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Abstract

Security scanning performed on computer systems is an important step to identify and

assess potential vulnerabilities in an enterprise network, before they are exploited by mali-

cious intruders. An effective vulnerability assessment architecture should assimilate knowl-

edge from multiple security knowledge sources to discover all the security problems present

on a host. Legitimate concerns arise since host-based security scanners typically need to

run at administrative privileges, and takes input from external knowledge sources for the

analysis. Intentionally or otherwise, ill-formed input may compromise the scanner and the

whole system if the scanner is susceptible to, or carries one or more vulnerability itself.

It is not easy to incorporate new security analysis tools and/or various security knowlege-

bases in the conventional approach, since this would entail installing new agents on every

host in the enterprise network. This report presents an architecture where a host-based

security scanner’s code base can be minimized to an extent where its correctness can be

verified by adequate vetting. At the same time, the architecture also allows for leveraging

third-party security knowledge more efficiently and makes it easier to incorporate new se-

curity tools. In our work, we implemented the scanning architecture in the context of an

enterprise-level security analyzer. The analyzer finds security vulnerabilities present on a

host according to the third-party security knowledge specified in Open Vulnerability As-

sessment Language(OVAL). We empirically show that the proposed architecture is potent

in its ability to comprehensively leverage third-party security knowledge, and is flexible to

support various higher-level security analysis.
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Chapter 1

Introduction

With rapid growth in both the number and sophistication of cyber attacks, it has become

imperative that cyber defenders be equipped with highly effective tools that identify security

vulnerabilities before they are exploited. A vulnerability can be defined as a set of conditions

which if true, can leave a system open for intrusion, unauthorized access, denied availability

of services running on the system or in any way violate the security policies of the system [2].

While breaches happen at every corner of an enterprise network, often the security of the

end hosts is the most brittle line of defense. A breach of security occurs when a stated orga-

nizational policy or legal requirement regarding information security, has been contravened.

However every incident which suggests that the confidentiality, integrity and availability of

the information has been inappropriately changed, can be considered a “security incident”.

Every security breach is always initiated via a security incident, only if confirmed does it

become a security breach.[3]

The rise in security breaches is alarming. According to the Computer Crime and Security

Survey 2007(CSI) [4]; there is an increase of 29% in the number of organizations reporting

security incidents. The need for approaches that can secure end hosts more effectively is

imperative. “Vulnerability assessment scanners” are one such advancement. Vulnerability

Assessment(VA) scanners are tools that scan a host system or an enterprise network to

check for the presence of security vulnerabilities. The term host/target used throughout,

refers to the machine which is being scanned for vulnerabilities. VA scanners can be broadly
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classified into two categories.

1. Network Based

2. Host Based

A network-based scanner (e.g. Nessus [5]) probes a machine remotely to find vulner-

abilities. A host-based scanner on the other hand is installed on the host system itself.

The host-based scanners have an edge over their counterpart network scanners as they di-

rectly access the configuration information of the host and various services running on the

same. However, conventional host-based scanners require regular installation/updates for

the agents installed on every machine on the enterprise network. This becomes a daunting

task as the network scales up to incorporate a large number of systems, when compared

against the network-based scanners. Incidents when the agents even crashed the host ma-

chine during scanning have also been reported.

The conventional host-based scanners send the security knowledge to the target host.

The term “security knowledge” used throughout the report refers to the definitions, which

determine the conditions for a known vulnerability to be true or false on a target/host sys-

tem. The scanner gathers the host’s configuration information and performs various types

of analysis based on the received security knowledge. Since the knowledge(which might be

provided by a third party) is consumed on the end hosts, any security vulnerability in the

agent could render the end host vulnerable. This has become an obstacle in convincing a

system administrator to experiment with a new, less well-known security scanner. Specifi-

cally the administrators are skeptical to trust the agent code (with tens or even hundreds

of lines of code), not to harm the host itself. Moreover, consuming the knowledge on each

end host introduces a great amount of replicated effort in leveraging the security knowledge,

and makes it hard to combine knowledge from various sources and conduct a global security

analysis at the enterprise level.

We propose an architecture for host-based security scanning, which not only improves

the host-based scanners by overcoming the shortcomings mentioned above, but also enables
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incorporation of security knowledge from various sources and use it efficiently to provide a

comprehensive security analysis of the enterprise network. We accomplish this by separating

the process of gathering host configuration information and the analysis of the same. The

proposed system is designed as a bi-component architecture for host-based vulnerability

scanning. First component is the scanner (or the agent as we often call it) that needs

to be installed on the host. The agent serves the sole purpose of gathering information

from the host and does not perform any analysis. The second component is the analyzer

which resides on a server or a cluster of servers depending on the size of the network.

The sole responsibility of the analyzer(or the manager) is to perform security analysis on

the information. The analyzer gathers security knowledge from various sources and co-

relates it with the information furnished by the agents in the enterprise network. It then

produces a comprehensive security report for every host on the network, leveraging third-

party security knowledge efficiently. This comprehensive report can become the basis for

network administrator’s decisions to safeguard the host (and the network) against reported

vulnerabilities, or can be the input to a higher-level global security analysis tool.

The proposed architecture has the following advantages over the conventional design.

• To begin with, it remarkably reduces the size of the code-base on the end host. This

makes the installation and configuration of the agent easy and the agent is less likely

to disrupt services running on the host. In addition, code-base being small reduces

the likelihood of introduction of programming flaws/bugs in it.

• The small code base makes it possible for the administrator(or some other trusted

party) to check for flaws and malicious content, restoring the trust in the code as well.

• Any change or addition in the security knowledge only needs to be made available

to the analyzer running on a centralized location, unlike conventional scanners where

these changes/additions have to be made available to every agent residing on the hosts

in the network.

3



• This architecture also supports other high level security analysis on the data collected

from all the hosts on the network.

