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I. INTRODUCTION

The investigation of nonlinear vibrational systems is of fundamental
importance in many areas of physics, engineering and mechanics. Most
naturally occuring vibrational systems are inherently nonlinear and tech-
nological advancements require increased sophistication in their analyses.

A designer, for example, provided with a clear understanding of the be-
havioral features brought about by nonlinear characteristics, can more
easily account for these features and perhaps incorporate them in the design.
The understanding of nonlinear systems, however, has been restricted by

the lack of techniques available for their analyses. Thus, any new develop-
ment in this area is a significant contribution.

An important class of nonlinear vibrational systems are those with
time dependent parameters, better known as nonstationary systems. The
theory of nonlinear, nonstationary systems has many applications and numer-
ous examples can be cited from the areas of quantum mechanics, solid mechan-
ics, fluid mechanics, aeronautics, and engineering design which fall under
the above mentioned category. Some recent applications include the studies
by Scalia and Torrisi [1] for the motion of a variable mass gyroscope, by
Balitskii and Borovkov [2] for the response of systems with limited exci-
tation, by Ilin and Zhigula [3] for the dynamics of viscoelastic cables in
Toad 1ifting devices, by Tordion and Gauvin [4] for the stability of gear
trains with variable meshing stiffness, and by Gopak [5] for the dynamic
stability of a rod of variable mass.

A very important class of such problems also occur in the theory of



vibrations of parametrically excited nonlinear systems which has numerous
applications in mechanics. Some of the recent applications dealing with

beams and columns are by Tso [6], Ghoborah and Tso [7], Iwatsubo et al. [8],
Elmaraghy and Tabarrok [9], Tesak et al. [10], and Crespo da Silva [11].
Examples of investigation of parametric excitation in other areas of me-
chanics are studies by Mote [12] and Rhodes [13] for moving strings and

bahds, by Nishikawa and Willems [14] for satellite attitude stability problems,
by Friedmann and Silverthorn [15,16] for helicopter blade vibration problems,
by Paidoussis and Sundararajan [17] for pipes conveying fluid with variable
flow rate, and by Nayfeh [18] for the problems of re-entry missile dynamics,

The problem one encounters in the analysis of such systems is the in-
ability to obtain an exact solution, Mathematically speaking, the systems
lead to the analysis of nonlinear differential equations with time dependent
coefficients, which, in general, have no closed form solutions. Thus one
must turn to approximate techniques to gain some insight into the problem.
It could of course be argued that there are various numerical methods avail-
able for the analysis of such systems. However, numerical solutions them-
selves do not lend much insight into the general behavicr of the system as
a function of its parameters. Thus any form of analytical solution, exact
or approximate, is a valuable asset in the analysis and design of vibra-
tional systems.

The purpose of this study is to investigate the behavior of nonlinear,
nonstationary vibrational systems when subjected to an arbitrary pulse type
loading. Such analyses are extremely important, for example, if one is
interested in determining the transient behavior of structural or mechanical

systems, with time dependent parameters, under the action of a shock loading.



However, analyses of this nature pose an additional complication due to
the fact that the governing differential equation of a nonlinear, nonsta-
tionary system, contains a forcing term, which, in general, is nonperiodic.
Many of the available approximate techniques can not be applied directly

to such problems. To overcome this obstacle, a transformation of the de-
pendent variable is introduced to yield an equivalent set of tractable
differential equations., Approximate solutions are obtained through an ap-
plication of the technique developed by Krylov, Bogoliubov, and Mitropol-
sky [19,20].

Presented in this study is a general procedure for obtaining first
and second order approximate solutions of nonlinear, nonstationary vibra-
tional systems, subjected to an arbitrary pulse excitation, Specific
examples include: step function excitation, blast type loading, expon-
entially decaying pulse, asymptotic step, and a cosine pulse, In addition,
several types of nonlinearities are considered and their effects on the
systems' behavior are discussed. Results obtained are also compared with

numerical solutions using a fourth order Runge-Kutta integrating scheme.

o



II. EQUATION OF MOTION AND METHOD OF ANALYSIS

2.1 Introduction

The transient response of nonlinear systems with constant parameters
subjected to a pulse excitation has been considered by several authors,
Approximate analyses of such systems have been presented by Srirangarajan
and Srinivasan [21], Srirangarajan [22], Bapat and Srinivasan [23], Bauer [24-
271 , and Ariaratnam [28]. The response of nonlinear, nonstationary sys-
tems have been investigated by Nayfeh and Mook [29], Rubenfeld [30], Mitro-
polsky [20], Evan-Iwanowski [31], and Sinha and Chou [32]. However, these
analyses do not deal with arbitrary pulse excitaticns. In general, when
the system parameters are functions of time, it is very difficult to obtain
even an approximaté solution of a nonlinear system., However, for the case
when the parameters vary slowly with time, it is possible to construct an
approximate solution for a general class of problems.

In this chapter the pulse response of nonlinear, nonstationary vibra-
tional systems is investigated through an application of the Krylov-Bogoliu-
bov - Mitropolsky method (henceforth called the KBM method). The system
parameters are considered to be slowly varying functions of time as compared
to the "normal" time period of the system. The general analysis for the
single degree of freedom system is presented and solutions for first and

second order approximations are obtained.



2.2 Equation of Motion

Many problems of nonlinear vibrations with single degree of freedom
and slowly varying parameters subjected to an arbitrary pulse excitation,

g(t), can be reduced to

fE[m) Flekox + et (x, F) = alo), (2.1)

where f(x , dx/dt) is a nonlinear function of x and dx/dt, ¢ is a small non -
Tinearity parameter, and 7 = et is a new time scale called “slowing time" [20].
Here, all mass or inertia type terms have been lumped into one time depen-

dent function m(t), and all stiffness or restoring type terms into the func-
tion k(t). It is assumed that the functions m(t), k(t)}, g(z), and f(x,dx/dt)
all have the desired number of derivatives with respect to v, x, dx/dt for

all their finite values, and that m(t) > 0 and k(t) > 0 for all t within

the interval under consideration. Finally, the initial conditions, without

any loss of generality, can be taken as

d
x=0,£=ﬁatt=0. (2.2)

