and Ratra (2019b)
Nonflat ΛCDM 0.02305 Park and Ratra (2019b)

Flat XCDM 0.02229 Park and Ratra (2019a)
Nonflat XCDM 0.02305 Park and Ratra (2019a)

Flat φCDM 0.02221 Park and Ratra (2018)
Nonflat φCDM 0.02303 Park and Ratra (2018)

cosmological parameter constraints tighten a bit. We also confirm, as described below, that

the QSO data have a large reduced χ2 ∼ 3.

From the full data set, we measure a Hubble constant H0 that is very consistent with

the H0 = 68± 2.8 km s−1 Mpc−1 median statistics estimate (Chen and Ratra, 2011b) but is

a model-dependent 1.9σ to 2.5σ (from the quadrature sum of the error bars) lower than the

local expansion rate measurement of H0 = 73.48 ± 1.66 km s−1 Mpc−1 (Riess et al., 2018).

In the non-flat ΛCDM model these data are consistent with flat spatial hypersurfaces, while

they favor closed geometry at 1.2σ and 1.7σ in the non-flat XCDM parametrization and

non-flat φCDM model, respectively. In some of dynamical dark energy models, both flat

and non-flat, these data favor dark energy dynamics over a Λ (up to a little more 2σ).

5.2 Data

We use a combination of 120 quasar angular size measurements (”QSO”), 31 expansion

rate measurements (”H(z)”), and 11 baryon acoustic oscillation measurements (”BAO”) to

constrain our models. The H(z) data, compiled in Table A.1, are identical to the data used

in Chapter 4 (see that chapter for a discussion). The BAO data (see Table 5.2) have been

updated from Chapter 4; in that chapter we used the preprint value of the measurement

from Ata et al. (2018), while here we use the published version. Also, we have taken the first

six measurements of Table 5.2 (and the covariance matrix of these measurements) directly

from the SDSS website;7 in Chapter 4 we did not use the full precision measurements.

7https://sdss3.org/science/boss_publications.php
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Additionally, our analysis of the BAO data in this paper differs from that of Chapter 4, as

discussed below. The BAO measurements collected in Table 5.2 are expressed in terms of the

transverse co-moving distance DM(z) (eq. 2.22), the Hubble distance DH(z) (eq. 2.23), the

volume-averaged angular diameter distance DV(z) (eq. 2.32), and the line-of-sight co-moving

distance DC(z) (eq. 2.24).

All measurements listed in Table 5.2 are scaled by the size of the sound horizon at the

drag epoch rs. This quantity is (see Eisenstein and Hu, 1998 for a derivation)

rs =
2

3keq

√
6

Req

ln

[√
1 +Rd +

√
Rd +Req

1 +
√
Req

]
, (5.1)

where Rd ≡ R(zd) and Req ≡ R(zeq) are the values of R, the ratio of the baryon to photon

momentum density

R =
3ρb
4ργ

, (5.2)

at the drag and matter-radiation equality redshifts zd and zeq, respectively, and keq is the

particle horizon wavenumber at the matter-radiation equality epoch.

To compute rs as a function of our model parameters, we use the fitting formula presented

in Eisenstein and Hu (1998). This calculation also requires Ωbh
2 as input, and in Chapter 4

we used Ωbh
2 = 0.02227 for all models considered. It is more accurate, however, to use the

different values of Ωbh
2 computed by Park and Ratra (2019a,b, 2018) for each model from

the Planck 2015 TT + lowP + lensing CMB anisotropy data (Planck Collaboration, 2016),

because the values of Ωbh
2 estimated from CMB anisotropy data are model dependent, and

vary significantly between the spatially-flat and non-flat inflation models (Park and Ratra,

2019b). The values of Ωbh
2 that we use are collected in Table 5.1, without their associated

small uncertainties, which we do not account for in our analyses. Here we remind the

reader that, because the values of Ωbh
2 in Table 5.1 are computed from CMB data, our

analysis of the BAO measurements in Table 5.2 (each of which requires a computation of

the sound horizon, which in turn depends on Ωbh
2) is not completely independent of the

CMB data. This should be borne in mind when comparing our H0 measurements to local
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Table 5.2: BAO data. DM (rs,fid/rs) and DV (rs,fid/rs) have units of Mpc, while
H(z) (rs/rs,fid) has units of km s−1Mpc−1 and rs and rs,fid have units of Mpc. The un-
certainty on the first six measurements is accounted for by the covariance matrix of eq.
(5.7).

z Measurement Value σ Ref.
0.38 DM (rs,fid/rs) 1512.39 - Alam et al. (2017)
0.38 H(z) (rs/rs,fid) 81.2087 - Alam et al. (2017)
0.51 DM (rs,fid/rs) 1975.22 - Alam et al. (2017)
0.51 H(z) (rs/rs,fid) 90.9029 - Alam et al. (2017)
0.61 DM (rs,fid/rs) 2306.68 - Alam et al. (2017)
0.61 H(z) (rs/rs,fid) 98.9647 - Alam et al. (2017)
0.106 rs/DV 0.336 0.015 Beutler et al. (2011)
0.15 DV (rs,fid/rs) 664 25 Ross et al. (2015)
1.52 DV (rs,fid/rs) 3843 147 Ata et al. (2018)

2.33 (DH)0.7(DM )0.3

rs
13.94 0.35 Bautista et al. (2017)

2.36 c/ (rsH(z)) 9.0 0.3 Font-Ribera et al. (2014)

H0 measurements (see Riess et al., 2018, for example).

Our method of scaling the sound horizon here differs from the method used in Chapter 4.

For studies that scale their measurements by rs,fid/rs, we use the fitting formula of Eisenstein

and Hu (1998) to compute both rs and rs,fid. For rs,fid we use the parameters (Ωm0, H0,Ωbh
2)

of the fiducial cosmology adopted in the paper in which the measurement is reported. For

measurements scaled only by rs, we again use the fitting formula of Eisenstein and Hu (1998),

but we modify it with a multiplicative scaling factor 147.60 Mpc/rs,Planck, where 147.60 Mpc

is the value of the sound horizon from Table 4, column 3 of Planck Collaboration (2016), and

rs,Planck is the output of the sound horizon fitting formula from Eisenstein and Hu (1998) when

it takes the best-fitting values of (Ωm0, H0,Ωbh
2) from Planck Collaboration (2016) as input.8

We do this because the output of the fitting formula in Eisenstein and Hu (1998) deviates by

a few per cent from CAMB’s output; the scaling factor ensures that rs = 147.60 Mpc when

(Ωm0, H0,Ωbh
2) take their best-fitting values found by Planck Collaboration (2016). We

believe that these modifications to the output of the fitting formula result in more accurate

determinations of the size of the sound horizon than the scaling employed in Chapter 4.

Recently, Cao et al. (2017c) found that compact structures in intermediate-luminosity

8We thank C.-G. Park for suggesting this.
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radio quasars could serve as standard cosmological rulers. Our QSO data come from a newly

compiled sample of these standard rulers from observations of 120 intermediate-luminosity

quasars taken over a redshift range of 0.46 ¡ z ¡ 2.76, with angular sizes θobs(z) and redshifts

z listed in Table 1 of Cao et al. (2017b). The corresponding theoretical predictions for the

angular sizes can be obtained via

θth(z) =
lm

DA(z)
, (5.3)

where lm = 11.03±0.25 pc is the intrinsic linear size of the ruler (see Cao et al., 2017b), and

DA(z) =
DM(z)

1 + z
(5.4)

is the angular diameter distance at redshift z (see Hogg, 1999).

5.3 Data Analysis Methods

We use the χ2 statistic to find the best-fitting parameter values and limits for a given model.

Most of the data points we use are uncorrelated, so

χ2(p) =
N∑
i=1

[Ath(p; zi)− Aobs(zi)]
2

σ2
i

. (5.5)

Here p is the set of model parameters, for example p = (H0,Ωm0) in the flat ΛCDM model,

zi is the redshift at which the measured value is Aobs(zi) with one standard deviation uncer-

tainty σi, and Ath(p; zi) is the predicted value computed in the model under consideration.

The χ2 expression in eq. (5.5) holds for the H(z) measurements listed in Table A.1 and the

BAO measurements listed in the last five lines of Table 5.2 here.

The measurements in the first six lines of Table 5.2 are correlated, in which case χ2 is

given by

χ2(p) =
[
~Ath(p)− ~Aobs

]T
C−1

[
~Ath(p)− ~Aobs

]
, (5.6)
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where C−1 is the inverse of the covariance matrix C =

624.707 23.729 325.332 8.34963 157.386 3.57778

23.729 5.60873 11.6429 2.33996 6.39263 0.968056

325.332 11.6429 905.777 29.3392 515.271 14.1013

8.34963 2.33996 29.3392 5.42327 16.1422 2.85334

157.386 6.39263 515.271 16.1422 1375.12 40.4327

3.57778 0.968056 14.1013 2.85334 40.4327 6.25936


(5.7)

(from the SDSS website).

For the QSO data (Cao et al., 2017b) we use

χ2(p) =
N∑
i=1

[
θth(p; zi)− θobs(zi)

σi + 0.1θobs(zi)

]2

, (5.8)

where θth(p; zi) is the model-predicted value of the angular size, θobs(zi) is the measured

angular size at redshift zi, and σi is the uncertainty on the measurement made at redshift zi.

The term proportional to θobs(zi) in the denominator is added to σi in order to account for

systematic uncertainties in the angular size measurements (see the discussion of this point

in the first paragraph of Sec. 3 of Cao et al., 2017b).

To determine constraints on the parameters of a given model, we use the likelihood

L(p) = e−χ(p)2/2. (5.9)

We are interested in presenting two-dimensional confidence contour plots and one-dimensional

likelihoods. To do this, for the models with more than two parameters, we marginalize over

the parameters in turn to get one- and two-dimensional likelihoods. In general, we marginal-

ize our likelihood functions by computing integrals of the form

L(px) =

∫
L(px, py)π(py)dpy, (5.10)
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where px refers to the set of parameters not marginalized over, py refers to the parameter to

be marginalized, and π(py) is a flat, top-hat prior of the form

π(py) =


1 if py,min < py < py,max

0 otherwise

(5.11)

(see Table 5.4 for the parameter ranges).9 For example, in the non-flat ΛCDM model one of

the two-dimensional likelihoods we compute is

L(Ωm0,ΩΛ) =

∫ 85

50

L(Ωm0, H0,ΩΛ)dH0, (5.12)

where we integrate the Hubble constant from 50 km s−1 Mpc−1 to 85 km s−1 Mpc−1.10 We

then plot the isocontours of χ2(Ωm0,ΩΛ) = −2lnL(Ωm0,ΩΛ) in the Ωm0-ΩΛ subspace of the

total parameter space (see Fig. 5.2).

In addition to plotting the one-dimensional likelihoods for each parameter of each model

we consider, we also compute one-sided confidence limits on the best-fitting values of these

parameters. The best-fitting value of a parameter p within a given model, after marginal-

ization over the other parameters of the model, is that value p̄ which maximizes the one-

dimensional likelihood L(p). To determine the confidence limits r±n on either side of p̄, we

compute ∫ r±n
p̄
L(p)dp∫ ±∞

p̄
L(p)dp

= σn (5.13)

where σ1,2 = 0.6827, 0.9545 and r+
n , r−n are the upper and lower confidence limits out to σn,

respectively.

9We compute the full (not marginalized) likelihoods on a grid. In all flat models and the non-flat ΛCDM
model each parameter has an associated step size of ∆p = 0.01. In the non-flat XCDM parametrization and
the non-flat φCDM model, we use ∆H0 = 0.1 km s−1 Mpc−1 to reduce computation time (with all other
parameters having ∆p = 0.01).

10In Chapter 4 we used two H0 priors, gaussian with central values and error bars of H̄0± σH0
= 68± 2.8

km s−1 Mpc−1 (Chen and Ratra, 2011b) and H̄0 ± σH0 = 73.24 ± 1.74 km s−1 Mpc−1 (Riess et al., 2016).
Here we are instead treating H0 as an adjustable parameter to be determined from the data we use.

79



Table 5.3: Best-fitting parameters of all models.

Model Data set Ωm0 ΩΛ Ωk0 wX α H0
a ν χ2 AIC BIC

Flat ΛCDM H(z) + BAO 0.30 0.70 0 - - 67.99 39 23.63 27.63 31.11
QSO 0.32 0.68 0 - - 68.49 117 352.05 356.05 361.63

QSO + H(z) + BAO 0.31 0.69 0 - - 68.43 159 376.44 380.44 386.62
Non-flat ΛCDM H(z) + BAO 0.30 0.70 0 - - 68.46 38 23.2 29.2 34.41

QSO 0.27 1 −0.27 - - 74.62 116 351.3 357.30 365.66
QSO + H(z) + BAO 0.30 0.73 −0.03 - - 69.51 158 375.38 381.38 390.64

Flat XCDM H(z) + BAO 0.30 - 0 −0.94 - 66.73 38 23.29 29.29 34.50
QSO 0.27 - 0 −1.97 - 81.22 116 351.84 357.84 366.20

QSO + H(z) + BAO 0.32 - 0 −0.97 - 67.90 158 376.27 382.27 391.53
Flat φCDM H(z) + BAO 0.30 - 0 - 0.14 66.89 38 23.41 29.41 34.62

QSO 0.32 - 0 - 0.01 68.44 116 352.05 358.05 366.41
QSO + H(z) + BAO 0.31 - 0 - 0.07 67.94 158 376.39 382.39 391.65

Non-flat XCDM H(z) + BAO 0.32 - −0.23 −0.73 - 66.9 37 20.94 28.94 35.89
QSO 0.10 - −0.55 −0.67 - 73.9 115 350.11 358.11 369.26

QSO + H(z) + BAO 0.31 - −0.15 −0.78 - 66.7 157 372.95 380.95 393.30
Non-flat φCDM H(z) + BAO 0.31 - −0.18 - 0.79 67.5 37 21.36 29.36 36.31

QSO 0.10 - −0.43 - 2.95 72.3 115 351 359 370.15
QSO + H(z) + BAO 0.31 - −0.14 - 0.68 67.3 157 373.49 381.49 393.84

a km s−1Mpc−1.

In addition to the χ2 statistic, we also use the Akaike Information Criterion

AIC ≡ χ2
min + 2k (5.14)

and the Bayes Information Criterion

BIC ≡ χ2
min + klnN (5.15)

(Liddle, 2007), where χ2
min is the minimum value of χ2 in the given model, k is the number of

parameters in the model, and N is the number of data points. The AIC and BIC penalize

models with a greater number of parameters compared to those with fewer parameters, and

as such they can be used to compare the effectiveness of the fits of models with different

numbers of parameters.

Although we use Bayesian statistics to analyze our data, this analysis is not complete be-

cause we do not compute the Bayesian evidence (a computation which would be prohibitively

expensive given that we calculate our likelihoods on a grid rather than using MCMC). In-

stead we approximate the full Bayesian evidence via χ2, AIC, and BIC, which we use to
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compare our models.

5.4 Results

5.4.1 H(z) + BAO constraints

We discuss our results for the H(z) + BAO data combination first (i.e. without the QSO

data). The flat ΛCDM model (with two free parameters, H0 and Ωm0) two-dimensional χ2

confidence contours and one-dimensional normalized likelihood curves are plotted in Fig. 5.1.

In Figs. 5.2-5.6 we present our results for the non-flat ΛCDM model, the flat and non-flat

XCDM parametrizations, and the flat and non-flat φCDM models. These results appear

in Figs. 5.1-5.6 as two-dimensional dashed black likelihood contours and one-dimensional

dashed black likelihood curves.

The best-fitting values of the parameters of our models, from their unmarginalized two-

, three-, or four-dimensional likelihoods, are listed in Table 5.3. This table also lists the

number of degrees of freedom, ν, and the values of χ2, AIC, and BIC that correspond to

the best-fitting parameters. The marginalized, one-dimensional best-fitting values of our

model parameters, along with their 1σ and 2σ ranges, are listed in Table 5.4.

When it is measured using the H(z) + BAO data combination, Ωm0 has consistent best-

fitting values, and tight confidence limits, across the models we studied (see Tables 5.4).

For the flat and non-flat ΛCDM models, Ωm0 = 0.30+0.02
−0.01 and Ωm0 = 0.30+0.01

−0.02, respectively.

For flat XCDM and flat φCDM we find Ωm0 = 0.30+0.02
−0.01, while non-flat XCDM and non-flat

φCDM favor the slightly larger values Ωm0 = 0.32+0.02
−0.02 and Ωm0 = 0.31+0.02

−0.02, respectively.

Because our Ωm0 step size is 0.01, the 1σ error bars on Ωm0 that we list here are probably

somewhat inaccurate. The data, however, do determine Ωm0 fairly precisely, with the error

bars increasing a bit as the number of model parameters increase, as expected. These Ωm0

estimates are in reasonable agreement with those made by Park and Ratra (2019c) from a

similar compilation of H(z) and BAO data.

The measurements of H0 vary a bit less across the models we studied. For flat (non-
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Table 5.4: Best-fitting parameters and 1σ and 2σ confidence intervals for all models.

Model Data set Marginalization rangea Best-fitting 1σ 2σ
Flat ΛCDM H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.30 0.29 ≤ Ωm0 ≤ 0.32 0.27 ≤ Ωm0 ≤ 0.33

50 ≤ H0 ≤ 85 H0 = 67.99 67.11 ≤ H0 ≤ 68.90 66.25 ≤ H0 ≤ 68.91
QSO + H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.31 0.30 ≤ Ωm0 ≤ 0.32 0.28 ≤ Ωm0 ≤ 0.33

50 ≤ H0 ≤ 85 H0 = 68.44 67.75 ≤ H0 ≤ 69.14 67.06 ≤ H0 ≤ 69.85

Non-flat ΛCDM H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.30 0.28 ≤ Ωm0 ≤ 0.31 0.27 ≤ Ωm0 ≤ 0.33
50 ≤ H0 ≤ 85 H0 = 68.24 65.91 ≤ H0 ≤ 70.63 63.60 ≤ H0 ≤ 73.03
0.2 ≤ ΩΛ ≤ 1 ΩΛ = 0.70 0.63 ≤ ΩΛ ≤ 0.76 0.55 ≤ ΩΛ ≤ 0.82

QSO + H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.30 0.29 ≤ Ωm0 ≤ 0.31 0.28 ≤ Ωm0 ≤ 0.33
50 ≤ H0 ≤ 85 H0 = 69.32 67.90 ≤ H0 ≤ 70.74 66.48 ≤ H0 ≤ 72.16
0.2 ≤ ΩΛ ≤ 1 ΩΛ = 0.73 0.67 ≤ ΩΛ ≤ 0.78 0.61 ≤ ΩΛ ≤ 0.82

Flat XCDM H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.30 0.29 ≤ Ωm0 ≤ 0.32 0.27 ≤ Ωm0 ≤ 0.33
50 ≤ H0 ≤ 85 H0 = 66.79 64.47 ≤ H0 ≤ 69.39 62.23 ≤ H0 ≤ 72.67
−2 ≤ wX ≤ 0 wX = −0.93 −1.05 ≤ wX ≤ −0.83 −1.19 ≤ wX ≤ −0.74

QSO + H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.31 0.29 ≤ Ωm0 ≤ 0.32 0.28 ≤ Ωm0 ≤ 0.34
50 ≤ H0 ≤ 85 H0 = 68.00 66.06 ≤ H0 ≤ 70.27 64.22 ≤ H0 ≤ 72.67
−2 ≤ wX ≤ 0 wX = −0.97 −1.09 ≤ wX ≤ −0.87 −1.22 ≤ wX ≤ −0.79

Flat φCDM H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.30 0.29 ≤ Ωm0 ≤ 0.32 0.27 ≤ Ωm0 ≤ 0.33
50 ≤ H0 ≤ 85 H0 = 66.13 64.04 ≤ H0 ≤ 67.51 61.95 ≤ H0 ≤ 68.73
0.01 ≤ α ≤ 3 α = 0.15 0.06 ≤ α ≤ 0.52 0.02 ≤ α ≤ 0.95

QSO + H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.31 0.30 ≤ Ωm0 ≤ 0.32 0.29 ≤ Ωm0 ≤ 0.34
50 ≤ H0 ≤ 85 H0 = 67.19 65.59 ≤ H0 ≤ 68.19 63.96 ≤ H0 ≤ 69.09
0.01 ≤ α ≤ 3 α = 0.05 0.02 ≤ α ≤ 0.36 0.01 ≤ α ≤ 0.72

Non-flat XCDM H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.32 0.30 ≤ Ωm0 ≤ 0.34 0.27 ≤ Ωm0 ≤ 0.36
50 ≤ H0 ≤ 85 H0 = 66.8 64.5 ≤ H0 ≤ 69.3 62.3 ≤ H0 ≤ 71.8
−2 ≤ wX ≤ 0 wX = −0.70 −0.89 ≤ wX ≤ −0.62 −1.1 ≤ wX ≤ −0.56
−0.7 ≤ Ωk0 ≤ 0.7 Ωk0 = −0.15 −0.38 ≤ Ωk0 ≤ 0.01 −0.59 ≤ Ωk0 ≤ 0.14

QSO + H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.31 0.30 ≤ Ωm0 ≤ 0.33 0.28 ≤ Ωm0 ≤ 0.34
50 ≤ H0 ≤ 85 H0 = 66.6 64.7 ≤ H0 ≤ 68.8 62.9 ≤ H0 ≤ 71.2
−2 ≤ wX ≤ 0 wX = −0.76 −0.92 ≤ wX ≤ −0.68 −1.1 ≤ wX ≤ −0.61
−0.7 ≤ Ωk0 ≤ 0.7 Ωk0 = −0.12 −0.24 ≤ Ωk0 ≤ −0.02 −0.36 ≤ Ωk0 ≤ 0.07

Non-flat φCDM H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.31 0.29 ≤ Ωm0 ≤ 0.33 0.28 ≤ Ωm0 ≤ 0.34
50 ≤ H0 ≤ 85 H0 = 67.1 64.8 ≤ H0 ≤ 69.5 62.6 ≤ H0 ≤ 71.9
0.01 ≤ α ≤ 5 α = 0.97 0.44 ≤ α ≤ 1.48 0.01 ≤ α ≤ 1.95
−0.5 ≤ Ωk0 ≤ 0.5 Ωk0 = −0.2 −0.36 ≤ Ωk0 ≤ −0.06 −0.47 ≤ Ωk0 ≤ 0.05

QSO + H(z) + BAO 0.1 ≤ Ωm0 ≤ 0.7 Ωm0 = 0.31 0.30 ≤ Ωm0 ≤ 0.32 0.28 ≤ Ωm0 ≤ 0.34
50 ≤ H0 ≤ 85 H0 = 66.8 65.1 ≤ H0 ≤ 68.6 63.5 ≤ H0 ≤ 70.3
0.01 ≤ α ≤ 5 α = 0.74 0.33 ≤ α ≤ 1.27 0.08 ≤ α ≤ 1.79
−0.5 ≤ Ωk0 ≤ 0.5 Ωk0 = −0.15 −0.26 ≤ Ωk0 ≤ −0.06 −0.38 ≤ Ωk0 ≤ 0.02

a H0 has units of km s−1Mpc−1.
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Figure 5.1: Flat ΛCDM model with QSO, H(z), and BAO data. Left panel: 1, 2, and
3σ confidence contours and best-fitting points. Center and right panels: one-dimensional
likelihoods for Ωm0 and H0. See text for description and discussion.

flat) ΛCDM we measure H0 = 67.99+0.91
−0.88

(
68.24+2.39

−2.33

)
km s−1 Mpc−1, while for flat (non-

flat) XCDM H0 = 66.79+2.60
−2.32

(
66.8+2.5

−2.3

)
km s−1 Mpc−1, and for flat (non-flat) φCDM we

find H0 = 66.13+1.38
−2.09

(
67.1+2.4

−2.3

)
km s−1 Mpc−1, all with 1σ error bars. Our step size is

∆H0 = 0.01 km s−1 Mpc−1 for the flat models and non-flat ΛCDM, which we increased to

∆H0 = 0.1 km s−1 Mpc−1 for the non-flat XCDM and φCDM cases, so the H0 error bars

are more accurate than those of the Ωm0 measurements. These six measured H0 values are

mutually quite consistent. Aside from the flat ΛCDM case, the H0 central values and limits

are very consistent with those found from a similar H(z) + BAO data compilation in Park

and Ratra (2019c). Unlike here where we fix Ωbh
2 to the values obtained by Park and Ratra

(2019a,b, 2018), Park and Ratra (2019c) allow the baryonic matter density parameter to

vary, so the Park and Ratra (2019c) models have an additional free parameter compared

to our models; this will have a bigger effect in the flat ΛCDM case which has the fewest

parameters. These H0 measurements are more consistent with the recent median statistics

estimate of H0 = 68± 2.8 km s−1 Mpc−1 (Chen and Ratra, 2011b), and with earlier median

statistics estimates (Gott et al., 2001, Chen et al., 2003)11 than with the recent measurement

of H0 = 73.48± 1.66 km s−1 Mpc−1 determined from the local expansion rate (Riess et al.,

11These H0 measurements are also consistent with many other recent H0 measurements (Chen et al.,
2017, Wang et al., 2017b, Lin and Ishak, 2017, DES Collaboration, 2018, da Silva and Cavalcanti, 2018,
Gómez-Valent and Amendola, 2018, Planck Collaboration (2020), Yu et al., 2018, Zhang, 2018, Zhang and
Huang, 2018, Ruan et al., 2019, Zhang et al., 2019).
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Figure 5.2: Non-flat ΛCDM model with QSO, H(z), and BAO data. In the top left panel,
the blue dashed line demarcates regions of the Ωm0-ΩΛ parameter space that correspond to
spatially open (Ωk0 > 0) and spatially closed (Ωk0 < 0) models. Points on the line correspond
to spatially flat models, with Ωk0 = 0. Bottom panels: one-dimensional likelihoods for Ωm0,
ΩΛ, and H0. See text for description and discussion.

2018).12 As a comparison, both our highest and lowest H0 measurements (those of non-flat

ΛCDM and flat φCDM, respectively) are within 1σ of the measurement made in Chen and

Ratra (2011b), relative to the error bars of that measurement, but they are 1.8σ (non-flat

ΛCDM) and 3.4σ (flat φCDM) lower than the Riess et al. (2018) measurement (here σ is

the quadrature sum of the two measurement error bars, and these two cases span the range

of differences).

As for spatial curvature, we find some evidence in favor of non-flat spatial hypersurfaces,

although this evidence is fairly weak. For non-flat ΛCDM, we measure Ωk0 = 0+0.06
−0.07, with

12We note that other local expansion rate H0 values are slightly lower, with slightly larger error bars. See,
e.g., Zhang et al. (2017b), Dhawan et al. (2018), and Fernández Arenas et al. (2018).
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1σ error bars, consistent with spatial flatness (see Table 5.4). For the non-flat XCDM

parametrization and non-flat φCDM model, we measure Ωk0 = −0.15+0.16
−0.23, and Ωk0 =

−0.20+0.14
−0.16, respectively (1σ error bars). From these results we can see that non-flat XCDM

is consistent with spatial flatness, but non-flat φCDM favors closed spatial hypersurfaces at

a little more than 1.4σ. For these three cases, using a similar H(z) and BAO data com-

pilation, Park and Ratra (2019c) find Ωk0 = −0.086 ± 0.078, Ωk0 = −0.32 ± 0.11, and

Ωk0 = −0.24 ± 0.15, respectively, favoring closed geometry at 1.1σ, 2.9σ, and 1.6σ, respec-

tively. Our measurements of spatial curvature are also consistent with the results obtained

by other groups, particularly with the model-independent constraints obtained by Yu and

Wang (2016), Rana et al. (2017), Wei and Wu (2017), Yu et al. (2018), and Ruan et al.

(2019). We find some disagreement in the non-flat φCDM case with the model-independent

studies conducted by Moresco et al. (2016b) and Zheng et al. (2019); when compared to the

measurements of Ωk0 made by these groups, we find that our non-flat φCDM measurement

of Ωk0 is not consistent with their measurements to 1σ, although it is consistent to 2σ, owing

to the much larger error bars on our measurements.

Our results also show some evidence for dark energy dynamics, although like the evi-

dence for |Ωk0| 6= 0 it is also weak. For example, our measurements in the flat (non-flat)

XCDM cases are wX = −0.93+0.10
−0.12 at 1σ

(
wX = −0.70+0.08+0.14

−0.19−0.40 at 1 and 2σ
)
, which both fa-

vor quintessence-type dark energy, for which wX > −1, over a Λ, though to different degrees

of statistical significance. The best-fitting value of wX in the flat XCDM parametrization is

within 0.7σ of wX = −1 (which corresponds to flat ΛCDM), while the best-fitting value of

wX in the non-flat XCDM parametrization is a little less than 1.6σ away from wX = −1 (non-

flat ΛCDM in this case). Park and Ratra (2019c) find wX = −0.72± 0.16 (−0.604± 0.099)

for these two cases, from their H(z) + BAO compilation, which favors quintessence-type

dark energy over a Λ at 1.8σ (4σ). We find marginal evidence for dark energy dynamics

in both the flat and non-flat φCDM models, in which we measure α = 0.15+0.37+0.80
−0.09−0.13 and

α = 0.97+0.51+0.98
−0.53−0.96, respectively (1σ and 2σ error bars). In both of these cases the measured

values of α are a little more than 2σ away from α = 0 (corresponding to ΛCDM), but this is

due to the fact that, in both the flat and non-flat cases, the marginalized likelihood function
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Figure 5.3: Flat XCDM parametrization with QSO, H(z), and BAO data. Top panels: 1, 2,
and 3σ confidence contours and best-fitting points. In the top left and top center panels the
horizontal blue dashed line separates quintessence-type parametrizations of dark energy (for
which wX > −1) from phantom-type parametrizations of dark energy (for which wX < −1).
Points on the blue line (for which wX = −1) correspond to the flat ΛCDM model. The
green dashed curve in the left panel separates models that undergo accelerated expansion
now from models that undergo decelerated expansion now. Bottom panels: one-dimensional
likelihoods for Ωm0, wX , and H0. See text for description and discussion.
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Figure 5.4: Flat φCDM model with QSO, H(z), and BAO data. Top panels: 1, 2, and 3σ
confidence contours and best-fitting points. Points on the α = 0 line in the top left and
top center panels correspond to the flat ΛCDM model. Bottom panels: one-dimensional
likelihoods of Ωm0, α, and H0. See text for description and discussion.

for α terminates at α = 0, the lower limit of our prior range on α. The computation of

a confidence limit on the low side of the marginalized likelihood function is therefore less

meaningful than the computation of a confidence limit on the high side. Our results for α

are in less precise agreement with Park and Ratra (2019c) than the results for our other

parameters. Park and Ratra (2019c) find for flat φCDM α = 2.5± 1.6 at 1σ and α < 6.0 at

2σ, while for non-flat φCDM they find α = 3.1± 1.5 at 1σ.

Our results here cannot be directly compared to those of the previous chapter, because

here H0 is an adjustable parameter to be constrained by the data, while in Chapter 4 we

marginalized over H0, assuming two different gaussian H0 priors. However, we find that

the results we have obtained, after marginalizing over H0 with a flat prior, are qualitatively
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consistent with the results found in Chapter 4. Further, although we have compared our

parameter measurements to those of Park and Ratra (2019c), a direct comparison of our

best-fitting χ2 values to the best-fitting χ2 values of that paper is not possible because of

the different numbers of parameters and data points those authors used,13 but we agree

qualitatively with their result that there are only small differences between the χ2 of the six

models; for each data combination, the six models have relatively similar χ2, AIC, and BIC

values (see Table 5.3).

5.4.2 QSO + H(z) + BAO constraints

Our results for the full data set, consisting of QSO data combined with H(z) and BAO

data, are presented in Tables 5.3-5.4 and in Figs. 5.1-5.6. The two-dimensional dotted

black likelihood contours and one-dimensional dotted black likelihood curves in Figs. 5.1-5.6

correspond to the QSO data alone. The two-dimensional solid black likelihood contours and

one-dimensional solid black likelihood curves in Figs. 5.1-5.6 correspond to the full data

set, namely QSO + H(z) + BAO. By examining the two-dimensional likelihood contours

and one-dimensional likelihood curves shown in Figs. 5.1-5.6, we see that even though the

QSO data by themselves are not able to tightly constrain cosmological parameters, they do

contribute to a tightening of the constraints on these parameters when used in combination

with H(z) + BAO data.14

For flat (non-flat) ΛCDM we measure H0 = 68.44+0.70
−0.69

(
69.32+1.42

−1.42

)
km s−1 Mpc−1, while

for flat (non-flat) XCDM H0 = 68.00+2.27
−1.94

(
66.6+2.2

−1.9

)
km s−1 Mpc−1, and for flat (non-flat)

φCDM we find H0 = 67.19+1.00
−1.60

(
66.8+1.8

−1.7

)
km s−1 Mpc−1, all 1σ error bars. Compared to

the cases without the QSO data in Sec. 5.4.1, the central H0 values here are a little larger

(except in the non-flat XCDM and φCDM cases) and the error bars are a little smaller.

13Park and Ratra (2019c) use a BAO measurement that we do not; instead of the one gaussian approxi-
mation constraint at z = 2.36 from Font-Ribera et al. (2014) in Table 5.2 here, Park and Ratra (2019c) use
the probability distribution that describes the shift of the BAO peak position in both the perpendicular and
parallel directions to the line of sight.

14We confirm the high reduced χ2 values for the QSO angular size data (see Tables 5.3-5.4) found earlier
by Zheng et al. (2017) (see Table 2 of that paper), Qi et al. (2017) (see Table 5 of that paper), and Xu et al.
(2018) (see Table 2 of that paper). What causes this is apparently not yet understood.
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Figure 5.5: Non-flat XCDM parametrization with QSO, H(z) and BAO data. Top and
middle row: 1, 2, and 3σ confidence contours and best-fitting points. In the top panels, the
horizontal blue dashed line separates quintessence-type parametrizations of dark energy (for
which wX > −1) from phantom-type parametrization of dark energy (for which wX < −1).
Points on the blue line (for which wX = −1) correspond to the non-flat ΛCDM model. The
green dashed curve in the top left panel separates models that undergo accelerated expansion
now from models that undergo decelerated expansion now. The vertical green dashed line
in the top center panel, and the horizontal green dashed lines in the left and center panels
of the middle row, separate spatially closed models (for which Ωk0 < 0) from spatially open
models (for which Ωk0 > 0). Bottom panels: one-dimensional likelihoods for Ωm0, wX , H0,
and Ωk0. See text for description and discussion.
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Figure 5.6: Non-flat φCDM model with QSO, H(z), and BAO data. Top and middle rows:
1, 2, and 3σ confidence contours and best-fitting points. The vertical green dashed line in
the top center panel, and the horizontal green dashed lines in the middle left and middle
center panels, separate spatially closed models (with Ωk0 < 0) from spatially open models
(with Ωk0 > 0). Points on the α = 0 line in the top panels correspond to the non-flat ΛCDM
model. Bottom row: one-dimensional likelihoods for Ωm0, α, Ωk0, and H0. See text for
description and discussion.
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These H0 estimates are still in very good agreement with that from median statistics (Chen

and Ratra, 2011b) but differ from that measured from the local expansion rate (Riess et al.,

2018), being between 1.9σ (non-flat ΛCDM) and 2.5σ (non-flat XCDM) lower (as before, σ

refers to the quadrature sum of the error bars on the two measurements).

When we measure the curvature energy density parameter using the full data set, we find

in the non-flat ΛCDM model that Ωk0 = −0.03+0.05
−0.06, which is again consistent with flat spatial

hypersurfaces, but with slightly tighter error bars. The same pattern holds when we measure

Ωk0 in the non-flat XCDM parametrization and the non-flat φCDM model, in which Ωk0 =

−0.12+0.10
−0.12 and Ωk0 = −0.15+0.09

−0.11, respectively. Both of these measurements are slightly more

consistent with closed spatial hypersurfaces than the corresponding measurements made

using only the H(z) + BAO data combination, being 1.2σ (non-flat XCDM) and 1.7σ (non-

flat φCDM) away from spatial flatness.

The parameters that govern dark energy dynamics move closer to ΛCDM when we mea-

sure them with the full data set. In the flat (non-flat) XCDM parametrization, wX =

−0.97+0.10
−0.12

(
wX = −0.76+0.08

−0.16

)
, with 1σ error bars. In both cases we find that the addition of

QSO data to the H(z) + BAO data drives the value of wX closer to wX = −1, the value that

it takes in the flat and non-flat ΛCDM models (although wX is still over 1σ larger than −1

in the non-flat case). Something similar happens to α; in the flat (non-flat) φCDM model we

measure α = 0.05+0.31+0.68
−0.03−0.04

(
α = 0.74+0.53+1.05

−0.41−0.66

)
, with 1 and 2σ error bars that are tighter in

the flat case than they are when α is measured using only H(z) + BAO data. As in XCDM,

the parameter that controls the dark energy dynamics, α, is driven closer to α = 0, the value

that it takes when φCDM reduces to ΛCDM (though α is still measured to be about 2σ

away from zero in the non-flat case).

5.5 Conclusion

We analyzed a total of 162 observations, 120 of which were measurements of the QSO angular

sizes from Cao et al. (2017b), with the remaining 42 measurements being a combination of

H(z) data and distance measurements from baryon acoustic oscillations (listed in Table 4.1).
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Our methods and models were largely the same in this chapter as in Chapter 4, with a

few key differences. First, we treated H0 as a free parameter, so as to obtain constraints on

its value within the models we studied. We also presented results for each of our data sets

separately and in combination (in Chapter 4 we only presented results for the H(z) + BAO

data combination), and treated the sound horizon and DM -H(z) covariance matrix more

accurately (see Sec. 5.3). After accounting for these differences, we find that our results for

the energy density parameters Ωm0 and ΩΛ, the dark energy equation of state wX , and the

φCDM potential energy density parameter α are largely consistent with those of Chapter 4.

Adding QSO data to H(z) and BAO data tightens parameter constraints in some of

the models we studied. In particular, using the full data set, we find that there is some

evidence for closed spatial hypersurfaces in dynamical dark energy models, but that this

evidence is only marginally significant (being between 1.2σ and 1.7σ, depending on the

model considered). We also find that there is marginal evidence for dark energy dynamics in

both flat and non-flat models, ranging from around 0.7σ to a little more than 2σ, depending

on the model. A little more significant is the evidence we find in favor of a lower value of

the Hubble constant. Our H0 results are more consistent with the results of Chen and Ratra

(2011b) and Planck Collaboration (2020) than that of Riess et al. (2018), being between 1.9σ

lower than the measurement made by Riess et al. (2018) in the non-flat ΛCDM model and

2.5σ lower than said measurement in the non-flat XCDM parametrization (although these

error bars on H0 are not as wide as the error bars H0 when H0 is measured using only the

H(z) + BAO data combination).
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Chapter 6

Cosmological constraints from HII

starburst galaxy apparent magnitude

and other cosmological measurements

This chapter is based on Cao et al. (2020). Figures and tables by Shulei Cao, from analyses

conducted indepedently by Shulei Cao and Joseph Ryan.

6.1 Introduction

The major goal of this chapter is to use measurements of the redshift, apparent luminosity,

and gas velocity dispersion of HII starburst galaxies to constrain cosmological parameters.1

An HII starburst galaxy (hereinafter “H iiG”) is one that contains a large HII region, an

emission nebula sourced by the UV radiation from an O- or B-type star. There is a correlation

between the measured luminosity (L) and the inferred velocity dispersion (σ) of the ionized

gases within these H iiG, referred to as the L-σ relation (see Section 6.2) which has been

shown to be a useful cosmological tracer (see Siegel et al., 2005; Plionis et al., 2011; Chávez

1For early attempts see Siegel et al. (2005), Plionis et al. (2009, 2010, 2011) and Mania and Ratra (2012).
For more recent discussions see Chávez et al. (2016), Wei et al. (2016), Yennapureddy and Melia (2017),
Zheng et al. (2019), Ruan et al. (2019), González-Morán et al. (2019), Wan et al. (2019), and Wu et al.
(2020).
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et al., 2016; González-Morán et al., 2019; Melnick et al., 2000; Chávez et al., 2012, 2014;

Terlevich et al., 2015, and references therein). This relation has been used to constrain the

Hubble constant H0 (Fernández Arenas et al., 2018; Chávez et al., 2012), and it can also be

used to put constraints on the dark energy equation of state parameter w (Chávez et al.,

2016; González-Morán et al., 2019; Terlevich et al., 2015).

H iiG data reach to redshift z ∼ 2.4, a little beyond that of the highest redshift baryon

acoustic oscillation (BAO) data which reach to z ∼ 2.3. H iiG data are among a handful of

cosmological observations that probe the largely unexplored part of redshift space from z ∼ 2

to z ∼ 1100. Other data that probe this region include quasar angular size measurements

that reach to z ∼ 2.7 (see Chapter 5, as well as Cao et al., 2017b; Gurvits et al., 1999;

Chen and Ratra, 2003 and references therein), quasar flux measurements that reach to z ∼ 5

(Risaliti and Lusso, 2015, 2019; Yang et al., 2019; Khadka and Ratra, 2020a,b; Zheng et al.,

2020, and references therein), and gamma ray burst data that reach to z ∼ 8 (Samushia and

Ratra, 2010; Lamb and Reichart, 2000; Demianski et al., 2019, and references therein). In

this paper we also use quasar angular size measurements (hereinafter “QSO”) to constrain

cosmological model parameters.

While H iiG and QSO data probe the largely unexplored z ∼ 2.3–2.7 part of the universe,

current H iiG and QSO measurements provide relatively weaker constraints on cosmological

parameters than those provided by more widely used measurements, such as BAO peak

length scale observations or Hubble parameter (hereinafter “H(z)”) observations (with these

latter data being at lower redshift but of better quality than H iiG or QSO data). However,

we find that the H iiG and QSO constraints are consistent with those that follow from

BAO and H(z) data, and so we use all four sets of data together to constrain cosmological

parameters. We find that the H iiG and QSO data tighten parameter constraints relative to

the H(z) + BAO only case.