Our research is conducted within the context of the MulVAL( Multi-host, multi-stage

Vulnerability Analysis) [6] project. MulVAL is an enterprise-level security analyzer that

can automatically compute all possible multi-step, multi-host attack paths in an enterprise

network based on security vulnerabilities discovered on end hosts. The input to MulVAL is

the result of host-based vulnerability assessment performed on each and every managed ma-

chine in the enterprise network. The original MulVAL work used an adapted OVAL (Open

Vulnerability Assessment Language) [7] interpreter released by the MITRE corporation to

analyze each end host. The external security knowledge is specified in the OVAL language

and needs to be sent to all the end hosts. When we tried to deploy the MulVAL tool on

some enterprise networks, the first concern from the system administrators was always the

trustworthiness of the OVAL interpreter. The current release of MITRE’s OVAL reference

interpreter (with limited capability) contains around 35,000 lines of code. The OVAL repos-

itory, which is a third-party security knowledgebase, has 1615 1 entries for the Windows

platform and the size of the XML file input to the interpreter is 6.2MB. It is a legitimate

request that the system administrators be convinced that an application of this size will

not adversely affect servers and workstations in any way. This motivated us to develop a

scanning architecture, where the scanner that needs to be run on a host has a minimized

code base, and thus its correctness can be verified through adequate code vetting. At the

same time, our architecture also allows for more efficient leveraging of third-party security

knowledge at an enterprise level. This is possible because the architecture allows a knowl-

edgebase maintained on the Analyzer to be a compilation of security knowledge from many

different sources.

Our goal is to design an architecture for host-based security scanning, which enables more

efficient and flexible usage of external knowledge in enterprise network security management,

1as on May 6th’08
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and supports a range of enterprise-level security analysis based on information provided

by host-based security scanning. We focus on building an agent that runs on a host which is

minimized to tens of lines of code, to support thorough code vetting. We have implemented

an OVAL vulnerability scanner based on the proposed architecture, and have empirically

demonstrated the advantages enlisted above.

The report is organized as follows: Chapter 2 provides a thorough information about

vulnerability analyzers and their types. A more insightful view of our proposed architecture

and how it effectively counters the issues in the conventional architecture is provided in

Chapter 3. Chapter 4 describes the technical details of implementation of our assessment

tool. Chapter 5 shows the results obtained from our security analyzer. A discussion of the

future and related work can be found in Chapter 6. We conclude our work in Chapter 7
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Chapter 2

Background

With the rapid development of more complex systems, the chance of introduction of errors,

faults and failures increases in many stages of software development life-cycle[8]. This

class of system failures is commonly termed as “software vulnerabilities”. These security

vulnerabilities violate security policies and can cause the system to be compromised leading

to loss of information[9]. Vulnerabilities can be introduced in a host system in different

ways; via errors in the code of installed software, mis-configurations of the software settings

that leave systems less secure than they should be (improperly secured accounts, running

of unneeded services, etc) [10].

Vulnerability analysis, also known as vulnerability assessment, is a process that de-

fines, identifies, and classifies the vulnerabilities (security holes) in a computer, network,

or communications infrastructure [11]. Vulnerability analysis can be used to predict the

effectiveness of the proposed countermeasures and evaluate them after they are put into

use. Vulnerability analysis begins with gathering, defining and classifying network or sys-

tem resources. The resources can be classified according to their level of importance in the

network. Next comes the identification of potential threats to those resources. This stage

of identification of threats can be performed by probing the network or system to discover

potential weak points.

A vulnerability assessment tool (or scanner) can be defined as a utility that can be

used to test the capability of a systems or networks security and discover their points of
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weakness[2]. These tools themselves do not provide any kind of security or protection to

the system, rather they gather and report information, which can be used to instate a

different tool, policy or mechanism to secure the system. Vulnerability assessment tools

can be broadly classified into network based and host based analyzers as described in the

following Sections 2.1 and 2.2 respectively.

2.1 Network Based Analyzers

Network based vulnerability assessment gathers information of the system and services at-

tached to the network and, identifies weakness and vulnerabilities exploitable in the network.

These vulnerabilities could be related to services, such as HTTP, FTP and SMTP proto-

col, running on the given network. A network-based scanning assessment may also detect

extremely critical vulnerabilities such as mis-configured firewalls or vulnerable web servers

in a De-Militarized Zone(DMZ), which could provide a security hole to an intruder, al-

lowing them to compromise an organizations security[1]. Network assessment tools gather

information and may also have network mapping and port scanning abilities.

A typical network based scanner architecture is shown in Figure 2.1. Generally, a net-

work based scanner consists of a number of components. It has a vulnerability database

which contains all the vulnerability definitions and information about how to detect these

vulnerabilities. This database has to kept updated, for new vulnerabilities are discovered

very frequently. In addition it also has an interactive console, which helps the administrator

to schedule vulnerability assessments on different targets on the network. Furthermore the

scanning engine is the main component of the network based scanner. It performs the assess-

ment as instructed by the interactive console by sending specially constructed packets for

the test. Results repository is the final component, which holds all the scan results received

and is also used for report generation for the system administrators [12]. The strengths of

network based scanners lie in the fields described below:

1. Network scanners provide a comprehensive view of all the services running on the
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Figure 2.1: Architecture of a typical Network-Based Analyzer [1]

network. It can also discover unknown devices on the network and determine if your

network has unknown perimeters.

2. Network based scanners are inherently non-intrusive to the systems under scan. This

is due to the fact that there is no need of any installation of agents on the target hosts.

Also, because of the same reason network scanners can be setup quickly without any

deployment or lot of planning.

3. There are many vulnerabilities which are analyzed more effectively by a network scan.

For instance vulnerable services or daemons running on operating systems and low

level protocol weakness. Moreover, advanced network attacks like protocol spoofing

can be tested only by a network scan.
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4. Devices which do not support host-based scanning like the routers, switches, remote

access servers and firewalls, can only be scanned by network based scanners.