Many of the available approximate techniques cannot be directly applied
to equation (2.1), if g(r) is an arbitrary function of time. Approximate
solutions are available for the case when g(t) is a periodic function of
time, The methodlof multiple scales [29] and the KBM method [19.,20] are
the two popular techniques commonly employed for such problems. However
it is possible to overcome this obstacle through a transformation of the
dependent variable. Introducing the transformation of Ariaratram [28], the

dependent variable is transformed by

x(t) = y(t) + p(t), (2.3)



where p(t) is yet unknown, equation {2.1) becomes

é%.[m(T)-%%] + é%'[m(T) %%] + k{t)y

+ k(o) + ef (v + p, o+ )= glo (2.4)
Choosing p{t) such that
i[m(r)iﬁ]w() = g(t) 2.5
dt dt ©/p = 9itl (2.5)
yields
L m(e) W+ kie)y + ef(y + + 92 (2.6)
dt[“” dt] Ty E(Y Ps dt dt) 0, /

where p is the particular solution of equation (2.5). The initial

conditions transform as

Y = =P, g"'5=-r-fj-iqp;,att=0. (2.7}

Although equation (2.5) is linear, its coefficients are time dependent
and in general there are no exact solutions for such equations. However,
the structure of equation (2.6) reveals that solutions of first {0(c)) and
second (0(c)} order approximations require the evaluation of p independent
of € and up to the order of e, respectively. To realize this, notice that

equation (2.5) can be rewritten as

2
=2n(x) :Ti v 28me) 90 4 (e)p = g(r), (2.8)

so that for Tirst and second order approximations the solution of p(t) is

easily given by

p(t) = 1 (2.9)



Once p(t) is known, equation (2.6) takes the standard form
ft [ §]+ kiedy + et (r, v, )= 0, (2.10)

a form to which many of the available methods can be directly applied to
obtain an approximate solution. The method to be used in this study is
that developed by Krylov, Bogoliubov and Mitropolsky [19,20 . This method
is outlined in the following section and the procedure for obtaining first
and second order approximations for equations of the form (2.10) are

presented,

2.3 The Krylov-Bogaliubov=Mitropolsky (KBM) Method

The KBM method is one of the many perturbation techniques available
today for obtaining approximate solutions of nonlinear differential equa-
tions. The method was first introduced by Krylov and Bogoliubov [43] in
1943, Following this work, Bogoliubov, Mitropolsky and their co-rgsearchers,
in a series of papers, further developed the method to include a wide class
of problems in nonlinear oscillation, These results are summarized in an
excellent monograph by Mitropolsky [20]. Presented below is a brief sum-
mary of the method and the procedure for obtaining first and second order
approximations for equations of the form (2.10),

Following Mitropolsky [20] the unperturbed equation is obtained
by setting e equal to zero and taking 1 as a constant in equation (2.10);

TeBas
2
m(r) £+ k(x)y = 0, (2.11)
dt2

where m(t) and k(t) are now constants,



Motion described by equation (2.11) is obviously purely harmonic and the

solution is
Yy = acosy, (2.12)

with a constant amplitude and uniformly rotating phase angle, Or

(=%

g_i_ -0, __l;tf_z o (2.13)

where the phase angle, y, is defined by

v =wt+6, o= Yk(z)/m(t), (2.74)

and 6, k() and m{t) are constants,

The presence of nonlinear perturbations (e #0) and the slow varia-
tions of some of the parameters (r # constant), introduce several effects
in the solution of equation (2.10), in comparison to those obtained accord-
ing to equation (2,11). Thus the solution may contain overtones, the instan-
taneous frequency may cease to be constant and may depend on the amplitude
of vibration as well as the slowing time 1, or, a systematic increase or
decrease of the amplitude may occur, etc.

Taking all these into account, it is natural to look for a solution of

equation (2.10) in the form of an expression
x = acosy + euy (T,a,0) * €2Up(Ta,0) + weu (2.15)

where u;{t,a,¥), Us(Tsa,0)s.00, are periodic functions of angle y with

period 2m, and the quantities a and y are functions of time defined by

Q2 = chy(r,a) + e2hy(raa) + uen s (2.16)

%% = w(t) + eBy(r,a) + e2By(r,a) + ... . (2.17)



Here, w(t) = vk(t}/m{t) is the "normal” frequency of the given vibrating
system and 1 = et,
Proceeding as usual in nonlinear mechanics, the functions Uj, Usseess

Ups Ais Aaseees A, By, Boseu., B_, are chosen such that equations {2.15)

n? n
and (2,16) satisfy the differential equation (2.10). In addition, unique
definitions of the functions An and Bn are ensured by requiring that no

Un contains the first harmonic of the angle y. In other words these periodic

functions are determined so as to satisfy the equations

2r 2m
f uy (T,a,) cosy dy = 0, f ua(t,a,¥) cosy dy

o 0

i
"

0y eeu » (2.18)

1]
1]

2m 2n -
J[ uy(t,a,w) sing dy = 0, J[ Ug{t,a,¥) sing dy = 0, ... . (2,19}
0 0

These conditions are, from a physical point of view, equivalent to as-
sociating the quantity a with the full amplitude of the first fundamental
harmonic of vibration.

Under the conditions (2.18) and (2.19) it is possible to construct

approximate expressions for the functions An’ B _, and Ups to any order of

n
e desired. However, as discussed in the previous section, only first and
second order approximations are required in the present study. Therefore,
it is necessary to determine the functions A;, B;, A;, By, and u; only,

Following the approach presented by Mitropolsky [20], it can be shown that

Ai(era) = - gy dm(ee(]

2m
¥ ZWmZT];UJiTj_[ folr,a,9) siny du, (2.20)
0
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2w
]
BI(T,a) = mm[ fo('l.',a,lb) cosy dy, (2.2])
0]

1 3B d
Ay(t,a) = - §$T?T'[aiﬁf'A1 + 2A;By + m{i) [maﬁgBlj} i

2m
1 i
* ZﬂmiT)mfti_/r fl(T’a:W) siny dy, (2.42)
0

By(t,a) = ?E%?T'[%Q%'Al - aB% + me) d[m&;3A1]] +

2w
0

. 2m .
1 ciny iy
up(t,a,yp) = - E;ET;T-HE;1 e fo(tsa.y) e W4y, (2.24)
= 0

where the following notations have been introduced
fo(tl,a,p) = fr,acosy,-awsing), (2.25)
fi({t,a,9) = upfy(r,acosy,-auwsing) +

+ [Alcosw - aB;siny + 2L, m(r)] f;,(T,aCOS¢,-amen¢)-

3y
) 32u; . 3%u; 32U _ AUy dlm{t)w(r)]
zm(f)“(T)[ 3760 | 330 Ay + awﬁ Bd 3y dt EZ 26)

The symbols f; and f;. denote partial differentiation of f with respect
to x and dx/dt respectively.
In summary, solutions of eguations of the form (2.1) can be approxi=-

mated, to the first order of e, by

X = acosy + { T), (2.27)



1

where a and y are given by

da

2= eyl,a), e alo) +eBi(n,a). (2.28)

d

A; and By can be obtained from equations (2.20) and (2.27) respectively.