Using six different cosmological models2 to constrain cosmological parameters allows

us to determine which of our results are less model-dependent. In all models, the H iiG

2As in Chapters 4 and 5 we constrain the flat and nonflat ΛCDM model, the flat and nonflat XCDM
parametrization, and the flat and nonflat φCDM model.
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data favor those parts of cosmological parameter space for which the current cosmological

expansion is accelerating.3 The joint analysis of the H iiG QSO, BAO and H(z) data results

in relatively model-independent and fairly tight determination of the Hubble constant H0 and

the current non-relativistic matter density parameter Ωm0.4 Depending on the model, Ωm0

ranges from a low of 0.309+0.015
−0.014 to a high of 0.319± 0.013, being consistent with most other

estimates of this parameter (unless indicated otherwise, uncertainties given in this paper are

±1σ). The best-fitting values of H0, ranging from 68.18+0.97
−0.75 km s−1 Mpc−1to 69.90 ± 1.48

km s−1 Mpc−1, are, from the quadrature sum of the error bars, 2.01σ to 3.40σ lower than the

local H0 = 74.03± 1.42 km s−1 Mpc−1measurement of Riess et al. (2019) and only 0.06σ to

0.60σ higher than the median statistics H0 = 68± 2.8 km s−1 Mpc−1 estimate of Chen and

Ratra (2011b). These combined measurements are consistent with the spatially-flat ΛCDM

model, but also do not strongly disallow some mild dark energy dynamics, as well as a little

non-zero spatial curvature energy density.

6.2 Data

We use a combination of H(z), BAO, QSO, and H iiG data to obtain constraints on our

cosmological models. The H(z) data, spanning the redshift range 0.070 ≤ z ≤ 1.965, are

identical to the H(z) data used in Chapters 4 and 5 and compiled in Table A.1. The QSO

data compiled by Cao et al. (2017b) (listed in Table 1 of that paper) and spanning the

redshift range 0.462 ≤ z ≤ 2.73, are identical to that used in Chapter 5. Our BAO data (see

Table 6.1) have been updated relative to Chapter 5 and span the redshift range 0.38 ≤ z ≤

2.34. Our H iiG data are new, comprising 107 low redshift (0.0088 ≤ z ≤ 0.16417) H iiG

3This result could weaken, however, as the H iiG data constraint contours could broaden when H iiG data
systematic uncertainties are taken into account. We do not incorporate any H iiG systematic uncertainties
into our analysis; see below.

4The BAO and H(z) data play a more significant role than do the H iiG and QSO data in setting these
and other limits, but the H iiG and QSO data tighten the BAO + H(z) constraints. We note, however, that
the H(z) and QSO data, by themselves, give lower central values of H0 but with larger error bars. Also,
because we calibrate the distance scale of the BAO measurements listed in Table 6.1 via the sound horizon
scale at the drag epoch (rs, about which see below), a quantity that depends on early-Universe physics, we
would expect these measurements to push the best-fitting values H0 lower when they are combined with
late-Universe measurements like H iiG (whose distance scale is not set by the physics of the early Universe).
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Table 6.1: BAO data.

z Measurementa Value Ref.
0.38 DM (rs,fid/rs) 1512.39 Alam et al. (2017)b

0.38 H(z) (rs/rs,fid) 81.2087 Alam et al. (2017)b

0.51 DM (rs,fid/rs) 1975.22 Alam et al. (2017)b

0.51 H(z) (rs/rs,fid) 90.9029 Alam et al. (2017)b

0.61 DM (rs,fid/rs) 2306.68 Alam et al. (2017)b

0.61 H(z) (rs/rs,fid) 98.9647 Alam et al. (2017)b

0.122 DV (rs,fid/rs) 539± 17 Carter et al. (2018)
0.81 DA/rs 10.75± 0.43 DES Collaboration (2019b)
1.52 DV (rs,fid/rs) 3843± 147 Ata et al. (2018)
2.34 DH/rs 8.86 de Sainte Agathe et al. (2019)c

2.34 DM/rs 37.41 de Sainte Agathe et al. (2019)c

a DM (rs,fid/rs), DV (rs,fid/rs), rs, and rs,fid have units of Mpc, while
H(z) (rs/rs,fid) has units of km s−1 Mpc−1, and DA/rs is dimen-
sionless.

b The six measurements from Alam et al. (2017) are correlated; see
eq. (5.7) for their correlation matrix.

c The two measurements from de Sainte Agathe et al. (2019) are
correlated; see eq. (6.23) below for their correlation matrix.

measurements, used in Chávez et al. (2014), and 46 high redshift (0.636427 ≤ z ≤ 2.42935)

H iiG measurements, used in González-Morán et al. (2019).5 These extinction-corrected

measurements (see below for a discussion of extinction correction) were very kindly provided

to us by Ana Luisa González-Morán (private communications, 2019 and 2020).

In order to use BAO measurements to constrain cosmological model parameters, knowl-

edge of the sound horizon scale at the drag epoch (rs) is required. We compute this scale

more accurately than in Chapter 5 by using the approximate formula (Aubourg et al., 2015)

rs =
55.154 exp [−72.3(Ων0h

2 + 0.0006)2]

(Ωb0h2)0.12807(Ωcb0h2)0.25351
Mpc. (6.1)

Here Ωcb0 = Ωc0 + Ωb0 = Ωm0 −Ων0 with Ωcb0, Ωc0, Ωb0, and Ων0 = 0.0014 (following Carter

et al., 2018) being the current values of the CDM + baryonic matter, CDM, baryonic matter,

and neutrino energy density parameters, respectively, and the Hubble constant H0 = 100 h

515 from González-Morán et al. (2019), 25 from Erb et al. (2006), Masters et al. (2014), and Maseda
et al. (2014), and 6 from Terlevich et al. (2015).
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km s−1 Mpc−1. Here and in what follows, a subscript of ‘0’ on a given quantity denotes the

current value of that quantity. Additionally, Ωb0h
2 is slightly model-dependent; the values of

this parameter that we use in this paper are the same as those originally computed in Park

and Ratra (2019a,b, 2018) and listed in Table 5.2.

As mentioned in Section 6.1, H iiG can be used as cosmological probes because they

exhibit a tight correlation between the observed luminosity (L) of their Balmer emission

lines and the velocity dispersion (σ) of their ionized gas (as measured from the widths of the

emission lines). That correlation can be expressed in the form

logL = β log σ + γ, (6.2)

where γ and β are the intercept and slope, respectively, and log = log10 here and in what

follows. In order to determine the values of β and γ, it is necessary to establish the extent

to which light from an H iiG is extinguished as it propagates through space. A correction

must be made to the observed flux so as to account for the effect of this extinction. As

mentioned above, the data we received from Ana Luisa González-Morán have been corrected

for extinction. In González-Morán et al. (2019), the authors used the Gordon et al. (2003)

extinction law, and in so doing found

β = 5.022± 0.058, (6.3)

and

γ = 33.268± 0.083, (6.4)

respectively. These are the values of β and γ that we use in the L-σ relation, eq. (2.25).

Once the luminosity of an H iiG has been established through eq. (6.2), this luminosity

can be used, in conjunction with a measurement of the flux (f) emitted by the H iiG, to

determine the distance modulus of the H iiG via

µobs = 2.5 logL− 2.5 log f − 100.2 (6.5)
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(see e.g. Terlevich et al., 2015, González-Morán et al., 2019, and references therein).6 This

quantity can then be compared to the value of the distance modulus predicted within a given

cosmological model

µth (p, z) = 5 logDL (p, z) + 25, (6.6)

where DL(p, z) is the luminosity distance (see eq. 2.25).

As the precision of cosmological observations has grown over the last few years, a ten-

sion between measurements of the Hubble constant made with early-Universe probes and

measurements made with late-Universe probes has revealed itself (for a review, see Riess,

2019). Whether a given cosmological observation supports a lower value of H0 (i.e. one that

is closer to the early-Universe Planck measurement) or a higher value of H0 (i.e. one that

is closer to the late-Universe value measured by Riess et al., 2019) may depend on whether

the distance scale associated with this observation has been set by early- or late-Universe

physics. It is therefore important to know what distance scale cosmological observations

have been calibrated to, so that the extent to which measurements of H0 are pushed higher

or lower by these different distance calibrations can be clearly identified.

The H0 values we measure from the combined H(z), BAO, QSO, and H iiG data are

based on a combination of both early- and late-Universe distance calibrations. As mentioned

above, the distance scale of our BAO measurements is set by the size of the sound horizon

at the drag epoch rs. The sound horizon, in turn, depends on Ωb0h
2, which was computed

by Park and Ratra (2019a,b, 2018) using early-Universe data. Our H iiG measurements, on

the other hand, have been calibrated using cosmological model independent distance ladder

measurements of the distances to nearby giant HII regions (see González-Morán et al., 2019

and references therein), so these data qualify as late-Universe probes. The distance scale

of our QSO measurements is set by the intrinsic linear size (lm) of the QSOs themselves,

which is a late-Universe measurement (see Cao et al., 2017b). Finally, our H(z) data depend

on late-Universe astrophysics through the modeling of the star formation histories of the

galaxies whose ages are measured to obtain the Hubble parameter (although the differences

6For each H iiG in our sample we have the measured values and uncertainties of log f, log σ, and z.
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between different models are not thought to have a significant effect on measurements of

H(z) from these galaxies; see Moresco et al., 2018, 2020).

6.3 Data Analysis Methodology

We perform a Markov chain Monte Carlo (MCMC) analysis with the Python module emcee

(Foreman-Mackey et al., 2013) and maximize the likelihood function, L, to determine the

best-fitting values of the parameters p of the models. At the most general level, a Monte

Carlo analysis is one in which a given problem is solved by randomly generating a large

number of trial solutions to the problem, then evaluating those solutions with a quality

function. Solving the problem then amounts to locating that trial solution which maximizes

the quality function (Cahill, 2013). A Markov chain is a list of numbers generated by a

Markov process, where a Markov process is a random process in which the probability of

obtaining a given value at some step in the process depends only the value obtained in

previous step of the process (Thorne and Blandford, 2017; Foreman-Mackey et al., 2013; von

Toussaint, 2011). By identifying the likelihood L with the quality function, we can use the

MCMC method to compute the parameters that maximize L.

To implement the MCMC method in practice, it is necessary to employ an algorithm for

generating new points in the Markov chain. The most common algorithm is the Metropolis-

Hastings algorithm, in which new points in the chain are accepted with the probability

Paccept

(
~X1 → ~X2

)
= min

1,
P
(
~X2|D

)
P
(
~X1|D

)P
(
~X1, ~X2

)
P
(
~X2, ~X1

)
 , (6.7)

where P
(
~Xj, ~Xi

)
is the probability that, if the chain currently occupies the point ~Xi, the

candidate point ~Xj will be proposed, and P
(
~Xi|D

)
is the posterior probability (which is

proportional to the likelihood) of the point ~Xi given the data D. In words, the chain will

be attracted to regions of the parameter space having a high posterior probability, and will

be repelled from regions having a low posterior probability. That is, Paccept = 1 if the region
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that the chain wanders into has a higher probability than the region it came from, and

Paccept < 1 if the chain wanders into a region having a lower probability than the region

it came from. This means that the distribution of points sampled from the Markov chain

eventually approaches the target distribution (that is, the distribution of the quantities under

study), and it is sometimes said that the MCMC distribution is invariant at this point (von

Toussaint, 2011). The MCMC distribution becomes invariant when the condition of detailed

balance,

T
(
~X2, ~X1

)
P
(
~X2, ~X1

)
P
(
~X1|D

)
= T

(
~X1, ~X2

)
P
(
~X1, ~X2

)
P
(
~X2|D

)
(6.8)

is satisfied (von Toussaint, 2011). This simply means that the net “flow” of probability has

stopped, and the distribution has reached its “equilibrium” (i.e. invariant form), the target

distribution. We can show that the acceptance probability of eq. (6.7) is consistent with the

condition of detailed balance by identifying the transition probability T
(
~Xj, ~Xi

)
with the

acceptance probability Paccept

(
~Xi → ~Xj

)
and rewriting eq. (6.8):

T
(
~X2, ~X1

)
P
(
~X2, ~X1

)
P
(
~X1|D

)
= min

1,
P
(
~X2|D

)
P
(
~X1|D

)P
(
~X1, ~X2

)
P
(
~X2, ~X1

)
P ( ~X2, ~X1

)
P
(
~X1|D

)
= min

(
P
(
~X2, ~X1

)
P
(
~X1|D

)
, P
(
~X2|D

)
P
(
~X1, ~X2

))
= min

(
P
(
~X1, ~X2

)
P
(
~X2|D

)
, P
(
~X1|D

)
P
(
~X2, ~X1

))
= min

1,
P
(
~X1|D

)
P
(
~X2|D

)P
(
~X2, ~X1

)
P
(
~X1, ~X2

)
P ( ~X1, ~X2

)
P
(
~X2|D

)
= T

(
~X1, ~X2

)
P
(
~X1, ~X2

)
P
(
~X2|D

)
,

(6.9)

(von Toussaint, 2011). These considerations also illustrate the advantage of the MCMC

method over the methods we employed in Chapters 4 and 5: it doesn’t waste time scanning

low probability regions of the parameter space (and the MCMC advantage is especially

pronounced when it is employed to search high-dimensional parameter spaces). The MCMC
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method is, in a sense, “smarter” than the grid scan method, because it seeks out high-

probability regions of the parameter space rather than blindly searching everywhere.

The Python module emcee (Foreman-Mackey et al., 2013) is a software package that

can be used to quickly produce samples from a probability distribution, via an MCMC

approach, although the algorithm it is based on is different from the Metropolis-Hastings

algorithm. The algorithm employed by emcee, called the “stretch move” algorithm (for

reasons that will become clear below) works by evolving an ensemble of “walkers” { ~Xi}.

New moves are proposed according to the rule

~Xi → ~Y = ~Xj + Z
(
~Xi − ~Xj

)
, (6.10)

where ~Xj is a randomly-drawn walker from the ensemble that is different from ~Xi, and Z

is a random number (hence the name “stretch move”: the proposal stretches along the line

joining ~Xi and ~Xj). The algorithm draws Z from the distribution

g (Z) ∝


1√
Z

if Z ∈
[

1
a
, a
]
,

0 otherwise

(6.11)

where the authors of emcee set a = 2 (though it could take other values, in general).

According to Goodman and Weare (2010), the creators of this algorithm, the conditional

probability to propose the move from ~Xi to ~Y is proportional to

||~Y − ~Xj||n−1P
(
~Y |D

)
, (6.12)

where n is the number of dimensions of the parameter space. Detailed balance is maintained
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if the step ~Xi → ~Y is accepted with probability

Paccept

(
~Xi → ~Y

)
= min

1−
||~Y − ~Xj||n−1P

(
~Y |D

)
|| ~Xi − ~Xj||n−1P

(
~Xi|D

)


= min

1, ZN−1
P
(
~Y |D

)
P
(
~Xi|D

)
 .

(6.13)

One of the advantages of the stretch move algorithm is that it is affine invariant. This

means that it can sample equally well any probability distributions whose independent vari-

ables are related by a linear transformation (Goodman and Weare, 2010). In practical terms,

affine invariant algorithms can sample highly skewed or anisotropic distributions more quickly

and efficiently than traditional MCMC algorithms like the Metropolis-Hastings algorithm

(Goodman and Weare, 2010). The other main advantage of the stretch move algorithm is

that it can be parallelized. By splitting the ensemble of walkers into two subsets of equal

size, it is possible to advance the positions of the walkers in one subset by proposing moves

based on the positions of the walkers in the other subset (Foreman-Mackey et al., 2013).

Each advancement can be computed independently, and in this way the entire algorithm can

be run in parallel, greatly speeding up the process of sampling from the likelihood L.

We use flat priors for all parameters p. For all models, the priors on Ωm0 and h are non-

zero over the ranges 0.1 ≤ Ωm0 ≤ 0.7 and 0.50 ≤ h ≤ 0.85. In the non-flat ΛCDM model the

ΩΛ prior is non-zero over 0.2 ≤ ΩΛ ≤ 1. In the flat and non-flat XCDM parametrizations

the prior range on wX is −2 ≤ wX ≤ 0, and the prior range on Ωk0 in the non-flat XCDM

parametrization is −0.7 ≤ Ωk0 ≤ 0.7. In the flat and non-flat φCDM models the prior range

on α is 0.01 ≤ α ≤ 3 and 0.01 ≤ α ≤ 5, respectively, and the prior range on Ωk0 is also

−0.7 ≤ Ωk0 ≤ 0.7.

For H iiG, the likelihood function is

LH iiG = e−χ
2
H iiG/2, (6.14)
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where

χ2
H iiG(p) =

153∑
i=1

[µth(p, zi)− µobs(zi)]
2

ε2i
, (6.15)

and εi is the uncertainty of the ith measurement. Following González-Morán et al. (2019), ε

has the form

ε =
√
ε2stat + ε2sys, (6.16)

where the statistical uncertainties are

ε2stat = 6.25
[
ε2log f + β2ε2log σ + ε2β(log σ)2 + ε2γ

]
+

(
∂µth

∂z

)2

ε2z. (6.17)

Following González-Morán et al. (2019) we do not account for systematic uncertainties in

our analysis, so the uncertainty on the H iiG measurements consists entirely of the statis-

tical uncertainty (so that ε = εstat).
7 The reader should also note here that although the

theoretical statistical uncertainty depends our cosmological model parameters (through the

theoretical distance modulus µth = µth (p, z)), the effect of this model-dependence on the

parameter constraints is negligible for the current data.8

For H(z), the likelihood function is

LH = e−χ
2
H/2, (6.18)

where

χ2
H(p) =

31∑
i=1

[Hth(p, zi)−Hobs(zi)]
2

ε2i
, (6.19)

and εi is the uncertainty of Hobs(zi).

7A systematic error budget for H iiG data is available in the literature, however; see Chávez et al. (2016).
8In contrast to our definition of χ2 in eq. (6.15), González-Morán et al. (2019) defined an H0-independent

χ2 function in their eq. (27) and weighted this χ2 function by 1/ε2stat (where ε2stat is given by their eq. (15))
which we do not do. This procedure is discussed in the literature (Fernández Arenas et al., 2018; Melnick
et al., 2017), and when we use it we find that it leads to a reduced χ2 identical to that given in González-
Morán et al. (2019) (being less than 2 but greater than 1) without having a noticeable effect on the shapes
or peak locations of our posterior likelihoods (hence providing very similar best-fitting values and error bars
of the cosmological model parameters). As discussed below, with our χ2 definition we find reduced χ2 values
∼ 2.75. González-Morán et al. (2019) note that an accounting of systematic uncertainties could decrease the
reduced χ2 values towards unity.
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For the BAO data, the likelihood function is

LBAO = e−χ
2
BAO/2, (6.20)

and for the uncorrelated BAO data (lines 7-9 in Table 6.1) the χ2 function takes the form

χ2
BAO(p) =

3∑
i=1

[Ath(p, zi)− Aobs(zi)]
2

ε2i
, (6.21)

where Ath and Aobs are, respectively, the theoretical and observational quantities as listed in

Table 6.1, and εi corresponds to the uncertainty of Aobs(zi). For the correlated BAO data,

the χ2 function takes the form

χ2
BAO(p) = [ ~Ath(p, zi)− ~Aobs(zi)]

TC−1[ ~Ath(p, zi)− ~Aobs(zi)], (6.22)

where superscripts T and −1 denote the transpose and inverse of the matrices, respectively.

The covariance matrix C for the BAO data, taken from Alam et al. (2017), is given in eq.

(5.7), while for the BAO data from de Sainte Agathe et al. (2019),

C =

 0.0841 −0.183396

−0.183396 3.4596

 . (6.23)

For QSO, the likelihood function is

LQSO = e−χ
2
QSO/2, (6.24)

and the χ2 function takes the form

χ2
QSO(p) =

120∑
i=1

[
θth(p, zi)− θobs(zi)

εi + 0.1θobs(zi)

]2

, (6.25)

where θth(p, zi) and θobs(zi) are theoretical and observed values of the angular size at redshift

104



zi, respectively, and εi is the uncertainty of θobs(zi) (see Chapter 5 for more details).

For the joint analysis of these data, the total likelihood function is obtained by multiplying

the individual likelihood functions (that is, eqs. (6.14), (6.18), (6.20), and (6.24)) together

in various combinations. For example, for H(z), BAO, and QSO data, we have

L = LHLBAOLQSO. (6.26)

We also use the Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) to compare the goodness of fit of models with different numbers of parameters, where

AIC = −2 lnLmax + 2n ≡ χ2
min + 2n, (6.27)

and

BIC = −2 lnLmax + n lnN ≡ χ2
min + n lnN. (6.28)

In these two equations, Lmax refers to the maximum value of the given likelihood function,

χ2
min refers to the corresponding minimum χ2 value, n is the number of parameters of the

given model, and N is the number of data points (for example for H iiG we have N = 153,

etc.).

6.4 Results

We present the posterior one-dimensional (1D) probability distributions and two-dimensional

(2D) confidence regions of the cosmological parameters for the six flat and non-flat models

in Figs. 6.1–6.6, in gray. The unmarginalized best-fitting parameter values are listed in

Table 6.2, along with the corresponding χ2, AIC, BIC, and degrees of freedom ν (where

ν ≡ N − n). The marginalized best-fitting parameter values and uncertainties (±1σ error

bars or 2σ limits) are given in Table 6.3.9

9We plot these figures by using the Python package GetDist (Lewis, 2019), which we also use to compute
the central values (sample means) and uncertainties of the cosmological parameters listed in Table 6.3.
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From the fit to the H iiG data, we see that most of the probability lies in the part of

the parameter space corresponding to currently accelerating cosmological expansion (see the

gray contours in Figs. 6.1–6.6). This means that the H iiG data favor currently accelerating

cosmological expansion,10 in agreement with supernova Type Ia, BAO, H(z), and other

cosmological data. We also find that the constraints on the non-relativistic matter density

parameter Ωm0 are consistent with other estimates, ranging between a high of 0.300+0.106
−0.083

(flat XCDM) and a low of Ωm0 = 0.210+0.043
−0.092 (flat φCDM).

The H iiG data constraints on H0 in Table 6.3 are consistent with the estimate of H0 =

71.0±2.8(stat.)±2.1(sys.) km s−1 Mpc−1made by Fernández Arenas et al. (2018) based on a

compilation of H iiG measurements that differs from what we have used here. The H iiG H0

constraints listed in Table 6.3 are also consistent with other recent measurements of H0, being

between 0.90σ (flat XCDM) and 1.56σ (non-flat φCDM) lower than the recent local expansion

rate measurement of H0 = 74.03 ± 1.42 km s−1 Mpc−1(Riess et al., 2019),11 and between

0.78σ (non-flat φCDM) and 1.13σ (flat XCDM) higher than the median statistics estimate

of H0 = 68± 2.8 km s−1 Mpc−1(Chen and Ratra, 2011b),12 with our measurements ranging

from a low of H0 = 70.60+1.68
−1.84 km s−1 Mpc−1(non-flat φCDM) to a high of H0 = 71.85±1.96

km s−1 Mpc−1(flat XCDM).

As for spatial curvature, from the marginalized 1D likelihoods in Table 6.3, for non-

flat ΛCDM, non-flat XCDM, and non-flat φCDM, we measure Ωk0 = 0.094+0.237
−0.363,13 Ωk0 =

0.011+0.457
−0.460, and Ωk0 = 0.291+0.348

−0.113, respectively. From the marginalized likelihoods, we see

that non-flat ΛCDM and XCDM models are consistent with all three spatial geometries,

while non-flat φCDM favors the open case at 2.58σ. However, this seems to be a little

10Although a full accounting of the systematic uncertainties in the H iiG data could weaken this conclusion.
11Note that other local expansion rate measurements are slightly lower with slightly larger error bars

(Rigault et al., 2015; Zhang et al., 2017b; Dhawan et al., 2018; Fernández Arenas et al., 2018; Freedman
et al., 2019, 2020; Rameez and Sarkar, 2019).

12This is consistent with earlier median statistics estimates (Gott et al., 2001; Chen et al., 2003) and also
with a number of recent H0 measurements (Planck Collaboration, 2020; Haridasu et al., 2018; Chen et al.,
2017; Gómez-Valent and Amendola, 2018; DES Collaboration, 2018; Zhang, 2018; Domı́nguez et al., 2019;
Martinelli and Tutusaus, 2019; Cuceu et al., 2019; Zeng and Yan, 2019; Schöneberg et al., 2019; Lin and
Ishak, 2019; Zhang and Huang, 2019).

13Since Ωk0 = 1−Ωm0−ΩΛ, in the non-flat ΛCDM model analysis we replace ΩΛ with Ωk0 in the MCMC
chains of {H0,Ωm0,ΩΛ} to obtain new chains of {H0,Ωm0,Ωk0} and so measure Ωk0 central values and
uncertainties. A similar procedure, based on ΩΛ = 1−Ωm0, is used to measure ΩΛ in the flat ΛCDM model.

106



odd, especially for non-flat φCDM, considering their unmarginalized best-fitting Ωk0’s are all

negative (see Table 6.2).

The fits to the H iiG data are consistent with dark energy being a cosmological constant

but don’t rule out dark energy dynamics. For flat (non-flat) XCDM, wX = −1.180+0.560
−0.330

(wX = −1.125+0.537
−0.321), which are both within 1σ of wX = −1. For flat (non-flat) φCDM, 2σ

upper limits of α are α < 2.784 (α < 4.590), with the 1D likelihood functions, in both cases,

peaking at α = 0.

Current H iiG data do not provide very restrictive constraints on cosmological model

parameters, but when used in conjunction with other cosmological data they can help tighten

the constraints.

6.4.1 H(z), BAO, and H iiG (ZBH) constraints

The H iiG constraints discussed in the previous subsection are consistent with constraints

from most other cosmological data, so it is appropriate to use the H iiG data in conjunction

with other data to constrain parameters. In this subsection we perform a full analysis of

H(z), BAO, and H iiG (ZBH) data and derive tighter constraints on cosmological parameters.

The 1D probability distributions and 2D confidence regions of the cosmological parame-

ters for the six flat and non-flat models are shown in Figs. 6.1–6.6, in red. The best-fitting

results and uncertainties are listed in Tables 6.2 and 6.3.

When we fit our cosmological models to the ZBH data we find that the measured values

of the matter density parameter Ωm0 fall within a narrower range in comparison to the H iiG

only case, being between 0.314± 0.015 (non-flat ΛCDM) and 0.323+0.014
−0.016 (flat φCDM).

Similarly, the measured values of H0 also fall within a narrower range when our models

are fit to the ZBH data combination (and are in better agreement with the median statistics

estimate of H0 from Chen and Ratra, 2011b than with the local measurement carried out

by Riess et al., 2019; this is because the H(z) and BAO data favor a lower H0 value) being

between H0 = 68.36+1.05
−0.86 km s−1 Mpc−1(flat φCDM) and 70.21±1.33 km s−1 Mpc−1(non-flat

ΛCDM). We assume that the tension between early- and late-Universe measurements of H0
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Table 6.2: Unmarginalized best-fitting parameter values for all models from various combinations of data.

Model Data set Ωm0 ΩΛ Ωk0 wX α H0
a χ2 AIC BIC ν

Flat ΛCDM H iiG 0.276 0.724 — — — 71.81 410.75 414.75 420.81 151
H(z) + BAO + H iiG 0.318 0.682 — — — 69.22 434.29 438.29 444.84 193
H(z) + BAO + QSO 0.315 0.685 — — — 68.61 372.88 376.88 383.06 160

H(z) + BAO + QSO + H iiG 0.315 0.685 — — — 69.06 786.50 790.50 798.01 313

Non-flat ΛCDM H iiG 0.312 0.998 −0.310 — — 72.35 410.44 416.44 425.53 150
H(z) + BAO + H iiG 0.313 0.718 −0.031 — — 70.24 433.38 439.38 449.19 192
H(z) + BAO + QSO 0.311 0.665 0.024 — — 68.37 372.82 378.82 388.08 159

H(z) + BAO + QSO + H iiG 0.309 0.716 −0.025 — — 69.82 785.79 791.79 803.05 312

Flat XCDM H iiG 0.249 — — −0.892 — 71.65 410.72 416.72 425.82 150
H(z) + BAO + H iiG 0.314 — — −1.044 — 69.94 433.99 439.99 449.81 192
H(z) + BAO + QSO 0.322 — — −0.890 — 66.62 371.95 377.95 387.21 159

H(z) + BAO + QSO + H iiG 0.311 — — −1.045 — 69.80 786.19 792.19 803.45 312

Non-flat XCDM H iiG 0.104 — −0.646 −0.712 — 72.61 407.69 415.69 427.81 149
H(z) + BAO + H iiG 0.322 — −0.117 −0.878 — 66.67 432.85 440.85 453.94 191
H(z) + BAO + QSO 0.322 — −0.112 −0.759 — 65.80 370.68 378.68 391.03 158

H(z) + BAO + QSO + H iiG 0.310 — −0.048 −0.957 — 69.53 785.70 793.70 808.71 311

Flat φCDM H iiG 0.255 — — — 0.261 71.70 410.70 416.70 425.80 150
H(z) + BAO + H iiG 0.318 — — — 0.011 69.09 434.36 440.36 450.18 192
H(z) + BAO + QSO 0.321 — — — 0.281 66.82 372.05 378.05 387.31 159

H(z) + BAO + QSO + H iiG 0.315 — — — 0.012 68.95 786.58 792.58 803.84 312

Non-flat φCDM H iiG 0.114 — −0.437 — 2.680 72.14 409.91 417.91 430.03 149
H(z) + BAO + H iiG 0.321 — −0.132 — 0.412 69.69 432.75 440.75 453.84 191
H(z) + BAO + QSO 0.317 — −0.106 — 0.778 66.27 370.83 378.83 391.18 158

H(z) + BAO + QSO + H iiG 0.310 — −0.054 — 0.150 69.40 785.65 793.65 808.66 311
a km s−1 Mpc−1.
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Table 6.3: One-dimensional marginalized best-fitting parameter values and uncertainties (±1σ error bars or 2σ limits) for all models
from various combinations of data.

Model Data set Ωm0 ΩΛ Ωk0 wX α H0
a

Flat ΛCDM H iiG 0.289+0.053
−0.071 — — — — 71.70± 1.83

H(z) + BAO + H iiG 0.319+0.014
−0.015 — — — — 69.23± 0.74

H(z) + BAO + QSO 0.316+0.013
−0.014 — — — — 68.60± 0.68

H(z) + BAO + QSO + H iiG 0.315+0.013
−0.012 — — — — 69.06+0.63

−0.62

Non-flat ΛCDM H iiG 0.275+0.081
−0.078 > 0.501b 0.094+0.237

−0.363 — — 71.50+1.80
−1.81

H(z) + BAO + H iiG 0.314± 0.015 0.714+0.054
−0.049 −0.029+0.049

−0.048 — — 70.21± 1.33
H(z) + BAO + QSO 0.313+0.013

−0.015 0.658+0.069
−0.060 0.029+0.056

−0.063 — — 68.29± 1.47
H(z) + BAO + QSO + H iiG 0.310± 0.013 0.711+0.053

−0.048 −0.021+0.044
−0.048 — — 69.76+1.12

−1.11

Flat XCDM H iiG 0.300+0.106
−0.083 — — −1.180+0.560

−0.330 — 71.85± 1.96
H(z) + BAO + H iiG 0.315+0.016

−0.017 — — −1.052+0.092
−0.082 — 70.05± 1.54

H(z) + BAO + QSO 0.322+0.015
−0.016 — — −0.911+0.122

−0.098 — 66.98+1.95
−2.30

H(z) + BAO + QSO + H iiG 0.312± 0.014 — — −1.053+0.091
−0.082 — 69.90± 1.48

Non-flat XCDM H iiG 0.275+0.084
−0.125 — 0.011+0.457

−0.460 −1.125+0.537
−0.321 — 71.71+2.07

−2.08

H(z) + BAO + H iiG 0.318± 0.019 — −0.082+0.135
−0.119 −0.958+0.219

−0.098 — 69.83+1.50
−1.62

H(z) + BAO + QSO 0.320± 0.015 — −0.078+0.124
−0.112 −0.826+0.185

−0.088 — 66.29+1.90
−2.35

H(z) + BAO + QSO + H iiG 0.309+0.015
−0.014 — −0.025± 0.092 −1.022+0.208

−0.104 — 69.68+1.49
−1.64

Flat φCDM H iiG 0.210+0.043
−0.092 — — — < 2.784 71.23+1.79

−1.80

H(z) + BAO + H iiG 0.323+0.014
−0.016 — — — < 0.411 68.36+1.05

−0.86

H(z) + BAO + QSO 0.324+0.014
−0.015 — — — 0.460+0.116

−0.440 66.03+1.79
−1.42

H(z) + BAO + QSO + H iiG 0.319± 0.013 — — — < 0.411 68.18+0.97
−0.75

Non-flat φCDM H iiG < 0.321 — 0.291+0.348
−0.113 — < 4.590 70.60+1.68

−1.84

H(z) + BAO + H iiG 0.322+0.015
−0.016 — −0.153+0.114

−0.079 — 0.538+0.151
−0.519 69.39± 1.37

H(z) + BAO + QSO 0.319+0.013
−0.015 — −0.103+0.111

−0.091 — 0.854+0.379
−0.594 65.94+1.75

−1.73

H(z) + BAO + QSO + H iiG 0.313+0.012
−0.014 — −0.098+0.082

−0.061 — < 0.926 68.83± 1.23
a km s−1 Mpc−1.
b This is the 1σ lower limit. The 2σ lower limit is set by the prior, and is not shown here.
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Figure 6.1: 1σ, 2σ, and 3σ confidence contours for flat ΛCDM, where the right panel is the
comparison zoomed in. The black dotted line is the zero-acceleration line, which divides
the parameter space into regions associated with currently accelerated (below) and currently
decelerated (above) cosmological expansion.
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Figure 6.2: Same as Fig. 6.1 but for non-flat ΛCDM. The cyan dash-dot line represents
the flat case, with closed spatial hypersurfaces to the upper right. The black dotted line is
the zero-acceleration line, which divides the parameter space into regions associated with
currently accelerated (above left) and currently decelerated (below right) cosmological ex-
pansion.
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Figure 6.3: 1σ, 2σ, and 3σ confidence contours for flat XCDM. The black dotted line is
the zero-acceleration line, which divides the parameter space into regions associated with
currently accelerated (below left) and currently decelerated (above right) cosmological ex-
pansion. The magenta lines denote wX = −1, i.e. the flat ΛCDM model.
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Figure 6.4: Same as Fig. 6.3 but for non-flat XCDM, where the zero acceleration lines in
each of the three subpanels are computed for the third cosmological parameter set to the
H iiG data only best-fitting values listed in Table 6.2. Currently-accelerated cosmological
expansion occurs below these lines. The cyan dash-dot lines represent the flat case, with
closed spatial hypersurfaces either below or to the left. The magenta lines indicate wX = −1,
i.e. the non-flat ΛCDM model.
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is not a major issue here, because the 2D and 1D contours in Fig. 6.1 overlap, and so we

compute a combined H0 value (but if one is concerned about the early- vs late-Universe H0

tension then one should not compare our combined-data H0’s here, and in Secs. 6.4.2 and

6.4.3, directly to the measurements of Riess et al., 2019 or of Planck Collaboration, 2020).

In contrast to the H iiG only cases, when fit to the ZBH data combination the non-flat

models mildly favor closed spatial hypersurfaces. This is because the H(z) and BAO data

mildly favor closed spatial hypersurfaces; see, e.g. Park and Ratra (2019c) and Chapter

5. For non-flat ΛCDM, non-flat XCDM, and non-flat φCDM, we find Ωk0 = −0.029+0.049
−0.048,

Ωk0 = −0.082+0.135
−0.119, and Ωk0 = −0.153+0.114

−0.079, respectively, with the non-flat φCDM model

favoring closed spatial hypersurfaces at 1.34σ.

The fit to the ZBH data combination produces weaker evidence for dark energy dynamics

(in comparison to the H iiG only case) with tighter error bars on the measured values of wX

and α. For flat (non-flat) XCDM, wX = −1.052+0.092
−0.082 (wX = −0.958+0.219

−0.098), with wX = −1

still being within the 1σ range. For flat (non-flat) φCDM, α < 0.411 (α = 0.538+0.151
−0.519), where

the former is peaked at α = 0 but for the latter, α = 0 is just out of the 1σ range.

6.4.2 H(z), BAO, and QSO (ZBQ) constraints

The H(z), BAO, and QSO (ZBQ) data combination was studied in Chapter 5. Relative to

that analysis, we use an updated BAO data compilation, a more accurate formula for rs, and

the MCMC formalism (instead of the grid-based χ2 approach); consequently the parameter

constraints derived here slightly differ from those of Chapter 5.

The 1D probability distributions and 2D confidence regions of the cosmological parame-

ters for all models are presented in Figs. 6.1–6.6, in green. The corresponding best-fitting

results and uncertainties are listed in Tables 6.2 and 6.3.

The measured values of Ωm0 here fall within a similar range to the range quoted in the

last subsection, being between 0.313+0.013
−0.015 (non-flat ΛCDM) and 0.324+0.014

−0.015 (flat φCDM).

This range is larger than, but still consistent with, the range of Ωm0 reported in Chapter 5,

where the same models are fit to the ZBQ data combination.
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The H0 measurements in this case fall within a broader range than in the ZBH case,

being between 65.94+1.75
−1.73 km s−1 Mpc−1(non-flat φCDM) and 68.60±0.68 km s−1 Mpc−1 (flat

ΛCDM). In addition, they are lower than the corresponding measurements in the ZBH cases,

and are in better agreement with the median statistics (Chen and Ratra, 2011b) estimate of

H0 than with what is measured from the local expansion rate (Riess et al., 2019). Compared

with Chapter 5, the central values are lower except for the non-flat XCDM model.

For non-flat ΛCDM, non-flat XCDM, and non-flat φCDM, we measure Ωk0 = 0.029+0.056
−0.063,

Ωk0 = −0.078+0.124
−0.112, and Ωk0 = −0.103+0.111

−0.091, respectively. These results are consistent

with their unmarginalized best-fittings (see Table 6.2), where the best-fitting to the non-flat

ΛCDM model favors open spatial hypersurfaces, and the best-fittings to the non-flat XCDM

parametrization and the non-flat φCDM model both favor closed spatial hypersurfaces. Note

that the central values are larger than those of Chapter 5, especially for non-flat ΛCDM

(positive instead of negative). In all three models the constraints are consistent with flat

spatial hyperfurfaces.

The fit to the ZBQ data combination provides slightly stronger evidence for dark energy

dynamics than does the fit to the ZBH data combination. For flat (non-flat) XCDM, wX =

−0.911+0.122
−0.098 (wX = −0.826+0.185

−0.088), with the former barely within 1σ of wX = −1 and the latter

almost 2σ away from wX = −1. For flat (non-flat) φCDM, α = 0.460+0.116
−0.440 (α = 0.854+0.379

−0.594),

with the former 1.05σ and the latter 1.44σ away from the α = 0 cosmological constant. In

comparison with Chapter 5, the central values of wX are larger and smaller for flat and non-

flat XCDM models, respectively, and that of α are larger for both flat and non-flat φCDM

models.

6.4.3 H(z), BAO, QSO, and H iiG (ZBQH) constraints

Comparing the results of the previous two subsections, we see that when used in conjunction

with H(z) and BAO data, the QSO data result in tighter constraints on Ωm0, Ωk0 (in non-flat

XCDM), wX (in non-flat XCDM), and H0 (in flat ΛCDM), while the H iiG data result in

tighter constraints on H0 (except for flat ΛCDM), ΩΛ, Ωk0(in non-flat ΛCDM and φCDM),
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wX (in flat XCDM), and α. Consequently, it is useful to derive constraints from an analysis

of the combined H(z), BAO, QSO, and H iiG (ZBQH) data. We present the results of such

an analysis in this subsection.

In Figs. 6.1–6.6, we present the 1D probability distributions and 2D confidence con-

straints for the ZBQH cases in blue. Tables 6.2 and 6.3 list the best-fitting results and

uncertainties.

It is interesting that the best-fitting values of Ωm0 in this case are lower compared

with both the ZBQ and the ZBH results, being between 0.309+0.015
−0.014 (non-flat XCDM) and

0.319± 0.013 (flat φCDM). The best-fitting values of H0 are higher than the ZBQ cases and

have central values that are closer to those of the ZBH cases, but are still in better agree-

ment with the lower median statistics estimate of H0 (Chen and Ratra, 2011b) than the

higher local expansion rate measurement of H0 (Riess et al., 2019), being between 68.18+0.97
−0.75

km s−1 Mpc−1(flat φCDM) and 69.90± 1.48 km s−1 Mpc−1(flat XCDM).

For non-flat ΛCDM, non-flat XCDM, and non-flat φCDM, we measure Ωk0 = −0.021+0.044
−0.048,

Ωk0 = −0.025±0.092, and Ωk0 = −0.098+0.082
−0.061, respectively. For non-flat ΛCDM and XCDM,

the measured values of the curvature energy density parameter are within 0.48σ and 0.27σ

of Ωk0 = 0, respectively, while the non-flat φCDM model favors a closed geometry with an

Ωk0 that is 1.20σ away from zero.

There is not much evidence in support of dark energy dynamics in the ZBQH case, with Λ

consistent with this data combination. For flat (non-flat) XCDM, wX = −1.053+0.091
−0.082 (wX =

−1.022+0.208
−0.104). For flat (non-flat) φCDM, the 2σ upper limits are α < 0.411 (α < 0.926),

which indicates that α = 0 or Λ is consistent with these data.

6.4.4 Model comparison

From Table 6.4, we see that the reduced χ2 for all models is relatively large (being between

2.25 and 2.75). This could probably be attributed to underestimated systematic uncertainties

in the H iiG data.14 This is suggested by González-Morán et al. (2019), who also found

14Underestimated systematic uncertainties might also explain the large reduced χ2 of QSO data Chapter
5.
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Table 6.4: ∆χ2, ∆AIC, ∆BIC, and χ2
min/ν values.

