Statistical methods to predict future risk of suicidal ideation from social

media data

by

Tyler Bastian

B.S., Kansas State University, 2019

A REPORT

submitted in partial fulfillment of the
requirements for the degree

Master of Science

Department of Statistics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2022

Approved by:

Major Professor
Dr. Perla E. Reyes Cuellar

Abstract

Suicide, the act of taking ones own life, is a tragedy for all involved and a public health
concern in the United States. Suicide is the tenth leading cause of death in the United States
which makes the monitoring of suicide and suicidal ideation, or the process of thinking or
ruminating ones own death, crucial in the interest of public health. With the rapid develop-
ment of machine learning methods, new analyses of social media data to predict individual
suicide risk and behavior have been reported. A recent study, “A Machine Learning Ap-
proach Predicts Future Risk to Suicidal Ideation From Social Media” by Roy et al. (2020)
https://doi.org/10.1038 /s41746-020-0287-6, showed promising results in classifying Twitter
users into a suicidal category 4, 7, 14, and 21 days in advance of expressing suicidal ideation.

Roy et al. propose training a set of neural networks to detect and score psychological
constructs associated with suicidal thoughts. Using the obtained scores as inputs, they
implement a Random Forest algorithm to determine individual Twitter users risk of future
suicidal ideation. In this report, we offer a detailed explanation of methodology used by
Roy et al. alongside evaluating the reproducibility of their work. We first extract data from
Twitter and train a series of neural networks to identify if a tweet expresses psychological
constructs associated with suicidal thoughts which include; burden, stress, anxiety, loneliness,
insomnia, hopelessness, and depression. Using 1.2 million tweets from N = 182 suicidal
ideation (SI) cases and 30,648 tweets from 347 controls, we then train a Random Forest
model using neural network outputs to predict a binary outcome of SI status. The model
predicted within 7 days N = 78 SI events derived from an independent set of 342 suicidal
ideators relative to N = 3,458 non-SI tweets with an AUC of 0.83, slightly lower than Roy
et al.’s 7 day model prediction having an AUC of 0.88. Algorithmic approaches such as this
could be applied to potentially identify an individuals future risk of suicidal ideation and

could be integrated into medical technologies to aid in suicide screening and risk monitoring.

https://doi.org/10.1038/s41746-020-0287-6

Copyright

(© Tyler Bastian 2022.

Table of Contents

List of Figures
List of Tables
Acknowledgements
Dedication

1 Introduction

1.1 Motivationo
1.2 Objective o
1.3 Mental Health Assessment
1.4 Methodology
1.5 Classification Analysis
1.6 Evaluation Metrics
1.6.1 Accuracyo
1.6.2 Precision
1.6.3 Recall
1.6.4 F-Measure
1.6.5 Receiving Operating Characteristics
1.6.6 Area Under the Curve
1.7 Report Overview

2 Tweet Extraction and Text Pre-Processing

2.1 Suicidal Ideation Tweet Extraction

v

vil

xi

xii

2.2 Timeline Extraction

2.3 Word Embeddings Application L.

3 Emotion Classification

3.1 Deep Learning Approaches
3.1.1 Units in Neural Networks
3.1.2 Neural Network Structures

3.2 Feed-Forward Neural Networks

3.3 Recurrent Neural Networks
3.3.1 Long Short-Term Memory

3.4 Convolutional Neural Networks

3.5 Training and Validation of Neural Networks
3.5.1 Neural Network Training Preparation
3.5.2 Feed Forward Neural Networks
3.5.3 Recurrent Neural Network
3.5.4 Convolutional Neural Network
3.5.5 TextBlob

3.6 Results.

4 Suicidal Ideation Risk Assessment

4.1 Decision Trees and Random Forests
4.1.1 Decision Trees L
4.1.2 Random Forests

4.2 Suicidal Ideation User Classification

4.3 Suicidal Ideation Prediction o000

4.4 Results o
4.4.1 Random Forest Scores L.

5 Discussion and Conclusion

18
19
20
22
23
25
26
28
28
29
30
33
34
35
36

41
41
42
43
44
45
46
46

49

5.1 Discussion 49

5.2 Conclusion 53
Bibliography 54
A Supplementary Figures 60
A.1 Psychological Construct Neural Network Loss, Accuracy, and ROC curves. . 60

B Supplementary Python Code 69
B.1 Extract Twitter ST 69
B.2 Extract SI and Control Timelines 72
B.3 Collect Psychological Constructs and Controls 79
B.4 Neural Network Evaluation. 87
B.4.1 Word2Vec 87

B.42 Glove 96

B.43 FastText o 105

B.5 Train and Evaluate Psychological Constructs 113
B.6 Psychological Construct Classification 120
B.7 Classify SI Tweets 131
B.8 Random Forest SI Classification Training and Evaluation 138

vi

2.1

3.1

3.2
3.3
3.4

3.5

3.6

4.1

List of Figures

Classic neural language model 15

A simple mathematical model for a Neuron. The unit’s output activation a;,

where a; is the output activation of unit j and W;; is the weight on the link

from unit j to thisunit.o 20
A multi-layer neural network with one hidden layer and 5 inputs. 24
Architecture of an LSTM. oo 26

Three neural network and word embedding performance for the psycholog-
ical construct anxiety. Three metrics loss (top row), accuracy (middle
row), and ROC (bottom row) for models SNN (left), CNN (center), and
LSTM (right). Each line represents the word embedding methods: FastText
(blue), Glove (yellow), and Word2Vec (green). 37
Boxplots comparing cases (1) and controls (2). Anxiety, Burden, Hopeless-
ness, Insomnia, and Stress provide the largest difference when comparing the
average of each psychological constructs cases and controls which provides
evidence to support the claim that these constructs will provide the most
information to the random forest. Lo 38
Plotting of the psychological constructs along the x-axis for one randomly
selected case tweet, “i always think suicide is key but i am just waiting to

prove that i am wrong” and one randomly selected control tweet, “life is good”. 40

ROC curves for testing dataset and validation set for 4 days (blue), 7 days

(yellow), 14 days (green), and 21 days (red) worth of aggregated data. . 47

vil

4.2

Al

A2

A3

A4

A5

Random Forest feature importance for 4, 7, 14, and 21 days worth of aggre-

gated data.

Three neural network and word embedding performance for the psychologi-
cal construct burden. Three metrics loss (top row), accuracy (middle row),
and ROC (bottom row) for models SNN (left), CNN (center), and LSTM
(right). Each line represents the word embedding methods: FastText (blue),
Glove (yellow), and Word2Vec (green).
Three neural network and word embedding performance for the psychological
construct depression 1. Three metrics loss (top row), accuracy (middle
row), and ROC (bottom row) for models SNN (left), CNN (center), and
LSTM (right). Each line represents the word embedding methods: FastText
(blue), Glove (yellow), and Word2Vec (green).
Three neural network and word embedding performance for the psychological
construct depression 2. Three metrics loss (top row), accuracy (middle
row), and ROC (bottom row) for models SNN (left), CNN (center), and
LSTM (right). Each line represents the word embedding methods: FastText
(blue), Glove (yellow), and Word2Vec (green).
Three neural network and word embedding performance for the psychological
construct depression 3. Three metrics loss (top row), accuracy (middle
row), and ROC (bottom row) for models SNN (left), CNN (center), and
LSTM (right). Each line represents the word embedding methods: FastText
(blue), Glove (yellow), and Word2Vec (green).
Three neural network and word embedding performance for the psychologi-
cal construct hopelessness. Three metrics loss (top row), accuracy (middle
row), and ROC (bottom row) for models SNN (left), CNN (center), and
LSTM (right). Each line represents the word embedding methods: FastText

(blue), Glove (yellow), and Word2Vec (green).

viii

A6

AT

A8

Three neural network and word embedding performance for the psycholog-
ical construct insomnia. Three metrics loss (top row), accuracy (middle
row), and ROC (bottom row) for models SNN (left), CNN (center), and
LSTM (right). Each line represents the word embedding methods: FastText
(blue), Glove (yellow), and Word2Vec (green).
Three neural network and word embedding performance for the psycholog-
ical construct loneliness. Three metrics loss (top row), accuracy (middle
row), and ROC (bottom row) for models SNN (left), CNN (center), and
LSTM (right). Each line represents the word embedding methods: FastText
(blue), Glove (yellow), and Word2Vec (green).
Three neural network and word embedding performance for the psychologi-
cal construct stress. Three metrics loss (top row), accuracy (middle row),
and ROC (bottom row) for models SNN (left), CNN (center), and LSTM
(right). Each line represents the word embedding methods: FastText (blue),
Glove (yellow), and Word2Vec (green).

X

2.1
2.2

3.1

4.1
4.2

List of Tables

Twitter Academic Research endpoints

Twitter Queries for Data Extraction

Psychological construct scores for one randomly selected case tweet, “i always
think suicide is key but i am just waiting to prove that i am wrong” and one

randomly selected control tweet, “life is good”.

Random Forest Metrics using 4, 7, 14, and 21 days worth of aggregated data.

Feature importance of Random Forest algorithm. With 4 days of aggregated
data Depression 1, Depression 3, and Subjectivity supply the most informa-
tion for splitting. With 7 days of aggregated data Depression 3, Loneliness,
and Subjectivity supply the most information for splitting. With 14 days of
aggregated data Depression 3, Hopelessness, and Subjectivity supply the most
information for splitting. And with 21 days of aggregated data Depression 3,

Loneliness, and Subjectivity supply the most information for splitting.

48

Acknowledgments

I would first like to express my deepest gratitude to Dr. Perla Reyes. Six years ago she
showed me great mentorship and professional training through my undergraduate career and
agreed to further my professional and educational development throughout my Graduate
experience. Working under Dr. Reyes’ supervision I had the privilege to benefit from
her knowledge, guidance, and most important her passion for statistics and data science.
Without her guidance this report would not have been possible.

I would also like to thank my council members who also provided excellent guidance
throughout my Graduate program. To Dr. Haiyan Wang, without her time and technical
knowledge in data mining and machine learning, my understanding and application of the
machine learning techniques used within this report would not be possible. To Dr. Goh,
without him my understanding of Bayesian statistics and optimism within the realm of
Statistics would not be nearly as developed as it is today. To Dr. Michael Higgins a great
thank you is necessary for my acceptance into this program and whose knowledge in sampling
methods and bias has helped me in my ethical understanding of the application of statistical
techniques.

I would also like to thank my parents who have supported me throughout my undergrad-
uate and graduate training and offered me valuable words of encouragement during trying

times.

x1

Dedication

To all my friends who have passed by suicide. You may be gone but you will never be
forgotten. May this report serve in the advancement of suicide risk detection and interven-

tion.

xil

Chapter 1

Introduction

1.1 Motivation

In the last couple of decades social media has advanced the expression of ideas, emotions,
and thoughts publicly. With the availability of online personal journal entries, blog posts,
and comments we have seen an increase in research regarding the automatic detection of
emotions and sentiments from textual data.

While most literature available focuses on the detection and assessment of emotions in
online textual data, there is less research available regarding the investigation of emotion de-
tection in textual conversation. One can argue that with a large amount of dialogue available
online, the detection of emotions hosts new challenges when compared to the detection of
emotions within monologues as different influences affect the dialogue between individuals.
These different influences can range from the input of opinion from another person outside
the dialogue to personal events or trauma that may occur. In this report, we investigate
the effectiveness of neural networks for the task of emotion detection and classification in
short dialogues with the goal of identifying warning signs of emergency that could be used
to trigger timely preventative interventions.

It comes to no surprise that automatically monitoring platforms for mental health screen-

ing is beneficial. With new research being done in the monitoring of mental health among

social media users, there still remains a gap in research where the time elapsed between the
first signs of mental health issues, and the detection and intervention for a victim plays a
crucial role. Therefore, the earlier a possible harmful event is detected the better. However,
in recent years, besides a machine learning program developed by Roy et al. (2020), not much
research has been provided to detect mental health issues in a timely manner to reduce the
risk of great harm.

With the increasing usage of textual data to provide insight for marketing and business
purposes (Jacobs et al., 2018; Van der Aa et al., 2018), stock market predictions (Abdullah
et al., 2013), and the movement of the Coronavirus pandemic (Ebadi et al., 2021), it is
becoming easier to extract public opinion on services or products that help build relations
between business or governments and the public which inevitably leads to more profit.

Techniques to provide sentiment analysis can range from a binary classification of text
into positive or negative, to more refined classifications of emotions such as happy, sad,
angry, or excited (Hirschberg and Manning, 2015). Emotion classification is especially useful
within business and marketing settings and a variety of Natural Language Processing (NLP)
applications such as, speech-to-text and human-computer interactions that take into account
the emotional state of users to provide more human-like responses as it gives companies a
chance to monitor market research and competition (Poria et al., 2019).

With the growing number of usages of textual data, we soon may be able to provide
better awareness to a variety of emergencies such as the detection of toxicity, hate speech,
and cyber-bullying in online platforms (Roy et al., 2020). With the increased awareness to
these emergencies, we may be able to provide timely interventions within possible violent
situations (Ballesteros et al., 2020).

Within healthcare, online textual data can provide a myriad of uses such as the online
detection of a disease outbreak (Chapman et al., 2004), finding drug use patterns (Carrell
et al., 2015), and the identification of adverse drug side-effects (Leaman et al., 2010). Another
growing usage within healthcare is the automatic detection of mental health issues (Stewart
and Velupillai, 2021), a relatively new field that has recently gained attention within Twitter,
Facebook, and Reddit. Within these large corporations the application of NLP helps provide

platforms the ability to detect various mental health issues such as anxiety, depression, eating

disorders, and suicidal ideation (Le Glaz et al., 2021).

1.2 Objective

The focus of this report is to understand the statistical learning techniques used to detect
suicidal ideation in Twitter as proposed by Roy et al. (2020). We believe that a more
lengthy and detailed explanation should facilitate its application by others and enhance
research around it and its components to reach sooner the goal of creating a diagnostic tool
that could be used to trigger interventions and prevention. The method has three main
components: the extraction of textual data from the Twitter database, the classification of
emotions, and the early detection of suicidal ideation. Since this study will use observations
based upon people and their personal data, the International Review Board had approved the
usage of personal data within this study. Upon the International Review Board’s approval,
we use Python version 3.8.5 to conduct our analysis. Twitter users must agree to Twitter’s
Terms and Services making their data public. However, due to the sensitive aspect of our
study, we will be changing all forms of user identification to random identification numbers
as to prevent any possibility of identifying individuals within this study. Thus, respecting
the privacy of the subjects.

Deep learning approaches have significantly improved what was formerly known as com-
putationally impossible tasks. However, in order to achieve such results it is often relied on
large annotated datasets which are in many cases difficult to obtain and rarely capture the
true randomness of events. This report explores the use of data extraction to perform such
analyses.

For the purpose of model generalizability, the use of handcrafted features is minimized.
On the other hand, neural network architectures are an essential part of our experiment
as they can automatically extract features. We investigated the effectiveness of our model
by experimenting with three different word embeddings: FastText, Glove, and Word2Vec.

We applied these three types of pre-trained word embeddings within a Feed Forward Neural

Network (FFNN), Convolutional Neural Network (CNN), and a Long Short-Term Memory
Recurrent Neural Network (LSTM). Pre-trained word embeddings are the embeddings that
are trained on large datasets, saved, and then used for solving another similar task.

This report aims to investigate the use of these developments of deep learning and benefit
from the strength of these methods by applying them to a case of natural language processing
in emotion detection and clinical psychology. As automatic assessment tools can provide
helpful complimentary measures to monitor emotional state and mental health of online
users, as this field gains more traction this report can serve as a starting point for future

research in this area.

1.3 Mental Health Assessment

The use of text collected from Twitter, Facebook, Reddit, blogs and online forums has
been used by countless researchers as resources for experimentation with classification tasks
pertaining to mental health issues.

Pestian et al. (2010) experimented with different machine learning methods for suicide
note classification. They focus on developing methods of natural language processing that
distinguish between genuine and elicited suicide notes. They hypothesize that machine
learning techniques, such as a logistic decision trees, are able to classify suicide notes as
well as mental health professionals (Pestian et al., 2010). Using emotions, parts of speech
tags, readability, and words as features they achieve a 78% accuracy with with their logistic
decision trees.

Shen and Rudzicz (2017) used different feature sets including Word2Vec embedding, La-
tent Dirichlet allocation topic modelling, lexicon-syntactic features, and N-grams (unigrams
and bigrams) to detect anxiety in Reddit posts (Shen and Rudzicz, 2017). Originally, the
authors compared the results achieved by a support vector machine and a 2-layer neural net-
work. Though both classifiers performed well, the support vector machine yielded slightly
better results. However, they achieved their best result of 98% accuracy using the neural

network with n-gram probabilities and word embeddings combined with Linguistic Inquiry

and Word Count (LIWC) features.

More recently, Wshah et al. (2019) used a virtual agent to study the symptoms of psy-
chological distress in dialogues. They show that with the use of an ensemble of support
vector machines, Naive Bayes classifiers, logistic regression, and random forest algorithms
they can predict elevated Post Traumatic Stress Disorder symptoms receiving an area under
the curve (AUC) score of 0.85 . Furthermore, they show that 7-self reported features are
needed to obtain this AUC score and provide accurate predictions that can be made 10 to
20 days post trauma.

All previous work used a classic classification approach that does not measure how early
detection is performed. Early detection can be used in many applications where intervention
is needed and the timing of the intervention is important. An example of such an applica-
tion is suicidal ideation (Roy et al., 2020). According to Roy et al. (2020), risk assessment
approaches are currently focused at detection after the event has occurred, though the tim-
ing of the detection can be of unmitigated importance. Therefore, it is important to try
to minimize the time between seeing the first sign of a harmful behavior and signaling a
warning. Roy et al. (2020) propose using a combination of 9 trained neural networks to
classify individual tweets into 9 emotions or psychological constructs determined with the

help of professional psychiatrists.

1.4 Methodology

To understand the methods used within this report, once the International Review Board
approved the study, we downloaded tweets from Twitter using queries, or specific requests for
data from a database, associated with suicidal ideation provided by Roy et al. (2020) We then
applied commonly used word embeddings and a series of neural networks to detect psycho-
logical constructs associated with suicidal ideation as presented by Roy et al. (2020). These
psychological constructs include anxiety, burdensomeness, depression, hopelessness, insom-
nia, loneliness, and stress. We also include the variables polarity and subjectivity provided

by the TextBlob package as extra variables to detect the positive or negative sentiment and

a quantitative subjectivity for each tweet, respectively. Finally, we trained Random Forests
to predict future risk of suicidal ideation 4, 7, 14, and 21 days in advance, using the obtained

matrix of psychological constructs, polarity, and subjectivity as input.

1.5 Classification Analysis

Here, we present a review of methods related with this work starting with the more general
concept of classification to then going into the details of the used techniques in subsequent
chapters. The goal of text classification, to assign a piece of text to one or multiple classes,
is an essential part of many Natural Language Processing applications. Here we focus on
textual classification for emotion detection and for mental health assessment.

The goal of this report is to aid on the development of a tool that can correctly identify
users with suicidal ideation (SI) before the event occurs. The methodology proposed by
Roy et al. (2020) revolves around the classification of Twitter users into an SI class, days or
weeks before they sent an SI tweet. We found it a compelling point that deserved a more
detailed explanation. Classification is a data analysis task within data-mining, that identifies
and assigns categories to a collection of data to allow for more accurate analyses where the
classification method makes use of mathematical techniques such as decision trees, linear
programming, neural networks and statistics (James et al., 2013). Classification analysis can
be used to question, make a decision, or predict behavior through the use of an algorithm.
It works by using a set of training data which contains a certain set of attributes as well
as the likely outcome. The job of the classification algorithm is to discover how that set of
attributes reaches its conclusion. Such classification analyses involve two steps. The first
step involves a learning step or training phase where different algorithms are used to build
a classifier by making the model learn by the use of an available training set which provides
accurate prediction results. The second step involves a classification step, or testing phase,
where the model, used to predict class labels, tests the constructed model on test data which
in turn estimates the accuracy of our model (James et al., 2013).

Over the years, a variety of techniques have been used for text classification systems.

Classical machine learning algorithms such as Naive Bayes Classifiers (Xu et al., 2017),
Logistic Regression (Pranckevi¢ius and Marcinkevicius, 2016), K-Nearest Neighbors (Yong
et al., 2009), Support Vector Machines (Colas and Brazdil, 2006), Decision Trees (Su and
Zhang, 2006), and Random Forests (Shah et al., 2020) have been commonly used in the
literature for text classification. Although these methods can extract classification rules
automatically, they still require predetermined linguistic features as their input (Shah et al.,
2020). With the availability of relatively large corpora of annotated data, and thanks to
recent advances in the field of deep learning for natural language processing, neural network

architectures have gained much interest for the task of test classification (Goldberg, 2017).

1.6 Evaluation Metrics

One essential part of developing a classification system is evaluating how it performs when
exposed to new samples. Thus, appropriate evaluation metrics that provide a reliable mea-
sure of the system’s performance are needed. In this section, a brief summary of the most
common evaluation metrics used for classification is presented. Most evaluation metrics are
based on a confusion matrix that gives information about the system’s prediction for the
samples and also the true label for the samples in question which we can use to calculate

the models accuracy, precision, recall, and F-measure.

1.6.1 Accuracy

The accuracy measure takes into account the number of samples correctly classified out of
all predictions made by the system, irrespective of the samples’ class. It is calculated using

Equation 1.1.

TP+TN
TP+TN+ FP+ FN

(1.1)

accuracy =

In the case of a classification system aimed at diagnostics, accuracy is not a reliable

measure, since there is often the necessity to give more weight to positive labels (i.e. at-risk

individuals). As a result, more informative measures such as precision, recall, and F-measure

are preferred.

1.6.2 Precision

Precision measures the ratio of correctly classified true or positive samples out of all samples

classified as positive and is calculated using Equation 1.2.

TP

—_— 1.2
TP+ FP (12)

precision =

1.6.3 Recall

The recall measure, otherwise known as sensitivity, is used to calculate the ratio of correctly
detected positive samples out of all positive samples, both detected and undetected by the
system in the data set. Equation 1.3 is used to measure recall.

TP

T@C(lll = m—m (13)

In health applications, recall is a very important metric that measures the capacity of

the system to emit alerts when needed and reduce the number of false negatives.

1.6.4 F-Measure

There is a inverse relationship between precision and recall though. When one decreases
another increases. A system that has a tendency to predict more negative labels can have a
good precision but a low recall, while a system that outputs too many positive labels has a
good recall, but low precision.

The traditional F-measure, the F} score, is the harmonic mean of precision and recall.
It was developed in an attempt to combine both recall and precision into a single measure

making it possible for model optimization and selection based on a single evaluation metric.

Precision X Recall
F, =2 1.4
! % Precision + Recall (1.4)

1.6.5 Receiving Operating Characteristics

A Receiving Operating Characteristics (ROC) curve is a graphical display showing the per-
formance of a classification model at all classification thresholds. The ROC curve uses the
true positive rate, or sensitivity rate, on the y-axis and false positive rate, or specificity, on

the x-axis. The false positive rate, or specificity can be calculated using Equation 1.5 below.

TN

—_— 1.
TN+ FP (15)

Speci ficity =

The ROC curve summarizes the trade-off between the true positive rate and false positive
rate for a predictive model using different probability thresholds. The true positive rate, also

known as recall or sensitivity is calculated using Equation 1.3.