Likewise, the solutions of equation (2.1) to the order of 2 is

given by
X = acosp+eu (1,a,%) + :), (2.29)
where
R = e (ra) + ey
af = <hilr.a e*Ps(t,a),
(2.30)
B - u(x) + eBy(nsa) + 2By(n,a).

Ay, By, Ay, and B, are given by equations (2.20), (2.21), (2.22), and

(2.23) respectively. u; can be obtained from equation (2.24), The fol-
Towing sections deal with some special cases of the first order approxi-
mation., In what follows, it is observed that certain types of nonlinear-

ities result in significantly simplified expressions for A; and B;.

2.4 Special Cases of the First Approximation

2.4,1 Nonlinearities of the Displacement Variable Only

Consider a system with slowly varying parameters, subjected to a
pulse excitation, and whose nonlinearity arises from the displacement

variable only. Such a system could be described by

-di*‘f[m(-r) g%] + k(t)x + ef(x) = glt). (2.31)
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Proceeding as outlined in the previous section, the first order approxima-

tion, as given by equation (2.27), is

X = acosy + ¢ ;), (2.32)

where, from equations (2.28), (2.20), and (2.21), a and ¢ are determined

by

Q.
Q
|

da _ _ ok dlm(t)e()] .
dt 2m(t)uw(t) dt

2w
+ EEﬁTf?IPFTjr f(t,acosy) siny dy, (2.33)
)

d

2w
a’% = w('r:) + mj f(T,aCOSIIJ) cosy dy, (2.34)
0

Notice that the nonlinear term appearing in equations (2.33) and
(2,34) is a function of cosy only, in which case the integral appearing
in the amplitude expression will vanish., Thus, the expression for amp-

litude variations is simply given by

da _ € dim(t)w(r
H% - - T [m(d)T( 11 (2.35)

This equation can be integrated in closed form to yield

i
5w g{) [“’(0)"‘ 0)1° (2.36)

wiT )Mt

where a(0) is the initial amplitude. Or, recalling that w{t) = vk(t)/m(t),

"(‘T’ e 1& (2.37)

Once a 1is known, it can be substituted into equation (2.34), which

can then be integrated to yield the expression for phase variation as
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2m
¥ i/’ { w(t) + igﬁrf%;(;jad[. f(t,acosy) cosy de dt + 3. (2.38)
0

The constant of integration, %0, and the initial amplitude, a(0), are

determined form the initial conditions of a and y.

2.4.2 Nonlinearities of the Velocity Term Only

As a second special case, consider a system with slowly varying para-
meters, subjected to a pulse excitation, whose nonlinearity arises from

the velocity term only. Such a system could be described by

f—f[m(t) %i;-]Jf k(z)x + cf{dx/dt) = g{r). (2.39)

Proceeding as before, the first order approximation is given by

X = acosy +-%%%}, (2.27)

where, from equations (2,28}, (2.20), and (2.21), a and y are determined

by
da_ _ __ea dlm(t)u(r)]
% 2n{t)w(t) dt
2
+ ?FET?%ET?jl/’ f(rt,-awsinyg) siny dy, (2.40)
0
2n
%% = w(r) + ?EET¥%5T¥TEJr f(t,=awsing) cosy dy. (2.41)
0

Notice that the nonlinear term appearing in equations (2.40) and
(2.41) is, for this particular case, a function of siny only.and the inte-

gral appearing in the phase equation vanishes. Hence



14

v =.['w(r) dt + g, (2.42)

and

_ = dim{t)w(t)
af[ ] [‘m(&)z-( L

2n

+ ?Fﬁ(f?f(gfjf f(t,-awsiny) cosy dw] dt + Ap. (2.43)

0
The constants of integration, ¢; and Ay, are determined from the initial

conditions on a and vy,

2.5 Discussion

Through suitable transformation of the dependent variable, the
problem of nonlinear, nonstationary systems, subjected to an arbitrary
pulse excitation, can be solved via the approximate methods of Krylov,
Bogoliubov and Mitropolsky.

For special cases, where the nonlinearity of the system arises
solely from the displacement variable or velocity term, there is a sig-
nificant simplification in the first order approximations. As seen from
equation (2.36), the expression for amplitude variation, in systems whose
nonlinearity arises from the displacement variable only, reduces to a
simple power law type function. Also, as seen from equation (2.42), the
frequency of vibration in systems whose nonlinearity arises from velocity
terms only, obviously does not depend, in the first approximation, on the
amplitude of vibration, but only on the character of the slowly varying
mass and stiffness of the system. The following chapter deals with specific

examples of nonlinear, nonstationary systems subjected to step function

excitation.



IITI., STEP RESPONSE OF SOME TYPICAL SYSTEMS

3.1 Introduction

Several authors have investigated the response of nonlinear vibrational
systems, subjected to step function excitation. Bapat and Srinivasan
[33,34] have obtained exact expressions for the periods and maximum dis-
placements for a class of undamped nonlinear systems subjected to a step
function excitation. Bapat and Srinivasan [35] have also applied Ponavko's
direct Tinearization method [36] and Atkinson's superposition method [37]
to obtain approximate expressions for the time periods in systems with
arbitrary hardening type spring characteristics. Bauer [24] has used the
Poincare'-Lighthill perturbation technique and Ergin [38] has proposed a
bilinear approximation method for solving undamped problems. Sinha and
Srinivasan [39], Liu [40], and Anderson [41] have attempted the problem
thru applications of ultrasoherical polynomials. These analyses, how-
ever, have all been restricted to systems with constant parameters only.
Recently, Sinha and Chou [32] have extended the application of ultra-
spherical polynomials to systems with time dependent parameters, an analysis
restricted specifically to step function excitation.