However network-based scanners also have the following demerits:-

1. A network-based scanner does not have direct access to the target’s file system. Thus,

it is not able to check for file permission. Vulnerabilities can be present in form of

rogue programs with incorrect “SetUID” and “SetGID” bits enabled.

2. Another problem which network based scanners face is their inability to scan targets

behind a firewall. Complicated measures have be taken to let scanners get to these

target systems.

3. Network based scanners may also face the problem of network congestion due to a lot

to-and-fro data transfer.

2.2 Host-Based Analyzers

Host based analyzers also scan the system for vulnerabilities like the network scanners,

however they are able to scan much more due to the fact that they have a service/agent

residing on the target system. They can easily identify system-level vulnerabilities such

as file permissions, user account properties and registry settings. A typical host-based

architecture is shown in Figure 2.2. The host-based analyzer is installed on a network by

first installing a scanning manager on the network. Agents are then installed on all the

target systems to be scanned. The working of these agents is controlled by the manager. In

some systems, there may be a separate user console to interact with the scanning manager,

which is merged with the manager otherwise. When the manager wants to initiate a scan, it

sends the necessary information like scanning policy to the agent on the host. The scanning

policy consists of the different vulnerability checks. The agent on the host scans accordingly

and reports back the results of the scan. As new vulnerabilities are discovered frequently

the security definitions have to be regularly updated on each agent.

9



Figure 2.2: Architecture of Conventional Host-Based Analyzer

The main strength of host-based scanners lies in the fact that they have direct access to

configuration details and services of the target system. The merits of host-based scanners

are described below.

1. Host based scanners are adept at checking for malicious user behavior that violates

the security policies. They can an check for behavior like using weak passwords or

sharing hard drives on the network.

2. Host based scanners can detect devices which can initiate unauthorized remote access

servers (e.g modem). They can also check for “remote control applications” which can

be used to access resources from unknown network perimeter.

3. A big advantage that host-based scanners have over the network-based scanners is that

they run the checks on the target system locally and thus network traffic is reduced

considerably.
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4. These scanners can detect if the system has already been infiltrated by intruders by sus-

picious filenames, program files found in unexpected places, unexpected SUID/SGID

privileged programs, sniffer programs etc.

5. They are ideal for performing resource intensive full system scans which are not pos-

sible through the network.

However, host-based scanners do not come without weaknesses. They are described

below:-

1. The scanning agents have to be installed on new systems and updated regularly on

the old ones to keep the assessment fool-proof.

2. System administrators are reluctant to install unknown agents on the production sys-

tems.

3. Agents residing on the target host utilize its resources, sometimes interfering in the

normal functioning of the host.

4. As the enterprise network increases in size, managing and updating agents on all the

hosts becomes an issue.

This chapter describes the advantages and disadvantages of both network and host-based

systems and so most of the state of art system employ both the network and host-based

scanners for vulnerability assessment. In our work, we have addressed the problems faced by

the host-based scanners by proposing a new architecture for the same. Chapter 3 is devoted

to the complete description of the new architecture and how it rectifies the weaknesses

described above.
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Chapter 3

Proposed Architecture

The motivation for our research is, the need for an architecture that will provide an effec-

tive way for leveraging third-party knowledge and provide a way for global analysis and a

comprehensive view of Enterprise Security. This chapter will describe the high level details

of our architecture and its strong points.

3.1 Centralized Host Based Architecture

As described in Chapter 2, in conventional host-based scanner, the scanning manager looks

after two information flows; sending security definitions to each end host, and getting the

report back after the analysis is performed. The centralized architecture takes a totally

different approach when it comes to the use security knowledge for vulnerability analysis.

As the name suggests the architecture has a centralized approach when analyzing a host

with regards to the security definitions from the knowledge base.

Security definitions are different from virus definitions used in virus scanners. Virus

signatures typically refer to file name and contents, whereas conditions to determine the

existence of a security vulnerability i.e. security definitions refer to configuration parameters

with arbitrary logical relationships. For example, the OVAL [7] language for the Windows

platform could be used to specify conditions on any Windows registry entry, on any file’s

attributes or on any process running on a machine, etc. It also has a number of logical

connectors and attributes which can specify the full propositional relations as well as limited
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first-order logic semantics. Thus checking the existence of a security vulnerability is more

“ad-hoc” than checking the existence of malware using virus definitions. Moreover, a host-

based security scanner often has a large code-base, due to the need to support various

kinds of checking and analysis tasks. For example, the code size of MITRE’s reference

implementation of an OVAL scanner [13] developed in C++ programming language has,

around 35,000 lines of code. One can imagine than an application of this size, makes it very

hard for the developers to keep it totally flawless, and it is hard if not impossible, to verify

that there is no security vulnerabilities in the same.

Figure 3.1: Proposed Architecture

Figure 3.1 shows that the proposed architecture consists of central analyzer, a config-

uration inventory and a very stripped-down agent on the target host. The configuration

inventory holds all the configuration information obtained from the target systems on the

enterprise network. Unlike the conventional architecture, the new architecture employs an

agent which performs few basic functionalities with regards to the configuration gathering,

such as dumping the whole Windows registry, querying for a file’s attribute and getting
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a process’s status. Most of these functionalities have readily available system commands

or application programming interfaces(APIs) and thus the amount of code needed to ac-

complish this is minimal. Our agent consists of a shell and a visual basic script. It is less

than hundred lines of code therefore significantly reducing the possibilities of programming

flaws/bugs in the code. The small code base can even be rigorously vetted for any kind of

flaws therefore increasing the trustworthiness of the agent. These light weight scripts also

overcome the problem of resource consumption on the host by adding no significant burden

on the hosts resources. The agent in the new architecture reports end-host configuration

information to the central analyzer for the analysis.

The Central Analyzer is the most important part of the architecture. Its functionalities

as a scanning manager include scheduling the scan for all the target hosts on the network,

managing the configuration inventory and storing all the information obtained from the tar-

get hosts in the inventory. As the analyzer it has to first gather, convert and store security

knowledge from various sources in datalog format acceptable the logic-based comparator.