1.6.6 Area Under the Curve

The Area Under the Curve (AUC) is the measure of the ability of a classifier to distinguish
between classes and is used as a summary of the ROC curve. This area under the ROC
curve is always represented by a value between 0 and 1. Because we try to maximize the
this area, the higher the AUC the better the system is at distinguishing between positive

and negative classes.

1.7 Report Overview

In this chapter we introduced emotion and mental health assessment in textual data, our
motivation and methodology to apply natural language processing techniques to address
the aforementioned tasks, and presented an introduction to classification techniques and

common evaluation metrics. Chapter 2 provides detail over the connection and extraction

of large amounts of textual data from Twitter’s database. Chapter 3 provides an account of
our initial classification system using feed-forward neural networks, long short-term memory
recurrent neural networks, and convolutional neural networks which are developed for the
task of contextual emotion detection. Chapter 4 presents the development and evaluation of
a more refined ensemble approach aimed to study the usage of a Random Forest algorithm
for early detection of suicidal ideation as proposed by Roy et al. (2020). Finally, Chapter 5
concludes this report with a discussion and summary of the performance of the techniques

used and an overview in possible future research in this area.

10

Chapter 2

Tweet Extraction and Text

Pre-Processing

2.1 Suicidal Ideation Tweet Extraction

The first step to reproduce the Roy et al. (2020) study is the extraction of textual data from
Twitter’s Application Programming Interface version 2 (API V2.0) through their provided
endpoints. At the end of 2020 Twitter introduced this new API to include more features,
extend the data you can pull and analyze, and introduced new endpoints, which are points
where the API connects with the program or script. With the introduction of this new
API, Twitter also introduced a new powerful free product for academics: The Academic
Research product track. This track grants free access to full-archive search and other API
V2.0 endpoints with a volume cap of 10,000,000 tweets per month. Though, since API V2.0
is fairly new, fewer resources exist if issues are found through the process of collecting data
for research.

In order to send your first request to the Twitter API, a developer account is needed.
This developer account grants access to Twitter’s API and its various endpoints for data
extraction. Once the developer account has been set up, we may begin to access its various

endpoints for data.

11

Search All | https://api.twitter.com/2/tweets/search/all
User Timeline | https://api.twitter.com/2/users/:id/tweets

Table 2.1: Twitter Academic Research endpoints

To begin extraction, a ”bearer token” is supplied from Twitter to begin work in the
application you created upon successfully establishing a developers account. This token
allows developers to have a more secure point of entry for using the Twitter APIs and is
one of the core features of API V2.0. To simplify, a bearer token is a byte array of an
unspecified format that you generate using a script like a curl command or within your
account and application information. Storage of this token is highly recommended within
an environment variable, such that use of the variable may be used by calling the variable
name within any script.

Next, we create headers that will take our bearer token, pass it for authorization and
return headers that will be used to access the data needed for analysis. Once we have access
to the API, we search individual endpoints, or URLs to extract the data of interest. Table
3.1 supplies the two URLSs used in this report to access Twitter and extract information. The
full-archive, or search all, endpoint provides access to all tweets dating back to the first tweet
in March 2006 which is only available for those approved for the Academic Research access.
With this endpoint, there is one required string parameter, “query” which can hold up to
1,024 characters and returns tweets matching the search query. The queries used for data
extraction can be found in Table 3.2 Because our interest is for month by month data, we
also include the parameters, “start_time” and “end_time” which are in the format "YYYY-
MM-DDTHH:mm:ssZ (ISO 8601/RFC 3339). These parameters provide the newest, most
recent UTC timestamp in second granularity and is exclusive. If the end time parameter
is the only parameter given, then tweets from 30 days before the specified end time will be
returned by default. For this report we specify a start time and end time ranging month to
month from 01/01/2019 to 08/31/2021.

We can also request parameters associated with each tweet, which is the data we wish

to extract. To utilize this, the Twitter “field” parameter is used which is able to return

12

the individual user’s identification number, the tweet text, the tweet identification number,
favorite count, retweet count, in reply to, geographic location or georeference returned in
latitude and longitude coordinates, the conversation identification number, the date the tweet
was created or posted, the language of the individual user, and its source. Within this report
we are specifically interested in the user identification, the date and time of the tweet, the
text of the tweet, the source of the tweet (i.e. Twitter for iPhone, Twitter for Android), and
the geographic location. Due to Tobler’s First Law of Geography which states that objects
or occurrences that occur close together are more related than those far apart, one may be
interested in grouping by geographic location. Though due to the location settings being
denied access within individuals users account, only a handful of geographic locations were
returned, therefore we are not able to use this parameter within the scope of this analysis.
Finally, we are able to combine all aforementioned functions to connect to the endpoint.
This provides the direct connection and extraction of data and allows for a 'next token’
parameter which gives a unique identifier to the next page of results to continue data extrac-
tion. Once the data has been successfully returned in a JavaScript Object Notation (JSON)
format, we receive a list of dictionaries where each dictionary represents the data for each
tweet. Because our results are returned in JSON format, we then convert this format to a

Comma-Seperated Values (CSV) format.

2.2 Timeline Extraction

With the functions we have defined previously for suicidal ideation tweet extraction, we are
able to loop through results to extract data. After suicidal ideation tweets have been retrieved
and converted to a CSV format, we then loop through each individual user’s identification
number and extract their timelines back to January 01, 2019 where individual users Twitter
timelines are returned and converted to CSV format. Since we are interested in tweets up
to the tweet where suicidal ideation occurs, each tweets date that was identified using the
query, ‘I suicide thinking OR planning’ was saved and converted to the required format for

timeline extraction.

13

Flag ST Users “I suicide thinking OR planning”
Control “I”
Burden “ am a burden”
Loneliness “I am lonely”
Stress “I am stressed OR stress”
Depression “I am depressed”
Anxiety “I am anxious or [am nervous”
Hoplessness “I hopeless”
Insomnia “I am not sleeping OR I can’t sleep OR insomnia”

Table 2.2: Twitter Queries for Data Extraction

Next, we change the endpoint of interest to extract timelines based on each individual
user id. To extract each user’s timeline, a list of user identification numbers was supplied
to the endpoint by looping through each users id and attaching it the endpoints URL by
formatting the endpoint string to include the i** user id. Once we have formatted the
endpoint, we are then able to extract each individual user’s timeline that was queried using
the query, “I suicide thinking OR planning”. We then change all user identification numbers
as to follow the International Review Boards guidelines when using real-word data obtained
from individuals flagged with suicidal ideation.

Once we have extracted our suicidal ideation tweets and their corresponding user time-
lines, training tweets must be extracted in order to train a set of neural networks. To do
this, we simply switch our endpoint back to a full-archive search and using the same range of
dates mentioned previously, extract data using the queries found in Table 2.2. The specific
use of queries and training of the emotion classification using neural networks will be further

discussed in Chapter ?77.

2.3 Word Embeddings Application

Now that we have collected our Twitter data we must next pre-process the data. Within
every tweet collected, we remove all mentions, emoticons, non-English characters, and URL’s.
Removal of capitalization and punctuation is needed, though stop words are not removed as

is traditionally done in sentiment analysis, due to the limited number of characters allowed

14

in a tweet and the interest in understanding the context of each tweet and classifying it using
neural networks.

Traditionally, when analyzing or modeling words, they are represented by one-hot vectors
(i.e. a vector of all zeroes, except for an element having the value 1), which indicate the
index of a word in a vocabulary. Embeddings are considered as matrices that are used
to map these one-hot representations to a dense space with the aim of capturing semantic
information about the word and also reducing sparcity (Goldberg, 2017).

The concept of word embeddings was introduced first by Bengio et al. (2003) who trained
word embeddings with the neural model itself in order to perform the task of language
modeling which is predicting a word given its previous words (Bengio et al., 2003).

Figure 2.1 shows the architecture of the neural word embedder of Bengio et al. (2003),

where C' is considered as the embedding matrix.

i-th output = P(w; = i | context)
T softmax
7 7 1 X
/ / Most [computation here \

/

I
I
|

\

CWen+1) N

Table

look-up

inC

Shared parameters across words -
Index for wy_p 41 Index for w,_, Index for wy_;

Figure 2.1: Classic neural language model

Throughout the years, different methods for training word embeddings have been devel-
oped. One of the most popular methods, known as the Word2Vec model, was introduced
by Mikolov et al. (2017). The Word2Vec model uses one of the following two approaches for
training the embeddings: Continuous Bag of Words (CBOW) and Skip-Gram. In the CBOW

15

model, the embedding is created by using the words surrounding a target word as input and
the target word itself as the output. However, in the Skip-Gram model an opposite approach
is used to create and extract an embedding vector with the target word being fed as input,
and the surrounding as output. Both CBOW and Skip-gram architectures have an input,
projection, and output layers. After the training is complete, the weights that connect the
input layer to the projection layer will be considered as the embedding matrix.

GloVe is another method for training word embeddings, developed by Pennington et al.
(2014). GLoVe uses statistics of word co-occurences making semantic relationships between
words more explicit, unlike Word2Vec which does not as it only considers instances of word
co-occurrences (Pennington et al., 2014).

A more recent word embedding, FastText, was developed by Joulin et al. (2016a) and
follows a similar idea as Word2Vec but instead of using words to build word embeddings,
FastText goes one step further (Joulin et al., 2016a). This deeper level consists of parts of
words and characters that provide context, therefore the building blocks of the embedding are
individual characters instead of words. There are two major advantages to this approach.
First generalization is possible as long as new words have the same characters as known
ones. Second, less training data is needed since much more information can be extracted
from each piece of text. That is why there are pre-trained FastText models for languages
besides English.

In this report, we evaluated the accuracy and precision of a feed-forward neural network,
a long short term memory recurrent neural network, and a convolutional neural network
with the three aforementioned word embeddings to identify tweets that express specific
psychological aspects listed in Section 2.2. We applied each of them to the processed text.
Word2Vec pre-trained word embeddings were obtained from Google and were trained on part
of a Google News dataset containing about 100 billion words and contains 300 dimensional
vectors for 3 million words and phrases. Glove pre-trained word embeddings were obtained
from Stanford University’s Pennington et al. and contains 100 dimensional vectors for 6
billion tokens obtained using Wikipedia and the fifth edition of Gigaword, a comprehensive

archive of newswire text data acquired over several years by the Linguistic Data Consortiume

16

(Pennington et al., 2014). The glove model was trained on the entires of non-zero of a
global word-to-word co-occurrence matrix which arranges how frequently words co-occur
with another word in a collection of documents. FastText pre-trained word-embeddings for
text classification were obtained from Meta’s Facebook Joulin et al. (2016b) and provides 1

million 300 dimensional word vectors trained on Wikipedia 2017, UMBC webbase corpus,

and statmt.org news dataset containing 16 billion tokens.

17

Chapter 3

Emotion Classification

Textual emotion detection has typically been addressed as a multi-class classification task,
where a text is classified into different psychological constructs or emotional categories rang-
ing from basic emotions to fine-grained emotional classes. Studies focusing on emotion
detection have made use of different corpora and different evaluation metrics.

Dini and Bittar (2016) broke down the task of emotion detection from tweets into a stream
of decisions: classifying tweets into emotional and non-emotional categories, then tagging
the emotional tweets with the appropriate emotional label (Dini and Bittar, 2016). For the
latter, they compared a symbolic system using gazetteers, a geographic index dictionary,
regular expressions, and graph transformations with a machine learning system using a
linear classifier with words, lemmas, noun phrases, and dependencies as features. Using
their collected corpus of emotional tweets, the rule-based approach achieved an F1 score of
0.41 while the machine learning approach yielded an F1 score of 0.58 on 6 emotion classes.

Madisetty and Desarkar (2017) made use of a Support Vector Regression model to deter-
mine the intensity of 4 emotions: anger, fear, joy, and sadness in a dataset of tweets that they
had previously collected and annotated. As features, they used word and character n-grams,
word embeddings using the Word2Vec skip-gram model, and affect-related lexical features.
Using the Pearson correlation coefficient as the evaluation metric, they demonstrated that

word embeddings yield better results than n-gram features. They achieved their best average

18

result of 0.66, using a combination of word embeddings and lexical features.

Al-Khatib and El-Beltagy (2017) proposed an approach to detect the intensity of affect
in tweets with features that were directly derived from Twitter and included feature vectors
extracted using the AffectiveTweets package of the Weka workbench (Al-Khatib and El-
Beltagy, 2017). They developed 3 models using different subsets of the feature set as input
to either a Support Vector Machine, Naive Bayes classifier, or a Complement Naive Bayes
Classifier. Using the manually extracted dataset, they achieved their best score using a
Complement Naive Bayes classifier with an accuracy of 68.12% and an F1 score of 0.658.

Khanpour and Caragea (2018) focused on domain-specific emotion detection (Khanpour
and Caragea, 2018). They created a dataset of 2107 sentences taken from online forums in
the Cancer Survivors Network website and in order to combine the strengths of lexicon-based
and machine learning approaches, they proposed a model that uses Word2Vec embeddings
as input to a CNN. The CNN generates feature vectors which are then augmented with
domain-specific lexical features. The combined features are then used as input to an LSTM

network which classifies the text into 6 different emotion categories.

3.1 Deep Learning Approaches

Deep learning algorithms have gained much popularity within the last 10 years due to their
success in improving the state-of-the-art in many fields including NLP (Socher et al., 2012).
They have shown the capability of modeling complex patterns in large data sets by use of
backpropogation which allows the system to automatically find rules and features needed
for classification. A neuron in the brain is a cell whose principal function is the collection,
processing, and diffusion of electrical signals whose information-processing emerges primarily
from the networks of such neurons. Because of this, some early work in artificial intelligence
is dedicated to creating artificial neural networks (Russell and Norvig, 2002). Figure 3.1
below shows a simple mathematical model of the neuron devised by McCulloch and Pitts. In
general, it “fires” when a linear combination of its inputs exceeds some threshold (McCulloch

and Pitts, 1943). Since 1943, much more detailed and realistic models have been developed

19

Bias Weight a; = g(in;)

ap=-1

WO,i A
g
ini
\
) =
M/j'/v
aj
S ——————
Input Input Activation Output
Links Function Function Output links

Figure 3.1: A simple mathematical model for a Neuron. The unit’s output activation a;,
where a; is the output activation of unit j and W, is the weight on the link from unit j to
this unat.

for neurons and larger systems in the brain leading to the modern field of computational
neuroscience. In other professions, including statistics and artificial intelligence, interest in

more properties of neural networks, such as their ability to perform distributed computation,

to tolerate noisy input data, and to learn are preferred (Russell and Norvig, 2002).

3.1.1 Units in Neural Networks

Neural networks are composed of nodes or units connected by directed links. One can simply
think of a node as something that holds a number with a link from unit j to unit i that serves
to propagate the activation a; from j to i. Each link also has a numeric weight W ; associated
with it, which determines the strength and sign of the connection. (Krogh, 2008) Each unit

i first computes a weights sum of inputs:

n
i?’Li: E I/Vm-aj
Jj=0

Then it applies an activation function g to this sum to derive the output:

20

a; = g(in;) = g(>_ Wjaay)

j=0

The activation function g is designed to meet two desired effects. First, we want the unit
to be “active” (near +1) when the “right” inputs are given, and “inactive” (near 0) when
the “wrong” inputs are given. Second the activation needs to be non-linear, otherwise the
entire neural network collapses into a simple linear function (Krogh, 2008). Three choices
for activation functions, are the sigmoid function (also known as the logistic function seen in
Equation 3.1), the tanh function, and the Rectified Linear Unit (ReLu) activation function
(Equation 3.2). The sigmoid function has the advantage of being differentiable, which will
have a threshold at zero. The tanh function has the advantage of back-propagation which
the sigmoid function fails to meet. The sigmoid function has a range from 0 to 1 which allows
for the prediction of probability whereas the tanh function ranges from -1 to 1 which allows
for a zero centered output and thereby aiding the back-propagation process, though similar
to the sigmoid function, fails due to the vanishing gradient problem. The ReLu activation
function has rapidly become the default activation function for many neural networks for its
computational simplicity and constant derivative, its ability to output a true zero value, and
its linear behavior outputting values between 0 and infinity, all of which help it to overcome
the vanishing gradient problem (Goodfellow et al., 2016).

With the vanishing gradient problem, the gradients of neural networks being found using
back-propagation, find the derivatives of the network by moving layer-by-layer from the final
layer to the initial layer. By the chain rule, the derivatives of each layer are multiplied
down the network to compute the derivatives of the initial layer (Russell and Norvig, 2002).
However, when n hidden layers use an activation like the sigmoid function, n small derivatives
are multiplied together, thus the gradient decreases exponentially as we propagate down to
the initial layer creating the vanishing gradient problem that causes training issues within
neural networks (Russell and Norvig, 2002). The ReLu function accounts for the vanishing
gradient problem as the range of the function is between 0 and infinity which makes this

activation function more advanced to other activation functions. Within the ReLu activation

21

function, negative values are converted to 0 so there are no negative values available therefore
removing the vanishing gradient problem so the output prediction accuracy and efficiency is

maximized (Glorot et al., 2011).

3.1.2 Neural Network Structures

There are three main categories of neural network structures: acyclic or feed-forward net-
works, cyclic or recurrent networks, and convolutional neural networks. A feed-forward
network represents a function of its current input, therefore it has no internal state other
than the weights themselves. A recurrent neural network, feeds its outputs back into its
own inputs meaning that the activation levels of the network form a dynamic system that
may reach a stable state or exhibit oscillations or even chaotic behavior. Moreover, the
response of the network to a given input depends on its initial state, which may depend on
previous inputs. Hence, recurrent networks can support short-term memory (Russell and
Norvig, 2002). This makes them more interesting as models of the brain, but also are more
difficult to understand. Convolutional neural networks allow for input to be used within a
convolutional layer which defines a window by which we examine a subset of the input data
that subsequentially scans the entire input through this movable window (Strumberger et al.,
2019). This window, sometimes called a filter, allows for the scanning of specific features
within an input and produces an output which focuses solely on the regions of the image
which exhibit the feature it was searching for. Due to this property, convolutional neural
networks have gained traction within text analysis along with recurrent neural networks
which allow for temporal or time-series input such as text, speech, audio, video, weather and
much more.

As previously stated, deep learning approaches using neural networks have gained much
popularity in the last 10 years due to their success in improving the state-of-the-art in many
fields including NLP. They have shown the capability of modeling complex patterns in large
data sets by use of back-propagation which allows the system to automatically find both

rules and features needed for classification. In the following sections, we provide a more in-

22

depth explanation of simple neural networks, recurrent neural networks, and convolutional

neural networks.

3.2 Feed-Forward Neural Networks

A feed-forward network represents a function of its current input; thus it has no internal state
other than the weights themselves (Krogh, 2008). If we consider the simple neural network
shown in Figure 3.2 below which has a; input units, a; hidden units, and an a; output unit.
To simplify these expressions, we have omitted the bias units in this example. Given an
input vector x = (z1,x2), the activation of the input units are set to (ay,as) = (x1,22) and

the network computes

as = g(Ws 4a3 + Wasaq)

= g(W559(W1,3a1 + Wasas) + Wys9(Wi aa1 + W 4a5))

That is, by expressing the output of each hidden unit as a function of its inputs, the
output of the network as a whole, as, is a function of the networks inputs. Furthermore, we
see that the weights in the network act as parameters of this function; writing W for the
parameters, the network computes a function h,(x). The learning that occurs happens by
adjusting the weights therefore changing the function that the network represents. These
principles can then be applied to both single-layer feed forward neural networks and multi-
layer neural networks (Russell and Norvig, 2002).

Within multi-layer neural networks, the most common case involves a single hidden layer
as seen in Figure 3.2. The advantage of adding hidden layers is that it enlarges the space of
hypotheses that the network can represent therefore allowing for more complex and abstract
computations (Goodfellow et al., 2016). A minor difference in multi-layer and single-layer
neural networks is the number of outputs computed. Within multi-layer neural networks we

receive several outputs, which provides us with an output vector rather than a single value

23

Output units a;
w:

Ji

Hidden units a;

W, j

Input units ay,

Figure 3.2: A multi-layer neural network with one hidden layer and 5 inputs.

(Russell and Norvig, 2002). The major difference is that the error at the output layer is clear
but the error at the hidden layers is not clear because the training data does not say what
value the hidden nodes should have. To counteract this problem, we can back-propagate the
error from the output layer to the hidden layers which emerges directly from a derivation of
the overall error gradient (Russell and Norvig, 2002).

At the output layer we have multiple output units so let Err; be the ith component of
the error vector y — hyy. We've also found it convenient to define a learning rate o and a

modified error A; = Err; x ¢'(in;), such that the weight update rule becomes

Viji < Wjﬂ' + a; X Az

To update the connections between the input units and the hidden units, we define a
quantity similar to the error term for output nodes. The main idea is that the hidden node
j is responsible for some fraction of the error A; in each of the output nodes. Thus, the
A; values are divided according to the strength of the connection between the hidden node

and the output node and is propagated back to provide the A; values for the hidden layer

24

(Goodfellow et al., 2016). The propagation rule for the A values is the following:
Aj = g'(ing) Y WA,

Where g’ is the derivative of the activation function. Now the weight update rule for the
weights between the inputs and the hidden layer is almost identical to the update rule for
the output layer:

Wk,j (—WkJ’ X o X ag XAJ'

The back-propagation process can be summarized as follows. We first compute the A
values for the output units, using the observed error. Starting with the output layer, we
repeatedly, for each layer in the network until the earliest hidden layer is reached, propagate
the A values back to the previous layer and update the weights between the two layers
(Russell and Norvig, 2002).

In practice, feed-forward architectures have two main draw backs making them undesir-
able to be used alone in text classification projects. First, they require a fixed input size
which leads to problems in handling real-world samples which often are of variable lengths.
Second, the number of parameters in the network increases and this can lead to overfitting
with longer samples.

As a result of these disadvantages, the use of fully-connected architectures is often limited
to the last layer of the neural networks that are used for text classification (Conneau et al.,
2016). To avoid problems mentioned above, two other architectures are often used: recurrent

and convolutional neural networks.

3.3 Recurrent Neural Networks

A recurrent neural network (RNN) is composed of recurrent layers that include intra-layer
connections in addition to being connected to their previous and next layers. In general,

RNNs are capable of processing time-series data, to which natural language texts can belong

25

he

Ct—1 Ct

fe

he

ht*l

4

Xt

Figure 3.3: Architecture of an LSTM.

to. RNN’s can be used in forward and backward passes where a forward pass is used when a
time-series is fed into the RNN from the first to the last element, while in a backward pass
the data is fed from the last to the first.

A vanilla RNN is one of the simplest RNN architectures that have been proposed (Mallya,
2017). The output of a vanilla RNN at time-step ¢ is calculated by using the following
equation, where a; represents the input at time-step ¢, h;+1 refers to the output of the vanilla
RNN at the previous/next time-steps (based on being in the forward/backward pass), and W
represents the weights connecting the input to the RNN unit, and U stands for the weights

that connect the RNN unit to itself.

hy = tanh(a,W + hy1U)

During training, vanilla RNNs suffer from the vanishing gradient problem which prevents
the network from learning as the sequence of words increases. To avoid these problems, an

alternate model called a Long Short-Term Memory (LSTM) model has been proposed.

3.3.1 Long Short-Term Memory

Hochreiter and Schmidhuber (1997) first introduced a gated recurrent architecture called the
Long Short-Term Memory (LSTM) by adding input, forget, and output gates to the vanilla
RNN. Figure 3.3 shows the achitecture of an LSTM, when being used in a forward pass.

