
'v

implementing Run-Time Support for Modula-2

by

Wai-Sum Christopher Li

B.A. Ottawa University, 1986

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

Approved b^

mA
Major\ professor
Dr. ViJ-gil Wallentine

i-D

./?•!

_ x '

/'fj'g' Table of Contents

LS
c 2,

Chapter 1 Overview 1

1 .

1

Introduction 1

1 .

2

Scope of the Pro j ect 2

1.3 Getting Acquainted with the UNIX PC 2

1.4 An Anatomical View of

the UNIX System Structure 3

1 .

5

Modula-2 Compilation Process 6

1.6 The Mechanisms of Modula-2 Compilation 6

1.7 Porting the Modula-2 Compiler 9

Chapter 2 The Modula-2 Language 13

2.1 An Introductory Example 13

2.2 A Comparison between Pascal and Modula-2 15

2 .

3

Library Modules 16

2 . 4 The Process Concept of Modula-2 17

2.5 Type Coercion 18

2 . 6 The Prospects of Modula-2 19

Chapter 3 Run-Time Libraries in C 20

3 .

1

Introduction 20

3.2 Adapted Features in the C Library Modules 21

Chapter 4 Coroutine Primitives 22

4.1 Introduction 22

4 .

2

Architectural Overview 22

4 . 3 UNIX PC Microprocessor 23

- 11 -

4.4 VAX Central Processor 25

4.5 Functional Specifications 29

4.6 Conventional Differences in Implemenations. . . .34

Chapter 5 The Standardization of

Modula-2 Libraries 39

5.1 Draft BSI Standard I/O Library

of Modula-2 39

5.2 Layering 40

5.3 Extensibility 41

5 .

4

Robustness 41

5 .

5

The Semantics of

the Top Level Interface 42

5 . 6 Channels 42

5.7 Draft BSI Standard Utility Library

of Modula-2 44

Chapter 6 Modula-2 Libraries on the UNIX PC 48

6.1 Introduction 48

6 .

2

The Implemenation in Assembly 49

6 .

3

The Implementation in C 51

6 .

4

The Implementation in Modula-2 52

Chpater 7 Conclusion and Future Work 58

7.1 Conclusion 58

7.2 Future Work 59

Bibliography 62

Appendix 1 Overview of C Library Routines 65

Appendix 2 Draft BSI Standard I/O Library

of Modula-2 73

Appendix 3 BSI Modula-2 Utility Library Draft

on 07 December 1984 79

Appendix 4 Listing of Programs 98

List of Figures

Figure 1 Architecture of a UNIX System 4

Figure 2 The Modula-2 Compilation Process 6

Figure 3 The Modula-2 Compilation Mechanism 7

Figure 4 The Porting Process of the

Modula-2 Compiler 10

Figure 5 A Listing of Run-Time Library-

Utilities 12

Figure 6 An Introductory Modula-2 Example 14

Figure 7 A Comparison Between Pascal &

Modula-2 16

Figure 8 Programmer's Model of MC68010 24

Figure 9 Coroutine Control Block Created

by NEWPROCESS 30

Figure 10 The Mechanism of

TRANSFER (source , destination

)

33

Figure 11 The Register Set of VAX Central

Processor 35

Figure 12 Two Addressing Modes of MC68000 36

Figure 13 Examples of the VAX Central Processor

and MC68010 Syntax 38

Figure 14 The Assembly Instruction of Pushing

Parameters on the Stack 50

Figure 15 The Stack Configuration of MC68010 51

- V -

Figure 16 A Modula-2 CASE Statement 53

Figure 17 An Application of CASE Statement 54

Figure 18 Levels of Data Abstraction 57

Chapter 1

Overview

1.1 Introduction

The newly developed language by Dr. Niklaus Wirth,

Modula-2, arouses many computer scientist's interest.

According to a survey done by the Modula-2 Users Associa-

tion in August 1986 [1], at least thirty-two universities

are currently using Modula-2 in their courses ranging from

freshmen to graduate level. More than twelve Modula-2

compilers on eighteen different computer architectures or

operating systems spread across four countries are being

employed in the academic, commercial or research institu-

tions. The statistics by no means cover the global

Modula-2 activities, but they reflect the popularity and

potential of the language. Indeed, the modularity of the

language and the capability of data abstraction establish

a milestone in computer programming language development.

Our goal is to make Modula-2 accessible on the UNIX PC's

for research and academic purposes.

[1] Mazlack, Larry, "Academic Modula-2 Survey", The
MODUS Quarterly, issue #6, November 1986, pp. 37 - 41.

1.2 Scope of the Project

This project encompasses implementing the run-time

libraries of Modula-2 in C, the DEFINITION MODULES and

IMPLEMENTATION MODULES in Modula-2, and the coroutine

primitives in Assembly language of MC68010 microprocessor.

Since the standardization of Modula-2 libraries is

underway, the proposal for the standard libraries from the

British Standard Institute is discussed in contrast to our

implementation. The comparison may shed some light on the

directions that this project is heading. However, the

proposed standard libraries will not be actually imple-

mented in this project because no consensus has been

reached on the standards yet. Alterations are still being

made on the proposal.

1.3 Getting Acquainted with the UNIX PC

The AT&T UNIX PC model 3B1 has 2 Megabytes of main

memory, a 40 Megabyte disk drive, and a StarLAN interface.

It also comes with a mouse which makes window and graphics

operations more convenient to perform. Furthermore, it

supports application programs like office productivity,

business management, communications, and system program-

ming.

Being a work station with network connections for

resource sharing makes a UNIX PC a very powerful tool.

Since it has its own processor, it allows direct access to

the languages and programming tools in the UNIX PC's

operating system environment, UNIX System V (Refer to sec-

tion 1.4). At the same time, connecting with other hosts

enables UNIX PC's to access remote files, to transfer

files, and to send electronic mail between hosts; it can

also process data items in a distributed database spread

over many hosts, and provide remote printing capability.

1.4 An Anatomical View of the UNIX System Structure

Figure 1 depicts the high-level architecture of the

UNIX system. The hardware at the center of the diagram

provides the operating system with basic services such as

interrupt and exception handling. The operating system

interacts directly with the hardware, providing common

services to programs and insulating them from hardware

idiosyncrasies. Viewing the system as a set of layers,

the operating system is commonly called the system kernel,

or just the kernel, emphasizing its isolation from user

programs. Because programs are independent of the under-

lying hardware, it is easy to move them between UNIX sys-

tems running on different hardware, if the programs do not

make assumptions about the underlying hardware. For

-4-

Figure 1. Architecture of a UNIH System

instance, programs that assume the size of a machine word

are more difficult to move to other machine than programs

that do not make this assumption.

Programs such as the shell and editors (ed and vi)

shown in the outer layers interact with the kernel by

invoking a well defined set of system calls. The system

calls instruct the kernel to do various operations for the

calling program and exchange data between the kernel and

the program. Several programs shown in Figure 1 are in

standard system configurations and are known as commands

,

but private user programs may also exist in this layer as

indicated by the program whose name is a. out, the standard

name for executable files produced by the C compiler.

Other application programs can build on top of lower-level

programs, hence the existence of the outermost layer in

the figure. For example, the Modula-2 compiler in this

project, mod2, is in the outermost layer of the figure; it

invokes a Modula-2 one-pass compiler, modc2, and loader,

Id, (link-editor), all separate lower-level programs.

Although the figure depicts a two-level hierarchy of

application programs, users can extend the hierarchy to

whatever levels are appropriate. Indeed, the style of

programming favored by the UNIX system encourages the com-

bination of existing programs to accomplish a task.

i.5^ Modula-2 Compilation Process

The compiler that we are working with is Wirth's com-

piler [2], a one-pass Modula-2 compiler for MC68000-based

computers. The compilation process comprises two main

stages : syntax checking in which the native MC68010

machine instructions are generated at the same time—code

generation, and linking. (Refer to figure 2.)

Syntax Checking + Code Generation — > Linking
--> Executable Code

Figure 2 The Modula-2 Compilation Process

1.6 The Mechanisms of Modula-2 Compilation

In actuality, the compilation process is not quite as

simple as shown in Figure 2 . There are more files

involved in the process than just the source file and the

executable object file. A more detailed diagram is shown

in Figure 3

.

When a Modula-2 source file is being compiled, it

will first be checked for syntax errors. At this point,

the compiler will refer to the symbol files when it comes

[2] This Modula-2 compiler was written by Dr. Niklaus
Wirth of Institut fur Informatik, Swiss Federal Insti-
tute of Technology, Zurich, Switzerland.

-7-

ffi

a «- _.
O U u.
<- a) « u.3 -IS O
<-> A «-

(_>
o> a w
X

o «
a

zn a> <u _
i_ > — -^ <u

«J — TT C •=
l_ £ & O) 3° o E f= 32— L. o C oJ <° u 5 £

§ = =

<= o

0) _u

u

c
o

a.

E
o

o
I
0)

— a) o «° u> — - a>

I E E £ i
t" <_> a> £—

' TZJ

c
-. .20MB'» U Q f
S a) o i;
3)J= o £

a
D>

i i

0)

01

g a.

3 =
O »-

across any calls for imported objects which may be pro-

cedures, functions, types, constants, or even variables.

The symbol files are the compiled DEFINITION MODULES in

which all the exported objects are declared [3]. In so

doing, any invalid procedure or function calls, misuse of

variables, or incompatibility of types can be uncovered

when they are compared against the symbols files.

After filtering all the syntactical errors, an

unlinked object file will be generated. The reason the

object file is unlinked is that all the addresses of the

imported elements have not yet been specified. They have

only been checked for syntactical validity, but there is

still no indication of where to look for the implementa-

tion for each imported element. The UNIX link editor will

help resolve this dilemma. It is also an issue of reloca-

tion, which simply means, in this context, the implementa-

tion of the functional objects are separate from the com-

piler module. Hence, modifications made on the implemen-

tation modules will not directly affect the compiler.

Compilers written with the relocation technique then

become more portable.

All the implementation modules must have been

[3] Procedure declarations consist of a procedure head-
ing only; whereas types, variables, and constants must
be declared in full details.

- 9 -

compiled and archived to a library archive file at this

point. The UNIX link editor then links the unlinked

object file with the library archive file and resolves all

the external references which can be found in the archive

file. If there are no more error messages, an executable

object file (COFF, Common Object File Format) will be gen-

erated. This complete object file can then be loaded and

executed.

1.7 Porting the Modula-2 Compiler

At present, there is not a Modula-2 compiler avail-

able on the UNIX PC. The construction of one for the UNIX

PC is now underway. This compiler is written in Modula-2

then compiled and linked by the Modula-2 compiler (m2c)

and link editor on the AT&T 3B15. The executable object

file generated is the UNIX PC cross-compiler which runs on

the AT&T 3B15 to compile the UNIX PC compiler source once

again to generate the unlinked object file. This unlinked

object file is specially designed for the UNIX PC; it can

then be physically ported to a UNIX PC. (See Figure 4 for

details of this process.

)

Before a UNIX PC Modula-2 compiler can be con-

structed, the unlinked object file has to have all its

undefined external references resolved. In other words.

10-

UNIHPC
Compiler

source

UNIX PC

Compiler-

source

3b15
Modula-2
compiler

3b15
Link

editor

UNIX PC

Cross-

Compiler

Run-time

libraries

in C

Unlinked

COFF

file

Move to UNIX PC

UNIX PC

Link

editor

UNIX PC

Modula-2
Compiler

Figure 4 The Porting Process of the Modula-2 Compiler

- 11 -

run-time libraries have to be linked with the unlinked

object file by the UNIX PC link editor to supply the

external references. In order for the imported elements

to execute properly, the run-time libraries must be writ-

ten in a language available on the UNIX PC; this is neces-

sary before the UNIX PC Modula-2 compiler is generated.

For the time being, the only high-level language processor

that is available on our UNIX PC's is UNIX System's C com-

piler [4]. C was chosen to be the language for the run-

time libraries. After linking, a UNIX PC Modula-2 com-

piler results. The whole process is captured in Figure 4.

In order for the Modula-2 compiler to function prop-

erly, the run-time libraries in C must include some file

system utilities, operations on storage space, interac-

tions with the terminal (eg. standard input and output),

and some other miscellaneous utilities. The table below

summarizes the procedures, functions, types, variables,

and constants that are going to be included in the run-

time libraries.

[4] The UNIX System's C compiler, cc, is part of the
UNIX System Software Generation System (SGS). It con-
verts C programs into Assembly language programs that
are ultimately translated into object files by the as-
sembler, as. The link editor. Id, collects and merges
object files into executable load modules.

12

InOut : WriteString, Writelnt, WriteCard, WriteHex,
WriteLn, WriteOct, Write, EOL.

Storage : ALLOCATE, DEALLOCATE.

DateTime : TimeType , Time

.

Terminal: WriteString, Read, WriteLn, Write.

FileSystem
: Create, Delete, Open, Close, Done, ShowStatus,
WriteWord, WriteShortWord, WriteByte, WriteChar,
WriteRecord, ReadChar, ReadWord, SetPos, GetPos,
ModeType, File, CreateTempfile.

Arguments
: ArgCount , GetArgument

.

Figure 5 A Listing of Run-Time Library Utilities

- 13 -

Chapter 2

The Modula-2 Language

The Modula-2 language was developed by Professor Nik-

laus Wirth at the Technical University of Zurich. The

language was a result of previous experience with the

languages Pascal and Modula (a small experimental

language). Being a direct descendent of Pascal, Modula-2

has inherited most of its semantics and some of its syntax

from that language. The differences between Modula-2 and

Pascal will be discussed in a later section 2.2.

2_.X_ An Introductory Example

Figure 6 shows a small example of a complete Modula-2

program. All reserved words and standard identifiers are

written in uppercase letters while all user-defined names

are in mixed case.

14

MODULE myprogram;
FROM InOut IMPORT WriteString, ReadCard, , WriteReal,

ReadReal , Done

;

VAR x,y : REAL;
i,k : CARDINAL;

BEGIN
REPEAT

WriteString! "Enter value for 'x':");
ReadReal (x)

;

IF Done THEN
WriteString ("Enter value for 'i':");
ReadCard(i)

;

IF Done THEN
Y := 1.0;
FOR k := 1 TO i DO y := y * x END;
WriteString("(x**i = ");
WriteReaKy, 8);

END;
END;

UNTIL NOT Done;
END myprogram.

Figure 6 An Introductory Modula-2 Example

The Modula-2 language is highly modular. A module

starts with an IMPORT list which declares the set of

separate modules needed inside the current module. The

rest of the code may look quite familiar for Pascal pro-

grammers. Nevertheless, there are several noteworthy

points. Note that the IF statements are closed by a

matching END, no matter how may statements appear in the

THEN branch; there is no BEGIN to go with every END,

except the one enclosing the body of the main program. At

the end of the program, END is followed by the name of the

MODULE.

- 15 -

2.£ A Comparison between Pascal and Modula-2

Besides the differences mentioned in the previous

section, there are some deficiencies of Pascal that are

accommodated in by the current features of Modula-2. Fig-

ure 7 is sketched to display the contrast between Pascal

and Modula-2.

Specific shortcomings of Pascal include :

1. Fixed size arrays.

2. The absence of static variables, other than global
variables. The use of global variables often forces a
scope larger than desired.