In this chapter the approximate technique outlined in chapter II is
applied to some common nonlinear systems with time dependent parameters
when subjected to step function excitation. Specific examples are pre-
sented for cases where the parameter variations are linear functions of
time. Results are obtained in the first order approximation and compared

with numerical solutions using a fourth order Runge-Kutta integrating scheme.
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3.2 Equation of Motion and First Order Approximation

Consider a nonlinear system with slowly varying parameters, sub-

jected to step function excitation. Such a system could be described by

éi [m(r) Ef] + k{1)x + ef (x , %% = Fou(z}, (3.f)

where m{t), k(t}, and f(x,dx/dt) satisfy the conditions stated in section

2.2, Fy is a constant and u{t) is the unit step function defined by

0 if 1 5_0" .
u(t) = g (3.2
1if« >0 .
The initial conditions, without any loss of generality, can be taken as

- dx _ ’
x =0, Tt = 0, at t=20. { 2]

Proceeding as outlined in chapter II, the first order approximation

is given, by equation (2.27}), as

X = acosy + i UTT ) (3.4)

The expressions for a and y, from equations (2.28), (2.20), and (2.21),

are
da _ _ £a d[m(T)m(T)]
t T 2m(t)e(r) dt 2nm(r) ) "
Zm
x'jr f [acosw * FkutT , —awsing + . -Jl(—yl) ] siny dy, (3.5)
0

dy . €
dt wlx) + Zmm{t)w(t)a *

2

XI f[acosw + -EE-LETS—L -a siny + i—(iﬁ—sl)] cosy dy. (3.6)

o
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The initial conditions of a and y are obtained from the transformed

initial conditions of x given by equation (2.7) as

= = dr__d -
y=-p, F=-3, at t=0,

where, in this case,

_ Fpult
P= k(it) °

Substituting for y and p, equation (2.7) yields

a{0)cosy(0) = - E%%T ;

~w{0)a(0)siny(0) = - HQE[FKUTT ] 0
t=0,

which can be solved simultaneously for a(0) and y(0) as

_ F
a{0) = - L10Ycosy(0)
k(0) d {Fault)
ardmn['m(MFDHf[ k(z ]t=0]

1]

p(0)

(2.7)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Thus the first order approximation of nonlinear systems with slowly

varying parameters, subjected to step function excitation of magnitude Fg,

is given by equatiens (3.4), (3.5), {3.6), {3.10), and (3.11).

following section the response of various nonlinear systems, subjected

to step function excitation is investigated.

3.3 Application to Some Typical Systems

The procedure for cbtaining first order approximations of systems

subjected to step function excitation has been applied to systems with the

following types of nonlinearities
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( X
-
dx a%%
f(x’ dat/ - < a(] +x2)%% (3.32)
! ax? + 8%%', a >0, 8 >0,

Results are presented for cases where some or all of the parameters vary

according to a linear function of time.

3.3.1 Systems with Cubic Nonlinearity

Consider a system whose nonlinearity is of the form, f(x , dx/dt) = ax3,
This is a special case of a nonlinearity arising from the displacement vari-
able only., As outlined 1in section 2.4.1, the expression for amplitude

variation in systems of this nature simply reduces to

- k(0)m(Q) %

a = a(0) [k e ] . {3.13)

The phase expression, given by equation (2.34), takes the form
Z'IT 3
d
Hu% = w(r) + m[ [ acosy + FkuTT)] cosy dy, (3,14}
0

which, after performing the necessary integration, reduces to

dy _ 3eaa? 3eaFiu(1)?

t = ol Y Yty T A 2n(n)elaT (3.15)

Upon substituting in the expression of a, given by equation (3.13),

this equation can be integrated to yield the expression for phase variation

_ 3zaa(0)? | k{0)m(0) cx 3eaFzu(t)2
v "[{w{f) * ) [k(r)rﬂu)] ' zk(f)zﬁl(‘f)u)a(r)] %+ a9y, BI6

where the constant of integration, ¢,;, is determined from the initial

condition of vy.



19

As a specific example, consider a system whase stiffness is constant,

i.e., k{t) = ky, and whose mass varies according to the linear law, m(t) =

my + myt, where, kg, mg, and my are constants [see figures 3.1 thru

For this case the amplitude and phase expressions become

a1}
it

a(0) [__._ﬂlo__] 4‘:

mo' + mt

_ 2m{t)w(t) . 3eaf0)2vmg 3uF§
v me i 8m11/k0 ]n[m(T)]+ mlk Wi T ¥ (I:O’

where, from equations (3.10) and (3.11),

a(0) = - E&,
p(0) = 0,

Thus, the constant of integration, %g, is
- _ | 2m{0)w(0) 3aa(0)2vmg 30&F§
%0 mye i 8m; vk Tn[m0]+ my kgw(0) |

3.3.2 Systems with Linear Damping

Consider a system where f(x , dx/dt) = adx/dt. This is a special
case of a nonlinearity arising from the velocity term only.

in section 2.4.2, the expression for phase variation reduces to

P =fm(r) dt + ¢ .

Ampiitude variation is given by equation (2.40) as

(a8

a . _ €a dim(z)u()] ,
t 2m(t)w(t) dr

As shown

3.4].

(3.17)

(3.18)

(3.19)

{3 211}

(3.21)

(2.42)

2n
£Q s d/Fqu(T .
¥ Zwmirjwiﬂ[ I:-amsmw-bﬁ({(_éjl)] sing dy, (3.22)
0

which reduces to
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- ZmV:ﬁﬂri d[m(i%?(T)] - 2;?2) . (3.23)

Qi
ot

As a special case, consider a system where both the mass and stiff-

ness vary according to linear functions of time, i.e.,

]

m{t)
k(1)

My + mT
(3.24)

ko + ki'l' ’

where mg, m;, kp, and ky are constants [see figures 3.5 thru 3.8]. The
expressions for amplitude and phase variations can be integrated in closed

form to yield

1 %
a = Ao[ [Hﬁ]q_]jl (3.25)
w(tIm(x) 1
v = [m(‘l‘m)w. (1)1 _ B*[mo_fu_é_-_!sm] + 0, (3.26)
1€ L
where
( i
;ﬁﬁézgz-arctan [- ; ? ; ] if kymp < 0

2mikqet + moky + komy M >0 (3 96a)

_ 5 1 . i
B _< - ;-mlklsz ar‘csm[ koﬂ'll - mle ] if k1 < 0

[mykqe2m(z)] T+ mlsk(T)‘}’ i kymy > 0 .

2
\ Ymykie? in

From equations (3.10) and (3.11), the initial conditions are

p(0) = arctan [Egﬁfay] , (3.27)
a(0) = - %—chgmy _ (3.28)

These initial conditions can be used to evaluate A, and ¥ in equations
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(3.25) and (3.26), Figures 3.5 thru 3.8 show results for systems with

some typical variations in mass and stiffness.