26

In an LSTM, the values of the input, forget, and output gates at a specific time-step are

calculated using the following three equations.

ir = o(aW; + hea U)
ft = O'(a/th + htilUf)
o = o(aW, + hyt1U,)

where 7;, f;, and o; refer to the values of the input, forget, and output gates at time-step
t respectively, x; represents the input at time-step ¢, h;+1 represents the output of the LSTM
unit at time-step ¢, the Ws refer to the weight connecting the input to the gates, the Us
represent the connecting weights between the output of LSTM to its gates, and o refers to
the sigmoid activation function.

An LSTM includes a cell state, or memory, whose values are calculated using the following

equations.
C, = tanh(aWy 4+ hy1Uy)
Ot = J(ft] X Ot:l:l + th * ét)
Finally, to provide more information in how the LSTM unit is calculated we use the
following equation.
ht = tCLTLh(Ct X 01‘,)

The advantage of an LSTM model is its ability to handle longer sequences. Having the
addition of input, forget, and output gates allows them to be less prone to the vanishing and
exploding gradient effect, however, the high number of parameters, or weights, makes them

more prone to overfitting.

27

3.4 Convolutional Neural Networks

Convolutional neural networks (CNN) have commonly been used in practice for image pro-
cessing by taking advantage of the spatial structure of images. Similar to Tobler’s first law of
geography which states observations close together are more correlated than those far apart,
pixels and their neighbors are assumed to be jointly related so CNNs use feature windows, or
filters, to connect the input to one neuron. This operation, called a convolution, allows for a
smaller number of weights to be shared between inputs which allows for a better capturing
of patterns within data.

In recent years CNNs have gained popularity in natural language processing for their
computational efficiency and ability to capture generalizations. By applying the convolution
concept to natural language, one can assume that the input sections in texts are N-grams,
or N consecutive words or characters. This tyoe of neural network can handle the problems
of overfitting in feed-forward neural networks and typically can handle inputs of various
sizes. In recent years, CNNs have become widely popular because of their use in sentiment

analysis.

3.5 Training and Validation of Neural Networks

Roy et al. (2020) propose the use of 9 emotional categories or psychological constructs to
convert tweets into emotional classes. Their classes include, anxiety, burdenness, depression,
stress, loneliness, hopelessness, and insomnia. The scope of those diagnosed with depressions
is quite large, therefore Roy et al. (2020) suggest splitting the depression emotion by date
into 3 sub-classes labeled depression 1, depression 2, and depression 3. Depression 1 contains
tweets between January 1, 2019 to November 30, 2019. Depression 2 contains tweets between
December 1, 2019 to October 31, 2020. And Depression 3 contains tweets between November
1, 2020 to August 31, 2021.

In this chapter, we wish to build upon the concepts previously studied and understand

classification using real data. We will present three different types of word embeddings:

28

Word2Vec, Glove, and FastText pre-trained word-embeddings used in three different types
of neural networks designed for classification: Feed-Forward, Convolutional, and Recurrent
Long-Short Term Memory neural networks using Keras V. 2.6.0 provided by Chollet et al.
(2015).

3.5.1 Neural Network Training Preparation

To begin our emotion classification using neural networks, we first apply a sentiment clas-
sification to one emotion, anxiety, to test accuracy metrics for all neural networks. In this
case, the data extracted using the anxiety query found in Table 2.2 was assigned a sentiment
of 1 and control data extracted using the query, “I” was assigned a sentiment of 0. This
is because we wish to train the neural networks to detect anxiety based on patterns found
within training. Once a training sentiment was assigned we then check the distribution of
sentiments as we wish to obtain approximately equal numbers of positive and negative sen-
timents and then apply train test split provided by SciKit Learn model selection V. 1.0.2 to
split our data into training and testing datasets. With train test split provided by SciKit
Learn we are able to change the default change size from 25% to 20% of data to be split into
a testing dataset as to follow the most commonly used split in practice. Because we split
the data into 20% for testing we receive its complement, 80% for training purposes. Along
with specifying the size of testing and training datasets we wish to receive we also specify
the random state to be 42 which controls the shuffling applied to the data before applying
the split and allows reproducibility among the same results across different calls.

After we have split our data, we must next prepare the embedding layers for our neural
networks. To begin, we first apply Keras tokenizer, a separate tokenizer from the regular
expression tokenizer found in the Natural Language Tool Kit (NLTK). This tokenizer pro-
vides a word-to-index dictionary where each word in the corpus is used as a key, while a
corresponding unique index is used as the value for the key. We then apply Keras tokenizer
texts to sequence on training and testing data where we receive three list of lists containing

integers that map each word in each tweet to its corresponding index found within each type

29

of word-to-index dictionary. Because tweets vary in lengths, we specify the length of each
integer containing list to be equal to the maximum length of all tweets. If the tweet does not
reach this number of words, we fill in missing values with a 0 value to obtain equal lengths
for each tweet in a process called padding.

Finally, using our three different word embeddings we create our feature matrix. To do
this, we first load our pre-trained word embeddings to create a dictionary that contains words
as keys and their corresponding embedding list as values. Following word and embedding
vector extraction, we will create an embedding matrix where each row number will corre-
spond to the index of the word in the word-to-index dictionary. The matrix produced using
Word2Vec pre-trained word embeddings will have 4,803 rows and 300 columns as opposed
to Glove and FastText pre-trained word embeddings where we receive 4,803 rows with 100
columns where the number of columns in each of our feature matrices indicates the length

of each words embedding vector.

3.5.2 Feed Forward Neural Networks

Once we have pre-processed our text and have obtained our feature matrices we are then
able to begin construction of our neural networks. We begin with a simple feed-forward
neural network with one hidden layer. To do this, we first create a Sequential model within
the Keras library so we are able to build our neural network sequentially, or layer by layer.
Next, we create our embedding layer which will have an input length equal to the number of
columns in the corresponding word-embedding feature matrix and an output of equal length.
We also specify the vocab size which is the number of unique words in the corpus and in this
case the number of rows per type of word embedding. Since we are not training our own
embeddings, we specify the trainability parameter to be false and the weights parameter we
will pass our own corresponding embedding or feature matrix.

After adding the embedding layer to our model, we then directly connect our embedding
layer to a densely connected layer meaning each neuron within this layer is connected to all

neurons in its previous layer. Within this dense layer we specify our activation function to

30

be of sigmoid activation which is expressed below.

B 1
C1l4e®

S(x) (3.1)

This activation function is the same function used in logistic regression classification
algorithms. They work by taking any real value, x, and outputs values within the range of 0
and 1 where the larger the input value the closer our output is to 1. This is especially useful
for models where we wish to receive a predicted probability as output.

In order to compile our model, we use the Adam optimizer. This optimizer is an adaptive
learning rate optimization algorithm that has been designed specifically for training deep
neural networks and is an adaptive learning rate method meaning it computes individual
learning rates for different parameters. The name Adam is derived from adaptive moment
estimation, because it uses estimations of first and second moments of gradient to adapt
the learning rate for each weight of the neural network. In more detail, let m,, be the n-th
moment of random variable X defined as the expected value of that variable raised to the

power of n.

my, = E[X"]

It is important to note that the gradient of the cost function within the neural network
can be considered a random variable as it is usually evaluated on some small random batch
of data. The first moment is the mean of the random variable and the second moment is
the uncentered variance of the random variable. To estimate these moments, Adam utilizes

exponentially moving averages, computed on the gradient evaluated on a current mini-batch.

my = Prmy—1 + (1 — B1) g
v = Bovy1 + (1 — 52)9152

In the equations above, m; and v; are moving averages that are initialized at 0 upon

the first iteration, g is the gradient on the current mini-batch, and g which are new hyper-

31

parameters of the algorithm. The expected values of the estimators should equal the param-
eter we are trying to estimate, as it happens, the parameter in our case is also the expected
value. If these properties held true, that would mean, that we have unbiased estimators.
Because we initialize averages with zeros, the estimators are biased towards zero. The fur-
ther we go into expanding the value of m;, the less first values of gradients contribute to
the overall value, as they get multiplied by smaller and smaller beta. Upon capturing this

pattern we can re-write the formula for our moving average in the equation below.

my = (1= ph) Z B i
i=0

Next, the Adam optimizer must correct the estimator in a process called bias correction

thus making our formulas for our estimator follow the form of the following equations.

A my
T
A Ut
T

Finally, to complete the Adam optimizer we must use the moving averages to scale the
learning rate of each parameter by the following equation where w is the model weights and

7 is the step size.

A

my
\/g—i-e

Along with specifying the Adam optimizer as our optimizing function in the model com-

Wy = W1 — N

pilation, we also specify our loss function to be of Binary Cross-Entropy. This function
allows us to measure the difference between two probability distributions for a given random
variable or set of events and is used when the output of our model is between classes. Binary
Cross Entropy is the negative average of the log of corrected predicted probabilities. By com-
paring the predicted probabilities to their actual class output this function then calculates

a score that penalizes the probabilities based on the distance from the expected value.

32

~ Do)

The equation above shows the equation for calculating the binary cross-entropy of two
classes belonging to either 0 or 1 where p; refers to the individual probability of an observa-
tions associated predicted class.

After specifying our loss and optimization functions we then specify our metric and train
our model with 6 epochs and a validaton split of 20% such that 20% of our training data will
be used to provide our accuracy metric. Once training has been done for our feed forward

neural network, we review our results which are displayed in Section 3.6 Results.

3.5.3 Recurrent Neural Network

As discussed previously in Section 3.3 we now prepare a recurrent neural network for emotion
classification. Recurrent neural network is a type of neural networks that is proven to work
well with sequence data. Since text is actually a sequence of words, a recurrent neural
network is an automatic choice to solve text-related problems. In this section, we will use an
LSTM (Long Short Term Memory network) which is a variant of RNN, to solve sentiment
classification problems.

Once again, we initialize our model with a Sequential model found in the Keras library.
We then add our embedding layer similar to that discussed in our feed-forward neural net-
work. After adding those layers to our model we then add a Long Short Term Memory layer
with 128 neurons. Upon adding our LSTM layer we then add a Dense layer with sigmoid
activation and finally compile it using the Adam optimizer and binary cross-entropy loss
function identical to our feed forward neural network. Finally, we train our model specifying
our model to run 6 epochs and a validation split of 20% such that 20% of our training data
will be used to provide our accuracy metric. Once trianing has been done for our recurrent

neural nework, we review our results which are displayed in Section 3.6 Results.

33

3.5.4 Convolutional Neural Network

As discussed in Section 3.4 a convolutional neural network is a type of network that is
primarily used for 2D data classification, such as images. This type of network tries to
find specific features in an image in the first layer and in the next layers, the initially
detected features are joined together to form bigger features. In this way, the whole image
is detected. Although convolutional neural networks have been proven successful in image
detection, they also work well with textual data. Though text data is one-dimensional, we
can use 1D convolutional neural networks to extract features from our data.

To begin, similarly to a feed-forward neural network, we first initialize a Sequential
model using the Keras library. We then establish our embedding layer identical to our feed
forward neural network. Following initialization and establishing our embedding layer, we
then declare a one-dimensional convolutional layer with 128 features and our kernel size of 5.
This kernel size allows for 5 individual observations to be viewed simultaneously by use of a
rolling window. Within this convolutional layer we also specify the convolutional activation

function to be the Rectified Linear Unit (ReLU) whose equation is seen below.

y = max(0,x) (3.2)

The above function works by finding the maximum value between 0 and a random vari-
able x. As opposed to deep layers using nonlinear activation functions such as the sigmoid
function fail to receive useful gradient information since error is back propagated through
the network and used to update the weights. The amount of error decreases dramatically
with each additional layer through which it is propagated, given the derivative of the cho-
sen activation function. This is called the vanishing gradient problem and prevents deep
(multi-layered) networks from learning effectively. In order to use stochastic gradient de-
scent with backpropagation of errors to train deep neural networks, an activation function is
needed that looks and acts like a linear function, but is, in fact, a nonlinear function allowing
complex relationships in the data to be learned.

ReLU grants the neural network with three advantages: computational simplicity, repre-

34

sentational sparsity or its ability to output a true 0 value, and linear behavior such that the
function both looks and acts like a linear function.

After specifying our convolutional layer activation function to be ReLU we then move
into a global max pooling layer. This layer finds the maximum value for each feature map
or rolling window within the previous convolutional layer. This global pooling layer can be
used in a variety of cases. Primarily, it can be used to reduce the dimensionality of the
feature maps output by some convolutional layer, to replace Flattening and sometimes even
Dense layers in your classifier (Christlein et al., 2019). What’s more, it can also be used for
word spotting due to the property that it allows detecting noise, and thus “large outputs”
(Sudholt and Fink, 2016).

Finally, within the convolutional neural network we specify a dense layer with sigmoid
activation and compile it using the Adam optimizer and binary cross-entropy as our loss
function similar to that in the feed-forward neural network. We then specify our metric
and train our model with 6 epochs and a validaton split of 20% such that 20% of our
training data will be used to provide our accuracy metric. Once training has been done for
our convolutional neural network, we review our results which are displayed in Section 3.6

Results.

3.5.5 TextBlob

Further variables were introduced in the Roy et al. (2020) analysis which include subjec-
tivity and polarity provided by the TextBlob module version 0.17.1. TextBlob provides a
simple API for diving into common natural language processing tasks such as parts-of-speech
tagging, noun phrase extraction, sentiment analysis, and many more tasks. TextBlob sub-
jectivity lies within the bounds of [0,1] and quantifies the amount of personal opinion and
factual information contained in the text. The higher subjectivity means that the text con-
tains personal opinion rather than factual information. The polarity score within TextBlob
lies within [-1,1] where -1 defines a negative sentiment and 1 defines a positive sentiment.

With the use of TextBlob, each tweet was classified with a subjectivity and polarity score

35

and was joined to the emotion classifications to provide us with 11 variables of interest within

our dataset.

3.6 Results

After extracting our tweets, pre-processing each tweet, building and compiling the aforemen-
tioned models for each type of pre-trained word embedding, we now compare the accuracy of
each anxiety model. Because we are using the neural networks to classify emotions, similar
to a sentiment analysis, each psychological constructs neural network should receive simi-
lar accuracy scores. Therefore, the loss, accuracy, and ROC curves for each type of word
embedding and anxiety model is shown below in Figure 3.4. The remaining psychological
construct figures are supplied in Appendix A, Supplementary Figures.

As seen in Figure 3.4, the pre-trained FastText embedding layer performs the worst. This
could be due to the training of unknown word embeddings. Because some words may be
misspelled or may not exist within the FastText pre-trained embeddings, we train the new
words with the words around it to form an embedding vector specific to that word. One
can deduce that because of the training done with the FastText embedding, the most recent
embedding vector for a certain word was used within the embedding matrix even though
the trained vector only applies to one specific tweet. Further, the number of neurons or
features set within the LSTM model for all word embeddings could be parameterized better
to include all available features instead of the stated and fixed 128 initial neurons within all
LSTM models.

Also seen in Figure 3.4, the simple neural network, although performed well did not
perform better than the convolutional neural network with accuracy scores of Word2Vec
and Glove accuracy of 0.786 and 0.787 respectively for the anxiety psychological construct
model. It comes to no surprise that Word2Vec and Glove embeddings performed the best
within the convolutional neural network with accuracy scores of 0.96 and 0.94 respectively.
This aligns with other articles regarding text analysis such as Roy et al. (2020) who use a

convolutional neural network for text classification purposes.

36

1.0 1.0 1.0
0.8 0.8 0.8
06— | 06T | 0T
0.4 0.4 \ 0.4
0.2 0.2 0.2
0.0 Ly . 0.0 Ly . 0.0 15

0 4 0 4 0
1.0 1.0 1.0
089 | 087 5 084
0.6 £ 0.6 — 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 17 . 0.0 17 . 0.0 17
0 4 0 4 0

1.00 1.00 1.00

0.75 0.75 0.75

0.50 0.50 0.50

0.25 0.25 0.25

0.00 4 : 1 0.00 47 : 1 0.00 12 : :

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

— FastText
= Glove
— \Word2Vec

Figure 3.4: Three neural network and word embedding performance for the psychologi-

cal construct anziety.

Three metrics loss (top row), accuracy (middle row), and ROC

(bottom row) for models SNN (teft), CNN (center), and LSTM (right). Each line

represents the word embedding methods: FastText (blue), Glove (yellow), and Word2Vec

(green).

37

Anxiety Burden Depression 1
0.995
0.95 A Ij 0.98 1 @ 0.990 ﬂ
0.96 - 0.985 7
0.90 -
0.980 -
0.94 -
T T T T T T
1 2 1 2 1 2
Depression 2 Depression 3 Hopelessness
0.9990 @ 0.9995 - e
0.9985 - 097
0.9990 -
0.9980 -
ij 0.9985 @ 081
0.9975 - T T ' T T T T
1 2 1 2 1 2
Insomnia Loneliness Stress
0.99
0.2 1 0.8 1
0.98
0.1 4 ﬂ 0.97 A = 0.6 -
T T 0.96 - T T T T
1 2 1 2 1 2

Figure 3.5: Bozplots comparing cases (1) and controls (2). Anxiety, Burden, Hopeless-
ness, Insomnia, and Stress provide the largest difference when comparing the average of each
psychological constructs cases and controls which provides evidence to support the claim that
these constructs will provide the most information to the random forest.

With our results over the best pre-trained word embedding and neural network, we now
are able to make predictions per psychological construct. Each pscyhological construct was
trained using the Glove word embedding as to align with most current text analysis literature.

Using the trained psychological construct neural networks, we were then able to make
predictions. By tokenizing the tweets within the data set that contains the timelines using
the NLTK Regular Expression Tokenizer and the TensorFlow Tokenizer, we then flatten each
tweet and add padding to each tweet to reach the required input length. We then used the
predict function to predict the score for each tweet per psychological construct.

To elaborate on the results of the models predictions, we compare each psychological
constructs box plots as shown in Figure 3.5. We can see that Anxiety, Burden, Hopelessness,
Insomnia and Stress show the largest difference between the cases and controls. In anxiety
we see that those classified as cases have an average anxiety value of 0.95 whereas those

classified as controls have an average value of 0.92 with a difference of 0.03 between the cases

38

and controls. In the Burden construct we see that those classified as cases have an average
burden value of 0.97 whereas those classified as controls have an average burden value of 0.96
with a difference of 0.01 between the cases and controls. Hopelessness cases have a lower
average of 0.81 where as controls have an average of 0.91 with a difference between cases and
controls of 0.10. The stress construct has the largest difference between cases and controls
with an average case value of 0.61 and control average of 0.81 with a difference of 0.20.
We would expect the case values to be relatively higher among all psychological constructs
but Depression 2, Depression 3, Hopelessness, Loneliness, and Stress all have larger control
values. Though some constructs do not exhibit significant differences, the random forest
algorithm is able to detect these differences and classify accordingly by applying certain
constraints for branching.

To further elaborate on the interpretation of the models prediction results, we randomly
chose two tweets. One tweet marked as a case for suicidal ideation,“i always think suicide
is key but i am just waiting to prove that i am wrong”, and one control, “life is good.” We
provided their scores for each psychological construct below in Table 3.6 and plotted the
tweets psychological constructs in Figure 3.6. As seen in Table 3.6, the values returned are
between 0 and 1 because we mapped the positive outputs to 1 and the negative outputs to
0. However, the sigmoid function present within the dense layer, provides us with a floating
value between 0 and 1.

Referring to Table 3.6, we can see that a strong positive classification for the aforemen-
tioned suicidal tweet includes all constructs except insomnia which is classified as a negative
and the control tweet shows similar results but are classified slightly more up-regulated
in anxiety, hopelessness, stress, insomnia, subjectivity, and polarity constructs and down-

regulated among the burden, depression 2, and depression 3 constructs.

39

Construct Case Score Control Score

Anxiety 0.83735 0.90845
Hopelessness 0.75637 0.88329
Burden 0.90417 0.81471
Loneliness 0.96071 0.96615
Stress 0.81799 0.87319

Insomnia 0.17616 0.18729
Depression 1 0.97709 0.97829
Depression 2 0.99754 0.78198
Depression 3 0.99909 0.81732
Subjectivity 0.95000 0.59982
Polarity -0.25000 0.64293

Table 3.1: Psychological construct scores for one randomly selected case tweet, “i always
think suicide is key but i am just waiting to prove that © am wrong” and one randomly selected
control tweet, “life is good”.

Case vs. Control Neural Network Classification

1.0 4 - Case
/ - Control

ool \/

0.6

0.4

0.2 A

0.0

—0.2 4

T T T T T T T T T T T
Anxiety Hopelessness Burden Loneliness Stress Insomnia Depression 1 Depression 2 Depression 3 Subjectivity Polarity

Figure 3.6: Plotting of the psychological constructs along the x-axis for one randomly se-
lected case tweet, “i always think suicide is key but i am just waiting to prove that i am
wrong” and one randomly selected control tweet, “life is good”.

40

Chapter 4

Suicidal Ideation Risk Assessment

In recent years, online textual data has been used to predict eating disorders and provide
mental health assessments. In this chapter, we present how the Random Forest method
can be used to predict suicidal ideation within 4, 7, 14, and 21 days using the emotional
classification data calculated in Chapter ??. After tweet extraction we classified each tweet
using the neural networks discussed previously, these predicted outcomes can be used to
classify an ensemble of decision trees that have high accuracy and precision when calculating

the risk of suicidal ideation for a user in the near future.

4.1 Decision Trees and Random Forests

Decision trees and random forests have become more prevalent in programs designed for
classification and regression. Developed by Breiman (2001), this algorithm has the ability
to handle high dimensional data, can ignore irrelevant descriptors, and is easy to train
and interpret. Similar algorithms include, support vector machines (SVM), artificial neural
networks (ANN), partial least squares (PLS), k-nearest neighbors (KNN), multiple linear
regression (MLR), and linear discriminate analysis (LDA).

Although all the methods previously mentioned allow us to perform classification and

regression, they struggle with prediction accuracy and high dimensionality. For example,

41

KNN and ANN are not efficient with high dimensional data without the use of dimension
reduction or the pre-selection of descriptors. Although, SVM does allow for high dimension-
ality, it suffers from the presence of irrelevant descriptors, thus descriptor pre-selection must
be performed. Linear methods such as LDA, MLR and PLS can only handle data where the
number of predictors is smaller than the number of descriptors unless pre-selection is again
used for dimension reduction.

Therefore, an algorithm that is able to ignore irrelevant descriptors without the need for

dimension reduction is needed to perform text classification with high prediction accuracy.

4.1.1 Decision Trees

Decision trees (DT) are one of the most successful classification and regression algorithms
available due to its simplicity, comprehensibility, limited number of parameters, and its
ability to handle mixed data (Charbuty and Abdulazeez, 2021). DTs are a successive model
that compares numeric features to a threshold value in each test which makes it much easier
to construct conceptual rules rather than numeric rules like those used in other classification
methods (Svetnik et al., 2003).

Nodes and branches that compose a DT provide a method for the grouping of data
based on rules computed by the algorithm. Nodes represent features used to split the data
and each subset is defined by a value or values of the node feature. Although, nodes and
branches that help in classification are informative and flexible, data must have a low level
of randomnness or impurity so that decision trees can be grown, otherwise the tree will not
branch and separate the data into distinct classes.

Information gain is one metric used for segmentation and is often called, “mutual infor-
mation” (Charbuty and Abdulazeez, 2021). This informs how much knowledge a random
variable’s value provides. Using the following equation, we are able to calculate the Gain(S,A)
of a variable by utilizing the Entropy equation to calculate the information gain (Charbuty

and Abdulazeez, 2021).