3. No "else" clause in the case statement.

4. No facilities for separate compilation.

5. No facilities for data hiding. Subprograms are bound
to a particular data representation. This limits the
level of data abstraction that is possible.

6. The declaration order (i.e., constants, types, vari-
ables, subprogram) inhibits declarations from being
positioned near their point of application.

7. Type checking can never be suppressed. This facility
might be desired in exceptional circumstances.

8. No facilities for concurrent processing.

Corrective features present in Modula-2

1. Modula-2 supports dynamic arrays.

2. Variables declared in a library module stay "alive"
for the duration of a program's existence. The scope
of these variables can be carefully controlled.

3. Case statements can use an "else" clause.

16

4. Separate compilation with rigorous cross-reference
checking is provided by the language.

5. Data hiding is achieved through the module and the
opaque type.

6. The declaration order for data objects is totally
relaxed.

7. Type checking may be suppressed by using the WORD
type.

8. Modula-2 provides complete support for concurrent
processes.

Figure 7 A Comparison Between Pascal & Modula-2

2.^ Library Modules

A library module offers a set of named facilities

that can be EXPORTed to other modules. A main module,

however, can only IMPORT. Furthermore, the source text of

a library module consists of two parts : the DEFINITION

part which describes the interface offered to other

modules , and an IMPLEMENTATION part which contains the

code (procedure bodies and variables) necessary to imple-

ment the offered interface.

Prior to the execution of the statement following

BEGIN in the main module, all other modules which are

IMPORTed will have their executable statement part exe-

cuted. This is because variables declared in such modules

have the same lifetime as the main module and are there-

fore frequently used for storing information needed

- 17 -

between successive calls of procedures in the module. For

instance, the "InOut" module needs an initialized file

descriptor variable for reading characters from the user

terminal. This variable should be initialized by the

"InOut" module itself. The linker will ensure that such

library modules are initialized themselves before the main

program starts. Due to its special role as initialization

code, the statements between BEGIN and END of a MODULE are

called the initialization part of the module.

One very important aspect of the Modula-2 language

system is version control. A definition module is "com-

piled" into a symbol file which not only contains the

definition module in an internal and checked form, but

also includes a unique compilation identification (eg.

time-stamp). When a DEFINITION MODULE carries a "newer"

time-stamp than that of the IMPLEMENTATION MODULE, it

implies that the implementation may not be consistent with

the DEFINITION MODULE. Thus, a version conflict is spot-

ted. This feature is of indispensable importance espe-

cially in large projects.

2.i The Process Concept of Modula-2

Surprisingly, there are no built-in linguistic con-

structs for handling concurrency. However, the language

- 18 -

is defined in such a manner that concurrent execution of

outermost level procedures is assumed possible, implying

that variables declared at the static level (e.g. "x"

,

"y", "i" and "k" of Figure 6) are potentially shared vari-

ables. Also, the built-in module SYSTEM exports a PROCESS

type and a set of primitives for explicitly saving and

restoring the central processor state, as well as primi-

tives for establishing mutual exclusion and for dealing

with the interrupt system of the target computer. For

instance, the SYSTEM procedure call "TRANSFER (current,

new)" saves the current state of the process in "current"

and restores a processor state from the PROCESS variable

"new". Since Modula-2 was specially designed for a single

processor machine, it can attain only so called "quasi-

concurrency"

.

2-1 Type Coercion

Although strongly typed in general, the Modula-2

language has escape mechanisms which allow arbitrary types

to be imposed on a particular value. For instance, if T

is a type name, the expression T(e), where e is an arbi-

trary expression, is a valid expression of type T. Also,

formal parameters of type ARRAY OF WORD will be compatible

with any actual argument type.

- 19 -

2_.§_ The Prospects of Modula-2

The British Standard Institute is attempting to pro-

duce a standard proposal for the language. Because of the

magnitude of the job, the proposal was started in 1984 and

is expected to be finished in 1988, but so far nothing has

been finalized. Nevertheless, the Modula-2 language is

gaining its popularity among many educational institu-

tions.

- 20 -

Chapter 3

Run-Time Libraries in C

3..JL Introduction

As discussed in section 1.7, the one-pass Modula-2

compiler for the AT&T UNIX PC's model 3B1 is written in

Modula-2. It is first compiled on an AT&T 3B15 and then

ported to the UNIX PC. There are six fundamental library

modules that the compiler will need and they are imple-

mented in C. Each of the library modules may contain

types, variables, constants or procedures.

In any kind of compilation, there must be some files

involved, at least the source code. Therefore, the

library "FileSystem" is in the run-time libraries to sup-

port different operations with files. In order to echo

back the status of the compilation, "InOut" and "Terminal"

are also included to direct messages generated by the com-

piler to the standard output and the screen respectively.

There are also "Storage" to provide work space, "Argu-

ments" to take the arguments on the command line, and

"DateTime" to generate time-stamps for version conflicts

checking. The components of each library modules will be

discussed in Appendix 1.

- 21 -

3_.2_ Adapted Features of the C Library Modules

When I wrote and used this set of library modules,

some special features I had to be aware of. As it will be

stated again in section 6.3, the order of pushing the

parameters on the stack in C is not the same as in

Modula-2. "CIMPORT" is used in the Modula-2 programs to

instruct the compiler to push the parameters in a proper

order when importing C routines. The number of bytes for

types INTEGER and CARDINAL in Modula-2 does not match with

those in C and there is even not a CARDINAL type in C.

Then the unsigned integer is used in lieu of CARDINAL.

The UNIX PC cross compiler prefixes the imported objects

by their library module names and an underscore in the

process of code generation. Therefore, in order for the

compiler to recognize the imported objects from the C rou-

tines , the library module name and an underscore also have

to be added to the object names whenever an imported

object is used. These feature are temporarily adapted to

support the execution of the UNIX PC cross compiler. Once

the UNIX PC Modula-2 compiler is created, then all the

library modules can be written in Modula-2 and the normal

Modula-2 syntax can be resumed.

- 22 -

Chapter 4

Coroutine Primitives

4.1^ Introduction

NEWPROCESS and TRANSFER are procedures from a

Modula-2 library called SYSTEM. They are the primitives

for concurrent programming in Modula-2. Since these two

procedures involve manipulating the registers, they are

implemented in Assembly (MC68000 microprocessor). Before

each of the coroutine primitives is discussed, let's fami-

liarize ourselves with the microprocessors that we will be

dealing with.

4.2 Architectural Overview

NEWPROCESS and TRANSFER are implemented in Assembly

language (MC68010 16-/32-bit microprocessor). The

corresponding implementation (for VAX Central Processor)

on DEC VAX 11/780 was taken as a reference.

Although the MC68010 microprocessor and VAX Central

Processor are two different processors, the essence of the

low-level process operations is based on some common

grounds. The following sections serve to elucidate suc-

cinctly and yet thoroughly theses fundamental concepts of

concurrent programming.

- 23 -

4.3_ UNIX PC Microprocessor

The AT&T UNIX PC uses a MC68010 16-/32-Bit Virtual

Memory Microprocessor (Reference number ADI-942) intro-

duced by Motorola in 1979. (M68000 is used hereafter to

refer to the M68000 16-/32-bit microprocessor architecture

of which MC68010 is an implementation.

)

The M68000 executes instructions in one of two

modes --user mode or supervisor mode. The user mode is

intended to provide the execution environment for the

majority of application programs. The supervisor mode

allows some additional instructions and privileges and is

intended for use by the operating system and other system

software.

«

As shown in the user programmer ' s model in Figure 8

,

the M68000 offers sixteen 32-bit general purpose registers

(D0-D7, A0-A7), a 32-bit program counter, and an 8-bit

condition code register. The first eight registers (D0-

D7) are used as data registers for byte (8 -bit), word

(16-bit), and long word (32-bit) operations. The second

set of seven registers (A0-A6) and the stack pointer (USP)

may be used as software stack pointers and base address

registers. In addition, the address registers may be used

for word and long word operations. All of the sixteen

registers may be used as index registers.

24

31 16 15 8 7

31 16 15 8 7

M-

DO

Dl

D2

D3

D4

D5

D6

D7

AO

A1

A2

A3

_ A4

A5

A6

A7

Data

Registers

Address
Registers

User
1 (USP) Stack Pointer

I PC Program Counter

] ccr Condition

Code Register

Figure 8 Programmer's Model of MC680 10

- 25 -

In most systems using the MC68010 as the central pro-

cessor, such as the AT&T UNIX PC, only a fraction of the

address space will actually contain physical memory. How-

ever, by using virtual memory techniques the system can be

made to appear to the user to have a large amount of phy-

sical memory available.

The basic mechanism for supporting virtual memory in

computers is to provide only a limited amount of high-

speed physical memory that can be accessed directly by the

processor while maintaining an image of a much larger vir-

tual memory on secondary storage devices such as large

capacity disk drives. When the processor attempts to

access a location in the virtual memory map that is not

currently residing in physical memory (referred to as page

fault), the access to that location is temporarily

suspended while the necessary data is fetched from the

secondary storage, and placed in physical memory; the

suspended access is then completed. The MC68010 provides

hardware support for virtual memory with the capability of

suspending an instruction ' s execution when a bus error is

signaled and then completing the instruction after the

physical memory has been updated as necessary.

4.4 VAX Central Processor

- 26 -

Since NEWPROCESS and TRANSFER are modeled after the

implementation for DEC VAX 11/780 central processor, we

will be focusing on only the issues related to concurrent

programming on the VAX such as processes, registers, and

the stack.

VAX architecture is intended to support multiprogram-

ming, the concurrent execution of a number of processes in

a single computer system. (A process can be defined for

now as a single stream of machine instructions executed in

sequence .

)

A VAX process exists in and operates on a memory

space of four Mega bytes ; certain addresses and data are

kept in the sixteen 32-bit general registers; and a small

number of processor state variables are kept in a special

register called the Processor State Longword, or PSL. The

combined set of information in memory, general registers,

and PSL actually defines a process.

The VAX provides sixteen general registers for tem-

porary address and data storage. Registers do not have

memory addresses, but are accessed either explicitly by

inclusion of the register number in an operand specifier,

or implicitly by machine operations which make reference

to specific registers. Certain registers have specific

uses and special names:

- 27 -

PC R15 is the Program Counter (PC). The processor

updates it to address the next byte of the program;

therefore, PC is not used as a temporary, accumula-

tor, or index register.

SP R14 is the Stack Pointer (SP). Several instructions

make implicit references to SP, and most software

assumes that SP points to memory set aside for use as

a stack. There is no restriction on the explicit use

of other registers (except PC) as stack pointers,

though those instructions which make implicit refer-

ences to the stack always use SP.

FP R13 is the Frame Pointer (FP). The VAX procedure

call convention builds a data structure on the stack

called a stack frame. The CALL instructions load FP

with the base address of the stack frame, and the

RETurn instruction depends on FP's containing the

address of a stack frame. Further, VAX software

depends on maintenance of FP for correct reporting of

certain exceptional conditions.

AP R12 is the Argument Pointer (AP). The VAX procedure

call convention uses a data structure called an argu-

ment list, and needs AP as the base address of the

argument list. The CALL instructions load AP in

accordance with that convention, but there is no

- 28 -

hardware or software restriction on the use of AP for

other purpose.

R6:R11 Registers 6 through 11 have no special signifi-

cance either to hardware or the operating system.

Specific software will assign specific uses for

each register.

R0:R5 Registers through 5 are generally available for

any use by software, but are also loaded with

specific values by those instructions whose execu-

tion must be interruptible—the character string,

decimal arithmetic, Cyclic Redundancy Check, and

Polynomial instructions. The specific instruction

descriptions identify which registers are used,

and what values are loaded into them.

A stack is implemented in the VAX by a block of

memory and a general register which addresses the "top" of

the stack. The "top" of the stack is that location in the

block which contains the next candidate for removal. An

item is added to the stack ("pushed on") by decrementing

the register which serves as the stack pointer, and stor-

ing the item at the address in the updated register. The

pointer is decremented by the length of the item added to

the stack, to allow enough room for it. Conversely, the

top item is removed ("popped off") by adding the length of

- 29 -

the item to the stack pointer after the last use of the

item.

4.5 Functional Specifications

NEWPROCESS (p: PROC; wkspadr: ADDRESS;
wkspsize: CARDINAL; VAR cor : PROCESS);

This procedure creates a new process. Four parame-

ters are needed in order to call this procedure. "p" is a

parameterless procedure used as the body of the coroutine.

This procedure contains the statements executed by the

coroutine, "wkspadr" is the address of the start of a

block previously allocated memory used for the work space

of the coroutine. This block will contain the coroutine's

local variables and its state of execution while it is

suspended, "wkspsize" is the size, in bytes, of the pre-

allocated block of space which starts at "wkspadr". The

larger the size and number of local variables in the

coroutine are, the larger this parameter should be. PRO-

CESS "cor" is the new initialized coroutine. It is ini-

tialized in a state such that when control is transferred

to it the first time, execution starts at the beginning of

procedure "p". The coroutine will remain in existence

until the entire program terminates.

The way this procedure works is shown in Figure 9

.

30 -

s
a
oa

s

3
O

5

|
<—

>

o

I
o

3
o
u
ou

5
so

>

a 5

a, 8 5 o
J3

'

i i i i

i i i i

u
£
.3

11
a.

IS 3

£,

^ 1
ai 5

CO

.2

1

^ <o

- 31 -

Therefore, the following paragraph should be read in con-

junction with the figure. First, the address that

"wkspadr" carries is moved to a register, rl. "wkspsize"

is subtracted from rl to designate a block of memory for

the new process called coroutine control block or ccb and

meanwhile, move the stack pointer to the end of the stack.

The first byte of the block, "status", is turned off to

indicate the process has not started yet. The entry point

of the process and the size of the stack are stored in the

second and third byte of the block respectively. The con-

tent of rl, which is the address of the end of the stack,

is returned in "cor" . Since all the necessary information

to execute the coroutine is captured in the ccb, a new

process is thus created. It can be referred to as "cor"

later on.

TRANSFER (VAR source, destination: PROCESS);

When this procedure is called, coroutine "source"

will be suspended and coroutine "destination" will be

activated. The first time a coroutine gets control in

this manner, it starts at the beginning of the parameter-

less procedure assigned to it. Subsequent transfers of

control to that coroutine result in execution resuming

with the first statement after the TRANSFER call that

caused it to be suspended.

- 32 -

Procedure TRANSFER has a slightly more complex

mechanism in its implementation than NEWPROCESS. Figure

10 shows the modifications made on the coroutine control

blocks in the course of transferring control from process

"source" to process "destination".

Once TRANSFER has been invoked, the return address of

the executing coroutine is saved in its ccb. Then the

current states of all the registers are pushed into the

stack so that the run-time environment can be restored

when the control is switched back to coroutine "source".

The register, rl, is designated to contain the ccb address

for the current running process; whereas register r2 is

made to point to coroutine "destination" . The current

stack pointer is stored in "savesp" of "source's" ccb.

After modifying "source's" ccb, the new process "des-

tination" gets ready to run. If the status shows the pro-

cess has not been executed before, the status byte is

clear, then the status will be set to 1. After getting

the entry point address of the coroutine and setting the

frame pointer and the stack pointer to the stack area of

the new process, coroutine "destination" is called. The

control will not return until the procedure that "destina-

tion" represents terminates. The whole program will also

terminate thereafter.

