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I. Introduction
A. Overview

This report surveys distributed simulation, focusing on
the ®"link time" method of synchronization. Chapter 1
contains a tutorial on distributed simulatiion, covering
terminology and the modeling method. Chapter 2 surveys the
nlink time" method of synchonization and contains amn
overview of synchronization problems, and the link time
algorithm solution to the problems. Chapter 3 contains a
possible implementation of the algorithm using currently
available tools at Kansas State OUniversity.

B. Motivation

It has been common practice to simulate the behavior of
a physical system by the use of another scaled system. The
computer far and above has been the most popular device to
model such a system because of its great adaptability.
Simulation has been one of the most productive and ussful
applications of the computer. It allows the user to obtain
an approximation of the physical systems parameters in a
convenient time span that would be impossible to observe in
the physical system by conveational methods.

In the past, the simulation of physical processes has
largely been by discrete seguential simulation languages
such as SINSCRIPT [6] and GPSS [5], or at times by low level
assembler language. The majority of simulation models fit

nicely into this realm, but there is a subset that would
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perform best in a concurrent =anvironment. These are an
interesting class of systems that exhibit a high degree of
natural parallelisn. Computer systems, communication
networks and queuing networks are examples that are
inherently parallel, and, if supported by a concurrent
language and a multi-processor, potentially would rum to
completion in far less time than its sequential counterpart.

The cost of computer processing has pluameted over the
past two decades. This, coupled with the current
availability and growing popularity of the relatively slow
but very inexpensive mini and wmicro coamputsrs has brought
iistributed processing into the lime-light. These systeams
are an economically feasible and attractive altermative to
large main-frame installations. A simulation that would
execute on a multi-processing main frame would run just as
satisfactorily on a distributed network of smaller machines,
jiven that there is a simulation host and network protocols .
to support this activity.

. simolation host would provide the simulation
primitives and report facilities that are needed to perform
model simulations of physical systems. The network protocol
is the means by which the respective computers communicate
and synchronize their activities.

The performance of the distributed systam is dependent
apon the metwork communication protocol and the inherent

parallelism of the simulation model. A guszuing model that
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is run on this type of systea should perform significantly
better than it would rum if it were in 3 sequeantial-uni-

processor environment.

C. Overview of Simulation.
Simulations can be grouped into two sa2parate classes:

continuous-variable and discrete-event. The continuous

simulation systems depict the continuous change of variables
withina the simulation with ©respect to time; Physical
systems characteristic of differential equations, where tine
is the independent variable, are of this type. The
discrete-event class of simulations change state in discrete
time incrzaments and are iastantaneous in ©nature. The
following is a common analogy of the two systeas: a
continuous system can be compared to an analog wrist-watch
(having continuously wmoving hands), whereas a discrete
system is the digital counterpart displaying one secoad
intervals. Simulations of ths type described earlier (i.e.
gueuing network, etc.), £all into the discrete-event
category.

Time, with respect to computer simulation, most
jenerally is an abstraction or scaled as compared to the
real system and the real system's time span. That is, the
state of the simulated system at a certain simulated time
will correspond to the :eai system at some corresponding

discrete point in time.
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A simulation can also be driven in one of two modes of
simulated time: event or gigg-dgiven. Time driven refers to
the simalation clock being updated in fixed increments which
iefine 3 simulation interval. 3411 of the changes in the
state of simulation in the present interval are simulated to
that point in time before proceeding to the next clock
update. Whereas, in an event-driven system the simulated
time increases monotonically (i.s. non-decreasing), but not
necessarily in fixed increments. The increaents represent
times at which the state of the simulation changes, that is,
corresponding to events in the system. To achieve the
maximum amount of parallelism from the simulated system, the
event driven method will be used for the distributed
simulation system design presented in this paper.