42

Gain = Eparent - Echild

Where E,;ent represents the entropy of the parent node and E,p ;4 represents the average
entropy of the child nodes. Furthermore, entropy can be calculated by utilizing the propor-
tion, P, of observations in the m™ region that are from the k™ class and is calculated

using the following equation.

k

Entropy = — Zﬁm.kZOQ(ﬁm,k)
k=1

Gini Impurity is a measurement used to build Decision Trees to determine how the
features of a dataset should split nodes to form the tree. More precisely, the Gini Impurity
of a dataset is a number between 0-0.5, which indicates the likelihood of new, random data
being misclassified if it were given a random class label according to the class distribution
in the dataset. If we have K classes and p(7) is the probability of picking a datapoint with

class i, then the gini impurity is calculated as the following eqauation.

K
GiniImpurity =1 — pr (4.1)

i=1

Becuase the Gini impurity is a measure of anti-homogeneity, the feature with the lowest
Gini impurity is selected to be the best split feature.

DTs simplicity and interpretability makes them appealing for classification purposes.
Moreover, they are able to handle high-dimensional data. However, they do have a major
drawback, they usually have relatively low prediction accuracy or high variability. A small
change in the data may produce a different result. To overcome DTs problems, Breiman et.

al. propose using an ensemble of decision trees called a Random Forest. (Breiman, 2001).

4.1.2 Random Forests

Random forests as proposed by Breiman (2001) are an ensemble of decision trees that are

aggregated to provide a higher prediction accuracy but still allow for high-dimensional data

43

(Breiman, 2001). To further elaborate, the authors suggest using bagging methods to gen-
erate training data subsets for building individual trees and randomly selecting a subspace
of features at each node to grow branches of decision trees where we then combine all trees
to form a random forest model (Xu et al., 2012). To understand the bagging method, one
must first understand bootstrapping. In essence, bootstrapping is random sampling with
replacement from the available training data set. Bagging, otherwise known as bootstrap
aggregation, is performing bootstrapping many times and training an estimator for each
bootstrapped sample (Lohr, 2021). Since textual data has many uninformative features to
support a specific class or topic without the use of bagging during the forest algorithm,
topic-related or informative features would have a large chance of being missed.

Decision trees usually suffer from overfitting, a random forest seeks to minimize overfitting
the data by creating a subset of the original data to apply the bagging method. By doing this
it provides a higher chance of selecting different data points to the model (Strobl et al., 2009).
Unlike boosting, which is a sequential process where each model tries to correct the errors of
its previous model, bagging allows the random forest to apply subsets to different decision
trees and then calculates the average ranking therefore reducing the risk of overfitting which

provides great flexibility for regression and classification problems.

4.2 Suicidal Ideation User Classification

Before applying a random forest method to predict suicidal ideation, we first must identify
individual users who show signs of suicidal ideation. For a more accurate representation of
suicidal ideation users, a professionally licensed psychiatrist would read through each indi-
vidual users timeline and classify tweets where the individual shows signs of suicidal ideation.
Signs of someone struggling with suicidal ideation include untreated mental disorders (i.e.
schizophrenia, anxiety disorders, and certain personality disorders), alcohol or substance
abuse, impulsive or aggressive tendencies, feelings of hopelessness, history of trauma or
abuse, major physical illness, previous suicide attempts, family history of suicide, and job

or financial loss (National Suicide Prevention Lifeline, 2021). Due to the lack of available

44

resources, all suicidal ideation tweets were classified without a licensed psychiatrist therefore
bias may be introduced due to lack of proper training in psychology.

Upon classifying suicidal ideation for training, 342 tweets were found to show signs of sui-
cidal ideation. These tweets included references to self harm, negative self-image, repeated
thoughts of suicide, and previous suicide attempts. Tweets ranging from the identified sui-
cidal tweet to tweets ranging 4, 7, 14, and 21 days in the past were saved to a dataframe
to be aggregated for single observations reducing the variance associated with each account
associated with suicidal thoughts. According to a cross-sectional study provided by Nock et
al. 9.2% of the general population suffers from suicidal ideation (Nock et al., 2008). There-
fore, controls ranging within the same time frame were aggregated to give a single vector

and provided 90% of the data that will be used within future suicidal ideation classification.

4.3 Suicidal Ideation Prediction

After classifying suicidal tweets, aggregating by number of days per suicidal tweet and control
tweet, we first split the data into 3 datasets: training, validation, and evaluation using scikit-
learn version 1.0. We applied a 33% split where 33% of the data would be used for testing
and the rest used for training.

We then apply several Random Forest algorithms to assess and predict future suicidal
ideation. For each Random Forest, we specify 100 decision trees within each forest and apply
a commonly used random state of 42. We apply this random state because Random Forests
use the bagging method applied to decision trees and we need random numbers to select the
random samples on which trees are fitted. This implies that each time you generate a set
of random numbers the program will generate a completely different set which impacts your
samples and in turn the fitted trees. To control the stochasticity involved in random number
generation and to replicate the same set of random numbers every time we use a random
seed. The random state parameter allows you to set a random seed and fix your random
number generation process in a random forest. Therefore, if we run the model again with

the same data, we should receive the same output. Since we are assessing several ranges of

45

aggregated days, we use four Random Forests to model future risk of suicidal ideation such
that each set of aggregated days gets its own Random Forest algorithm. Within the next

section, we present the results of our four Random Forest models.

4.4 Results

In this section, we present the results of each Random Forest model. We provide accuracy
metrics and each models corresponding confusion matrix. We also provide the ROC curve

of each model and the importance of each feature in the model.

4.4.1 Random Forest Scores

Using equations 1.1-1.5, we calculated the accuracy measurements, precision measurements,

recall measurements, and F1 Score for each corresponding Random Forest Model.

Method | Accuracy | Precision | Recall F1

4 Days 0.9649 1.0000 | 0.6735 | 0.8049
7 Days 0.9737 0.9600 | 0.6857 | 0.7999
14 Days | 0.9627 1.0000 | 0.5952 | 0.7463
21 Days | 0.9737 1.0000 | 0.7447 | 0.8537

Table 4.1: Random Forest Metrics using 4, 7, 14, and 21 days worth of aggregated data.

As seen in Table 4.1, each Random Forest model has a relatively high accuracy. Though
accuracy provides a metric describing the number of correctly classified data instances over
the total number of data instances it does not provide a good metric of false negative and
false positives. Recall, or the measurement of false negatives, is more important than both
the accuracy and precision due to the diagnostic needs of our model. Within Table 4.1, the
highest recall score lies within 21 days worth of aggregated data. With a recall score of
0.7447, the possibility of false negatives is lowest in comparison to the three other models
methods with recall rates ranging within 0.5 and 0.8.

Using Figure 4.1, we see that 21 days worth of aggregated data provides the highest ROC

rate within the model. We can also see that using 4, 7, and 14 days worth of aggregated data

46

provides a significantly lower ROC rate due to the increase in variance within the data. This
variance is reduced by the aggregation of more data within the model therefore, providing

more accurate predictions.

Testing Validation

1.0 1.0 1
()
w 0.8 1 ?Z—} 0.8
o
£ 0.6 0.6 -
= —— 4 Days
8 0.4 0.4 4 7 Days
S 0.2 1 0.2 - —— 14 Days
= —— 21 Days

OlO | T T T T T 0.0 L T T T T T

0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False Positive Rate False Positive Rate

Figure 4.1: ROC curves for testing dataset and validation set for 4 days (blue), 7 days
(yellow), 14 days (green), and 21 days (red) worth of aggregated data.

Using SciKit learns Random Forest implementation we also receive the feature importance
of each psychological construct. This feature importance is calculated using Equation 4.1
which calculates each features importance as the sum over the number of splits across all
trees that include the feature and the proportionality to the number of samples it splits. The
feature importance matrix helps in visualizing the importance of each feature across 4, 7,
14, and 21 days. Figure 4.2 below provides a visualization of our feature importance matrix
shown in Table 4.2.

As seen in Table 4.2, Depression 1 and subjectivity provide a consistently high Gini
impurity. The feature Depression 3 provides a low Gini impurity across all models except
our 14 and 21 Days models where Depression 3 moves from a low Gini impurity to higher
values. Features such as Burden, Insomnia, Hopelessness and Loneliness vary within each
model. Although most of these features appear to have a low Gini impurity, their Gini
impurity calculation vary across all models ranging from a mid-level importance to low

importance.

47

Table 4.2:

Features

\ 4 Days \ 7 Days \ 14 Days \ 21 Days

Anxiety 0.077409 | 0.067433 | 0.083585 | 0.081481
Burden 0.070314 | 0.073444 | 0.085457 | 0.099878
Depression 1 | 0.116956 | 0.125427 | 0.106891 | 0.124485
Depression 2 | 0.085272 | 0.079699 | 0.094893 | 0.094092
Depression 3 | 0.096618 | 0.101365 | 0.134327 | 0.122664
Hopelessness | 0.064361 | 0.068267 | 0.074574 | 0.073951
Insomnia 0.080945 | 0.096030 | 0.085803 | 0.091073
Loneliness 0.074216 | 0.082864 | 0.092528 | 0.066623
Polarity 0.113331 | 0.104181 | 0.058444 | 0.065403
Stress 0.085808 | 0.087324 | 0.080601 | 0.066265
Subjectivity | 0.134769 | 0.113967 | 0.102896 | 0.114137

Feature importance of Random Forest algorithm. With 4 days of aggregated
data Depression 1, Depression 3, and Subjectivity supply the most information for splitting.
With 7 days of aggregated data Depression 3, Loneliness, and Subjectivity supply the most
information for splitting. With 14 days of aggregated data Depression 3, Hopelessness, and
Subjectivity supply the most information for splitting. And with 21 days of aggregated data

Depression 3, Loneliness, and Subjectivity supply the most information for splitting.

Figure 4.2: Random Forest feature importance for 4, 7, 14, and 21 days worth of aggregated

data.

Importance

0.13 1

0.12 1

0.07 1

0.06 1

Feature Importance

/\&/

= 4 Days

7 Days
—— 14 Days
—— 21 Days

T T
Depression 1 Subjectivity

T
Polarity

T T
Depression 3 Insomnia

T
Stress
Features

48

T T
Loneliness Depression 2

T
Burden

T T
Hopelessness Anxiety

Chapter 5

Discussion and Conclusion

In this chapter we summarize the conclusions of the several steps of the analysis we presented
in this report. In addition, we will discuss some aspects of the models that became evident
during implementation, a discussion of the methods used within this report and a conclusion
to this report, future work within the scope of this research, and suggestions of other methods
that could be applied to reach a Twitter users suicidal ideation classification with better

accuracy and recall to better aid in the prevention of suicides.

5.1 Discussion

Within this section we wish to compare our results with the results of Roy et al. (2020) and
review issues that can be encountered when fitting these models. We also wish to elaborate
on other possible techniques that could be used to reach the same goal of suicidal ideation
classification alongside future work within the scope of this research.

To begin our discussion, by reviewing the Roy et al. (2020) results. They analyzed
512,526 tweets from N = 283 cases and 3,518,494 tweets from 2655 controls and use neural
networks and sentiment polarity to generate an array of ten metrics for each tweet. Within
their constructed neural networks they obtained an AUC above 70% for each neural network

model. This is in line with the work that has been presented in this report. Using convo-

49

lutional neural networks and Glove pre-trained word embeddings, we observed AUC scores
above 70% for all psychological constructs. Though, with these high AUC scores, questions
arise due to the changes in common language throughout the years. Within 2019 alone, the
Oxford English Dictionary added no fewer than 650 new words, phrases, and senses to their
dictionary (oxf, 2019). With the addition of new words and phrases added to the English
dictionary, pre-trained word embeddings will become less valuable as new words may appear
within a users Twitter Timeline that may not be present in pre-trained word embeddings.
Along with inaccurate pre-trained word embeddings, training for neural networks must be
done periodically throughout the years. Because of the continuous changes and additions
to the English dictionary, new words that are not present within the pre-trained word em-
beddings or inaccurate word embeddings will provide higher bias and variance within each
psychological construct. With higher variance and bias within the psycholgical constructs,
the prediction of suicidal ideation may become less accurate and pose a risk to those cat-
egorized as false negatives, otherwise known those who are incorrectly classified as having
suicidal ideation when in fact provide evidence for an increased risk to suicide.

Within the Random Forest models that predict suicidal ideation, Roy et al. (2020) obtain
an AUC of 88% which is comparable to the 90% AUC score obtained within this report.
Although the AUC for our 7 day Random Forest model is slightly lower than the Roy et al.
(2020) obtained AUC score, the results hold steady through multiple evaluations of our
Random Forest model. In Section 4.3 we present the parameter, random state, that is used
to set a random seed so that reproducibility of the results may be obtained. By changing
this seed, we obtain relatively similar results with AUC scores above 85% per iteration of
the Random Forest method. This provides evidence that results using the obtained data
are not randomly obtained, thus providing evidence of the functionality of suicidal ideation
classification.

Roy et al. (2020) also provide geographic based analysis which was not applied within
this report. This is due to the settings each user has within their own Twitter account where
each user has the option of providing a geographic location or georeference with each tweet

they post. Because most users do not allow for this function, we were not able to analyze

50

geographic location. This may present an issue within our analysis by the introduction of bias
and an increase of variance due to the assumption that each geographic location is the same
as those far away. Using Tobler’s First Law of Geography, which states that observations
close together are more related than those that are further away, we can deduce that people
located in California may have different behavioural influences than those located in New
York (Miller, 2004). Different results within the model may be obtained when geographic
location is involved as a feature within this report.

Roy et al. (2020) also provide an age based analysis which was not used within the scope
of this research. This analysis may provide more information regarding suicidal ideation
and the risk of suicide based on age. Though Twitter’s Academic Access provides more
valuable information to researchers, it does not provide the age of each Twitter user. It is
assumed that each Twitter user is above the age of 13 but younger users may be present since
there is limited monitoring of age among Twitter users. We did not include this due to the
lack of information within the dataset and because users have the ability to lie within their
agreement with Twitter and their requirement that you are at least 13 years old. Though
Twitter accounts are monitored, without posting your age or photos of yourself revealing
your age, Twitter Academic Access has limited evidence to support a fraudulent Twitter
usage agreement to suspend or eliminate the users account. Along with the falsity of age
and Twitter’s agreement, we also do not know if each Twitter account is associated with only
one user. One Twitter account may be run by more than one user and therefore may provide
inaccurate results following the idea that each Twitter account is only associated with one
user. Since we do not know if a Twitter account is shared between users, we assume that
each Twitter account is its own independent experimental unit as opposed to assuming that
each individual user is the experimental unit within the scope of this research. Along with
the analysis of age and independent Twitter accounts, Roy et al. (2020) also provide evidence
to suggest that gender may provide sufficient evidence to help classify suicidal ideation and
risk.

Roy et al. (2020) do not provide sufficient details about some important elements, there-

fore certain assumptions were made to reproduce their work. The number and types of layers

51

in neural networks were not described. It is also unclear what type of word embedding they
use. In this report we use pre-trained word embeddings but within the research by Roy
et al. (2020) we are not explicitly told what type of word embedding they use within their
research and if they used pre-trained word embeddings, trained their own word embeddings,
or a combination. Within this report we primarily focus on pre-trained word embeddings ob-
tained from Facebook, Google, or Stanford though other pre-trained word embeddings have
been obtained such as TwitterEmbeddings which was created using words found specifically
within Twitter accounts and embedding vectors were calculated using Twitter data. Twit-
terEmbeddings may provide a better vector representation for words used within Twitter as
opposed to Glove’s pre-trained word embeddings.

The last aspect to consider is the choice of a Random Forest classifier. Here we stayed
within the self-imposed restriction of emulating the Roy et al. (2020) approach. However,
other methods may be of interest to obtain the same goal. For example, boosting meth-
ods such as AdaBoost or XGBoost may provide better results through their iteration and
constant updates of weights to reduce error until a relatively low error rate is obtained and
because AdaBoost and XGBoost libraries are primarily built to build decision trees, boosting
methods may be of interest for future work within the scope of this study without the need
for new types of data. Although with our models, there is evidence to support that boosting
methods may not be necessary with these models as we receive relatively decent accuracy,
recall, and precision metrics. Support Vector Machines may also provide results similar to
a Random Forest method though data manipulation and transformations may need to be
done for the Support Vector Machine to classify suicidal ideation correctly. Naive Bayesian
classifiers and Logistic Regression classifiers may also be used with similar data manipula-

tions or transformations for these methods to be used (Shah et al., 2020; Troussas et al.,

2013).

92

5.2 Conclusion

Within this report we presented a detailed explanation of some of the methods used within
the Roy et al. (2020) study. We also test the reproducibility of their work by training 9
independent neural networks to obtain classifications of psychological constructs associated
with suicide and suicidal ideation including burden, insomnia, stress, anxiety, depression,
hopelessness, and loneliness. With AUC’s above 75% per psychological construct neural
network, we then use the array produced to predict the classification of suicidal ideation
among Twitter accounts. Within their research, Roy et al. (2020) obtain an AUC of 88%
with a Random Forest method to classify suicidal ideation among Twitter users which is
slightly higher than the 83% AUC score obtained within this report following the Roy et al.
(2020) study. Though this research provides results similar to those found in Roy et al.
(2020) it is of interest to note possible areas of concern about this work. The continuous
training of neural networks throughout the years may provide different results in the future
when classifying Twitter accounts with suicidal ideation and the addition of new words
may pose issues for the future of this methodology. Though issues regarding the usage
of these types of models may be more trivial than some other well established models for
sentiment analysis such as sentiment analysis using deep learning neural networks or Naive
Bayes methods, this research does provide a new direction of statistical analysis in which
statistics and the collaboration among professions play an increasingly important part in the
future of statistical analyses with the goal to provide better tools for classification of suicidal

individuals as opposed to the limited resources available currently.

53

Bibliography

New words in the oed: March 2019, Oct 2019. URL https://public.oed.com/blog/

new-words—-in-the-oed-march-2019/.

S. S. Abdullah, M. S. Rahaman, and M. S. Rahman. Analysis of stock market using text
mining and natural language processing. In 2013 International Conference on Informatics,

Flectronics and Vision (ICIEV), pages 1-6. IEEE, 2013.

A. Al-Khatib and S. R. El-Beltagy. Emotional tone detection in arabic tweets. In Inter-
national Conference on Computational Linguistics and Intelligent Text Processing, pages

105-114. Springer, 2017.

M. F. Ballesteros, S. A. Sumner, R. Law, A. Wolkin, and C. Jones. Advancing injury and

violence prevention through data science. Journal of safety research, 73:189-193, 2020.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model.

Journal of machine learning research, 3(Feb):1137-1155, 2003.
L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

D. S. Carrell, D. Cronkite, R. E. Palmer, K. Saunders, D. E. Gross, E. T. Masters, T. R.
Hylan, and M. Von Korff. Using natural language processing to identify problem usage
of prescription opioids. International journal of medical informatics, 84(12):1057-1064,

2015.

W. W. Chapman, J. N. Dowling, O. Ivanov, P. H. Gesteland, R. Olszewski, J. U. Espino, and
M. M. Wagner. Evaluating natural language processing applications applied to outbreak
and disease surveillance. In Proceedings of 36th symposium on the interface: computing

science and statistics, volume 2004. Citeseer, 2004.

o4

https://public.oed.com/blog/new-words-in-the-oed-march-2019/
https://public.oed.com/blog/new-words-in-the-oed-march-2019/

B. Charbuty and A. Abdulazeez. Classification based on decision tree algorithm for machine

learning. Journal of Applied Science and Technology Trends, 2(01):20-28, 2021.
F. Chollet et al. Keras, 2015. URL https://github.com/fchollet/keras.

V. Christlein, L. Spranger, M. Seuret, A. Nicolaou, P. Kral, and A. Maier. Deep general-
ized max pooling. In 2019 International conference on document analysis and recognition

(ICDAR), pages 1090-1096. IEEE, 2019.

F. Colas and P. Brazdil. Comparison of svm and some older classification algorithms in text
classification tasks. In IFIP International Conference on Artificial Intelligence in Theory

and Practice, pages 169-178. Springer, 2006.

A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun. Very deep convolutional networks for

text classification. arXww preprint arXiw:1606.01781, 2016.

L. Dini and A. Bittar. Emotion analysis on twitter: the hidden challenge. In Proceedings of
the Tenth International Conference on Language Resources and Evaluation (LREC’16),
pages 3953-3958, 2016.

A. Ebadi, P. Xi, S. Tremblay, B. Spencer, R. Pall, and A. Wong. Understanding the temporal
evolution of covid-19 research through machine learning and natural language processing.

Scientometrics, 126(1):725-739, 2021.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics, pages

315-323. JMLR Workshop and Conference Proceedings, 2011.

Y. Goldberg. Neural network methods for natural language processing. Synthesis lectures

on human language technologies, 10(1):1-309, 2017.
I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

J. Hirschberg and C. D. Manning. Advances in natural language processing. Science, 349

(6245):261-266, 2015.

%)

https://github.com/fchollet/keras

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):

1735-1780, 1997.

G. Jacobs, E. Lefever, and V. Hoste. Economic event detection in company-specific news
text. In Proceedings of the First Workshop on Economics and Natural Language Processing,

pages 1-10, 2018.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical learning,

volume 112. Springer, 2013.

A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov. Fasttext. zip:

Compressing text classification models. arXiv preprint arXiv:1612.03651, 2016a.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text classifi-
cation. arXiv preprint arXiv:1607.01759, 2016b.

H. Khanpour and C. Caragea. Fine-grained emotion detection in health-related online posts.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1160-1166, 2018.

A. Krogh. What are artificial neural networks? Nature biotechnology, 26(2):195-197, 2008.

A. Le Glaz, Y. Haralambous, D.-H. Kim-Dufor, P. Lenca, R. Billot, T. C. Ryan, J. Marsh,
J. Devylder, M. Walter, S. Berrouiguet, et al. Machine learning and natural language

processing in mental health: Systematic review. Journal of Medical Internet Research, 23

(5):e15708, 2021.

R. Leaman, L. Wojtulewicz, R. Sullivan, A. Skariah, J. Yang, and G. Gonzalez. Towards
internet-age pharmacovigilance: extracting adverse drug reactions from user posts in
health-related social networks. In Proceedings of the 2010 workshop on biomedical natural

language processing, pages 117-125, 2010.

S. L. Lohr. Sampling: design and analysis. Chapman and Hall/CRC, 2021.

56

S. Madisetty and M. S. Desarkar. An ensemble based method for predicting emotion intensity
of tweets. In International Conference on Mining Intelligence and Knowledge Exploration,

pages 359-370. Springer, 2017.
A. Mallya. Some rnn variants, 2017.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.

The bulletin of mathematical biophysics, 5(4):115-133, 1943.

T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin. Advances in pre-training
distributed word representations. arXiv preprint arXiv:1712.09405, 2017.

H. J. Miller. Tobler’s first law and spatial analysis. Annals of the association of American

geographers, 94(2):284-289, 2004.

National Suicide Prevention Lifeline. We can all prevent suicide, 2021. URL https://

suicidepreventionlifeline.org/how-we-can-all-prevent-suicide/.

M. K. Nock, G. Borges, E. J. Bromet, J. Alonso, M. Angermeyer, A. Beautrais, R. Bruffaerts,
W. T. Chiu, G. De Girolamo, S. Gluzman, et al. Cross-national prevalence and risk factors
for suicidal ideation, plans and attempts. The British journal of psychiatry, 192(2):98-105,
2008.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.