-33

4u
a

fl
i *

a
|o
u
o

a*
.2

I

tn

I
40

&o

o
P-,

I

— °o

a*
u

I
«q

u S

I "

1o
u
oo

$ a
"3

|— a

4-> .C
0> 4_>

.2

^H &
o
a
(0

'

1

Y
U
o

V) **

^
(1)

w i
=

CO

.2

1
U

1

w

60

1
1/)

O

I
I
SO

tt

« ft"

.2 J

Q

S 5 o
01

u,
M ^-^

1*
5 <d

9. 2 2
.* > 3

u
H

£
.2

5

3

— :.: «°

- 34 -

However, if the status byte shows that the new pro-

cess has been run before, the stack pointer will be

assigned to where "savesp" indicates. In fact, it is the

statement right after the last TRANSFER call from corou-

tine "destination". All the registers previously pushed

into the stack are popped off now and the previous run-

time environment is resumed. Therefore, the new process

can continue its execution. At the same time, control is

returned to the process representing "source" and it

begins executing the rest of its code.

i_.§_ Conventional Differences in Implementations

A number of differences in conventions between these

two processors were encountered and resolved in the course

of implementing the coroutine primitives.

For the VAX Central Processor, registers are named

"rn" where n is an integer from to 15. A table of the

VAX Central Processor registers special usage is shown in

Figure 11. MC68010, however, has two categories of regis-

ters, namely data registers (dO to d7) and address regis-

ters (aO to a7). Unlike the register set of VAX Central

Processor, there is not a register dedicated to be an

Argument Pointer. The offset of the Frame Pointer is used

to find the addresses of the arguments in MC68010.

35

Register Name flssembly

SyntaK
Assigned Function

rO SrO
Results of functions,

status of services

1 rl JSrl Results of functions

2, 4 r2, r4 Sr2, !Sr4

Length counter in

character & decimal
instructions

3, 5 r3,r5 Sr3, Xr5

Address counter in

character & decimal
instructions

6- 11 r6 -rll S6 - £11 General-purpose

12 AP Sapor %rl2 Argument pointer

13 FP Sfpor Xr 13 Frame pointer

14 SP ISspor Sri 4 Stack pointer

15 PC Spc or Sri 5 Program Counter

Figure 1 1 The Register Set of UflH Central Processor

- 36

Postincrement Addressing Mode

15 14 n 12 11 10 9 8 7 6 5 4 3 2 1

A7 A6 A5 A4 A3 A2 Al AO D7 D6 D5 D4 D3 D2 Dl DO

Predecrement Addressing Mode

15 14 n 12 11 10 9 8 7 6 5 4 3 2 1

DO Dl D2 D3 D4 D5 D6 D7 AO Al A2 A3 A4 A5 A6 A7

Figure 12 Two Addressing Modes of MC68000

- 37 -

Note that the Frame Pointer and the Stack Pointer are

located at registers 13 and 14 in Figure 11. In MC68010,

the corresponding registers reside in a7 and a6 respec-

tively. Moreover, the configuration of the MC68010 regis-

ters appears to be reversed in the predecrement addressing

mode and the postincrement addressing mode (Refer to Fig-

ure 12) when registers are to be transferred or masked.

Registers are pushed on the stack and the stack pointer is

decremented—predecrement addressing mode—and poped out

before the stack pointer is incremented- -postincrement

addressing mode. However, masking the registers does not

alter the configuration of registers on VAX.

Furthermore, the arguments are pushed onto the stack

in just an opposite order in these two processors. On

VAX, the first argument is pushed down onto the stack

first; however, MC68010 does the opposite, the last argu-

ment gets pushed down first.

Since Assembly Language is very machine dependent,

variations in syntax among different processors are inev-

itable. The syntax of MC68010 and VAX Central Processor

diverse in size specification, global declaration, address

indirection, and some other individual commands. Examples

are listed in Figure 13.

- 38

VAX Procesisor MC68010 Description
calls $n, <ea> jsr <ea> Call a subroutine
jeql beq.b Jump when equal
pushr movm.l &<>, -(%sp) Push registers
popr movm.l (%sp)+, &<> Pop registers
ret rts Return from subroutine
movl mov.l Size specification

(1 vs .1)
mova lea load address
*n(ap) 2 mov statements Address indirection
$ & Value sign

Figure 13 Examples of VAX Central Processor
and MC68010 Syntax

39

Chapter 5

The Standardization of Modula-2 Libraries

The British Standard Institute (BSD has not come to

a consensus on a standard proposal for the Modula-2

libraries at the time this report is written. Neverthe-

less, some articles and personal attendum have been pub-

lished to voice their opinions on the standards.

The standard I/O libraries and the utility libraries

from BSI are discussed so that we can gain a wholesome

perspective on standardization of Modula-2 libraries.

5.1 Draft BSI Standard I/O Library of Modula-2

In their interim report on the progress of the stan-

dard I/O library, the following three properties were

specified as their design goals :

(i) it should be layered to ease implementation and to

allow different types of user access to features and

facilities of varying levels of power and sophistica-

tion;

(ii) it should be extensible so that facilities for user-

defined data types and device-specific drivers can be

added at will;

- 40 -

(iii)it should be robust so that ordinary high-level

language programmers can have error-free and crash-

free access to the I/O devices without having to

resort to doing their own parsing.

5^2 Layering

The current state of the design sees three layers

the bottom, middle, and top layer.

The bottom level contains the device-specific driver

modules. There must be a module for each device to be

accessed through a Modula-2 program.

The middle level implements a buffering system

between the lower level device drivers and the higher

level type I/O modules. This level provides a

character/word stream to any module at the top level.

The top level contains the type-specific modules.

They are modules of the same set of operations for each

standard Modula-2 simple type which are BOOLEAN, CARDINAL,

INTEGER, REAL, and CHAR. They are named after the

corresponding type with a suffix "10" attached to it in

the standard I/O library. Each component of the standard

set of operations will be discussed individually in a

later section.

- 41

5_.3_ Extensibility

When data of a specific type is used, the relevant

I/O modules must be imported. When a new type is defined,

the programmer should be able to create a similar module

to handle that type. Therefore, I/O operations among

various types are standardized.

The I/O library can serve four classes of users :

(1) Those writing applications using standard types (top

level users)

;

(2) Those creating new types which are the more efficient

implementations of the I/O operations (middle level

users) ;

(3) Those controlling devices directly (bottom level

users) ;

(4) Those interfacing new devices to the system (extended

bottom level users).

5^ 4 Robustness

This design makes use of predicates to pretest

whether a specific input operation will succeed before the

action really takes place. Therefore, it frees us from

the worries of crashing the system by some invalid inputs.

- 42 -

If the I/O operation is tested unsuccessful, the program-

mer can take the corrective action accordingly.

5.5 The Semantics of the Top Level Interface

The top level interface deals with the input and out-

put of the five Modula-2 base types : CHAR, CARDINAL,

INTEGER, BOOLEAN and REAL. All input and output is per-

formed via explicitly referenced channels, supported by

the middle level interface that are connected to any dev-

ice. Each of the five types have their own I/O module,

all of which export seven procedures. These procedures

are identical in semantics but as they deal with different

objects have slightly different syntax. The definition

modules can be found in Appendix 2 . The opaque type

"Channel" is imported from the middle level.

5_.6_ Channels

All channels use blocking reads; that is, if no data

is currently available from the device attached to the

channel, a blocking read is caused and the procedure

pauses until data is available. The channels can be

opened as binary and character, so the implementation of

the object I/O modules will ensure that the object is

written in a binary form.

- 43 -

Following is a discussion of the seven operations in

the I/O modules.

CanSkip

This predicate function returns TRUE if an object is

available from the channel specified and FALSE when the

channel has reached the end of the stream.

CanRead

This predicate function returns TRUE if an object is

available from the channel specified and it can be

represented internally. On the contrary, if the value of

the object represented by the stream associated with the

channel cannot be represented within the computer '

s

hardware or the channel has reached its end-of-stream con-

dition, FALSE is returned.

Skip

This procedure will skip over the current object on

the channel, thus changing the state of the channel.

Value

This procedure will return the next available object

from the specified channel.

- 44 -

Read

This procedure will return in its second parameter

the current object on the channel.

Write

This procedure will write its parameter to the chan-

nel.

Print

This procedure will write its parameter to the chan-

nel in a formatted way. The length that the object is

printed in is governed by the value of the third parame-

ter. Optional right- justification is provided. Blanks

will be padded at either end according to the right justi-

fied flag if the object does not occupy all the spaces

provided.

5.7 Draft BSI Standard Utility Library of Modula -2

A set of goals is specified by BSI to govern the

directions of the efforts in standardizing the utility

library modules. They are listed as follows :

(1) allows one to write portable Modula-2 programs which

may be moved between implementations;

- 45 -

(2) provide facilities for writing software tools (eg.

cross referencers, compilers, prettyprinters , ...)

and "data processing" applications; but not graphic

editors, communications programs and so on;

(3) allow one to describe algorithms which refer to a

standard environment;

(4) do not specify the operating system (eg. tasking,

device 10, exceptions, ...);

(5) provide Pascal-like facility for the naive user;

(6) offer the experienced programmer more control;

(7) do not preclude addition of environment dependent

features (eg. tasking, exceptions, ...);

(8

)

do not attempt to provide portability of data files

between implementations or environments;

(9

)

provide the facilities of Pascal and C with library

but not all those of Ada.

It is apparent that the principles of designing the

utility library do not deviate very far from those of the

I/O library. The I/O standard library provides a set of

I/O primitives on which the utility library can be built.

Only the I/O standard library is intimately related to the

- 46 -

machine architecture; whereas the utility library can be

freed from the hardware dependency. Hence, the portabil-

ity of Modula-2 programs between implementations can be

achieved.

Appendix 3 is the draft utility library of Modula-2

.

In comparison with the library modules implemented in this

project shown in Appendix 4, one may find a more collec-

tive grouping of library modules in our implementation.

For instance, the BSI MODULES Files, Binary, Directory,

Text, and NumberlO are all included in FileSystem in our

implementation. In so doing, all the operations that deal

with files can be in one library module. It is easier to

manage, especially when a large number of library modules

are involved. The user will also find it more convenient

to keep track of the library modules from which the

objects are IMPORTed.

The utility library of our implementation can satisfy

a wider spectrum of needs than those in Modula-2 library

draft of BSI (Appendix 3) because almost all the objects

specified in the draft of BSI can be found in our imple-

mentation. In addition, library modules Arguments, Date-

Time, Processes, and Coroutines are also introduced to

facilitate operating system and concurrent programming.

Although the goal statement (4) can justify for BSI not

- 47 -

having the operating system library modules, there is

still some uncertainty they need to resolve (Refer to

Appendix 3 , DEFINITION MODULE SYSTEMToBelmpl) . Because of

the flexibility of the language and the diversity of prag-

matic requirements from different users, a consensus on

the standardization of Modula-2 library will be difficult

to arrive at.

48

Chapter 6

Modula-2 Libraries on the UNIX PC

6_.X_ Introduction

Modula-2 was designed to be an open ended language.

Specific usages are left for the users to tailor it to

their own needs. On this point, Niklaus Wirth, the Father

of the Modula-2 language, commented, "... a language stan-

dard should only guarantee program behavior where the

language features are used in a way that is consistent

with the overall design intent and good programming prac-

tice, leaving other usage in some undefined or unstandard-

ized state." [5] Therefore, the library modules included

in this project mainly are for pragmatic reasons: research

and teaching purposes.

Some existing Modula-2 library modules have been pro-

ven effective in an academic environment. In the process

of implementing the library modules for this project, the

decision on which modules should be included was based on

three key references. Niklaus Wirth covers practically

all facilities of the language in the book "Programming in

[5] Welsh, Jim & Bailes, Paul. "Modula-2 Standardisa-
tion: The Go-Betweens' Tale", The MODUS Quarterly, is-
sue #7, February 1987, p 4.

- 49 -

Modula-2" [6]. We try not to deviate very far from the

modules specified in the book. The second source was the

3B/System V implementation of Modula-2 utility modules

from Brussels Free University [7]. The implementation of

the Coroutine primitives on the VAX 11/780 [8] was also

examined for the underlying coding for the quasi-

concurrency mechanisms in Modula-2.

Besides the references mentioned above, some new

facilities are also introduced in this implementation.

Three different computer languages are used to imple-

ment various functionalities of the Modula-2 language on

the UNIX PC. They are Assembly (16-/32-bit MC68010), C

(on AT&T 3B15 and AT&T UNIX PC Model 3B1), and Modula-2

(on AT&T UNIX PC model 3B1).

6.£ The Implementation in Assembly

The assembler in the UNIX PC is for the 16-/32-bit

MC68010 microprocessor which has 32-bit registers and a

[6] "Programming in Modula-2" by Niklaus Wirth, third
edition, Springer-Verlag International, Inc.
[7] The authors of this implementation are Rudi Leo-
nard, Thomas Rottenberg, Yves Vandenbosch, and Benoit
Van Hove from Brussels Free University, Faculty of Ap-
plied Sciences, Informatics Department, Pleinlaan 2,
1050 Brussels, Belgium.
[8] This implementation is from Western Research La-
boratory of Digital Equipment Corporation on DEC VAX
11/780 and is to support the Modula-2 compiler "mod2".

-50-

16-bit data bus. Unlike the microprocessors with a 32-bit

data bus, it takes MC68010 two data transmissions to get a

full register. Therefore, the coding of the 32-bit signed

and unsigned multiplication and division, and the 32-bit

and 64-bit arithmetics have to take this issue into

account

.

The Coroutine primitives NEWPROCESS and TRANSFER are

implemented in Assembly of MC68010. The parameters are

pushed on the stack in the order they appear in the param-

eter list. It is just the opposite of the way that the C

processor handles parameters. In our implementation of

Coroutine primitives, pushing the parameters, for instance

a procedure call x(a,b), onto the stack is implemented in

the fashion as shown in figure 14 and 15. The other

aspects of implementing the Coroutine primitives are dis-

cussed in Chapter 4.

push a
push b
bsr x
link fp, #num where "num" is the size of the

local data for procedure x.

Figure 14 The Assembly Instructions of Pushing
Parameters on the Stack

51 -

high

new fp->

low mem

new sp->

a

b

RA

old fp

local
data

param a

param b

return address from "bsr" instruction

old frame/mark pointer (A6) from
"link" instruction

also from "link" instruction

Figure 15 The Stack Configuration of MC68010

6.2 The Implementation in C

The language C is used to write the run-time

libraries for the Modula-2 compiler on the UNIX PC. The

run-time libraries provide the implementation of the basic

functions that the Modula-2 compiler calls when it is

ported to the UNIX PC. The details are discussed in

Chapter 1. However, it should be noted that a new

reserved word, "CIMPORT", is introduced in this project,

when a Modula-2 program needs to "IMPORT" a C function, it

has to be included in the declaration section of the pro-

gram. In order to inform the compiler that the parameters

are to be pushed on the stack in a reversed order, "CIM-

PORT" is created to serve this purpose.

- 52 -

6.-.1 The Implementation in Modula-2

The Coroutine primitives are implemented in Assembly,

while the rest of the utility library modules are imple-

mented in Modula-2 . Most of them are specified either in

Wirth's book, "Programming in Modula-2", or in the imple-

mentation from Brussels Free University. Some new ones

are introduced to make this implementation of Modula-2

utility libraries a more powerful one.