Quantity Data set Flat ΛCDM Non-flat ΛCDM Flat XCDM Non-flat XCDM Flat φCDM Non-flat φCDM
H iiG 3.06 2.75 3.03 0.00 3.01 2.22

∆χ2 H(z) + BAO + H iiG 1.54 0.63 1.24 0.10 1.61 0.00
H(z) + BAO + QSO 2.20 2.14 1.27 0.00 1.37 0.15

H(z) + BAO + QSO + H iiG 0.85 0.14 0.54 0.05 0.93 0.00

H iiG 0.00 1.69 1.97 0.94 1.95 3.16
∆AIC H(z) + BAO + H iiG 0.00 1.09 1.70 2.56 2.07 2.46

H(z) + BAO + QSO 0.00 1.94 1.07 1.80 1.17 1.95
H(z) + BAO + QSO + H iiG 0.00 1.29 1.69 3.20 2.08 3.15

H iiG 0.00 4.72 5.01 7.00 4.99 9.22
∆BIC H(z) + BAO + H iiG 0.00 4.35 4.97 9.10 5.34 9.00

H(z) + BAO + QSO 0.00 5.02 4.15 7.97 4.25 8.12
H(z) + BAO + QSO + H iiG 0.00 5.04 5.44 10.70 5.83 10.65

H iiG 2.72 2.74 2.74 2.74 2.74 2.75
χ2

min/ν H(z) + BAO + H iiG 2.25 2.26 2.26 2.27 2.26 2.27
H(z) + BAO + QSO 2.33 2.34 2.34 2.35 2.34 2.35

H(z) + BAO + QSO + H iiG 2.51 2.52 2.52 2.53 2.52 2.53

relatively large values of χ2/ν in their cosmological model fits to the H iiG data (though not

as large as ours, because they compute a different χ2, as explained in footnote 8 in Section

6.3). They note that an additional systematic uncertainty of ∼ 0.22 could bring their χ2/ν

down to ∼ 1. As mentioned previously, we do not account for H iiG systematic uncertainties

in our analysis.

One thing that is clear, regardless of the absolute size of H iiG or QSO systematics (and

ignoring the large values of χ2/ν), is that the flat ΛCDM model remains the most favored

model among the six models we studied, based on the AIC andBIC criteria (see Table 6.4).15

In Table 6.4 we define ∆χ2, ∆AIC, and ∆BIC, respectively, as the differences between the

values of the χ2, AIC, and BIC associated with a given model and their corresponding

minimum values among all models.

From the H iiG results for ∆AIC and ∆BIC listed in Table 6.4, we see that the evidence

against non-flat ΛCDM, flat XCDM, and flat φCDM is weak (according to ∆AIC) and

positive (according to ∆BIC) where, among these three models, the flat XCDM model is

the least favored. The evidence against the non-flat XCDM model is weak regarding ∆AIC

but strong based on ∆BIC, while the evidence against non-flat φCDM in this case is positive

(∆AIC) and strong (∆BIC), respectively, with it being the least favored model overall.

15Note that based on the ∆χ2 results of Table 6.4 non-flat XCDM has the minimum χ2 in the H iiG and
ZBQ cases, whereas non-flat φCDM has the minimum χ2 for the ZBH and ZBQH cases. The ∆χ2 values do
not, however, penalize a model for having more parameters.
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Largely similar conclusions result from ∆AIC and ∆BIC values for the H iiG and ZBQ

data. The exception is that the ZBQ ∆AIC value gives only weak evidence against non-flat

φCDM, instead of the positive evidence against it from the H iiG ∆AIC value.

The ZBH and ZBQH values of ∆AIC and ∆BIC result in the following conclusions:

1) the evidence against both non-flat ΛCDM and flat XCDM is weak (ZBH) and positive

(ZBQH) for ∆AIC and ∆BIC;

2) the evidence against flat φCDM is positive;

3) non-flat XCDM is the least favored model with non-flat φCDM doing almost as badly.

∆AIC gives positive evidence against non-flat XCDM and non-flat φCDM, while ∆BIC

strongly disfavors (ZBH) and very strongly disfavors (ZBQH) both of these non-flat models.

6.5 Conclusions

In this paper, we have constrained cosmological parameters in six flat and non-flat cosmo-

logical models by analyzing a total of 315 observations, comprising 31 H(z), 11 BAO, 120

QSO, and 153 H iiG measurements. The QSO angular size and H iiG apparent magnitude

measurements are particularly noteworthy, as they reach to z ∼ 2.7 and z ∼ 2.4 respectively

(somewhat beyond the highest z ∼ 2.3 reached by BAO data) and into a much less studied

area of redshift space. While the current H iiG and QSO data do not provide very restrictive

constraints, they do tighten the limits when they are used in conjunction with BAO + H(z)

data.

By measuring cosmological parameters in a variety of cosmological models, we are able

to draw some relatively model-independent conclusions (i.e. conclusions that do not dif-

fer significantly between the different models). Specifically, for the full data set (i.e the

ZBQH data), we find quite restrictive constraints on Ωm0, a reasonable summary perhaps

being Ωm0 = 0.310 ± 0.013, in good agreement with many other recent estimates. H0 is

also fairly tightly constrained, with a reasonable summary perhaps being H0 = 69.5 ± 1.2

km s−1 Mpc−1, which is in better agreement with the results of Chen and Ratra (2011b) and

Planck Collaboration (2020) than that of Riess et al. (2019). The ZBQH measurements are
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consistent with the standard spatially-flat ΛCDM model, but do not strongly rule out mild

dark energy dynamics or a little spatial curvature energy density. More and better-quality

H iiG, QSO, and other data at z ∼ 2–4 will significantly help to test these extensions.
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Chapter 7

Cosmological constraints from

higher-redshift gamma-ray burst, HII

starburst galaxy, and quasar (and

other) data

This chapter is based on Cao et al. (2021a). Figures and tables by Shulei Cao, from analyses

conducted independently by Shulei Cao, Joseph Ryan, and Narayan Khadka.

7.1 Introduction

Out of all the models that have been devised to explain the observed accelerated expansion

of the Universe, the ΛCDM model is currently the most highly favored in terms of both

observational data and theoretical parsimony (see e.g. Planck Collaboration, 2020; Farooq

et al., 2017; Scolnic et al., 2018; eBOSS Collaboration, 2020). In spite of these virtues,

however, there are some indications that the ΛCDM model may not tell the whole story.

On the observational side, some workers have found evidence of discrepancies between the

ΛCDM model and cosmological observations (Riess, 2019; Martinelli and Tutusaus, 2019)
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and on the theoretical side, the origin of Λ has yet to be explained in fundamental terms (e.g.,

Martin, 2012). One way to pin down the nature of dark energy is by studying its dynamics

phenomenologically, as we have seen in the last three chapters. It is possible that the dark

energy density may evolve in time (Peebles and Ratra, 1988), and many dark energy models

exhibiting this behavior have been proposed.

Cosmological models have largely been tested in the redshift range 0 . z . 2.3, with

baryon acoustic oscillation (BAO1) measurements probing the upper end of this range, and

at z ∼ 1100, using cosmic microwave background (CMB) anisotropy data. To determine

the accuracy of our cosmological models, we also need to test them in the redshift range

2.3 . z . 1100. Quasar angular size (QSO-AS), HII starburst galaxy (HIIG), quasar

X-ray and UV flux (QSO-Flux), and gamma-ray burst (GRB) measurements are some of

the handful of data available in this range. The main goal of this paper is, therefore,

to examine the effect that QSO-AS, HIIG, and GRB data have on cosmological model

parameter constraints, in combination with each other, and in combination with more well-

known probes.2

Gamma-ray bursts are promising cosmological probes for two reasons. First, it is believed

that they can be used as standardizable candles (Lamb and Reichart, 2000, 2001; Amati

et al., 2002, 2008, 2009; Ghirlanda et al., 2004; Demianski and Piedipalumbo, 2011; Wang

et al., 2015). Second, they cover a redshift range that is wider than most other commonly-

used cosmological probes, having been observed up to z ∼ 8.2 (Samushia and Ratra, 2010;

Demianski et al., 2019; Amati et al., 2008, 2009; Demianski and Piedipalumbo, 2011; Amati

et al., 2019; Wang et al., 2016; Demianski et al., 2017; Fana Dirirsa et al., 2019; Khadka

and Ratra, 2020c). In particular, the z ∼ 2.7–8.2 part of the Universe is primarily accessed

by GRBs,3 so if GRBs can be standardized, they could provide useful information about a

large, mostly unexplored, part of the Universe.

1In our BAO data analyses in this paper the sound horizon computation assumes a value for the current
baryonic matter physical density parameter Ωb0h

2, appropriate for the model under study, computed from
Planck CMB anisotropy data.

2We relegate the analysis of QSO-Flux data to an appendix (Sec. 7.A), the reasons for which are discussed
there.

3Though QSO-Flux measurements can reach up to z ∼ 5.1.
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QSO-AS data currently reach to z ∼ 2.7. These data, consisting of measurements of the

angular size of astrophysical radio sources, furnish a standard ruler that is independent of

that provided by the BAO sound horizon scale. The intrinsic linear size lm of intermediate

luminosity QSOs has recently been accurately determined by Cao et al. (2017b), opening the

way for QSOs to, like GRBs, test cosmological models in a little-explored region of redshift

space.4

HIIG data reach to z ∼ 2.4, just beyond the range of current BAO data. Measurements

of the luminosities of the Balmer lines in HII galaxies can be correlated with the velocity

dispersion of the radiating gas, making HII galaxies a standard candle that can complement

both GRBs and lower-redshift standard candles like supernovae (Siegel et al., 2005; Plionis

et al., 2009; Mania and Ratra, 2012; González-Morán et al., 2019; Chávez et al., 2014).

Current QSO-Flux measurements reach to z ∼ 5.1, but they favor a higher value of the

current (denoted by the subscript “0”) non-relativistic matter density parameter (Ωm0) than

what is currently thought to be reasonable. The Ωm0 values obtained using QSO-Flux data,

in a number of cosmological models, are in nearly 2σ tension with the values obtained by

using other well-established cosmological probes like CMB, BAO, and Type Ia supernovae

(Risaliti and Lusso, 2019; Yang et al., 2019; Khadka and Ratra, 2020a; Wei and Melia, 2020).

Techniques for standardizing QSO-Flux measurements are still under development, so it

might be too early to draw strong conclusions about the cosmological constraints obtained

from QSO-Flux measurements. Therefore, in this chapter, we use QSO-Flux data alone

and in combination with other data to constrain cosmological parameters in four different

models, and record these results in Sec. 7.A.

We find that the GRB, HIIG, and QSO-AS constraints are largely mutually consistent,

and that their joint constraints are consistent with those from more widely used, and more

restrictive, BAO and Hubble parameter (H(z)) data. When used jointly with the H(z) +

BAO data, these higher-z data tighten the H(z) + BAO constraints.

4The use of QSO-AS measurements to constrain cosmological models dates back to near the turn of the
century (e.g. Gurvits et al., 1999; Vishwakarma, 2001; Lima and Alcaniz, 2002; Zhu and Fujimoto, 2002;
Chen and Ratra, 2003), but, as discussed in Chapter 5, these earlier results are suspect, because they are
based on an inaccurate determination of lm.
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7.2 Data

7.2.1 GRB data

We use QSO-AS, H iiG, QSO-Flux, and GRB data to obtain constraints on the cosmological

models we study. The QSO-AS data, comprising 120 measurements compiled by Cao et al.

(2017b) (listed in Table 1 of that paper) and spanning the redshift range 0.462 ≤ z ≤ 2.73, are

also used in Chapter 5. The H iiG data, comprising 107 low redshift (0.0088 ≤ z ≤ 0.16417)

H iiG measurements, used in Chávez et al. (2014) (recalibrated by González-Morán et al.,

2019), and 46 high redshift (0.636427 ≤ z ≤ 2.42935) H iiG measurements, used in González-

Morán et al. (2019), are also used in Chapter 6. The GRB data, spanning the redshift range

0.48 ≤ z ≤ 8.2, are collected from Fana Dirirsa et al. (2019) (25 from Table 2 of that

paper (F10), and the remaining 94 from Table 5 of the same, which are a subset of those

compiled by Wang et al., 2016) and also used in Khadka and Ratra (2020c). We also add

1598 QSO-Flux measurements spanning the redshift range 0.036 ≤ z ≤ 5.1003, from Risaliti

and Lusso (2019). These data are used in Khadka and Ratra (2020d); see that paper for

details. Results related to these QSO-Flux data are discussed in Sec. 7.A.

In order to be useful as cosmological probes, GRBs need to be standardized, and many

phenomenological relations have been proposed for this purpose (Amati et al., 2002, Ghirlanda

et al., 2004, Liang and Zhang, 2005, Muccino, 2020, and references therein). As in Khadka

and Ratra (2020c), we use the Amati relation (Amati et al., 2002), which is an observed

correlation between the peak photon energy Ep and the isotropic-equivalent radiated energy

Eiso of long-duration GRBs, to standardize GRB measurements. There have been many at-

tempts to standardize GRBs using the Amati relation. Some analyses assume a fixed value

of Ωm0 to calibrate the Amati relation, so they favor a relatively reasonable value of Ωm0 .

Others use supernovae data to calibrate the Amati relation, while some use H(z) data to

calibrate it. This means that most previous GRB analyses are affected by some non-GRB

external factors. In some cases this leads to a circularity problem, in which the models to be

constrained by using the Amati relation are also used to calibrate the Amati relation itself
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(Demianski et al., 2019, 2017; Fana Dirirsa et al., 2019; Liu and Wei, 2015). In other cases,

the data used in the calibration process dominate the analysis results. To overcome these

problems, we fit the parameters of the Amati relation simultaneously with the parameters

of the cosmological models we study (as done in Khadka and Ratra, 2020c; also see Wang

et al., 2016).

The isotropic radiated energy Eiso of a source in its rest frame at a luminosity distance

DL is

Eiso =
4πD2

L

1 + z
Sbolo, (7.1)

where Sbolo is the bolometric fluence, and DL (defined in Chapter 2) depends on z and on

the parameters of our cosmological models. Eiso is connected to the source’s peak energy

output Ep via the Amati relation (Amati et al., 2008, 2009)

logEiso = a+ b logEp, (7.2)

where a and b are free parameters that we vary in our model fits.5 Note here that the peak

energy Ep = (1 + z)Ep,obs where Ep,obs is the observed peak energy.

See Chapters 5 and 6 for discussions of the QSO-AS data and the HIIG data, respectively.

7.3 Data Analysis Methodology

By using the python module emcee (Foreman-Mackey et al., 2013), we perform a Markov

chain Monte Carlo (MCMC) analysis to maximize the likelihood function, L, and thereby

determine the best-fitting values of the free parameters (see Chapter 6 for the details of this

method). The flat cosmological parameter priors are the same as those used in Chapter 6

and the flat priors of the parameters of the Amati relation are non-zero over 0 ≤ σext ≤ 10

(described below), 40 ≤ a ≤ 60, and 0 ≤ b ≤ 5.

The likelihood functions associated with H(z), BAO, HIIG, and QSO-AS data are de-

scribed in Chapter 6. For GRB data, the natural log of its likelihood function (D’Agostini,

5log = log10 is implied hereinafter.
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2005) is

lnLGRB = −1

2

[
χ2

GRB +
119∑
i=1

ln
(
2π(σ2

ext + σ2
yi

+ b2σ2
xi

)
) ]
, (7.3)

where

χ2
GRB =

119∑
i=1

[
(yi − bxi − a)2

(σ2
ext + σ2

yi
+ b2σ2

xi
)

]
, (7.4)

x = log Ep

keV
, σx =

σEp

Ep ln 10
, y = log Eiso

erg
, and σext is the extrinsic scatter parameter, which

contains the unknown systematic uncertainty. For the GRB with σz uncertainty in z,

σ2
y =

(
σSbolo

Sbolo ln 10

)2

+

(
2(1 + z)∂DM

∂z
+DM

(1 + z)DM ln 10
σz

)2

, (7.5)

and for those without z uncertainties σz = 0 (the non-zero σz has a negligible effect on our

results).

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

are used to compare the goodness of fit of models with different numbers of parameters,

where

AIC = −2 lnLmax + 2n, (7.6)

and

BIC = −2 lnLmax + n lnN. (7.7)

In these equations, Lmax is the maximum value of the relevant likelihood function, n is the

number of free parameters of the model under consideration, and N is the number of data

points (e.g., for GRB N = 119).

7.4 Results

7.4.1 HIIG, QSO-AS, and GRB constraints, individually

We present the posterior one-dimensional (1D) probability distributions and two-dimensional

(2D) confidence regions of the cosmological and Amati relation parameters for the six flat
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Figure 7.1: 1σ, 2σ, and 3σ confidence contours for flat ΛCDM, where the right panel is the
cosmological parameters comparison zoomed in. The black dotted lines in the left sub-panels
of the left panel are the zero-acceleration lines, which divide the parameter space into regions
associated with currently-accelerating (left) and currently-decelerating (right) cosmological
expansion.
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and non-flat models in Figs. 7.1–7.6, in gray (GRB), red (HIIG), and green (QSO-AS).

The unmarginalized best-fitting parameter values are listed in Table 7.1, along with the

corresponding χ2, −2 lnLmax, AIC, BIC, and degrees of freedom ν (where ν ≡ N − n).6

The values of ∆χ2, ∆AIC, and ∆BIC reported in Table 7.1 are discussed in Section 7.4.4,

where we define ∆χ2, ∆AIC, and ∆BIC, respectively, as the differences between the values

of the χ2, AIC, and BIC associated with a given model and their corresponding minimum

values among all models. The marginalized best-fitting parameter values and uncertainties

(±1σ error bars or 2σ limits) are given in Table 7.2.7 From Table 7.2 we find that the

QSO-AS constraints on Ωm0 are consistent with other results within a 1σ range but with

large error bars, ranging from a low of 0.329+0.086
−0.171 (flat φCDM) to a high of 0.364+0.083

−0.150 (flat

ΛCDM).

The QSO-AS constraints on H0 are between H0 = 61.91+2.83
−4.92 km s−1 Mpc−1 (non-flat

φCDM) and H0 = 68.39+6.14
−8.98 km s−1 Mpc−1 (flat XCDM), with large error bars and relatively

low values for non-flat XCDM and the φCDM models.

The non-flat models mildly favor open geometry, but are also consistent, given the large

error bars, with spatially-flat hypersurfaces (except for non-flat φCDM, where the open case

is favored at 2.76σ). For non-flat ΛCDM, non-flat XCDM, and non-flat φCDM, we find

Ωk0 = 0.017+0.184
−0.277, Ωk0 = 0.115+0.466

−0.293, and Ωk0 = 0.254+0.304
−0.092, respectively.8

The fits to the QSO-AS data favor dark energy being a cosmological constant but do

not strongly disfavor dark energy dynamics. For flat (non-flat) XCDM, wX = −1.161+0.430
−0.679

(wX = −1.030+0.593
−0.548), and for flat (non-flat) φCDM, 2σ upper limits of α are α < 2.841

(α < 4.752). In the former case, both results are within 1σ of wX = −1, and in the latter

case, both 1D likelihoods peak at α = 0.

Constraints on cosmological model parameters derived solely from HIIG data are dis-

cussed in Sec. 5.1 of Chapter 6, while those derived from GRB data are described in Sec. 5.1

6Note that the χ2 values listed in Tables 7.1 and 7.3 are computed from the best-fitting parameter values
and are not necessarily the minimum (especially when including GRB and QSO-Flux data).

7We use the python package getdist (Lewis, 2019) to plot these figures and compute the central values
(posterior means) and uncertainties of the free parameters listed in Table 7.2.

8From Table 7.2 we see that GRB data are also consistent with flat spatial geometry in the non-flat
ΛCDM and XCDM cases, but also favor, at 2.92σ, open spatial geometry in the case of non-flat φCDM.
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of Khadka and Ratra (2020b) (though there are slight differences coming from the different

treatments of H0 and the different ranges of flat priors used there and here); both are listed

in Table 7.2 here. In contrast to the HIIG and QSO-AS data sets, the GRB data alone

cannot constrain H0 because there is a degeneracy between the intercept parameter (a) of

the Amati relation and H0; for consistency with the analyses of the HIIG and QSO-AS data,

we treat H0 as a free parameter in the GRB data analysis here.

Cosmological constraints obtained using the HIIG, QSO-AS, and GRB data sets are mu-

tually consistent, and are also consistent with those obtained from most other cosmological

probes. This is partially a consequence of the larger HIIG, QSO-AS, and GRB data error

bars, which lead to relatively weaker constraints on cosmological parameters when each of

these data sets is used alone (see Table 7.2). However, because the HIIG, QSO-AS, and

GRB constraints are mutually consistent, we may jointly analyze these data. Their com-

bined cosmological constraints will therefore be more restrictive than when they are analyzed

individually.

We note, from Figs. 7.1–7.6, that a significant part of the likelihood of each of these three

data sets lies in the parameter space part with currently-accelerating cosmological expansion.

7.4.2 QSO-AS, GRB, and GRB (QGH) joint constraints

Because the QSO-AS, HIIG, and GRB contours are mutually consistent for all six of the

models we study, we jointly analyze these data to obtain QGH constraints.

The 1D probability distributions and 2D confidence regions of the cosmological and Amati

relation parameters from the QGH data are in Figs. 7.1–7.6, in blue, Figs. 7.7–7.12, in green,

and panels (a) of Figs. 7.13–7.16, in red. The best-fitting results and uncertainties are in

Tables 7.1 and 7.2.

We find that the QGH data combination favors currently-accelerating cosmological ex-

pansion.

The fit to the QGH data produces best-fitting values of Ωm0 that lie between 0.205+0.044
−0.094

(non-flat φCDM) at the low end, and 0.322+0.062
−0.044 (flat XCDM) at the high end. This range is
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Figure 7.3: 1σ, 2σ, and 3σ confidence contours for flat XCDM. The black dotted line is
the zero-acceleration line, which divides the parameter space into regions associated with
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each of the three subpanels are computed for the third cosmological parameter set to the
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smaller than the ranges within which Ωm0 falls when it is determined from the HIIG, QSO-

AS, and GRB data individually, but the low and high ends of the range are still somewhat

mutually inconsistent, being 2.66σ away from each other. This is a consequence of the low

Ωm0 value for non-flat φCDM; the Ωm0 values for ΛCDM and XCDM are quite consistent

with the recent estimate of Planck Collaboration (2020). In contrast, the best-fitting values

of H0 that we measure from the QGH data are mutually very consistent (within 0.65σ), with

H0 = 70.30±1.68 km s−1 Mpc−1 (flat φCDM) at the low end of the range and H0 = 72.00+1.99
−1.98

km s−1 Mpc−1 (flat XCDM) at the high end of the range. These measurements are 0.83σ

(flat XCDM) and 1.70σ (flat φCDM) lower than the local Hubble constant measurement of

H0 = 74.03±1.42 km s−1 Mpc−1 (Riess et al., 2019), and 0.70σ (flat φCDM) and 1.16σ (flat

XCDM) higher than the median statistics estimate of H0 = 68 ± 2.8 km s−1 Mpc−1 (Chen

and Ratra, 2011b).9

In contrast to the HIIG, QSO-AS, and GRB only cases, when fitted to the QGH data com-

bination the non-flat models mildly favor closed spatial hypersurfaces. For non-flat ΛCDM,

non-flat XCDM, and non-flat φCDM, we find Ωk0 = −0.093+0.092
−0.190, Ωk0 = −0.044+0.193

−0.217, and

Ωk0 = −0.124+0.127
−0.253, respectively, with the non-flat ΛCDM model favoring closed spatial

hypersurfaces at 1.01σ.

The fit to the QGH data combination produces stronger evidence for dark energy dy-

namics in the flat and non-flat XCDM parametrizations but weaker evidence in the flat and

non-flat φCDM models (in comparison to the HIIG and QSO-AS only cases) with tighter

error bars on the measured values of wX and α. For flat (non-flat) XCDM, wX = −1.379+0.361
−0.375

(wX = −1.273+0.501
−0.321), with wX = −1 being within the 1σ range for non-flat XCDM and being

1.05σ larger for flat XCDM. For flat (non-flat) φCDM, α < 2.584 (α < 3.414), where both

likelihoods peak at α = 0.

9Other local expansion rate determinations have slightly lower central values with slightly larger error
bars (Rigault et al., 2015; Zhang et al., 2017b; Dhawan et al., 2018; Fernández Arenas et al., 2018; Freedman
et al., 2019, 2020; Rameez and Sarkar, 2019; Breuval et al., 2020; Efstathiou, 2020; Khetan et al., 2020). Our
H0 measurements are consistent with earlier median statistics estimates (Gott et al., 2001; Chen et al., 2003)
and with other recent H0 determinations (Planck Collaboration, 2020; Chen et al., 2017; Gómez-Valent and
Amendola, 2018; DES Collaboration, 2018; Zhang, 2018; Domı́nguez et al., 2019; Martinelli and Tutusaus,
2019; Cuceu et al., 2019; Zeng and Yan, 2019; Schöneberg et al., 2019; Lin and Ishak, 2019; Blum et al.,
2020; Lyu et al., 2020; Philcox et al., 2020; Zhang and Huang, 2020; Birrer et al., 2020; Denzel et al., 2021).
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The constraints on the Amati relation parameters from the QGH data are also model-

independent, but with slightly larger central values and smaller error bars for the parameter

a. A reasonable summary is σext = 0.413+0.026
−0.032, a = 50.19± 0.24, and b = 1.133± 0.086.

The QGH cosmological constraints are largely consistent with those from other data, like

the constraints from the H(z) + BAO data used in Chapter 6 and Khadka and Ratra (2020c),

that are shown in red in Figs. 7.7–7.12. We note, however, that there is some mild tension

between φCDM Ωm0 values, and between XCDM and φCDM H0 values determined from

H(z) + BAO and QGH data, with the 2.46σ difference between Ωm0 values estimated from

the two different data combinations in the non-flat φCDM model being the only somewhat

troubling difference (see Table 7.2).

7.4.3 H(z), BAO, QSO-AS, GRB, and HIIG (ZBQGH) constraints

Given the good mutual consistency between constraints derived from H(z) + BAO data

and those derived from QGH data, in this subsection we determine more restrictive joint

constraints from the combined H(z), BAO, QSO-AS, GRB, and HIIG (ZBQGH) data on

the parameters of our six cosmological models.

The 1D probability distributions and 2D confidence regions of the cosmological and Amati

relation parameters for all models from the ZBQGH data are in blue in Figs. 7.7–7.12, and

in red in panels (b) of Figs. 7.13–7.16. The best-fitting results and uncertainties are in

Tables 7.1 and 7.2.

The measured values of Ωm0 here are a little larger, and significantly more restrictively

constrained, than the ones in the QGH cases (except for flat XCDM), being between 0.310±

0.014 (non-flat XCDM) and 0.320 ± 0.013 (flat φCDM). The H0 measurements are a little

lower, and more tightly constrained, than in the QGH cases, and are in better agreement

with the lower median statistics estimate of H0 (Chen and Ratra, 2011b) than the higher

local expansion rate measurement of H0 (Riess et al., 2019), being between 68.16+1.01
−0.80 km

s−1 Mpc−1 (flat φCDM) and 69.85+1.42
−1.55 km s−1 Mpc−1 (flat XCDM).

For non-flat ΛCDM, non-flat XCDM, and non-flat φCDM, we measure Ωk0 = −0.019+0.043
−0.048,
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Table 7.1: Unmarginalized best-fitting parameter values for all models from various combinations of data.

Model Data set Ωm0 ΩΛ Ωk0 wX α H0
c σext a b χ2 ν −2 lnLmax AIC BIC ∆χ2 ∆AIC ∆BIC

Flat ΛCDM GRB 0.698 0.302 – – – 80.36 0.404 49.92 1.113 117.98 114 130.12 140.12 154.01 1.08 0.00 0.00
HIIG 0.276 0.724 – – – 71.81 – – – 410.75 151 410.75 414.75 420.81 3.15 0.00 0.00

QSO-AS 0.315 0.685 – – – 68.69 – – – 352.05 118 352.05 356.05 361.62 1.76 0.00 0.00
QGHd 0.271 0.729 – – – 71.13 0.407 50.18 1.138 879.42 387 895.05 905.05 924.91 0.12 0.00 0.00

H(z) + BAO 0.314 0.686 – – – 68.53 – – – 20.82 40 20.82 24.82 28.29 2.39 0.00 0.00
ZBQGHe 0.317 0.683 – – – 69.06 0.404 50.19 1.134 903.61 429 917.79 927.79 948.16 4.05 0.00 0.00

Non-flat ΛCDM GRB 0.691 0.203 0.106 – – 77.03 0.402 49.96 1.115 117.37 113 129.96 141.96 158.64 0.47 1.84 4.63
HIIG 0.311 1.000 −0.311 – – 72.41 – – – 410.44 150 410.44 416.44 425.53 2.84 1.69 4.72

QSO-AS 0.266 1.000 −0.268 – – 74.73 – – – 351.30 117 351.30 357.30 365.66 1.01 1.25 4.04
QGHd 0.291 0.876 −0.167 – – 72.00 0.406 50.22 1.120 879.30 386 894.02 906.02 929.85 0.00 0.97 4.94

H(z) + BAO 0.308 0.643 0.049 – – 67.52 – – – 20.52 39 20.52 26.52 31.73 2.09 1.70 3.44
ZBQGHe 0.309 0.716 −0.025 – – 69.77 0.402 50.17 1.141 904.47 428 917.17 929.17 953.61 4.91 1.38 5.45

Flat XCDM GRB 0.102 – – −0.148 – 55.30 0.400 50.22 1.117 118.28 113 129.79 141.79 158.47 1.38 1.67 4.46
HIIG 0.251 – – −0.899 – 71.66 – – – 410.72 150 410.72 416.72 425.82 3.12 1.97 5.01

QSO-AS 0.267 – – −2.000 – 81.70 – – – 351.84 117 351.84 357.84 366.20 1.55 1.79 4.58
QGHd 0.320 – – −1.306 – 72.03 0.404 50.20 1.131 880.47 386 894.27 906.27 930.10 1.17 1.22 5.19

H(z) + BAO 0.319 – – −0.865 – 65.83 – – – 19.54 39 19.54 25.54 30.76 1.11 0.72 2.47
ZBQGHe 0.313 – – −1.052 – 69.90 0.407 50.19 1.132 902.09 428 917.55 929.55 953.99 2.53 1.76 5.83

Non-flat XCDM GRB 0.695 – 0.556 −1.095 – 57.64 0.399 50.13 1.133 118.43 112 129.73 143.73 163.19 1.53 3.61 9.18
HIIG 0.100 – −0.702 −0.655 – 72.57 – – – 407.60 149 407.60 415.60 427.72 0.00 0.85 6.91

QSO-AS 0.100 – −0.548 −0.670 – 74.04 – – – 350.29 116 350.29 358.29 369.44 0.00 2.24 7.82
QGHd 0.300 – −0.161 −1.027 – 80.36 0.405 50.21 1.122 879.48 385 894.01 908.01 935.81 0.18 2.96 10.90

H(z) + BAO 0.327 – −0.159 −0.730 – 65.97 – – – 18.43 38 18.43 26.43 33.38 0.00 1.61 5.09
ZBQGHe 0.312 – −0.045 −0.959 – 69.46 0.402 50.23 1.117 904.17 427 917.07 931.07 959.58 4.61 3.28 11.42

Flat φCDM GRB 0.674 – – – 2.535 84.00 0.399 49.88 1.104 119.15 113 130.14 142.14 158.82 2.25 2.02 4.81
HIIG 0.255 – – – 0.260 71.70 – – – 410.70 150 410.70 416.70 425.80 3.10 1.95 4.99

QSO-AS 0.319 – – – 0.012 68.47 – – – 352.05 117 352.05 358.05 366.41 1.76 2.00 4.79
QGHd 0.282 – – – 0.012 70.81 0.402 50.19 1.135 882.56 386 895.28 907.28 931.11 3.26 2.23 6.20

H(z) + BAO 0.318 – – – 0.364 66.04 – – – 19.65 39 19.65 25.65 30.86 1.22 0.83 2.57
ZBQGHe 0.316 – – – 0.013 69.15 0.405 50.24 1.114 903.52 428 918.12 930.12 954.56 3.96 2.33 6.40

Non-flat φCDM GRB 0.664 – 0.188 – 4.269 59.65 0.403 50.17 1.111 116.90 112 129.93 143.93 163.39 0.00 3.81 9.38
HIIG 0.114 – −0.437 – 2.680 72.14 – – – 409.91 149 409.91 417.91 430.03 2.31 3.16 9.22

QSO-AS 0.100 – −0.433 – 2.948 72.37 – – – 350.98 116 350.98 358.98 370.13 0.69 2.93 8.51
QGHd 0.276 – −0.185 – 0.145 72.11 0.402 50.16 1.142 881.09 385 894.24 908.24 936.03 1.79 3.19 11.12

H(z) + BAO 0.321 – −0.137 – 0.887 66.41 – – – 18.61 39 18.61 26.61 33.56 0.18 1.79 5.27
ZBQGHe 0.310 – −0.052 – 0.193 69.06 0.411 50.21 1.126 899.56 427 917.26 931.26 959.77 0.00 3.47 11.61

c km s−1 Mpc−1.
d HIIG + QSO-AS + GRB.
e H(z) + BAO + HIIG + QSO-AS + GRB.
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Figure 7.5: 1σ, 2σ, and 3σ confidence contours for flat φCDM. The black dotted zero-
acceleration line splits the parameter space into regions of currently-accelerating (below left)
and currently-decelerating (above right) cosmological expansion. The α = 0 axis is the flat
ΛCDM model.
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Ωk0 = −0.024+0.092
−0.093, and Ωk0 = −0.094+0.082

−0.064, respectively, where the central values are a lit-

tle higher (closer to 0) than what was measured in the QGH cases. The joint constraints

are more restrictive, with non-flat ΛCDM and XCDM within 0.44σ and 0.26σ of Ωk0 = 0,

respectively. The non-flat φCDM model, on the other hand, still favors a closed geometry

with an Ωk0 that is 1.15σ away from zero.

The ZBQGH case has slightly larger measured values and tighter error bars for wX and α

than the QGH case, so there is also not much evidence in support of dark energy dynamics.

For flat (non-flat) XCDM, wX = −1.050+0.090
−0.081 (wX = −1.019+0.202

−0.099). For flat (non-flat)

φCDM, the 2σ upper limits are α < 0.418 (α < 0.905).

The cosmological model-independent constraints from the ZBQGH data combination

on the parameters of the Amati relation can be summarized as σext = 0.412+0.026
−0.032, a =

50.19± 0.24, and b = 1.132± 0.085.

7.4.4 Model comparison

From Table 7.1, we see that the reduced χ2 values determined from GRB data alone are

around unity for all models (being between 1.03 and 1.06) while those values determined

from the H(z) + BAO data combination range from 0.48 to 0.53, with the lower reduced χ2

here being due to the H(z) data (that probably have overestimated error bars). As discussed

in Chapters 5 and 6, the cases that involve HIIG and QSO-AS data have a larger reduced χ2

(between 2.11 and 3.02), which is probably due to underestimated systematic uncertainties

in both cases.

Based on the AIC and the BIC (see Table 7.1), the flat ΛCDM model remains the most

favored model, across all data combinations, among the six models we study.10 From ∆AIC

and ∆BIC, we find mostly weak or positive evidence against the models we considered,

and only in a few cases do we find strong evidence against them. According to ∆BIC, the

evidence against non-flat XCDM is strong for the HIIG, QSO-AS, and GRB only cases, and

10Note that based on the ∆χ2 results of Table 7.1 non-flat ΛCDM has the minimum χ2 in the QGH case
and non-flat XCDM has the minimum χ2 in the HIIG, QSO-AS, and H(z) + BAO cases, whereas non-flat
φCDM has the minimum χ2 for the GRB and ZBQGH cases. The ∆χ2 values do not, however, penalize a
model for having more parameters.
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very strong for the QGH and ZBQGH cases. Similarly, the evidence against flat φCDM is

strong for the QGH and ZBQGH cases, and the evidence against non-flat φCDM is strong

for the HIIG, QSO-AS, and GRB only cases, and very strong for the QGH and ZBQGH

cases.

Among these six models, a comparison of the ∆BIC values from Table 7.1 shows that

the most disfavored model is non-flat φCDM, and that the second most disfavored model

is non-flat XCDM. This is especially true when these models are fitted to the QGH and

ZBQGH data combinations, in which cases non-flat φCDM and non-flat XCDM are very

strongly disfavored. These models aren’t as strongly disfavored by the AIC, however; from

a comparison of the ∆AIC values in Table 7.1, we see that the evidence against the most

disfavored model (non-flat φCDM) is only positive.

7.5 Conclusion

We find that cosmological constraints determined from higher-z GRB, H iiG, and QSO-AS

data are mutually consistent. It is both reassuring and noteworthy that these higher-z data

jointly favor currently-accelerating cosmological expansion, and that their constraints are

consistent with the constraints imposed by more widely used and more restrictive H(z) and

BAO data. Using a data set consisting of 31 H(z), 11 BAO, 120 QSO-AS, 153 H iiG, and

119 GRB measurements, we jointly constrain the parameters of the GRB Amati relation

and of six cosmological models.

The GRB measurements are of special interest because they reach to z ∼ 8.2 (far beyond

the highest z ∼ 2.3 reached by BAO data) and into a much less studied area of redshift

space. Current GRB data do not provide very restrictive constraints on cosmological model

parameters, but in the near future we expect there to be more GRB observations (Shirokov

et al., 2020) which should improve the GRB data and provide more restrictive cosmological

constraints.

Some of our conclusions do not differ significantly between models and so are model-

independent. In particular, for the ZBQGH data (the full data set excluding QSO-Flux
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Figure 7.6: Same as Fig. 7.5 but for non-flat φCDM, where the zero-acceleration lines in each
of the sub-panels are computed for the third cosmological parameter set to the H(z) + BAO
data best-fitting values listed in Table 7.1. Currently-accelerating cosmological expansion
occurs below these lines. The cyan dash-dot lines represent the flat φCDM case, with closed
spatial geometry either below or to the left. The α = 0 axis is the non-flat ΛCDM model.
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Table 7.2: One-dimensional marginalized best-fitting parameter values and uncertainties (±1σ error bars or 2σ limits) for all models from
various combinations of data.

Model Data set Ωm0 ΩΛ Ωk0 wX α H0
c σext a b

Flat ΛCDM GRB > 0.208 – – – – – 0.411+0.026
−0.032 50.16± 0.27 1.123± 0.085

HIIG 0.289+0.053
−0.071 – – – – 71.70± 1.83 – – –

QSO-AS 0.364+0.083
−0.150 – – – – 67.29+4.93

−5.07 – – –
QGHe 0.277+0.034

−0.041 – – – – 71.03± 1.67 0.413+0.026
−0.032 50.19± 0.24 1.138± 0.085

H(z) + BAO 0.315+0.015
−0.017 – – – – 68.55± 0.87 – – –

ZBQGHf 0.316± 0.013 – – – – 69.05+0.62
−0.63 0.412+0.026

−0.032 50.19± 0.23 1.133± 0.085

Non-flat ΛCDM GRB 0.463+0.226
−0.084 < 0.658d −0.007+0.251

−0.234 – – – 0.412+0.026
−0.032 50.17± 0.28 1.121± 0.086

HIIG 0.275+0.081
−0.078 > 0.501d 0.094+0.237

−0.363 – – 71.50+1.80
−1.81 – – –

QSO-AS 0.357+0.082
−0.135 – 0.017+0.184

−0.277 – – 67.32+4.49
−5.44 – – –

QGHe 0.292± 0.044 0.801+0.191
−0.055 −0.093+0.092

−0.190 – – 71.33+1.75
−1.77 0.413+0.026

−0.032 50.19± 0.24 1.130± 0.086
H(z) + BAO 0.309± 0.016 0.636+0.081

−0.072 0.055+0.082
−0.074 – – 67.44± 2.33 – – –

ZBQGHf 0.311+0.012
−0.014 0.708+0.053

−0.046 −0.019+0.043
−0.048 – – 69.72± 1.10 0.412+0.026

−0.032 50.19± 0.23 1.132± 0.085

Flat XCDM GRB > 0.366d – – – – – 0.411+0.025
−0.032 50.14± 0.28 1.119± 0.085

HIIG 0.300+0.106
−0.083 – – −1.180+0.560

−0.330 – 71.85± 1.96 – – –
QSO-AS 0.349+0.090

−0.143 – – −1.161+0.430
−0.679 – 68.39+6.14

−8.98 – – –
QGHe 0.322+0.062

−0.044 – – −1.379+0.361
−0.375 – 72.00+1.99

−1.98 0.412+0.026
−0.032 50.20± 0.24 1.130± 0.085

H(z) + BAO 0.319+0.016
−0.017 – – −0.888+0.126

−0.098 – 66.26+2.32
−2.63 – – –

ZBQGHf 0.313+0.014
−0.015 – – −1.050+0.090

−0.081 – 69.85+1.42
−1.55 0.412+0.026

−0.032 50.19± 0.24 1.134± 0.085

Non-flat XCDM GRB > 0.386d – 0.121+0.464
−0.275 > −1.218d – – 0.411+0.026

−0.032 50.12± 0.28 1.122± 0.087
HIIG 0.275+0.084

−0.125 – 0.011+0.457
−0.460 −1.125+0.537

−0.321 – 71.71+2.07
−2.08 – – –

QSO-AS 0.359+0.111
−0.174 – 0.115+0.466

−0.293 −1.030+0.593
−0.548 – 65.92+4.54

−9.54 – – –
QGHe 0.303+0.073

−0.058 – −0.044+0.193
−0.217 −1.273+0.501

−0.321 – 71.77± 2.02 0.413+0.026
−0.031 50.20± 0.24 1.129± 0.085

H(z) + BAO 0.323+0.021
−0.020 – −0.105+0.187

−0.162 −0.818+0.212
−0.071 – 66.20+2.29

−2.55 – – –
ZBQGHf 0.310± 0.014 – −0.024+0.092

−0.093 −1.019+0.202
−0.099 – 69.63+1.45

−1.62 0.412+0.026
−0.031 50.19± 0.23 1.132± 0.085

Flat φCDM GRB > 0.376d – – – – – 0.411+0.025
−0.032 50.13± 0.28 1.121± 0.087

HIIG 0.210+0.043
−0.092 – – – < 2.784 71.23+1.79

−1.80 – – –
QSO-AS 0.329+0.086

−0.171 – – – < 2.841 64.42+4.47
−4.62 – – –

QGHe 0.214+0.057
−0.061 – – – < 2.584 70.30± 1.68 0.413+0.026

−0.032 50.18± 0.24 1.142± 0.087
H(z) + BAO 0.319+0.016

−0.017 – – – 0.550+0.169
−0.494 65.25+2.25

−1.82 – – –
ZBQGHf 0.320± 0.013 – – – < 0.418 68.16+1.01

−0.80 0.412+0.027
−0.033 50.20± 0.24 1.131± 0.088

Non-flat φCDM GRB > 0.189 – 0.251+0.247
−0.086 – – – 0.411+0.026

−0.032 50.11± 0.28 1.128± 0.089
HIIG < 0.321 – 0.291+0.348

−0.113 – < 4.590 70.60+1.68
−1.84 – – –

QSO-AS 0.362+0.117
−0.193 – 0.254+0.304

−0.092 – < 4.752 61.91+2.83
−4.92 – – –

QGHe 0.205+0.044
−0.094 – −0.124+0.127

−0.253 – < 3.414 70.66± 1.90 0.414+0.027
−0.033 50.19± 0.24 1.134± 0.088

H(z) + BAO 0.321± 0.017 – −0.126+0.157
−0.130 – 0.938+0.439

−0.644 65.93± 2.33 – – –
ZBQGHf 0.313± 0.013 – −0.094+0.082

−0.064 – < 0.905 68.79± 1.22 0.412+0.027
−0.033 50.20± 0.24 1.126± 0.087

c km s−1 Mpc−1.
d This is the 1σ limit. The 2σ limit is set by the prior, and is not shown here.
e HIIG + QSO-AS + GRB.
f H(z) + BAO + HIIG + QSO-AS + GRB.
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Figure 7.7: Same as Fig. 7.1 (flat ΛCDM) but for different combinations of data.
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Figure 7.8: Same as Fig. 7.2 (non-flat ΛCDM) but for different combinations of data.
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Figure 7.9: Same as Fig. 7.3 (flat XCDM) but for different combinations of data.