Secondly, it has to initiate the logic-based comparator by providing it with both the config-

uration information of the target as well as the security knowledge to get the results of the

vulnerability analysis for the respective host. The purpose of the analyzer is similar to the

central manager in terms of conventional architecture, alongside the added functionality of

performing vulnerability analysis based on updated security definitions from various sources

and maintaining a configuration inventory of all the hosts in the enterprise network.

3.2 Advantages of Centralized Architecture

A significant advantage that the new architecture brings over the conventional architecture

is that the central analyzer has a complete view of the configuration of every managed

host in the enterprise network, and can conduct various high level security analysis on the

configuration information.

Moreover, since all hosts’ configuration is centrally stored at one place, the application of
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security knowledge is more efficient than conventional host-based scanners. This is because

we have to process the raw security knowledge from multiple sources just once and it is used

for all the machines on the network. This cost of pre-processing of the knowledge is amortized

over all the machines under scan. In our implementation, we compile the knowledge into

executable code, so that the compilation is done only once and the code can be directly

applied to all the hosts’ configuration data to efficiently perform the analysis. The proposed

architecture suits especially well to the recent trend of sharing security knowledge in an

open and standard format. Apart from aiding to a more wider and comprehensive analysis

for security vulnerabilities, our architecture also paves a platform for more diverse research

and development in the area of Information Security.

Open Vulnerability Assessment Language (OVAL) is one such effort to enable a “com-

munity approach” to security management of enterprise systems. The effort has echoed

well in the IT security management industry, with vendors like GFI LANguard [14] and

SofCheck [15] which already “OVAL-compatible” products. This is a significant departure

from the conventional business model where the vendors of vulnerability assessment tools

provide security definitions in their own proprietary format. With the rapid growth in cyber

security threats, it is evident that no single organization can provide a holistic solution to

all security problems faced by the enterprise network systems. The ability to share security

knowledge efficiently is the key to win the “Cyber War” against the Internet miscreants.

The proposed security-scanning architecture presented in this report facilitates knowl-

edge sharing since it separates the two distinct phases in security analysis, configuration

information gathering and vulnerability analysis. In the conventional architecture, the two

phases are merged together in a single agent. As a result, addition of new knowledge

inevitably entails installing/updating new agents on every machine. The conventional ar-

chitecture pushes the knowledge to the end host, not only duplicating data and using a lot of

network resources, but also increasing the resource consumption on the host systems which

can cause interruptions in the functioning of the host. In the architecture presented in this
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report, the two phases are implemented as two separate components. If the new knowledge

or analysis tools need the same set of configuration information from the end hosts, there

is no need to update the agent at all. This separated architecture avoids re-inventing the

wheels in security analysis, facilitates knowledge sharing, and thus, maximize the benefit

from all efforts involved in security management. The fact that our architecture holds con-

figuration inventory also opens up avenues for its diverse usage in fields like “Enterprise

Inventory Management” and “Troubleshooting”.

To summarize, the strong points of our architecture are listed below:-

1. It provides a platform for higher level Global Security Research and Analysis.

2. The architecture effectively leverages shared knowledge from multiple sources provid-

ing a comprehensive vulnerability report.

3. Minimal code base on the target host allows thorough code vetting, making the code

reliable and hence making the agent acceptable to the system administrators.

4. The agents are less resource intensive and a small code base also ensures easy instal-

lation and management of the agents.

In this report we have implemented an OVAL vulnerability scanner based on the archi-

tecture described above. Chapter 4 provides the details of the same.

16



Chapter 4

Implementation of an OVAL scanner
based on the new architecture

This chapter begins with shedding some light on the security knowledge base which is a

very significant part of the architecture. Our host-based VA architecture is discussed in the

section 4.2.

4.1 The OVAL Language

Open Vulnerability and Assessment Language (OVAL) [7] is an international, information

security, community standard to promote open and publicly available security content, and

to standardize the transfer of this information across the entire spectrum of security tools

and services. OVAL includes a language used to encode system details, and an assortment of

content repositories held throughout the community. The language standardizes the three

main steps of the assessment process: representing configuration information of systems for

testing; analyzing the system for the presence of the specified machine state (vulnerability,

configuration, patch state, etc.); and reporting the results of this assessment. It is an

XML-based language and specifies vulnerable machine configuration for almost all types of

platforms such as Windows, Linux, HP-UX, Cisco IOS and Sun Solaris.

There are many security knowledge bases such as the Common Vulnerabilities and Ex-

posures (CVE) [16] by MITRE, the National Vulnerability Database(NVD) [17] by National
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Institute of Standards and Technology, etc. The OVAL repository is a collection of security

knowledge conforming to CVE standards which deals with configuration checking. Configu-

ration checking deals with analyzing low level configuration details of a computer system. It

consists of collecting information about all the installed softwares and the services running

on that system. The definitions provided by OVAL stipulate the conditions that, when

satisfied by the host, confirm the presence(or absence) of vulnerabilities on the same.

Title: Microsoft Outlook Advanced Find Vulnerability
Definition Id: oval:org.mitre.oval:def:153
CVE ID: 2007-0034

Definition Synopsis:
Outlook 2000

Outlook 2000 is installed
AND the version Outllib.dll is less than 9.0.0.8954

OR Outlook 2002
Outlook 2002 is installed
AND the version of Outllib.dll is less than 10.0.6822.0

OR Outlook 2003
Outlook 2003 is installed
AND the version of Outllib.dll is greater than 11.0.8118.0

Figure 4.1: OVAL vulnerability definition example

A natural-language description of an OVAL security definition, for the “buffer overflow”

vulnerability in the “Advanced Search (Finder.exe)” (Microsoft Outlook 2000, 2002, and

2003) is shown in Figure 4.1. The XML definition for the same, can be found in Appendix A.