Being a descendent of Pascal, Modula-2 also did not

have any library functions to operate on strings except

that the programmer has to deal with them one array cell

at a time. Seeing the demand for operations on strings,

StringLen and CmpString are introduced in addition to

CopyString and AppendString. StringLen returns the length

of the string without counting the null character whereas

CmpString compares two strings and returns an integer

value to indicate the lexical difference of two strings.

In Modula-2, a CASE statement can be used in a very

unique way that few other computer languages are capable

of duplicating the same function with their corresponding

constructs. The expression that a Modula-2 CASE evaluates

does not have to be an expression! This paradoxical

facility can support a more flexible usage of a CASE

statement in Modula-2. If just a type, for instance

- 53 -

CARDINAL, replaces an expression, any option within the

CASE statement can be taken. Note that all the options,

however, operate on the same memory location. The follow-

ing illustration may shed some light on this special func-

tionality.

Consider a RECORD, Template, in figure 16. It occu-

pies four bytes of memory. However, we can operate the

variables of type Template with any variables of type

ranging from BYTE, WORD, to LONGCARD.

TYPE
Template = RECORD

CASE CARDINAL OF
: bl, b2, b3, b4 : BYTE

!
1 : wl, w2 : WORD

(2 : lc : LONGCARD
END

END;

Figure 16 A Modula-2 CASE Statement

For instance, Mode is of type Template. The follow-

ing assignment statements in figure 17 are all valid. If

"AB" is passed in wordl in figure 17, then Mode will be

holding "ABBA" at the end of the assignment statements.

54

PROCEDURE Mirrorlmage (wordl : WORD) ,

VAR
Mode : Template

;

BEGIN

WITH Mode DO
wl : = wordl

;

b3 := b2;
b4 := bl;

END;

END Mirrorlmage;

Figure 17 An Application of CASE Statement

In Wirth's book [p. 72], the syntax of CASE statement

expression is as follow :

CASE variable : type OF

In our implementation, the colon, ":" [9], is required

only when the CASE statement is used with a non-

deterministic branching as in the example shown in figure

16. The reserved word "CASE" followed by a colon, ":",

indicates that the variable in the expression is omitted.

Therefore, branching does not depend on the value of the

CASE statement labels, but rather the contents after the

labels. Referring back to figure 16, the CASE statement

labels, 0, 1, and 2, have no significance in determining

[9] The implementation from Brussels Free University,
":" is not necessary.

- 55 -

whether Template should be a concatenation of four bytes

or two words. The invocations of bl to b4, wl to w2, or

lc govern the constituents of Template. This technique is

employed in the implementation of WriteByte, WriteShort-

Word, and WriteWord of FileSystem.

In a deterministic CASE statement, the variable in

the expression carries a value which is to match the CASE

statement labels and execute the statements thereof. The

type of the variable can be retrieved from the symbol

table, so the colon, ":", and type in the expression are

omitted in our implementation.

Wirth includes a mathematics library, MathLibO, in

the set of standard utility modules. The facilities

involved are some fundamental mathematical operations such

as square root, sine, cosine, logarithm, and so on. This

math library is general and yet inclusive. Before imple-

menting this library module, I had studied some other

implementations for personal computers running MS-DOS

operating system written in Modula-2 and for VAX 11/780

written in C. The one for MS-DOS computers is too machine

dependent. There are many architectural differences that

cannot be reconciled. Consequently, the C implementation

on the VAX was studied in depth.

Cody & Waite's algorithms and coefficients for sine,

- 56 -

cosine, logarithm, and exponent [10] are adopted in our

implementation; whereas Newton's Method for Estimating

Zero of Function is used for computing the square root of

a real number. Being limited to 32-bit calculations, pre-

cision up to seven significant digits is the best accuracy

that can be generated by this Modula-2 compiler.

Discrepancies become eminent when the numbers grow beyond

seven significant digits.

Besides "CIMPORT" we introduced earlier in section

6.3, a change has been made to the "EXPORT" clause in the

DEFINITION MODULE also. In our implementation, any

objects declared in the DEFINITION MODULE are automati-

cally visible to other modules. Compiling a DEFINITION

MODULE produces a symbol file in which the declarations of

the objects are located. Whenever an object is called

from an external module, the compiler will search the sym-

bol files indicated by the IMPORT statements to find the

declaration of that object. In other words, everything

declared in the DEFINITION MODULE is made accessible by

the compiler through an IMPORT statement. Therefore, an

"EXPORT" clause is no longer necessary. However, a higher

level of data abstraction for the objects CONST, TYPE, and

[10] Cody, W.J. et al, "A Proposal Radix- and Word-
length- independent Standard for Floating-point Arith-
metic", MICRO, August 1984, IEEE.

- 57 -

VAR, has to be sacrificed because there is no "hidden"

declaration for these three kinds of objects. Being a

one-pass compiler, it has some trade-off between compila-

tion speed and level of data abstraction. Figure 18

displays the formats of these two types of data abstrac-

tion.

DEFINITION MODULE A; DEFINITION MODULE B;

TYPE TYPE
X; (* X's declaration X = Y;

is hidden. *) (* X's declaration is

Illegal declaration in our
implementation. Valid statement in our

implementation.

Figure 18 Levels of Data Abstraction

The definition of a WORD of memory is very machine

dependent. For the UNIX PC, a WORD is equivalent to two

bytes. In some Modula-2 implementations where a WORD is

four bytes, a SHORTWORD is used to represent two bytes of

memory. In our implementation, there are no SHORTWORDs.

- 58 -

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this project, three different computer languages

were used to implement seventeen different library

modules. They are C, Assembly of microprocessor MC68010,

and Modula-2. Among all the library modules, I imple-

mented totally three hundred and fourty- seven exported

objects which comprise sixty constants, fourteen vari-

ables, thirty types, and two hundred and forty-three pro-

cedures .

Modula-2 is a computer programming language with

great potential. It is sufficient to support many appli-

cations. Big tasks such as real-time programming and

operating system programming can be entrusted in the hands

of a Modula-2 programmer; also as a teaching tool,

Modula-2 will not fail to lay a solid foundation for

beginning programmers. However, the versatility of the

language mainly comes from the capability to allow library

modules written to meet specific needs. While everybody is

writing their own library modules, the issue of standardi-

zation of library is professing with the intent to unify

the efforts of language development and provide a set of

- 59 -

standard functionalities for the language. It is antici-

pated that more computer scientists will endeavor to

improve Modula-2 as they realize the significance of the

language in the realm of Computer Science.

7.2 Future Work

In this project, we did not concern ourselves with

the graphics facilities of Modula-2. In fact, both the

Modula-2 language and UNIX PC are capable of supporting

these functionalities. In "Programming in Modula-2",

Wirth also includes five library modules for window opera-

tions. Last year (1987), attempts were made to do graph-

ics programming in C on the UNIX PC. Dealing with a new

product, people often fell into seemingly unprecedented

problems with the UNIX PC. Experiences and knowledge

accumulate as time passes and a better understanding of

the UNIX PC is attained. Implementing the graphics

library modules should be a less painstaking job than

before, but it is still an enormous task.

The inconsistency in size for the same type may

hinder the portability of the language. INTEGER and CAR-

DINAL are both two bytes in this implementation, so calcu-

lations involved more than five digits have to involve

numbers of type LONGINT or LONGCARD which occupy four

- 60 -

bytes of memory. On the other hand, integer in C is four

bytes. Therefore, calling C functions from a Modula-2

program should alert the programmer to carefully match the

types of the parameters and the return values. In

essence, having two different types for the same objects

but just with different upper bounds easily frustrate many

careless programmers with a series of type clashing and

related errors. Aggravation can be alleviated if INTEGER

and CARDINAL in Modula-2 are made four bytes also.

The interim report from the British Standard Insti-

tute on the progress of the standard I/O library states

the needs and advantages of having a standard library for

I/O primitives which are discussed in Chapter 5. If all

the I/O operations are built from these primitives, the

utility library modules can be independent of the computer

architecture and become very portable. Since only the

standard I/O library primitives have to be changed when

porting to another machine, the rest of the utility

library modules can remain intact.

There is another proposal in its experimental stage.

The Australian computer scientist, George M. Mohay, is

attempting to simplify the interface which deals with

interrupts and do away with IOTRANSFER. He also claims to

be able to modify TRANSFER from taking four parameters

- 61 -

down to one for a PDP-11 Modula-2 system. Only part of

his proposal has been implemented. However, it would be

convenient if these facilities are also available in our

UNIX PC Modula-2 system.

62

Bibliography-

Pagers:

(1) Bilbe, Charles R, "Using the Heap for Modula-2 Opaque
Types", Journal of Pascal, Ada, & Modula-2,
November/December 1985, pp 24-30.

(2) Bondy, Jon, "Modula-2 Standard Library Documenta-
tion", Modula-2 News, issue #1, January 1985, pp 38 -

58.

(3) Bush, Randy, "Modula-2 Standard Library Rationale",
Modula-2 News, issue #1, January 1985, pp 20 - 21.

(4) Djavaheri, Morris, "An Implementation of the Proposed
Standard Library for the UNIX Operating System",
MODUS Quaterly, issue #4, November 1985, pp 26-27.

(5) Djavaheri, Morris & Osborne, Stan, "Modula-2: An
Alternative to C for System Programming" , Journal of
Pascal, Ada, & Modula-2, May/June 1986, pp 47-51.

(6) Eisenbach, Susan, "Draft BSI Standard I/O Library for
Modula-2", MODUS Quaterly, issue #5, February 1986,
pp 15-23.

(7) Mazlack, Larry, "Academic Modula-2 Survey", The MODUS
Quarterly, issue #6, November 1986, pp 37 - 41.

(8) Mohay, George M. , "A Simplified Coroutine Structure
for Modula-2", Journal of Pascal, Ada, & Modula-2,
January/ February 1987, pp 35-42.

(9) Odersky, Martin et al, "Proposal for a Standard
Library and an Extension to Modula-2", MODUS
Quaterly, issue #4, November 1985, pp 13 - 25.

(10) Olsen, Peter, "Modula-2 for Real-time Systems", Com-
puter Standards & Interfaces, vol 6, November 1987,
North-Holland, pp 61-70.

(11) Torbett, Micheal A., "More Ambiguities and

63

Insecurities in Modula-2", SigPlan Notices, vol 22
#5, May 1987, pp 11-17.

(12) Ward, Don, "BSI Modula-2 Working Group Standard Con-
current Programming Facilitites", The MODUS Quar-
terly, issue #8, May 1987, pp 35 - 60.

(13) Welsh, Jim & Bailes, Paul, "Modula-2 Standardisation:
The Go-Betweens' Tale", The MODUS Quarterly, issue
#7, February 1987, pp 3 - 6.

Books or Magazines :

(14) AT&T, "WE 32100 Microprocessor Information Manual",
The AT&T Documentation Management Organization, Issue
2, November 1986.

(15) Bach, J. Mauric, "The Design of the UNIX Operation
System", Prentice-Hall International Editions, 1986.

(16) Digital, "VAX Architecture Handbook", Digital Equip-
ment Corporation 1981.

(17) Gleaves, Richard, "Modula-2 for Pascal Programmers",
Spring-Verlag, New York, Inc., 1984.

(18) Kernighan, Brian W. & Ritchie, Dennis M. , "The C Pro-
gramming Language", Bell Telephone Laboratories,
Inc., 1978.

(19) Moore, John B. & McKay, Kenneth N. , "Modula-2, Text
and Reference", Prentice-Hall, Inc., 1987.

(20) Motorola, "M68000 8-/16-/32-Bit Microprocessors
Programmer's Reference Manual", Prentice-Hall, Engle-
wood Cliffs, NJ, 5th edition, 1986.

(21) Munem, M.A. & Foulis, D.J., "Calculus with Analytic
Geometry", Worth Publishers, Inc., 2nd edition, 1984.

(22) Sale, Arthur, "Modula-2 Discipline & Design",
Addison-Wesley Publishing Company, Inc., 1986.

(23) Smedeam, C. H. et al, "The Programming Languages",
Prentic-Hail International, Inc., 1983.

(24) Tondo, Clovis L. & Gimpel, Scott E. , "The c Answer
Book", Prentice-Hall, Inc., 1985.

- 64

(25) Wiener, Richard & Sincovec, Richard, "Software
Engineering with Modula-2 and Ada", John Wiley &
Sons, Inc., 1984.

(26) Wirth, Niklaus, "Programming in Modula-2", Spring-
Verlag, 3rd corrected edition, 1985.

Electronic Mail :

(27) alan@pdn, "Re: Procedure Parameters and Transfer",
from alan@pdn to ksuvaxl. KSU, 16 September 1987, Alan
Lovejoy.

(28) cbilbe@Sun.COM, "Coroutine vs Operating Systems",
from cbilbe@Sun.COM to KSUVAX1.BITNET, 20 November
1986, Chuck Bilbe, Project Leader Modula-2, Sun
Microsystems, Inc., Mountain View, CA.

(29) garon@gr.utah.edu, "Re: Code for thought", from
garon@gr.utah.edu to ksuvaxl.cis.ksu.edu, 15 November
1987, Garon C. Yoakum.

(30) joel@decwrl.dec.com, "Re: NEWPROCESS", from
joel@decwrl.dec.com to ksuvaxl . KSU , 18 September
1987, Joel McCormack.

(31) rlc@uvacs.cs.virginia.edu, "Procedure Parameters and
Transfer", from rlc@uvacs.cs.virginia.edu ro
ksuvaxl. KSU, 13 September 1987, Robert L. Chase,
Director o± Academic Computing, Compute Center, Sweet
Briar College, Sweet Briar, VA.

- 65 -

APPENDIX 1

Overview of C Library Routines

Arguments

There are only one variable and one procedure chosen

to be included in the run-time libraries.

ArgCount

It is a variable or type CARDINAL and represents the

numner of command line arguments, including the name

of the command invoked (which is always argument 0).

Argument number 1 is therefore the first argument to

the command, and argument "ArgCount - 1" is the last.

GetArgument

It is a procedure which takes in an argument number

and returns the corresponding argument and its

length

.

DateTime

Like "Arguments", there are only two constituents in

this library module, namely a type and a procedure.

TimeType

TimeType is a predefined LONGINT type.

- 66 -

Time

Procedure Time returns current wall clock time in

system format, wnich is the number ot seconds since

00:00:00 GMT, January 1, 1970.

FileSystem

It is tne most heavily used library module which con-

tains two types and fifteen procedures. They deal with

the interface for general disk file I/O.

Close

This procedure closes a file and all the modifica-

tions thereof become permanent.

Create

"Create" creates a new file and opens it for read and

write access. A File type variable is returned for

subsequent I/O.

CreateTempf ile

Create a new file and open it for read and writ

access. The file name passed in should look like a

file name with six trailing Xs. These Xs are

replaced by a letter and the process ID to make a

unique temporary file name.

Delete

- 67 -

The tile pointed by the file pointer which is passed

into the this procedure will be deleted.

Done

This procedure reports whether or not the previous

call to another FileSystem procedure was successful.

File

A file is identified by an external and internal

name; the external name is a string according to UNIX

filename conventions, the internal name is a Modula

variable ot type "File" whose structure is hidden

from the outside modules.