3.3.3 Systems with Mixed Damping

As a third case, consider a system whose nonlinearity is of the form
f(x , dx/dt) = a(1 + x2) dx/dt. By equations (3.5) and (3.6), the first

order approximations of a and ¢ are given by

da _ _ €a dim(t)w(r) £Q
dt 2m{t)wlt) dt * 2mm{t)w(T) %
2w 5
xf [ T + (acosw + k—?%—;) }{-amsinw + 'd%(k_i(:%)')] siny dy,(3,29)
0

2%
2
dy _ EQ F
dt w(r) + ZWM(ijiTsaf !: 1+ (acosw * kf'rj) ] X
o]

x [-amsinw + agf(k—F(‘%T)] cosy dy. (3.30)

Performing the necessary integrations, these expressions reduce to

da _ £ dlm(t)u(z)] FZ o £ .
—af N ‘[2m(r)m(ﬁ J:m(d"c s 2m(r§i(1‘72 ¥ 2;(1)] a- §rﬁ'(c'fr7 “3 (3:31)
X u. (3.32)

Notice that equation (3.31) is a special case of the general Bernoulli

equation [43]. This can be rewritten as

g‘% = Bl(t)a + 8‘2(,1:)33: (3-33)

where
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] . din(x)e(s)] , __<oFp o
Bi{t) = - [gﬁqzjgr;y dt T 2m{t)k(1)? ¥ n(t) |, (3.34)

w
r
—
ot
g
H

- 5. .2

Introducing the transformation

am B 2 (3.36)
equation (3.33) takes the form

da” *

a%-+ 28;(t)a = - 28,(t). (3.37)

Equation (3.37) has the general solution

a = exp[-?fBl(t)dt]—[-[-ZBg(t)exp[Efsl(t)dt]] dt + Coexp[-2fB,(t)dt],

where C, is a constant. (3.38)

As a specific example, consider a system whose stiffness coefficient,

k(t) = kg, is a constant, and whose mass varies as the linear function
m(t) = my + my1, where kg, Mg, and m; are constants [see figures 3.9 thru

3.10]. The expression for a and y are

| s
p o= %%2—‘:-&11 + &g, (3.40)
where
o = - g [m(o)m(o)[Hﬁ?f " &Féﬁ:]% (3.41)
5y = - 2nf0)u{0) (3.42)

e .

Results for some typical parameters are shown in figures 3.9 and 3.10.
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3.3.4 Cubic Nonlinearity with Linear Damping

As a final case, consider a system whose nonlinearity is of the form

1’(x ; dX\ o ox3 4 B%% (3.43)

where ¢« > 0 and 8 > 0. By equations (3.5) and (3.6), the first order

approximations for a and v are given by

da _ _ €a dim(t)a(t)] , £ y
t 2m{t)w(T) dr 2mm{t Jo(T)
ZTT 3
XI [a (acosw + FkUTT)) + B (-amsinw + %(%l))} siny dy,
0 (3.44)

2ﬁ 3
X of acosy + F0UATLY 4 o f aysing + -4 ( Fpuls cosy dy.
Kit dt T

0 (3,45)

After performing the necessary integrations these expressions reduce to

da _ £Q dim{t)w(t)] ef

H%'_ T 2m{t)w(t) = &L - ZmT:) . (3.46)
dy _ 3eqa’ 3eaF3

rCIORS: Tomo R oral (3.47)

Equations (3.46) and (3.47) can be integrated, depending on the complex-
ity of m(r)} and k(r), in closed form or using a simple numerical scheme.
As an illustrative example, consider a system where the mass and
stiffness vary according to the linear laws

m(T) =mg + mt

(3.48)
k(T) = ko + k1T s
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where kg, K1, Mg, and m are constants [see figures 3.11 thru 3.14], The

equation for amplitude can be integrated in closed form to give

! ¥
[]+Ji4 (3.49)
witim(c) M-,

a=A0

This can be substituted in the equation fory, to yield

1

_ 3eahf 3eaf,
¢~j ol0) * Fle)u(ey [+E] [ R aEt e (3500
(<)

m('t)m My

The constants of integration can be determined from the initial conditions

on a and ¢ which are given by equations (3.10) and (3.11) as

${0) = arctan [Efg?ﬁT} i (3.51)
a(0) = - EEE&%ﬁTﬁT . (3.52)

Figures 3.11 thru 3.14 show results for some typical parameters.

3.4 Discussion

In this chapter the step response of nonlinear systems with slowly
varying parameters was investigated using the method outlined in chapter
I1I. Results were obtained for systems with a variety of nonlinearities.
Specific examples were given for systems where the parameters varied ac-
cording to linear functions of time. For most cases the expressions for
amplitude and phase could be obtained in closed form.. In all cases the
expressions for the amplitude variation were found to be power law type
functions. This is in contrast to systems with constant parameters where

amplitude variations are in terms of exponential functions.
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IV, PULSE EXCITATIONS

4.1 Introduction

The response of systems subjected to pulse excitations form an
important class of problems in engineering and mechanics. The response
of nonlinear systems subjected to pulse excitations has been studied by
Evaldson, Ayre and Jacobson [44] and Jacobson [45], using graphical methods.
Ergin [38] and Bapat and Srinivasan [23] used linear approximations to
study the response. Ariaratnam [28] and Bauer [24,25-27] have used the
perturbation method of Poincare' as modified by Lighthill. Recently,
Srirangarajan and Srinivasan [21] and Srirangarajan [22] have applied the
generalized averaging technique [39-41] and Krylov-Bogoliubov methods [19]
respectively to study the problem. These studies, however, have been re-
stricted to systems with constant parameters only. Recently, Sinha and
Chou [32] considered the response of nonlinear, nonstationary systems
through an application of a generalized averaging method based on ultra-
spherical polynomial expansion. However, the analysis was restricted
to step function excitation only.

In thischapter, the approximate technique outlined in chapter II
is applied to nonlinear, nonstationary systems subjected to arbitrary pulse
excitation. The KBM method is used to obtain first and second order ap-
proximations. Specific results are obtained for the problem of a pen-
dutum of variable length., Numerous practical problems, such as vibrations
of cables in load 1ifting devices, elevators, etc., reduce to this case

and its simple form serves as a good illustration. Once the general solu-
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tion is obtained, specific results are given for five typical pulses,viz,
step function, exponentially decaying pulse, asymptotic step, blast loading,
and cosine pulse, Results for a particular set of parameters are compared
with numerical solutions obtained using a fourth order Runge Kutta inte-

grating scheme,

4,2 Pendulum of Variable Length Subjected to an Arbitrary Pulse

Consider the vibrations of a pendulum of constant mass when the
length varies slowly [20]. Denoting the angle of deviation of the pendu-
lum from the vertical by x , the acceleration due to gravity by g , the
mass of the pendulum by m , the slowly varying length by 1 = 1(t), and
the arbitrary pulse loading by g(t), the governing differential equation

takes the form

dit[mzm g%] + mgl{t)sinx = g(1). (4.1)

For small amplitude vibrations, sinx may be replaced by the first

two terms of its power series expansion

i x3
sinx = x - & {4.2)

Equation (4.1) may then be written in the form

a%[miz(r) gzé—] + mgl(t)x + sf(x , g—’% = g(t), (4.3)
where ef(x , dx/dt) = -mgl{<)x3/6 . (4.4)