In Proceedings of the 2014 conference on empirical methods in natural language processing

(EMNLP), pages 1532-1543, 2014.

J. Pestian, H. Nasrallah, P. Matykiewicz, A. Bennett, and A. Leenaars. Suicide note clas-
sification using natural language processing: A content analysis. Biomedical informatics

insights, 3:BI1-S4706, 2010.

S. Poria, N. Majumder, R. Mihalcea, and E. Hovy. Emotion recognition in conversation:

Research challenges, datasets, and recent advances. IEFEE Access, 7:100943-100953, 2019.

57

https://suicidepreventionlifeline.org/how-we-can-all-prevent-suicide/
https://suicidepreventionlifeline.org/how-we-can-all-prevent-suicide/

T. Pranckevicius and V. Marcinkevicius. Application of logistic regression with part-of-the-
speech tagging for multi-class text classification. In 2016 [EEE 4th Workshop on Advances
in Information, Electronic and FElectrical Engineering (AIEEE), pages 1-5. IEEE, 2016.

A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, and Z. A. Kaminsky. A machine
learning approach predicts future risk to suicidal ideation from social media data. NPJ

digital medicine, 3(1):1-12, 2020.
S. Russell and P. Norvig. Artificial intelligence: a modern approach. 2002.

K. Shah, H. Patel, D. Sanghvi, and M. Shah. A comparative analysis of logistic regression,
random forest and knn models for the text classification. Augmented Human Research, 5

(1):1-16, 2020.

J. H. Shen and F. Rudzicz. Detecting anxiety through reddit. In Proceedings of the Fourth
Workshop on Computational Linguistics and Clinical Psychology—From Linguistic Signal
to Clinical Reality, pages 5865, 2017.

R. Socher, Y. Bengio, and C. D. Manning. Deep learning for nlp (without magic). In Tutorial
Abstracts of ACL 2012, pages 5-5. 2012.

R. Stewart and S. Velupillai. Applied natural language processing in mental health big data.
Neuropsychopharmacology, 46(1):252, 2021.

C. Strobl, J. Malley, and G. Tutz. An introduction to recursive partitioning: rationale,
application, and characteristics of classification and regression trees, bagging, and random

forests. Psychological methods, 14(4):323, 2009.

[. Strumberger, E. Tuba, N. Bacanin, R. Jovanovic, and M. Tuba. Convolutional neural
network architecture design by the tree growth algorithm framework. In 2019 International

Joint Conference on Neural Networks (IJCNN), pages 1-8. IEEE, 2019.

J. Su and H. Zhang. A fast decision tree learning algorithm. In Aaai, volume 6, pages

500-505, 2006.

58

S. Sudholt and G. A. Fink. Phocnet: A deep convolutional neural network for word spot-
ting in handwritten documents. In 2016 15th International Conference on Frontiers in

Handwriting Recognition (ICFHR), pages 277-282. IEEE, 2016.

V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston. Random
forest: a classification and regression tool for compound classification and gsar modeling.

Journal of chemical information and computer sciences, 43(6):1947-1958, 2003.

C. Troussas, M. Virvou, K. J. Espinosa, K. Llaguno, and J. Caro. Sentiment analysis of

facebook statuses using naive bayes classifier for language learning. In IISA 2013, pages

1-6. IEEE, 2013.

H. Van der Aa, J. Carmona Vargas, H. Leopold, J. Mendling, and L. Padré. Challenges
and opportunities of applying natural language processing in business process manage-
ment. In COLING 2018: The 27th International Conference on Computational Linguis-
tics: Proceedings of the Conference: August 20-26, 2018 Santa Fe, New Mexico, USA,

pages 2791-2801. Association for Computational Linguistics, 2018.

S. Wshah, C. Skalka, M. Price, et al. Predicting posttraumatic stress disorder risk: a machine
learning approach. JMIR mental health, 6(7):¢13946, 2019.

B. Xu, X. Guo, Y. Ye, and J. Cheng. An improved random forest classifier for text catego-
rization. J. Comput., 7(12):2913-2920, 2012.

S. Xu, Y. Li, and Z. Wang. Bayesian multinomial naive bayes classifier to text classification.

In Advanced multimedia and ubiquitous engineering, pages 347-352. Springer, 2017.

Z. Yong, L. Youwen, and X. Shixiong. An improved knn text classification algorithm based

on clustering. Journal of computers, 4(3):230-237, 2009.

59

Appendix A

Supplementary Figures

A.1 Psychological Construct Neural Network Loss, Ac-

curacy, and ROC curves.

60

1.0 1.0 1.0
0.8 - 0.8 - 0.8 -
_— —
0.6 - 0.6 - 0.6 -
0.4—\ 0_4—§ 0_4_\\
0.2 - 0.2 - 0.2 -
0.0 14 . . 0.0 14 . . 0.0 L .
0 2 4 0 2 4 0 4
1.0 1.0 1.0
0.8‘7@ o.s—___--f"— o.s—_.———-""':;
064 ——— | 06 - 0.6
/w
0.4 - 0.4 - 0.4 - —
0.2 - 0.2 - 0.2 -
0.0 - . . 0.0 - . . 0.0 - .
0 2 4 0 2 4 0 4
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50
0.25 0.25 0.25
0.00 | . 1 000! . 1 000! . .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure A.1: Three neural network and word embedding performance for the psychologi-
cal construct burden. Three metrics loss (top row), accuracy (middle row), and ROC

— FastText
= Glove
— \Word2Vec

(bottom row) for models SNN (teft), CNN (center), and LSTM (right). Each line

represents the word embedding methods: FastText (blue), Glove (yellow), and Word2Vec

(green).

61

1.0 1.0 1.0
0.8 0.8 0.8
— —
06 \ 067 0-6 7 \
0.4 0.4 0.4
0.2 4 0.2 4 0.2 4
00 T T T 00 T T T 00 T T T
0 2 4 0 2 4 0 2 4
1.0 1.0 1.0
0.8___/_——/-——-—____ 0'8_75 08 —
= FastText
064 o —ou | 061 0.6 -
/ — - Glove
0.4 - 0.4 - 0.4 —— Word2Vec
0.2 H 0.2 H 0.2 H
0.0 T T 0.0 T T 0.0 T T
0 2 4 0 2 4 0 2 4
1.00 1.00 1.00
0.75 1 0.75 1 0.75 1
0.50 H 0.50 H 0.50 H
0.25 H 0.25 H 0.25 H
0.00 H 0.00 H 0.00 H
T T T T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure A.2: Three neural network and word embedding performance for the psychological
construct depression 1. Three metrics loss (top row), accuracy (middle row), and ROC
(bottom row) for models SNN (teft), CNN (center), and LSTM (right). FEach line

represents the word embedding methods: FastText (blue), Glove (yellow), and Word2Vec
(green).

62

1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4—\% 0.4—\§ 0.4—\
0.2 0.2 x 0.2
0.0 0.0 0.0 =
0 0 0
1.0 1.0 1.0
0.8 /ﬁ 0.8 /7; 0.8 /__,’——-
0.6 o =— 0.6 0.6 —_—
0.4 0.4 0.4
0.2 0.2 0.2
0.0 = 0.0 = 0.0 =
0 0 0
1.00 - 1.00 - 1.00 -
0.75 - 0.75 - 0.75 -
0.50 0.50 0.50
0.25 - 0.25 - 0.25 -
0.00] : | 0.00 4] : 0.00] : :
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure A.3: Three neural network and word embedding performance for the psychological
construct depression 2. Three metrics loss (top row), accuracy (middle row), and ROC

— FastText
= Glove
— \Word2Vec

(bottom row) for models SNN (teft), CNN (center), and LSTM (right). FEach line

represents the word embedding methods: FastText (blue), Glove (yellow), and Word2Vec

(green).

1.0 1.0 1.0
0.8 0.8 0.8
R e 0.6 Q(
0_4—\\ 04‘& 0_4—\
0.2 0.2 ¥ 0.2
00 T T T 00 T T T 00 T T T
0 2 4 0 2 4 0 2 4
10 10 > — 10
089 e | 087 S :: 08 =
0.6 0.6 0.6 - —— FastText
- Glove
0.4 - 0.4 - 0.4 —— Word2Vec
0.2 H 0.2 H 0.2 H
0.0 T T 0.0 T T 0.0 T T
0 2 4 0 2 4 0 2 4
1.00 1.00 1.00
0.75 1 0.75 1 0.75 1
0.50 H 0.50 H 0.50 H
0.25 H 0.25 H 0.25 H
0.00 H 0.00 H 0.00 H
T T T T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure A.4: Three neural network and word embedding performance for the psychological
construct depression 3. Three metrics loss (top row), accuracy (middle row), and ROC
(bottom row) for models SNN (teft), CNN (center), and LSTM (right). FEach line

represents the word embedding methods: FastText (blue), Glove (yellow), and Word2Vec
(green).

64

1.0

0.8 1

0.6—\

1.0

1.0

0.6—\

0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 15 0.0 15 0.0 Ly

0 0 0
1.0 1.0 1.0

o.s—P:

0.8 1
0.6 o

06— 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 =7 0.0 =7 0.0 =7
0 0 0
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50
0.25 - 0.25 - 0.25 -
0.00 0.00 0.00
T T T T T T T T T
0.0 0.5 10 0.0 0.5 10 0.0 0.5 10

Figure A.5: Three neural network and word embedding performance for the psychological
construct hopelessness. Three metrics loss (top row), accuracy (middle row), and ROC

— FastText
= Glove
— \Word2Vec

(bottom row) for models SNN (teft), CNN (center), and LSTM (right). Each line
represents the word embedding methods: FastText (blue), Glove (yellow), and Word2Vec

(green).

65

1.0 1.0 1.0
0.8 0.8 0.8
0.6 _— 06— | o061
0.4_\ 0_4—t 0.4_\
0.2 4 0.2 4 0.2 4
00 T T T 00 T T T 00 T T T
0 2 4 0 2 4 0 2 4
1.0 1.0 1.0
———
0.8 —_— 0.8 08y
— <_/_
0.6 0.6 0.6 - —— FastText
- Glove
0.4 - 0.4 - 0.4 —— Word2Vec
0.2 H 0.2 H 0.2 H
0.0 T T 0.0 T T 0.0 T T
0 2 4 0 2 4 0 2 4
1.00 1.00 1.00
0.75 1 0.75 1 0.75 1
0.50 H 0.50 H 0.50 H
0.25 H 0.25 H 0.25 H
0.00 H 0.00 H 0.00 H
T T T T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure A.6: Three neural network and word embedding performance for the psychologi-
cal construct insomnia. Three metrics loss (top row), accuracy (middle row), and ROC
(bottom row) for models SNN (teft), CNN (center), and LSTM (right). Each line
represents the word embedding methods: FastText (blue), Glove (yellow), and Word2Vec
(green).

66

1.0 1.0 1.0
0.8 0.8 0.8
0.6_\ 0.6_\ 0.6_\
0.4 - 0.4 \ 0.4 -
0.2 4 0.2 4 0.2 4
00 T T T 00 T T T 00 T T T
0 2 4 0 2 4 0 2 4
1.0 1.0 1.0
0.8 7 —//_/——/7 08 - % A —
0.6 0.6 -_\/—__ 0.6
—
0.4 0.4 0.4
0.2 H 0.2 H 0.2 H
0.0 T T 0.0 T T 0.0 T T
0 2 4 0 2 4 0 2 4
1.00 1.00 1.00
0.75 1 0.75 1 0.75 1
0.50 H 0.50 H 0.50 H
0.25 H 0.25 H 0.25 H
0.00 H 0.00 H 0.00 H
T T T T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure A.7: Three neural network and word embedding performance for the psychological
construct loneliness. Three metrics loss (top row), accuracy (middle row), and ROC

— FastText
= Glove
— \Word2Vec

(bottom row) for models SNN (teft), CNN (center), and LSTM (right). Each line

represents the word embedding methods: FastText (blue), Glove (yellow), and Word2Vec

(green).

67

1.0 1.0 1.0
0.8 0.8 0.8
06— — 0.6 - \ 06 7 T
0.4_\ 0.4_\ 0.4_\
0.2 0.2 ¥ 0.2
0 2 4 0 2 4 0 2
1.0 1.0 1.0
=
0.8 0.8 0.8 4~
06 4= 06 4 0.6 - —— FastText
- Glove
0.4 - 0.4 - 0.4 —— Word2Vec
0.2 H 0.2 H 0.2 H
0 2 4 0 2 4 0 2
1.00 1.00 1.00
0.75 - 0.75 - 0.75 -
0.50 H 0.50 H 0.50 H
0.25 - 0.25 - 0.25 -
0.00 H 0.00 H 0.00 H
T T T T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure A.8: Three neural network and word embedding performance for the psychological
construct stress. Three metrics loss (top row), accuracy (middle row), and ROC (bottom
row) for models SNN (left), CNN (center), and LSTM (right). Fach line represents
the word embedding methods: FastText (blue), Glove (yellow), and Word2Vec (green).

68

Appendix B

Supplementary Python Code

B.1 Extract Twitter SI

For sending GET requests from the API

import requests

For saving access tokens and for file management
when creating and adding to thedataset

import os

For dealing with json responses we receive from the API
import json

For displaying the data after

import pandas as pd

For saving the response data in CSV format
import csv

For parsing the dates received from twitter in

readable formats

import datetime

import dateutil.parser

import unicodedata

69

#To add wait time between requests

import time

def auth():

return os.getenv(’TOKEN’)

def create_headers(bearer_token):
headers = {"Authorization": "Bearer {}".format(bearer_token)}

return headers

def create_url(keyword, start_date, end_date, max_results):

search_url = "https://api.twitter.com/2/tweets/search/all"

#Change to the endpoint you want to collect data from

#change params based on the endpoint you are using

query_params = {’query’: keyword,
’start_time’: start_date,
’end_time’: end_date,
’max_results’: max_results,
’expansions’: ’author_id,in_reply_to_user_id,geo.place_id’,
’tweet.fields’: ’id,text,author_id,in_reply_to_user_id,
geo,conversation_id,created_at,lang,
public_metrics,referenced_tweets,reply_settings,source’,
’user.fields’: ’id,name,username,created_at,
description,public_metrics,verified’,
’place.fields’: ’full_name,id,country,country_code,
geo,name,place_type’,

‘next_token’: {}}

70

def

def

return (search_url, query_params)

connect_to_endpoint(url, headers, params, next_token = None):
params[’next_token’] = next_token
#params object received from create_url function
response = requests.request("GET", url, headers = headers,
params = params)

print ("Endpoint Response Code: " + str(response.status_code))
if response.status_code != 200:

raise Exception(response.status_code, response.text)

return response. json()

append_to_csv(json_response, fileName):
#A counter variable
counter = 0
#0pen OR create the target CSV file
csvFile = open(fileName, "a", newline="", encoding=’utf-8’)
csvWriter = csv.writer(csvFile)
#Loop through each tweet
for tweet in json_response[’data’]:
create a variable for each since some of the keys
might not exist for some tweets so we will account for that
Author ID
author_id = tweet[’author_id’]
Time created
created_at = dateutil.parser.parse(tweet[’created_at’])
Tweet ID
tweet_id = tweet[’id’]

Language

71

lang = tweet[’lang’]
Tweet metrics
retweet_count = tweet[’public_metrics’][’retweet_count’]
reply_count = tweet[’public_metrics’][’reply_count’]
like_count = tweet[’public_metrics’][’like_count’]
quote_count = tweet[’public_metrics’][’quote_count’]
source
source = tweet[’source’]
Tweet text
text = tweet[’text’]
Assemble all data in a list
res = [author_id, created_at, tweet_id, lang, like_count,
quote_count, reply_count, retweet_count, source, text]

Append the result to the CSV file
csvlWiriter.writerow(res)
counter += 1

When done, close the CSV file

csvFile.close()

B.2 Extract SI and Control Timelines

For sending GET requests from the API

import requests

For saving access tokens and for file management when creating
and adding to the dataset

import os

For dealing with json responses we receive from the API

import json

For displaying the data after

72

import pandas as pd

For saving the response data in CSV format
import csv

For parsing the dates received from twitter in readable formats
import datetime

import dateutil.parser

import unicodedata

#To add wait time between requests

import time

import datetime

from datetime import datetime

from dateutil.relativedelta import relativedelta

def append_to_csv(json_responsel, fileName):

#A counter variable

counter = 0
#0pen OR create the target CSV file
csvFile = open(fileName, "a", newline="", encoding=’utf-8’)

csvWriter = csv.writer(csvFile)

#Loop through each tweet

for tweet in json_responsel[’data’]:

We will create a variable for each since some of the keys

might not exist for some tweets so we will account for that

73

Time created

created_at = dateutil.parser.parse(tweet[’created_at’])

User ID

user_id = tweet[’author_id’]

Tweet text

text = tweet[’text’]

Assemble all data in a list

res = [user_id, created_at, text]

Append the result to the CSV file
csvWriter.writerow(res)

counter += 1

When done, close the CSV file

def auth():

return os.getenv(’TOKEN’)

def create_headers(bearer_token):
headers = {"Authorization": "Bearer {}".format(bearer_token)}

return headers

def create_url(user_id, end_date, max_results = 10):

search_url = "https://api.twitter.com/2/users/{}/tweets".format (user_id)

#Change to the endpoint you want to collect data from

74

#change params based on the endpoint you are using
query_params = {’end_time’: end_date,

’max_results’: max_results,

’tweet.fields’: ’id,text,author_id,in_reply_to_user_id,
geo,conversation_id,
created_at,lang,public_metrics,
referenced_tweets,
reply_settings,source’,

‘next_token’: {}}

return (search_url, query_params)

def bearer_oauth(r):

Method required by bearer token authentication.
r.headers["Authorization"] = f"Bearer {bearer_token}"
r.headers["User-Agent"] = "v2UserTweetsPython"

return r

def connect_to_endpoint(url, headers, params, next_token = None):
params [’next_token’] = next_token
#params object received from create_url function

response = requests.request("GET", url, headers = headers, params = params)
print ("Endpoint Response Code: " + str(response.status_code))
if response.status_code != 200:

raise Exception(response.status_code, response.text)

5

return response. json()

def main(Q):
url = create_url()
params = get_params()
json_responsel = connect_to_endpoint(url, params)
print(json.dumps(json_response, indent=4, sort_keys=True))
"

if __name__ == "__main__

main()

#Create token, headers, and extract each tweet Author ID and posting time
bearer_token = auth()

headers = create_headers(bearer_token)

df = pd.read_csv(’data.csv’)

SIlist = df[’author_id’].to_list()

start_list = df[’created_at’].to_list()

start_list2 = [str(i.replace(’ ’, ’T’)) for i in start_list]

#Convert start times to correct format for Twitter API

start_list2 = [i[:-6] for i in start_list2]

end_list2 = [i + ’Z’ for i in start_list2]

display(end_list2[:-500])

#Convert end times to correct format for Twitter
end_date2 = []
for i in range(len(end_list2)):
a = end_list2[i]
end_date2.append(a.replace(’ ’, ’T’)[:-2])

display(end_date2[:5])

76

bearer_token = auth()
headers = create_headers(bearer_token)
max_results = 100
#Total number of tweets we collected from the loop
total_tweets = 0
Create file
csvFile = open("timeline.csv", "a", newline="", encoding=’utf-8’)
csvWriter = csv.writer(csvFile)
#Create headers for the data you want to save, in this example,
we only want save these columns in our dataset
csvWriter.writerow([’author_id’, ’created_at’, ’text’])
csvFile.close()
#Loop through SI IDs and collect user timelines
for i in range(len(SIlist)):

SI = SIlistl[il]

end_date = end_list2[i]

Inputs
count = 0 # Counting tweets per time period
max_count = 75 # Max tweets per time period
flag = True
next_token = None
try:
Check if flag is true
while flag:
Check if max_count reached
if count >= max_count:

break

print ("Token: ", next_token)
url = create_url(SI, end_date, max_results)
json_response = connect_to_endpoint (url[0],
headers, url[1],
next_token = None)

result_count = json_response[’meta’][’result_count’]

if ’next_token’ in json_response[’meta’]:
Save the token to use for next call

next_token = json_response[’meta’] [’next_token’]

print ("Next Token: ", next_token)

if result_count is not None and result_count > O and next_token is r
print("User ID: ", SI)
append_to_csv(json_response, "timeline.csv")
count += result_count
total_tweets += result_count

print("Total # of Tweets added: ", total_tweets)

time.sleep(5)
If no next token exists
else:

if result_count is not None and result_count > O:

print ("End Date: ", end_date)
append_to_csv(json_response, "timeline.csv")
count += result_count

total_tweets += result_count

print("Total # of Tweets added: ", total_tweets)

time.sleep(5)

#Since this is the final request, turn flag to
false to move to the next time period.
flag = False
next_token = None
time.sleep(5)
except:
pass

print("Total number of results: ", total_tweets)

B.3 Collect Psychological Constructs and Controls
To collect all psychological construct and controls we use the queries from Table 3.2.