Even though the OVAL definition provides a comprehensive detail about the vulnerability

but, in the definition presented in Appendix A we have only shown the information needed

by our analyzer without any loss of generality. The vulnerability definition has information

about MS outlook installation on the host and the file version number for the respective

“Outlib.dll” file. For each versions of Outlook the definition specifies conditions in separate

test criterions. The test criteria have logical conditional “and/or” constraints. All criterions

related with an “and” clause should be true for the particular vulnerability to be valid and

one or more true criterions in a group of criterions coupled with an “or” clause will render

the vulnerability true. That said, it is evident in the example shown in Figure 4.1 that
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the host will have the corresponding “buffer overflow” vulnerability, if one or more of the

criteria mentioned hold true since all three of them are woven into a single “or” clause.

Moreover, in some cases validity of a definition can be a prerequisite for other definitions.

For example, the definition to determine a particular operating system platform on a host

will be a prerequisite for any definition which checks for installation of a particular software

for that operating system platform. 1.

4.2 Architecture

As described in Chapter 3 the architecture is divided into a data collection part and the

analysis part. The data collection part is done by the host resident agent described in the

section 4.2.1 and the analysis is done by the analyzer described in the section 4.2.2.

4.2.1 Configuration data collection

The agent consists of a set of scripts, and resides on the host machine. The agent is

dedicated to gather information from the target/host. The information needed by the

OVAL definitions is gathered from the registry dump, and the version numbers for specific

files, obtained by checking file attributes of the same. In our implementation the residing

agent collects registry entry information and file version numbers using windows system

commands.

The host information has to be gathered on a periodic basis and is sent to the central

analyzer for further processing. The analyzer can query the scanner for specific information

if needed. This may bring up the question of high network usage, but this problem can

be resolved by querying a small set of machines at one time, as opposed to querying the

entire network. The amount of data that needs to be transferred from a single host for a

complete OVAL checking is less than 38 megabytes (MB) for a machine running Windows XP

operating system and less than 26 megabytes for the Windows 2000 Server operating system.

1The complete documentation of the OVAL language can be found at http://oval.mitre.org/
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As all the system configurations and other information resides on the central analyzer, it

also helps in keeping a check on what changes have been made on the machine from the

time of the previous scan. This information is valuable for security forensics, as well as

can be used by system administrators to track down configuration changes on machines for

troubleshooting.

More scripts can always be added to the agent, to get more information with respect to

network, port and file system status without incurring a lot of addition to its code weight.

This in turn opens up new avenues for contributors to participate in the development of

the agent, to gather knowledge specific to other applications such as inventory tracking and

troubleshooting [18]. It also supports the notion of effective sharing of knowledge.

The agent with the above described functionalities has minimal code weight. In the

current implementation the agent consists of three files; two batch scripts to get the registry

information and a visual basic script to get the file attributes. Altogether the agent is

less than 30 lines of code. Thus, the agent in the architecture proposed in the report not

only provides a trustworthy small code base which is a practical contender for thorough

code vetting, it also uses minimal host resources causing no interruptions in the normal

functioning of the host.

4.2.2 The Analyzer

The Analyzer is a centralized server connected to all the hosts on the enteprise network. It

is responsible for performing a comprehensive security analysis of the hosts and reporting all

the vulnerabilities present on them. The analyzer accomplishes this task by analyzing the

information received from the agents (residing on the host), against the preprocessed security

knowledge obtained from the information gathered from various security knowledge bases.

The analyzer is further divided into two parts: knowledge convertor and logical comparator.
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Knowledge Convertor

The knowledge convertor converts the updated security definitions(XML format) and raw

host configuration(ascii text format) into datalog format. An example of host configuration

information in datalog format which is taken as input by the comparator is shown below:-

win_Reg_Entry(Path,Name,Value)

In the example shown above, “Path” is the hive and key values from a registry entry

of the host machine. The “Path+Name”/ “Value” pair is matched against the specified

knowledge of the security definitions by the comparator. The value part is either a string

or a numerical value. An example of a converted registry entry to datalog format is shown

in the Figure 4.2.

win_Reg_Entry(’hkey_current_user\software\microsoft’,’DefaultFormat’,’RadioQuality’).

win_Reg_Entry(’hkey_current_user\software\microsoft’,’CorpPC2Phone’,dword(’00000000’)).

Figure 4.2: Datalog format registry entry example

The convertor’s next task is to processing security knowledge. Figure 4.1 shows one of

the definition from the collection of all the definition provided by OVAL for the analysis of

systems running on windows operating systems. Appendix A shows a highlighted section

containing a particular criteria block shown in Figure 4.3. Figure 4.4 shows the conversion

of the criteria shown in Figure 4.3.

<criteria comment="Outlook 2000" operator="AND">
<criterion negate="false" test_ref="oval:org.mitre.oval:tst:895"/>
<criterion negate="false" test_ref="oval:org.mitre.oval:tst:162"/>

</criteria>

Figure 4.3: Conditional criteria in XML format.

Appendix B shows a highly stripped down version of the converted definition from the

one shown in Appendix A.

21



criteria(unique_id1,’Outlook 2000’):-
criterion(’oval:org.mitre.oval:tst:162’,’false’),
criterion(’oval:org.mitre.oval:tst:895’,’false’).

Figure 4.4: Conditional criteria converted to datalog format.

The OVAL repository is updated regularly and our architecture is well suited to adapt the

constantly changing knowledge. Once we have both the host information and the security

definitions in the required format, these are provided to the logical comparator for analysis.

Logical Comparator

The logical comparator accepts both the processed host information and the security knowl-

edge and compares them using the “XSB” engine. XSB is a Logic Programming and De-

ductive database system for Unix and Windows. The comparator analyzes the information

from the host with respect to the criterions from the security definitions to report all the

vulnerabilities present on that host.