GetPos

The current position of the file concerned is

returned througn a variable of type CARDINAL.

ModeType

It is an enumerated type with elements : 0_RDONLY,

0_WRONLY, 0_APPEND, 0_RDWR, 0_WRUPDATE, and

0_APPENDUPDATE . They represent read-only, write-

only, append mode, read-write, write-update , and

append-update respectively, in the C implementation,

ModeType is just a type of unsigned integer and all

the constituents carry a different integral values.

Open

- 68 -

A file specified in the "filename" parameter is

opened with the access rights indicated by the "mode"

parameter.

ReadChar

"ReadChar" reads the character at the current file

position and returns it. The file position is then

advanced by one byte.

ReadWord

A word is read from the current tile position which

in turn is advanced by one word (four bytes)

.

SetPos

The file position is set to byte "position" which is

a parameter passed in through SetPos.

ShowStatus

This procedure should be called if "Done" returns

FALSE after an I/O operation. This will display an

error message on the terminal that indicates the rea-

son the operation failed.

WriteByte

One byte is written at the current file position

which is then advanced by one byte.

WriteChar

- 69 -

A character is written at the current file position

which is then advanced by one byte.

WriteRecord

A record is passed into this procedure as an ARRAY OF

BYTE and written to a file in certain of bytes. This

number usually is the size of the record in bytes.

The actual number of bytes written is returned in a

variable of type CARDINAL. It may be less than the

requested number of bytes if there was an error.

WriteShortWord

A shortword is written at the current file position

whicn is then advanced by one shortword (two bytes)

.

WriteWord

A word is is written at the current file position

which is then advanced by one word.

InOut

There are seven procedures to facilitate general-

purpose, high-level sequential I/O for file or terminal.

Besides, the end of line constant is also defined.

EOL

This is an End-of-Line or linefeed character

represented as a hexadecimal number "012".

- 70 -

Write

Print a cnaracter in the output stream.

WriteCara

There is a parameter specifying the number of charac-

ter that the cardinal number is going to be written

in. If the number is greater than the number of

digits needed, then blanks are added in front of the

number. If the number is less than the number of

digits needed, then it is ignored.

WriteHex

Same as "WriteCard" except that a hexadecimal number

is written.

Writelnt

Same as "WriteCard" except that an integer is writ-

ten.

WriteLn

A linefeed is put in the output stream. It is

equivalent to "Write (EOL)".

WriteOct

Same as "WriteCard" except that an octal number is

written.

WriteString

- 71 -

The string specified in the parameter is written in

the output stream.

Storage

ALLOCATE

This procedure allocates a block of memory of a

designated size in bytes and returns the starting

address of the allocated block. If the requested

number of bytes are not available from the heap, then

the passed-in address parameter will not be changed

and an error message "Heap overflow" will return.

DEALLOCATE

A designated block of memory is treed in the execu-

tion of this procedure. This block of memory should

be previously allocated with "ALLOCATE" and is made

available tor subsequent allocation but its contents

is left undisturbed. An invalid of the block will

cause the error message "Memory fault - core dumped"

.

Terminal

There are four procedures handling terminal I/O rou-

tines .

Read

- 72 -

"Read" returns the next character typed on the key-

board. This routine will block the execution of a

program until a character is typed.

Write

A character is put on the terminal screen.

WriteLn

A linefeed character is sent to the terminal screen.

WriteString

The string specified in tne parameter is printed on

the terminal screen.

- 73 -

APPENDIX 2

Dratt BSI Standard I/O Library of Modula-2

DEFINITION MODULE BooilO;

FROM 10 IMPORT Channel;

EXPORT QUALIFIED CanRead, CanSkip, Value, Skip,
Read, Write, Print;

* Boolean objects ignore ail leading white
* space (Space, Tab, LF, CR etc) and are
* terminated by the tirst character that would
* be illegal in the object.
* This illegal character is left on the channel.
*

* It no data is currently available then the
* predicates wait for some.
*

* CanRead returns TRUE if the current object
* can be represented.
* CanRead implies CanSkip.
*

* CanSkip returns TRUE if there is an object
* available.
* CanSkip does not imply CanRead as an object
* could be well-formed but out of range.

* Value returns the current object.
* CanRead must be TRUE.
* If a call to CanRead currently returns FALSE
* then Value will fail.
*

* Skip skips over the current object.
* CanSkip must be TRUE.
* if a call to CanSkip currently returns FALSE
* then Skip will fail.
*

* Read places the current object into its
* second parameter and then skips over it.
* CanRead must TRUE.
* If a call to CanRead currently returns FALSE
* then Read will fail.
*

* Write the object to the channel with no padding.

74

* Print the ooject to the channel with padding
* when necessary.
* Length is the minimum number of characters
* that must be output.
* It is an error to Print to a binary channel.
*

* NOTE : The object is written in binary or
* character form depending on how the
* channel was opened.
*) PROCEDURE CanRead (C: Channel) : BOOLEAN;

PROCEDURE CanSkip (C: Channel) : BOOLEAN;

PROCEDURE Value (C: Channel) : CARDINAL;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel;
VAR Bool: BOOLEAN);

PROCEDURE Write (VAR C: Channel;
Bool : BOOLEAN)

;

PROCEDURE Print (VAR C: Channel;
Bool

:

BOOLEAN

;

Length: CARDINAL;
RightJustified: BOOLEAN);

END BooIIO;

- 75 -

DEFINITION MODULE CharlO;

FROM 10 IMPORT Channel;

EXPORT QUALIFIED CanRead, CanSkip, Value, Skip,
Read, Write, Print;

(*
* Reier to the comments in BoolIO.
*)

PROCEDURE CanRead (C: Channel) : BOOLEAN;

PROCEDURE CanSkip (C: Channel) : BOOLEAN;

PROCEDURE Value (C: Channel) : CHAR;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel;
VAR Ch: CHAR);

PROCEDURE Write (VAR C: Channel;
Ch: CHAR)

;

PROCEDURE Print (VAR C: Channel;
Ch: CHAR;

Length: CARDINAL;
RightJustified: BOOLEAN);

END Char10;

76 -

DEFINITION MODULE CardIO;

FROM 10 IMPORT Channel;

EXPORT QUALIFIED CanRead, CanSkip, Value, Skip,
Read, Write, Print;

(*
* Reter to the comments in BoolIO.
*)

PROCEDURE CanRead (C: Channel) : BOOLEAN;

PROCEDURE CanSkip (C: Channel) : BOOLEAN;

PROCEDURE Value (C: Channel) : CARDINAL;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel;
VAR Card: CARDINAL);

PROCEDURE Write (VAR C: Channel;
Card: CARDINAL);

PROCEDURE Print (VAR C: Channel;
Card: CARDINAL

Length: CARDINAL
RightJustified: BOOLEAN)

END CardIO;

77

DEFINITION MODULE IntIO;

FROM 10 IMPORT Channel;

EXPORT QUALIFIED CanRead, CanSkip, Value, Skip,
Read, Write, Print;

(*
* Rerer to the comments in BoolIO.
*)

PROCEDURE CanRead (C: Channel) : BOOLEAN;

PROCEDURE CanSkip (C: Channel) : BOOLEAN;

PROCEDURE Value (C: Channel) : INTEGER;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel;
VAR Int: INTEGER)

;

PROCEDURE Write (VAR C: Channel;
Int: INTEGER);

PROCEDURE Print (VAR C: Channel;
Int: INTEGER;

Length: CARDINAL;
RightJustified: BOOLEAN);

END IntIO;

- 78 -

DEFINITION MODULE ReallO;

FROM 10 IMPORT Channel;

EXPORT QUALIFIED CanRead, CanSkip, Value, Skip,
Read, Write, Print;

(*
* Refer to the comments in BoolIO.
*)

PROCEDURE CanRead (C: Channel) : BOOLEAN;

PROCEDURE CanSkip (C: Channel) : BOOLEAN;

PROCEDURE Value IC: Channel) : REAL;

PROCEDURE Skip (VAR C: Channel);

PROCEDURE Read (VAR C: Channel;
VAR Real : REAL)

;

PROCEDURE Write (VAR C: Channel;
Real: REAL);

PROCEDURE Print (VAR C: Channel;
Real: REAL;

Length: CARDINAL;
RightJustified: BOOLEAN);

END ReallO;

- 79

APPENDIX 3

BSI Modula-2 Utility Library Draft of 07 December 1984

DEFINITION MODULE SYSTEMToBelmpl;
(* This module is provide so that subswquent modules

compile correctly, and will disappear as revised
compilers become available. *)

FROM SYSTEM IMPORT WORD;

EXPORT QUALIFIED
BYTE, ADDRESSINC, BUTECOUNT;

TYPE
BYTE = WORD;
ADDRESSINC = CARDINAL;
BYTECOUNT = CARDINAL ; (* doubt aoubt this one *

)

END SYSTEMToBelmpl.

- 80

DEFINITION MODULE Files;

EXPORT QUALIFIED
File, Filestate,
BinTexMode , ReadWriteMode

,

Open, Create,
Reset, Rewrite,
EOF, State,
GetFileName;

ReplaceMode

,

Close,
Truncate,
Resetstate,

Remove

,

Flush,

TYPE
File;
BinTexMode
ReadWriteMode
ReplaceMode
Filestate

= (BinMode , texMode)

;

= (readonly, readWrite, appendOnly)

;

= (noReplace, replace);
= (ok,

nameError, noFile, existingFile,
deviceError, noMoreRoom , accessError,
notopen, endError OutsideFile,
otherError)

;

PROCEDURE Open (VAR file
name
binText
writemode

VAR state

PROCEDURE Create (VAR file
name
binText
repiMode

VAR state

PROCEDURE Close (VAR file
VAR state

PROCEDURE Remove (VAR file
VAR state

PROCEDURE Reset (file
VAR state

PROCEDURE Rewrite (file
VAR state

PROCEDURE Truncate (file
VAR state

File;
ARRAY OF CHAR;
BinTexMode;
ReadWriteMode

;

Filestate)

;

File;
ARRAY OF CHAR;
BinTextMode

;

ReplaceMode

;

Filestate)

;

File;
Filestate)

;

File;
Filestate)

;

File;
Filestate)

;

File;
Filestate)

;

File;
Filestate)

;

PROCEDURE Flush (file File;

81

VAR state

PROCEDURE EOF (file : File)

PROCEDURE State (file : File)

PROCEDURE ResetState (file
VAR state

PROCEDURE GetFileName (file
VAR name
VAR state

FileState)

;

BOOLEAN;

FileState;

File ;

FileState)

;

File;
ARRAY OF CHAR;
FileState);

END Files.

- 82 -

DEFINITION MODULE Binary;

FROM Files IMPORT File, FileState;
FROM SYSTEMToImpl IMPORT BYTECOUNT;
FROM SYSTEM IMPORT BYTE, WORD, ADDRESS;

EXPORT QUALIFIED
ReadByte, ReadWord, ReadBlock, ReadBytes,
WriteByte, WriteWord, WriteBlock, WriteByte;

PROCEDURE ReadByte (

VAR
VAR

file
byte
state

: File;
: BYTE;
: FileState);

PROCEDURE ReadWord (

VAR
VAR

file
word
state

• File;
WORD;

: FileState);

PROCEDURE ReadBlock (

VAR
VAR

file
block
state

File;
ARRAY OF BYTE;
FileState)

;

PROCEDURE ReadBytes (

VAR
VAR

file
addr
bytes
bytesRe.
state

File;
ADDRESS

;

BYTECOUNT;
id : BYTECOUNT;
FileState)

;

PROCEDURE WriteByte (

VAR

file
byte
state

File;
BYTE;
FileState)

;

PROCEDURE WriteWord (

VAR

file
word
State

File;
WORD;
FileState)

;

PROCEDURE WriteBlock (

VAR

file
block
state

File;
ARRAY OF BYTE;
FileState)

;

PROCEDURE WriteBytes (

VAR

file
addr
bytes
state :

File;
ADDRESS

|

BYTECOUNT;
FileState)

;

END Binary.

83

DEFINITION MODULE Text;

FROM Files IMPORT File, FileState;

EXPORT QUALIFIED
EOL,
ReadChar , ReadLn

,

UndoRead, CondRead,
WirteChar, WriteString,

PROCEDURE EOL (file : File)

PROCEDURE ReadChar (file
VAR ch
VAR state

PROCEDURE ReadString (file
VAR str
VAR state

PROCEDURE ReadLn (file
VAR state

PROCEDURE UndoRead (file
VAR state

ReadString,

WriteLn;

: BOOLEAN;

: File;
: CHAR;
: FileState);

File ;

ARRAY OF CHAR;
FileState)

;

File;
FileState)

;

File;
FileState)

;

PROCEDURE CondRead (file
VAR ch

VAR state

PROCEDURE WriteChar (file
ch

VAR state

PROCEDURE WriteString (file
str

VAR state

PROCEDURE WriteLn (file
VAR state

File;
CHAR;

VAR success : BOOLEAN;
FileState)

;

: File;
: CHAR;
: FileState);

: File;
: ARRAY OF CHAR;
: FileState);

: File;
: FileState);

END Text.

84

DEFINITION MODULE NumberlO;

FROM Files
FROM SYSTEM

IMPORT File, FileState;
IMPORT WORD;

EXPORT QUALIFIED
.. Readlnt, ReadCard,

Writelnt, WriteCard,

PROCEDURE Readlnt (file
VAR int
VAR success
VAR state

PROCEDURE ReadCard (file
VAR card
VAR success
VAR state

PROCEDURE ReadNum (file
VAR num

base
VAR success
VAR state

PROCEDURE Writelnt

(

file
int
width

VAR state

PROCEDURE WriteCard (

PROCEDURE WriteNum (

file
card
width

VAR state

file
num
base
width

VAR state

ReadNum

,

WriteNum;

: File;
: INTEGER;
: BOOLEAN;
: FileState);

: File;
: CARDINAL;
BOOLEAN;
FileState)

;

File;
WORD;
CARDINAL

;

BOOLEAN;
FileState)

;

File;
INTEGER;
CARDINAL ;

FileState)

;

File;
CARDINAL

;

CARDINAL

;

FileState)

;

File;
WORD;
CARDINAL

;

CARDINAL

;

FileState)

;

END NumberlO.

- 85

DEFINITION MODULE FilePositions

;

FROM Files IMPORT File, FileState;
FROM SYSTEMToImpl IMPORT ADDRESSINC;

EXPORT QUALIFIED
FilePosition,
GetFilePos,
CalcFilePos,

TYPE

SetFilePos,
GetEOF

,

FilePosition = RECORD END;

PROCEDURE GetFilePos (file
VAR pos

PROCEDURE GetEOF (file
VAR pos

PROCEDURE GetBOF (file
VAR pos

PROCEDURE CalcFilePos (file
VAR pos

numOfElements
elementlength

PROCEDURE SetFilePos (file
pos

VAR state

GetBOF

;

File;
FilePosition)

;

File;
FilePosition)

;

File;
FilePosition)

;

File;
FilePosition;
INTEGER

;

ADDRESSINC)

;

File;
FilePosition;
FileState)

;

END FilePosition.