144



0.2 0.4
m0

1.0
1.2b

49.5
50.0
50.5

a

0.4

0.5

ex
t

60

70H
0

1.5
1.0
0.5

w
X

DecelerationAcceleration

0.5

0.0

0.5

k 0

Deceleration
AccelerationOpen

Closed

0.4 0.4
k0

Op
en

Cl
os

ed
Op

en
Cl

os
ed

Op
en

Cl
os

ed
Op

en
Cl

os
ed

DecelerationAcceleration

Op
en

Cl
os

ed

1.4 0.6
wX

60 70
H0

0.4 0.5
ext

49.7 50.7
a

1.0 1.3
b

HIIG + QSO-AS + GRB
H(z) + BAO
H(z) + BAO + HIIG + QSO-AS + GRB

0.2 0.3 0.4
m0

60

65

70

75

H
0

1.5

1.0

0.5

w
X

DecelerationAcceleration

0.5

0.0

0.5

k 0

Deceleration
AccelerationOpen

Closed

0.5 0.0 0.5
k0

Op
en

Cl
os

ed

DecelerationAcceleration

Op
en

Cl
os

ed

1.5 1.0 0.5
wX

60 65 70 75
H0

HIIG + QSO-AS + GRB
H(z) + BAO
H(z) + BAO + HIIG + QSO-AS + GRB

Figure 7.10: Same as Fig. 7.4 (non-flat XCDM) but for different combinations of data.
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Figure 7.11: Same as Fig. 7.5 (flat φCDM) but for different combinations of data.
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Figure 7.12: Same as Fig. 7.6 (non-flat φCDM) but for different combinations of data.
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data), we find a fairly restrictive summary value of Ωm0 = 0.313 ± 0.013 that agrees well

with many other recent measurements. From these data we also find a fairly restrictive

summary value of H0 = 69.3 ± 1.2 km s−1 Mpc−1 that is in better agreement with the

results of Chen and Ratra (2011b) and Planck Collaboration (2020) than with the result of

Riess et al. (2019); note that we do not take the H0 tension issue into account (for a review,

see Riess, 2019). The ZBQGH measurements are consistent with flat ΛCDM, but do not

rule out mild dark energy dynamics or a little spatial curvature energy density. More and

better-quality higher-z GRB, H iiG, QSO, and other data will significantly help to test these

extensions of flat ΛCDM.

7.A QSO-Flux

QSOs obey a nonlinear relation between their luminosities in the X-ray and UV bands. Using

a sample of 808 QSOs in the redshift range 0.061 ≤ z ≤ 6.280, Risaliti and Lusso (2015)

confirmed that this relation can be written

logLX = β + γ logLUV , (7.8)

where LX and LUV are the X-ray and UV luminosities of the QSOs. To make contact with

observations, eq. (7.8) must be expressed in terms of the fluxes FX and FUV measured at

fixed rest-frame wavelengths in the X-ray and UV bands, respectively. With this, eq. (7.8)

becomes

logFX = β + (γ − 1) log 4π + γ logFUV + 2(γ − 1) logDL. (7.9)

Here DL (defined in eq. 2.25) is the luminosity distance, which depends on the parameters

of our cosmological models. We also treat the slope γ and intercept β as free parameters in

our cosmological model fits.
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For QSO-Flux data, the natural log of its likelihood function is

lnLQF = −1

2

N∑
i=1

[[
log(F obs

X )i − log(F th
X )i
]2

s2
i

+ ln(2πs2
i )

]
,

where s2
i = σ2

i + δ2. Here σi is the uncertainty in log
(
F obs
X

)
i
, and δ is the global intrinsic

dispersion in the data (including the systematic uncertainties), which we treat as a free

parameter in our cosmological model fits. We use the Risaliti and Lusso (2019) compilation

of 1598 QSO-Flux measurements in the range 0.036 ≤ z ≤ 5.1003. The flat priors of

cosmological parameters and the Amati relation parameters are in Sec. 7.3 and, as in

Khadka and Ratra (2020a), the flat priors of the parameters δ, γ, and β are non-zero over

0 ≤ δ ≤ e10, −2 ≤ γ ≤ 2, and 0 ≤ β ≤ 11, respectively.

As discussed in Khadka and Ratra (2020a) the QSO-Flux data alone favors large Ωm0

values for the physically-motivated flat and non-flat ΛCDM and φCDM models. Risaliti and

Lusso (2019) and Khadka and Ratra (2020a) note that this is largely a consequence of the

z ∼ 2–5 QSO data. While these large Ωm0 values differ from almost all other measurements

of Ωm0, the QSO-Flux data have larger error bars and their cosmological constraint contours

are not in conflict with those from other data sets. For these reasons we have used the

QSO-Flux data, but in this appendix and not in the main text, and we have not computed

QSO-Flux data results for the φCDM cases (these being computationally demanding). We

briefly summarize our constraints, listed in Tables 7.3 and 7.4 and shown in Figs. 7.13–7.16,

below.

7.A.1 QSO-Flux constraints

Except for flat ΛCDM, the constraints on Ωm0 in the QSO-Flux only case are 2σ larger than

those in the combined ZBQGHF case (see Sec. 7.A.3). QSO-Flux data cannot constrain

α, nor can they constrain H0 (for the same reason that GRB data cannot constrain this

parameter; see Section 7.4.1). QSO-Flux data set upper limits on wX for flat and non-flat

XCDM, with wX = −1 within the 1σ range.
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7.A.2 QSO-AS, GRB, HIIG, and QSO-Flux (QGHF) constraints

When adding QSO-Flux to QGH data, the joint constraints favor larger Ωm0 and lower

Ωk0. In non-flat ΛCDM closed geometry is favored at 3.24σ. The H0 constraints are only

mildly affected by the addition of the QSO-Flux data. The constraint on wX changes from

−1.379+0.361
−0.375 in the QGH case to < −1.100 (2σ limit) in the QGHF case for flat XCDM,

while for non-flat XCDM, the constraint on wX in the QGHF case is 0.40σ lower than that

in the QGH case and is 1.80σ away from wX = −1.

7.A.3 H(z), BAO, QSO-AS, GRB, HIIG, and QSO-Flux (ZBQGHF)

constraints

When adding QSO-Flux to the ZBQGH combination, the Ωm0 central values are only slightly

larger because the H(z) + BAO data dominate this compilation. The joint-constraint central

Ωk0 values are lower, and consistent with flat geometry, while the constraints on H0 from

this combination are almost unaltered. The constraints on wX are 0.02σ lower and 0.23σ

higher for flat and non-flat XCDM, respectively, both being consistent with wX = −1 within

1σ.

7.A.4 Model comparison

From Table 7.3, we see that the reduced χ2 of the QSO-Flux case for all models is near

unity (∼ 1.01) and that the reduced χ2 of cases that include QSO-Flux is brought down

to ∼ 1.24–1.26 for all models. Based on the BIC (see Table 7.3), flat ΛCDM is the most

favored model, while based on the AIC, non-flat XCDM, flat XCDM, and flat ΛCDM are the

most favored models for the QSO-Flux, QGHF, and ZBQGHF combinations, respectively.11

From ∆AIC and ∆BIC, we find mostly weak or positive evidence against the models, and

only in a few cases do we find strong evidence against our models. According to ∆BIC,

the evidence against non-flat XCDM is strong for the QSO-Flux data, and very strong for

11Note that based on the ∆χ2 results of Table 7.3 flat ΛCDM has the minimum χ2 in the QSO-Flux,
QGHF, and ZBQGHF cases.
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Figure 7.13: Same as Fig. 7.1 (flat ΛCDM) but for different combinations of data and
showing only cosmological parameters.
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Figure 7.14: Same as Fig. 7.2 (non-flat ΛCDM) but for different combinations of data and
showing only cosmological parameters.
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Figure 7.15: Same as Fig. 7.3 (flat XCDM) but for different combinations of data and
showing only cosmological parameters.
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Figure 7.16: Same as Fig. 7.4 (non-flat XCDM) but for different combinations of data and
showing only cosmological parameters.
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the QGHF and ZBQGHF data, and the evidence against non-flat ΛCDM is strong for the

ZBQGHF data. According to ∆AIC, the evidence against flat XCDM is strong for the

ZBQGHF data.
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Chapter 8

Using Pantheon and DES supernova,

baryon acoustic oscillation, and

Hubble parameter data to constrain

the Hubble constant, dark energy

dynamics, and spatial curvature

This chapter is based on Cao et al. (2021b). Figures and tables by Shulei Cao, from analyses

conducted independently by Shulei Cao and Joseph Ryan.
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8.1 Introduction

Many observational data sets have been used to place constraints on the parameters of

cosmological models, such as the equation of state parameter (w) of dark energy.1 2 In

Chapter 7, we used Hubble parameter (H(z)), baryon acoustic oscillation (BAO), quasar

angular size (QSO), quasar X-ray and UV flux, H ii starburst galaxy (H iiG), and gamma-

ray burst (GRB) data to constrain this parameter (among others). The tightest constraints

on w, we found, come from low-redshift H(z) (cosmic chronometer) and BAO (standard

ruler) data, with the standard candle data (H iiG and GRB) giving very broad constraints.

In this paper we combine measurements of the distances to 1255 Type Ia supernovae (SNe

Ia) with our set of H(z) and BAO data (along with QSO and H iiG observations) to obtain

tight cosmological parameter constraints.

The usefulness of SN Ia data to cosmology is well-known. SN Ia measurements revealed

the accelerated expansion of the Universe over twenty years ago, and they are employed today

to place constraints on cosmological parameters and to break parameter degeneracies. Over

this time period, the sample size of SN Ia distance measurements has grown considerably, and

the analysis and mitigation of systematic uncertainties has improved (DES Collaboration,

2019c,d). Supernovae are therefore a reasonably empirically well-understood cosmological

probe3, and so can be used to obtain reliable constraints on cosmological model parameters.

In previous chapters we relied on CMB-derived values of the baryon density4 Ωb0h
2 in

order to compute the size of the sound horizon rs. The size of the sound horizon is needed to

calibrate the BAO scale (see Table 8.1), so the constraints we derived from our BAO measure-

1For observational constraints on spatial curvature see Farooq et al. (2015), Chen et al. (2016), Rana et al.
(2017), Ooba et al. (2018a,b,c), Yu et al. (2018), Park and Ratra (2019a,b, 2018, 2020), Wei (2018), DES
Collaboration (2019a), Handley (2019a), Jesus et al. (2020), Li et al. (2020), Geng et al. (2020), Kumar et al.
(2020), Efstathiou and Gratton (2020), Di Valentino et al. (2020a), Di Valentino et al. (2020b), Gao et al.
(2020), Abbassi and Abbassi (2020), Yang and Gong (2020), Agudelo Ruiz et al. (2020), Velásquez-Toribio
and Fabris (2020), Vagnozzi et al. (2020a,b), and references therein.

2For observational constraints on the φCDM model see Yashar et al. (2009), Samushia et al. (2010),
Campanelli et al. (2012), Avsajanishvili et al. (2015), Solà et al. (2017a), Solà Peracaula et al. (2018, 2019),
Zhai et al. (2017), Ooba et al. (2019, 2018c), Sangwan et al. (2018), Singh et al. (2019), Khadka and Ratra
(2020a,b,c,e), Ureña-López and Roy (2020), and references therein.

3Though the relatively simpler physics underlying cosmic microwave background (CMB) anisotropies and
BAO makes those probes better understood than SNe Ia.

4Here Ωb0
is the baryon density parameter and h = H0/(100 km s−1 Mpc−1).
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ments were indirectly dependent on CMB physics. Park and Ratra (2019a,b, 2018) computed

Ωb0h
2 within each of the six models we study (namely flat/non-flat ΛCDM, flat/non-flat

XCDM, and flat/non-flat φCDM) from CMB data using primordial energy density fluctu-

ation power spectra P (k) appropriate for flat and curved geometries (Ratra and Peebles,

1995; Ratra, 2017; Lucchin and Matarrese, 1985; Ratra, 1989). Other power spectra have

been considered in the non-flat case (Lesgourgues and Tram, 2014; Bonga et al., 2016; Han-

dley, 2019b; Thavanesan et al., 2021). Since we do not make use of P (k), the controversy

associated with P (k) in non-flat models is avoided in our analyses here.

The constraints from H(z) + BAO data and from SN Ia data are not inconsistent, and so

these data can be jointly used to constrain cosmological parameters. Park and Ratra (2019c)

used H(z), BAO, and Pantheon SN Ia apparent magnitude (SN-Pantheon) measurements in

such a joint analysis. Here we use a more recent BAO data compilation and new DES-3yr

binned SN Ia apparent magnitude (SN-DES) data. We find for all combinations of data we

study here that all or almost all of the favored parameter space corresponds to currently accel-

erating cosmological expansion. The joint analysis of H(z), BAO, and SN Ia data gives fairly

model-independent determinations of the Hubble constant, H0 = 68.8± 1.8 km s−1 Mpc−1,

and the non-relativistic matter density parameter, Ωm0 = 0.294± 0.020. The estimate of H0

is in better agreement with the median statistics H0 = 68 ± 2.8 km s−1 Mpc−1 estimate of

Chen and Ratra (2011b) and the Planck Collaboration (2020) estimate of H0 = 67.4 ± 0.5

km s−1 Mpc−1 than with the local H0 = 74.03 ± 1.42 km s−1 Mpc−1 measurement of Riess

et al. (2019). The combined measurements are consistent with the spatially flat ΛCDM

model, but also favor some dark energy dynamics, as well as a little non-zero spatial curva-

ture energy density. More restrictive constraints are derived when these data are combined

with QSO and H iiG data.

8.2 Cosmological models

We seek to obtain constraints on the parameters of the flat and non-flat ΛCDM, XCDM,

and φCDM models and to compare how well these models fit the observations we study (see
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Chapter 3 for the details of these models). Our approach here differs from that of earlier

chapters in that, instead of varying the non-relativistic matter density parameter Ωm0 as a

free parameter, we vary the baryonic (Ωb0h
2) and cold dark matter (Ωc0h

2) densities as free

parameters, treating Ωm0 as a derived parameter.5

8.3 Data

In this paper, we use a combination of H(z), BAO, SN-Pantheon, SN-DES, QSO, and H iiG

data to constrain the cosmological models we study.

The H(z) data, compiled in Table A.1, consist of 31 measurements spanning the redshift

range 0.070 ≤ z ≤ 1.965. The BAO data, which have been updated relative to Chapter 6,

consist of 11 measurements spanning the redshift range 0.38 ≤ z ≤ 2.334, listed in Table

8.1.

The SN-Pantheon data, compiled by Scolnic et al. (2018), consist of 1048 SN Ia mea-

surements spanning the redshift range 0.01 < z < 2.3. The SN-DES data, compiled by

DES Collaboration (2019d), consist of 20 binned measurements of 207 SN Ia measurements

spanning the redshift range 0.015 ≤ z ≤ 0.7026.

The QSO data, listed in Table 1 of Cao et al. (2017b), consist of 120 measurements of

the angular size

θ(z) =
lm

DA(z)
, (8.1)

spanning the redshift range 0.462 ≤ z ≤ 2.73. lm is the characteristic linear size of the

quasars in the sample. This quantity is determined by using the Gaussian Process method to

reconstruct the expansion history of the Universe from 24 cosmic chronometer measurements

over z < 1.2. This H(z) function is used to reconstruct the angular size distance DA(z),

which can then be used to compute lm given measurements (θobs(z)) of quasar angular sizes.

QSO and H(z) data are therefore somewhat correlated, but the error bars on the constraints

derived from QSO data are so large that we do not believe this correlation to be an issue.

5We do this to eliminate the dependence of the BAO data on CMB physics; see Section 8.3 for details.
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Table 8.1: BAO data.

z Measurementa Value Ref.

0.38 DM
(
rs,fid/rs

)
1512.39 Alam et al. (2017)b

0.38 H(z)
(
rs/rs,fid

)
81.2087 Alam et al. (2017)b

0.51 DM
(
rs,fid/rs

)
1975.22 Alam et al. (2017)b

0.51 H(z)
(
rs/rs,fid

)
90.9029 Alam et al. (2017)b

0.61 DM
(
rs,fid/rs

)
2306.68 Alam et al. (2017)b

0.61 H(z)
(
rs/rs,fid

)
98.9647 Alam et al. (2017)b

0.122 DV
(
rs,fid/rs

)
539± 17 Carter et al. (2018)

0.81 DA/rs 10.75± 0.43 DES Collaboration (2019b)
1.52 DV

(
rs,fid/rs

)
3843± 147 Ata et al. (2018)

2.334 DM/rs 37.5 du Mas des Bourboux et al. (2020)c

2.334 DH/rs 8.99 du Mas des Bourboux et al. (2020)c

a DM , DV , rs, rs,fid, DA, and DM have units of Mpc, while H(z) has
units of km s−1 Mpc−1.
b The six measurements from Alam et al. (2017) are correlated; see equa-
tion (20) of Ryan et al. (2019) for their correlation matrix.
c The two measurements from du Mas des Bourboux et al. (2020) are
correlated; see equation (8.2) below for their correlation matrix.

The H iiG data consist of 107 low redshift (0.0088 ≤ z ≤ 0.16417) measurements, used

in Chávez et al. (2014) (recalibrated by González-Morán et al., 2019), and 46 high redshift

(0.636427 ≤ z ≤ 2.42935) measurements.

The covariance matrix C for the BAO data, taken from Alam et al. (2017), is given by

eq. (5.7). For the BAO data from du Mas des Bourboux et al. (2020), the covariance matrix

is

C =

 1.3225 −0.1009

−0.1009 0.0380

 . (8.2)

The scale of BAO measurements is set by the sound horizon (rs) during the epoch of radiation

drag. To compute this quantity, we use the approximate formula (Aubourg et al., 2015)

rs =
55.154 exp [−72.3(Ων0h

2 + 0.0006)2]

(Ωb0h2)0.12807(Ωc0h2 + Ωb0h2)0.25351
Mpc. (8.3)

In earlier chapters we did not vary Ωb0h
2 as a free parameter. Instead we used CMB-derived,

model-dependent values of Ωb0h
2 to compute rs. Because we vary Ωb0h

2 as a free parameter

in this chapter, our computations of the sound horizon (and therefore our calibration of

the scale of our BAO measurements) are fully independent of CMB physics (at the cost of

enlarging the parameter space and so somewhat weakening the constraints).
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Following Conley et al. (2011) and Deng and Wei (2018), we define the theoretical mag-

nitude of a supernova to be

mth = 5 logDL(z) +M, (8.4)

where M is a nuisance parameter to be marginalized over, and DL(z) is

DL(z) ≡ (1 + zhel)

∫ zcmb

0

dz̃

E (z̃)
. (8.5)

In this equation, zhel is the heliocentric redshift, and zcmb is the CMB-frame redshift. In

Conley et al. (2011), equation 2.25 is called the “Hubble-constant free luminosity distance”,

because E(z) does not contain H0. In our case, because we use h, Ωb0h
2, and Ωc0h

2 as free

parameters, our expansion rate function (and thus our luminosity distance) depends on the

Hubble constant. We therefore obtain weak constraints on H0 from the supernova data,

unlike Conley et al. (2011) and Deng and Wei (2018) (see Section 8.5, below).

8.4 Data Analysis Methodology

We use the python module emcee (Foreman-Mackey et al., 2013) to maximize the likeli-

hood functions, thereby determining the constraints on the free parameters (see Chapter 6 for

details about this method). In our analyses here the priors on the cosmological parameters

are different from zero (and flat) over the ranges 0.005 ≤ Ωb0h
2 ≤ 0.1, 0.001 ≤ Ωc0h

2 ≤ 0.99,

0.2 ≤ h ≤ 1.0, −3 ≤ wX ≤ 0.2, −0.7 ≤ Ωk0 ≤ 0.7, and 0 < α ≤ 10. Ωm0 is a derived

parameter and depends on h.

The likelihood functions of H(z), BAO, H iiG, and QSO data are described in Chapters

6 and 7. For the SN Ia (SN-Pantheon and SN-DES) data, the likelihood function is

LSN = e−χ
2
SN/2, (8.6)

where, as in Park and Ratra (2019c), χ2
SN takes the form of equation (C1) in Appendix C

of Conley et al. (2011) with M being marginalized. The covariance matrices of the SN Ia
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data, CSN are the sum of the diagonal statistical uncertainty covariance matrices, Cstat =

diag(σ2
SN), and the systematic uncertainty covariance matrices, Csys: CSN = Cstat + Csys.

6

σSN are the SN Ia statistical uncertainties.

As in Chapter 7, we use the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC) to compare the quality of models with different numbers of

parameters, where

AIC = −2 lnLmax + 2n, (8.7)

and

BIC = −2 lnLmax + n lnN. (8.8)

In the preceding equations, Lmax, n, and N are the maximum value of the considered like-

lihood function, the number of free parameters in the given model, and the number of used

data points (e.g., for SN-Pantheon N = 1048), respectively.

8.5 Results

The posterior one-dimensional (1D) probability distributions and two-dimensional (2D) con-

fidence regions of the cosmological parameters for the six flat and non-flat models are shown

in Figs. 8.1–8.6, in gray (H(z)+BAO), red (H(z) + BAO + SN-Pantheon, ZBP), green

(H(z) + BAO + SN-DES, ZBD), blue (H(z) + BAO + SN-Pantheon + SN-DES, ZBPD),

and purple (H(z) + BAO + SN-Pantheon + SN-DES + QSO + H iiG, ZBPDQH). We

list the unmarginalized best-fitting parameter values, as well as the corresponding χ2, AIC,

BIC, and degrees of freedom ν (ν ≡ N − n) for all models and data combinations, in Table

8.2. The marginalized best-fitting parameter values and uncertainties (±1σ error bars or 2σ

limits), for all models and data combinations, are listed in Table 8.3.7

6Note that the covariance matrices for the SN-DES data are the ones described in eq. (18) of DES
Collaboration (2019d).

7The python package getdist (Lewis, 2019) is used to analyze the samples.
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Figure 8.1: 1σ, 2σ, and 3σ confidence contours for flat ΛCDM, where the right panel is the
comparison including derived cosmological matter density parameter Ωm0. In all cases, the
favored parameter space is associated with currently-accelerating cosmological expansion.
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Figure 8.2: Same as Fig. 8.1 but for non-flat ΛCDM, where the cyan dash-dot lines repre-
sent the flat ΛCDM case, with closed spatial hypersurfaces either below or to the left. The
black dotted line in the right subpanel is the zero-acceleration line, which divides the pa-
rameter space into regions associated with currently-accelerating (below left) and currently-
decelerating (above right) cosmological expansion. In all cases, the favored parameter space
is associated with currently-accelerating cosmological expansion.
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8.5.1 H(z) + BAO, ZBP, and ZBD constraints

The 1D marginalized H(z) + BAO constraints on the cosmological parameters are listed

in Table 8.3. These are (slightly) different from the ones obtained by Khadka and Ratra

(2020e), because of the different treatments of both the prior ranges and the coefficient κ in

the φCDM models.8

The H(z), BAO, and SN-Pantheon data combinations have previously been studied (Park

and Ratra, 2019c). Relative to that analysis, we use the updated BAO data, shown in Table

8.1, in our analysis here. In the ZBP case, we find that the determinations of Ωk0 are more

consistent with flat spatial hypersurfaces than what Park and Ratra (2019c) found and dark

energy dynamics favors less deviation from a cosmological constant in the XCDM cases,

while favoring a somewhat stronger deviation from α = 0 in the non-flat φCDM case.

Because the H(z), BAO, and SN-DES constraints are consistent across all six of the

models we study, we also perform a joint analysis of these data to determine ZBD constraints.

Relative to the ZBP constraints, the measured values of Ωb0h
2, Ωc0h

2, and Ωm0 are a little

higher, lower, and lower (except for flat ΛCDM) than those values measured from the ZBP

case, respectively. Given the error bars, these differences are not statistically significant.

The measured values of H0 are lower than those for the ZBP case. The non-flat XCDM

and φCDM models favor more and less closed geometry than in the ZBP case. The non-flat

ΛCDM model favors more open geometry than in the ZBP case. The constraints for all

three non-flat models are consistent with spatially flat hypersurfaces. The fits to the ZBD

data produce stronger evidence for dark energy dynamics than the fits to the ZBP data.

8.5.2 H(z), BAO, SN-Pantheon, and SN-DES (ZBPD) constraints

The results of the previous three subsections show that, when combined with H(z) + BAO

data, SN-Pantheon data produce tighter constraints on almost all cosmological parameters,

than do SN-DES data (with a few exceptions including Ωb0h
2 for non-flat ΛCDM, Ωc0h

2 for

8We treated κ as a derived constant determined from the parameter α (see eq. 3.9), while Khadka and
Ratra (2020e) treated it as a constant derived from the energy budget equation.
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Table 8.2: Unmarginalized best-fitting parameter values for all models from various combinations of data.

Model Data set Ωb0h
2 Ωc0h

2 Ωm0 Ωk0 wX α H0
a χ2 ν AIC BIC

Flat ΛCDM H(z) + BAO 0.0240 0.1179 0.299 – – – 69.11 23.64 39 29.64 34.86
ZBPb 0.0240 0.1180 0.299 – – – 69.10 1053.22 1087 1059.22 1074.21
ZBDc 0.0234 0.1203 0.305 – – – 68.82 50.83 59 56.83 63.21

ZBPDd 0.0236 0.1196 0.303 – – – 68.91 1080.46 1107 1086.46 1101.50
ZBPDQHe 0.0251 0.1203 0.299 – – – 69.92 1844.99 1380 1850.99 1866.69

Non-flat ΛCDM H(z) + BAO 0.0248 0.1136 0.294 0.026 – – 68.75 23.58 38 31.58 38.53
ZBPb 0.0241 0.1172 0.298 0.004 – – 69.06 1053.22 1086 1061.22 1081.20
ZBDc 0.0258 0.1081 0.292 0.071 – – 67.92 50.28 58 58.28 66.79

ZBPDd 0.0245 0.1150 0.297 0.023 – – 68.68 1080.35 1106 1088.35 1108.40
ZBPDQHe 0.0249 0.1209 0.300 −0.004 – – 69.93 1844.99 1379 1852.99 1873.92

Flat XCDM H(z) + BAO 0.0323 0.0860 0.280 – −0.696 – 65.12 19.65 38 27.65 34.60
ZBPb 0.0254 0.1120 0.292 – −0.951 – 68.72 1052.63 1086 1060.63 1080.61
ZBDc 0.0300 0.0934 0.286 – −0.752 – 65.90 45.46 58 53.46 61.97

ZBPDd 0.0256 0.1107 0.293 – −0.932 – 68.43 1079.23 1106 1087.23 1107.28
ZBPDQHe 0.0268 0.1136 0.291 – −0.949 – 69.63 1844.27 1379 1852.27 1873.20

Non-flat XCDM H(z) + BAO 0.0302 0.0956 0.294 −0.155 −0.650 – 65.55 18.31 37 28.31 37.00
ZBPb 0.0234 0.1231 0.307 −0.103 −0.895 – 69.25 1051.82 1085 1061.82 1086.79
ZBDc 0.0277 0.1046 0.301 −0.136 −0.711 – 66.45 44.34 57 54.34 64.98

ZBPDd 0.0236 0.1220 0.307 −0.107 −0.877 – 68.98 1078.36 1105 1088.36 1113.42
ZBPDQHe 0.0242 0.1217 0.303 −0.092 −0.900 – 69.54 1843.25 1378 1853.25 1879.41

Flat φCDM H(z) + BAO 0.0361 0.0758 0.264 – – 1.484 65.30 19.48 38 27.48 34.43
ZBPb 0.0260 0.1145 0.292 – – 0.101 69.51 1051.46 1086 1059.46 1079.44
ZBDc 0.0328 0.0860 0.273 – – 1.061 66.16 45.17 58 53.17 61.68

ZBPDd 0.0254 0.1102 0.292 – – 0.168 68.35 1078.18 1106 1086.18 1106.22
ZBPDQHe 0.0264 0.1135 0.290 – – 0.132 69.57 1842.95 1379 1850.95 1871.88

Non-flat φCDM H(z) + BAO 0.0354 0.0811 0.269 −0.148 – 1.819 66.06 18.16 37 28.16 36.85
ZBPb 0.0234 0.1225 0.305 −0.133 – 0.393 69.32 1050.31 1085 1060.31 1085.28
ZBDc 0.0319 0.0933 0.282 −0.140 – 1.411 66.84 44.09 57 54.09 64.72

ZBPDd 0.0256 0.1159 0.298 −0.080 – 0.377 69.09 1077.13 1105 1087.13 1112.19
ZBPDQHe 0.0258 0.1155 0.293 −0.078 – 0.354 69.55 1842.00 1378 1852.00 1878.16

a km s−1 Mpc−1.
b H(z) + BAO + SN-Pantheon.
c H(z) + BAO + SN-DES.
d H(z) + BAO + SN-Pantheon + SN-DES.
e H(z) + BAO + SN-Pantheon + SN-DES + QSO + H iiG.
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non-flat φCDM, and Ωm0 and H0 for flat and non-flat φCDM). Since the H(z) + BAO, SN-

Pantheon, and SN-DES data constraints are not inconsistent, it is useful to derive constraints

from an analysis of the combined H(z), BAO, SN-Pantheon, and SN-DES (ZBPD) data. The

results of such an analysis are presented in this subsection. We discuss these results in some

detail here because, as discussed in Sec. 8.5.4, we believe that the constraints we obtain

from the ZBPD data combination are more reliable than the constraints we obtain from the

other data combinations we study.

The measured values of Ωb0h
2 range from a low of 0.0241+0.0024

−0.0030 (flat ΛCDM) to a high of

0.0279+0.0031
−0.0048 (flat φCDM) and those of Ωc0h

2 range from a low of 0.1047+0.0125
−0.0096 (flat φCDM)

to a high of 0.1199± 0.0067 (flat ΛCDM). The derived constraints on Ωm0 range from a low

of 0.284+0.017
−0.016 (flat φCDM) to a high of 0.303 ± 0.013 (flat ΛCDM). These measurements

are consistent with what is measured by Planck Collaboration (2020). In particular, for flat

ΛCDM, comparing to the TT,TE,EE+lowE+lensing results in Table 2 of Planck Collabora-

tion (2020) the error bars we find here for Ωb0h
2, Ωc0h

2, and Ωm0 are a factor of 18, 5.6, and

1.8, respectively, larger than the Planck error bars, and our estimates here for the quantities

differ from the Planck estimates by 0.58σ, 0.015σ, and 0.82σ, respectively.

The constraints on H0 are between H0 = 68.48+1.71
−1.70 km s−1 Mpc−1 (flat φCDM) and

H0 = 69.14 ± 1.68 km s−1 Mpc−1 (flat ΛCDM), which are 0.35σ (flat ΛCDM) and 0.15σ

(flat φCDM) higher than the median statistics estimate of H0 = 68 ± 2.8 km s−1 Mpc−1

(Chen and Ratra, 2011b), and 2.22σ (flat ΛCDM) and 2.50σ (flat φCDM) lower than the

local Hubble constant measurement of H0 = 74.03± 1.42 km s−1 Mpc−1 (Riess et al., 2019).

For flat ΛCDM our H0 error bar is a factor of 3.1 larger than that from the Planck data and

our H0 estimate is 1.01σ higher than that of Planck.

For non-flat ΛCDM, non-flat XCDM, and non-flat φCDM, we find Ωk0 = 0.032± 0.072,

Ωk0 = −0.071+0.110
−0.123, and Ωk0 = −0.105 ± 0.104, respectively, with non-flat φCDM favoring

closed geometry at 1.01σ. The non-flat XCDM and φCDM models favor closed geometry,

while the non-flat ΛCDM model favors open geometry. The constraints for non-flat ΛCDM

and XCDM models are consistent with spatially flat hypersurfaces.

The fits to the ZBPD data favor dark energy dynamics, where for flat (non-flat) XCDM,
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Table 8.3: One-dimensional marginalized best-fitting parameter values and uncertainties (±1σ error bars or 2σ limits) for all models
from various combinations of data.

Model Data set Ωb0h
2 Ωc0h

2 Ωm0 Ωk0 wX α H0
a

Flat ΛCDM H(z) + BAO 0.0245+0.0026
−0.0032 0.1182± 0.0077 0.298+0.015

−0.017 – – – 69.33± 1.75
ZBPb 0.0245+0.0025

−0.0031 0.1182± 0.0068 0.298± 0.013 – – – 69.32± 1.70
ZBDc 0.0239+0.0025

−0.0032 0.1206± 0.0076 0.305+0.015
−0.017 – – – 69.04± 1.74

ZBPDd 0.0241+0.0024
−0.0030 0.1199± 0.0067 0.303± 0.013 – – – 69.14± 1.68

ZBPDQHe 0.0253+0.0019
−0.0022 0.1202± 0.0057 0.299± 0.012 – – – 69.98± 0.91

Non-flat ΛCDM H(z) + BAO 0.0265+0.0035
−0.0059 0.1104± 0.0192 0.291± 0.024 0.047+0.095

−0.112 – – 68.71± 2.24
ZBPb 0.0253+0.0033

−0.0049 0.1158+0.0161
−0.0160 0.296± 0.022 0.013± 0.073 – – 69.22± 1.86

ZBDc 0.0276+0.0038
−0.0062 0.1049+0.0188

−0.0187 0.288± 0.024 0.090+0.093
−0.106 – – 67.92± 2.10

ZBPDd 0.0257+0.0033
−0.0050 0.1133± 0.0160 0.295± 0.022 0.032± 0.072 – – 68.83± 1.82

ZBPDQHe 0.0260+0.0031
−0.0046 0.1188+0.0138

−0.0123 0.297± 0.020 0.007± 0.063 – – 69.95± 0.93

Flat XCDM H(z) + BAO 0.0372+0.0045
−0.0138 0.0777+0.0351

−0.0182 0.270+0.036
−0.022 – −0.688+0.174

−0.109 – 65.22+2.21
−2.64

ZBPb 0.0261+0.0030
−0.0041 0.1118± 0.0105 0.292± 0.016 – −0.951± 0.063 – 68.91± 1.76

ZBDc 0.0331+0.0038
−0.0091 0.0881+0.0235

−0.0137 0.279+0.027
−0.019 – −0.739+0.110

−0.108 – 65.95± 2.08
ZBPDd 0.0264+0.0031

−0.0042 0.1105± 0.0107 0.292± 0.016 – −0.932± 0.061 – 68.62± 1.73
ZBPDQHe 0.0273+0.0026

−0.0035 0.1131+0.0104
−0.0095 0.291± 0.015 – −0.949± 0.059 – 69.67+0.97

−0.96

Non-flat XCDM H(z) + BAO 0.0367+0.0049
−0.0145 0.0822+0.0376

−0.0233 0.278+0.041
−0.030 −0.122+0.137

−0.136 −0.647+0.159
−0.084 – 65.39+2.18

−2.59

ZBPb 0.0251+0.0031
−0.0049 0.1186± 0.0167 0.301± 0.023 −0.066+0.111

−0.124 −0.923+0.104
−0.060 – 69.24± 1.87

ZBDc 0.0315+0.0039
−0.0091 0.0956+0.0260

−0.0190 0.290+0.031
−0.026 −0.099± 0.133 −0.714+0.116

−0.089 – 66.30± 2.14
ZBPDd 0.0253+0.0032

−0.0048 0.1178+0.0166
−0.0165 0.301± 0.023 −0.071+0.110

−0.123 −0.904+0.098
−0.058 – 69.00± 1.85

ZBPDQHe 0.0256+0.0030
−0.0046 0.1182+0.0136

−0.0121 0.299± 0.020 −0.063+0.087
−0.097 −0.919+0.085

−0.056 – 69.59± 0.97

Flat φCDM H(z) + BAO 0.0480+0.0113
−0.0195 0.0524+0.0246

−0.0427 0.240+0.024
−0.044 – – 2.418+1.197

−1.331 64.67+1.86
−2.22

ZBPb 0.0278+0.0030
−0.0046 0.1055+0.0119

−0.0091 0.284± 0.016 – – < 0.666 68.71+1.73
−1.74

ZBDc 0.0429+0.0071
−0.0170 0.0641+0.0371

−0.0235 0.251+0.038
−0.031 – – 1.863+0.674

−1.316 65.41+1.91
−2.08

ZBPDd 0.0279+0.0031
−0.0048 0.1047+0.0125

−0.0096 0.284+0.017
−0.016 – – 0.320+0.108

−0.277 68.48+1.71
−1.70

ZBPDQHe 0.0289+0.0025
−0.0040 0.1073+0.0116

−0.0081 0.283+0.016
−0.014 – – 0.261+0.067

−0.254 69.57± 0.94

Non-flat φCDM H(z) + BAO 0.0482+0.0126
−0.0190 0.0544+0.0194

−0.0497 0.242+0.024
−0.046 −0.103± 0.132 – 2.618+1.213

−1.226 65.14+2.02
−2.29

ZBPb 0.0260+0.0033
−0.0051 0.1159+0.0163

−0.0161 0.296± 0.022 −0.106± 0.102 – 0.454+0.174
−0.372 69.33± 1.86

ZBDc 0.0427+0.0076
−0.0177 0.0670+0.0379

−0.0282 0.253+0.037
−0.039 −0.097± 0.130 – 2.058+0.779

−1.269 65.86± 2.09
ZBPDd 0.0264+0.0034

−0.0052 0.1139± 0.0161 0.295± 0.022 −0.105± 0.104 – 0.509+0.212
−0.370 69.06+1.84

−1.83

ZBPDQHe 0.0265+0.0031
−0.0048 0.1142+0.0141

−0.0123 0.293± 0.020 −0.085± 0.081 – 0.399+0.159
−0.313 69.53± 0.95

a km s−1 Mpc−1.
b H(z) + BAO + SN-Pantheon.
c H(z) + BAO + SN-DES.
d H(z) + BAO + SN-Pantheon + SN-DES.
e H(z) + BAO + SN-Pantheon + SN-DES + QSO + H iiG.

wX = −0.932± 0.061 (wX = −0.904+0.098
−0.058), with best-fitting value being 1.11σ (1.66σ) away

from wX = −1; and for flat (non-flat) φCDM, α = 0.320+0.108
−0.277 (α = 0.509+0.212

−0.370), with

best-fitting value being 1.16σ (1.38σ) away from α = 0.

8.5.3 ZBPDQH constraints

Since the constraints derived from H(z), BAO, SN-Pantheon, SN-DES, QSO, and H iiG

data are not inconsistent, in this subsection we jointly analyze ZBPDQH data to determine
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Figure 8.3: 1σ, 2σ, and 3σ confidence contours for flat XCDM. The black dotted line in
the right panel is the zero-acceleration line, which divides the parameter space into regions
associated with currently-accelerating (below) and currently-decelerating (above) cosmolog-
ical expansion. In all cases, almost all of the favored parameter space is associated with
currently-accelerating cosmological expansion. The magenta lines denote wX = −1, i.e. the
flat ΛCDM model.
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Figure 8.4: Same as Fig. 8.3 but for non-flat XCDM, where the zero acceleration lines in each
of the three subpanels of the right panel are computed for the third cosmological parameter
set to the H(z) + BAO data best-fitting values listed in Table 8.2. Currently-accelerating
cosmological expansion occurs below these lines. The cyan dash-dot lines represent the flat
XCDM case, with closed spatial hypersurfaces either below or to the left. In all cases, almost
all of the favored parameter space is associated with currently-accelerating cosmological
expansion. The magenta lines indicate wX = −1, i.e. the non-flat ΛCDM model.
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Figure 8.5: 1σ, 2σ, and 3σ confidence contours for flat φCDM. In all cases, the favored
parameter space is associated with currently-accelerating cosmological expansion. The α = 0
axis is the flat ΛCDM model.
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Figure 8.6: Same as Fig. 8.5 but for non-flat φCDM, where the zero-acceleration lines in
each of the sub-panels of the right panel are computed for the third cosmological parameter
set to the H(z) + BAO data best-fitting values listed in Table 8.2. Currently-accelerating
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parameter space is associated with currently-accelerating cosmological expansion. The cyan
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to the left. The α = 0 axis is the non-flat ΛCDM model.

173



more restrictive constraints on the cosmological parameters (though as discussed in Sec.

8.5.4, we believe these constraints to be less reliable than those that stem from the HzSNPD

combination, so we only describe the broad outlines here).

For flat ΛCDM, the error bars we derive for Ωb0h
2, Ωc0h

2, and Ωm0 are larger than the

Planck error bars, though our central estimates of these quantities are broadly consistent

with those derived from Planck.