The analysis can be performed in a number of different ways. The reason for using a

logic-based approach is that, datalog is both a declarative specification and an executable

program. Thus, the security knowledge can be compiled into executables, during which

significant optimization can be done to speed up the analysis process. This optimization

cost is only paid once in converting the knowledge into datalog byte-code, and can be

amortized over the repeated application of the knowledge to a large number of machines

over a period of time. As mentioned in Chapter 1 our work is the underlying research for

MulVAL [6] project, which is a datalog-based framework for modeling the interaction of

software bugs with system and network configurations. It is thus, a natural choice for us to

use the same logical language for individual host’s vulnerability assessment. Moreover, the

saving gained through amortizing knowledge preprocessing cost (compilation in this case)

applies to other internal knowledge representation as well.
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Chapter 5

Results

The primary goal of our work is to investigate the effectiveness of central host-based archi-

tecture described in the Chapter 4 when compared with the MITRE’s reference scanner [13].

The results indicate that the centralized scanner is not only effective in vulnerability assess-

ment but also is more efficient with respect to time taken to perform comprehensive analysis

when compared with the reference scanner.

The test bed for our experiments consists of non trivial network consisting of three ma-

chines running Microsoft Windows XP operating system and two running Microsoft Win-

dows 2000 Server operating system. The end hosts were left un-patched with vulnerabilities

present for testing purposes. Table 5.1 shows the system architecture of the machines on

the network. The analyzer is a dedicated Linux server with three dual opteron processors.

The analyzer communicates with the host using the secure shell (SSH) protocol and the file

transfer between the two takes place using the Session Control Protocol (SCP).

During the analysis, the files transmitted to the analyzer from the agent residing on the

Table 5.1: Test Bed

Architecture Analyzer Host
Operating System Linux Win XP Win 2000
Processor Dual Opteron 2.2ghz(x3) 2.2ghz AMD Opteron 2.2ghz AMD opteron
Memory(GB) 16 2 2
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Table 5.2: Host Data (megabytes)

Files Win XP Win 2000
Registry 38 26
Version Numbers .01 .01

Table 5.3: Vulnerability Performance Comparison

Operating System Reference scanner Centralized Scanner
Win XP 223 224
Win 2000 260 260

host, correspond to registry information and version numbers of the files specified in the

security definitions for the host. Table 5.2 shows the average size of both the files from the

respective host machines.

Table 5.3 compares the vulnerabilities detected by the reference scanner with those de-

tected by our analyzer. As seen in the table, vulnerability detection capabilities of the

central host-based analyzer are at par with the Mitre’s reference implementation of OVAL

scanner. Both the scanners reported 260 vulnerabilities for the host with Windows 2000

Server operating system. For hosts with Windows XP operating system, the reference scan-

ner reported 223 vulnerabilities. The centralized scanner has reported 224 vulnerabilities,

including one vulnerability that was missed by the reference scanner but manually verified

to exist on the host.

The centralized scanner came better when compared against the time taken to analyze

a host machine by the reference OVAL scanner. Table 5.4 and Figure 5.1 shows average

time (in minutes) to complete the vulnerability analysis of the hosts with Windows 2000

Server and Windows XP operating system. A point worth mentioning here is that in the

case of the reference scanner, the time reported reflects the time it executed on the host

machine engaging the host’s resources. On the contrary, in our scanner, only a fraction of

the total analysis time shown is the time when resources on the host were used to get its
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Table 5.4: Analysis Time Comparison(minutes)

Operating System Reference scanner Centralized Scanner
Win XP 3:11 2:48
Win 2000 3:16 2:22

configuration information. Rest of the time reflects the analysis part which is performed by

our dedicated analyzer.

Figure 5.1: Analysis Time Comparison

The security definitions are updated regularly by the OVAL community. We pre-compile

and store the converted OVAL Prolog bytecode whenever a new OVAL definition file is

released. The compilation (with optimization) for an OVAL Windows definition takes 102

seconds and this time is not included in the above data. This overhead is a one-time

investment and the cost can be amortized when the system is running on a large enterprise

network because the Prolog bytecode will be used for all the machines on the network. In
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addition one may also incrementally compile, the newly added OVAL definitions, which can

further reduce the knowledge pre-processing time.
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Chapter 6

Related and Future Work

This Chapter provides a review of the current research related to host-based vulnerability

assessment followed by avenues for further research.

Initial developments in the field of host-based vulnerability assessment field are captured

in tools like COPS [19] and Tiger [20]. Both these tools were initially unix based and focused

on improper access permissions to a system and weak passwords. This initial effort was

acknowledged by the security community and also promoted further research in the field

of vulnerability analysis. Although these tools were designed to audit security of the host

using configuration analysis, they were not built in a way to support convenient knowledge

update and had to be tailored for other operating systems. To overcome the shortcomings

of the original host-based analyzers, recent years have observed trends towards formalizing

security definitions to be used in automatic host-based security scanning. Most notably the

OVAL [7] language formalizes security knowledge used in host configuration analysis so that

a host-based security scanner can be constantly updated with the most recent knowledge in

the OVAL language format.

Projects like “Ferret” [21] utilize this trend and proposes modular vulnerability assess-

ment tools which use plugins for each vulnerability to be checked on the host system. In

their architecture new plug-ins have to be updated for every new vulnerability discovered.

Being modular in its design, Ferret effectively supports the knowledge updates in the system.

However, since the updates have to be done on each host, it causes the security knowledge
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to be replicated over all the hosts.

Sufatrio et al. [22] have proposed - “A Machine Oriented Integrated Vulnerability

Database for Automated Vulnerability Detection and Processing” combining many differ-

ent security databases into a machine adaptable format. They propose architecture where

the database created can be stored on the local machine or remotely. In their approach,

the scanning robot queries the database after scanning the system properties to check for

vulnerabilities. Even if the database is present on a remote system still in their approach,

the analysis part is under the domain of the scanning robot apart from the task of querying

the database and reporting the vulnerabilities. Due to the fact the analysis has to be done

on the system will not only make the administrator skeptical towards trusting the code but

this approach also suffers from the problem of resource consumption on the host.