- 8b

DEFINITION MODULE Directory;

FROM Files IMPORT FileState;

EXPORT QUALIFIED
FileNameType

,

Rename

,

DirQueryProc

,

TypeoiFileName ,-

Delete,
DirQuery,

TYPE
FileNameType =

DirQueryProc =

PROCEDURE Rename (

(invalidName , singleName, wildName);
PROCEDURE (ARRAY OF CHAR, VAR BOOLEAN),

fromName
toName

VAR state

PROCEDURE Delete (fileName
VAR state

PROCEDURE TypeOfFileName (name

PROCEDURE DirQuery (wildName
dirProc

VAR state

ARRAY OF CHAR;
ARRAY OF CHAR;
FileState)

;

: ARRAY OF CHAR;
: FileState);

: ARRAY OF CHAR)
: FileNameType;

: ARRAY OF CHAR;
: DirQueryProc

;

: FileState);

END Directory.

- 87

DEFINITION MODULE SimplelO;

FROM SYSTEM IMPORT WORD;

EXPORT QUALIFIED
EOT, EOL,
ReadChar , ReaaString

,

ReadCard, ReadNum,
WriteChar, WriteString,
WriteCard, WriteNum;

PROCEDURE EOT (

)

PROCEDURE EOL (

)

PROCEDURE ReadChar (VAR ch

PROCEDURE ReadString (VAR str

PROCEDURE ReadLn;

PROCEDURE Readlnt (VAR int
VAR success

PROCEDURE ReadCard (VAR card
VAR success

PROCEDURE ReadNum (VAR num
base

VAR success

PROCEDURE CondRead (VAR ch
VAR success

PROCEDURE UndoRead ()

;

PROCEDURE WriteChar (ch

PROCEDURE WriteLn;

PROCEDRUE WriteString (str

PROCEDURE Writelnt (int
width

PROCEDURE WriteCard (card
width

PROCEDURE WriteNum (num

ReadLn

,

CondRead

,

WriteLn,

Readlnt,
UndoRead

,

Writelnt,

BOOLEAN;

BOOLEAN;

CHAR)

;

ARRAY OF CHAR) ;

INTEGER;
BOOLEAN)

;

CARINAL

;

BOOLEAN)

;

WORD;
CARDINAL

;

BOOLEAN);

CHAR;
BOOLEAN);

CHAR)

;

: ARRAY OF CHAR)

;

: INTEGER;
: CARDINAL)

;

: CARDINAL;
: CARDINAL)

;

: WORD;

88 -

base
width

CARDINAL;
CARDINAL)

END SimplelO.

DEFINITION MODULE ReallO;

EXPORT QUALIFIED
ReadReal, WriteReal;

PROCEDURE ReadReal (VAR real : REAL;
VAR success : BOOLEAN)

;

PROCEDURE WriteReal (real : REAL;
width : CARDINAL;
decPlaces : INTEGER);

END ReallO.

89

DEFINITION MODULE StandardIO;

FROM Files IMPORT File;

EXPORT QUALIFIED
Setlnput, Getlnput,
EchoMode , SetEchoMode

,

GetErrorlnput

,

LogMode , SetLogMode

,

SetLog , GetLog

;

PROCEDURE Setinput (input

PROCEDURE Getlnput (VAR input

PROCEDURE SetOutput (output

PROCEDURE GetOutput (VAR output

TYPE

SetOutput

,

GetEchoMode

,

GetErrorOutput

,

GetLogMode

,

File)

File)

File)

File)

GetOutput

|

EchoMode

)

EchoMode

;

EchoMode = (echo , noEcho)

;

PROCEDURE SetEchomode (mode

PROCEDURE GetEchoMode (

)

PROCEDURE GetErrorOutput (VAR errorFile : File)

PROCEDURE GetErrorlnput (VAR errorFile : File);

TYPE
LogMode = (loggingon, loggingOff

)

;

PROCEDURE SetLog (log : File);

PROCEDURE GetLog (VAR log : File);

PROCEDURE SetLogMode (mode : LogMode)

;

PROCEDURE GetLogMode (

)

: LogMode

;

END StandardIO.

90 -

DEFINITION MODULE Terminal;

EXPORT QUALIFIED
ReadChar , ReadString

,

WriteChar, WriteString,
NumRows, NumCols,
EraseScreen , EraseToEOL

,

PROCEDURE ReadChar (VAR ch

PROCEDURE ReadString (VAR str

PROCEDURE CondRead (VAR ch
VAR success

PROCEDURE WriteChar (ch

PROCEDURE WriteString (str

PROCEDURE WriteLn;

PROCEDURE NumRows (

)

PROCEDURE NumCols (

)

PROCEDURE GotoRowCol (row
col

PROCEDURE EraseScreen;

PROCEDURE EraseToEOL;

PORCEDURE EraseToEOS;

END Terminal.

CondRead,
WriteLn;
GotoRowCol

,

EraseToEOS

;

: CHAR);

: ARRAY OF CHAR) ;

: CHAR;
BOOLEAN)

;

: CHAR) ;

: ARRAY OF CHAR) ;

CARDINAL

CARDINAL

CARDINAL
CARDINAL

)

- 91

DEFINITION MODULE MathLib;

EXPORT QUALIFIED
Sqrt,
Cos,

Exp, Ln, Sin,
Arctan, Entler, Power;

PROCEDURE Sqrt (real : REAL) : REAL

PROCEDURE Exp (real : REAL) : REAL

PROCEDURE Ln (real

PROCEDURE Sin (real

PROCEDURE Cos (real

PROCEDURE Arctan

(

real

PROCEDURE Entierl real

PROCEDURE Power (real
exp

REAL) : REAL;

REAL) : REAL;

REAL) : REAL;

REAL) : REAL;

REAL) : INTEGER;

REAL
REAL) : REAL;

END MathLib.

92 -

DEFINITION MODULE Program;

EXPORT QUALIFIED
CallResult,
Call, Terminate,
Setlnitialization , SetTermination

;

TYPE
CallResult = (normalReturn, programHalt,

keyboardHalt, missingProgram,
missingMode, duplicateModule

,

versionError, codeError,
programCheck , ioError,
otherError)

;

PROCEDURE Call (programName : ARRAY OF CHAR;
VAR CallResult : CallResult);

PROCEDURE Terminate (reason : CallResult);

PROCEDURE Setlnitialization (initProc : PROC);

PROCEDURE SetTermination (termProc : PROC)

;

END Program.

DEFINITION MODULE Storage;

FROM SYSTEM IMPORT ADDRESS;
FROM SYSTEMToImpl IMPORT ADDRESSINC;

EXPORT QUALIFIED
ALLOCATE , DEALLOCATE

,

CondAllocate

;

PROCEDURE ALLOCATE (VAR ptr : ADDRESS;
size : ADDRESSINC);

PROCEDURE DEALLOCATE (VAR ptr : ADDRESS;
size : ADDRESSINC);

PROCEDURE CondAllocate (VAR ptr : ADDRESS;
size : ADDRESSINC;

VAR success : BOOLEAN);

END Storage.

93 -

DEFINITION MODULE String;

EXPORT QUALIFIED
CompareResult

,

Length, Assign,
Position, Substring,

Insert,
Compare

,

Delete,
Concat

;

TYPE
CompareResult = (less , equal , greater)

;

PROCEDURE Lengtn (str

PROCEDURE Assign (source
VAR dest
VAR success

PROCEDURE Insert (source
VAR dest

index
VAR success

PROCEDURE Delete (VAR str
index
len

VAR success

PROCEDURE Position (pattern
source

VAR index
VAR found

PROCEDURE Substring (source
index
len

VAR dest
VAR success

PROCEDURE Concat (sourcel
source2

VAR dest
VAR success

PROCEDURE Compare (stringl
string2

: ARRAY OF CHAR)
: CARDINAL;

: ARRAY OF CHAR;
: ARRAY OF CHAR;
: BOOLEAN);

: ARRAY OF CHAR;
: ARRAY OF CHAR;
: CARDINAL;
: BOOLEAN)

;

: ARRAY OF CHAR;
: CARDINAL;
: CARDINAL;
: BOOLEAN);

: ARRAY OF CHAR;
: ARRAY OF CHAR;
: CARDINAL;
: BOOLEAN);

ARRAY OF CHAR;
CARDINAL

;

CARDINAL;
ARRAY OF CHAR;
BOOLEAN)

;

: ARRAY OF CHAR
: ARRAY OF CHAR
: ARRAY OF CHAR
: BOOLEAN);

: ARRAY OF CHAR;
: ARRAY OF CHAR)
: CompareResult

;

END String.

94

DEFINITION MODULE Convert;

EXPORT QUALIFIED
IntToStr

,

CardToStr,
NuraToStr

,

StrToInt,
StrToCard

,

StrToNum;

PROCEDURE IntToStr 1 int
VAR str

width
VAR success

INTEGER;
ARRAY OF CHAR;
CARDINAL

;

BOOLEAN)

;

PROCEDURE CardToStr (card
VAR str

width
VAR success

CARDINAL

;

ARRAY OF CHAR;
CARDINAL

;

BOOLEAN)

;

PROCEDURE NumToStr (nuin

VAR str
base

. width
VAR success

CARDINAL;
ARRAY OF CHAR;
CARDINAL

;

CARDINAL

;

BOOLEAN)

;

PROCEDURE StrToInt (Str
VAR int
VAR success

ARRAY OF CHAR;
INTEGER;
BOOLEAN)

;

PROCEDURE StrToCard (str
VAR card
VAR success

ARRAY OF CHAR;
CARDINAL

;

BOOLEAN)

;

PROCEDURE StrToNum (str
VAR nura

base
VAR success

ARRAY OF CHAR;
CARDINAL

;

CARDINAL

;

BOOLEAN)

;

END Convert.

- 95

DEFINITION MODULE ConvertReal;

EXPORT QUALIFIED
RealToStr, StrToReal;

PROCEDURE RealToStr (real : REAL;
VAR str : ARRAY OF CHAR;

Width : CARDINAL;
decPlaces : INTEGER;
VAR success: BOOLEAN);

PROCEDURE StrToReal (Str : ARRAY OF CHAR;
VAR real : REAL;
VAR success: BOOLEAN);

END ConvertReal.

96

APPENDIX 4

Porgrams Listing

DEFINITION MODULE Arguments;

FROM SYSTEM IMPORT ADDRESS;

VAR
ArgCount : CARDINAL;

(* ArgCount represents the number of arguments from
to ArgCount - 1. *)

(* Argument is always the filename *

)

PROCEDURE GetArgument (argnum : CARDINAL;
VAR arg : ARRAY OF CHAR;
VAR length : CARDINAL)

;

PROCEDURE GetEnvironment (name : ARRAY OF CHAR;
VAR value : ARRAY OF CHAR;
VAR OK : BOOLEAN)

;

PROCEDURE PutEnvironment (string : ARRAY OF CHAR;
VAR OK : BOOLEAN);

PROCEDURE GetOptloptStr : ARRAY OF CHAR;
VAR argstr : ARRAY OF CHAR;
VAR optind : LONGINT) : CHAR;

END Arguments.

97

DEFINITION MODULE Clock;

FROM CLibrary CIMPORT TimeType, tm;

(* TimeType = LONGCARD; *)

(* TimeType is already imported from CLibrary,
* there is no need to define it again in Clock
* tm = RECORD

tm_sec : TimeType

;

tm_min : TimeType

;

tm_nour : TimeType

;

tm_mday : TimeType

;

tm_mon : TimeType

;

tm_year : TimeType

;

tm_wday : TimeType

;

tm_yday : TimeType

;

tm_isdst : TimeType

;

second, 0-59
minutes, 0-59
hours, 0-23
day of month, 1-31
month of year, 1-12
year - 1900
day of week, Sunday =
day of year, 0-365
> = Daylight savings time
is in effect

END; *)

TYPE
TimeRecType = tm;

PROCEDURE Time(VAR timerec : TimeRecType);

PROCEDURE ClockTime (VAR time: TimeType);
(* returns current time as # seconds *

)

PROCEDURE Date (VAR date: ARRAY OF CHAR);
(* returns current time as string, min length 26 chars *)

PROCEDURE ConvertTime (time: TimeType;
VAR date: ARRAY OF CHAR);

(* converts time given as argument into string,
min length 26 chars *)

END Clock.

- 98 -

DEFINITION MODULE Coroutine;

FROM SYSTEM IMPORT ADDRESS;

PROCEDURE NEWPROCESSlp: PROC; wspaceadr: ADDRESS;
wspacesize: LONGCARD; VAR cor: ADDRESS);

PROCEDURE TRANSFER(VAR source, destination : ADDRESS);

END Coroutine.

- 99 -

DEFINITION MODULE Conversions;

FROM SYSTEM IMPORT BYTE, WORD;

PROCEDURE Done(): BOOLEAN;
(* returns TRUE if last String/Number conversion

was successful *)
(* number to string conversions *

)

PROCEDURE NumToString (num: WORD;
len, base: CARDINAL;
VAR s: ARRAY OF CHAR);

PROCEDURE OctToString (num: WORD;
len: CARDINAL;
VAR s: ARRAY OF CHAR);

PROCEDURE HexToString (num: WORD;
len: CARDINAL;
VAR s: ARRAY OF CHAR);

PROCEDURE IntToString (num: INTEGER;
len: CARDINAL;
VAR S : ARRAY OF CHAR)

;

PROCEDURE CardToString (num: CARDINAL;
len: CARDINAL;
VAR s: ARRAY OF CHAR);

PROCEDURE RealToString (num : REAL;
len : CARDINAL;
VAR S : ARRAY OF CHAR);

(* string to number conversions *)

PROCEDURE StringToOct (s: ARRAY OF CHAR): CARDINAL;

PROCEDURE StringToHex (s: ARRAY OF CHAR): CARDINAL;

PROCEDURE StringToInt (s: ARRAY OF CHAR): INTEGER;

- 100 -

PROCEDURE StringToCard (s: ARRAY OF CHAR): CARDINAL;

PROCEDURE StringToReal (S : ARRAY OF CHAR) : REAL;

(* number to number conversions *

)

PROCEDURE ByteToInt (num: BYTE): INTEGER;

END Conversions.