Following the procedure outlined in chapter II the dependent variable

is transformed by

x(t) = y(t) + p(t). (2.3)
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For the first and the second order approximations, p(t) is given by

equation (2.9) as

p(e) = H = Airl (4.5)

Once p(t) is known, the governing equation for y takes the form [c.f.

equation (2.10)]

é%—[mg]z(r) %%] + mgl(t)y - mg%éfl-[acosw-+ﬁé%{%7} = 0, (4.6)

4,2.1 First Order Approximation

Applying the KBM method as outlined in section 2.3, the first order

approximation of equation (4.6) is given by
Y = acosy. (4.7)
The expressions for a and ¢ are given by equations (2.28) as

L-en, ) + By, (2.28)

The expressions for A; and B; can be obtained from equation (2.20)

and (2.21) as

I

A = a___dm{r)u(c)] _

2m{t)w () dr

2n &
5 13553%%%R;7l/. [ acosy + %%%%} siny dy, (4.8)
o

2n 3
By = w(r) - 12wm%£;i(r)ajf {acosw ' E%%%] cosy dv, .5

0

where m(t) = m12(z), k(t) = mgl{z), and w(z) = vg/T(x).



42

After performing the necessary integrations in equations (4.8) and
(4.9) and substituting A1 and By in equation (2.28) the expressions for

a and ¥ become.

o - ‘5_34]1(%) a (4.10)
2 2
%:m(r)[]-s%-edfk:_ ]’ (4.11)

where the prime denotes differentiation with respect to .

Equation (4.10) can be integrated as

T

a= a(O)[ } 0 ]I? (4.12)

where a{0) is the initial value of amplitude and is determined from the
initial conditions. The expression for y, after substituting the value of

a 1into equation (4.11), is given by

, {m(«c)[] 20 (o) sl Lo v, (4.15)

where ¢; is a constant of integration to be determined from the initial
value of vy.
The initial values of a and ¢ are determined from the transformed

initial conditions of x given by equation (2.7) as

- dv _ _dp -
Y= -Ps 3% = at t =0, (2.7)

Substituting for y(t) and p(t) from equations (4.7) and (4.5) respectively,
equation (2.7) yields

a(0)cosw(0) = - v 8

(4.14)

_w(g)a(o)sinw(0)="é%'[k i ] t=0
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and can be solved simultaneously for a(0) and (0},

Thus, the total solution of equation (4.3),in the first approximation,

- T
X = acosy + %%?% ; (4.15)

where a and ¢ are given by equations (4.10) and (4.11) respectively

is

and subject to initial conditions obtained from equations (4.14).

4,2,2 Second Order Approximation

The KBM method outlined in section 2.3 yields the second order ap-

proximation of equation (4,.6) as
y = acosy + eup(t,a,y). (4.16)

The functions a and ¢ are given by

‘g’% = EA]_ + EzAz,
(4.17)
%%-= w(t) + eBy + £2B,,

where A; and B; are obtained form equations (4.8) and (4.9), respectively.,

A>, By, and u; are given by equations (2.22), (2.23), and (2.24) respec-

tively as
o1 3B, a_d[m(x)B,]
A2 2u(T) [a 52 Mt 2By 4 m(t) dt } *
2n
1 .
+ 2mmit )mh-jf fl(TsaaW) siny dy, (4,18)
0
- _(_)_1 . 1 d[m(r)A;]
BZ - 2{13 T)a [ aa Al - EB% + m(‘f) d'[' +

{contd.)
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2m
]
* ETTmiijitiaf fi(rsa,p) cosy dv, (4.19)
0

and

3

. 2m
_ 1 k('r)emlp g(r -iny
up (t,a,u) = 2nk(T) n§;1_ETT:ﬁ?7_ acosy + %%?% e dy, (4.20)
= 0

where k(t), m{t) and w(t) are as defined in the previous section. Also,

from equation (2.26), one obtains

2
fi{t.a,y) = - Hl%gzl-[acosw +-%%%%J
- 2m{t)w(t) [% + g_;_?.dl). Ay + 38_21;9_ 51] ) aauq} d[m(rd)ss(f)].
(4.21)

After performing the necessary integrations in equations (4.18),

(4.19), and (4.20), the expressions for A,, By, and u; become

- 9{t)g'(r)a 7'(TJ?§T)26 31'(x) a
As 'g_mﬁ?%l"‘ = (Kl - WEF)}— (4.22)

.1 31 31(x)1" (t)2g9(1)* . wlr)?q(1)?
By = Zmi'rj [-]611&1-)) - (41)(-[%7) - m32k(g'rfZ ® TZk(g't)d e
- m(ﬁﬁigé:%faz - Sﬂgiﬁfu} , (4.23)
up; = - %é%%%;-COSZw - f%%—cost, (4.24)

where the prime dencotes differentiation with respect to t. Thus the

expressions for da/dt and d¢/dt take the form [c.f. equations 4.17]
31'(7) , e1'(t)g(r)?  eg(z)g'(x i
il E[_(Tcn = 8__(L51 : EK(T'TT‘ ‘g—%lé“lak = i = —es‘(i)len Ty @, (4.258)

dy _ 2 2 131 ()2 | 31{x)1" (1) , wlt)?g(z)*
a%-w“)[]'%]'?f(?f[mu * fﬁ%ﬂﬁ)* ézl?:('?g) i

(contd.)

|&
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w(t)2g(t)3% . w(t)2g(r)2a2 , 5u(r)2at
(7%15(]5)3 =¥ (3)25((1)) =+ %gaa ] (4.26)

Equation (4.25) is a special case of Bernoulli equation [43]. This

can be rewritten as

= a{t)a + g{t)a3, (4.27)

n.lm.
oo

where
- 31 [t el'(t)g(t)? egl{x)q' (1)
()= -e [*‘m&% * SR - %FYH , (4.28)
- 3e21'(x) "

Introducing the transformation

*_ .
a=1[a] %, (4.30)
equation (4.27) takes the form
da” *
E% + 2a(t)a = =23(t). (4.31)

Equation (4.31) has a general sclution

a = exp[-ZIa(t)dt%/”[-ZB(t)exp[Zfa(t)dt]] dt + Coexp[-2/g(t)dt],

(4.32)
where Cy is a constant.

Hence the total solution of equation (4.3), in the second order ap-

proximation , can be obtained from equations (4.16)}, (4.24), and (4.5) as

_ t)a? ad 1)
X = acosy "E[TgéﬁTT?T cos2y - 197 cos3w} + ﬁg%T?T', (4.33)

where a and y are given by equations (4.25) and (4.26) respectively.
It should be pointed out that for the second order approximation, the ex-

pressions for a and ¥ can be quite complex, to the point that they can-
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not be expressed in closed form. In such cases it may be necessary to
integrate these expressions numerically, using a numerical scheme., In

the following sections, explicit results are obtained for various pulses.