The architecture proposed in this report supports advanced security analysis such as

attack-graph tools (e.g MulVAL) [23–25]. Attack graph tools are high-level enterprise net-

work security analyzers that take as input the baseline vulnerability information provided

by the VA scanners. To determine the impact of the discovered vulnerabilities, the attack-

graph tools are equipped with high-level knowledge on reasoning about security interactions

in an enterprise network. Application of this knowledge often needs additional configura-

tion information beyond what the VA scanner can provide. Our proposed architecture can

easily accommodate this needs since the scripts that run on the target machine can collect

whatever configuration information that is accessible from within a host. In the conven-

tional architecture, another scanning agent would have to be installed for the attack-graph

analysis tools.

Further the centralized architecture of our system assures access to all the hosts on the

network from the server. Thus the server is also capable of hosting a network-based scanner

to harness the advantages of the same. This would complement the host-based scanner and

provide a extensive security analysis for the enterprise network.

The proposed scanning architecture can also be applied beyond security applications.

28



A likely candidate is “Inventory Management”. The agents provide all the configuration

information which is stored on the centralized server and this information can be used for

inventory management purposes to keep track of all the resources on the hosts throughout

the enterprise network.

Trouble-shooting configuration problems in an enterprise network is another application

which can be applied to the proposed architecture. During trouble-shooting it is often

needed to collect a range of configuration parameters and send them to a centralized place

for analysis [18]. Since the scanning agent that needs to run on the target machine has

a small code base, it is easier to guarantee that it will not further disrupt service while

attempting to fix an existing problem. Moreover configuration changes on a particular host

can be tracked due to access to the configuration information before and after the problem

occurred. The changes made in machine configuration is a logical starting point when

troubleshooting the respective host.

Thus, the proposed architecture provides a novel approach to host-based vulnerability

analysis along with a lot of potential for further research and development in many other

fields including the field of vulnerability analysis.
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Chapter 7

Conclusion

Security threats and breaches in an organization’s network infrastructure can cause critical

disruption of business processes and lead to information and capital losses. A potent security

system is imperative for an enterprise networks and vulnerability assessment is an important

element for the same. A host-based vulnerability scanning system informs us about the

vulnerabilities that the respective host carries.

The conventional host-based vulnerability analysis approach, though effective for indi-

vidual systems does not support the trend of knowledge sharing and global perspective when

it comes to security analysis. The conventional architecture also suffers from the problems of

knowledge replication and need to regularly update agents residing on all the hosts. Apart

from the above, the complexity of the scanning agent and its nature of utilizing host re-

sources does not help the system administrator’s concern towards installing an unknown

software on the network. The current security scenario demands an approach which focus

not only on being able to assimilate data from many different knowledge sources but which

would also become the foundation for advanced security analysis.

The centralized host-based security scanning architecture proposed in the report is one

such approach. It supports knowledge assimilation from various sources providing a com-

prehensive security analysis. The centralized architecture overcomes the issue of knowledge

replication and eradicates the need to regularly update the client due to its separation of

analysis from the data collection part and further performing all the analysis on the cen-
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tralized server. The agent residing on the host uses minimal resources and is simple enough

to install and maintain. The reduced code base of the agent makes it less susceptible to

programming flaws and also allows rigorous code vetting to gain the administrators’ confi-

dence. We empirically show that the centralized vulnerability analyzer to be at par with

Mitre’s reference scanner in terms of vulnerability detection and comes out superior in terms

of time taken to do the assessment.

This work has contributed to the evolving trend of knowledge sharing in security analysis

by providing a centralized host-based architecture which apart from providing a compre-

hensive security assessment, supports advanced security analysis and research

31



Bibliography

[1] Network and Host-based Vulnerability Assessment, http://documents.iss.net/

whitepapers/nva.pdf.

[2] Introduction to vulnerability assessment tools, NISCC Technical Note, 2004.

[3] Information Security Glossary, http://www.yourwindow.to/information-security/

gl_securitybreach.htm.

[4] R. Richardson, CSI:Computer Crime and Security Survey, http://i.cmpnet.com/

v2.gocsi.com/pdf/CSISurvey2007.pdf, 2007, Web page fetched on April 19, 2008.

[5] Nessus, http://www.nessus.org/nessus.

[6] X. Ou, S. Govindavajhala, and A. W. Appel, MulVAL: A logic-based network security

analyzer, in 14th USENIX Security Symposium, pages 113–128, Baltimore, 2005.

[7] OVAL (Open Vulnerabilities and Assessment Language), http://oval.mitre.org/.

[8] B. Marick, The craft of software testing, Prentice Hall, 1995.

[9] I. V. Krsul, Software Vulnerability analysis, PhD thesis, Purdue University, 1998.

[10] Vulnerability Assessment Scanning, http://www.sunbeltsoftware.com/documents/

snsi_whitepaper.pdf, 2004, Web page fetched on November 11, 2008.

[11] Searchsecurity, http://searchsecurity.techtarget.com/sDefinition/0,,sid14_

gci1176511,00.html.

[12] R. Fussell, Vulnerability assessment: Network based versus host based, Technical

report, SANS Institute, 2002.

32

http://documents.iss.net/whitepapers/nva.pdf
http://documents.iss.net/whitepapers/nva.pdf
http://www.yourwindow.to/information-security/gl_securitybreach.htm
http://www.yourwindow.to/information-security/gl_securitybreach.htm
http://i.cmpnet.com/v2.gocsi.com/pdf/CSISurvey2007.pdf
http://i.cmpnet.com/v2.gocsi.com/pdf/CSISurvey2007.pdf
http://www.nessus.org/nessus
http://oval.mitre.org/
http://www.sunbeltsoftware.com/documents/snsi_whitepaper.pdf
http://www.sunbeltsoftware.com/documents/snsi_whitepaper.pdf
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci1176511,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci1176511,00.html


[13] OVAL Interpreter, http://oval.mitre.org/language/download/interpreter/

index.html.

[14] GFILANguard, http://www.gfi.com/lannetscan/.