In a similar fashion, we find larger error bars on H0 in flat ΛCDM than does Planck,

though our central estimate is higher than theirs. Generally, the constraints we derive on H0

are more consistent with the median statistics estimate of H0 = 68±2.8 km s−1 Mpc−1 (Chen

and Ratra, 2011b), than with the local Hubble constant measurement of H0 = 74.03± 1.42

km s−1 Mpc−1 (Riess et al., 2019).

We find mild evidence for spatial curvature, with non-flat XCDM and φCDM favoring

closed geometry, and non-flat ΛCDM mildly favoring open geometry. The constraints from

non-flat ΛCDM and XCDM are consistent with spatially flat hypersurfaces to within less

than 1σ.

Additionally, we find mild evidence for dark energy dynamics, with the best-fitting value

of wX being 0.86σ (1.45σ) away from wX = −1 in flat (non-flat) XCDM, and the best-fitting

value of α being 1.03σ (1.27σ) away from α = 0 in flat (non-flat) φCDM.

8.5.4 Model comparison

The values of ∆χ2, ∆AIC, ∆BIC, and the reduced χ2 (χ2/ν) are reported in Table 8.4,

where ∆χ2, ∆AIC, and ∆BIC, respectively, are defined as the differences between the

values of the χ2, AIC, and BIC for a given model and their corresponding minimum values

among all models. From Table 8.4, we see that the reduced χ2 values determined from the

H(z) + BAO data combination range from 0.49 to 0.62, which is probably due to the H(z)

data having overestimated error bars (see Chapter 7 for discussions of the systematic errors

of these data). As discussed in Chapter 5 and Chapter 6, the underestimated systematic
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uncertainties in QSO and H iiG data9 result in larger reduced χ2 (∼ 1.34) for the models in

the ZBPDQH case. The reduced χ2 values for the ZBP and ZBPD cases are around unity

for all models and for the ZBD case range from 0.77 to 0.87. Of the combinations we study

here, on the basis of these reduced χ2 values, the ZBPD constraints should be viewed as the

most reliable ones.

We find that based on the AIC and BIC, flat ΛCDM and flat φCDM are the most

favored models in different data combination cases. The ∆AIC results show that the most

favored model is flat ΛCDM in the ZBP case, while the most favored model is flat φCDM in

the rest of the data combinations. The ∆BIC results show that the most favored model is

flat φCDM in the H(z) + BAO and ZBD cases, and is flat ΛCDM in the remaining cases. For

both ∆AIC and ∆BIC results, the most disfavored model is non-flat ΛCDM in the H(z)

+ BAO and ZBD cases, and is non-flat XCDM in all other cases, with positive evidence

against non-flat ΛCDM and either positive or very strong evidence (depending on the data

combination) against non-flat XCDM.

Overall, the ∆AIC results show no strong evidence against any model, and neither do

the ∆BIC results for the H(z) + BAO and ZBD cases. However, in the ZBP and ZBPDQH

cases, the ∆BIC results show strong evidence against the non-flat ΛCDM and flat XCDM

models, and very strong evidence against the non-flat φCDM and XCDM models. In the

ZBPD case, the evidence against flat XCDM and flat φCDM is positive, the evidence against

non-flat ΛCDM is strong, and the evidence against non-flat φCDM and non-flat XCDM is

very strong. Based on the ∆χ2 results, non-flat φCDM has the minimum χ2 in all cases.

In summary, the ZBPD data favor flat φCDM (AIC) or flat ΛCDM (BIC) among the

six models we study here.

9Roberto Terlevich and his colleagues are currently investigating the systematic uncertainties of the H iiG
data, the results of which they plan to publish in a future paper (Roberto Terlevich, private communication,
2021).
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Table 8.4: ∆χ2, ∆AIC, ∆BIC, and χ2
min/ν values.

Quantity Data set Flat ΛCDM Non-flat ΛCDM Flat XCDM Non-flat XCDM Flat φCDM Non-flat φCDM
H(z) + BAO 5.48 5.42 1.49 0.15 1.32 0.00

ZBPa 2.91 2.91 2.32 1.51 1.15 0.00
∆χ2 ZBDb 6.74 6.19 1.37 0.25 1.08 0.00

ZBPDc 3.33 3.22 2.10 1.23 1.05 0.00
ZBPDQHd 2.99 2.99 2.27 1.25 0.95 0.00

H(z) + BAO 2.16 4.10 0.17 0.83 0.00 0.68
ZBPa 0.00 2.00 1.41 2.60 0.24 1.09

∆AIC ZBDb 3.66 5.11 0.29 1.17 0.00 0.92
ZBPDc 0.28 2.17 1.05 2.18 0.00 0.95

ZBPDQHd 0.04 2.04 1.32 2.30 0.00 1.05

H(z) + BAO 0.43 4.10 0.17 2.57 0.00 2.42
ZBPa 0.00 6.99 6.40 12.58 5.23 11.07

∆BIC ZBDb 1.53 5.11 0.29 3.30 0.00 3.04
ZBPDc 0.00 6.90 5.78 11.92 4.72 10.69

ZBPDQHd 0.00 7.23 6.51 12.72 5.19 11.47

H(z) + BAO 0.61 0.62 0.52 0.49 0.51 0.49
ZBPa 0.97 0.97 0.97 0.97 0.97 0.97

χ2
min/ν ZBDb 0.86 0.87 0.78 0.78 0.78 0.77

ZBPDc 0.98 0.98 0.98 0.98 0.97 0.97
ZBPDQHd 1.34 1.34 1.34 1.34 1.34 1.34

a H(z) + BAO + SN-Pantheon.
b H(z) + BAO + SN-DES.
c H(z) + BAO + SN-Pantheon + SN-DES.
d H(z) + BAO + SN-Pantheon + SN-DES + QSO + H iiG.
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8.6 Conclusion

By analyzing a total of 1383 measurements, consisting of 31 H(z), 11 BAO, 1048 SN-

Pantheon, 20 SN-DES, 120 QSO, and 153 HIIG data points, we jointly constrain cosmological

parameters in six flat and non-flat cosmological models.

From the constraints derived using the cosmological models, we can identify some rel-

atively model-independent features. As discussed in Sec. 8.5.4, the H(z) + BAO + SN-

Pantheon + SN-DES (ZBPD) data combination produces the most reliable constraints. In

particular, for the ZBPD data combination, we find a reasonable and fairly restrictive sum-

mary value of Ωm0 = 0.294 ± 0.020,10 which is in good agreement with many other recent

measurements (e.g. 0.315 ± 0.007 from Planck Collaboration, 2020). A fairly restrictive

summary value of H0 = 68.8 ± 1.8 km s−1 Mpc−1 is found to be in better agreement with

the estimates of Chen and Ratra (2011b) and Planck Collaboration (2020) than with the

measurement of Riess et al. (2019); note that the constraints from BAO data do not depend

on physics of the early Universe (with Ωb0h
2 being a free parameter that is fitted to the data

used here). There is some room for dark energy dynamics or a little spatial curvature energy

density in the ZBPD constraints, but based on AIC and BIC criteria, flat φCDM or flat

ΛCDM are the best candidate models.

10Here we take the summary central value to be the mean of the two of six central-most values. As for the
uncertainty, we call the difference between the two central-most values twice the systematic uncertainty and
the average of the two central-most error bars the statistical uncertainty, and compute the summary error
bar as the quadrature sum of the two uncertainties.
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Chapter 9

Evidence against Ryskin’s model of

cosmic acceleration

This chapter is based on Ryan (2020).

9.1 Introduction

I gave a brief overview of the motivation behind Ryskin’s model, and of the prediction it

makes for the form that the Hubble parameter takes as a function of z, in Sec. 3.2.1. Here I

analyze the model’s fit to a set of cosmic chronometer and standard ruler data, and compare

the quality of this fit to that of the standard ΛCDM model.

According to Ryskin (2015), his model accurately fits the Hubble diagram built from SNe

Ia data, but we will see in this chapter that there are other data sets with which Ryskin’s

model is much less compatible. In addition to predicting a value of the Hubble constant (H0)

that is larger than the values obtained from the CMB and from local measurements (see

Planck Collaboration (2020) and Riess et al. (2018), respectively, for these measurements),

Ryskin’s model fails to predict the trend in high-redshift (z & 1) Hubble parameter data

when its predicted Hubble parameter curve is plotted together with these data. Recently,

another group found that Ryskin’s model can not accurately describe structure formation
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(see Huang et al., 2020), while leaving open the possibility that other types of observations

may be compatible with this model. This analysis presented in this chapter is complementary

to, and independent of, the analysis of Huang et al. (2020); I will show that none of the data

sets I have collected favor Ryskin’s model over ΛCDM, making it unlikely that Ryskin’s

model will be saved by future measurements.

The Hubble parameter derived in Ryskin (2015) accurately fits the Hubble diagram

constructed from SNe Ia data, which Ryskin takes as evidence that his model may be able to

explain the origin of cosmic acceleration of the Universe without invoking dark energy. My

goal in this paper is to test Eq. 3.25 against several sets of observational data (containing

measurements at higher redshifts than the SNe Ia measurements used in Ryskin, 2015), to

determine whether or not Ryskin’s model can fit these data sets as well as it fits the currently

available SNe Ia data.

9.2 Analysis

9.2.1 Data

In this chapter I use 31 measurements of the Hubble parameter H(z), 11 distance mea-

surements derived from baryon acoustic oscillation (“BAO”) data, and 120 quasar (“QSO”)

angular size measurements. The H(z) data can be found in Table A.1; see also Chapter 4

for a description. The BAO data I use here are listed in Table 5.2. My method of analyzing

these data is slightly different from the method employed in Chapter 5; see below for a

discussion. The QSO data are listed in Cao et al. (2017b); see that paper and Chapter 5 for

a description and discussion.

For the H(z) data set, the measured quantity is H(z) itself, namely the Hubble parameter

as a function of the redshift z. For the BAO data, the measured quantities are a set of

distances DH(z), DM(z), and DV (z) (see Chapter 2) and H(z), scaled by the value that the

sound horizon rS takes at the drag epoch. This latter quantity depends on the homogeneous

part of the dimensionless matter density parameter (Ωm0), the Hubble constant (H0), the
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dimensionless baryon density parameter (Ωbh
2), and the CMB temperature (TCMB), thereby

making rS a model-dependent quantity.1 In this chapter I use the same fitting formula

that was used in Chapter 5 to compute rS, and I use the same CMB temperature (from

Fixsen, 2009), but depending on the analysis method (see below) I marginalize over Ωbh
2

and/or Ωm0. In all other respects my treatment of the BAO data here is the same as the

treatment described in Chapter 5. Finally, the measured quantity in the QSO data set is

θ(z) = lm/DA(z), where lm = 11.03± 0.25 pc is a characteristic linear scale2 and DA(z), the

angular size distance, can be computed from H(z). See Chapter 2 for a definition of DA(z),

and Cao et al. (2017b) for a discussion of the characteristic linear scale lm.

9.2.2 Methods

I have chosen to analyze Ryskin’s model according to two methods. In the first method, I

compute the value that H0 takes when the likelihood function, defined by

L(H0) =

∫
eχ

2(H0)/2π(pn)dpn (9.1)

is maximized, within each data set separately and in full combination. I also compute the

minimum χ2 corresponding to the best-fitting H0, for which

χ2
min = −2ln (Lmax) (9.2)

This is very similar to the methods employed in Chapters 4 and 5; see those chapters for

details regarding the form that the χ2 function takes when it is computed within each model

and for each data set. The prior function, π(pn), is necessary to deal with the nuisance

parameters Ωm0 and Ωbh
2 that enter the analysis through the calculation of the sound horizon

1h := H0/(100 km−1 Mpc−1)
2Specifically, lm is the radius at which the jets of the QSOs tend to become opaque (when observed at

frequency f ∼ 2 GHz; see Cao et al., 2017b).
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rS (see above). This prior function has the form π (Ωm0,Ωbh
2) = π (Ωm0)π (Ωbh

2), where

π (Ωm0) =


1 if 0.10 < Ωm0 < 0.70

0 otherwise,

(9.3)

and

π
(
Ωbh

2
)

=


1 if 0.01000 < Ωbh

2 < 0.05000

0 otherwise.

(9.4)

The main difference between this first analysis method and the analyses of Chapters 4 and 5

is that I do not compare the best-fitting value of H0 or the minimum value of χ2 in Ryskin’s

model directly to any other models (although the best-fitting H0 can be compared to the

measurements of H0 made by Planck Collaboration (2020) and Riess et al. (2018); see below).

For the χ2 function I simply compare the minimum value of χ2 to the number of degrees

of freedom ν (defined below), and conclude that the fit to the data is poor if χ2
min/ν >> 1.

Additionally, I split the BAO data into two subsets, called “BAO1” (containing all BAO

measurements) and “BAO2” (which excludes the measurements at z > 2), respectively,

because the χ2 function for the H(z) + QSO + BAO1 data combination is so large that the

corresponding likelihood function evaluates to zero, and so can’t be plotted. This is telling,

because it suggests that Ryskin’s model can not fit the observational data at high redshift

(see also the discussion in Sec. 9.3). The combined fit therefore uses the H(z) + QSO +

BAO2 data combination (see Table 9.1 and Fig. 9.1).

In my second analysis method, I directly compare the quality of the fit obtained in

Ryskin’s model to the quality of the fit obtained with a simple flat ΛCDM model to each

data set, considered separately. For the H(z) and QSO data this is quite simple: all that is

necessary is to plot either the function

H(z) = H0

√
Ωm0(1 + z)3 + 1− Ωm0 (9.5)
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(for the H(z) data), or the function

θ(z) =
lm

DA(z)
(9.6)

(for the QSO data) that is predicted by Ryskin’s model, together with the same functions

as predicted by ΛCDM, and see which predicted function better fits the overall trend in

the data (see Figs. 9.3-9.4). For the BAO data this kind of direct curve fitting is difficult

to do, because several of the measurements are correlated (meaning that they do not have

independent uncertainties), and the set as a whole consists of measurements of different

things. In order to compare Ryskin’s model to ΛCDM using these data, I therefore redid the

analysis of Chapter 5 (in that paper the constraints from BAO alone were not presented),

allowing H0 and Ωm0 to vary freely, with Ωbh
2 = 0.02225 for both Ryskin’s model and

ΛCDM3.

9.3 Results

My results for the fit of Ryskin’s model to the data are presented in Table 9.1 and Fig. 9.1.

In the first column of Table 9.1 I list the data combination, in the second column I list the

one-dimensional best-fitting values of H0 with their respective 1σ and 2σ uncertainties (σ

here being defined in the same way as the one-sided confidence limits used in Chapter 5),

and in the third column I list the corresponding value of χ2
min/ν, where χ2

min is computed

from Eq. 9.2, and ν is the number of degrees of freedom:

ν = N − n− 1. (9.7)

3This is the value that Ωbh
2 takes in the ΛCDM model, previously used in Chapter 5, and originally

computed from Planck 2015 TT + lowP + lensing CMB anisotropy data in Park and Ratra (2019b). It is
also possible to marginalize over H0 and Ωm0 so as to obtain a best-fitting value of Ωbh

2 in Ryskin’s model,
and then use this value instead of Ωbh

2 = 0.02225 in the two-parameter fits. Doing this turns out to be
rather uninformative, however, as the best-fitting values of Ωm0 and H0 that one obtains in this case turn
out to be nearly identical to those obtained using Ωbh

2 = 0.02225.
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Table 9.1: Best-fitting central values of H0 (with 1 and 2σ error bars) for the data combina-
tions I considered.

Data set H0 (km s−1 Mpc−1) χ2
min/ν

H(z) 78.12+1.82+3.64
−1.82−3.63 2.20

QSO 80.66+1.35+2.70
−1.35−2.70 3.14

BAO1 100−19.27−32.72 133.12
BAO2 100−26.78−41.79 14.48

H(z) + QSO + BAO2 79.77+1.08+2.17
−1.08−2.17 3.38

In the above equation N is the number of data points and n is the number of model param-

eters.

From Table 9.1 and Fig. 9.1, one can see that the best-fitting value of H0 from the

combination H(z) + QSO + BAO2 (which gives the tightest error bars) is a little over 3σ

away from the measurement of H0 = 74.03± 1.42 km−1 Mpc−1 made by Riess et al. (2018),

and over 10σ away from the measurement of H0 = 67.4± 0.5 km−1 Mpc−1 made by Planck

Collaboration (2020) (here σ is equal to
√

1.082 + σ2
l where σl is the uncertainty of either

of the two measurements given above). The agreement, therefore, between the predicted

value of H0 under Ryskin’s model and the measurements from Planck Collaboration (2020)

and Riess et al. (2018) is not very good. Further, the value of χ2
min/ν ranges from 2.20

to 133.12 for the fit of Ryskin’s model to each data set, and is equal to 3.38 for the H(z)

+ QSO + BAO2 data combination. This suggests, independently of the comparison to

the H0 measurements made by Planck Collaboration (2020) and Riess et al. (2018), that

Ryskin’s model does not provide a good fit to the data listed in Table 9.1. In Fig. 9.1, the

dashed curve represents the likelihood function computed from BAO2, the dot-dashed curve

represents the likelihood function computed from H(z) data, the dotted curve represents the

likelihood function computed from QSO data, and the solid curve represents the product of

these likelihood functions. Here again one can see how far away the value of H0 predicted by

Ryskin’s model is from the measurements made by Planck Collaboration (2020) and Riess

et al. (2018) when H0 is fitted to the H(z) + QSO + BAO2 data combination.

The results of the comparison between Ryskin’s model and the spatially-flat ΛCDM

model using BAO data are presented in Table 9.2 and in Fig. 9.2. In Table 9.2, the first
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Figure 9.1: Likelihood functions for H0 according to Ryskin’s model. The dot-dashed curve
represents the fit from the H(z) data, the dotted curved represents the fit from the QSO
data, the dashed curve represents the fit from the BAO2 data, and the solid curve represents
the fit from the combined H(z) + QSO + BAO2 data. See text for discussion.

Table 9.2: One- and two-dimensional best-fitting values of H0 and Ωm0 for the BAO1 and
BAO2 data combinations. Here H0 has units of km s−1 Mpc−1 and χ2

min/ν pertains to the
two-dimensional fit.

Model Data set H0 Ωm0 (H0,Ωm0) χ2
min/ν

Ryskin BAO1 100.0−21.43−31.06 0.237+0.00963+0.175
−0.0794−0.127 (74.43, 0.143) 147.87

BAO2 100.0−28.38−42.02 0.373+0.0167+0.0305
−0.145−0.249 (76.22, 0.271) 14.56

ΛCDM BAO1 66.91+1.322+2.715
−1.152−2.254 0.284+0.0205+0.0424

−0.0179−0.0348 (66.88, 0.283) 0.954
BAO2 71.28+3.100+6.375

−2.593−5.003 0.354+0.0491+0.102
−0.0409−0.0793 (71.03, 0.350) 0.650

184



60 65 70 75 80 85 90 95 100

H0 (km s−1 Mpc−1)

0.10

0.15

0.20

0.25

0.30

0.35

Ω
m

0

50 60 70 80 90 100

H0 (km s−1 Mpc−1)

0.1

0.2

0.3

0.4

0.5

Ω
m

0
Figure 9.2: Flat ΛCDM model versus Ryskin’s model with BAO data. The left panel
corresponds to the BAO1 subset of the BAO data, and the right panel corresponds to the
BAO2 subset of the same. In both columns I have plotted 1, 2, and 3σ confidence contours
and best-fitting points in H0-Ωm0 space for both ΛCDM and Ryskin’s model. See text for
discussion.

column lists the model, the second column lists the data set (here “BAO1” and “BAO2”

have the same meanings as in the previous analysis method), the third and fourth columns

list the one-dimensional best-fitting values of H0 and Ωm0, respectively, the fifth column lists

the two-dimensional best-fitting values of H0 and Ωm0, and the sixth column lists the value

of χ2
min/ν corresponding to each model and data set. In Fig. 9.2 the left panel shows the two-

dimensional constraints on H0 and Ωm0 for the BAO1 data combination, and the right panel

shows the two-dimensional constraints on H0 and Ωm0 for the BAO2 data combination.

In both panels the solid contours correspond to Ryskin’s model and the dashed contours

correspond to ΛCDM. From the figure, one can see that even when ΛCDM and Ryskin’s

model are both fitted to the low-redshift BAO data (namely BAO2), the confidence contours

for both of these models are disjoint to 3σ. When ΛCDM and Ryskin’s model are fitted to

a data combination that includes high-redshift BAO data (namely BAO1), the confidence

contours for both models are even more disjoint than when these models are fitted to the low-
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Figure 9.3: Sound horizon parameter θ(z) versus redshift z for ΛCDM and for Ryskin’s
model. The dashed blue, green, and red curves represent θ(z) as predicted by Ryskin’s model,
and the solid purple and gold curves represent θ(z) as predicted by spatially-flat ΛCDM.
The values (h,Ωm0) = (0.674, 0.315) come from Planck Collaboration (2020), h = 0.7403
comes from Riess et al. (2018), and h = 0.8066 comes from the fit of θ(z) to the QSO data
using Ryskin’s model. See text for discussion.
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Figure 9.4: Hubble parameter H(z) versus redshift z for ΛCDM and for Ryskin’s model.
The dashed blue, green, and red curves represent H(z) as predicted by Ryskin’s model, and
the solid purple and gold curves represent H(z) as predicted by spatially-flat ΛCDM. The
values (h,Ωm0) = (0.674, 0.315) come from Planck Collaboration (2020), h = 0.7403 comes
from Riess et al. (2018), and h = 0.7812 comes from the fit of H(z) to the H(z) data using
Ryskin’s model. See text for discussion.
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redshift data. Fig. 9.2 therefore indicates that an investigator who wishes to save Ryskin’s

model from the BAO measurements I have used must fall on the horns of a dilemma: while

it is possible to accommodate a smaller value of H0 within Ryskin’s model (i.e. one that

is in better agreement with the measurements made by either Planck Collaboration (2020)

or Riess et al. (2018) and with the ΛCDM constraints computed here), this is only possible

at the cost of predicting an implausibly small value of Ωm0. Similarly, a predicted value

of Ωm0 within Ryskin’s model that is consistent with the value of Ωm0 predicted by ΛCDM

requires an implausibly large predicted value of H0 within Ryskin’s model. Finally, it is clear

from Table 9.2 that Ryskin’s model, when it is fitted to either BAO1 or BAO2, has a much

larger value of χ2
min/ν than the ΛCDM model, when the ΛCDM model is fitted to the same

data combinations. Ryskin’s model therefore provides a much poorer fit to the BAO data

(especially high-redshift BAO data) than does the standard ΛCDM model.

In Fig. 9.3 I have plotted θ(z) vs z for the values of θ(z) predicted by both Ryskin’s

model and spatially-flat ΛCDM. The dashed blue, green, and red curves represent Ryskin’s

predicted θ(z) with h set to 0.674, 0.7403, and 0.7812, respectively. The solid purple and

gold curves represent the theoretical curves of θ(z) as calculated in the spatially-flat ΛCDM

model with (h, Ωm0) set to (0.674, 0.315) and (0.7403, 0.315), respectively. This plot is, in

my view, rather inconclusive with regard to whether spatially-flat ΛCDM or Ryskin’s model

provides a better fit to the data, as the measurements are dispersed widely on the plot,

and many of them have very large error bars, so the overall trend in the data is difficult to

see. It is clear from the theoretical curves, however, that Ryskin’s model predicts a very

different angular size than ΛCDM for z & 1.5, so a stronger case against Ryskin’s model

from QSO data could potentially be made with more high-redshift measurements (or more

precise low-redshift measurements).

The ΛCDM model departs even more radically from Ryskin’s model, at high redshift,

when their respective theoretical H(z) curves are plotted against H(z) data. In Fig. 9.4

the dashed curves represent Ryskin’s predicted H(z), with the blue, green, and red curves

corresponding to h = 0.674, h = 0.7403, and h = 0.7812, respectively. The solid curves

represent H(z) as predicted by the ΛCDM model, where the purple curve corresponds to
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(h,Ωm0) = (0.674, 0.315), and the gold curve corresponds to (h,Ωm0) = 0.7403, 0.315). From

the figure, one can see that at low redshift (z . 1), Ryskin’s model appears to fit the data

as well as ΛCDM, owing to the large error bars on the measurements. At high redshift

(z & 1), the data clearly diverge from the curves predicted by Ryskin’s model, and the

ΛCDM curves match the upward trend. The ΛCDM model therefore provides a much better

fit to high-redshift H(z) data than does Rykin’s model.

9.4 Conclusion

I conclude, based on these results and the earlier findings of Huang et al. (2020), that

Ryskin’s model of emergent cosmic acceleration does not provide an adequate fit to available

cosmological data, and so cannot replace the standard spatially-flat ΛCDM cosmological

model. The fit to the SNe Ia data presented in Ryskin’s original paper is primarily a fit

to low-redshift (z . 1) measurements; as can be seen from Figs. 9.2 and 9.4, as well as

Tables 9.1 and 9.2, low-redshift measurements do not clearly distinguish between Ryskin’s

model and the ΛCDM model when the predictions of these models are compared to the

data. High-redshift measurements, on the other hand (chiefly H(z) and BAO measurements

at z & 1) can distinguish between these two models, and the high-redshift data clearly favor

ΛCDM over Ryskin’s model.

189



Chapter 10

Constraints on power law cosmology

from cosmic chronometer, standard

ruler, and standard candle data

This chapter is based on Ryan (2021).

10.1 Introduction

The power law model was described in Sec. 3.2.2; this chapter will present the results of the

comparison of that model to the standard ΛCDM model, when both are confronted with a

set of standard candle, standard ruler, and cosmic chronometer data.

Many investigators have found that a power law model with β ≈ 1 is favored by various

independent low-redshift probes, such as cosmic chronometers (H(z)) Dev et al. (2008),

gravitational lensing statistics Dev et al. (2002), Type Ia supernovae (SNe Ia) Sethi et al.

(2005); Dev et al. (2001); Kumar (2012); Rani et al. (2015), baryon acoustic oscillations

(BAO) Shafer (2015); Tutusaus et al. (2016), quasar angular sizes (QSO) Jain et al. (2003),

galaxy cluster gas mass fractions Zhu et al. (2008), and the combination of H(z) + BAO

+ SNe Ia + gamma-ray burst distance moduli (GRB) Haridasu et al. (2017b). Other data
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sets, however, favor β ≈ 1.2-1.6 Dev et al. (2008); Kumar (2012); Shafer (2015); Tutusaus

et al. (2016); Dolgov et al. (2014); see Table 10.1.

Some studies have also found that a power law model with β = 1 can produce the

right amount of primordial helium to match current observations (Lohiya et al., 1999; Sethi

et al., 1999), and so may be able to account for the synthesis of other light elements. These

conclusions are challenged by the results of other studies, which find that β ≈ 0.55-0.58 is

required to produce the right abundances (Kumar, 2012; Kaplinghat et al., 2000, 1999). If

these latter studies are correct, then the values of β favored by primordial nucleosynthesis

are clearly disjoint with those favored by low redshift measurements, and it is difficult to see

how they can be reconciled without introducing extra complexity to the power law model

(such as the addition of a mechanism that forces β to change its value between the two

eras; see e.g. Gumjudpai (2013); Gumjudpai and Thepsuriya (2012); Kaeonikhom et al.

(2011); Rangdee and Gumjudpai (2014); Wei (2004)).1 Given that the power law model is

intended to be a simpler alternative to the ΛCDM model, such additional complexity seems

unjustified, and the power law model appears to be ruled out on these grounds.

A defender of the power law model who does not wish to make the model more complex

by introducing a time-variable β could attempt to save it by arguing that:

1.) The findings of Kaplinghat et al. (2000), Kaplinghat et al. (1999), and Kumar (2012)

are simply incorrect, and the power law exponent has the value β ≈ 1 during both the

nucleosynthesis era and the present era, or

2.) The Universe only undergoes power law expansion at late times, and the power law

model with β ≈ 1 adequately describes low redshift observations only.

The latter option is, on its face, plausible. After all, the standard ΛCDM model holds that

the Universe follows power law expansion during both the matter-dominated and radiation-

dominated eras, so it might be reasonable to limit the scope of the power law model by

suggesting that it only applies after the era of nucleosynthesis.2 We must be careful not

1For recent efforts to provide an account of primordial nucleosynthesis within the power law model, see
Singh and Lohiya (2015a,b).

2In Kolb (1989), one of the earliest papers on the subject, the author proposes that, if a hypothetical
form of matter called “K-matter” were to dominate the energy budget at late times, this would lead to a

191



Table 10.1: Fits to power law exponent from other low redshift measurements.

Reference β Data type(s) used
Dev et al. (2008) 1.07+0.11

−0.08 H(z)
1.42+0.08

−0.07 SN Ia
Dev et al. (2002) 1.09± 0.3 Gravitational lensing statistics

1.13+0.4
−0.3

Dev et al. (2001) 1.004± 0.043 SN Ia
Dolgov et al. (2014) 1.52± 0.15 SN Ia

1.55± 0.13
1.3 BAO

Jain et al. (2003) 1.0± 0.3 QSO
Kumar (2012) 1.22+0.21

−0.16 H(z)
1.61+0.14

−0.12 SN Ia
Rani et al. (2015) 1.05+0.071

−0.066 H(z)
1.44+0.26

−0.18 SN Ia
Sethi et al. (2005) 1.04+0.07

−0.06 SN Ia
Shafer (2015) 0.93 BAO

1.44-1.56 SN Ia
Tutusaus et al. (2016) 0.908± 0.019 BAO

1.55± 0.13 SN Ia
Zhu et al. (2008) 1.14± 0.05 Galaxy cluster gas mass fraction

Haridasu et al. (2017b) 1.08± 0.04 H(z) + BAO + SNe Ia + GRB
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to push this argument too far, however, because any scale factor a(t) can presumably be

approximated by a power law over some arbitrarily short time period. What is at issue is not

whether the Universe follows power law expansion during some (relatively) brief portion or

portions of its history, but whether it follows power law expansion throughout all (or most)

of its history. If it can be shown that the power law model fits low redshift observational

data as well as or better than ΛCDM over some appreciable range of redshifts, then option

(2) is validated (and option 1 may be validated as well, if one can marshal a strong argument

against the findings of Kaplinghat et al. (2000), Kaplinghat et al. (1999), Kumar (2012)).

If, on the other hand, the power law model fails to provide a good fit to the available low

redshift data, then both (1) and (2) are falsified.

A few studies (Rani et al., 2015; Shafer, 2015; Tutusaus et al., 2016; Haridasu et al.,

2017b) have been conducted along these lines. These studies find that, when the power

law model is fitted to multiple independent data sets (H(z) alone and H(z) + BAO + SNe

Ia + CMB in Rani et al., 2015, BAO + SNe Ia in Shafer, 2015, BAO + SNe Ia + CMB

in Tutusaus et al., 2016, and H(z) + BAO + SNe Ia + GRB in Haridasu et al., 2017b),

it performs poorly compared to ΛCDM. Here I continue in this vein by fitting the power

law and ΛCDM models to a data set consisting of cosmic chronometer, standard ruler, and

standard candle data, some of which have not yet been used to test the power law model

(see Sec. 10.2 for a description of the data). I use simple model comparison statistics (the

same as those used in Rani et al. (2015); Shafer (2015); Tutusaus et al. (2016); Haridasu

et al. (2017b); see Sec. 10.3) to compare the quality of the fit in both cases. I discuss my

results in Sec. 10.4 and draw my conclusions in Sec. 10.6.

10.2 Data

In Table 10.2 I list the types of measurements I use, the number of measurements of each

type, and the redshift ranges within which the measurements lie. The cosmic chronometer

data consist of measurements of the Hubble parameter as a function of the redshift z (H(z)),

“coasting” cosmic expansion with β = 1 (with β taking on different values in earlier eras).
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Table 10.2: Data sets used in this chapter.

Data type Number of data points Redshift range
H(z) 31 0.070 ≤ z ≤ 1.965
BAO 11 0.38 ≤ z ≤ 2.334
QSO 120 0.462 ≤ z ≤ 2.73
GRB 119 0.48 ≤ z ≤ 8.2
HIIG 153 0.0088 ≤ z ≤ 2.42935

listed in Table A.1. To fit the power law and ΛCDM models to the cosmic chronometer data,

I compute H(z) theoretically using eqs. (3.29) and (3.3).

I use two sets of standard ruler measurements in this paper. The first set consists of

measurements of the quantities H(z), DH(z), DM(z), DA(z), and DV(z), scaled by the value

that the sound horizon rs takes at the baryon drag epoch (see Chapter 2 for definitions of the

various distance functions listed above). These measurements are the same as those listed

in Table 8.1. See Chapters 4-8 for more details, and for references to the original literature.

To compute the size of the sound horizon, I use the approximate formula

rs = 55.154
exp[−72.3(Ων0h

2 + 0.0006)2]

(Ωb0h2)0.12807(Ωm0h2 − Ων0h2)0.25351
Mpc, (10.1)

where Ωm0, Ωb0, and Ων0 are the dimensionless energy density parameters of non-relativistic

matter, of baryons, and of neutrinos, respectively, and h := H0/100 km s−1 Mpc−1 (Aubourg

et al., 2015). Following Carter et al. (2018), I set Ων0 = 0.0014, which leaves two additional

free parameters (Ωm0 and Ωb0h
2) when the power law model is fitted to data combinations

containing BAO data, and one additional free parameter (Ωb0h
2) when the ΛCDM model

is fitted to the same data combinations. The second set of standard ruler data consists of

measurements of the angular sizes θobs, in milliarcseconds (mas), of intermediate-luminosity

quasars (QSO). The angular size of a quasar can be computed theoretically via

θth(z) =
lm

DA(z)
, (10.2)

where lm = 11.03±0.25 pc is the characteristic linear size of the quasars in the sample. This
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quantity can then be compared to θobs to determine the quality of the fit of the given model

to the QSO data. The QSO angular size measurements are listed, and lm is determined, in

Cao et al. (2017b); see that paper and Chapter 5 for discussion and details.

I use two sets of standard candle data in this paper. The first set consists of measurements

of the luminosities, fluxes, and velocity dispersions of HII starburst galaxies (HIIG), from

which the distance moduli of these galaxies can be computed. The HIIG data consist of

a low redshift (0.0088 ≤ z ≤ 0.16417) set of 107 measurements from Chávez et al. (2014),

plus a high redshift (0.636427 ≤ z ≤ 2.42935) set of 46 measurements from González-Morán

et al. (2019). Subsets of these data, which were generously provided to me by Ana Luisa

González-Morán,3 have been used in several studies to constrain cosmological parameters

(Chávez et al., 2016; González-Morán et al., 2019; Chávez et al., 2012; Terlevich et al., 2015;

see also Chapters 6-8). See Chapter 6 for a detailed description of how the distance modulus

can be computed. Briefly, if one knows the luminosity L, flux f , and velocity dispersion σ

of an HII galaxy, one can use these quantities to compute a distance modulus µobs. This

quantity can then be compared to the theoretical distance modulus

µth = 5logDL(z) + 25, (10.3)

where DL(z) is given by eq. (2.25), to determine the quality of the model’s fit to the data.

The second set of standard candle data consists of measurements of the bolometric fluence

Sbolo and observed peak energy Ep,obs of 119 gamma-ray bursts from Fana Dirirsa et al.

(2019) (GRB). Given a knowledge of the bolometric fluence of a source, one can compute

the energy radiated isotropically in the source’s rest frame

Eiso =
4πD2

L

1 + z
Sbolo. (10.4)

3Private communications, 2019 and 2020.
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GRBs can be standardized through the Amati relation (Amati et al., 2008, 2009)

logEiso = a+ blog [(1 + z)Ep,obs] , (10.5)

which connects the observed peak energy of a given GRB to its isotropic radiated energy

(here a and b are free parameters which I vary when fitting the power law and ΛCDM models

to the GRB data). The GRB likelihood function also contains a parameter which describes

the extrinsic scatter of the GRBs in the sample (σext) (D’Agostini, 2005). As in Chapter

7, I vary this parameter freely when fitting the power law and ΛCDM models to the GRB

data. By comparing the value of logEiso as computed from eq. (10.4) to that computed from

eq. (10.5), one can determine the quality of the model fit. For more details about the GRB

analysis, see Chapter 7 and Khadka and Ratra (2020c).

There is some overlap between the cosmic chronometer data I use in this paper and those

that were used in Dev et al. (2008), Kumar (2012), and Rani et al. (2015) to constrain the

parameters of the simple (constant β) power law model. Many of the measurements these

authors used are the same as mine, although I use a larger, more up-to-date set (which is the

same as the set of H(z) data used to constrain the simple power law model in Haridasu et al.

(2017b), though I add one point from Ratsimbazafy et al. (2017)). I use a different sample

of QSO data than does Jain et al. (2003), and my BAO measurements have all been updated

relative to those of Dolgov et al. (2014), Shafer (2015), Tutusaus et al. (2016), and Haridasu

et al. (2017b). GRB data were used to constrain the power law model in Haridasu et al.

(2017b), and many, but not all, of these data are the same as those I use here (additionally,

my data set is larger and contains newer measurements). To my knowledge, HIIG data have

never been used to constrain the power law model. Because these data are independent of

the H(z), BAO, QSO, and GRB data sets, I obtain tight constraints on the parameters of

the power law model when I fit it to these data in combination with the H(z), BAO, QSO,

and GRB data (see Sec. 10.4).
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10.3 Methods

The fiducial model I use in this chapter is the spatially flat ΛCDM model. The Hubble

parameter of this model is given by eq. (3.3) with Ωk0 = 0.

The methods that I use to compare the power law model to the ΛCDM model are largely

the same as methods that have been used previously in Chapters 4-8, as well as Rani et al.

(2015), Shafer (2015), and Tutusaus et al. (2016), which I briefly summarize here. For each

combination of data that I study, I compute the quantity

χ2
min := −2lnLmax (10.6)

where the likelihood function L depends on the parameters of the model under consideration.

The likelihood function takes a different form depending on the data combination that is

used to compute it; these forms are described in Chapters 6 and 7.4 For models having the

same number of parameters, the best-fitting model to the data is that which has a smaller

value of χ2
min. As in Chapters 6 and 7, I use the Python module emcee Foreman-Mackey

et al. (2013) to sample the likelihood function L, and I use the Python module getdist

Lewis (2019) both to generate the one- and two-dimensional likelihood contours shown in left

and right panels of Fig. 10.1 and to compute the one-dimensional marginalized best-fitting

values (sample means) and 68% uncertainties (two-sided limits) of the model parameters.

When comparing models with different numbers of parameters, the χ2 function is not

necessarily the most informative statistic to use, because it gives the same weight to simple

models that it gives to complex models. For this reason, I also use the corrected Akaike

Information Criterion:

AICc := AIC +
2n(n+ 1)

N − n− 1
, (10.7)

where

AIC := χ2
min + 2n, (10.8)

4Some of the BAO data that I use are correlated, so it is necessary to take their covariance matrices into
account when computing χ2

min. See Chapters 5 and 8 for the covariance matrices of the correlated data.
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Table 10.3: Best-fitting parameters of the power law model.

Data type H0 (km s−1 Mpc−1) β Ωm0 Ωb0h
2 a b σext ν χ2

min/ν AICc BIC
H(z) 61.92 0.9842 - - - - - 29 0.5721 21.02 23.46
BAO 89.78 0.9206 0.6192 0.03819 - - - 7 1.513 25.26 20.18
QSO 61.83 0.9673 - - - - - 118 2.991 357.1 362.6

BAO+QSO 60.57 0.9213 0.2030 0.07690 - - - 127 2.864 372.0 383.2
GRB 72.34 0.7530 - - 49.99 1.115 0.4010 114 1.138 140.3 153.7
HIIG 70.99 1.251 - - - - - 151 2.725 415.5 421.5

GRB+HIIG 70.31 1.158 - - 50.12 1.157 0.4066 267 2.039 554.7 572.5
All Data 63.06 0.9470 0.2234 0.06706 50.16 1.144 0.4025 427 2.229 966.2 994.4

is the Akaike Information Criterion (suitable in the limit that N >> n), and the Bayes

Information Criterion:

BIC := χ2
min + nlnN. (10.9)

Liddle (2007). In the equations above, n is the number of model parameters and N is the

number of data points.5 The AICc and BIC punish models that have a greater number

of parameters in favor of models with fewer parameters. In this sense, the AICc and BIC

provide a quantitative basis for choosing which model, among a set of models, provides the

most parsimonious fit to a given set of data.

10.4 Results and Discussion

The best-fitting values of the parameters of the power law model (namely, those that mini-

mize the χ2 function), are recorded in columns 2-8 of Table 10.3. The number of degrees of

freedom,

ν := N − n (10.10)

is recorded in column 9 of this table. Columns 10-12 record, respectively, the minimum value

of the reduced χ2 function, and the minimum values of the AICc and BIC. Similarly, the

best-fitting values of the parameters of the ΛCDM model are recorded in columns 2-7 of

5In previous work (see Chapters 4-8), my collaborators and I used the AIC and BIC to compare the
quality of cosmological model fits to data. Here I use the AICc in place of the AIC because the AICc is
more appropriate for smaller data sets (like the H(z) and BAO sets), because it approaches the AIC in the
limit that N is large, and to facilitate the comparison of my results with the results of Shafer (2015) and
Tutusaus et al. (2016), both of which used the AICc in their analyses.
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Table 10.4, with the number of degrees of freedom in column 8, the minimum value of the

reduced χ2 function in column 9, and the minimum values of the AICc and BIC in columns

10 and 11, respectively.

In Table 10.5, in columns 2 and 3, I record the sample means and two-sided uncertainties

of the marginalized parameters of the power law model (I exclude the parameters Ωm0, Ωb0h
2,

a, b, σext from this table because these are nuisance parameters for the power law model). In

column 4 I record the sample mean and two-sided uncertainties (computed from the sample

mean and two-sided uncertainties of β) of the current value of the deceleration parameter

q0 =
1

β
− 1. (10.11)

In column 5 I record ∆χ2
min, which I define as the difference between the value of χ2

min as

computed within the power law model for a given data combination, and the value of χ2
min as

computed within the ΛCDM model for the same data combination. The relative probabilities

e−∆AICc/2 and e−∆BIC/2 of the power law model I record in columns 6 and 7, where ∆AICc

and ∆BIC are defined in the same way as ∆χ2
min. In columns 2 and 3 of Table 10.6, I record

the sample means and two-sided uncertainties of the marginalized parameters of the ΛCDM

model, excluding the nuisance parameters Ωb0h
2, a, b, and σext. In column 4 of Table 10.6 I

record the sample mean and two-sided uncertainties (computed from the sample mean and

two-sided uncertainties of Ωm0) of the current value of the deceleration parameter

q0 =
Ωm0

2
− ΩΛ =

3

2
Ωm0 − 1. (10.12)

The prior probabilities of all parameters are flat, and non-zero within the ranges 20 km s−1

Mpc−1 ≤ H0 ≤ 100 km s−1 Mpc−1, 0.25 ≤ β ≤ 4, 0.1 ≤ Ωm0 ≤ 0.7, 0.005 ≤ Ωb0h
2 ≤ 0.1,

40 ≤ a ≤ 60, 0 ≤ b ≤ 5, and 0 ≤ σext ≤ 10.