For sending GET requests from the API

import requests

For saving access tokens and for file management

when creating and adding to the dataset

import os

For dealing with json responses we receive from the API
import json

For displaying the data after

import pandas as pd

For saving the response data in CSV format

import csv

For parsing the dates received from twitter in readable formats
import datetime

import dateutil.parser

79

import unicodedata
#To add wait time between requests

import time

def auth():

return os.getenv(’TOKEN’)

def create_headers(bearer_token):
headers = {"Authorization": "Bearer {}".format(bearer_token)}

return headers

def create_url(keyword, start_date, end_date, max_results):

search_url = "https://api.twitter.com/2/tweets/search/all"

#Change to the endpoint you want to collect data from

#change params based on the endpoint you are using
query_params = {’query’: keyword,
’start_time’: start_date,
’end_time’: end_date,
’max_results’: max_results,
’expansions’: ’author_id,in_reply_to_user_id,geo.place_id’,
’tweet.fields’: ’id,text,author_id,in_reply_to_user_id,
geo,conversation_id,created_at,lang,
public_metrics,referenced_tweets,
reply_settings,source’,
’user.fields’: ’id,name,username,created_at,
description,public_metrics,verified’,

’place.fields’: ’full_name,id,country,

80

country_code, geo,
name,place_type’,
‘next_token’: {}}

return (search_url, query_params)

def connect_to_endpoint(url, headers, params, next_token = None):
params [’next_token’] = next_token
#params object received from create_url function
response = requests.request("GET", url, headers = headers, params = params)
print ("Endpoint Response Code: " + str(response.status_code))
if response.status_code != 200:
raise Exception(response.status_code, response.text)

return response. json()

def append_to_csv(json_response, fileName):

#A counter variable

counter = 0

#0pen OR create the target CSV file

csvFile = open(fileName, "a", newline="", encoding=’utf-8’)

csvWriter = csv.writer(csvFile)

#Loop through each tweet

for tweet in json_response[’data’]:
create a variable for each since some of the keys might
not exist for some tweets so we will account for that
Author ID
author_id = tweet[’author_id’]
Time created
created_at = dateutil.parser.parse(tweet[’created_at’])

Tweet ID

81

tweet_id = tweet[’id’]
Language
lang = tweet[’lang’]
Tweet metrics
retweet_count = tweet[’public_metrics’][’retweet_count’]
reply_count = tweet[’public_metrics’][’reply_count’]
like_count = tweet[’public_metrics’][’like_count’]
quote_count = tweet[’public_metrics’][’quote_count’]
source
source = tweet[’source’]
Tweet text
text = tweet[’text’]
Assemble all data in a list
res = [author_id, created_at, tweet_id,
lang, like_count, quote_count, reply_count,
retweet_count, source, text]
Append the result to the CSV file
csvWriter.writerow(res)
counter += 1
When done, close the CSV file

csvFile.close()

start_list = [’2019-01-01T00:00:00.000Z",
?2019-02-01T00:00:00.000Z" ,
?2019-03-01T00:00:00.000Z" ,
?2019-04-01T00:00:00.000Z",
?2019-05-01T00:00:00.000Z" ,
?2019-06-01T00:00:00.000Z" ,
?2019-07-01T00:00:00.000Z" ,

82

?2019-08-01T00:00:00.000Z" ,
?2019-09-01T00:00:00.000Z" ,
’2019-10-01T00:00:00.000Z" ,
?2019-11-01T00:00:00.000Z" ,
?2019-12-01T00:00:00.000Z" ,
?2020-01-01T00:00:00.000Z" ,
?2020-02-01T00:00:00.000Z" ,
?2020-03-01T00:00:00.000Z" ,
?2020-04-01T00:00:00.000Z" ,
?2020-05-01T00:00:00.000Z",
?2020-06-01T00:00:00.000Z" ,
?2020-07-01T00:00:00.000Z" ,
?2020-08-01T00:00:00.000Z" ,
?2020-09-01T00:00:00.000Z" ,
?2020-10-01T00:00:00.000Z" ,
?2020-11-01T00:00:00.000Z" ,
?2020-12-01T00:00:00.000Z" ,
?2021-01-01T00:00:00.000Z" ,
?2021-02-01T00:00:00.000Z" ,
?2021-03-01T00:00:00.000Z" ,
?2021-04-01T00:00:00.000Z" ,
?2021-05-01T00:00:00.000Z" ,
?2021-06-01T00:00:00.000Z" ,
?2021-07-01T00:00:00.000Z" ,
?2021-08-01T00:00:00.000Z" ,]

end_list = [’2019-01-31T00:00:00.000Z",
?2019-02-28T00:00:00.000Z",
?2019-03-31T00:00:00.000Z" ,

83

?2019-04-30T00:
72019-05-31T00:
?2019-06-30T00:
72019-07-31T00:
?2019-08-31T00:
72019-09-30T00:
?2019-10-31T00:
72019-11-30T00:
?2019-12-31T00:
72020-01-31T00:
?2020-02-29T00:
?2020-03-31T00:
?2020-04-30T00:
?2020-05-31T00:
?2020-06-30T00:
72020-07-31T00:
?2020-08-31T00:
?2020-09-30T00:
?2020-10-31T00:
?2020-11-30T00:
72020-12-31T00:
?2021-01-31T00:
72021-02-28T00:
72021-03-31T00:
72021-04-30T00:
72021-05-31T00:
72021-06-30T00:
72021-07-31T00:
?2021-08-31T00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.

000z’ ,
000z,
000z’ ,
000z,
000z’ ,
000z,
000z’ ,
000z,
000z’ ,
000z,
000z’ ,
000z,
000z’ ,
000z,
000z’
000z,
000z’ ,
000z,
000z’ ,
000z,
000z’ ,
000z,
000z’
000z,
000z,
000z,
000z,
000z,
000Z’,]

84

bearer_token = auth()

headers = create_headers(bearer_token)

keyword = #Insert desired query as string format here#

max_results = 30

#Total number of tweets we collected from the loop

total_tweets = 0

Create file
csvFile = open("anxiety.csv", "a", newline="", encoding=’utf-8’)

csvWriter = csv.writer(csvFile)

#Create headers for the data you want to save,
#in this example, we only want save these columns in our dataset
csvWriter.writerow([’author_id’, ’created_at’,

’id’,’lang’, ’like_count’, ’quote_count’, ’reply_count’,’retweet_cou

csvFile.close()

for i in range(0,len(start_list)):
Inputs
count = 0 # Counting tweets per time period
max_count = 10 # Max tweets per time period
flag = True

next_token = None

Check if flag is true

while flag:

85

Check if max_count reached
if count >= max_count:

break

print("Token: ", next_token)
url = create_url(keyword, start_list[i],end_list[i], max_results)
json_response = connect_to_endpoint(url[0], headers, url([1], next_token)

result_count = json_response[’meta’][’result_count’]

if ’next_token’ in json_response[’meta’]:

Save the token to use for next call

next_token = json_response[’meta’] [’next_token’]

print ("Next Token: ", next_token)

if result_count is not None and result_count > O and next_token is not None:
print("Start Date: ", start_list[i])
append_to_csv(json_response, "anxiety.csv")
count += result_count
total_tweets += result_count

print("Total # of Tweets added: ", total_tweets)

time.sleep(5)
If no next token exists
else:

if result_count is not None and result_count > O:

print ("Start Date: ", start_list[i])
append_to_csv(json_response, "anxiety.csv")
count += result_count

total_tweets += result_count

86

print("Total # of Tweets added: ", total_tweets)

time.sleep(5)

Since this is the final request,
turn flag to false to move to the next time period.
flag = False
next_token = None
time.sleep(5)

print("Total number of results: ", total_tweets)

B.4 Neural Network Evaluation

To evaluate the best type of neural network and pre-trained word embedding to use for

psychological construct we use the following code:

B.4.1 Word2Vec

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import re

import nltk

from gensim.models import Word2Vec

from gensim.models import KeyedVectors
from gensim.models import FastText

from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords

from numpy import array

87

from keras.preprocessing.text import one_hot

from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential

from keras.layers.core import Activation, Dropout, Dense
from keras.layers import Flatten, Conv1D, LSTM

from keras.layers import GlobalMaxPoollD

from keras.layers.embeddings import Embedding

from sklearn.model_selection import train_test_split

from keras.preprocessing.text import Tokenizer

anxiety = pd.read_csv(’/Users/tylerbastian/Thesis/Psych Constructs/anxiety.csv’)

control = pd.read_csv(’/Users/tylerbastian/Thesis/Psych Constructs/anxietyControl.csv’)
anxious_tweets = anxiety[’tweet’]

control_tweets = control[’tweet’]

def remove_emoji(string):
emoji_pattern = re.compile("["

u"\UOOO1F600-\UOOO1F64F" emoticons

u"\UOOO01F300-\UOOO1F5FF" symbols & pictographs

u"\UOO01F680-\UOOO1F6FF" transport & map symbols

u"\UOOO1F1EO-\UOOO1F1FF" flags (i0S)

= = H O H H=

u"\U00002500-\UOOOO2BEF" chinese char
u"\U00002702-\U000027B0"
u"\U00002702-\U000027B0"
u"\U000024C2-\UO001F251"
u"\U0001£926-\U0001£937"
u"\U00010000-\UOO10ffff"
u"\u2640-\u2642"

u"\u2600-\u2B55"

88

u"\u2004"

u"\u23cf"

u'"\u23e9"

u"\u231a"

u"\ufeOf" # dingbats
u"\u3030"

"J+", flags=re.UNICODE)

return emoji_pattern.sub(r’’, string)

#Case tweet cleaning
text = []
for i in anxious_tweets:
text.append(re.sub(r"(7:\@|https?\://)\S+", "", i))
text2 = []
for i in text:
text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))
text3 = []
for i in text2:
text3.append(re.sub(r"#\w+","",i))
textd = []
for i in text3:
text4.append(remove_emoji(i))
tokenizer = RegexpTokenizer(r’[a-zA-Z]+’)
tweet_token = []
for x in text4:
tweet_token.append(tokenizer.tokenize(x.lower()))
anxious_lengths = []
for i in range(len(tweet_token)):

anxious_lengths.append(len(tweet_token[i]))

89

#Control tweet cleaning
text = []
for i in control_tweets:
text.append(re.sub(r"(7:\@|https?\://)\S+", "", i))
text2 = []
for i in text:
text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))
text3 = []
for i in text2:
text3.append(re.sub(r"#\w+","",i))
textd = []
for i in text3:
text4.append(remove_emoji(i))
tokenizer = RegexpTokenizer(r’[a-zA-Z]+’)
control_token = []
for x in text4:
control_token.append(tokenizer.tokenize(x.lower()))
control_lengths = []
for i in range(len(control_token)):

control_lengths.append(len(control_token[i]))

X =1]

for words in control_token:
X.append(’ ’.join(words))

Y = [1

for words in tweet_token:

Y.append(’ ’.join(words))

90

controls = pd.DataFrame(X)
controls.insert(0,’Sentiment’, ’negative’)
anxious = pd.DataFrame(Y)

anxious.insert(0,’Sentiment’,’positive’)

#Graph proportionality of sentiments

tweets = pd.concat([anxious,controls])

X = tweets[0]
y = tweets[’Sentiment’]
y = np.array(list(map(lambda x: 1 if x=="positive" else 0, y)))

X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=0.2,

random_state=42)

tokenizer = Tokenizer (num_words = 5000)
tokenizer.fit_on_texts(X_train)
X_train = tokenizer.texts_to_sequences(X_train)

X_test = tokenizer.texts_to_sequences(X_test)

vocab_size = len(tokenizer.word_index)+1
maxlen = 100
X_train = pad_sequences(X_train, padding=’post’, maxlen=maxlen)

X_test = pad_sequences(X_test, padding=’post’, maxlen=maxlen)

Load Word2Vec embeddings
from numpy import array
from numpy import asarray

from numpy import zeros

91

bin_file = ’/Users/tylerbastian/Desktop/Spring 2022

/Thesis/Embeddings/GoogleNews-vectors-negative300.bin’

word2vec = KeyedVectors.load_word2vec_format(bin_file, binary=True,
unicode_errors=’ignore’)
non_exist = []
embedding matrix = zeros((vocab_size, 300))
for word, index in tokenizer.word_index.items():
if word not in word2vec.index_to_key:
non_exist.append(word)
else:
embedding_vector = word2vec.get_vector((word))
if embedding_vector is not None:
embedding_matrix[index] = embedding_vector
#Text Classification with Neural Network
model = Sequential()
embedding_layer = Embedding(vocab_size, 300, weights=[embedding matrix],
input_length=maxlen, trainable=False)
model.add (embedding_layer)
model.add(Flatten())

model.add(Dense(1, activation=’sigmoid’))

model.compile(optimizer=’adam’, loss=’binary_crossentropy’,
metrics = [’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size = 128,

epochs = 6, verbose = 1, validation_split = 0.2)

score = model.evaluate(X_test, y_test, verbose = 1)

92

print("Test Score:", scorel[0])

print ("Test Accuracy:", score[1])

plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’Model Accuracy’)
plt.ylabel(’Accuracy’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’Model Loss’)

plt.ylabel(’Loss’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.tight_layout ()

plt.savefig(’Word2Vec_SNN.png’)

#Text classification with CNN

model=Sequential ()

embedding_layer = Embedding(vocab_size, 300,
weights=[embedding_matrix],
input_length=maxlen,
trainable=False)

model.add(embedding_layer)

model.add(Conv1D(128, 5, activation=’relu’))

93

model.add(GlobalMaxPool1D())

model.add(Dense(1, activation=’sigmoid’))

model.compile(optimizer=’adam’, loss=’binary_crossentropy’,
metrics=[’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size=128,

epochs = 6, verbose=1, validation_split=0.2)
score = model.evaluate(X_test, y_test, verbose=1)
print("Test Score:", score[0])

print ("Test Accuracy:", score[1])

plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’Model Accuracy’)
plt.ylabel(’Accuracy’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’Model Loss’)

plt.ylabel(’Loss’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.tight_layout ()

plt.savefig(’Word2Vec_CNN.png’)

94

###LSTM Recurrent Neural Network

model = Sequential()

embedding_layer = Embedding(vocab_size, 300, weights=[embedding matrix],
input_length=maxlen, trainable=False)

model.add (embedding_layer)

model.add (LSTM(128))

model.add(Dense(1, activation=’sigmoid’))
model.compile(optimizer=’adam’, loss=’binary_crossentropy’,
metrics=[’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size=128,
epochs=6, verbose=1, validation_split=0.2)

score = model.evaluate(X_test, y_test, verbose=1)

print ("Test Score:", scorel[0])

print ("Test Accuracy:", score[1])

plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’Model Accuracy’)
plt.ylabel(’Accuracy’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])

plt.title(’Model Loss’)

95

plt.ylabel(’Loss’)
plt.xlabel (’Epoch’)
plt.legend([’train’,’test’], loc = ’upper left’)
plt.tight_layout()

plt.savefig(’Word2Vec_LSTM.png’)

B.4.2 Glove

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import re

import nltk

from nltk.tokenize import RegexpTokenizer

from nltk.corpus import stopwords

from numpy import array

from keras.preprocessing.text import one_hot

from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential

from keras.layers.core import Activation, Dropout, Dense
from keras.layers import Flatten, Conv1D, LSTM

from keras.layers import GlobalMaxPoollD

from keras.layers.embeddings import Embedding

from sklearn.model_selection import train_test_split
from keras.preprocessing.text import Tokenizer

from sklearn.metrics import roc_curve, auc

anxiety = pd.read_csv(’/Users/tylerbastian/Thesis/Psych Constructs/anxiety.csv’)

control = pd.read_csv(’/Users/tylerbastian/Thesis/Psych Constructs/anxietyControl.csv’)

96

anxious_tweets = anxiety[’tweet’]

control_tweets

def remove_emoji(string):

control[’tweet’]

emoji_pattern = re.compile("["

u"\UOOO1F600-\UOOO1F64F"
u"\UOOO1F300-\UOOO1F5FF"
u"\UOOO1F680-\UOOO1F6FF"
u"\UOOO1F1EO-\UOOO1F1FF"
u"\U00002500-\UOOOO2BEF"
u"\U00002702-\U000027B0"
u"\U00002702-\U000027B0"
u"\U000024C2-\UO001F251"
u"\U0001£926-\U0001£937"
u"\U00010000-\UOO10ffff"
u'"\u2640-\u2642"
u"\u2600-\u2B55"
u"\u2004"
u"\u23cf"
u"\u23e9"
u"\u231a"
u"\ufeOf" # dingbats
u"\u3030"

"]+", flags=re.UNICODE)

return emoji_pattern.sub(r’’, string)

#Case tweet cleaning
text = []

for i in anxious_tweets:

97

= O HF= O H O H OH=

emoticons

symbols & pictographs
transport & map symbols
flags (i0S)

chinese char

text.append(re.sub(r" (7:\@|https?\://)\S+", "", i))
text2 = []
for i in text:
text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))
text3 = []
for i in text2:
text3.append(re.sub(r"#\w+","",i))
textd = []
for i in text3:
text4.append (remove_emoji(i))
tokenizer = RegexpTokenizer(r’[a-zA-Z]+’)
tweet_token = []
for x in text4:
tweet_token.append(tokenizer.tokenize(x.lower()))
anxious_lengths = []
for i in range(len(tweet_token)):

anxious_lengths.append(len(tweet_token[i]))

#Control tweet cleaning
text = []
for i in control_tweets:
text.append(re.sub(r"(7:\@|https?\://)\S+", "", i))
text2 = []
for i in text:
text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))
text3 = []
for i in text2:
text3.append(re.sub(r"#\w+","",i))

textd = []

98

for i in text3:
text4.append (remove_emoji(i))

tokenizer = RegexpTokenizer(r’[a-zA-Z]+’)

control_token = []

for x in text4:
control_token.append(tokenizer.tokenize(x.lower()))

control_lengths = []

for i in range(len(control_token)):

control_lengths.append(len(control_token[i]))

X =1]

for words in control_token:
X.append(’ ’.join(words))

Y =11

for words in tweet_token:

Y.append(’ ’.join(words))

controls = pd.DataFrame(X)
controls.insert(0,’Sentiment’, ’negative’)
anxious = pd.DataFrame(Y)

anxious.insert(0,’Sentiment’,’positive’)

#Graph proportionality of sentiments
tweets = pd.concat([anxious,controls])
import seaborn as sns

sns.countplot (x=’Sentiment’, data=tweets)

#Relatively equal proportion of control and case

X = tweets[0]

99

tweets[’Sentiment’]

<
I

np.array(list(map(lambda x: 1 if x=="positive" else 0, y)))

<
Il

X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=0.2,
random_state=42)

tokenizer = Tokenizer (num_words = 5000)

tokenizer.fit_on_texts(X_train)

X_train = tokenizer.texts_to_sequences(X_train)

X_test = tokenizer.texts_to_sequences(X_test)

vocab_size = len(tokenizer.word_index)+1

maxlen = 100

X_train = pad_sequences(X_train, padding=’post’, maxlen=maxlen)

X_test = pad_sequences(X_test, padding=’post’, maxlen=maxlen)

Load Glove embeddings

from numpy import array

from numpy import asarray

from numpy import zeros

embeddings_dictionary = dict()

path = ’/Users/tylerbastian/Desktop/Spring 2022/Thesis/Embeddings/glove.6B.100d.txt’

glove_file = open(path, encoding="utf8")

for line in glove_file:
records = line.split()
word = records[0]
vector_dimensions = asarray(records[1:], dtype=’float32’)
embeddings_dictionary [word] = vector_dimensions

glove_file.close()

100

embedding matrix = zeros((vocab_size, 100))

for word, index in tokenizer.word_index.items():
embedding_vector = embeddings_dictionary.get (word)
if embedding_vector is not None:

embedding matrix[index] = embedding_vector

#Text Classification with Neural Network

model = Sequential()

embedding_layer = Embedding(vocab_size, 100, weights=[embedding matrix],
input_length=maxlen, trainable=False)

model.add (embedding_layer)

model.add(Flatten())

model.add(Dense(1, activation=’sigmoid’))

model.compile(optimizer=’adam’, loss=’binary_crossentropy’,
metrics = [’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size = 128,

epochs = 6, verbose = 1, validation_split = 0.2)
score = model.evaluate(X_test, y_test, verbose = 1)
print ("Test Score:", score[0])

print ("Test Accuracy:", score[1])

plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’Model Accuracy’)

plt.ylabel(’Accuracy’)

101

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’Model Loss’)

plt.ylabel(’Loss’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.tight_layout ()

plt.savefig(’HopelessnessGlove_SNN.png’)

#Text classification with CNN

model=Sequential ()

embedding_layer = Embedding(vocab_size, 100,
weights=[embedding_matrix],
input_length=maxlen,
trainable=False)

model.add (embedding_layer)

model.add(ConviD(128, 5, activation=’relu’))

model .add (GlobalMaxPool1D())

model.add(Dense(1, activation=’sigmoid’))

model.compile(optimizer=’adam’, loss=’binary_crossentropy’,

metrics=[’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size=128,
epochs = 6, verbose=1, validation_split=0.2)

score = model.evaluate(X_test, y_test, verbose=1)

102

print("Test Score:", scorel[0])

print ("Test Accuracy:", score[1])

y_pred = model.predict(X_test).ravel()

nn_fpr_keras, nn_tpr_keras, nn_thresholds_keras = roc_curve(y_test, y_pred)
plt.plot(nn_fpr_keras, nn_tpr_keras, marker=’.’,

label=’Neural Network (auc = %0.3f)’ % auc_keras)

plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’Model Accuracy’)
plt.ylabel(’Accuracy’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’Model Loss’)

plt.ylabel(’Loss’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.tight_layout ()

plt.savefig(’HopelessnessGlove_CNN.png’)

###LSTM Recurrent Neural Network
model = Sequential()
embedding_layer = Embedding(vocab_size, 100, weights=[embedding matrix],

input_length=maxlen, trainable=False)

103

model.add (embedding_layer)

model.add (LSTM(128))

model.add(Dense (1, activation=’sigmoid’))

model.compile(optimizer=’adam’, loss=’binary_crossentropy’,
metrics=[’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size=128,

epochs=6, verbose=1, validation_split=0.2)
score = model.evaluate(X_test, y_test, verbose=1)
print("Test Score:", score[0])

print ("Test Accuracy:", score[1])

plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’Model Accuracy’)
plt.ylabel(’Accuracy’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’Model Loss’)

plt.ylabel(’Loss’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.tight_layout ()

plt.savefig(’HopelessnessGlove_LSTM.png’)

104

B.4.3 FastText

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import re

import nltk

from gensim.models import Word2Vec

from gensim.models import KeyedVectors

from gensim.models import FastText

from nltk.tokenize import RegexpTokenizer

from nltk.corpus import stopwords

from numpy import array

from keras.preprocessing.text import one_hot

from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential

from keras.layers.core import Activation, Dropout, Dense
from keras.layers import Flatten, Conv1D, LSTM

from keras.layers import GlobalMaxPoollD

from keras.layers.embeddings import Embedding

from sklearn.model_selection import train_test_split

from keras.preprocessing.text import Tokenizer

construct = pd.read_csv(’/Users/tylerbastian/Thesis/Psych Constructs/anxiety.csv’)
control = pd.read_csv(’/Users/tylerbastian/Thesis/Psych Constructs/anxietyControl.csv’)
construct_tweets = construct[’tweet’]

control_tweets = control[’tweet’]

def remove_emoji(string):

105

emoji_pattern = re.compile("["
u"\UOOO1F600-\UOOO1F64F"
u"\UOO001F300-\UOOO1F5FF"
u"\UOOO1F680-\UOOO1F6FF"
u"\UOOO1F1EO-\UOOO1F1FF"
u"\U00002500-\UOOOO2BEF"
u"\U00002702-\U000027B0"
u"\U00002702-\U000027B0"
u"\U000024C2-\UO0O1F251"
u"\U0001£926-\U0001£937"
u"\U00010000-\UOO10ffff"
u"\u2640-\u2642"
u"\u2600-\u2B55"
u"\u2004"
u"\u23cf"
u'"\u23e9"
u"\u231a"
u"\ufeOf" # dingbats
u"\u3030"
"J+", flags=re.UNICODE)

return emoji_pattern.sub(r’’, string)

#Case tweet cleaning

text = []

for i in construct_tweets:
text.append(re.sub(r"(7:\@|https?\://)\S+", "", i))

text2 = []

for i in text:

text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))

106

= HF= O H O H =

emoticons

symbols & pictographs
transport & map symbols
flags (i0S)

chinese char

text3 = []
for i in text2:
text3.append(re.sub(r"#\w+","",i))
textd = []
for i in text3:
text4.append (remove_emoji(i))
tokenizer = RegexpTokenizer(r’[a-zA-Z]+’)
tweet_token = []
for x in text4:
tweet_token.append(tokenizer.tokenize(x.lower()))
construct_lengths = []
for i in range(len(tweet_token)):

construct_lengths.append(len(tweet_token[i]))

#Control tweet cleaning
text = []
for i in control_tweets:
text.append(re.sub(r"(7:\@|https?\://)\S+", "", i))
text2 = []
for i in text:
text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))
text3 = []
for i in text2:
text3.append(re.sub(r"#\w+","",i))
textd = []
for i in text3:
text4.append(remove_emoji(i))
tokenizer = RegexpTokenizer(r’[a-zA-Z]+’)

control_token = []

107

for x in text4:
control_token.append(tokenizer.tokenize(x.lower()))

control_lengths = []

for i in range(len(control_token)):

control_lengths.append(len(control_token[i]))

X =1

for words in control_token:
X.append(’ ’.join(words))

Y =11

for words in tweet_token:

Y.append(’ ’.join(words))

controls = pd.DataFrame (X)
controls.insert(0,’Sentiment’, ’negative’)
construct = pd.DataFrame(Y)

construct.insert(0,’Sentiment’,’positive’)