4,3 Step Function Excitation

Consider the pendulum described by equation (4.3), subjected to a
step function excitation., If the length 1{t) varies as a linear function

of time, the equation of motion can be written as

L0+ () TPEE] + malig#1y (o) - Tl ys < ppya),  (4,30)

where 15, 1;, and Fy are constants, and u(t) is the unit step function

defined by

0ift<0
u(t) = + (4.35)
1ifz20 .,

The first order approximation, from equation (4.15) with g(t) replaced

by Fgu(t), is easily given as

_ : Fou(t
X = acosy + W%O—_{_r%'a* . (4.36)

The expressions for amplitude a and phase y are obtained from equations

(3.10) and (3.11) as

%
a = a(0) []—O%gl—T] (4.37)

2 3
v =IM(T) |:] - Eagg) []UHH] - 4m‘9Fz%(u1(oT+)]21‘r)2jl dt + 20, (B

- e 1]1 ) [‘S‘ » 200 106)2 [Tl(-'iT]% *‘Fsa.g(%);] + o (4.38a)
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where 1(t) = 14+1;7, k(1) = mgl(t), and w(r) = vg/T(x). The initial ampli~-
tude a(0) and constant of integration ¢, are determined from the initial

conditions given by equations (4.14) as

a{0)cosy(0) = = Fou(0)

mgly
(o) (4,39)
; _ FquiQ)14e
-0{0)a(0)siny(0) = o(0)Ty |,
Solving equations (4.39) for a(0) and ¥(0) yields
v(0) = arctan [~ih§;—i
UJO]G,
(4.40)

- Fau(0
a(0) = ~'mgTgcosy(0) ,

and the constant of integration, %o, of equation (4.38) is

_ ! w(0) 0)2 (0)
%y = arctan [m(dﬁao] ol [8 6; 01z ]

The second order approximation from equation (4.33)

i} __| Fqu(r)a? al + Fou(z
X = acosy E{T%aéT%;j'Coszw - 15 cos&q E%TT?%, (4.41)

where a and ¥ are given by equations (4.25) and (4.26) respectively.
Results for two particular cases are shown in figures 4.1 and 4.2.

In the first, the pendulum length increases with time and in the second

its length decreases., Notice that there is no significant improvement

in the second order approximation over the first.

4.4 Exponentially Decaying Pulse

Consider the pendulum of section 4.2 subjected to a pulse whose mag-

nitude decays according to the exponential law
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g{t) = Fee™* 3 a >0, (4.42)

where Fy and o are constants [see figures 4.3 and 4.4]., The first order
approximation, as given by equation (4.15) with g(t) replaced by Foe™*",
is easily given as

“QT

X = acosy + %%%qu ’ (4.43)

where 1{t) = 15+1;t and, from equations (3.10) and (3,11), a and y are

%
a = a(D) []—](;.—T] (4.44)
# -2art
Y =J/ﬁm(T) [1 - Eagglz {1}2)] - 4;5831(1)4} dt + 9. (4,45)

The initial amplitude a(0} and the constant of integration ¢y are
determined from the initial conditions on a and ¥, obtained from equa-

tions (4.14) as
_ F
a{0) ~ " mglycosy(0) ,
e{alpy+]
arctan {-—aréﬁile]

The second order approximation from equation (4.33) is

A
—
(o]

1]

el % =0T

(4.46)

v - Foe a2 asl Fqe
X = acosy - E[szg] - cos2y - 155 cost} + E%TT?T . (4,47)

where a and y are once again given by equations (4.25) and (4.26) re-
spectively. Figures 4.3 and 4.4 show results for two particular values

of a, where the length of the pendulum is increasing with time.

4.5 Blast Type Loading

A common type of pulse loading occurs due to a sudden impact or ex-
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plosion. One method of modelling such a Toading is by the exponential law
g(t) = Fo(e™" - ™) a,p > 0, (4.48)

where Fy, a, B are constants and « < 3. [see figures 4,5 and 4,6]. The
first order approximation for the response of the pendulum of section 4.2,
whose length varies according to 1(t) = 1,+1;t, is given by

Fole™®" T

mglzr (4.49)

X = acosy + ?

where, from equations (4.,12) and (4.13),

a=ﬂ®[ﬁ%}é (4.12)
%- =-aT =BT
v =[w(T) [1 - eﬂ%ﬁ{llt - Fn(etlngz-] (e"r)z) :Idt + 9. (4.50)

The initial conditions on a and y are, from equations (4.14),

_ eFy (0=R)
a(0) = - w(0)mgTy,

$(0)

(4,51)

o=

The second order approximation is given by equation (4.33) as

_ t)a2 ad Fola " « e'BT)
X = acosy —a{]ng] " coscy - 197 c053¢] + aTTe) , (4,52)

where again a and y are given by equations (4.25) and (4,.26) respectively,

with g(t) replaced with the exponentially decaying pulse represented by
equation (4.48). Results for particular values of a and B are shown in

figures 4,5 and 4.6, where the Tength of the pendulum increases with time.

4,6 Asymptotic Step

Consider the pendulum of section 3.2, subjected to an asymptotic step
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fuhction, given by

g(t) = Fp(1 - e %"y s a0,

56

(4.53)

where F, and o are constants.[see figures 4.7 and 4.8]. As before, the

first order approximation is given by equation (4.15) as

where
&
o]
" % _ mat
1] =J/Fw(r)[ 1 - Egiﬁgf'[T%%T] - Fogkdgi?(x)l] dt + &g,

with initial contitions

_  eafF
a(0) = w{0)mgT, ,

u(0)

ST

The second order approximation is

- T a2 ,Ei FDU - e'c”)
X = acosy =- E[]ng] = cos2y - 197 cos3w] + et ) i

where a and p are given by equations (4.25) and (4.26) respectively

with g(t) replaced with the asymptotic step given in equation (4.53).

(4,54)

(4.12)

(4,55)

(4.56)

(4.57)

Results for a particular set of parameters are shown in figures 4.7 and

4.8.