The two-dimensional confidence contours and one-dimensional likelihoods of the power

law model, for several combinations of data, are shown in the left panel of Fig. 10.1. The

contours and likelihoods associated with the H(z) data are shown as dotted blue curves,
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Table 10.4: Best-fitting parameters of the ΛCDM model.

Data type H0 (km s−1 Mpc−1) Ωm0 Ωb0h
2 a b σext ν χ2

min/ν AICc BIC
H(z) 68.15 0.3196 - - - - 29 0.5000 18.93 21.37
BAO 74.01 0.2967 0.03133 - - - 8 1.124 18.43 16.19
QSO 68.69 0.3154 - - - - 118 2.983 356.1 361.6

BAO+QSO 69.51 0.2971 0.02459 - - - 128 2.821 367.3 375.7
GRB 75.65 0.7000 - 49.98 1.108 0.4012 114 1.141 140.6 154.0
HIIG 71.81 0.2756 - - - - 151 2.720 414.8 420.8

GRB+HIIG 71.45 0.2950 - 50.17 1.136 0.4035 267 2.031 552.5 570.3
All Data 70.07 0.2949 0.02542 50.19 1.135 0.4040 428 2.148 931.6 955.8

those associated with the BAO + QSO data combination are shown as dash-dotted red

curves, those associated with the GRB + HIIG combination are shown as dashed green

curves, and those associated with the combination of all the data are shown as solid black

curves (I combine the standard ruler and standard candle data in these plots to reduce visual

clutter). The right panel of Fig. 10.1 shows the two-dimensional confidence contours and

one-dimensional likelihoods of the ΛCDM model, for the same data combinations.

From the marginalized parameter fits in Table 10.5, I find that the best-fitting value of

β from the H(z), QSO, GRB, and HIIG data is consistent with β = 1 to within 1-2σ, in

agreement with many of the studies quoted in Table 10.1. This translates to the best-fitting

value of q0 being within 1-2σ of q0 = 0 for each of these data sets, consistent with a coasting

universe. The BAO data, however, are not consistent with β = 1, the best-fitting value of

β for this data set being more than 4σ away from unity. This means, as reflected in the

best-fitting q0 value, that when the power law model is fitted to the BAO data, these data

favor a slowly decelerating universe (rather than a coasting one) to more than 4σ. The

BAO + QSO combination also favors a slowly decelerating universe to more than 4σ. When

these data are combined with the H(z), GRB, and HIIG data, the error bars on β and q0

tighten, and the central values of these parameters move slightly closer to β = 1 and q0 = 0,

respectively, though the best-fitting value of q0 is still inconsistent with a coasting universe

to more than 3σ (see also Fig. 10.1).

From Tables 10.3 and 10.4, we can see that the best-fitting power law model has greater

χ2/ν, AICc, and BIC values than the best-fitting ΛCDM model across all data combina-

tions, except when these models are fitted to GRB data alone. In this case, the power law
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Table 10.5: Marginalized best-fitting parameters and model comparison statistics for the
power law model. The BAO data alone do not place a tight upper limit on the best-fitting
value of H0, and the GRB data do not constrain H0 at all, so these limits are omitted from
the table.

Data type H0 (km s−1 Mpc−1) β q0 ∆χ2
min e−∆AICc/2 e−∆BIC/2

H(z) 62.46+2.693
−2.694 1.013+0.06983

−0.1038 −0.01283+0.1012
−0.06805 2.090 0.3517 0.3517

BAO 72.68−8.788 0.9211+0.01653
−0.01652 0.08566+0.01947

−0.01948 1.595 0.03288 0.1360
QSO 63.22+4.088

−4.091 1.045+0.1142
−0.2054 −0.04306+0.1881

−0.1046 0.9498 0.6065 0.6065
BAO+QSO 60.60± 1.108 0.9219+0.01645

−0.01646 0.08472+0.01937
−0.01946 2.626 0.09537 0.02352

GRB - 0.8707+0.1197
−0.2782 0.1485+0.3670

−0.1579 -0.3534 1.162 1.162
HIIG 71.30+1.813

−1.814 1.310+0.1219
−0.1988 −0.2366+0.1158

−0.07103 0.6886 0.7047 0.7047
GRB+HIIG 70.58± 1.755 1.199+0.1016

−0.1535 −0.1660+0.1068
−0.07067 2.209 0.3329 0.3329

All Data 63.11+0.7886
−0.7890 0.9466+0.01593

−0.01594 0.05641+0.01779
−0.01778 32.53 3.067× 10−8 4.151× 10−9

model provides a slightly better fit to the data. When we examine the relative probabilities

e−∆AICc/2 and e−∆BIC/2 in Table 10.5, we find that the power law model produces a slightly

better fit to the GRB data than does ΛCDM. This preference for the power law model over

the ΛCDM model is unique to the GRB data, however, as all other data combinations favor

the ΛCDM model, with the relative probability of the power law model ranging from a high

of 0.7047 (HIIG data) to a low of 4.151× 10−9 (full data set).

It is interesting that the best case to be made for the power law model comes from the

standard candle data, as the GRB data favor the power law model and the HIIG do not

strongly disfavor it. In a similar fashion, Dolgov et al. (2014), Rani et al. (2015), and Sethi

et al. (2005) find that standard candle data (in the form SN Ia measurements) alone do not

rule out or do not strongly disfavor the power law model. However, when the GRB and

HIIG data are combined, with each other and with the cosmic chronometer and standard

ruler data, it is the ΛCDM model that comes out on top. Cosmic chronometer (H(z)) data

alone also do not favor the power law model, and neither does the standard ruler (BAO +

QSO) combination. Of these three data sets, the QSO set has the least discriminating power,

perhaps because of the wide dispersion of the measurements it contains (see the lower left

panel of Fig. 10.2); as with the HIIG data, the power law model is not strongly ruled out

by QSO data alone. The BAO data have the most discriminating power of any solo data

set, the fit of the power law model to these data having the smallest relative probabilities

compared to ΛCDM. This is also true of the standard candle set (BAO + QSO), which gives
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Table 10.6: Marginalized best-fitting parameters of the ΛCDM model. The BAO data alone
do not place a tight upper limit on the value of H0, and the GRB data do not constrain H0

at all, so these limits are excluded from the table.

Data type H0 Ωm0 q0

H(z) 67.73+3.078
−3.077 0.3323+0.04983

−0.06988 −0.5016+0.07474
−0.1048

BAO 83.47−4.272 0.2982+0.01547
−0.01771 −0.5527+0.2321

−0.02657

QSO 67.28+4.901
−5.039 0.3642+0.08152

−0.1503 −0.4537+0.1223
−0.2254

BAO+QSO 69.58± 1.379 0.2975+0.01529
−0.01746 −0.5538+0.02294

−0.02619

GRB - 0.4767−0.07217 −0.2850−0.10826

HIIG 71.70+1.819
−1.820 0.2893+0.05099

−0.07016 −0.5661+0.07649
−0.1052

GRB+HIIG 71.41+1.794
−1.795 0.3073+0.05140

−0.07055 −0.5391+0.07710
−0.1058

All Data 70.13± 0.9590 0.2943+0.01368
−0.01523 −0.5586+0.2052

−0.2284

a smaller relative probability than either the cosmic chronometer or standard candle (GRB

+ HIIG) set when the power law model is fitted to this data combination. When the power

law model is fitted to the full data set, the relative probabilities decrease drastically, to the

point that the power law model appears to be very strongly ruled out, at z . 8, in favor

of the ΛCDM model. These results are in broad agreement with the findings of Rani et al.

(2015), Shafer (2015), Tutusaus et al. (2016), and Haridasu et al. (2017b), although they

differ somewhat in the details. In particular, using a set of H(z) data that is slightly different

from mine, Rani et al. (2015) find much stronger evidence against the power law model than

I do.6 Both Shafer (2015) and Tutusaus et al. (2016) use BAO data (a smaller set than

mine) to evaluate the power law model. Contrary to my results, the BAO measurements

they use favor the power law model, although they both find that the power law model is

strongly disfavored when BAO data are combined with independent probes (SN Ia in Shafer,

2015, and Tutusaus et al. (2016) and SN Ia + CMB in Tutusaus et al., 2016). Using H(z)

+ BAO + SNe IA + GRB data, Haridasu et al. (2017b) also find that the power law model

is strongly ruled out in favor of ΛCDM (∆BIC = 28.02), though their combined data set

prefers a slightly larger value of β (1.08±0.04) than my combined data set, with larger error

bars.

6They quote χ2
min/ν = 1.8131 for the fit of the power law model to their H(z) data, and χ2

min/ν = 0.7174
for the fit of the ΛCDM model to these data, for a difference of ∆χ2

min/ν = 1.096. For these same models, I
find only ∆χ2

min/ν = 0.0721
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Figure 10.1: The left panel shows one- and two-dimensional constraints on the parameters
of the power law model from several combinations of data, and the right panel shows one-
and two-dimensional constraints on the ΛCDM model from the same combinations of data
(nuisance parameters excluded).
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That the power law model is ruled out in favor of the ΛCDM model, from an analysis of

H(z), BAO, QSO, GRB, and HIIG data, is a strong statement, and should not be accepted

uncritically. Though I believe I have made a good case against the power law model, a few

caveats must also be mentioned:

1.) The results that are shown in Tables 10.3-10.6 do not take the finite detection

significance of the BAO data into account. As discussed in Ruiz et al. (2012), Shafer (2015),

and Tutusaus et al. (2016), for a weak BAO signal, one must account for the possibility that

the BAO feature in the large-scale matter power spectrum has not actually been detected.

To do this, one must replace the standard gaussian χ2 function χ2
G := −2lnLG with

χ2 :=
χ2

G√
1 +

(
S
N

)−4
χ4

G

, (10.13)

where S/N , the signal-to-noise ratio, is the detection significance of the BAO feature. As

described in Chapter 8, three of the BAO measurements I use in this paper are uncorrelated,
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and the rest are correlated. To test the robustness of my results, I replaced the gaussian

likelihoods of the uncorrelated BAO measurements with their counterparts defined by eq.

(10.13) and performed the BAO analysis again. I found no significant change in the results

when I did this, which is perhaps not surprising; in Fig. 11 of Ruiz et al. (2012), the authors

show that accounting for the finite detection significance of BAO data only has the effect of

widening the confidence contours (primarily the 3σ contour) a little, and that this widening

almost disappears when BAO data are combined with other probes. With that said, I did

not investigate the effect of the detection significance of the correlated BAO data on the

model fits, and I do not know how large the effect is for these data. However, based on the

above considerations as they apply to the uncorrelated BAO data, I do not expect the effect

of the detection significance of the uncorrelated BAO data to be a significant factor affecting

the validity of my results.

2.) The fit to the QSO and HIIG data, across both models, gives reduced χ2 values that

are all > 2. The fit to the H(z) data gives, for both the power law and ΛCDM models,

reduced χ2 values comparable to 0.5. The larger reduced χ2 values suggest that neither the

power law model nor the ΛCDM model is a particularly good fit to the QSO or the HIIG

data (though the reduced χ2 values of the ΛCDM model are consistently lower for these

data than those of the power law model), or that the uncertainties of these data have been

underestimated, or both.7 The reduced χ2 values of theH(z) data suggest, on the other hand,

that the uncertainties of these data have been overestimated. The possible overestimation

of the H(z) uncertainties has previously been noted by myself and my collaborators (see

Chapter 7), and is perhaps apparent in Fig. 10.2. My collaborators and I have also previously

noted the possible underestimation of the QSO and HIIG error bars in Chapters 5, and 6.

That the power law model has consistently higher values of χ2
min for all data sets (GRB

excepted) alone and in combination (with the measurements presumably having mostly

independent systematics), argues against its validity as a model of cosmic expansion for

z . 8, though the argument could be made stronger with a better understanding of the

7As in Chapters 6-8, I only consider the statistical errors of the HIIG data. The systematic uncertainties
of the HIIG data are the subject of an ongoing investigation by Roberto Terlevich and his colleagues, the
results of which will be published in a forthcoming paper (Roberto Terlevich, private communication, 2021).

204



error bars on the measurements.

3.) The H(z) data are somewhat correlated with the QSO data. These data are correlated

because some cosmic chronometer data were used to obtain the characteristic angular size

lm of the QSO data. As described in Cao et al. (2017b), using the Gaussian Process method

(Seikel et al., 2012), 24 H(z) measurements at z ≤ 1.2 were interpolated to produce a

cosmological model independent Hubble parameter function H(z). This function was then

integrated to produce the angular diameter distances used, in conjunction with angular size

measurements θobs, to obtain lm = 11.03± 0.25 pc. This correlation was previously noted in

Chapter 8 and I currently believe that the parameter constraints from QSO data alone are

wide enough that the correlation between these data and H(z) data is not significant. With

that said, the magnitude of this correlation is not currently known in detail, and a defender

of the power law model could point to this as a weakness of my study. One could solve

this problem by treating lm as a free parameter in the cosmological model fits, although this

tends to produce parameter constraints that are so wide as to be nearly uninformative.8 My

collaborators and I are currently working to understand this issue better.

10.5 Direct comparison of models to data

Here I plot the predictions of the power law and ΛCDM models together with the various

data sets I use. In the upper left panel of Fig. 10.2 I plot H(z)
1+z

versus z, where the blue dots

represent the H(z) measurements and the curves represent the predicted value of H(z)
1+z

, as

a function of redshift, for the power law and ΛCDM models when these models are fitted

either to the full data set or to the H(z) data alone. From the figure, we can see that

the power law model fails to account for deceleration-acceleration transition which occurs

around z ∼ 0.75.9 This is backed up by the analyses of Kumar (2012) and Rani et al. (2015)

(although a stronger case for this could be made using H(z) data with smaller error bars).

The upper right panel of Fig. 10.2 shows a plot of the measured value of the volume-

8Shulei Cao, private communication, 2021.
9For a discussion of the deceleration-acceleration transition, see e.g. Farooq et al. (2017).
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Figure 10.2: In all panels, the abbreviation “PL” denotes the power law model and h :=
H0/(100 km s−1 Mpc−1). In the lower right panel the HIIG data are represented by blue
dots, and each GRB datum is represented by a purple “x”.
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averaged angular diameter distance DV(z), at three different redshifts, from the uncorrelated

BAO measurements shown in Table 8.1.10 To obtain the central value and error bars of DV(z)

at z = 0.81, I computed

DV(z) =

[
cz(1 + z)2DA(z)2

H(z)

]1/3

(10.14)

from the central value and uncertainty of the DA(z) measurement at z = 0.81, along with

the median central value and median uncertainty of the two H(z) measurements at z = 0.70

and z = 0.90 from Table A.1.11 The curves shown in the upper right panel of Fig. 10.2

represent the predicted values of DV(z) for the ΛCDM and power law models. Although

the power law model appears to be ruled out when fitted to the BAO data alone (as it

severely under-predicts the values of DV(z) at all redshifts), when it is fitted to the full data

set its predictions are nearly indistinguishable (within the error bars of the measurements)

from those of the ΛCDM model. A stronger (or perhaps weaker) case against the power law

model, however, could presumably be made with more independent measurements, as the

dispersion of the values of DV(z) can not be readily inferred from such a small data set.

Large dispersion is a particular problem for the QSO data, as the angular size measure-

ments θ(z) do not show a clear trend with increasing redshift. This, coupled with the fact

that the ΛCDM and power law model predictions of the angular size are very similar over

the range of the QSO data, means that these data do not clearly favor one model over the

other (see the lower left panel of Fig. 10.2). Similarly, the ΛCDM and power law model pre-

dictions of the distance modulus µ(z) are almost identical over the redshift range containing

the HIIG and GRB data. Although these data show a clear trend with increasing redshift,

the predictions of the ΛCDM and power law models only begin to diverge around z ≈ 4, a

redshift beyond which most of the data lie. These data therefore, like the QSO data, do not

strongly favor one model over the other (see the lower right panel of Fig. 10.2).12

10I did not use the correlated measurements because these do not have independent error bars.
11Although the sound horizon rs (which sets the scale of the BAO measurements) is a function of the

model parameters, I found that both the ΛCDM and power law models predict rs = 144.23 Mpc when the
best-fitting parameters of each model (from the full data set) are used to compute it. This means that the
DV(z) data are effectively model-independent.

12To plot the GRB data model-independently, I used values of a and b computed from the average of
the (nearly model-independent) best-fitting values of those parameters that are listed in the bottom rows of
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10.6 Conclusion

In this chapter, I analyzed a set of cosmic chronometer (H(z)), standard ruler (BAO and

QSO), and standard candle (GRB and HIIG) data to find out whether or not the power

law model fits these data as well as or better than the standard ΛCDM model. Using

simple model comparison statistics, similar to what I and many others have used to test

alternatives to ΛCDM, I found that the power law model does not provide a good fit to

the data, compared to ΛCDM. The power law model is therefore not a viable candidate to

replace the ΛCDM model at z . 8.

My results are consistent with, and complementary to, other recent studies which have

investigated the fit of the power law model to low redshift data. These results, along with

the constraints set by primordial nucleosynthesis, show that the simple power law model

with a constant exponent β does not adequately describe the evolution of the Universe over

the course of its history.

Tables 10.3 and 10.4.
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Chapter 11

Conclusion

In this work we examined several models of cosmic acceleration from multiple combinations

of standard candle, standard ruler, and cosmic chronometer data. An interesting result is

that, across all models and most data combinations, we find somewhat model-independent

best-fitting values on the matter density parameter Ωm0 ≈ 0.3 ± 0.015, and on the Hubble

constant H0 ≈ 69 ± 1.4 km s−1 Mpc−1 (to compute these, I simply took the average of the

summary statistics given in Chapters 6-8).

The H(z) + BAO data combination provides relatively tight constraints on the parame-

ters of all the models we studied. QSO-AS additionally tighten these parameter constraints,

but not by much (owing to the large error bars, and the wide dispersion, of the measure-

ments). HIIG data, in contrast, can give tighter constraints in certain directions of the

parameter space. In particular, HIIG data tighten constraints on dark energy parameters

and on the Hubble constant (these effects being most pronounced in the flat φCDM model).

SNe Ia data favor flat spatial hypersurfaces, but are consistent with some dark energy dy-

namics in the form of φCDM (these data also favor ΛCDM). QSO + HIIG more strongly

constrain H0 than SNe Ia, but SNe Ia more strongly constrain the matter density parameters

and dynamical dark energy parameters. Finally, while GRB measurements do not provide

very tight constraints on cosmological model parameters, they do reach farther in redshift

space (out to z ∼ 8.2) than the other probes we used in this work. GRB measurements
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are consistent with those of the other probes we considered, and so can be combined with

them, extending the range of cosmological model parameter constraints into a little-studied

region of redshift space. We hope that, with the coming of more GRB observations in the

future, these higher-redshift constraints can be used to pin down the dynamics of dark energy

accurately and precisely.

Overall, this work shows that as more observational data continue to be developed,

the late-time picture of the Universe established by the ΛCDM model (of an accelerated

expansion powered by a cosmological constant Λ) continues to hold up to scrutiny. While

we find some indications of nonflat spatial hypersurfaces and of dynamical dark energy, the

current best model of the background expansion remains the ΛCDM model. Additionally,

although more exotic alternatives can be proposed (such as Ryskin’s model and the power

law model), and while these models may be consistent with a limited set of data occupying

a narrow range in redshift, these models do a worse job (in some cases a much worse job) of

fitting the larger data sets, covering a broader redshift range, that we have considered here.

That we find, using a large set of observational data, results consistent with large-scale

spatial flatness, is significant. Many other studies continue to find broadly similar results, and

this lends ever more support to the current inflationary paradigm. There remain, however,

some indications in the literature of observational data favoring non-flat spatial hypersur-

faces. Continuing development of late-time observational probes, especially of those (like

HIIG, QSO-AS, and GRB) currently having wide error bars, will help to settle this question

in the future.
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M. Plionis, and S. Basilakos, Mon. Not. R. Astron. Soc. 474, 1250 (2018), 1710.05951.

A. R. Liddle, Mon. Not. R. Astron. Soc. 377, L74 (2007), astro-ph/0701113.

219

1503.01116
1105.5206
astro-ph/0006103
astro-ph/0308099
astro-ph/0308099
1606.07316
1706.09149
1708.09813
1711.03929
1802.01505
1604.01424
1412.6501
1706.07573
1707.00715
1710.05951
astro-ph/0701113


J. Ryan, Y. Chen, and B. Ratra, Mon. Not. R. Astron. Soc. 488, 3844 (2019), 1902.03196.

C.-G. Park and B. Ratra, Astrophys. J. 868, 83 (2018), 1807.07421.

S. Mitra, C.-G. Park, T. R. Choudhury, and B. Ratra, ArXiv e-prints (2019), 1901.09927.

J. Penton, J. Peyton, A. Zahoor, and B. Ratra, Publ. Astron. Soc. Pac. 130, 114001 (2018),

1808.01490.
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Appendix A

Data

In this appendix I list the H(z), QSO, GRB, and SNe Ia data used elsewhere in this work. To

obtain the HIIG data, the reader can contact Ana Luisa González-Morán (see, for example,

González-Morán et al., 2019).

A.1 H(z) data

See Chapter 4 for description and discussion.
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Table A.1: H(z) data. H(z) and σH have units of km s−1Mpc−1.

z H(z) σH Ref.
0.07 69 19.6 Zhang et al. (2014)
0.09 69 12 Simon et al. (2005)
0.12 68.6 26.2 Zhang et al. (2014)
0.17 83 8 Simon et al. (2005)
0.179 75 4 Moresco et al. (2012)
0.199 75 5 Moresco et al. (2012)
0.20 72.9 29.6 Zhang et al. (2014)
0.27 77 14 Simon et al. (2005)
0.28 88.8 36.6 Zhang et al. (2014)
0.352 83 14 Moresco et al. (2012)
0.3802 83 13.5 Moresco et al. (2016a)

0.4 95 17 Simon et al. (2005)
0.4004 77 10.2 Moresco et al. (2016a)
0.4247 87.1 11.2 Moresco et al. (2016a)
0.4497 92.8 12.9 Moresco et al. (2016a)
0.47 89 50 Ratsimbazafy et al. (2017)

0.4783 80.9 9 Moresco et al. (2016a)
0.48 97 62 Stern et al. (2010)
0.593 104 13 Moresco et al. (2012)
0.68 92 8 Moresco et al. (2012)
0.781 105 12 Moresco et al. (2012)
0.875 125 17 Moresco et al. (2012)
0.88 90 40 Stern et al. (2010)
0.90 117 23 Simon et al. (2005)
1.037 154 20 Moresco et al. (2012)
1.3 168 17 Simon et al. (2005)

1.363 160 33.6 Moresco (2015)
1.43 177 18 Simon et al. (2005)
1.53 140 14 Simon et al. (2005)
1.75 202 40 Simon et al. (2005)
1.965 186.5 50.4 Moresco (2015)
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A.2 QSO data

See Chapter 5 for a discussion of the QSO data, which are listed below. The redshift z of

each measurement is recorded in the first column, the angular size θ in milliarcseconds (mas)

is recorded in the second column, and the uncertainty σ on each measurement is recorded

in the third column.

0.462 2.743 0.027

0.5362 1.454 0.052

0.539 1.049 0.077

0.558 1.974 0.048

0.574 2.399 0.077

0.591 1.933 0.097

0.5928 1.525 0.041

0.632 1.762 0.15

0.67 2.218 0.108

0.6715 1.292 0.208

0.673 1.972 0.11

0.677 1.904 0.075

0.68 1.244 0.129

0.71 1.454 0.245

0.72 1.415 0.074

0.74 1.139 0.076

0.752 1.518 0.058

0.819 0.897 0.304

0.846 1.953 0.144

0.847 1.758 0.094

0.857 1.73 0.183

0.858 2.094 0.049

0.871 1.635 0.249
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0.888 1.144 0.059

0.894 1.149 0.041

0.947 1.747 0.087

0.96 1.661 0.121

0.965 1.81 0.063

0.978 0.568 0.426

0.999 1.031 0.051

1.016 1.517 0.033

1.018 1.794 0.081

1.02 1.544 0.197

1.025 1.552 0.122

1.034 1.797 0.163

1.066 1.155 0.453

1.07 0.76 0.07

1.08 1.529 0.16

1.088 1.399 0.258

1.0987 0.88 0.581

1.139 1.638 0.086

1.141 1.727 0.053

1.153 1.758 0.054

1.159 1.277 0.069

1.184 1.485 0.048

1.187 1.611 0.089

1.202 1.099 0.081

1.212 1.254 0.088

1.216 2.622 0.085

1.22 2.032 0.147

1.244 1.38 0.064

1.25 2.44 0.151
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1.252 2.109 0.111

1.254 1.544 0.19

1.275 1.046 0.381

1.278 1.883 0.146

1.285 0.979 0.111

1.29 1.583 0.107

1.292 0.517 0.77

1.296 1.2 0.187

1.299 2.07 0.047

1.302 1.387 0.064

1.319 1.682 0.064

1.323 0.528 0.135

1.326 0.438 0.863

1.339 1.608 0.117

1.356 1.46 0.058

1.4 1.168 0.096

1.407 0.758 0.14

1.41 0.596 0.171

1.417 0.424 0.114

1.42 1.481 0.306

1.435 1.172 0.074

1.446 1.81 0.168

1.455 1.718 0.073

1.472 1.484 0.223

1.476 1.327 0.19

1.479 1.784 0.059

1.489 1.292 0.082

1.49 1.243 0.059

1.492 0.87 0.429
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1.5586 2.446 0.216

1.5595 1.038 0.109

1.563 0.796 0.168

1.57 1.497 0.1

1.598 1.743 0.081

1.6077 1.788 0.034

1.6301 1.788 0.051

1.633 0.659 0.203

1.646 1.431 0.093

1.66 1.245 0.214

1.72 1.005 0.108

1.74 1.464 0.124

1.751 1.602 0.205

1.763 1.629 0.139

1.774 1.25 0.191

1.776 0.66 0.15

1.81 1.136 0.047

1.821 0.518 0.082

1.837 0.85 0.495

1.85 1.635 0.307

1.873 1.13 0.286

1.89 1.537 0.059

1.9 1.396 0.194

1.939 1.526 0.163

1.975 1.207 0.094

2.025 1.7 0.279

2.048 1.901 0.148

2.055 1.595 0.057

2.073 1.422 0.368
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2.09 1.916 0.132

2.118 0.564 0.664

2.13 2.264 0.048

2.136 1.449 0.077

2.165 1.097 0.223

2.198 1.434 0.036

2.448 1.676 0.045

2.5584 1.598 0.323

2.685 1.506 0.101

2.73 1.252 0.132

A.3 GRB data

In this section I list the GRB data used in Chapters 7, 8, and 10. The first group consists of

25 measurements from Table 2 of Fana Dirirsa et al. (2019), and the second group consists

of 94 measurements from Table 5 of Fana Dirirsa et al. (2019).

In both groups, the first column records the redshift z of each measurement, the second

column records the error on the redshift, the third column records the peak energy Ep

emitted by the GRB, the fourth column is the error on the peak energy, the fourth column

records the bolometric fluence divided by 105 (Sbolo/105), and the fifth column is the error

on Sbolo/105.

3.51 0 1424.42 35.24 9.24 0.09

2.53 0 2119.788 119.06 22.40 0.29

1.406 0 1546.86 37.25 83.54 1.16

1.17 0 19334.10 652.25 49.91 1.36

0.807 0 137.84 14.93 0.71 0.03

2.06 0 2428.51 160.80 8.10 0.17

1.758 0 985.66 13.20 9.20 0.12
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2.33 0 1320.18 50.90 4.89 0.06

0.6439 0 370.15 4.97 17.42 0.12

2.40 0 1163.20 28.54 4.85 0.05

2.49 0 1601.40 32.19 11.40 0.11

0.3399 0 294.25 5.86 31.72 0.20

2.2 0 1214.47 26.24 20.49 0.25

3.512 0 8675.78 852.66 6.14 0.09

1.567 0 797.62 18.05 11.74 0.17

1.368 0 1370.82 27.68 11.88 0.16

1.063 0 202.63 20.10 0.75 0.04

0.49 0 60.32 1.93 2.25 0.04

0.8969 0 857.81 33.08 4.43 0.08

2.1062 0 868.63 13.85 17.90 0.13

1.822 0 2146.57 21.71 39.05 0.22

0.544 0 236.91 4.55 5.72 0.09

0.736 0 1221.71 81.87 7.99 0.20

3.57 0 2060.09 138.07 15.76 0.39

4.35 0.15 6953.87 1188.77 10.40 0.24

3.9 0 1783.60 374.85 2.36 0.77

0.54 0 146.49 23.9 5.75 0.64

3.6 0 809.60 135.70 0.70 0.07

1.44 0 312.32 48.8 1.39 0.23

1.73 0 387.23 244.07 3.56 0.55

2.22 0 740.60 322.0 3.32 0.68

1.46 0 223.86 70.11 1.55 0.23

1.77 0 421.04 13.85 9.32 0.02

1.61 0 572.25 50.95 2.76 0.21

0.82 0 218.40 20.93 2.73 0.24
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2.83 0 1164.32 49.79 2.51 0.01

3.36 0 1117.47 241.11 1.05 0.08

5.0 0 894.00 240.0 1.06 0.11

2.89 0 420.44 124.58 0.18 0.03

0.68 0 519.87 88.88 69.47 8.72

1.73 0 417.38 54.56 4.62 0.59

1.8 0 129.97 10.27 0.44 0.02

1.48 0 68.45 18.60 0.15 0.02

3.8 0 274.33 93.04 0.43 0.07

2.67 0 157.49 20.92 0.74 0.07

3.93 0 1651.55 123.25 2.69 0.23

3.1 0 156.62 0.04 1.59 0.18

2.2 0 243.20 12.8 0.87 0.07

0.6 0 247.54 100.61 4.84 0.12

3.76 0 1003.94 137.98 0.99 0.17

1.3 0 128.63 6.89 1.73 0.06

2.27 0 2063.37 101.37 4.56 0.09

3.6 0 496.80 151.8 1.88 0.25

5.91 0 2031.54 483.7 0.49 0.09

2.09 0 911.83 132.65 0.82 0.05

2.01 0 186.07 31.56 0.08 0.01

1.16 0 191.80 8.62 0.46 0.04

0.48 0 81.35 5.92 1.29 0.07

1.24 0 881.77 24.62 75.21 4.76

1.29 0 405.86 22.93 1.05 0.10

1.69 0 547.68 83.53 4.75 0.16

4.04 0 221.85 37.31 0.05 0.01

2.73 0 447.60 22.38 1.69 0.03

1.21 0 176.61 4.42 2.53 0.04
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1.44 0 115.00 25.0 0.42 0.03

1.48 0 766.00 30.0 14.6 1.50

1.489 0 572.00 143.0 2.30 0.50

1.52 0 328.00 55.0 6.40 0.60

1.547 0 934.00 148.0 13.30 1.30

1.547 0 1149.00 166.0 3.48 0.63

1.563 0 44.00 33.0 0.21 0.06

1.6 0 1724.0 466.0 35.80 5.80

1.604 0 2077 286 5.32 0.590

1.608 0 1567 384 2.35 0.59

1.619 0 423.0 42.0 2.60 0.40

1.6398 0 650.0 55.0 3.40 0.28

1.71 0 280.0 190.0 0.11 0.034

1.8 0 627.0 65.0 2.027 0.48

1.9 0 290.0 100.0 0.38 0.01

1.95 0 906.0 272.0 1.50 0.30

1.9685 0 261.0 52.0 0.96 0.09

1.98 0 289.0 66.0 1.30 0.10

2.07 0 310.0 20.0 2.60 0.60

2.14 0 186.0 24.0 0.50 0.06

2.145 0 1013.0 160.0 0.87 0.40

2.198 0 415.0 111.0 0.47 0.16

2.296 0 784.0 285.0 3.40 0.50

2.3 0 266.0 117.0 0.27 0.04

2.346 0 539.0 200.0 0.51 0.05

2.43 0 514.0 102.0 0.73 0.07

2.433 0 584.0 180.0 0.56 0.14

2.452 0 2000.0 700.0 3.08 0.53

2.512 0 47.23 1.08 1.71 0.33
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2.58 0 147.0 14.0 0.27 0.057

2.591 0 1741.0 227.0 7.86 1.37

2.612 0 1325.0 277.0 6.40 0.50

2.65 0 128.0 26.0 0.14 0.02

2.69 0 376.0 100.0 0.64 0.058

2.752 0 230.0 66.0 0.47 0.044

2.77 0 505.0 34.0 1.67 0.17

2.821 0 1333.0 107.0 3.50 0.20

2.9 0 467.0 110.0 1.90 0.40

3.0 0 536.0 172.0 1.09 0.17

3.036 0 1691.0 226.0 8.96 0.48

3.038 0 234.0 93.0 0.81 0.095

3.2 0 448.0 148.0 1.20 0.10

3.21 0 105.0 21.0 0.12 0.06

3.35 0 1470.0 180.0 1.82 0.20

3.37 0 270.0 113.0 0.12 0.04

3.42 0 685.0 133.0 0.87 0.11

3.425 0 279.0 28.0 0.23 0.04

3.53 0 285.0 34.0 0.25 0.04

4.048 0 394.0 46.0 0.14 0.03

4.109 0 971.0 390.0 1.96 0.38

4.5 0 987.0 416.0 4.70 0.80

5.6 0 475.0 47.0 0.27 0.04

6.29 0 3178 1094.0 2.00 0.20

6.695 0 710.0 350.0 0.12 0.035

8.2 0 491.0 200.0 0.12 0.032
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A.4 SNe Ia data

The Pantheon data and covariance matrix files are too large to reproduce here. They

can be downloaded from: https://github.com/dscolnic/Pantheon. For the analysis

described in Chapter 8, we used “lcparam full long zhel.txt” and “sys full long.txt”. In

“lcparam full long zhel.txt”, column 1 records the CMB-frame redshift zCMB, column 2

records the heliocentric redshift zhel, column 4 records the magnitude m, and column 5

records the uncertainty on the magnitude δm. “sys full long.txt” contains the systematic

errors on the measurements. For an example of a Python code that can be used to extract

the data from these files, see below.

Pdata = genfromtxt(’/homes/jwryan/emcee_stable/SNe_paper/Pantheon/

lcparam_full_long_zhel.txt’, encoding=None, dtype=None)

zcmb = []

zhel = []

m_ob = []

DM_ob = []

for i in range(0, 1048, 1):

zcmb.append(Pdata[i][1])

zhel.append(Pdata[i][2])

m_ob.append(Pdata[i][4])

DM_ob.append(Pdata[i][5])

sys_err = loadtxt(’/homes/jwryan/emcee_stable/SNe_paper/Pantheon/

sys_full_long.txt’, unpack=True)

sys_P = []

V = []

sys_err_count = 0
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for i in range(1, 1098305, 1):

V.append(sys_err[i])

sys_err_count += 1

if sys_err_count == 1048:

sys_P.append(V)

V = []

sys_err_count = 0

dm_ob = array(DM_ob)

CovP = diag(dm_ob**2) + sys_P

CinvP = inv(matrix(CovP)) #This is the inverse of the covariance matrix.

The supernova data from the Dark Energy Survey can be downloaded from: http://

desdr-server.ncsa.illinois.edu/despublic/sn_files/y3/tar_files/05-COSMOLOGY.

tar.gz. These files have the same structure as the Pantheon data files. For an example of

a Python code that can be used to extract the data from these files, see below.

Ddata = genfromtxt(’/homes/jwryan/emcee_stable/SNe_paper/DES/

05-COSMOLOGY/COSMOLOGY_INPUTS/lcparam_DESonly.txt’, encoding=None,

dtype=None)

zcmb_D = []

zhel_D = []

m_ob_D = []

DM_ob_D = []

for i in range(0, 20, 1):

zcmb_D.append(Ddata[i][1])

zhel_D.append(Ddata[i][2])

m_ob_D.append(Ddata[i][4])
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DM_ob_D.append(Ddata[i][5])

sys_err = loadtxt(’/homes/jwryan/emcee_stable/SNe_paper/DES/

05-COSMOLOGY/COSMOLOGY_INPUTS/sys_DESonly_ALLSYS.txt’,

unpack=True)

sys_D = []

V = []

sys_err_count = 0

for i in range(1, 401, 1):

V.append(sys_err[i])

sys_err_count += 1

if sys_err_count == 20:

sys_D.append(V)

V = []

sys_err_count = 0

dm_ob_D = array(DM_ob_D)

CovD = diag(dm_ob_D**2) + sys_D

CinvD = inv(matrix(CovD)) #This is the inverse covariance matrix.
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Appendix B

Codes

B.1 Non-flat φCDM model code

In this section I provide representative samples of the codes I used to compute constraints

on the parameters of the non-flat φCDM model, in Chapter 5, using H(z) and BAO data.

Constraints on the parameters of the flat φCDM model can be obtained from this code by

setting K = 1. I have not included the codes I used to compute constraints on the parameters

of the flat/non-flat ΛCDM model and the flat/non-flat XCDM parametrization, partly to

keep this appendix to a reasonable length, and partly because these codes are fairly simple

to write and to run.

The codes in this section were computed on the Beocat Research Cluster at Kansas State

University, and written in the Python language. Below I provide the Python codes, con-

densed and edited for readability, along with their associated .bash scripts (.bash scripts

are used to submit jobs to the cluster via a linux terminal; for more information, see:

https://support.beocat.ksu.edu/BeocatDocs/index.php?title=Main_Page). Each of

the .bash scripts begins with “#!/bin/sh”, and each of the Python codes begins with “# -*-

coding: utf-8 -*-”.

Directly below is the .bash script I used to submit my non-flat φCDM code. It submits

the code as an array job in 2500 steps, meaning in this case that the code gets broken into
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2500 distinct pieces that run independently. This is a form of parallelization, intended to

ensure that the code finishes within a reasonable amount of time, as the non-flat φCDM

likelihood function is very time-expensive to compute.

#!/bin/sh

#SBATCH --job-name=Nonflat_phiCDM2_array

#SBATCH --array=1-2500:1

#SBATCH --mem-per-cpu=4G # Memory per core, use --mem= for memory per node

#SBATCH --time=145:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END

module load Anaconda3

python Nonflat_phiCDM2_fixed.py $SLURM_ARRAY_TASK_ID

Below is the code I used to compute the four-dimensional likelihood function for the

non-flat φCDM model. There is a nested loop at the beginning of the loop that runs over

the variables N and Kr. N corresponds to a single step along the α axis of the parameter

space, and Kr sets ranges for the curvature scale K. Because I run this code as an array

job, there are 2500 separate instances of it running simultaneously (in principle). Each

instance occupies a single point along the α axis, while stepping through 50 points along

the K axis, 61 points along the Ωm0 axis, and 351 points along the H0 axis. Therefore each
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instance computes the likelihood function 1,070,550 times, independently. This represents a

vast improvement in the overall computation time of the code; if the code were not run in

parallel, the likelihood function would need to be computed 2,676,375,000 times, serially.

# -*- coding: utf-8 -*-

import sys

n = sys.argv[1]

count = 0

for N in range(1, 501, 1):

for Kr in range(0, 5, 1):

count += 1

if Kr == 0:

Ka = -2.10

Kb = -1.60

if Kr == 1:

Ka = -1.60

Kb = -1.10

if Kr == 2:

Ka = -1.10

Kb = -0.61

if Kr == 3:

Ka = -0.60

Kb = -0.10

if Kr == 4:

Ka = -0.10
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Kb = 0.40

if str(count) == n:

break

if str(count) == n:

break

from scipy.integrate import odeint #ODE solver

import numpy

import math

from math import sin, sqrt

from numpy import savetxt, loadtxt, matrix

from numpy.linalg import inv

z0 = [2.36, 2.33, 1.52, 0.61, 0.51, 0.38, 0.15, 0.106]

DM_obs = [1512.39, 1975.22, 2306.68]

H_obs = [81.2087, 90.9029, 98.9647]

##Data points from DR12 website. File "BAO_consensus_results_dM_Hz.txt"

cHobs = 9.0 #Font-Ribera

dobs = 0.336 #Beutler (Farooq)

B_obs = 13.94 #Bautista

rfid = 147.60 #Planck, Table 4 of 1502.01589.

z_obs, Hz_obs, sigHobs = loadtxt(’Hzdata.dat’,unpack = True)

##From Table 1 of 1607.03537v2, refs. 4,6,7,10 excluded. H(z) data.

##Covariance matrix from DR12 website. "BAO_consensus_covtot_dM_Hz.txt".
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Cov = matrix([[624.707,23.729,325.332,8.34963,157.386,3.57778],

[23.729,5.60873,11.6429,2.33996,6.39263,0.968056],

[325.332,11.6429,905.777,29.3392,515.271,14.1013],

[8.34963,2.33996,29.3392,5.42327,16.1422,2.85334],

[157.386,6.39263,515.271,16.1422,1375.12,40.4327],

[3.57778,0.968056,14.1013,2.85334,40.4327,6.25936]])

Cinv = inv(Cov)

del Cov

Ok1 = numpy.array([])

chi2Hzonly = numpy.array([])

chi22B = numpy.array([])

chi2AB = numpy.array([])

c = 299792458./1000. #Speed of light in km/s

Th = 2.7255/2.7 #T_CMB/2.7, from Eisenstein and Hu 1998

pi = numpy.pi

m = 1.

n = 5.

t0 = 10.**(-5.)

tf = 150.

dt = t0

t = numpy.arange(0., tf, dt)

a0 = t0**(2./3.) #I assumed a ~ t^(2/3) in the early universe.

def phiCDM(w, t, zz):

p, v, a = w #I used p for phi, v for d(phi)/dt, and a for the

##scale factor.
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al, k, m, K = zz #These are the parameters of the model. See below.

f = [v,

-3.*v*(((4./(9.*a**3.))) + (1./12.)*(v**2. + (k*m)/(p**(al)))

- K/(a**2.))**(1./2.)