#Graph proportionality of sentiments

tweets = pd.concat([construct,controls])

X = tweets[0]
y = tweets[’Sentiment’]
y = np.array(list(map(lambda x: 1 if x=="positive" else 0, y)))

X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=0.2,

random_state=42)

tokenizer = Tokenizer (num_words = 5000)

tokenizer.fit_on_texts(X_train)

108

X_train = tokenizer.texts_to_sequences(X_train)

X_test = tokenizer.texts_to_sequences(X_test)

vocab_size = len(tokenizer.word_index)+1
maxlen = 100
X_train = pad_sequences(X_train, padding=’post’, maxlen=maxlen)

X_test = pad_sequences(X_test, padding=’post’, maxlen=maxlen)

Load Word2Vec embeddings

from numpy import array

from numpy import asarray

from numpy import zeros

training_tweets = ’’.join([’’.join(sub) for sub in tweets[0]])
with open(’trainingtweets.txt’, ’w’) as f:

f.write(training_tweets)

import fasttext
filen = ’/Users/tylerbastian/PycharmProjects/Stat766/trainingtweets.txt’
ft = fasttext.train_unsupervised(filen, model=’skipgram’)

ft.save_model ("hopelessnesstweets.bin")

embedding_matrix = zeros((vocab_size, 100))

for word, index in tokenizer.word_index.items():
embedding_vector = ft.get_word_vector (word)
if embedding_vector is not None:

embedding matrix[index] = embedding_vector

#Text Classification with Neural Network

model = Sequential()

109

embedding_layer = Embedding(vocab_size, 100, weights=[embedding matrix],
input_length=maxlen, trainable=False)

model.add (embedding_layer)

model.add (Flatten())

model.add(Dense(1, activation=’sigmoid’))

model.compile(optimizer=’adam’, loss=’binary_crossentropy’,
metrics = [’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size = 128,

epochs = 6, verbose = 1, validation_split = 0.2)

score = model.evaluate(X_test, y_test, verbose = 1)
print ("Test Score:", scorel[0])

print("Test Accuracy:", score[1])

plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’Model Accuracy’)
plt.ylabel(’Accuracy’)

plt.xlabel (’Epoch’)
plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’Model Loss’)

plt.ylabel(’Loss’)

110

plt.xlabel (’Epoch’)
plt.legend([’train’,’test’], loc = ’upper left’)
plt.tight_layout ()

plt.savefig(’FastText_SNN.png’)

#Text classification with CNN

model=Sequential ()

embedding_layer = Embedding(vocab_size, 100,
weights=[embedding_matrix],
input_length=maxlen,
trainable=False)

model.add (embedding_layer)

model.add(ConviD(128, 5, activation=’relu’))

model .add (GlobalMaxPool1D())

model.add(Dense(1, activation=’sigmoid’))

model.compile(optimizer=’adam’, loss=’binary_crossentropy’,

metrics=[’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size=128,

epochs = 6, verbose=1, validation_split=0.2)
score = model.evaluate(X_test, y_test, verbose=1)
print ("Test Score:", score[0])

print ("Test Accuracy:", score[1])

plt.subplot(211)
plt.plot(history.history[’acc’])

plt.plot(history.history[’val_acc’])

111

plt.title(’Model Accuracy’)
plt.ylabel(’Accuracy’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’Model Loss’)

plt.ylabel(’Loss’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.tight_layout ()

plt.savefig(’FastText_CNN.png’)

###LSTM Recurrent Neural Network

model = Sequential()

embedding_layer = Embedding(vocab_size, 100, weights=[embedding matrix],
input_length=maxlen, trainable=False)

model.add (embedding_layer)

model .add (LSTM(128))

model.add(Dense(1, activation=’sigmoid’))
model.compile(optimizer=’adam’, loss=’binary_crossentropy’,
metrics=[’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size=128,
epochs=6, verbose=1, validation_split=0.2)

score = model.evaluate(X_test, y_test, verbose=1)

112

print("Test Score:", scorel[0])

print ("Test Accuracy:", score[1])

plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’Model Accuracy’)
plt.ylabel(’Accuracy’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’Model Loss’)

plt.ylabel(’Loss’)

plt.xlabel (’Epoch’)

plt.legend([’train’,’test’], loc = ’upper left’)
plt.tight_layout ()

plt.savefig(’FastText_LSTM.png’)

B.5 Train and Evaluate Psychological Constructs

To train and evaluate psychological constructs as discussed in Chapter 4, we use the code
below. We train and evaluate using the data collected using code in Appendix A Section

Collect Psychological Constructs and Controls.
import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import re

113

import nltk

from nltk.tokenize import RegexpTokenizer

from nltk.corpus import stopwords

from numpy import array

from keras.models import load_model

from keras.preprocessing.text import one_hot

from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential

from keras.layers.core import Activation, Dropout, Dense
from keras.layers import Flatten, ConvlD, LSTM

from keras.layers import GlobalMaxPoollD

from keras.layers.embeddings import Embedding

from sklearn.model_selection import train_test_split
from keras.preprocessing.text import Tokenizer

import keras

case = pd.read_csv(’/Users/tylerbastian/Thesis/Psych Constructs/hopelessness.csv’)

control = pd.read_csv(’/Users/tylerbastian/Thesis/Psych Constructs
/hopelessnessControl.csv’)

case_tweets = case[’tweet’]

control_tweets = control[’tweet’]

del(case, control)

def remove_emoji(string):
emoji_pattern = re.compile("["
u"\UOOO1F600-\UOOO1F64F" # emoticons
u"\UOOO1F300-\UOOO1F5FF" # symbols & pictographs
u"\UOOO1F680-\UOOO1F6FF" # transport & map symbols

u"\UOOO1F1E0-\UOOO1F1FF" # flags (i0S)

114

u"\U00002500-\UOOOO2BEF"
u"\U00002702-\U000027B0"
u"\U00002702-\U000027B0"
u"\U000024C2-\UOOO1F251"
u"\U0001£f926-\U0001£937"
u"\U00010000-\UOO10ffff"
u"\u2640-\u2642"
u"\u2600-\u2B55"
u"\u2004"

u"\u23cf"

u"\u23e9"

u"\u231a"

u"\ufeOf" # dingbats
u"\u3030"

"]+", flags=re.UNICODE)

return emoji_pattern.sub(r’’, string)

#Case tweet cleaning
text = []
for i in case_tweets:
text.append(re.sub(r"(7:\@|https?\://)\S+", "", i))
text2 = []
for i in text:
text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))
text3 = []
for i in text2:
text3.append(re.sub(r"#\w+","",i))
textd = []

for i in text3:

115

chinese char

text4.append(remove_emoji(i))
tokenizer = RegexpTokenizer(r’[a-zA-Z]+’)
tweet_token = []
for x in texté4:

tweet_token.append(tokenizer.tokenize(x.lower()))

#Control tweet cleaning
text = []
for i in control_tweets:
text.append(re.sub(r" (7:\@|https?\://)\S+", "", i))
text2 = []
for i in text:
text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))
text3 = []
for i in text2:
text3.append(re.sub(r"#\w+","",i))
textd = []
for i in text3:
text4.append(remove_emoji(i))
tokenizer = RegexpTokenizer(r’[a-zA-Z]+’)
control_token = []
for x in text4:

control_token.append(tokenizer.tokenize(x.lower()))

X =1

for words in control_token:
X.append(’ ’.join(words))

Y =[]

for words in tweet_token:

116

Y.append(’ ’.join(words))

controls = pd.DataFrame(X)
controls.insert(0,’Sentiment’, ’negative’)
case = pd.DataFrame(Y)

case.insert(0,’Sentiment’,’positive’)

#Graph proportionality of sentiments
tweets = pd.concat([case,controls])
import seaborn as sns

sns.countplot (x=’Sentiment’, data=tweets)
del(case, controls)

#Relatively equal proportion of control and case

X = tweets[0]
y = tweets[’Sentiment’]
y = np.array(list(map(lambda x: 1 if x=="positive" else 0, y)))

X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=0.2,

random_state=42)

tokenizer = Tokenizer (num_words = 5000)
tokenizer.fit_on_texts(X_train)
X_train = tokenizer.texts_to_sequences(X_train)

X_test = tokenizer.texts_to_sequences(X_test)

vocab_size = len(tokenizer.word_index)+1
maxlen = 100

X_train = pad_sequences(X_train, padding=’post’, maxlen=maxlen)

117

X_test = pad_sequences(X_test, padding=’post’, maxlen=maxlen)

Load Glove embeddings
from numpy import array
from numpy import asarray

from numpy import zeros

embeddings_dictionary = dict()
path = ’/Users/tylerbastian/Desktop/Fall 2021/Thesis/Embeddings/glove.6B.100d.txt’

glove_file = open(path, encoding="utf38")

for line in glove_file:
records = line.split()
word = records[0]
vector_dimensions = asarray(records[1l:], dtype=’float32’)
embeddings_dictionary [word] = vector_dimensions

glove_file.close()

embedding_matrix = zeros((vocab_size, 100))

for word, index in tokenizer.word_index.items():
embedding_vector = embeddings_dictionary.get (word)
if embedding_vector is not None:

embedding_matrix[index] = embedding_vector

model=Sequential ()
embedding_layer = Embedding(vocab_size, 100,
weights=[embedding_matrix],

input_length=maxlen,

118

trainable=False)
model .add (embedding_layer)
model.add(Conv1D(128, 5, activation=’relu’))
model .add (GlobalMaxPool1D())
model.add(Dense(1, activation=’sigmoid’))
model.compile(optimizer=’adam’, loss=’binary_crossentropy’,
metrics=[’acc’])

print (model.summary())

history = model.fit(X_train, y_train, batch_size=128,
epochs = 6, verbose=1, validation_split=0.2)

score = model.evaluate(X_test, y_test, verbose=1)

print("Test Score:", score[0])

print ("Test Accuracy:", score[1])

plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’Model Accuracy’)
plt.ylabel(’Accuracy’)

plt.xlabel (’Epoch’)
plt.legend([’train’,’test’], loc = ’upper left’)
plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’Model Loss’)
plt.ylabel(’Loss’)

plt.xlabel (’Epoch’)

119

plt.legend([’train’,’test’], loc = ’upper left’)

plt.tight_layout ()

###Save the model

model.save(’hopelessnessglovemodel.h5’)

del(model, case_tweets, control_tweets,
embedding _matrix, embeddings_dictionary,

X_test, X_train, y_test, y_train)

B.6 Psychological Construct Classification

Once neural networks have been trained, evaluated, and all models have been saved we then

classify each tweets psychological constructs with the following code:

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import re

import nltk

from nltk.tokenize import RegexpTokenizer

from nltk.corpus import stopwords

from numpy import array

from keras.models import load_model

from keras.preprocessing.text import one_hot

from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential

from keras.layers.core import Activation, Dropout, Dense
from keras.layers import Flatten, ConvlD, LSTM

from keras.layers import GlobalMaxPoollD

from keras.layers.embeddings import Embedding

120

from sklearn.model_selection import train_test_split

from keras.preprocessing.text import Tokenizer

def remove_emoji(string):

emoji_pattern = re.compile("["

u"\UOOO1F600-\UOOO1F64F"
u"\UOOO1F300-\UOOO1F5FF"
u"\UOOO1F680-\UOOO1F6FF"
u"\UOOO1F1EO-\UOOO1F1FF"
u"\U00002500-\UOOOO2BEF"
u"\U00002702-\U000027B0"
u"\U00002702-\U000027B0"
u"\U000024C2-\UO001F251"
u"\U0001£926-\U0001£937"
u"\U00010000-\UOO10ffff"
u'"\u2640-\u2642"
u"\u2600-\u2B55"
u"\u2004"
u"\u23cf"
u"\u23e9"
u"\u231a"
u"\ufeOf" # dingbats
u"\u3030"

"]+", flags=re.UNICODE)

return emoji_pattern.sub(r’’, string)

#Load Psychological Construct Models

= O HF= O H O H OH=

emoticons

symbols & pictographs
transport & map symbols
flags (i0S)

chinese char

anxiety_model = load_model(’/Users/tylerbastian/Desktop/Spring 2022/

121

Thesis/models/anxietyglovemodel.h5”)

hopeless_model = load_model(’/Users/tylerbastian/Desktop/Spring 2022/

Thesis/models/hopelessnessglovemodel.h5’)

burden_model = load_model(’/Users/tylerbastian/Desktop/Spring 2022/

Thesis/models/burdenglovemodel.h5’)

lonely_model = load_model(’/Users/tylerbastian/Desktop/Spring 2022/

Thesis/models/lonelyglovemodel.h5’)

stress_model = load_model(’/Users/tylerbastian/Desktop/Spring 2022/
Thesis/models/stressglovemodel.h5’)
insomnia_model = load_model(’/Users/tylerbastian/Desktop/Spring 2022/

Thesis/models/insomniaglovemodel.h5’)

depressionl_model = load_model(’/Users/tylerbastian/Desktop/Spring 2022/

Thesis/models/depressionlglovemodel.h5’)

depression2_model = load_model(’/Users/tylerbastian/Desktop/Spring 2022/

Thesis/models/depression2glovemodel.h5’)

depression3_model = load_model(’/Users/tylerbastian/Desktop/Spring 2022/

Thesis/models/depression3glovemodel.h5’)

#Load the timeline data

predict_file = ’/Users/tylerbastian/PycharmProjects/Stat766/Controltimeline2.csv’

data = pd.read_csv(predict_file)

(]

for i in datal[’tweet’]:

text

text.append(re.sub(r"(7:\@|https?\://)\S+", "", i))
text2 = []
for i in text:

text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))

text3 = []

122

for i in text2:
text3.append(re.sub(r"#\w+","",1))

textd = []

for i in text3:
text4.append(remove_emoji(i))

tokenizer = RegexpTokenizer(r’[a-zA-Z]+’)

tweet_token = []

for x in texté4:
tweet_token.append(tokenizer.tokenize(x.lower()))

Y =[]

for words in tweet_token:

Y.append(’ ’.join(words))

#del(data, predict_file)

#Collect anxiety predictions

import time

maxlen = 100

controlpred = pd.read_csv(’/Users/tylerbastian/PycharmProjects/

Stat766/controltimelinepreds.csv’)

####DONT RUN THESE AGAIN
controlpred = pd.DataFrame()
controlpred[’author_id’] = datal[’author_id’]

controlpred[’created_at’] = datal[’created_at’]

#Anxiety predictions
anxiety_preds = []

count = 0

123

for i in range(len(Y)):
one = Y[i]
count += 1
tokenizer = Tokenizer (num_words=5000)
tokenizer.fit_on_texts(one)
instance = tokenizer.texts_to_sequences(one)
flat_list = []
for sublist in instance:
for item in sublist:
flat_list.append(item)
flat_list = [flat_list]
instance = pad_sequences(flat_list, padding=’post’, maxlen=maxlen)
pred = anxiety_model.predict(instance)
anxiety_preds.append(pred.item())
print (count)
controlpred[’Anxiety’] = anxiety_preds
del(anxiety_preds, anxiety_model)

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

#predictions = pd.read_csv(’/Users/tylerbastian/PycharmProjects/Stat766/
timelinepredictions.csv’)

#Hopelessness predictions

hopeless_model = load_model(’/Users/tylerbastian/Desktop/Fall 2021/

Thesis/models/hopelessnessglovemodel .h5’)

hopeless_preds = []
count = 0
for i in range(len(Y)):

one = Y[i]

124

count += 1
tokenizer = Tokenizer (num_words=5000)
tokenizer.fit_on_texts(one)
instance = tokenizer.texts_to_sequences(one)
flat_list = []
for sublist in instance:
for item in sublist:
flat_list.append(item)
flat_list = [flat_list]
instance = pad_sequences(flat_list, padding=’post’, maxlen=maxlen)
pred = hopeless_model.predict(instance)
hopeless_preds.append(pred.item())
print (count)
controlpred[’Hopelessness’] = hopeless_preds
del (hopeless_preds, hopeless_model)

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

#Burden predictions

burden_model = load_model(’/Users/tylerbastian/Desktop/Fall 2021/

Thesis/models/burdenglovemodel.h5’)

burden_preds = []
count = 0
for i in range(len(Y)):
one = Y[i]
count += 1
tokenizer = Tokenizer (num_words=5000)
tokenizer.fit_on_texts(one)

instance = tokenizer.texts_to_sequences (one)

flat_list = []

125

for sublist in instance:
for item in sublist:
flat_list.append(item)
flat_list = [flat_list]
instance = pad_sequences(flat_list, padding=’post’, maxlen=maxlen)
pred = burden_model.predict(instance)
burden_preds.append(pred.item())
print (count)
controlpred[’Burden’] = burden_preds
del(burden_preds, burden_model)

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

#Lonely predictions

lonely_model = load_model(’/Users/tylerbastian/Desktop/Fall 2021/

Thesis/models/lonelyglovemodel.h5’)

lonely_preds = []
count = 0
for i in range(len(Y)):
one = Y[i]
count += 1
tokenizer = Tokenizer (num_words=5000)
tokenizer.fit_on_texts(one)
instance = tokenizer.texts_to_sequences (one)
flat_list = []
for sublist in instance:
for item in sublist:
flat_list.append(item)
flat_list = [flat_list]

instance = pad_sequences(flat_list, padding=’post’, maxlen=maxlen)

126

pred = lonely_model.predict(instance)

lonely_preds.append (pred.item())

print (count)
controlpred[’Loneliness’] = lonely_preds
del(lonely_preds, lonely_model)

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

#Stress predictions

stress_model = load_model(’/Users/tylerbastian/Desktop/Fall 2021/

Thesis/models/stressglovemodel.h5’)

stress_preds = []
count = 0
for i in range(len(Y)):
one = Y[i]
count += 1
tokenizer = Tokenizer (num_words=5000)
tokenizer.fit_on_texts(one)
instance = tokenizer.texts_to_sequences(one)
flat_list = []
for sublist in instance:
for item in sublist:
flat_list.append(item)
flat_list = [flat_list]
instance = pad_sequences(flat_list, padding=’post’, maxlen=maxlen)
pred = stress_model.predict(instance)
stress_preds.append(pred.item())
print (count)
controlpred[’Stress’] = stress_preds

del(stress_preds, stress_model)

127

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

#Insomnia predictions

insomnia_model = load_model(’/Users/tylerbastian/Desktop/Fall 2021/

Thesis/models/insomniaglovemodel.h5’)

(]

insomnia_preds
count = 0
for i in range(len(Y)):
one = Y[i]
count += 1
tokenizer = Tokenizer (num_words=5000)
tokenizer.fit_on_texts(one)
instance = tokenizer.texts_to_sequences(one)
flat_list = []
for sublist in instance:
for item in sublist:
flat_list.append(item)
flat_list = [flat_list]
instance = pad_sequences(flat_list, padding=’post’, maxlen=maxlen)
pred = insomnia_model.predict(instance)
insomnia_preds.append(pred.item())
print (count)
controlpred[’Insomnia’] = insomnia_preds
del(insomnia_preds, insomnia_model)

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

#Depression 1 predictions
depressionl_model = load_model(’/Users/tylerbastian/Desktop/Fall 2021/

Thesis/models/depressionlglovemodel.h5’)

128

depl_preds = []
count = 0
for i in range(len(Y)):
one = Y[i]
count += 1
tokenizer = Tokenizer (num_words=5000)
tokenizer.fit_on_texts(one)
instance = tokenizer.texts_to_sequences(one)
flat_list = []
for sublist in instance:
for item in sublist:
flat_list.append(item)
flat_list = [flat_list]
instance = pad_sequences(flat_list, padding=’post’, maxlen=maxlen)
pred = depressionl_model.predict(instance)
depl_preds.append(pred.item())
print (count)
controlpred[’Depression 1’] = depl_preds
del(depl_preds, depressionl_model)

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

#Depression 2 predictions
depression2_model = load_model(’/Users/tylerbastian/Desktop/Fall 2021/
Thesis/models/depression2glovemodel.h5’)
dep2_preds = []
count = 0
for i in range(len(Y)):
one = Y[i]

count += 1

129

tokenizer = Tokenizer (num_words=5000)
tokenizer.fit_on_texts(one)
instance = tokenizer.texts_to_sequences (one)
flat_list = []
for sublist in instance:
for item in sublist:
flat_list.append(item)
flat_list = [flat_list]
instance = pad_sequences(flat_list, padding=’post’, maxlen=maxlen)
pred = depression2_model.predict(instance)
dep2_preds.append(pred.item())
print (count)
controlpred[’Depression 2’] = dep2_preds
del(dep2_preds, depression2_model)

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

#Depression 3 predictions
depression3_model = load_model(’/Users/tylerbastian/Desktop/Fall 2021/
Thesis/models/depression3glovemodel .h5’)
dep3_preds = []
count = 0
for i in range(len(Y)):
one = Y[i]
count += 1
tokenizer = Tokenizer (num_words=5000)
tokenizer.fit_on_texts(one)
instance = tokenizer.texts_to_sequences(one)
flat_list = []

for sublist in instance:

130

for item in sublist:
flat_list.append(item)
flat_list = [flat_list]
instance = pad_sequences(flat_list, padding=’post’, maxlen=maxlen)
pred = depression3_model.predict(instance)
dep3_preds.append (pred.item())
print (count)
controlpred[’Depression 3’] = dep3_preds
del(dep3_preds, depression3_model)
controlpred[’text’] = data[’tweet’]

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

import textblob
from textblob import TextBlob
def getSubjectivity(review):

return TextBlob(review).sentiment.subjectivity
function to calculate polarity
def getPolarity(review):

return TextBlob(review).sentiment.polarity

tweets = pd.DataFrame(Y)
controlpred[’Subjectivity’] = tweets[0].apply(getSubjectivity)
controlpred[’Polarity’] = tweets[0].apply(getPolarity)

controlpred.to_csv(’controltimelinepreds.csv’, index=False)

B.7 Classify SI Tweets

After each tweet has been classified with all psychological constructs we then read each tweet
and assign it a 0 for accounts not showing signs of SI and 1 for accounts showing signs of SI

using the following code.