4,7 Cosine Pulse

As a final example of nonlinear, nonstationary systems subjected to

pulse excitation, consider the pendulum described in section 3.2, with
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the length obeying the linear law 1(r) = Iy+1;t, and subjected to a

pulse which is described by
g{t) = Fpcosat,

where F, and ¢ are constants [see figures 4.9 and 4.10], The first

grder approximation is

_ Focosy
A IO
where, by equations (4.12) and (4.13), a and ¢ are

+
a(_O)[T.[(ET]

- a{O!z 1 s F4cos2at
[“’(T)[‘ =g [1(15] " Sim2gri(ey2| 9t * %oe
The initial conditions on a and ¥ are

_ F
a(0) = - mglgcosy(0) ,
el
arctan [m]‘

The second order approximation is

- t)a? a? Facosat
X = acosy - E{ingl = cos2y = 157 cos3¢] + T&ETF;Y-a

jal)
1]

=
1

y(0)
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(4.58)

(4.59)

(4.12)

(4.60)

(4.61)

(4.62)

where, again a and ¢ are given by equations (4.25) and (4.26) respec-

tively, with g(t) replaced by Fycosat. Results for increasing and de-

creasing lengths are shown in firgues 4.9 and 4.10 respectively.

4,8 Discussion

In this chapter the approximate method developed in chapter II, for

nonlinear systems with slowly varying parameters subjected to pulse exci-
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tation, was applied to the problem of a variable length pendulum, First
and second order approximations were obtained and results were presented
for the pendulum subjected to several types of pulse loadings, viz., step
function, exponentially decaying pulse, blast loading, asymptotic step,

and cosine pulse., Specific results were obtained for the case when the

pendulums’ length varied according to a linear function of time and were

compared with numerical results.

As was seen from the analysis , the first order approximation of
amplitude variation reduced to a power law type function, This function
was found to be independent of the nonlinear term and depended only on the
character of the slowly varying length of the pendulum., The analysis also
reveals that the accuracy of the method decreases for the case when the pulse
changes rapidly. This could be seen in_the cases when the pendulum was
excited by an asymptotic step and blast Toading, It was also shown that
the resulting improvement of the second order approximation was insig-

nificant.



V. DISCUSSION AND CONCLUSION

The purpose of this study was to investigate the response of non-
linear vibrational systems with slowly varying parameters, subjected to
arbitrary pulse excitations. A transformation of the dependent variable
led to an equivalent set of governing differential equations, at which
point the method of Krylov, Bogoliubov and Mitropolsky was applied to
obtain approximate solutions of first and second order.

In chapter II it was shown that for particular types of nonlinearities,
there was a significant simplification, in the first order approximation,
of the expressions for amplitude and phase of vibration. In particular,
in systems whose nonlinearity arises from the velocity term only, the
frequency of vibration does not depend on the amplitude of vibration, but
only on the character of the slowly varying mass and stiffness of the
system. Likewise it was found that, in systems whbse nonlinearities
arise from the displacement variable only, the amplitude variations were
power law type functions and independent of the nonlinear term.

In chapter III, the approximate method outlined in chapter II was
successfu]yyapp]ied to a variety of nonlinear systems with slowly varying
parameters subjected to step function excitation. Specific examples
showed that expressions for amplitude and phase, in systems where some or
all of the parameters varied according to Tinear functions of time, could
be obtained, for most cases, in closed form., Results obtained were com-
pared with numerical solutions and a close agreement was found.

The proposed method was also applied to the problem of a variable
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length pendulum subjected to different types of pulse loadings. Both first
and second order approximations were derived for several types of pulse
excitations. These included: step function, exponentially decaying pulse,
blast loading, asymptotic step and a cosine pulse, Specific results were
presented for the case when the length of the pendulum varied according

to a lTinear function of time. As seen from these results, the contribution
of the higher order terms of the second order approximation was insignifi-
cant. In most cases the approximate analytical results agreed well with
the numerical solutions. The results showed a decrease in the accuracy of
the method for systems subjected to a rapidly varying pulse, such as the
asymptotic step and the blast loading.

In conclusion, the present investigation provides a general approach
for determining the response of nonlinear, nonstationary systems, sub-
jected to arbitrary pulse excitations. The first order approximate solu-
tions were found to be sufficiently accurate for most systems whose para-
meters vary slowly with time. The method is conceptually simple and in
most cases, the expressions for amplitude can be obtained in closed form.
The phase variation requires the use of a simple numerical integration
scheme such as Simpson's rule or other similar techniques.

It is anticipated that the method presented here would be of
some value to the field of nonlinear analysis. A major area for ad-
ditional investigation is the extension of the method to the problem of
nonlinear systems with multiple degrees of freedom, and slowly varying
parameters, In addition, any analysis removing the restriction of slowly

varying parameters would be an enormous contribution.
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ABSTRACT

The present study involves the analysis of nonlinear, nonstationary
vibrational systems with single degree of freedom, subjected to an arbitrary
pulse excitation. The nonstationary system parameters are considered to
be slowly varying functions of time and may include masses, restoring forces,
material properties or damping. A transformation of the dependent variable
yields an equivalent set of differential equations; at which point a general
procedure is presented for obtaining first and second order approximate
solutions using the technique of Krylov, Bogoliubov, and Mitropolsky.

Included in this work is an investigation of several types of non-
Tinear systems with slowly varying parameters subjected to step function
excitation. Explicit results for systems whose parameters vary according
to linear functions of time are derived and compared with numerical solutions.
Also included is an analysis of a pendulum of variable length subjected to
a variety of pulse excitations, viz., step function, exponentially decaying
pulse, blast loading, asymptotic step, and cosine pulse. First and second
order approximations are presented and specific results are compared with

numerical solutions.



V. DISCUSSION AND CONCLUSION

The purpose of this study was to investigate the response of non-
linear vibrational systems with slowly varying parameters, subjected to
arbitrary pulse excitations. A transformation of the dependent variable
led to an equivalent set of governing differential equations, at which
point the method of Krylov, Bogoliubov and Mitropolsky was applied to
obtain approximate solutions of first and second order.

In chapter II it was shown that for particular types of nonlinearities,
there was a significant simplification, in the first order approximation,
of the expressions for amplitude and phase of vibration. In particular,
in systems whose nonlinearity arises from the velocity term only, the
frequency of vibration does not depend on the amplitude of vibration, but
only on the character of the slowly varying mass and stiffness of the
system. |likewise it was found that, in systems whbse nonlinearities
arise from the displacement variable only, the amplitude variations were
power law type functions and independent of the nonlinear term.

In chapter III, the approximate method outlined in chapter II was
successfully applied to a variety of nonlinear systems with slowly varying
parameters subjected to step function excitation. Specific examples
showed that expressions for amplitude and phase, in systems where some or
all of the parameters varied according to linear functions of time, could
be obtained, for most cases, in closed form. Results obtained were com-
pared with numerical solutions and a close agreement was found.

The proposed method was also applied to the problem of a variable