- 101

DEFINITION MODULE CLibrary;

FROM SYSTEM IMPORT ADDRESS, BYTE, WORD;

CONST
EOF = -1;
NULL = 0;
NFILE = 20;
IOREAD = 0;
IOWRT = 1;
IONBF = 2;
IOMYBUF = 3;
IOEOF = 4;
IOERR = 5;
IOUNK = 6;
IORW = 7;

(*file open tor reading *)

(*file open for writing *)

(*file is unbuffered *)

(*big buffer allocated *)

(*EOF has occured on this file *)

(*error has occurred on this file *

)

(indicates buffering status unknown*)

(* Allowed values of errno *

)

EOK = 0; (*

EPERM = 1; (*

ENOENT = 2; (*

ESRCH = 3; I*
EINTR = 4; I*

EIO = 5; (*

ENXIO = 6

;

I
A

E2BIG = /; (•

ENOEXEC = 8; (*

EBADF = 9; I*
ECHILD = 10 ; (

EAGAIN = 11 ; (

ENOMEM = 12 ; (

EACCES = 13 ; (

EFAULT = 14 ; (

ENOTBLK = 15 ; (

EBUSY = lb ; (

EEXIST = 17 ; (

EXDEV = 18 ; (

ENODEV = 19 ; (

ENOTDIR = 20 ; (

EISDIR = 21 ; (

EINVAL = 22 ; (

ENFILE = 23 ; (

EMFILE = 24 ; (

ENOTTY = 25 ; (

ETXTBSY = 26 ; (

EFBIG = 27 ; (

ENOSPC = 28 ; (

ESPIPE = 29 ; (

No error
Not super-user
No such file or directory
No such process
interrupted system call
I/O error
No such device or address
Arg list too long
Exec format error
Bad file number

* No children
* No more processes
* Not enough core

(* Permission denied
Bad address
Block device required
Mount device busy
File exists
Cross-device link
No such device
Not a directory
Is a directory
Invalid argument
File table overflow
Too many open files
Not a typewriter
Text file busy
File too large
No space left on device
Illegal seek

*)

*)

*)

*)

*)

*)

*)

*)

*)

*)

*)

*)

*)

*)

*)

*)
*>

•)

*)

*)

*)

*)

102 -

EROFS
EMLINK
EPIPE
EDOM
ERANGE
ENOMSG
EIDRM
EDEADLK

30
31
32
33
34
35
36
45

(*

(*

(*

(*

(*

Read only file system
Too many links
Broken pipe
Math arg out of domain of func
Math result not representable
No message of desired type
IPC identifier removed
File region locking deadlock

*)

*)

(* Constants for access functions

R_OK = 2

W_OK = 1

X_OK =
F OK =

(* bit on one *

)

(* bit on zero *

)

(* Constants for fseek *)

L_SET = 0;
L_CUR = 1;
L_END = 2;

NAME_MAX =14; (* Max no. of characters in a file name *)

TYPE
ProcesslDType = LONGINT;
InoType = WORD;
DevType = WORD;
OffType = LONGINT;
TimeType = LONGCARD;
FileRange = [0..NFILE - 1];
timestring = ARRAY [0..25] OF CHAR;

FileBlock =

RECORD
ptr : ADDRESS ; (

*

next character position
cnt : LONGINT; (* number of characters left
base : ADDRESS ; (

*

location of buffer
flag : BYTE; (* mode of file access
fd : BYTE (* file descriptor

END;

IOBlock = ARRAY FileRange OF FileBlock;

SignalType = (SigReserved

,

* may not be used
SigHup

,

* hangup
Siglnt, * interrupt
SigQuit, * quit
Siglll, * illegal instruction
SigTrap, * trace trap

- 103

Siglot,
SigEmt,
SigFpe

,

SigKill,
SigBus

,

SigSegv,
SigSys,

SigPipe,

SigAlrm,
SigTerm,

SigUsrl,
SigUsr2,
SigCld,
SigPwr ('

IOT instruction *

)

EMT instruction *)

floating point exception*
kill *)

bus error *)

segmentation violation *)

bad argument to system
call *)

write on a pipe with no
one to read it *)

alarm clock *

)

software termination
signal from kill *)

user defined signal 1
user defined signal 2

death of a child
power fail

*)

*)

*)

SignalProc = PROCEDURE (SignalType)

;

tms = RECORD
tms_utime : TimeType

;

(* The CPU time used while executing instructions
in the user space of the calling process *)

tms_stime : TimeType;
(* The CPU time used by the system on behalf of

the calling process *)

tms_cutime : TimeType

;

(* The sum of the tms_utimes and tms_cutimes
of tne child process *)

tms_cstime : TimeType;
(* The sum of the tms_stimes and tms_cstimes

of the child process *)

END;

tm = RECORD
tm_sec :

tm_min :

tm_hour :

tm_mday
:

tm_mon :

tm_year
i

tm_wday :

tm_yday :

tm_isdst

END;

TimeType; (* second, - 59 *)
TimeType; (* minutes, - 59 *)
TimeType; (* hours, - 23 *)
TimeType; (* day of month, 1 - 31 *)

TimeType; (* month of year, 1 - 12 *)
TimeType; (* year - 1900 *)

TimeType; (* day of week, Sunday =
TimeType; (* day of year, - 365 *)

: TimeType; (* > = Daylight savings
time is in effect *)

stattype RECORD
st mode : WORD; (* File node *)

104

st
st
(*'

st
(*'

st
st
[*'

st
(*'

st
(*'

st
[*'

st
(*'

st
(*'

END;

ino : InoType ; (* Inode number *

)

dev : DevType

;

ID of device containing a directory
entry tor this file *)
rdev : DevType

;

ID of device. This entry is defined
only for character special or block
special files *)

nlink : WORD; (* Number of links *)

_uid : WORD;
User ID of the file's owner *)

_gid : WORD;
Group ID or the file's group *)

size : OffType;
File size in bytes *)

atime : TimeType

;

Time of last access *)

mtime : TimeType

;

Time of last data modification *

)

ctime : TimeType
Time of last file status change *)

intPtr = POINTER TO LONGINT;
charPtr = POINTER TO CHAR;
Stream = POINTER TO FileBlock;
tmsPtr = POINTER TO tins;
tmPtr = POINTER TO tm;
timestringPtr = POINTER TO timestring;
statPtr = POINTER TO stattype;

VAR
_iob :

errno :

optarg
optind

IOBlock; (* extern _iob in file.h *)
LONGINT; (* extern errno in errno. h *)

: ADDRESS ; (* return the option argument *

)

: LONGINT; (* return the option index *)

PROCEDURE abort () : LONGINT;

PROCEDURE access (path : ARRAY OF CHAR ;

mode : BITSET) : LONGINT;

PROCEDURE Chdir (path : ARRAY OF CHAR ;

mode : BITSET) : LONGINT;

PROCEDURE chmod (path : ARRAY OF CHAR ;

mode : BITSET) : LONGINT;

PROCEDURE chown (path : ARRAY OF CHAR ;

owner, group : BITSET) : LONGINT;

105

PROCEDURE close (fileds : LONGINT) : LONGINT;

PROCEDURE creat (filename : ARRAY OF CHAR ;

mode : BITSET) : LONGINT;

PROCEDURE dup (fileds : LONGINT) : LONGINT;

PROCEDURE exit (status : LONGINT)

;

PROCEDURE fclose (stream : Stream)

;

PROCEDURE fflush (stream : Stream) : LONGINT;

PROCEDURE fopen (filename : ARRAY OF CHAR;
type : ARRAY OF CHAR) : Stream;

PROCEDURE freopen (filename, type : ARRAY OF CHAR;
stream : Stream) : Stream;

PROCEDURE fdopen (fileds : LONGINT ;

type : ARRAY OF CHAR) : Stream;

PROCEDURE fread (ptr : ARRAY OF BYTE ;

size, ni terns : LONGINT ;

stream : Stream) : LONGINT;

PROCEDURE fwrite (ptr : ARRAY OF BYTE ;

size, nitems : LONGINT ,-

stream : Stream) : LONGINT;

PROCEDURE fseek (stream : Stream ;

Offset : LONGINT ;

ptrname : LONGINT) : LONGINT;

PROCEDURE rewind (stream : Stream) : LONGINT;

PROCEDURE ftell (stream : Stream) : LONGINT;

PROCEDURE getcwd (buf : ARRAY OF CHAR ;

size : LONGINT) : ADDRESS;

PROCEDURE link (filenamel, filename2 : ARRAY OF CHAR)

: LONGINT;

PROCEDURE malloc (size : LONGCARD) : ADDRESS;

PROCEDURE free (ptr : ADDRESS) ;

PROCEDURE realloc (ptr : ADDRESS ;

size : LONGCARD) : ADDRESS;

106

PROCEDURE mknod (VAR path : ARRAY OF CHAR ;

mode : BITSET ;

dev : LONGINT) : LONGINT;

PROCEDURE system (VAR String : ARRAY OF CHAR) : LONGINT;

PROCEDURE unlink (VAR filename : ARRAY OF CHAR) : LONGINT;

PROCEDURE setbut (stream : Stream;
VAR buf : ARRAY OF CHAR) : LONGINT;

(* 10 Functions *)

PROCEDURE fgetc (stream : Stream) : LONGINT;

PROCEDURE fputc (c : LONGINT;
stream : Stream) : LONGINT;

PROCEDURE fputs (VAR Str : ARRAY OF CHAR ;

stream : Stream) : LONGINT;

PROCEDURE sscanf (VAR S : ARRAY OF CHAR;
VAR format : ARRAY OF CHAR;
r: ADDRESS) : LONGINT;

PROCEDURE sprintf (VAR S : ARRAY OF CHAR;
VAR format : ARRAY OF CHAR;
HighReal : LONGINT;
LowReal : LONGINT) : LONGINT;

PROCEDURE getenv (VAR name : ARRAY OF CHAR) : ADDRESS;

PROCEDURE putenv (VAR string : ARRAY OF CHAR) : LONGINT;
(* time and date *

)

PROCEDURE times (buffer : tmsPtr) : LONGINT;
(* Get process and child process times *)

PROCEDURE time (tloc : intPtr) : LONGINT; (* Get time *)

PROCEDURE stime (tp : intPtr) : LONGINT;

PROCEDURE ctime (clock : intPtr) : timestringPtr

;

PROCEDURE localtime (clock : intPtr) : tmPtr;

PROCEDURE gmtime (clock : intPtr) : tmPtr;

PROCEDURE asctime (tm : tmsPtr) : timestringPtr;

(* get file status *)

- 107 -

PROCEDURE Stat (VAR path : ARRAY OF CHAR;
buf : StatPtr) : LONGINT;

PROCEDURE fstat (fileds : LONGINT;
buf : StatPtr) : LONGINT;

(* temporary tile creation *)

PROCEDURE mktemp (VAR template : ARRAY OF CHAR) : charPtr;

PROCEDURE tmpfile () : Stream;

PROCEDURE tmpnam (VAR s : ARRAY OF CHAR) : CharPtr;

PROCEDURE tempnam (VAR dir : ARRAY OF CHAR;
VAR pfx : ARRAY OF CHAR) : charPtr;

PROCEDURE getpid () : ProcessIDType;

PROCEDURE getpgrp () : ProcessIDType;

PROCEDURE getppid () : ProcessIDType

;

PROCEDURE Kill (pid : ProcessIDType;
sig : SignalType) : LONGINT;

PROCEDURE for* () : ProcessIDType;

PROCEDURE pause () : LONGINT;

PROCEDURE Sleep (seconds : CARDINAL) : CARDINAL;

PROCEDURE signal (Sig : SignalType;
Func : SignalProc)

;

PROCEDURE wait (stat_loc : intPtr) : LONGINT;

PROCEDURE alarm (sec : CARDINAL) : CARDINAL;

PROCEDURE gsignal (sig : SignalType) : LONGINT;

PROCEDURE ssignal (Sig : SignalType;
action : SignalProc);

PROCEDURE execv (VAR path : ARRAY OF CHAR;
argv : ADDRESS) : LONGINT;

PROCEDURE rand () : CARDINAL

;

PROCEDURE srand (seed : CARDINAL)

;

108 -

PROCEDURE getopt(argc : LONGCARD; argv : ADDRESS;
optstring : ARRAY OF CHAR) : LONGINT;

(* routines for 32 bit integer and 32 & 64 bit
float arithmetic *)

PROCEDURE dbtofl
;

(* convert LONGREAL to REAL *)

PROCEDURE fltodb ;

(* convert REAL to LONGREAL *)

PROCEDURE ltodb ;

(* convert LONGINT to LONGREAL *)

PROCEDURE dbtoi ;

(* convert LONGREAL to LONGINT *)

PROCEDURE dbadd (addend: LONGREAL);
(* add 2 LONGREALs *)

PROCEDURE dbsub (subtrahend: LONGREAL);
(* subtract 2 LONGREALs *)

PROCEDURE dbmul (multiplier: LONGREAL);
(* multiply 2 LONGREALs *)

PROCEDURE dbdiv (divisor: LONGREAL);
(* divide 2 LONGREALs *)

END CLibrary.

DEFINITION MODULE ErrorHandling;

PROCEDURE HaltMessage (Str : ARRAY OF CHAR);
(* writes the str on Stderr and halt the program *)

PROCEDURE ErrorMessage (Str : ARRAY OF CHAR);
(* writes the str on Stderr and continue the program *

END ErrorHandling.

109

DEFINITION MODULE Filelnformation;

FROM CLibrary CIMPORT stat, fstat, InoType, DevType,
OffType, TimeType;

FROM SYSTEM IMPORT WORD;

(* There are two sets ot procedures for operating
* system programming. They contains the same
* functionalities, but one set takes the path
* name as the input and the other file descriptor. *)

PROCEDURE GetMode (path : ARRAY OF CHAR) : WORD;
(* File mode *)

PROCEDURE Getlno (path : ARRAY OF CHAR) : InoType;
(* Inode number *

)

PROCEDURE GetDev (path : ARRAY OF CHAR) : DevType;
(* ID of device containing a directory entry for this file *

)

PROCEDURE GetRdev (path : ARRAY OF CHAR) : DevType;
(* ID of device. This entry is defined only for character

special or block special file *)

PROCEDURE GetNlink (path : ARRAY OF CHAR) : WORD;
(* Number of links *

)

PROCEDURE GetUid (path : ARRAY OF CHAR) : WORD;
(* User ID of the file's owner *)

PROCEDURE GetGid (path : ARRAY OF CHAR) : WORD;
(* Group ID of the file's group *)

PROCEDURE GetSize (path : ARRAY OF CHAR) : OffType;
(* File size in bytes *)

PROCEDURE GetAtime (path : ARRAY OF CHAR) : TimeType;
(* Time of last access *)

PROCEDURE GetMtime (path : ARRAY OF CHAR) : TimeType;
(* Time ot last data modification *

)

PROCEDURE GetCtime (path : ARRAY OF CHAR) : TimeType;
(* Time of last file status change *)

PROCEDURE fGetMode (filedescr: LONGINT) : WORD;

110

(* File mode *)

PROCEDURE fGetlno (filedescr: LONGINT) : InoType;
(* Inode number *

)

PROCEDURE fGetDev (filedescr: LONGINT) : DevType;
(* ID of device containing a directory entry for this file *)

PROCEDURE fGetRdev (filedescr: LONGINT) : DevType;
(* ID of device. This entry is defined only for character

special or block special file *)

PROCEDURE fGetNlink (filedescr: LONGINT) : WORD;
(* Number of links *)

PROCEDURE fGetUid (filedescr: LONGINT) : WORD;
(* User ID of the file's owner *)

PROCEDURE fGetGid (filedescr: LONGINT) : WORD;
(* Group ID of the file ' s group *

)

PROCEDURE fGetSize (filedescr: LONGINT) : OffType;
(* File size in bytes *)

PROCEDURE fGetAtime (filedescr: LONGINT) : TimeType;
(* Time of last access *)

PROCEDURE fGetMtime (filedescr: LONGINT) : TimeType;
(* Time of last data modification *)

PROCEDURE fGetCtime (filedescr: LONGINT) : TimeType;
(* Time of last file status change *

)

END Filelnformation.