+ ((k*al*m)/2.)/(p**(al + 1.)),

(((4./9.)/a) + (((a**2.)/12.))*(v**2.

+ (k*m)*(p**(-al))) - K)**(1./2.)]

return f

def rs(H0, O, Obh2): #Sound horizon. Formula from Eisenstein and Hu, 1998.

h = H0/100.

Ob = Obh2/(h**2.) #Baryon density. Fiducial value: 0.02303

b2 = 0.238*((O*(h**2.))**(0.223))

b1 = 0.313*((O*(h**2.))**(-0.419))*(1. + (0.607*(O*(h**2))**(0.674)))

zd = 1291.*(((O*(h**2.))**(0.251))/(1.

+ (0.659*(O*(h**2.))**(0.828))))*(1.

+ (b1*((Ob*(h**2.)))**(b2)))

Rd = 31.5*(Ob*(h**2.))*(Th**(-4.))*(1000./zd)

zeq = 25000.*(O*(h**2.))*(Th**(-4.))

Req = 31.5*(Ob*(h**2.))*(Th**(-4.))*(1000./zeq)

keq = 0.0746*(O*(h**2.))*(Th**(-2.))

A = (1. + Rd)**(1./2.)

B = (Rd + Req)**(1./2.)

C = 1. + (Req)**(1./2.)

return (2./(3.*keq))*((6./Req)**(1./2.))*(numpy.log((A + B)/C))

def E(O, red, Ok_0, Ophiz):

return (O*((1. + red)**3.) + (Ok_0)*((1. + red)**2.) + Ophiz)**(1./2.)
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def D_M(H0, q, O, Ok_0):

if Ok_0 == 0.:

return (c/H0)*h0*afin*rr[q]

if Ok_0 < 0.:

return (c/H0)*(1/(sqrt(-Ok_0)))*(sin((sqrt(-Ok_0))*(h0*afin*rr[q])))

if Ok_0 > 0.:

return (c/H0)*(1/(sqrt(Ok_0)))*(sinh((sqrt(Ok_0))*(h0*afin*rr[q])))

def chi_sq(H0, O, Ok_0):

rsc = rfid/(rs(67.81, 0.308, 0.02226))

DM_th = []

H_th = []

for q in range(7, -1, -1):

z1 = z0[q]

H1 = H0*E(O, z1, Ok_0, O_phi_z[q])

DM = D_M(H0, q, O, Ok_0)

y = (H0/c)*DM

if 3 <= q <= 5:

DM_th.append(D_M(H0, q, O, Ok_0))

H_th.append(H1)

if z1 == 0.15:

r = rs(H0, O, 0.02303)/rs(67, 0.31, 0.048*0.67*0.67)

DV = (c/H0)*(((y**2.)*z1)/(E(O, z1, Ok_0, O_phi_z[q])))**(1./3.)

DVobs1 = 664.*r #Ross

unc1 = 25.*r

chi2DV1 = ((DV - DVobs1)**2.)/(unc1**2.)

if z1 == 0.106:

DV = (c/H0)*(((y**2.)*z1)/(E(O, z1, Ok_0, O_phi_z[q])))**(1./3.)
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dth = (rs(H0, O, 0.02303)*rsc)/DV #Distilled parameter

chi2d = ((dth - dobs)**2.)/(0.015**2.)

if z1 == 1.52:

r = rs(H0, O, 0.02303)/rs(67.6, 0.31, 0.022)

DV = (c/H0)*(((y**2.)*z1)/(E(O, z1, Ok_0, O_phi_z[q])))**(1./3.)

DVobs2 = 3843.*r #Ata

unc2 = 147.*r

chi2DV2 = ((DV - DVobs2)**2.)/(unc2**2.)

if z1 == 2.33:

DH = c/H1

F = DH**(0.7)

G = DM**(0.3)

B_th = (F*G)/(rs(H0, O, 0.02303)*rsc)

chi2B = ((B_th - B_obs)**2.)/(0.35**2.)

if z1 == 2.36:

cHth = (c/(rs(H0, O, 0.02303)*rsc))*(1./H1)

chi2H = ((cHth - cHobs)**2.)/(0.3**2.)

r = rs(H0, O, 0.02303)/rs(67.6, 0.31, 0.022)

Delta = numpy.array([(DM_th[0]/r - DM_obs[0]),

(r*H_th[0] - H_obs[0]),

(DM_th[1]/r - DM_obs[1]),

(r*H_th[1] - H_obs[1]),

(DM_th[2]/r - DM_obs[2]),

(r*H_th[2] - H_obs[2])])

prod = (Cinv.dot(Delta)).T

chi_sq1 = Delta.dot(prod)

chi_sq_11 = chi_sq1.item((0,0))

return ((chi2H + chi2B + chi2d + chi_sq_11 + chi2DV1 + chi2DV2),

(chi2H + chi2B))
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def chi2h(H0, O, Ok_0, Ophiz):

return ((1/sigHobs)*(H0*E(O, z_obs, Ok_0, Ophiz) - Hz_obs))**2

def Ofunc(d):

Omegam1 = (4./9.)*(1./(sol[d,2])**3.)

Omegaphi1 = (1./12.)*(((sol[d,1])**2.) + k/((sol[d,0])**al))

Omegak1 = -K/((sol[d,2])**2.)

Omegam = Omegam1/(Omegam1 + Omegaphi1 + Omegak1)

return Omegam, Omegam1, Omegaphi1, Omegak1

KK = numpy.arange(Ka, Kb, 0.01)

al = N/100.

Om = numpy.arange(0.10, 0.71, 0.01)

k = (8./3.)*((al + 4.)/(al + 2.))*(((2./3.)*(al*(al + 2.))))**(al/2.) #This

##is kappa, from eq. (2) of arXiv:1307.7399v1.

##Initial conditions on phi, d(phi)/dt, a.

p0 = (((2./3.)*(al*(al + 2.)))**(1./2.))*(t0)**(2./(al + 2.)) #Initial value

##of phi.

v0 = (((8./3.)*al*(1./(al + 2.)))**(1./2.))/(t0)**(al/(al + 2.))

##Initial value of d(phi)/dt.

w0 = [p0, v0, a0]

for K in KK:

zz = [al, k, m, K]
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#solution array

sol = odeint(phiCDM, w0, t, args=(zz,))

for O in Om:

for b in range(0, int(tf/dt), 1):

if (O >= Ofunc(b)[0]):

break

afin = sol[b,2]

h0 = (sol[b+1, 2] - afin)/afin

Ok_0 = Ofunc(b)[3]/(Ofunc(b)[1] + Ofunc(b)[2] + Ofunc(b)[3])

Omegap = ((4./9.)*(1./(sol[b,2])**3.)

+ (1./12.)*(((sol[b,1])**2.) + k/((sol[b,0])**al))

+ -K/((sol[b,2])**2.))

rr = []

O_phi_z = []

O_phi_z1 = []

for z1 in z0:

qt = 0

t1 = []

r1 = []

for d in range(0, b+1, 1):

if ((sol[d,2])/afin >= 1./(1. + z1)):

t1.append(d)

r1.append(1./(sol[d,2]))

qt += 1

if qt == 1:
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Omegaphi_z = (1./12.)*(((sol[d,1])**2.)

+ k/((sol[d,0])**al))

if qt == 1:

rr.append(sum(r1))

else:

rr.append(numpy.trapz(r1, t1))

O_phi_z.append(Omegaphi_z/((4./9.)*(1./(sol[b,2])**3.)

+ (1./12.)*(((sol[b,1])**2.) + k/((sol[b,0])**al))

+ -K/((sol[b,2])**2.)))

for qs in range(0, len(z_obs), 1):

for d in range(0, b+1, 1):

if ((sol[d,2])/afin >= 1./(1. + z_obs[qs])):

Omegaphi2 = (1./12.)*(((sol[d,1])**2.)

+ k/((sol[d,0])**al))

O_phi_z1.append(Omegaphi2/((4./9.)*(1./(sol[b,2])**3.)

+ (1./12.)*(((sol[b,1])**2.) + k/((sol[b,0])**al))

+ -K/((sol[b,2])**2.)))

break

for H0 in numpy.arange(50., 85.1, 0.1):

chi2hh = sum(chi2h(H0, O, Ok_0, O_phi_z1))

chi2Hzonly = numpy.append(chi2Hzonly, chi2hh)

chi22B = numpy.append(chi22B, chi_sq(H0, O, Ok_0)[1])

chi2AB = numpy.append(chi2AB, chi_sq(H0, O, Ok_0)[0])

Ok1 = numpy.append(Ok1, Ok_0)

#savetxt(’phiCDM_curved_alpha_’ + str(NN) + ’.dat’, a1)

#savetxt(’phiCDM_curved_Omega_m0_’ + str(NN) + ’.dat’, O1)
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savetxt(’phiCDM_curved_Omega_k0_’ + str(count) + ’.dat’, Ok1)

#savetxt(’phiCDM_curved_chi^2_H(z)only’ + str(count) + ’.dat’, chi2Hzonly)

#savetxt(’phiCDM_curved_chi^2_H(z)_2B’ + str(count) + ’.dat’, chi22B)

savetxt(’phiCDM_curved_chi^2_AB_’ + str(count) + ’.dat’, chi2AB)

The above code produces 2500 output files, so it is necessary to combine them before

they can be analyzed. Due to time and memory limitations, I found it necessary to do

this in a somewhat complicated fashion. In the first step of this process, I used the code

“data compiler 3.py” to condense the original set of 2500 files to a set of 500 files by adding

the files from the set of 2500 together in groups of 5. Basically, this means that the reduced

set of 500 files corresponds to a single step along the α axis, with 250 steps along the K axis,

61 steps along the Ωm0 axis, and 351 steps along the H0 axis. The .bash script associated

with this code is below, followed by the code itself.

#!/bin/sh

#SBATCH --job-name=data_compiler_nonflat_phiCDM

#SBATCH --array=1-2:1

#SBATCH --mem-per-cpu=4G # Memory per core, use --mem= for memory per node

#SBATCH --time=145:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END

module load Anaconda3
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python data_compiler_3.py $SLURM_ARRAY_TASK_ID

# -*- coding: utf-8 -*-

from numpy import savetxt, loadtxt

import numpy

import sys

n = sys.argv[1]

syscount = 0

for M in range(0, 2, 1):

syscount += 1

if str(syscount) == n:

break

l = [’phiCDM_curved_chi^2_AB_’,

’phiCDM_curved_Omega_k0_’]

l2 = [’Nonflat_phiCDM_chi2_AB_’,

’Nonflat_phiCDM_Omega_k0_’]

N = 2500 #number of files

x = numpy.array([])

c = 0

d = 0
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for N in range(1, N+1, 1):

c += 1

a = loadtxt(l[M] + str(N) + ’.dat’, unpack=True)

x = numpy.append(x, a)

del a

if c == 5:

d += 1

#print(d)

savetxt(l2[M] + str(d) + ’.dat’, x)

x = numpy.array([])

c = 0

Next, the output files are marginalized, over one parameter at a time. The .bash script

for this is below.

#!/bin/sh

#SBATCH --job-name=4D_to_3D

#SBATCH --array=1-1500:1

#SBATCH --mem-per-cpu=1G # Memory per core, use --mem= for memory per node

#SBATCH --time=26:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END
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module load Anaconda3/5.0.1

python 4D_to_3D.py $SLURM_ARRAY_TASK_ID

What follows is the text of “4D to 3D.py”. This code is run as an array job in 1500 steps

because at this point in the process the likelihood files have not yet been compiled along the

α axis, and because the files have also been interpolated along the Ωk0 axis. Essentially, I ran

this code twice. In the first instance, I ran those portions of the code contained within the

quoted comments (containing the Nearest Neighbor interpolating function) to interpolate the

likelihood function along the Ωk0 axis. I found it necessary to do this because a uniformly-

spaced set of K inputs does not necessarily correspond to a uniformly-spaced set of Ωk0

outputs. I chose to interpolate along the Ωk0 axis in 300 steps because this seemed to strike

a good balance between computation time and fineness of resolution. I then ran the code a

second time, feeding into it the interpolated likelihood function files (those having ‘Rescale’

in their names), to obtain a set of files correspond to a marginalized likelihood function (in

three dimensions rather than four).

# -*- coding: utf-8 -*-

from numpy import exp, split, dstack, array, trapz, loadtxt, savetxt,

from numpy import arange, linspace

from scipy.interpolate import NearestNDInterpolator as ND

import sys

Oml = 61

b = 500 #alpha length

Okl = 300 #Omega_k0 length

H0l = 351
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n = sys.argv[1]

syscount = 0

for N in range(1, 501, 1):

for Hcase in range(1, 2, 1):

for mcase in range(1, 4, 1):

syscount += 1

if str(syscount) == n:

break

if str(syscount) == n:

break

if str(syscount) == n:

break

#alpha = []

O_m = []

H_0 = []

for N2 in range(1, 301, 1):

for N3 in arange(0.10, 0.71, 0.01):

for N4 in arange(50, 85.001, 0.1):

#alpha.append(N)

O_m.append(N3)

H_0.append(N4)

O_m0 = array(O_m)

H0 = array(H_0)

del O_m
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if Hcase == 1:

HC = ’AB’

if Hcase == 2:

HC = ’Hz_2B’

if Hcase == 3:

HC = ’Hz_AB’

L = loadtxt(’Rescale_Nonflat_phiCDM_L_’ + HC + ’_’ + str(N) + ’.dat’,

unpack=True)

O_k0 = loadtxt(’Rescale_Nonflat_phiCDM_Omega_k0_’ + HC + ’_’ + str(N)

+ ’.dat’,

unpack=True)

#L = exp(-chi2/2)

#del chi2

if mcase == 1: #Marginalize over loop 2

a = split(H0, Okl)

t = split(O_m0, Okl)

v = split(L, Okl)

del O_m0, L, H0

c = []

d = []

e = []

for p in range(0, Okl, 1):

c.append((dstack(split(a[p], Oml))).flatten())

d.append((dstack(split(t[p], Oml))).flatten())
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e.append((dstack(split(v[p], Oml))).flatten())

del a, t, v

H02 = (array(c)).flatten()

Om2 = (array(d)).flatten()

L2 = (array(e)).flatten()

del c, d, e

"""

Ok_int = []

Om_int = []

L_int = []

H0_int = []

f = ND((O_k0, H02, Om2), L2, rescale=True)

for p in linspace(min(O_k0), max(O_k0), 300):

for q in arange(50, 85.001, 0.1):

for r in arange(0.10, 0.71, 0.01):

Ok_int.append(p)

Om_int.append(r)

H0_int.append(q)

L_int.append(f(p, q, r))

del H02, Om2, L2

"""

Omk = []

Om = []

L = []

L3 = []

alp = []

265



H0 = []

c = 0

for q in range(0, len(L2), 1):

c += 1

Om.append(Om2[q])

L3.append(L2[q])

if c == Oml:

L.append(abs(trapz(L3, Om)))

Omk.append(O_k0[q])

H0.append(H02[q])

alp.append(N/100)

c = 0

Om = []

L3 = []

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase1_’ + str(N)

+ ’.dat’, Omk)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_L_mcase1_’ + str(N) + ’.dat’, L)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase1_’ + str(N) + ’.dat’,

alp)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_H0_mcase1_’ + str(N) + ’.dat’, H0)

if mcase == 2: #Marginalize over loop 3

"""

Ok_int = []

Om_int = []

L_int = []

alp_int = []
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H0_int = []

f = ND((O_k0, O_m0, H_0), L, rescale=True)

for p in linspace(min(O_k0), max(O_k0), 300):

for r in arange(0.10, 0.71, 0.01):

for q in arange(50, 85.001, 0.1):

Ok_int.append(p)

Om_int.append(r)

L_int.append(f(p, r, q))

H0_int.append(q)

Ok = []

Om = []

chi_2 = []

del O_m0, O_k0, f

"""

c = 0

Ok1 = []

Om1 = []

L2 = []

H02 = []

al1 = []

L3 = []

for q in range(0, len(L), 1):

c += 1

H02.append(H0[q])
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L2.append(L[q])

if c == H0l:

L3.append(abs(trapz(L2, H02)))

Ok1.append(O_k0[q])

Om1.append(O_m0[q])

al1.append(N/100)

c = 0

H02 = []

L2 = []

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase2_’ + str(N) + ’.dat’,

al1)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase2_’

+ str(N) + ’.dat’, Ok1)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_L_mcase2_’ + str(N)

+ ’.dat’, L3)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase2_’

+ str(N) + ’.dat’, Om1)

if mcase == 3: #Marginalizing over loop 1

a = split(O_m0, Okl)

t = split(O_k0, Okl)

v = split(L, Okl)

w = split(H0, Okl)

del O_k0, O_m0, L, H0

c = []
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d = []

e = []

g = []

for p in range(0, Okl, 1):

c.append((dstack(split(a[p], Oml))).flatten())

d.append((dstack(split(t[p], Oml))).flatten())

e.append((dstack(split(v[p], Oml))).flatten())

g.append((dstack(split(w[p], Oml))).flatten())

del a, t, v, w

Om2 = dstack(split((array(c)).flatten(), Okl)).flatten()

Ok2 = dstack(split((array(d)).flatten(), Okl)).flatten()

L2 = dstack(split((array(e)).flatten(), Okl)).flatten()

H2 = dstack(split((array(g)).flatten(), Okl)).flatten()

del c, d, e, g

"""

Ok_int = []

Om_int = []

L_int = []

H0_int = []

f = ND((Ok2, Om2, H2), L2, rescale=True)

for q in arange(50, 85.001, 0.1):

for r in arange(0.10, 0.71, 0.01):

for p in linspace(min(Ok2), max(Ok2), 300):

Ok_int.append(p)

Om_int.append(r)
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L_int.append(f(q,r,p))

H0_int.append(q)

"""

Ok3 = []

Om3 = []

H3 = []

L3 = []

L4 = []

al = []

c = 0

for q in range(0, len(L2), 1):

c += 1

if abs(Ok2[q]) <= 0.50:

Ok3.append(Ok2[q])

L3.append(L2[q])

if c == 300:

H3.append(H2[q])

Om3.append(Om2[q])

L4.append(abs(trapz(L3, Ok3)))

al.append(N/100)

c = 0

Ok3 = []

L3 = []

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase3_’

+ str(N) + ’.dat’, al)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_H0_mcase3_’ + str(N) + ’.dat’, H3)
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savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_L_mcase3_’ + str(N) + ’.dat’, L4)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase3_’

+ str(N) + ’.dat’, Om3)

At this point in the process, the likelihood files are small enough that they can be compiled

along the α axis. “chi2 combiner.py”, below, does this.

#!/bin/sh

#SBATCH --job-name=chi2_combiner

#SBATCH --array=1-9:1

#SBATCH --mem-per-cpu=1G # Memory per core, use --mem= for memory per node

#SBATCH --time=23:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END

module load Anaconda3

python chi2_combiner.py $SLURM_ARRAY_TASK_ID

# -*- coding: utf-8 -*-

from numpy import array, loadtxt, savetxt, append
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import sys, os

for mcase in range(1, 4, 1):

for Hcase in range(1, 4, 1):

syscount += 1

if str(syscount) == n:

break

if str(syscount) == n:

break

if Hcase == 1:

HC = ’H(z)only’

if Hcase == 2:

HC = ’Hz_2B’

if Hcase == 3:

HC = ’Hz_AB’

aa = []

bb = []

cc = []

dd = []

if mcase == 1:

for N in range(1, 501, 1):

a = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase1_’

+ str(N) + ’.dat’, unpack=True)

b = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_L_mcase1_’

+ str(N) + ’.dat’, unpack=True)

c = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase1_’
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+ str(N) + ’.dat’, unpack=True)

d = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_H0_mcase1_’

+ str(N) + ’.dat’, unpack=True)

aa = append(aa, a)

bb = append(bb, b)

cc = append(cc, c)

dd = append(dd, d)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase1_compiled.dat’, aa)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_L_mcase1_compiled.dat’, bb)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase1_compiled.dat’, cc)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_H0_mcase1_compiled.dat’, dd)

if mcase == 2:

for N in range(1, 501, 1):

a = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase2_’

+ str(N) + ’.dat’, unpack=True)

b = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_L_mcase2_’

+ str(N) + ’.dat’, unpack=True)

c = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase2_’

+ str(N) + ’.dat’, unpack=True)

d = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase2_’

+ str(N) + ’.dat’, unpack=True)

aa = append(aa, a)

bb = append(bb, b)

cc = append(cc, c)

dd = append(dd, d)
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savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase2_compiled.dat’, aa)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_L_mcase2_compiled.dat’, bb)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase2_compiled.dat’, cc)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase2_compiled.dat’, dd)

if mcase == 3:

for N in range(1, 501, 1):

a = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase3_’

+ str(N) + ’.dat’, unpack=True)

b = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_L_mcase3_’

+ str(N) + ’.dat’, unpack=True)

c = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase3_’

+ str(N) + ’.dat’, unpack=True)

d = loadtxt(’3D_’ + HC + ’_Nonflat_phiCDM_H0_mcase3_’

+ str(N) + ’.dat’, unpack=True)

aa = append(aa, a)

bb = append(bb, b)

cc = append(cc, c)

dd = append(dd, d)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase3_compiled.dat’, aa)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_L_mcase3_compiled.dat’, bb)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase3_compiled.dat’, cc)

savetxt(’3D_’ + HC + ’_Nonflat_phiCDM_H0_mcase3_compiled.dat’, dd)

"""
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#This portion of the code can be used to combine,

#for example, the H(z) likelihood function with

#the BAO likelihood function to obtain the

#H(z) + BAO likelihood function. This must be

#done before running ‘‘data_compiler_3.py’’.

#When doing this, it is also necessary to

#change the line #SBATCH --array=1-9:1

#in the ‘‘chi2_combiner’’ .bash script to #SBATCH --array=1-500:1.

n = sys.argv[1]

#syscount = 0

for N in range(1, 501, 1):

#syscount += 1

if str(N) == n:

break

#for N in range(1, 501, 1):

#a = loadtxt(’Nonflat_phiCDM_chi2_AB_’ + str(N) + ’.dat’, unpack=True)

c = loadtxt(’Nonflat_phiCDM_chi2_H(z)only_’ + str(N) + ’.dat’, unpack=True)

#d = a + c

#del a

#savetxt(’Nonflat_phiCDM_chi2_Hz_AB_’ + str(N) + ’.dat’, d)

#del d

b = loadtxt(’Nonflat_phiCDM_chi2_AB_’ + str(N) + ’.dat’, unpack=True)
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e = b + c

del b, c

savetxt(’Nonflat_phiCDM_chi2_Hz_AB_’ + str(N) + ’.dat’, e)

del e

#os.remove(’Nonflat_phiCDM_chi2_AB_’ + str(N) + ’.dat’)

#os.remove(’Nonflat_phiCDM_chi2_2B_’ + str(N) + ’.dat’)

"""

This code marginalizes the likelihood function further, reducing it from a three-dimensional

function to a two-dimensional function.

#!/bin/sh

#SBATCH --job-name=3D_to_2D

#SBATCH --array=1-9:1

#SBATCH --mem-per-cpu=6G # Memory per core, use --mem= for memory per node

#SBATCH --time=26:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END

module load Anaconda3/5.0.1
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python 3D_to_2D.py $SLURM_ARRAY_TASK_ID

# -*- coding: utf-8 -*-

from numpy import exp, split, dstack, array, trapz, loadtxt,

from numpy import savetxt, arange, linspace

from scipy.interpolate import NearestNDInterpolator as ND

from scipy.integrate import quad

import sys

Oml = 61

alphal = 500

Okl = 300

H0l = 351

n = sys.argv[1]

syscount = 0

for Hcase in range(1, 2, 1):

for mcase in range(1, 4, 1):

for mc in range(1, 4, 1):

syscount += 1

if str(syscount) == n:

break

if str(syscount) == n:

break

if str(syscount) == n:

break
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if Hcase == 1:

HC = ’AB’

if Hcase == 2:

HC = ’Hz_2B’

if Hcase == 3:

HC = ’Hz_AB’

if mcase == 1:

O_k = loadtxt(HC + ’_Nonflat_phiCDM_Omega_k0_mcase1_compiled_3D.dat’,

unpack=True)

L = loadtxt(HC + ’_Nonflat_phiCDM_L_mcase1_compiled_3D.dat’, unpack=True)

alpha = loadtxt(HC + ’_Nonflat_phiCDM_alpha_mcase1_compiled_3D.dat’,

unpack=True)

H0 = loadtxt(HC + ’_Nonflat_phiCDM_H0_mcase1_compiled_3D.dat’,

unpack=True)

if mc == 1:

c = 0

L2 = []

Omk2 = []

al2 = []

H02 = []

L3 = []

for q in range(0, len(L), 1):

c += 1

H02.append(H0[q])

L2.append(L[q])
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if c == H0l:

L3.append(abs(trapz(L2, H02)))

al2.append(alpha[q])

Omk2.append(O_k[q])

c = 0

H02 = []

L2 = []

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_L(alOk)_mcase1_’ + str(mc)

+ ’.dat’, L3)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase1_’ + str(mc)

+ ’.dat’, al2)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase1_’ + str(mc)

+ ’.dat’, Omk2)

if mc == 2:

t = split(O_k, alphal)

del O_k

v = split(L, alphal)

del L

w = split(alpha, alphal)

del alpha

u = split(H0, alphal)

del H0

d = []

e = []

g = []

279



h = []

for p in range(0, alphal, 1):

d.append((dstack(split(t[p], Okl))).flatten())

e.append((dstack(split(v[p], Okl))).flatten())

g.append((dstack(split(w[p], Okl))).flatten())

h.append((dstack(split(u[p], Okl))).flatten())

del t, v, w, u

Omk = (array(d)).flatten()

del d

L2 = (array(e)).flatten()

del e

alpha = (array(g)).flatten()

del g

H0 = (array(h)).flatten()

Omk2 = []

L = []

L3 = []

al2 = []

H02 = []

c = 0

for q in range(0, len(L2), 1):

c += 1

if abs(Omk[q]) <= 0.5:

Omk2.append(Omk[q])

L3.append(L2[q])
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if c == Okl:

L.append(abs(trapz(L3, Omk2)))

al2.append(alpha[q])

H02.append(H0[q])

c = 0

Omk2 = []

L3 = []

del L2, Omk

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_L(alH)_mcase1_’ + str(mc)

+ ’.dat’, L)

del L

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase1_’ + str(mc)

+ ’.dat’, al2)

del al2

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_H0_mcase1_’

+ str(mc) + ’.dat’, H02)

if mc == 3:

a = split(alpha, alphal)

del alpha

v = split(L, alphal)

del L

t = split(O_k, alphal)

del O_k

w = split(H0, alphal)

del H0

c = []
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e = []

g = []

h = []

for p in range(0, alphal, 1):

c.append((dstack(split(a[p], Okl))).flatten())

e.append((dstack(split(v[p], Okl))).flatten())

g.append((dstack(split(t[p], Okl))).flatten())

h.append((dstack(split(w[p], Okl))).flatten())

del a, v, t, w

a2 = dstack(split((array(c)).flatten(), alphal)).flatten()

del c

L2 = dstack(split((array(e)).flatten(), alphal)).flatten()

del e

Omk = dstack(split((array(g)).flatten(), alphal)).flatten()

H0 = dstack(split((array(h)).flatten(), alphal)).flatten()

del g, h

f = ND((H0, Omk, a2), L2, rescale=True)

mnO = min(Omk)

mxO = max(Omk)

del H0, a2, L2, Omk

a3 = []

L3 = []

Omk2 = []

H02 = []
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for N in arange(50, 85.001, 0.1):

for N2 in linspace(mnO, mxO, 300):

for N3 in arange(0.01, 5.01, 0.01):

H02.append(N)

Omk2.append(N2)

a3.append(N3)

L3.append(f(N, N2, N3))

a4 = []

L4 = []

L5 = []

Omk3 = []

H03 = []

c = 0

for q in range(0, len(L3), 1):

c += 1

a4.append(a3[q])

L4.append(L3[q])

if c == alphal:

L5.append(abs(trapz(L4, a4)))

Omk3.append(Omk2[q])

H03.append(H02[q])

c = 0

a4 = []

L4 = []

del a3, L3, Omk2, H02

283



savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_L(HOk)_mcase1_’

+ str(mc) + ’.dat’, L5)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase1_’

+ str(mc) + ’.dat’, Omk3)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_H0_mcase1_’ +

str(mc) + ’.dat’, H03)

if mcase == 2:

O_m = loadtxt(HC + ’_Nonflat_phiCDM_Omega_m0_mcase2_compiled_3D.dat’,

unpack=True)

L = loadtxt(HC + ’_Nonflat_phiCDM_L_mcase2_compiled_3D.dat’, unpack=True)

alpha = loadtxt(HC + ’_Nonflat_phiCDM_alpha_mcase2_compiled_3D.dat’,

unpack=True)

O_k = loadtxt(HC + ’_Nonflat_phiCDM_Omega_k0_mcase2_compiled_3D.dat’,

unpack=True)

if mc == 1:

c = 0

L2 = []

Om2 = []

L3 = []

Ok2 = []

alpha2 = []

for q in range(0, len(L), 1):

c += 1

Om2.append(O_m[q])

L2.append(L[q])
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if c == Oml:

L3.append(abs(trapz(L2, Om2)))

Ok2.append(O_k[q])

alpha2.append(alpha[q])

c = 0

Om2 = []

L2 = []

del O_k, alpha, L

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_L(alOk)_mcase2_’ + str(mc)

+ ’.dat’, L3)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase2_’ + str(mc)

+ ’.dat’, alpha2)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase2_’ + str(mc)

+ ’.dat’, Ok2)

if mc == 2:

a = split(alpha, alphal)

del alpha

t = split(O_m, alphal)

del O_m

v = split(L, alphal)

del L

w = split(O_k, alphal)

del O_k

d = []

e = []
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f = []

g = []

for p in range(0, alphal, 1):

d.append((dstack(split(a[p], Okl))).flatten())

e.append((dstack(split(t[p], Okl))).flatten())

f.append((dstack(split(v[p], Okl))).flatten())

g.append((dstack(split(w[p], Okl))).flatten())

del t, v, a, w

alp = (array(d)).flatten()

del d

Om = (array(e)).flatten()

del e

L2 = (array(f)).flatten()

del f

Omk = (array(g)).flatten()

del g

Omk3 = []

L = []

L3 = []

Omk2 = []

alp2 = []

Om2 = []

c = 0

for q in range(0, len(L2), 1):

c += 1
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if abs(Omk[q]) <= 0.5:

Omk2.append(Omk[q])

L3.append(L2[q])

if c == Okl:

L.append(abs(trapz(L3, Omk2)))

Om2.append(Om[q])

alp2.append(alp[q])

c = 0

Omk2 = []

L3 = []

del L2, Om, alp, Omk

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_L(alOm)_mcase2_’ + str(mc)

+ ’.dat’, L)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase2_’ + str(mc)

+ ’.dat’, alp2)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase2_’

+ str(mc) + ’.dat’, Om2)

if mc == 3:

a = split(alpha, alphal)

del alpha

t = split(L, alphal)

del L

v = split(O_m, alphal)

del O_m

w = split(O_k, alphal)

del O_k
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c = []

e = []

f = []

g = []

for p in range(0, alphal, 1):

c.append((dstack(split(a[p], Okl))).flatten())

e.append((dstack(split(t[p], Okl))).flatten())

f.append((dstack(split(v[p], Okl))).flatten())

g.append((dstack(split(w[p], Okl))).flatten())

del a, t, v, w

a2 = dstack(split((array(c)).flatten(), alphal)).flatten()

del c

L2 = dstack(split((array(e)).flatten(), alphal)).flatten()

del e

Om2 = dstack(split((array(f)).flatten(), alphal)).flatten()

del f

Ok2 = dstack(split((array(g)).flatten(), alphal)).flatten()

del g

f = ND((Om2, Ok2, a2), L2, rescale=True)

del Om2, a2, L2

a3 = []

L3 = []

Om3 = []

Ok3 = []
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for N in arange(0.10, 0.71, 0.01):

for N2 in linspace(min(Ok2), max(Ok2), 300):

for N3 in arange(0.01, 5.01, 0.01):

Om3.append(N)

Ok3.append(N2)

a3.append(N3)

L3.append(f(N, N2, N3))

del Ok2

a4 = []

L4 = []

L5 = []

Om4 = []

Ok4 = []

c = 0

for q in range(0, len(L3), 1):

c += 1

a4.append(a3[q])

L4.append(L3[q])

if c == alphal:

L5.append(abs(trapz(L4, a4)))

Om4.append(Om3[q])

Ok4.append(Ok3[q])

c = 0

a4 = []

L4 = []

del Om3, Ok3, a3, L3
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savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_L(OkOm)_mcase2_’

+ str(mc) + ’.dat’, L5)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_Omega_k0_mcase2_’

+ str(mc) + ’.dat’, Ok4)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase2_’

+ str(mc) + ’.dat’, Om4)

if mcase == 3:

O_m = loadtxt(HC + ’_Nonflat_phiCDM_Omega_m0_mcase3_compiled_3D.dat’,

unpack=True)

L = loadtxt(HC + ’_Nonflat_phiCDM_L_mcase3_compiled_3D.dat’, unpack=True)

alpha = loadtxt(HC + ’_Nonflat_phiCDM_alpha_mcase3_compiled_3D.dat’,

unpack=True)

H0 = loadtxt(HC + ’_Nonflat_phiCDM_H0_mcase3_compiled_3D.dat’,

unpack=True)

if mc == 1:

c = 0

L2 = []

Om = []

L3 = []

al2 = []

H02 = []

for q in range(0, len(L), 1):

c += 1

Om.append(O_m[q])

L2.append(L[q])
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if c == Oml:

L3.append(abs(trapz(L2, Om)))

al2.append(alpha[q])

H02.append(H0[q])

c = 0

Om = []

L2 = []

del L2, O_m, alpha, H0

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_L(alH)_mcase3_’ + str(mc)

+ ’.dat’, L3)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase3_’ + str(mc)

+ ’.dat’, al2)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_H0_mcase3_’ + str(mc)

+ ’.dat’, H02)

del L3

if mc == 2:

a = split(alpha, alphal)

del alpha

v = split(H0, alphal)

del H0

t = split(L, alphal)

del L

w = split(O_m, alphal)

del O_m

d = []

e = []
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f = []

g = []

for p in range(0, alphal, 1):

d.append((dstack(split(a[p], H0l))).flatten())

e.append((dstack(split(t[p], H0l))).flatten())

f.append((dstack(split(v[p], H0l))).flatten())

g.append((dstack(split(w[p], H0l))).flatten())

del t, v, a, w

a2 = (array(d)).flatten()

del d

L2 = (array(e)).flatten()

del e

H2 = (array(f)).flatten()

del f

Om2 = (array(g)).flatten()

H3 = []

L = []

L3 = []

Om3 = []

a3 = []

c = 0

for q in range(0, len(L2), 1):

c += 1

H3.append(H2[q])

L3.append(L2[q])
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if c == H0l:

L.append(abs(trapz(L3, H3)))

a3.append(a2[q])

Om3.append(Om2[q])

c = 0

H3 = []

L3 = []

del L2, H2, Om2, a2

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_L(alOm)_mcase3_’ + str(mc)

+ ’.dat’, L)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_alpha_mcase3_’ + str(mc)

+ ’.dat’, a3)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase3_’ + str(mc)

+ ’.dat’, Om3)

del L

if mc == 3:

a = split(alpha, alphal)

del alpha

t = split(L, alphal)

del L

v = split(H0, alphal)

del H0

w = split(O_m, alphal)

del O_m

c = []
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e = []

f = []

g = []

for p in range(0, alphal, 1):

c.append((dstack(split(a[p], H0l))).flatten())

e.append((dstack(split(t[p], H0l))).flatten())

f.append((dstack(split(v[p], H0l))).flatten())

g.append((dstack(split(w[p], H0l))).flatten())

del a, v, t, w

a2 = dstack(split((array(c)).flatten(), alphal)).flatten()

del c

L2 = dstack(split((array(e)).flatten(), alphal)).flatten()

del e

H2 = dstack(split((array(f)).flatten(), alphal)).flatten()

del f

Om2 = dstack(split((array(g)).flatten(), alphal)).flatten()

del g

a3 = []

L3 = []

L4 = []

Om3 = []

H3 = []

c = 0

for q in range(0, len(L2), 1):

c += 1
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a3.append(a2[q])

L3.append(L2[q])

if c == alphal:

L4.append(abs(trapz(L3, a3)))

Om3.append(Om2[q])

H3.append(H2[q])

c = 0

a3 = []

L3 = []

del L2, a2, H2, Om2

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_L(OmH)_mcase3_’ + str(mc)

+ ’.dat’, L4)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_Omega_m0_mcase3_’ + str(mc)

+ ’.dat’, Om3)

savetxt(’2D_’ + HC + ’_Nonflat_phiCDM_H0_mcase3_’ + str(mc)

+ ’.dat’, H3)

This code carries out the final step of the marginalization process, producing one-dimensional

best-fitting values of the cosmological model parameters along with 1- and 2σ confidence in-

tervals of these best-fitting values.