131

import pandas as pd

import re

from pandas import read_csv

from nltk.tokenize import RegexpTokenizer

import plotly.graph_objects as go

import datetime

import matplotlib

import matplotlib.pyplot as plt

from textblob import TextBlob

import numpy as np

#Functions for data preperation

function to calculate subjectivity

def getSubjectivity(review):

return TextBlob(review) .sentiment.subjectivity

function to calculate polarity

def getPolarity(review):

return TextBlob(review).sentiment.polarity

def remove_emoji(string):

emoji_pattern = re.compile("["

u"\UOOO1F600-\UOOO1F64F"
u"\UOO01F300-\UOOO1F5FF"
u"\UOO01F680-\UOOO1F6FF"
u"\UOOO1F1EO-\UOOO1F1FF"
u"\U00002500-\UOOOO2BEF"
u"\U00002702-\U000027B0"
u"\U00002702-\U000027B0"
u"\U000024C2-\UO001F251"
u"\U0001£926-\U0001£937"

132

= H# H O H #=

emoticons

symbols & pictographs
transport & map symbols
flags (i0S)

chinese char

u"\U00010000-\UOO10ffff"
u"\u2640-\u2642"
u"\u2600-\u2B55"
u"\u2004"

u"\u23cf"

u"\u23e9"

u"\u231a"

u"\ufeOf" # dingbats
u"\u3030"

"J+", flags=re.UNICODE)

return emoji_pattern.sub(r’’, string)

#Data preperation
timeline = read_csv(’/Users/tylerbastian/Thesis/Psych Constructs/timeline.csv’)
case = read_csv(’/Users/tylerbastian/PycharmProjects/Stat766/timelinescores.csv’)

cons = read_csv(’/Users/tylerbastian/PycharmProjects/Stat766/controlscores.csv’)

case = pd.DataFrame(case)

cons = pd.DataFrame(cons)
case[’text’] = timeline[’text’]
data = pd.concat([case,cons])
data.info()

del(timeline,case,cons)

text = []
for i in data[’text’]:

text.append(re.sub(r" (7:\@|https?\://)\S+", "", i))
text2 = []

for i in text:

133

text2.append(re.sub(r"@\w+", "", i).replace("RT",’’))
text3 = []
for i in text2:
text3.append(re.sub(r"#\w+","",1))
textd = []
for i in text3:
text4.append(remove_emoji(i))
tokenizer = RegexpTokenizer (r’[a-zA-Z]+’)
tweet_token = []
for x in texté4:
tweet_token.append(tokenizer.tokenize(x.lower()))
Y =[]
for words in tweet_token:

Y.append(’ ’.join(words))

datal[’Text’] =Y

del(text, text2, text3, text4,tweet_token, words, x, i, Y)
#Break down date and time into individual variables
#data[’Year’] = pd.to_datetime(datal[’created_at’]).dt.year
#data[’Month’] = pd.to_datetime(data[’created_at’]).dt.month
#datal[’Day’] = pd.to_datetime(datal[’created_at’]).dt.day

#data[’Hour’] = pd.to_datetime(datal[’created_at’]).dt.hour

#data[’Minute’] = pd.to_datetime(datal[’created_at’]).dt.minute

#datal[’Second’]

pd.to_datetime(datal’created_at’]) .dt.second
#Calculate subjectivity and polarity scores using TextBlob
data[’Subjectivity’] = data[’Text’].apply(getSubjectivity)
data[’Polarity’] = data[’Text’].apply(getPolarity)

cols = [’author_id’,’created_at’,’Anxiety’, ’Hopelessness’,

’Burden’, ’Loneliness’,’Stress’,

134

’Insomnia’,’Depression 1’,’Depression 2’,
’Depression 3’,’Subjectivity’,’Polarity’,’Text’]

data2 = datalcols]

data2.to_csv(’RandomForestSI.csv’, index=False)
#Identify suciidal ideation using phrases from SI tweet criterion
#and Past SA or suicide plan tweet criteria

del(data,cols)

df = read_csv(’/Users/tylerbastian/PycharmProjects/Stat766/RandomForestSI.csv’)
text = list(df[’Text’])

data = pd.DataFrame(text)

data[’author_id’] = df[’author_id’]

data = data.fillna(’None’)

text = list(datal0])

tweets = tweet_token[:1000]

SIphrases = [[’i’,’am’,’planning’,’to’,’die’],
[’i’,’am’,’going’,’to’,’commit’,’suicide’],
[’i’,’attempted’, ’suicide’],
[’i’,’planning’,’to’,’end’,’my’,’life’],
[’i’,’planned’,’to’,’end’,’my’,’life’],
[’i’,’planned’,’die’],
[’i’,’planning’,’to’,’kill’, ’myself’],
[’i’,’tried’,’to’,’kill’, ’myself’],
[’i’,’thinking’,’suicide’],
[’i’,"can’t",’go’,’on’,’living’],
[’i’,’want’,’to’,’die’],

[’i’,’want’,’to’,’kill’, ’myself’],

135

[’i’,’going’,’kill’,’myself’],
[’i’,’have’,’plan’,’kill’, ’myself’],
[’i’,’contemplating’,’suicide’],
[’i’,’planning’,’suicide’],
[’i’,’feeling’,’suicidal’],
[’i’,’having’,’suicidal’,’thoughts’],
[’i’,’want’,’to’,’commit’,’suicide’],
[’i’,’want’,’to’,’end’,’my’,’life’],

[’i’,’thinking’,’how’,’to’,’kill’, ’myself’]]

pastSI = [[’i’,’am’,’planning’,’to’,’die’],
[’i’,’attempted’,’suicide’],
[’my’,’suicide’,’attempt’],
[’i’,’planning’,’to’,’end’,’my’,’life’],
[’i’,’planned’,’to’,’end’,’my’,’life’],
[’i’,’planned’,’die’],
[’i’,’planning’,’to’,’kill’, ’myself’],
[’i’,’tried’,’to’, kill’, ’myself’],
[’i’,’have’,’plan’,’kill’, ’myself’],

[’i’,’planning’,’suicide’]]

def phrase_finder(lst, phrases):
result = []
for i in range(len(lst)):
tweet = str(lst([i])
if all(word in tweet for word in phrases):
result.append (i)
else:

pass

136

return(result)

SItweets = []
for i in range(len(SIphrases)):
results=phrase_finder(Y,SIphrases[i])

SItweets.append(results)

indices = [item for sublist in SItweets for item in sublist]

unique = []
for i in range(len(indices)):
if indices[i] not in unique:
unique.append(indices[i])
else:
pass

unique.sort()

Y = [0]*len(df)
for i in unique:
Y[i] =1

daf[’Y’] = Y

if any(unique) ==
print (’TRUE’)
else:

print (’FALSE’)

df2 = pd.DataFrame(text)

df2[’Y’] =Y

137

TPSI

read_csv(’/Users/tylerbastian/Desktop/Fall 2021/Thesis/Rows.csv’)
for i in range(len(TPSI)):

row = df2[:1i]
#We need the last months worth of data from each author id.

df = read_csv(’/Users/tylerbastian/PycharmProjects/Stat766/RandomForestSI.csv’)

data = df[:100]

B.8 Random Forest SI Classification Training and Eval-

uation

After assigning tweets as showing signs of SI we then train 4 Random Forest models with

aggregated data to predict suicidal ideation 4, 7, 14, and 21 days in advance.

import pandas as pd

from pandas import read_csv
import random

import datetime

from datetime import timedelta

from dateutil.relativedelta import relativedelta

SIs = read_csv(’/Users/tylerbastian/PycharmProjects/Stat766/RandomForestSI.csv’)
len(SIs.author_id.unique())

controll = read_csv(’/Users/tylerbastian/PycharmProjects/Stat766/controltimelinepreds.cs

Y = [0]*len(SIs)

138

TPSI = read_csv(’/Users/tylerbastian/Desktop/Spring 2022/Thesis/Rows.csv’, header=None)
for i in TPSI[O]:

Y[l =1

SIs[’Y’] =Y

SIcons = SIs.loc[SIs.groupby(’author_id’)[’Y’].transform(sum)==0]

SIs

SIs.loc[SIs.groupby(’author_id’) [’Y’].transform(sum)>=1]

Y = [0] * len(controll)

controll[’Y’] =Y

unique = []
for i in controll[’author_id’]:
if i not in unique:
unique.append (i)
for i in SIcons[’author_id’]:
if i not in unique:

unique.append (i)

len(unique)

#to have 9% of our data be cases we need 3800 users in total
n = 3800 - 342

randusers = random.sample(unique,n)

controll.columns

control2 = controll[[’author_id’,’created_at’,’Anxiety’, ’Hopelessness’,’Burden’,
’Loneliness’,’Stress’,’Insomnia’,’Depression 1’,’Depression 2’,
’Depression 3’,’Subjectivity’,’Polarity’,’Y’]]

SIcons2 = SIcons[[’author_id’,’created_at’,’Anxiety’,’Hopelessness’,’Burden’,

139

’Loneliness’,’Stress’,’Insomnia’,’Depression 1’,’Depression 27,
’Depression 3’,’Subjectivity’,’Polarity’,’Y’]]

SIs = SIs[[’author_id’,’created_at’,’Anxiety’,’Hopelessness’,’Burden’,
’Loneliness’,’Stress’,’Insomnia’,’Depression 1’,’Depression 27,
’Depression 3’,’Subjectivity’,’Polarity’,’Y’]]

del(SIcons)

Controls2 = pd.concat([control2, SIcons2])

We have all our controls in one dataframe and our cases in another dataframe.

Controls = Controls2[Controls?2.author_id.isin(randusers)]

unique = []
for i in Controls[’author_id’]:
if 1 not in unique:
unique.append (i)

len(unique)

##Aggregate function
dates = []
for i in range(len(SIs)):
row = SIs.iloc[i]
if row[’Y’] ==

dates.append(row[’created_at’])

dates = list(pd.to_datetime(dates, format = ’%Y-%m-%d %H:%M:%S’))

SIdates [i.strftime (C’%Y-Ym-%d %H:%M:%S’) for i in dates]

SIdates = pd.DataFrame(pd.to_datetime(SIdates, format = ’%Y-%m-%d %H:%M:%S’))

SIdates[’end’] = SIdates[0] - datetime.timedelta(days=7)

140

SIstart = list(SIdates[0])

SIend = list(SIdates[’end’])

dates = pd.to_datetime(SIs[’created_at’], format = ’%Y-%m-%d %H:%M:%S’)

[i.strftime (’%Y-Ym-%d %H:%M:%S’) for i in dates]

dates

SIs[’created_at’] dates

SIs[’created_at’] = pd.to_datetime(SIs[’created_at’], format= ’%Y-Ym-%d %H:%UM:%S’)

SIusers = []
for i in SIs[’author_id’]:
if i not in SIusers:
SIusers.append (i)
ndays=7
def aggregate_users(ndays, SIs):
aggregated = pd.DataFrame(columns=[’Anxiety’,’Hopelessness’,’Burden’,’Loneliness’,’S
’Insomnia’,’Depression 1’,’Depression 2’,’Depression
’Subjectivity’, ’Polarity’])
for i in STusers:
df = pd.DataFrame(SIs[SIs[’author_id’] == i])
for j in range(len(df)):
row = df.iloc[j]
if row[’Y’] ==
date = row[’created_at’]
end = date-datetime.timedelta(days=ndays)

mask = (df [’created_at’]<=date)&(df[’created_at’]>=end)

a = df.loc[mask]
a = a.drop_duplicates()
a = a[[’Anxiety’,’Hopelessness’,’Burden’,’Loneliness’,’Stress’,

’Insomnia’, ’Depression 1’,’Depression 2’,’Depression

141

’Subjectivity’,’Polarity’]]
agg = pd.DataFrame(a.mean(axis=0)).transpose()
aggregated = pd.concat([aggregated,agg])

return(aggregated)

aggSI4 = aggregate_users(4, SIs)

aggSI7 = aggregate_users(7, SIs)

aggSI14 = aggregate_users(14, SIs)
aggSI2i

aggregate_users(21, SIs)
aggSI4.to_csv(’aggregateSI4days.csv’, index=False)
aggSI7.to_csv(’aggregateSI7days.csv’, index=False)
aggSI14.to_csv(’aggregateSIlddays.csv’, index=False)

aggSI21.to_csv(’aggregateSI21idays.csv’, index=False)

Controlusers = []
for i in Controls[’author_id’]:
if i not in Controlusers:
Controlusers.append (i)

len(Controlusers)

Controls = Controls2[Controls2.author_id.isin(randusers)]

Controls = Controls.reset_index(drop=True)

list(Controls[’created_at’])

dates

dates = [i.replace(’+00:00’, ’’) for i in dates]

controldates = pd.DataFrame(pd.to_datetime(dates, format = ’%Y-Y%m-%d %H:%M:%S’))

Controls[’created_at’] controldates

Controls[’created_at’] = pd.to_datetime(Controls[’created_at’], format = ’%Y-%m-%d %H:%V

142

def aggr

egate_controls(ndays, Controls):

aggregatedControls = pd.DataFrame(columns=[’Anxiety’, ’Hopelessness’, ’Burden’, ’Lor

for

retu

aggC4 =

aggCT
aggCl4 =

aggC21
aggC4.to
aggC7.to
aggCld.t

’Insomnia’, ’Depression 1’, ’Depression 2’,
’Subjectivity’, ’Polarity’])

i in Controlusers:

df = pd.DataFrame(Controls[Controls[’author_id’] == i])

row = df.sample()

date = row[’created_at’]

end = date - datetime.timedelta(days=ndays)

date = [i.strftime(’%Y-Ym-%d %H:%M:%S’) for i in datel

end = [i.strftime(’%Y-Y%m-%d %H:%M:%S’) for i in end]

mask = (df[’created_at’]==date[0])&(df[’created_at’]>=end[0])

a = df.loc[mask]

a = a.drop_duplicates()

a = a[[’Anxiety’, ’Hopelessness’, ’Burden’, ’Loneliness’, ’Stress’,
’Insomnia’, ’Depression 1’, ’Depression 2’, ’Depression 3’,

’Subjectivity’, ’Polarity’]]
agg = pd.DataFrame(a.mean(axis=0)).transpose()
aggregatedControls = pd.concat([aggregatedControls, aggl)

rn(aggregatedControls)

aggregate_controls(4, Controls)
aggregate_controls(7, Controls)
aggregate_controls(14, Controls)
aggregate_controls(21, Controls)
_csv(’aggC4.csv’, index=False)
_csv(’aggC7.csv’, index=False)

o_csv(’aggCl4.csv’, index=False)

143

’Depr

aggC21.to_csv(’aggC2l.csv’, index=False)

from sklearn.model_selection import train_test_split

import numpy as np

from sklearn.ensemble import RandomForestClassifier

from sklearn import metrics

import matplotlib.pyplot as plt

from sklearn.metrics import RocCurveDisplay

from sklearn.metrics import PrecisionRecallDisplay

from sklearn.metrics import precision_recall_curve

from sklearn.metrics import auc

from sklearn.metrics import classification_report, accuracy_score, confusion_matrix, Con

from collections import Counter

aggC4Y = [0] * len(aggC4)

aggSI4Y = [1] * len(aggSI4)

Y4 = np.concatenate([aggC4Y, aggSI4Y])
data4 = np.concatenate([aggC4, aggSI4])

x_traind, x_test4, y_train4, y_test4 = train_test_split(datad, Y4, test_size=0.33)

aggC7Y = [0] * len(aggC7)

aggSI7Y = [1] * len(aggSI7)

Y7 = np.concatenate([aggC7Y, aggSI7Y])
data7 = np.concatenate([aggC7, aggSI7])

x_train7, x_test7, y_train7, y_test7 = train_test_split(data7, Y7, test_size=0.33)

aggC14Y = [0] * len(aggC14)
aggSI14Y = [1] * len(aggSIi4)

144

Y14 = np.concatenate([aggCl4Y, aggSI14Y])
datal4 = np.concatenate([aggCl4, aggSIi4])

x_trainl4, x_testl4, y_trainl4d, y_testld = train_test_split(datald, Y14, test_size=0.33)

aggC21Y = [0] * len(aggC21)

aggSI21Y = [1] * len(aggSI21)

Y21 = np.concatenate([aggC21Y, aggSI21Y])
data2l = np.concatenate([aggC21, aggSI21])

x_train21, x_test2l, y_train2l, y_test2l = train_test_split(data2l, Y21, test_size=0.33)

###RANDOM FOREST

clf4 = RandomForestClassifier(n_estimators=10, random_state=42)

clf4.fit(x_train4d, y_train4)

y_pred4 = clf4.predict(x_test4)

print (’Accuracy:’, metrics.accuracy_score(y_test4, y_pred4))

feature_imp4 = pd.Series(clf4.feature_importances_, index= [’Anxiety’, ’Hopelessness’, ’
’Insomnia’, ’Depression 1’, ’Depression 2’, ’Depression 3’,
’Subjectivity’, ’Polarity’]).sort_values(ascending=False)

print(feature_imp4)

clf7 = RandomForestClassifier(n_estimators=10, random_state=42)
clf7.fit(x_train7, y_train7)

y_pred7 = clf7.predict(x_test7)

print (’Accuracy:’, metrics.accuracy_score(y_test7, y_pred7))

feature_imp7 = pd.Series(clf7.feature_importances_, index= [’Anxiety’, ’Hopelessness’, ’
’Insomnia’, ’Depression 1’, ’Depression 2’, ’Depression 3’,
’Subjectivity’, ’Polarity’]).sort_values(ascending=False)

print (feature_imp7)

145

clf14 = RandomForestClassifier(n_estimators=10, random_state=42)
clf14 . fit(x_trainl4, y_trainlé)

y_predl4 = clfi14.predict(x_test14)

print (’Accuracy:’, metrics.accuracy_score(y_testl4, y_predl4))

feature_impl14 = pd.Series(clf14.feature_importances_, index= [’Anxiety’, ’Hopelessness’,
’Insomnia’, ’Depression 1’, ’Depression 2’, ’Depression 3’,
’Subjectivity’, ’Polarity’]).sort_values(ascending=False)

print (feature_imp14)

clf21 = RandomForestClassifier(n_estimators=10, random_state=42)
clf21.fit(x_train21, y_train21)

y_pred21 = clf21.predict(x_test21)

print (’Accuracy:’, metrics.accuracy_score(y_test21, y_pred21))

feature_imp21 = pd.Series(clf2l.feature_importances_, index=[’Anxiety’, ’Hopelessness’,
’Insomnia’, ’Depression 1’, ’Depression 2’, ’Depression 3’,
’Subjectivity’, ’Polarity’]).sort_values(ascending=False)

print(feature_imp21)

ax = plt.gca()

y_pred_probad = clfd.predict_proba(x_testd)[::,1]

y_pred_proba7 = clf7.predict_proba(x_test7)[::,1]

y_pred_probald = clfld.predict_proba(x_test14)[::,1]

y_pred_proba2l = clf21.predict_proba(x_test21)[::,1]

fpr4, tpr4, _ = metrics.roc_curve(y_test4, y_pred_proba4d)
fpr7, tpr7, _ = metrics.roc_curve(y_test7, y_pred_proba7)
fpri4, tpri4, _ = metrics.roc_curve(y_testl4, y_pred_probald)
fpr21, tpr21, _ = metrics.roc_curve(y_test2l, y_pred_proba2l)

146

plt.plot(fpr4,tpr4, label = "4 Days")
plt.plot(fpr7, tpr7, label = ’7 Days’)
plt.plot(fpri4,tpri4, label = "14 Days")
plt.plot(fpr21, tpr21, label = "21 Days")
plt.legend(loc=’lower right’)
plt.ylabel("True Positive Rate")
plt.xlabel("False Positive Rate")
plt.title("ROC Curve")

plt.savefig("SIRF.png")

#Precision-recall

clfprob4 = clf4.predict_proba(x_testd)[:,1]
precision4, recalld4, _ = precision_recall_curve(y_test4, clfprob4d)

auc_rf4 = auc(recalld, precision4)

clfprob7 = clf7.predict_proba(x_test7)[:,1]
precision7, recall7, _ = precision_recall_curve(y_test7, clfprob7)

auc_rf7 = auc(recall7, precision7)

clfprobl4 = clfl1d.predict_proba(x_test14)[:,1]
precisionl4, recalll4, _ = precision_recall_curve(y_testl4, clfprobl4d)

auc_rfl14 = auc(recallld, precisionléd)

clfprob21 = clf21.predict_proba(x_test21)[:,1]

precision21, recall2l, _ = precision_recall_curve(y_test21, clfprob21)

147

auc_rf21 = auc(recall2l, precision21)

plt.figure(figsize=(12,7))

plt.plot(recalld, precisiond4, label = f’AUC 4 Days = {auc_rf4:.2f}’)

{auc_rf7:.2f}’)

plt.plot(recall7, precision7, label = f’AUC 7 Days

plt.plot(recalll4d, precisionl4, label = f’AUC 14 Days = {auc_rf14:.2f}’)

plt.plot(recall2l, precision21, label = f’AUC 21 Days = {auc_rf21:.2f}’)
plt.legend()

plt.ylabel("Precision")

plt.xlabel("Recall")

plt.title("Precision-Recall")

plt.show()

plt.savefig("PrecisionRecall.png")

##Confusion Matrices

cm4 = confusion_matrix(y_test4, y_pred4, labels=clf4.classes_)
CM4 = ConfusionMatrixDisplay(confusion_matrix=cm4, display_labels=clf4.classes_)
CM4.plot ()

plt.savefig(’CM4.png’)

cm7 = confusion_matrix(y_test7, y_pred7, labels=clf7.classes_)

CM7 = ConfusionMatrixDisplay(confusion_matrix=cm7, display_labels=clf7.classes_)
CM7.plot ()

plt.savefig(’CM7.png’)

cml4 = confusion_matrix(y_testl4, y_predil4, labels=clfl4.classes_)

148

CM14 = ConfusionMatrixDisplay(confusion_matrix=cml4, display_labels=clfl4.classes_)
CM14.plot ()

plt.savefig(’CM14.png’)

cm21 confusion_matrix(y_test2l, y_pred2l, labels=clf2l.classes_)

CcM21

ConfusionMatrixDisplay(confusion_matrix=cm21, display_labels=clf21.classes_)
CM21.plot ()

plt.savefig(’CM21.png’)

##plot single decision tree

from sklearn import tree

plt.figure(figsize=(10,20))

tree.plot_tree(clf2l.estimators_[0], feature_names=feature_imp21.index, filled=True)

plt.savefig(’SItree.png’)

from textblob import TextBlob

print (TextBlob.__version__())

features = pd.DataFrame(pd.concat([feature_imp4, feature_imp7, feature_impl4, feature_in
features.columns = ["4 Days", "7 Days", "14 Days", "21 Days"]

features.index

features[’Cons’]

plt.figure(figsize=(13,7))

plt.plot(features[’Cons’], features[’4 Days’], label = f’4 Days’)
plt.plot(features[’Cons’], features[’7 Days’], label = £’7 Days’)
plt.plot(features[’Cons’], features[’14 Days’], label = f’14 Days’)
plt.plot(features[’Cons’], features[’21 Days’], label = f’21 Days’)

plt.legend()

149

plt.

plt

plt.

plt

plt.

title("Feature Importance")

.xlabel ("Features")

ylabel ("Importance")

.show ()

savefig("FeatureImportance.png")

150

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Objective
	Mental Health Assessment
	Methodology
	Classification Analysis
	Evaluation Metrics
	Accuracy
	Precision
	Recall
	F-Measure
	Receiving Operating Characteristics
	Area Under the Curve

	Report Overview

	Tweet Extraction and Text Pre-Processing
	Suicidal Ideation Tweet Extraction
	Timeline Extraction
	Word Embeddings Application

	Emotion Classification
	Deep Learning Approaches
	Units in Neural Networks
	Neural Network Structures

	Feed-Forward Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory

	Convolutional Neural Networks
	Training and Validation of Neural Networks
	Neural Network Training Preparation
	Feed Forward Neural Networks
	Recurrent Neural Network
	Convolutional Neural Network
	TextBlob

	Results

	Suicidal Ideation Risk Assessment
	Decision Trees and Random Forests
	Decision Trees
	Random Forests

	Suicidal Ideation User Classification
	Suicidal Ideation Prediction
	Results
	Random Forest Scores

	Discussion and Conclusion
	Discussion
	Conclusion

	Bibliography
	Supplementary Figures
	Psychological Construct Neural Network Loss, Accuracy, and ROC curves.

	Supplementary Python Code
	Extract Twitter SI
	Extract SI and Control Timelines
	Collect Psychological Constructs and Controls
	Neural Network Evaluation
	Word2Vec
	Glove
	FastText

	Train and Evaluate Psychological Constructs
	Psychological Construct Classification
	Classify SI Tweets
	Random Forest SI Classification Training and Evaluation