[15] SofCheck, http://www.sofcheck.com/.

[16] Common Vulnerabilities and Exposures, http://cve.mitre.org/.

[17] National Vulnerability Database, http://nvd.nist.gov/.

[18] H. Huang et al., PDA: A tool for automated problem determination, in 21st Large

Installation System Administration Conference, (LISA), pages 153–166, Dallas, 2007.

[19] D. Farmer and E. H. Spafford, The COPS security checker system, in Summer Usenix

Conference, pages 165–170, Berkley, 1990.

[20] Tiger Analytical Research Assistant, http://www-arc.com/tara/index.shtml, Web

page fetched on May 07, 2008.

[21] A. Sharma, J. R. Martin, N. Anand, M. Cukier, and W. H. Sanders, Ferret: A host

vulnerability checking tool, in 10th IEEE Pacific Rim International Symposium on

Dependable Computing, 2004.

[22] Sufatrio, R. H. C., and L. Zhong, A machine-oriented integrated vulnerability database

for automated vulnerability detection and processing, in 18th Large Installation System

Administration Conference, (LISA), Atlanta, 2004.

[23] S. Jajodia, S. Noel, and B. O’Berry, Topological analysis of network attack vulner-

ability, in Managing Cyber Threats: Issues, Approaches and Challanges, edited by

V. Kumar, J. Srivastava, and A. Lazarevic, chapter 5, Kluwer Academic Publisher,

2003.

33

http://oval.mitre.org/language/download/interpreter/index.html
http://oval.mitre.org/language/download/interpreter/index.html
http://www.gfi.com/lannetscan/
http://www.sofcheck.com/
http://cve.mitre.org/
http://nvd.nist.gov/
http://www-arc.com/tara/index.shtml


[24] R. Lippmann et al., Evaluating and strengthening enterprise network security using

attack graphs, Technical Report ESC-TR-2005-064, MIT Lincoln Laboratory, 2005.

[25] X. Ou, W. F. Boyer, and M. A. McQueen, A scalable approach to attack graph

generation, in 13th ACM Conference on Computer and Communications Security,

(CCS), pages 336–345, 2006.

34



Appendix A

OVAL Definition in XML Format

<oval_definitions>

<definition id="oval:org.mitre.oval:def:153" class="vulnerability" version="1">

<criteria operator="OR">

--------------------------------------------------------------------------

| <criteria comment="Outlook 2000" operator="AND"> |

| <criterion negate="false" test_ref="oval:org.mitre.oval:tst:895" /> |

| <criterion negate="false" test_ref="oval:org.mitre.oval:tst:162" /> |

| </criteria> |

--------------------------------------------------------------------------

</criteria>

<definition>

<tests>

<registry_test id="oval:org.mitre.oval:tst:895"

check_existence="at_least_one_exists" check="at least one">

<object object_ref="oval:org.mitre.oval:obj:670" />

<state state_ref="oval:org.mitre.oval:ste:804" />

</registry_test>

<file_test id="oval:org.mitre.oval:tst:162"

check="at least one" check_existence="at_least_one_exists">
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<object object_ref="oval:org.mitre.oval:obj:97" />

<state state_ref="oval:org.mitre.oval:ste:160" />

</file_test>

</tests>

<objects>

<registry_object id="oval:org.mitre.oval:obj:670">

<hive>HKEY_LOCAL_MACHINE</hive>

<key>SOFTWARE\Microsoft\Office\9.0\Outlook\InstallRoot</key>

<name>Path</name>

</registry_object>

<file_object id="oval:org.mitre.oval:obj:97">

<path var_ref="oval:org.mitre.oval:var:728" />

<filename>Outllib.dll</filename>

</file_object>

</objects>

<states>

<registry_state id="oval:org.mitre.oval:ste:804">

<value operation="pattern match">.*\\[Oo][Ff][Ff][Ii][Cc][Ee][\\9].*</value>

</registry_state>

<file_state id="oval:org.mitre.oval:ste:160">

<version datatype="version" operation="less than">9.0.0.8954</version>

</file_state>

</states>

<variables>

<local_variable id="oval:org.mitre.oval:var:728">

<object_component item_field="value" object_ref="oval:org.mitre.oval:obj:120" />

</local_variable>
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</variables>

</oval_definitions>
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Appendix B

Converted OVAL Definition in Prolog
Format

definition(’oval:org.mitre.oval:def:153’):-

criteria(unique_id0).

criteria(unique_id0):-

criteria(unique_id1,’Outlook 2000’).

criteria(unique_id1,’Outlook 2000’):-

criterion(’oval:org.mitre.oval:tst:162’,’false’),

criterion(’oval:org.mitre.oval:tst:895’,’false’).

criterion(’oval:org.mitre.oval:tst:162’):-

oval_test(’oval:org.mitre.oval:obj:97’,’oval:org.mitre.oval:ste:160’,’

at least one’,’at_least_one_exists’).

criterion(’oval:org.mitre.oval:tst:895’):-

oval_test(’oval:org.mitre.oval:obj:670’,’oval:org.mitre.oval:ste:804’,’

at least one’,’at_least_one_exists’).
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object_ref(’oval:org.mitre.oval:obj:97’,filepath_ref(X,’Outllib.dll’)):-

var_ref(’oval:org.mitre.oval:var:728’,X).

state_ref(’oval:org.mitre.oval:ste:160’,version(’less than’,’9.0.0.8954’)).

object_ref(’oval:org.mitre.oval:obj:670’,winReg_ref(’hkey_local_machine\\software\\

microsoft\\office\\9.0\\outlook\\installroot’,’Path’)).

state_ref(’oval:org.mitre.oval:ste:804’,val(’pattern match’,’.*\\[Oo][Ff][Ff][Ii][Cc]

[Ee][\\9].*’)).

var_ref(’oval:org.mitre.oval:var:728’,X):-

object_ref(’oval:org.mitre.oval:obj:120’,Obj),

object_val(Obj,X).
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