#!/bin/sh

#SBATCH --job-name=1d_Nonflat_phiCDM

#SBATCH --array=1-48:1
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#SBATCH --mem-per-cpu=1G # Memory per core, use --mem= for memory per node

#SBATCH --time=26:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END

module load Anaconda3/5.0.1

python 1d_Nonflat_phiCDM.py $SLURM_ARRAY_TASK_ID

# -*- coding: utf-8 -*-

from numpy import linspace, dstack, split, savetxt, loadtxt,

from numpy import exp, log, trapz, arange,

from numpy import pi, sqrt, array

from scipy.interpolate import NearestNDInterpolator as ND

from scipy.interpolate import interp1d

from scipy.integrate import quad

import matplotlib.pyplot as plt

import sys

Oml = 61

alphal = 500

H0l = 351

Okl = 300
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b1 = 0.6827

b2 = 0.9545

xinc = 1/100000

Linc = 1/100

n = sys.argv[1]

syscount = 0

for data in range(1, 5, 1):

if data == 1:

d = ’Hz_AB’

if data == 2:

d = ’Hz_2B’

if data == 3:

d = ’H(z)only’

if data == 4:

d = ’AB’

for mcase in range(1, 7, 1):

for case in range(0, 2, 1):

syscount += 1

if str(syscount) == n:

break

if str(syscount) == n:

break

if str(syscount) == n:

break

if mcase == 1:
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Ml = Oml*Okl

x0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_Omega_m0_mcase2_3.dat’,

unpack=True)

y0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_Omega_k0_mcase2_3.dat’,

unpack=True)

z0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_L(OkOm)_mcase2_3.dat’,

unpack=True)

if case == 0:

"""

Omega_k0 marginalized

"""

xlab = ’$\Omega_{m0}$’

xlab2 = ’Om’

Il = Okl

x1 = x0

y1 = y0

z1 = z0

if case == 1:

"""

Omega_m0 marginalized

"""

xlab = ’$\Omega_{k0}$’

xlab2 = ’Ok’

Il = Oml

y1 = dstack(split(x0, Oml)).flatten()
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x1 = dstack(split(y0, Oml)).flatten()

z1 = dstack(split(z0, Oml)).flatten()

z2 = []

y2 = []

x = []

y = []

c = 0

for q in range(0, Ml, 1):

c += 1

if case == 0:

if abs(y1[q]) <= 0.50:

z2.append(z1[q])

y2.append(y1[q])

if case == 1:

z2.append(z1[q])

y2.append(y1[q])

if c == Il:

y.append(abs(trapz(z2, y2)))

x.append(x1[q])

z2 = []

y2 = []

c = 0

del y1, x1, z1
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if mcase == 2:

Ml = alphal*Oml

y0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_Omega_m0_mcase2_2.dat’,

unpack=True)

x0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_alpha_mcase2_2.dat’,

unpack=True)

z0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_L(alOm)_mcase2_2.dat’,

unpack=True)

if case == 0:

"""

Omega_m0 marginalized

"""

xlab = ’$\\alpha$’

xlab2 = ’al’

Il = Oml

x1 = x0

y1 = y0

z1 = z0

del x0, y0, z0

if case == 1:

"""

alpha marginalized

"""

xlab = ’$\Omega_{m0}$’

xlab2 = ’Om’
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Il = alphal

y1 = dstack(split(x0, alphal)).flatten()

del x0

x1 = dstack(split(y0, alphal)).flatten()

del y0

z1 = dstack(split(z0, alphal)).flatten()

del z0

z2 = []

y2 = []

x = []

y = []

c = 0

for q in range(0, Ml, 1):

c += 1

z2.append(z1[q])

y2.append(y1[q])

if c == Il:

y.append(abs(trapz(z2, y2)))

x.append(x1[q])

z2 = []

y2 = []

c = 0

del y1, x1, z1
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if mcase == 3:

Ml = H0l*Oml

y0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_H0_mcase3_3.dat’,

unpack=True)

x0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_Omega_m0_mcase3_3.dat’,

unpack=True)

z0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_L(OmH)_mcase3_3.dat’,

unpack=True)

if case == 0:

"""

H0 marginalized

"""

xlab = ’$\Omega_{m0}$’

xlab2 = ’Om’

Il = H0l

x1 = x0

y1 = y0

z1 = z0

del x0, y0, z0

if case == 1:

"""

Omega_m0 marginalized

"""

xlab = ’$H_0$’
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xlab2 = ’H0’

Il = Oml

y1 = dstack(split(x0, Oml)).flatten()

del x0

x1 = dstack(split(y0, Oml)).flatten()

del y0

z1 = dstack(split(z0, Oml)).flatten()

del z0

z2 = []

y2 = []

x = []

y = []

c = 0

for q in range(0, Ml, 1):

c += 1

z2.append(z1[q])

y2.append(y1[q])

if c == Il:

y.append(abs(trapz(z2, y2)))

x.append(x1[q])

z2 = []

y2 = []

c = 0

del y1, x1, z1
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if mcase == 4:

Ml = alphal*Okl

x0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_alpha_mcase1_1.dat’,

unpack=True)

y0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_Omega_k0_mcase1_1.dat’,

unpack=True)

z0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_L(alOk)_mcase1_1.dat’,

unpack=True)

if case == 0:

"""

Omega_k0 marginalized

"""

xlab = ’$\\alpha$’

xlab2 = ’al’

Il = Okl

x1 = x0

y1 = y0

z1 = z0

del x0, y0, z0

if case == 1:

"""

alpha marginalized

"""

z11 = []
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y11 = []

x11 = []

q = 0

f = ND((x0, y0), z0, rescale=True)

for N2 in arange(0.01, 5.01, 0.01):

for N in linspace(min(y0), max(y0), 300):

z11.append(f(N2, N))

y11.append(N)

x11.append(N2)

q += 1

xlab = ’$\Omega_{k0}$’

xlab2 = ’Ok’

Il = alphal

y1 = dstack(split(array(x11), alphal)).flatten()

del x0

x1 = dstack(split(array(y11), alphal)).flatten()

del y0

z1 = dstack(split(array(z11), alphal)).flatten()

del z0

z2 = []

y2 = []

x = []

y = []

c = 0
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for q in range(0, Ml, 1):

c += 1

if case == 0:

if abs(y1[q]) <= 0.50:

z2.append(z1[q])

y2.append(y1[q])

if case == 1:

z2.append(z1[q])

y2.append(y1[q])

if c == Il:

y.append(abs(trapz(z2, y2)))

x.append(x1[q])

z2 = []

y2 = []

c = 0

del y1, x1, z1

if mcase == 5:

Ml = H0l*Okl

y0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_Omega_k0_mcase1_3.dat’,

unpack=True)

x0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_H0_mcase1_3.dat’,

unpack=True)

z0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_L(HOk)_mcase1_3.dat’,

unpack=True)
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if case == 0:

"""

Omega_k0 marginalized

"""

xlab = ’$H_0$’

xlab2 = ’H0’

Il = Okl

x1 = x0

y1 = y0

z1 = z0

del x0, y0, z0

if case == 1:

"""

H0 marginalized

"""

xlab = ’$\Omega_{k0}$’

xlab2 = ’Ok’

Il = H0l

y1 = dstack(split(x0, H0l)).flatten()

del x0

x1 = dstack(split(y0, H0l)).flatten()

del y0

z1 = dstack(split(z0, H0l)).flatten()

del z0

z2 = []
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y2 = []

x = []

y = []

c = 0

for q in range(0, Ml, 1):

c += 1

if case == 0:

if abs(y1[q]) <= 0.50:

z2.append(z1[q])

y2.append(y1[q])

if case == 1:

z2.append(z1[q])

y2.append(y1[q])

if c == Il:

y.append(abs(trapz(z2, y2)))

x.append(x1[q])

z2 = []

y2 = []

c = 0

del y1, x1, z1

if mcase == 6:

Ml = H0l*alphal

x0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_alpha_mcase1_2.dat’,

unpack=True)
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y0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_H0_mcase1_2.dat’,

unpack=True)

z0 = loadtxt(’2D_’ + d + ’_Nonflat_phiCDM_L(alH)_mcase1_2.dat’,

unpack=True)

if case == 0:

"""

H0 marginalized

"""

xlab = ’$\\alpha$’

xlab2 = ’al’

Il = H0l

x1 = x0

y1 = y0

z1 = z0

del x0, y0, z0

if case == 1:

"""

alpha marginalized

"""

xlab = ’$H_0$’

xlab2 = ’H0’

Il = alphal

y1 = dstack(split(x0, alphal)).flatten()

del x0

x1 = dstack(split(y0, alphal)).flatten()
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del y0

z1 = dstack(split(z0, alphal)).flatten()

del z0

z2 = []

y2 = []

x = []

y = []

c = 0

for q in range(0, Ml, 1):

c += 1

z2.append(z1[q])

y2.append(y1[q])

if c == Il:

y.append(abs(trapz(z2, y2)))

x.append(x1[q])

z2 = []

y2 = []

c = 0

del y1, x1, z1

savetxt(’Nonflat_phiCDM_L(’ + xlab2 + ’)_’ + d + ’_mcase’ + str(mcase)

+ ’.dat’, y)

savetxt(’Nonflat_phiCDM_’ + xlab2 + ’_’ + d + ’_mcase’ + str(mcase)

+ ’_1D.dat’, x)
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a = []

for upp in range(1, 2, 1):

print(mcase, case)

if upp == 1:

upper = True

limlab = ’upper’

if upp == 2:

upper = False

limlab = ’lower’

L = interp1d(x, y, kind=’cubic’)

candL1 = []

candr1 = []

candp1 = []

candL2 = []

candr2 = []

candp2 = []

xmax = x[y.index(max(y))]

if upper == True:

k = 1

if xlab2 == ’Ok’:

xlim = 0.5

xmax = -0.5

else:
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xlim = max(x)

if upper == False:

k = -1

if xlab2 == ’Ok’:

xlim = -0.5

else:

xlim = min(x)

z = arange(xmax, xlim, k*xinc)

for r in z:

LCO1tot, error = quad(lambda m: L(m), xmax, xlim)

LCO1, error = quad(lambda m: L(m), xmax, r)

LCO = abs(LCO1/LCO1tot)

#print(LCO, r)

if abs((LCO - b1)/b1) < Linc:

candL1.append(LCO)

candr1.append(r)

candp1.append(abs((LCO - b1)/b1))

if abs((LCO - b2)/b2) < Linc:

candL2.append(LCO)

candr2.append(r)

candp2.append(abs((LCO - b2)/b2))

if LCO >= b2 + 0.01:

break

pmin = candp1.index(min(candp1))

Lmin = candL1[pmin]

rmin = candr1[pmin]
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a.append(mcase)

a.append(Lmin)

a.append(rmin)

a.append(pmin)

pmin = candp2.index(min(candp2))

Lmin = candL2[pmin]

rmin = candr2[pmin]

a.append(Lmin)

a.append(rmin)

a.append(pmin)

a.append(xmax)

savetxt(’Nonflat_phiCDM_L(’ + xlab2 + ’)_’ + d + ’_mcase’ +

str(mcase) + ’.dat’, y)

savetxt(’Nonflat_phiCDM_’ + xlab2 + ’_’ + d + ’_mcase’ +

str(mcase) + ’_1D.dat’, x)

savetxt(’Nonflat_phiCDM_data_’ + xlab2 + ’_’ + d + ’_mcase’ +

str(mcase) + ’.dat’, a)

This code, in two parts, can be run at any point. It simply computes the minimum

value of the four-dimensional (that is, unmarginalized) χ2 function, and the best-fitting

values of the cosmological parameters corresponding to this minimum χ2. The first part

(“phiCDM 3D BFP.py”) locates the minimum χ2 within each of the set of 500 files corre-

sponding to steps along the α axis, and the second part (“phiCDM 3D BFP 2.py”) finds the

minimum of these minima.
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#!/bin/sh

#SBATCH --job-name=Nonflat_phiCDM_BFP

#SBATCH --array=1-500:1

#SBATCH --mem-per-cpu=1G # Memory per core, use --mem= for memory per node

#SBATCH --time=26:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END

module load Anaconda3/5.0.1

python phiCDM_3D_BFP.py

# -*- coding: utf-8 -*-

import sys

from numpy import loadtxt, savetxt

n = sys.argv[1]

syscount = 0

for x in range(1, 501, 1):

for p in range(1, 5, 1):

syscount += 1
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if str(syscount) == n:

break

if str(syscount) == n:

break

if p == 4:

l = ’AB_’

arr = []

g = loadtxt(’Nonflat_phiCDM_chi2_Hz_’ + l + str(x) + ’.dat’,

unpack=True)

f = loadtxt(’Nonflat_phiCDM_chi2_’ + ’H(z)only_’ + str(x) + ’.dat’,

unpack=True)

d = g - f

del g, f

dd = list(d)

del d

if p == 2:

l = ’Hz_2B_’

arr = []

d = loadtxt(’Nonflat_phiCDM_chi2_’ + l + str(x) + ’.dat’, unpack=True)

dd = list(d)

del d

if p == 3:

l = ’H(z)only_’

arr = []

d = loadtxt(’Nonflat_phiCDM_chi2_’ + l + str(x) + ’.dat’, unpack=True)

dd = list(d)
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del d

if p == 1:

l = ’Hz_AB_’

arr = []

d = loadtxt(’Nonflat_phiCDM_chi2_’ + l + str(x) + ’.dat’, unpack=True)

dd = list(d)

del d

qmin = dd.index(min(dd))

arr.append(x)

arr.append(min(dd))

arr.append(qmin)

savetxt(’Nonflat_phiCDM_3D_chi2min_’ + l + str(x) + ’.dat’, arr)

#!/bin/sh

#SBATCH --job-name=Nonflat_phiCDM_BFP

#SBATCH --mem-per-cpu=1G # Memory per core, use --mem= for memory per node

#SBATCH --time=26:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --mail-user=jwryan@phys.ksu.edu
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#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END

module load Anaconda3/5.0.1

python phiCDM_3D_BFP_2.py

# -*- coding: utf-8 -*-

from numpy import loadtxt, arange

for Hc in range(3, 4, 1):

if Hc == 1:

l = ’H(z)only_’

if Hc == 2:

l = ’Hz_2B_’

if Hc == 3:

l = ’AB_’

x = loadtxt(’Nonflat_phiCDM_3D_chi2min_’ + l + ’1’ + ’.dat’,

unpack=True)

x0 = x[0]

x1 = x[1]

x2 = x[2]

for n in range(2, 501, 1):

y = loadtxt(’Nonflat_phiCDM_3D_chi2min_’ + l + str(n) + ’.dat’,

unpack=True)

y0 = y[0]
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y1 = y[1]

y2 = y[2]

if y1 < x1:

x0 = y0

x1 = y1

x2 = y2

print(l)

print(’100*alpha = ’, x0)

print(’chi^2 = ’, x1)

print(x2)

Ok = loadtxt(’Nonflat_phiCDM_Omega_k0_’ + str(int(x0)) + ’.dat’,

unpack=True)

print(’Omega_k = ’, Ok[int(x2)])

count = 0

for K in arange(-2.10, 0.40, 0.01):

for O in arange(0.10, 0.71, 0.01):

for H in arange(50, 85.1, 0.1):

if count == x2:

break

count += 1

if count == x2:

break

if count == x2:

break

print(’Omega_m = ’, O)
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print(’H0 = ’, H)

B.2 emcee codes

Here I wish to thank Shulei Cao for technical advice.

B.2.1 Power law model codes

Here I provide a version of the code I used to compute the constraints on the power law

model using H(z), BAO, QSO-AS, GRB, and HIIG data (see Chapter 10). The text of

the code has been condensed slightly and edited for readability. I have included this code

in this appendix mainly to serve as an illustration of how to apply the emcee module to

the analysis of a simple cosmological model. As in the previous section, I provide the .bash

script followed by the Python code itself.

#!/bin/sh

#SBATCH --job-name=PL_Om

#SBATCH --mem-per-cpu=1G # Memory per core, use --mem= for memory per node

#SBATCH --time=23:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=20

#SBATCH --constraint="mages|elves|heroes|dwarves|moles|wizards"

#SBATCH --gres=killable:1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END
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module purge

module load Python/3.7.0-iomkl-2018b

source ~/virtualenvs/emcee_2/bin/activate

export PYTHONDONTWRITEBYTECODE=1

PYTHON_BINARY=$(which python)

export OMP_NUM_THREADS=1

host=‘hostname‘

time mpirun ${PYTHON_BINARY} Power_law_Om_2.py

echo "Finished run on 32 cores on $host"

# -*- coding: utf-8 -*-

from numpy import genfromtxt, log, matrix, loadtxt, exp, arange, savetxt

from numpy import array, random, inf, isfinite, pi, log10

from numpy import sin, sinh, sqrt, cos, cosh, identity, diag, isnan

import emcee

import sys

from scipy.integrate import quad

from numpy.linalg import inv

from emcee.utils import MPIPool

lab = ’ZBQGH’
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z_obsQ, th_obs, sig_th_obs = loadtxt(’QSO_120.txt’, unpack=True) #QSO data.

z_obs, Hz_obs, sigHobs = loadtxt(’H(z)data.dat’,unpack = True)

##From Table 1 of 1607.03537v2, refs. 4,6,7,10 excluded. H(z) data.

##DM_obs, H_obs, A_obs, s, and Cov are from Table 8 of 1607.03155v1.

DM_obs = array([1512.39, 1975.22, 2306.68])

H_obs = array([81.2087, 90.9029, 98.9647])

##Data points from DR12 website. File "BAO_consensus_results_dM_Hz.txt"

##Covariance matrix from DR12 website. "BAO_consensus_covtot_dM_Hz.txt".

Cov = matrix([[624.707,23.729,325.332,8.34963,157.386,3.57778],

[23.729,5.60873,11.6429,2.33996,6.39263,0.968056],

[325.332,11.6429,905.777,29.3392,515.271,14.1013],

[8.34963,2.33996,29.3392,5.42327,16.1422,2.85334],

[157.386,6.39263,515.271,16.1422,1375.12,40.4327],

[3.57778,0.968056,14.1013,2.85334,40.4327,6.25936]])

Cinv = inv(Cov)

del Cov

Cov2 = matrix([[1.3225, -0.1009],[-0.1009, 0.0380]])

Cinv2 = inv(Cov2)

del Cov2

##See arXiv:2101.08817

c = 299792458/1000 #Speed of light in km/s

Th = 2.7255/2.7 #T_CMB/2.7, from Eisenstein and Hu 1998

#and Fixsen 0911.1955

lm = 11.03 #Standard rod in units of pc
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On = 0.0014 #Neutrino density

ls, lf, zH, els, elf, ezH = loadtxt(’HIIG_minus_GEHR.txt’, unpack=True)

f = 10**(lf)

fu = elf*f*(log(10))

#From an email sent to me by Ana Luisa Gonzalez-Moran. 153 HIIG measurements

G25 = loadtxt(’25_GRB.txt’, unpack=True) #GRB data.

G94 = loadtxt(’94_GRB.txt’, unpack=True) #GRB data.

zG = []

zGe = []

Ep_obs = []

Ep_obs_err = []

Sb_obs = []

Sb_obs_err = []

for q in range(0, len(G25[0]), 1):

zG.append(G25[0][q])

zGe.append(G25[1][q])

Ep_obs.append(G25[2][q])

Ep_obs_err.append(G25[3][q])

Sb_obs.append((10**(-5))*G25[4][q])

Sb_obs_err.append((10**(-5))*G25[5][q])

for q in range(0, len(G94[0]), 1):

zG.append(G94[0][q])

zGe.append(G94[1][q])

Ep_obs.append(G94[2][q])

Ep_obs_err.append(G94[3][q])
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Sb_obs.append((10**(-5))*G94[4][q])

Sb_obs_err.append((10**(-5))*G94[5][q])

def logL(paras): #natural logarithm of the likelihood function.

h, beta, Om, Obh2 = paras[0], paras[1], paras[2], paras[3]

aG, bG, s_ext = paras[4], paras[5], paras[6]

a = 33.268

asig = 0.083

b = 5.022

bsig = 0.058

##Above: HIIG slope and intercept.

def H(h, beta, z): #Hubble parameter

return (100*h)*((1 + z)**(1/beta))

def E(h, beta, z): #Expansion parameter

return H(h, beta, z)/(100*h)

def D_M(h, beta, z): #Transverse comoving distance

##(see astro-ph/9905116v4).

dH = c/(100*h)

I, error = quad(lambda m: 1/(E(h, beta, m)), 0, z)

return I*dH

def rs(h, Om, Obh2): #Sound horizon.

Onh2 = On*(h**2)

Omh2 = Om*(h**2)

A = 55.154*(exp(-72.3*((Onh2 + 0.0006)**2)))
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B = ((Omh2 - Onh2)**0.25351)*((Obh2)**0.12807)

return A/B

def chi_sq(h, beta, Om, Obh2): #Chi^2 for correlated BAO data.

r = rs(h, Om, Obh2)/147.78

DM_th = []

H_th = []

for z in array([0.38, 0.51, 0.61]):

DM_th.append(D_M(h, beta, z))

H_th.append(H(h, beta, z))

Delta = array([(DM_th[0]/r - DM_obs[0]),

(r*H_th[0] - H_obs[0]),

(DM_th[1]/r - DM_obs[1]),

(r*H_th[1] - H_obs[1]),

(DM_th[2]/r - DM_obs[2]),

(r*H_th[2] - H_obs[2])])

prod = (Cinv.dot(Delta)).T

chi_sq1 = Delta.dot(prod)

return chi_sq1.item((0,0))

def chi2_2(h, beta, Om, Obh2): #Chi^2 for BAO data.

for z1 in array([0.122, 0.81, 1.52, 2.334]):

dH = c/(100*h)

if z1 == 0.122:

r = rs(h, Om, Obh2)/147.5

y = (D_M(h, beta, z1))/dH

DV = dH*(((y**2)*z1)/(E(h, beta, z1)))**(1/3)

##Distance parameter

DVobs3 = 539*r #Carter et al., doi:10.1093/mnras/sty2405

324



unc3 = 17*r

chi2DV3 = ((DV - DVobs3)**2)/(unc3**2)

if z1 == 0.81:

DA = D_M(h, beta, z1)/(1 + z1)

DA_obs = 10.75

DA_unc = 0.43

chi2DA = ((DA/(rs(h, Om, Obh2)) - DA_obs)**2)/(DA_unc**2)

if z1 == 1.52:

r = rs(h, Om, Obh2)/147.78

y = (D_M(h, beta, z1))/dH

DV = dH*(((y**2)*z1)/(E(h, beta, z1)))**(1/3)

##Distance parameter

DVobs2 = 3843*r #Ata

unc2 = 147*r

chi2DV2 = ((DV - DVobs2)**2)/(unc2**2)

if z1 == 2.334:

DH = c/(H(h, beta, z1))

DH_obs = 8.99

DM_obs = 37.5

Delta2 = array([(D_M(h, beta, z1)/(rs(h, Om, Obh2))

- DM_obs),

(DH/(rs(h, Om, Obh2)) - DH_obs)])

prod2 = (Cinv2.dot(Delta2)).T

chi2hm = Delta2.dot(prod2)

chi2HM = chi2hm.item((0,0))

return ((chi2DA + chi2HM + chi_sq(h, beta, Om, Obh2)

+ chi2DV3 + chi2DV2),

(chi2HM))
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def chi2h(h, beta): #Chi^2 for H(z).

return sum(((1/sigHobs)*(H(h, beta, z_obs) - Hz_obs))**2)

def th(h, beta, z): #Eq. (2) of 1708.08635v1

#D_A = D_M(1 + z) (see astro-ph/9905116v4) so l_m/D_A =

#l_m(1 + z)/D_M.

#D_M has units of Mpc, so the 10^6 factor converts it to pc.

#1 rad = 2.06265*(10^8) milliarcsec.

return ((180/pi)*(3600*1000))*(1 + z)*(lm/((10**6)*D_M(h, beta, z)))

def chi2_Q(h, beta): #Eq. (6) of 1708.08635v1

N = 0

for i in range(0, 120, 1):

A = (th(h, beta, z_obsQ[i]) - th_obs[i])**2)

B = (sig_th_obs[i] + 0.1*th_obs[i])**2

N += A/B

return N

def mu_obs(v, f, a, b): #Observed distance modulus.

return 2.5*(b*v + a) - 2.5*log10(f*(10**(0))) - 100.2

def mu_th(h, beta, z): #Theoretical distance modulus.

return 5*log10((1 + z)*D_M(h, beta, z)) + 25

def unc1(v, vu, f, fu, a, asig, b, bsig): #uncertainty in \mu_obs

return 2.5*sqrt((b*vu)**2 + (fu/(f*log(10)))**2 +

(bsig*v)**2 + (asig**2))
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def unc3(h, beta, z, zu):

##uncertainty in \mu_th due to redshift uncertainty

I, error = quad(lambda m: 1/(E(h, beta, m)), 0, z)

y = 1

A = (c/(100*h))*((1 + z)/D_M(h, beta, z))*(y/E(h, beta, z))

B = 5/((1 + z)*log(10))

return B*(A + 1)*zu

def chi2_4(h, beta, a, b, asig, bsig):

##Takes HIIG_minus_GEHR.txt as input.

NN = 0

for i in range(0, len(zH), 1):

A = mu_obs(ls[i], f[i], a, b) - mu_th(h, beta, zH[i]))**2

B = unc1(ls[i], els[i], f[i], fu[i], a, asig, b, bsig)**2

C = unc3(h, beta, zH[i], ezH[i])**2

D = B + C

NN += A/D

return NN

def D_L(h, beta, z): #Luminosity distance.

return (1 + z)*D_M(h, beta, z)

def E_iso(h, beta, z, Sb_obs): #Isotropic energy radiated by a GRB.

return (1/(1 + z))*(4*pi*

((D_L(h, beta, z)*(3.086*(10**24)))**2)*Sb_obs)

def frac_err_z(h, beta, z):

##uncertainty in E_{iso} due to redshift uncertainty

I, error = quad(lambda m: 1/(E(h, beta, m)), 0, z)
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y = 1

A = (2*(c/(100*h))*(y/E(h, beta, z)))/(D_M(h, beta, z))

return (1/(1 + z)) + A

def chi2_G(h, beta, aG, bG, s_ext): #Chi^2 for GRB.

gsum = 0

for i in range(0, 119, 1):

A = log10(E_iso(h, beta, zG[i], Sb_obs[i])) -

bG*log10(Ep_obs[i]) - aG

s2 = (((Sb_obs_err[i]/Sb_obs[i])/(log(10)))**2

+ (bG**2)*((Ep_obs_err[i]/Ep_obs[i])/(log(10)))**2

+ s_ext**2 +

(((frac_err_z(h, beta, zG[i])/log(10))**2)*(zGe[i]**2)))

gsum += (A**2)/s2 + log(2*pi*s2)

return gsum

Larg = (-1/2)*(chi2h(h, beta) + chi2_2(h, beta, Om, Obh2)[0]

+ chi2_Q(h, beta) + chi2_G(h, beta, aG, bG, s_ext)

+ chi2_4(h, beta, a, b, asig, bsig))

if isnan(Larg)==True:

Larg=-inf

else:

Larg=Larg

return Larg

def lnprior(paras):

h, beta, Om, Obh2 = paras[0], paras[1], paras[2], paras[3]
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aG, bG, s_ext = paras[4], paras[5], paras[6]

if ((0.2 <= h <= 1) and (0.25 <= beta <= 4) and (0.1 <= Om <= 0.7)

and (0.005 <= Obh2 <= 0.1)

and (40 <= aG <= 60) and (0 <= bG <= 5) and (0 <= s_ext <= 10)):

return 0.0

return -inf

def lnprob(paras):

lp = lnprior(paras)

if not isfinite(lp):

return -inf

return lp + logL(paras)

with MPIPool() as pool:

if not pool.is_master():

pool.wait()

sys.exit(0)

guess = array([0.70, 1, 0.3, 0.0225, 50, 2.5, 5])

##Initial values of parameters.

ndim, nwalkers = 7, 100

##Number of parameters, number of walkers.

p0 = random.rand(ndim*nwalkers).reshape((nwalkers, ndim))*1e-4 + guess

##Randomly perturbs positions of walkers around initial guess.

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, pool=pool)

pos, prob, state = sampler.run_mcmc(p0, 2000)

sampler.reset()

##Sampler resets after 2000 steps.
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sampler.run_mcmc(pos, 20000)

##Sampler runs for a total of 20000 steps.

chain = sampler.flatchain.copy()

chi2 = -2*(sampler.flatlnprobability)

savetxt(’/homes/jwryan/emcee_stable/Results/

Power_law/PL_Om_’ + lab + ’_chi2.txt’, chi2)

savetxt(’/homes/jwryan/emcee_stable/Results/

Power_law/PL_Om_’ + lab + ’.txt’, chain)

The following code analyzes the output chains produced by the code shown above, and

makes two- and one-dimensional parameter constraint plots.

#!/bin/sh

#SBATCH --job-name=PL_Om_plotter

#SBATCH --mem-per-cpu=30G # Memory per core, use --mem= for memory per node

#SBATCH --time=23:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --constraint="mages|elves|heroes|dwarves|moles|wizards"

#SBATCH --gres=killable:1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END

module purge
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module load Python/3.8.2-GCCcore-9.3.0

module load matplotlib

source ~/virtualenvs/emcee_2/bin/activate

export PYTHONDONTWRITEBYTECODE=1

PYTHON_BINARY=$(which python)

export OMP_NUM_THREADS=1

host=‘hostname‘

time ${PYTHON_BINARY} Plotter.py $SLURM_ARRAY_TASK_ID

echo "Finished run on 1 core on $host"

# -*- coding: utf-8 -*-

from __future__ import print_function

from getdist import plots, MCSamples

import matplotlib.pyplot as plt

import sys

import emcee

from numpy import loadtxt, log, array, reshape, arange

from scipy.interpolate import interp1d

lab = ’ZBQGH’

chain = loadtxt(lab + ’.txt’, unpack=True)

print(’chain loaded’)
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h = chain[0,:]

beta = chain[1,:]

Om = chain[2,:]

Obh2 = chain[3,:]

aG = chain[4,:]

bG = chain[5,:]

s_ext = chain[6,:]

del chain

chi2 = loadtxt(lab + ’_chi2.txt’, unpack=True)

print(’chi2 loaded’)

print(min(chi2), "chi2 minimum")

print(h[list(chi2).index(min(chi2))], "<< h best-fitting value")

print(beta[list(chi2).index(min(chi2))], "<< beta best-fitting value")

print(Om[list(chi2).index(min(chi2))], "<< Om best-fitting value")

print(Obh2[list(chi2).index(min(chi2))], "<< Obh2 best-fitting value")

print(aG[list(chi2).index(min(chi2))], "<< aG best-fitting value")

print(bG[list(chi2).index(min(chi2))], "<< bG best-fitting value")

print(s_ext[list(chi2).index(min(chi2))], "<< s_ext best-fitting value")

samps = array([h, beta, Om, Obh2, aG, bG, s_ext])

del h, beta, Om, Obh2, aG, bG, s_ext, chi2

samps = samps.T

names = ["h","beta","Om","Obh2","aG","bG","s_ext"]

labels = [r"H_0", r"\beta", r"\Omega_{m0}",

r"\Omega_{b0}h^2", r"a", r"b", r"\sigma_{ext}"]

samples = MCSamples(samples=samps, names = names, labels = labels)
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g = plots.getSubplotPlotter()

samples.updateSettings({’contours’: [0.6827, 0.9545, 0.9973]})

g.settings.alpha_filled_add=0.4

g.settings.num_plot_contours = 3

#g.settings.axes_fontsize = 0.1

g.settings.axis_tick_step = 0.06

g.triangle_plot([samples], names, filled_compare=False,

line_args={’ls’:’solid’, ’color’:’black’})

g.export(lab + ’.pdf’)

##Saves two-dimensional constraint contours to a .pdf file.

a=samples3.getMeans()

stats = samples3.getMargeStats()

lims0 = stats.parWithName(’h’).limits

lims1 = stats.parWithName(’beta’).limits

lims2 = stats.parWithName(’Om’).limits

lims3 = stats.parWithName(’Obh2’).limits

lims4 = stats.parWithName(’aG’).limits

lims5 = stats.parWithName(’bG’).limits

lims6 = stats.parWithName(’s_ext’).limits

print("means = ", a)

##Prints one-dimensional sample means (best-fitting values).

for (conf, lim0, lim1, lim2, lim3, lim4, lim5, lim6

in zip(samples3.contours,lims0,

lims1, lims2, lims3, lims4, lims5, lims6)):
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print(’h %s%% lower: %.5f upper: %.5f (%s)’%(conf, lim0.lower - a[0],

lim0.upper - a[0], lim0.limitType()))

print(’beta %s%% lower: %.5f upper: %.5f (%s)’%(conf, lim1.lower - a[1],

lim1.upper - a[1], lim1.limitType()))

"""

print(’Omega_{m0} %s%% lower: %.5f upper: %.5f (%s)’%(conf, lim2.lower,

lim2.upper, lim2.limitType()))

print(’Omega_{b0}h^2 %s%% lower: %.5f upper: %.5f (%s)’%(conf,

lim3.lower, lim3.upper, lim3.limitType()))

print(’aG %s%% lower: %.5f upper: %.5f (%s)’%(conf, lim4.lower,

lim4.upper, lim4.limitType()))

print(’bG %s%% lower: %.5f upper: %.5f (%s)’%(conf, lim5.lower,

lim5.upper, lim5.limitType()))

print(’s_ext %s%% lower: %.5f upper: %.5f (%s)’%(conf, lim6.lower,

lim6.upper, lim6.limitType()))

"""

##Above loop prints two-sided confidence intervals on marginalized parameters.

B.2.2 Non-flat φCDM model codes

Here I provide a representative version of a Python code that can be used to compute

constraints on the parameters of the non-flat φCDM model, from H(z) and BAO data,

using emcee. It is much simpler to obtain cosmological model constraints using emcee

compared to the method shown in Sec. B.1. All that is required to produce a likelihood

function is a code similar what I have copied below. Two-dimensional confidence contours,

as well as one-dimensional sample means and confidence intervals, can be obtained from the

output of this code using the same kind of code as what I used to obtain confidence contours

and sample means for the power law model, above.

#!/bin/sh
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#SBATCH --job-name=NFpCDM

#SBATCH --mem-per-cpu=1G # Memory per core, use --mem= for memory per node

#SBATCH --time=10-00:00:00 # Use the form DD-HH:MM:SS

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=48

#SBATCH --constraint="elves|heroes|dwarves|moles|wizards"

#SBATCH --gres=killable:1

#SBATCH --mail-user=jwryan@phys.ksu.edu

#SBATCH --mail-type=ALL # same as =BEGIN,FAIL,END

module purge

module load Python/3.7.0-iomkl-2018b

source ~/virtualenvs/emcee_2/bin/activate

export PYTHONDONTWRITEBYTECODE=1

PYTHON_BINARY=$(which python)

export OMP_NUM_THREADS=1

host=‘hostname‘

time mpirun ${PYTHON_BINARY} Nonflat_phiCDM.py

# -*- coding: utf-8 -*-

from scipy.integrate import odeint #ODE solver
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from numpy import genfromtxt, log, matrix, loadtxt, exp, arange

from numpy import savetxt, array, random, inf, isfinite, pi

from numpy import log10, sin, sinh, sqrt, cos, cosh

from numpy import identity, diag, isnan, reshape, column_stack

from numpy.linalg import inv

from getdist import plots, MCSamples

import emcee

import sys

from scipy.integrate import quad

from math import ceil

from emcee.utils import MPIPool

lab = ’ZB’

K = 0

alx = arange(0.01, 3.01, 0.01)

Om = arange(0.10, 0.71, 0.01)

Hrange = arange(50.0, 85.001, 0.01)

z0 = [2.334, 1.52, 0.81, 0.61, 0.51, 0.38, 0.122]

DM_obs = [1512.39, 1975.22, 2306.68]

H_obs = [81.2087, 90.9029, 98.9647]

##Data points from DR12 website. File "BAO_consensus_results_dM_Hz.txt"

z_obsQ, th_obs, sig_th_obs = loadtxt(’QSO_120.txt’, unpack=True)

z_obs, Hz_obs, sigHobs = loadtxt(’H(z)data.dat’,unpack = True)

##From Table 1 of 1607.03537v2, refs. 4,6,7,10 excluded.
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rfid = 147.60 #Planck, Table 4 of 1502.01589.

##Covariance matrix from DR12 website. "BAO_consensus_covtot_dM_Hz.txt".

Cov = matrix([[624.707,23.729,325.332,8.34963,157.386,3.57778],

[23.729,5.60873,11.6429,2.33996,6.39263,0.968056],

[325.332,11.6429,905.777,29.3392,515.271,14.1013],

[8.34963,2.33996,29.3392,5.42327,16.1422,2.85334],

[157.386,6.39263,515.271,16.1422,1375.12,40.4327],

[3.57778,0.968056,14.1013,2.85334,40.4327,6.25936]])

Cinv = inv(Cov)

del Cov

Cov2 = matrix([[1.3225, -0.1009],[-0.1009, 0.0380]])

Cinv2 = inv(Cov2)

del Cov2

##Cov2 calculated from correlation matrix and uncertainties in

##arXiv:2101.08817

c = 299792458./1000. #Speed of light in km/s

Th = 2.7255/2.7 #T_CMB/2.7, from Eisenstein and Hu 1998

#and Fixsen 0911.1955

On = 0.0014

m = 1.

t0 = 10.**(-4.)

tf = 150.

dt = 10.**(-4.)

t = arange(t0, tf + t0, dt)

a0 = t0**(2./3.) #I assumed a ~ t^(2/3) in the early universe.
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def logL(paras):

h, Obh2, Och2, al, K = paras[0], paras[1], paras[2], paras[3], paras[4]

H0 = 100*h

O = (Obh2 + Och2)/(h**2) + On

def phiCDM(w, t, zz):

p, v, a = w #I used p for phi, v for d(phi)/dt, and a for the

##scale factor.

al, k, m, K = zz #These are the parameters of the model. See below.

f = [v,

-3.*v*(((4./(9.*a**3.))) + (1./12.)*(v**2. + (k*m)/(p**(al)))

- K/(a**2.))**(1./2.)

+ ((k*al*m)/2.)/(p**(al + 1.)),

(((4./9.)/a) + (((a**2.)/12.))*(v**2. +

(k*m)*(p**(-al))) - K)**(1./2.)]

return f

def chi2_2(H0, O, al, K):

k = (8./3.)*((al + 4.)/(al + 2.))*(((2./3.)*(al*(al + 2.))))**(al/2.)

#This is kappa,

#from eq. (2) of arXiv:1307.7399v1.

#initial conditions on phi, d(phi)/dt, a.

p0 = (((2./3.)*(al*(al + 2.)))**(1./2.))*(t0)**(2./(al + 2.))

#Initial value of phi.
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v0 = (((8./3.)*al*(1./(al + 2.)))**(1./2.))/(t0)**(al/(al + 2.))

#Initial value of d(phi)/dt.

w0 = [p0, v0, a0]

zz = [al, k, m, K]

#solution array

sol = odeint(phiCDM, w0, t, args=(zz,))

def Ome(b):

Omegam1 = (4./9.)*(1./(sol[b,2])**3.)

Omegaphi1 = (1./12.)*(((sol[b,1])**2.) + k/((sol[b,0])**al))

Omegak1 = -K/((sol[b,2])**2.)

Omegam = Omegam1/(Omegam1 + Omegaphi1 + Omegak1)

Omegak = Omegak1/(Omegam1 + Omegaphi1 + Omegak1)

return Omegam, Omegak

def rs(h, Obh2, Och2):

Onh2 = On*(h**2)

A = 55.154*(exp(-72.3*((Onh2 + 0.0006)**2)))

B = ((Obh2 + Och2)**0.25351)*((Obh2)**0.12807)

return A/B

def E(O, red, Ok_0, Ophiz):

return (O*((1 + red)**3) + (Ok_0)*((1 + red)**2.) +

Ophiz)**(1/2)

def D_M(H0, q, O, Ok_0):

if Ok_0 == 0:
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return (c/H0)*h0*afin*rr[q]

if Ok_0 < 0:

return (c/H0)*(1/(sqrt(-Ok_0)))*(sin((sqrt(-Ok_0))*

(h0*afin*rr[q])))

if Ok_0 > 0:

return (c/H0)*(1/(sqrt(Ok_0)))*(sinh((sqrt(Ok_0))*

(h0*afin*rr[q])))

def chi_sq(H0, O, Ok_0):

DM_th = []

H_th = []

for q in range(6, -1, -1):

z1 = z0[q]

H1 = H0*E(O, z1, Ok_0, O_phi_z[q])

DM = D_M(H0, q, O, Ok_0)

y = (H0/c)*DM

if 3 <= q <= 5:

DM_th.append(D_M(H0, q, O, Ok_0))

H_th.append(H1)

if z1 == 0.122:

r = rs(h, Obh2, Och2)/147.5

DV = ((c/H0)

*(((y**2.)*z1)/(E(O, z1, Ok_0, O_phi_z[q])))**(1./3.))

DVobs3 = 539*r #Carter et al., doi:10.1093/mnras/sty2405

unc3 = 17*r

chi2DV3 = ((DV - DVobs3)**2)/(unc3**2)

if z1 == 0.81:

DA = DM/(1 + z1)

DA_obs = 10.75
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DA_unc = 0.43

chi2DA = (((DA/(rs(h, Obh2, Och2))

- DA_obs)**2)/(DA_unc**2))

if z1 == 1.52:

r = rs(h, Obh2, Och2)/147.78

DV = ((c/H0)

*(((y**2.)*z1)/(E(O, z1, Ok_0, O_phi_z[q])))**(1./3.))

DVobs2 = 3843.*r #Ata

unc2 = 147.*r

chi2DV2 = ((DV - DVobs2)**2.)/(unc2**2.)

if z1 == 2.334:

DH_obs = 8.99

Dm_obs = 37.5

DH = c/H1

Delta2 = array([(DM/(rs(h, Obh2, Och2)) - Dm_obs),

(DH/(rs(h, Obh2, Och2)) - DH_obs)])

prod2 = (Cinv2.dot(Delta2)).T

chi2hm = Delta2.dot(prod2)

chi2HM = chi2hm.item((0,0))

r = rs(h, Obh2, Och2)/147.78

Delta = array([(DM_th[0]/r - DM_obs[0]),

(r*H_th[0] - H_obs[0]),

(DM_th[1]/r - DM_obs[1]),

(r*H_th[1] - H_obs[1]),

(DM_th[2]/r - DM_obs[2]),

(r*H_th[2] - H_obs[2])])

prod = (Cinv.dot(Delta)).T

chi_sq1 = Delta.dot(prod)
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chi_sq_11 = chi_sq1.item((0,0))

return ((chi2DA + chi2HM + chi_sq_11

+ chi2DV3 + chi2DV2), (chi2HM))

def Ofunc(d):

Omegam1 = (4./9.)*(1./(sol[d,2])**3.)

Omegaphi1 = (1./12.)*(((sol[d,1])**2.) + k/((sol[d,0])**al))

Omegak1 = -K/((sol[d,2])**2.)

Omegam = Omegam1/(Omegam1 + Omegaphi1 + Omegak1)

return Omegam, Omegam1, Omegaphi1, Omegak1

def chi2h(H0, O, Ok_0):

return (sum(((1/sigHobs)*((H0*E(O, z_obs, Ok_0, O_phi_z1))

- Hz_obs))**2))

def D_L(H0, z, q, O, Ok_0):

return (1 + z)*D_M(H0, q, O, Ok_0)

for b in range(0, ceil(tf/dt), 1):

if (O >= Ofunc(b)[0]):

break

afin = sol[b,2]

h0 = (sol[b+1, 2] - afin)/afin

global Ok_0

Ok_0 = Ofunc(b)[3]/(Ofunc(b)[1] + Ofunc(b)[2] + Ofunc(b)[3])

Omegap = ((4./9.)*(1./(sol[b,2])**3.)

+ (1./12.)*(((sol[b,1])**2.) + k/((sol[b,0])**al))

+ -K/((sol[b,2])**2.))

342



rr = []

O_phi_z = []

for z1 in z0:

r = 0

qt = 0

t1 = []

r1 = []

for d in range(0, b+1, 1):

if ((sol[d,2])/afin >= 1./(1. + z1)):

r += 1./(sol[d,2])

qt += 1

if qt == 1:

Omegaphi_z = ((1./12.)*(((sol[d,1])**2.)

+ k/((sol[d,0])**al)))

rr.append(r)

O_phi_z.append(Omegaphi_z/((4./9.)*(1./(sol[b,2])**3.)

+ (1./12.)*(((sol[b,1])**2.) + k/((sol[b,0])**al))

+ -K/((sol[b,2])**2.)))

cBAO = chi_sq(H0, O, Ok_0)[0]

O_phi_z1 = []

for qs in range(0, len(z_obs), 1):

for d in range(0, b+1, 1):

if ((sol[d,2])/afin >= 1./(1. + z_obs[qs])):

Omegaphi2 = ((1./12.)*(((sol[d,1])**2.)

+ k/((sol[d,0])**al)))

O_phi_z1.append(Omegaphi2/((4./9.)*(1./(sol[b,2])**3.)
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+ (1./12.)*(((sol[b,1])**2.) + k/((sol[b,0])**al))

+ -K/((sol[b,2])**2.)))

break

chi2Hz = chi2h(H0, O, Ok_0)

return chi2Hz + cBAO

Larg = (-1/2)*(chi2_2(H0, O, al, K))

if isnan(Larg)==True:

Larg=-inf

else:

Larg=Larg

return Larg

def lnprior(paras):

h, Obh2, Och2, al, K = paras[0], paras[1], paras[2], paras[3], paras[4]

if ((0.2 <= h <= 1) and (0.005 <= Obh2 <= 0.1)

and (0.001 <= Och2 <= 0.99)

and (0.01 <= al <= 3) and (-2.1 <= K <= 0.4)):

return 0.0

return -inf

def lnprob(paras):

lp = lnprior(paras)

if not isfinite(lp):

return -inf, -inf

lp2 = logL(paras)

if not isfinite(lp2):
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return lp, -inf

return lp + lp2, Ok_0

with MPIPool() as pool:

if not pool.is_master():

pool.wait()

sys.exit(0)

guess = array([0.70, 0.0225, 0.4955, 0.01, 0])

ndim, nwalkers = 5, 100

p0 = random.rand(ndim*nwalkers).reshape((nwalkers, ndim))*1e-4 + guess

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, pool=pool)

pos, prob, state, blobs = sampler.run_mcmc(p0, 1000)

sampler.reset()

sampler.run_mcmc(pos, 5000)

OK = reshape(sampler.blobs, 500000, order=’F’)

Ch = sampler.flatchain.copy()

chain = column_stack((Ch, OK))

#chain = sampler.flatchain.copy()

chi2 = -2*(sampler.flatlnprobability)

savetxt(’/homes/jwryan/emcee_stable/Results/NFpCDM_’ + lab

+ ’_chi2.txt’, chi2)

savetxt(’/homes/jwryan/emcee_stable/Results/NFpCDM_’ + lab

+ ’.txt’, chain)
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