- Ill -

DEFINITION MODULE FileSystem;

FROM SYSTEM IMPORT ADDRESS, BYTE, WORD;

FROM CLibrary CIMPORT NAME_MAX, Stream;

CONST
EOL = 12C; (* <LF> *) (*U3B1*)
MAX_FILENAME = 127;

TYPE
File = Stream;
FileName = ARRAY [0. .MAX_FILENAME] OF CHAR;
ModeType = (0_RDONLY, 0_WRONLY , 0_APPEND,

0_RDWR , 0_WRUPDATE , 0_APPENDUPDATE) ;

VAR
Stdin, Stdout, Stderr : File;
Base_iob : ADDRESS;

PROCEDURE Done(): BOOLEAN;
(* should be called after each FileSystem procedure

to determine if previous call was successful. *)

PROCEDURE Create (VAR f: File;
filename: ARRAY OF CHAR);

(* create a new file and open it for read and
write access. *)

PROCEDURE CreateTempfile (VAR f : File;
filename : ARRAY OF CHAR);

(* create a new tile and open it tor read and
write access. The parameter filename should look
like a file name with six trailing Xs *)

PROCEDURE Open (VAR f: File;
filename: ARRAY OF CHAR;
mode : ModeType)

;

(* opens an existing file.
mode see ModeType above
position := beginning of file *)

PROCEDURE Close (VAR f: File);
(* closes file, modifications become permanent *)

PROCEDURE Release(VAR f: File);
(* if write access was allowed on the file, it is

deleted otherwise it is closed *

)

- 112 -

PROCEDURE Rename (old, new: ARRAY OF CHAR)

;

PROCEDURE Delete (filename: ARRAY OF CHAR);

PROCEDURE GetPostVAR f: File;
VAR position: LONGCARD);

(* return position *

)

PROCEDURE SetPos(VAR f: File;
position: LONGCARD);

(* set position to position which is the byte
position within the file. *)

PROCEDURE Reset(VAR f: File);
(* position := beginning of file *)

PROCEDURE ReadMode(VAR f : File) : BOOLEAN;

PROCEDURE WriteMode(VAR f : File) : BOOLEAN;

PROCEDURE FileNotBuffered(VAR f : File) : BOOLEAN;

PROCEDURE FileBigBuffer(VAR f : File) : BOOLEAN;

PROCEDURE Eof(VAR f: File): BOOLEAN;
(* position = end of file *)

PROCEDURE ErrorOnFile(VAR f : File) : BOOLEAN;

PROCEDURE ReadWriteMode(VAR f : File) : BOOLEAN;

(***** binary access *******)

PROCEDURE ReadWord (VAR f: File;
VAR w: WORD)

;

(* read one word from position; advance position *)

PROCEDURE ReadByte (VAR f: File;
VAR b: BYTE)

;

(* read one byte from position; advance position *)

PROCEDURE WriteWord (VAR f: File;
w: WORD);

(* write one word at position; advance position *)

PROCEDURE WriteByte (VAR f: File;
b: BYTE);

(* write one byte at position; advance position *)

PROCEDURE Flush (VAR f : File);

113

(***** textfile access ****»«*)

PROCEDURE ReadChar (VAR f: File;
VAR Ch: CHAR)

;

(*write one character from position; advance position*)

PROCEDURE WriteChar(VAR f : File;
ch: CHAR)

;

(* write one character at position; advance position *)

PROCEDURE WriteString (VAR f : File;
Str : ARRAY OF CHAR);

(* write a strinq trom position;
advance StringLen(str) byte position on the file *)

PROCEDURE ReadRecord (VAR f: File;
VAR bufPtr: ARRAY OF BYTE;
requestedBytes : LONGCARD

;

VAR read : LONGCARD)

;

(* read an entire record from t *)

PROCEDURE WriteRecord (VAR f : File;
VAR bufPtr: ARRAY OF BYTE;
requestedBytes: LONGINT;
VAR written : LONGINT);

(* write an entire record to f *

)

PROCEDURE Name (VAR f: File;
VAR filename: ARRAY OF CHAR) ;

(* returns the name of the file currently open on f *)

PROCEDURE FileNameLengthCheck (Filename : ARRAY OF CHAR;
VAR resultname : ARRAY OF CHAR)

;

(* Correction filenamelength *)

PROCEDURE Parse (filename : ARRAY OF CHAR;
VAR resultname : ARRAY OF CHAR)

;

PROCEDURE ShowStatUS;
(• should be called if not Done() to display

the corresponding error message on the terminal *)

END FileSystem.

- 114 -

DEFINITION MODULE InOut;

FROM FileSystem IMPORT File;

CONST
EOL = FileSystem. EOL;

VAR
Done : BOOLEAN;
termCH : CHAR;
in, out : File;

PROCEDURE OpenInput(defnam: ARRAY OF CHAR);
(* request a file name and open input file "in".

Done := "file was succesfully opened".
If open, subsequent input is read from this file.
Name is parsed with defnam as default name *)

PROCEDURE OpenOutput(defnam: ARRAY OF CHAR);
(* request a file name and open output file "out".

Done := "file was succesfully opened".
If open, subsequent output is written on this file *)

PROCEDURE Closelnput;
(* closes input file; returns input to terminal *)

PROCEDURE CloseOutput;
(* closes output file; returns output to terminal *)

PROCEDURE Read (VAR ch: CHAR); (* Done := NOT Eof(in) *)

PROCEDURE ReadLn;
(* skip to the beginning of the next input line *

)

PROCEDURE ReadString(VAR s: ARRAY OF CHAR);
(* read string, i.e. sequence of characters not containing

blanks nor control characters; leading blanks are ignored.
Input is terminated by any character <= " "

;

this character is assigned to termCH *)

PROCEDURE ReadInt(VAR i: INTEGER);
(* read string and convert to integer. Syntax:

integer = ["+"
|

"-']digitldigit}

.

Leading blanks are ignored.
Done := "integer was read" *)

PROCEDURE ReadCard(VAR c: CARDINAL);
(* read string and convert to cardinal. Syntax:

cardinal = digit{digit}

.

115

Leading blanks are ignored.
Done := "cardinal was read" *)

PROCEDURE ReadOct(VAR c: CARDINAL);
(* read string and convert to cardinal. Syntax:

cardinal = octdigit{octdigit>.
Leading blanks are ignored.
Done := "octal cardinal was read" *)

PROCEDURE ReadHexlVAR c: CARDINAL);
(* read string and convert to cardinal. Syntax:

cardinal = hexdigit{hexdigit}

.

Leading blanks are ignored.
Done := "hexa cardinal was read" *)

PROCEDURE ReadReaKVAR c: REAL);

PROCEDURE Write (ch: CHAR);

PROCEDURE WriteLn;

PROCEDURE WriteString(s: ARRAY OF CHAR);

PROCEDURE Writelnt(i: INTEGER;
n: CARDINAL);

(* write integer i with (at least) n characters on
file "out". If n is greater then the number of
digits needed, blanks are added preceding the number *)

PROCEDURE WriteCard(c: CARDINAL;
n : CARDINAL)

;

PROCEDURE WriteOctlc: CARDINAL;
n: CARDINAL) ;

PROCEDURE WriteHex(c: CARDINAL;
n: CARDINAL);

PROCEDURE WriteReal (r : REAL;
n : CARDINAL)

;

END InOut.

116

DEFINITION MODULE M2System; (* HS + WH 19.02.86 *)

FROM SYSTEM IMPORT ADDRESS;

(* 'System' FOR MC68000/MC68010 runtime support of Modula-2.*)

VAR argc: LONGCARD;
(* number ot command- line arguments *)

argv: ADDRESS;
(* pointer to array ot command-line arguments *)
environ: ADDRESS;
(* pointer to array of environment variables/ values *)

PROCEDURE HALTX;
(* argument in register DO ! *)

PROCEDURE MULU32;
(* arguments and
PROCEDURE DIVU32;
(* arguments and
PROCEDURE MULS32;
(* arguments and
PROCEDURE DIVS32;
(* arguments and quadword-result in regs. D0/D1 ! *)

guadword-result in regs. D0/D1 ! *)

quadword-result in regs. D0/D1 ! *)

quadword-result in regs. D0/D1 ! *)

PROCEDURE FADDs;
(* (adder, addend : REAL)
PROCEDURE FSUBs;
(* (minuend, subtranend : REAL)
PROCEDURE FMULs;
(* (multiplicand, multiplier : REAL
PROCEDURE FDIVs;
(* (dividend, divisor : REAL)
PROCEDURE FREMs;
(* (dividend, divisor : REAL)
PROCEDURE FCMPs;
(* (first, second : REAL); *)
PROCEDURE FNEGs;
(* (toNeg : REAL)
PROCEDURE FABSs;
(* (toAbs : REAL)
PROCEDURE FLOATS;
(* (toFloat : LONGINT)
PROCEDURE TRUNCs;
(* (toTrunc : REAL)

REAL ; *
)

REAL ; *

)

REAL ; *

)

REAL ; *
)

REAL ; *

)

(* result in CCR *)

*)REAL

REAL

REAL

LONGINT;*)

(* note that double precision arithmetic is not
implemented yet *)

PROCEDURE FADDd;

117 -

(* ladder, addend : LONGREAL) : LONGREAL;
PROCEDURE FSUBd;
(* (minuend, subtrahend : LONGREAL) : LONGREAL;
PROCEDURE FMULd;
(* (multiplicand, multiplier : LONGREAL): LONGREAL

;

PROCEDURE FDIVd;
(* (dividend, divisor : LONGREAL) : LONGREAL;
PROCEDURE FREMd;
(* (dividend, divisor : LONGREAL) : LONGREAL;
PROCEDURE FCMPd;
(* (first, second : LONGREAL); *)(* result in CCR
PROCEDURE FNEGd;
(* (toNeg : LONGREAL)
PROCEDURE FABSd;
(* (toAbs : LONGREAL)
PROCEDURE FLOATd;
(* (toFloat : LONGINT)
PROCEDURE TRUNCd;
(* (toTrunc : LONGREAL)

LONGREAL

LONGREAL

LONGREAL

LONGINT;

PROCEDURE FLONG;
(* (toConvert : REAL)
PROCEDURE FSHORT;
(* (toconvert : LONGREAL)

LONGREAL ; *

)

REAL; *)

END I* OF DEFINITION MODULE «) M2System.

- 118 -

DEFINITION MODULE Procs;

FROM SYSTEM IMPORT ADDRESS;

TYPE
PROCESS = ADDRESS;
SIGNAL = POINTER TO ProcessDescriptor;
(* the object coroutines synchronize with *)

ProcessDescriptor =
RECORD

next: SIGNAL;
(* linked list of active coroutines *)

queue: SIGNAL;
(* queue of coroutines waiting on

specific signal *)

cor: PROCESS;
(* control block maintained by the system *

)

ready: BOOLEAN;
(* flag for ready or blocked state *)
paddr : ADDRESS

;

(*address of low- level process control block*)
psize: CARDINAL;
(* size allocated to process *)

priority: INTEGER;
(* user-assigned priority

- main program always = -1 *)
main: BOOLEAN;
(* indicates whether is main coroutine

or child *)

END;

PROCEDURE StartProcess (P: PROC;
worksize: CARDINAL;
pri: INTEGER);

PROCEDURE StopProcess;

PROCEDURE SEND (VAR sendsig: SIGNAL);

PROCEDURE WAIT (VAR waitsig: SIGNAL);

PROCEDURE Awaited (signal: SIGNAL): BOOLEAN;

PROCEDURE Init (VAR signal: SIGNAL);

END Procs.

- 119 -

DEFINITION MODULE Storage;

FROM SYSTEM IMPORT ADDRESS;

PROCEDURE ALLOCATE (VAR p: ADDRESS;
size: CARDINAL);

PROCEDURE DEALLOCATE (VAR p: ADDRESS);
(* (size: CARDINAL); I took off this parameter *)

PROCEDURE available (size : CARDINAL) : BOOLEAN;
(* Return TRUE if space is available *)

PROCEDURE REALLOCATE (VAR a : ADDRESS;
size : CARDINAL);

(* Change the size of he previously allocated
block pointed to by "a" to now contain "size"
bytes. The address of the new block is return
in "a". *)

END Storage.

DEFINITION MODULE Strings;

PROCEDURE StringLenlStr : ARRAY OF CHAR) : INTEGER;
(* StrLen returns the length of the string Str *)

PROCEDURE CopyString(Strl : ARRAY OF CHAR;
VAR Str2 : ARRAY OF CHAR);

PROCEDURE AppendString(Strl, Str2 : ARRAY OF CHAR;
VAR Str3 : ARRAY OF CHAR);

PROCEDURE CmpStringlStrl, Str 2 : ARRAY OF CHAR)
: INTEGER;

(* when Strl and Str2 are identical;
-1 if Strl lexically < Str2;
1 if Strl lexically > Str2; *)

END Strings.

120 -

DEFINITION MODULE Terminal;

PROCEDURE Read(VAR ch: CHAR);

PROCEDURE ReadString(VAR s: ARRAY OF CHAR);
(* read a line of characters from the current *

)

(* position until a line terminator is detected *)
(* or the string is complete filled *)

PROCEDURE ReadLn;
(* skips to the beginning of the next line *)

PROCEDURE ReadAgain;

PROCEDURE Write (ch: CHAR);

PROCEDURE WriteString(s: ARRAY OF CHAR);

PROCEDURE WriteLn;

END Terminal.

121 -

DEFINITION MODULE MathLibO;
(* This library module is modified from the C math
* library. Due to the fact that the Modula II compiler
* is limited to only 3 2 -bit calculations, this math
* library module will only return numbers with the
* precision of 7 significant digits. *)

TYPE
MathLibStatus (Valid, Invalid)

VAR
MathStatus MathLibStatus:

PROCEDURE sqrt(x : REAL) : REAL;
(* Return the square root of x, if x < 0.0 then

return 0.0 *

)

PROCEDURE exp(X : REAL) : REAL;
(* This expoential function returns e**x, if underflow
* then return 0.0 else if overflow then return MaxFloat *)

PROCEDURE ln(X : REAL) : REAL;
(* Return natural log of x, if x <= 0.0 then return
* LnMinReal *)

PROCEDURE arctanlx : REAL) : REAL;
(* x is in radian instead of degree *)
(* Return the arctangent of x. *)

PROCEDURE Sin(x : REAL) : REAL;
(* x is in radian instead of degree *)
(* Return the sine of x. *)

PROCEDURE cos(x : REAL) : REAL;
(* x is in radian instead of degree *)
(* Return the cosine of x. *)

PROCEDURE pow(X, y : REAL) : REAL;
(* Retrun x to the power y, x**y, if underflow then
* return 0.0 else if overflow then return MaxFloat *)

PROCEDURE entierfx : REAL) : INTEGER;
(* Return the nearest INTEGER to the REAL x. *)

PROCEDURE real (a : INTEGER) : REAL;
(* Return the REAL representation of the INTEGER x. *)

END MathLibO.

Implementing Run-Time Support for Modula-2

by

Wai-Sum Christopher Li

B.A. Ottawa University, 1986

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

Abstract

The goal of this project is to make the computer pro-

gramming language, Modula-2, available on the UNIX PC for

research and academic purposes. It involves writing the

library modules and compiling them on the AT&T 3B15, then

porting them to the UNIX PC for testing. The library

modules are categorized into Run-Time library and Utility

library. The former is written in C to support the execu-

tion of the Modula-2 compiler on the UNIX PC. The Utility

library modules are written in Modula-2 except the coroutine

primitives in Assembly of MC68010. A discussion on the

standardization of Modula-2 libraries from the British Stan-

dard Institute is also included and compared with our imple-

mentation on the UNIX PC.