The m@modeling of event-driven systems is most easily
represented by directed graph structures. A physical
process might be represented as a node in the graph and

could be thought of as a prodacer-consumer, source or sink

process. The producer-consumer processes have the
responsibility of +the intermadiate nodes in the respective
graphs, wherszas a source is a process with no input links

and a sink is a process with no output links.
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AN EXAMPLE OF A DIRECTED GRAPH

kR kkk sk kkkkokik ki

KkEEkrxkkkkkikk gk xkk
* * * * * * * *
¥ Sourca ¥—-—-—--—>*% Process i *¥--—-->% Process i+1 *¥-——==D>% Sink *
* * * * * * * *
Rk kkkkE ERkRkkk kR Rk Kk kkkkk KRk kkkkk kkkkkkEE
Source Consumer /Producer Sink
process ~ process process
Pigure No. 1
Figure 1 illustrates a Sourca process
connected to a consumer/producer process and then
it, in turn, is connected to another
consumer /producer. The 1last process 1is a sink.
the inter-process communication would proceed in
the direction indicated by the arrows.
RREREEEEEXRXRRRE kkkkkERRkRkRXKE
* Kmmm Dk *
4==—e=———ee—->%x PROCESS i+1 * * PROCESS i+4 *
! * x =Dk *
1 REERREXEREREREE |  KERKERRXEEXEREXK
L 1
e T *kkkkgkrkkkkrrR |
* * * , *x 1
*# PROCESS i #*==——>% PROCESS i+2 *--+ ,
* * * *
ek de ok ook ok ok ok ok EREEERERERKR LK
1
! ' Rk REREEERERE KR EEREEERRRERXKER
1 * * * *
#-———=—===—=>% PROCESS i+3 *=--=-->*% PROCESS i+5 *
* * * *
dededdeck kg kkkkk kg kkkpkikikk

HULTI-NODE CONNECTED GRAPH

Figure No. 2
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By definition, the event times at each node BRmust not
decrease in simulated time seguence. This allows a node to
merge the events arriving at that node via its input links
into the correct time seguence.

In the area of multi-processor systems there is yet
another classification of simulation methodology thaf must
be applied to the design of this systen. This

classification is that of tight or loose-coupling. These

variants refer to the maintenance of nodal simulation time
{or process clock values). If each nodal process is allowed
to monitor its time independent of the nodes in the graph it
communicates with, +then it is called 1loosaly-coupled. Bat
if all nodes in the graph maintain the same clock time, then
it is called tightly-coupled.

The loosely coupled system allows the most fresedom to
gach node. Any node or process vwhose sequence of states
does not depend upon its ancestors 1is allowed to proceed to
the next event at that node whenever possible. This concept
blends nicely with the desired performance of the envisioned
simulation system. By using the 1loosely-coupled event--
driven characteristic for the design of this system, each
process achieves the greatest amount of autonomy by allowing
each process to step its simulation time forward to the time
of the 2arliest event at that node. To achieve this system
characteristic requires the executiomn of an algorithm in

gach component node to determine, based on the information
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received from its ancestors which ianfluence its state
changes, whether or not it can step 1its simulation time
forward.

Micro apnd mini computers, when configured into a
directed graph configuration, form a network called a
loosely-coupled distributed systenm. Because these machines
share no memory, they are forced to communicate over cable
or telephome link communication systems. This is the type
of computer network that will most likely be available to
the mser of a distributed astwork, and most other network
topologies can be configured to represent a directed graph
if pecessary.

How can a network of amicros be configured to represeat
some physical system that is of interest to the user, and at
the same time achieve the greatest amount of parallelism
from the individual machines. The machines must be kept
executing user code at any particular point in time. The
basis of this system is built around the concurreat
structuring concept. To get a better idea of what is
involved in this area, it is nov time to esnlist some help
from one of the patriarchs of concurreat programaming, Per
Brinch Hansen. He states in reference [3] that he inveats a
program structure "...by drawing pictures of it from
different viewpoints over and over again until a simple and
convincing pattern emerges®™. The picture that results takes

the form of directed grapks naormally representing data flow
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or access. This is what must be domne in the conversion of a
physically concurreant system to a 1logically concurreat
system for computer simulation. Those actions that are
characteristic of a particulaf -physical process should be
included in that 1logical process and those pertinent to
another physical process should be grouped im yet another
logical process, within the system configuration. A model

of a short order restaurant might be represented by:

EZAMPLE OF SHORT ORDER RESTAUORANT

s e de e o ok ok ok kK
* *
* WAITRESS i *-—---+
x % 1
de ek kkikE ik gk 1
! tEE L2222 22 2 £ 4 2 2 EE 222 E 2 2 22 § 3
. +==> 11 1111 o * *
. 11111 ke—D% COOK *
. +==> 1 111 11 % * =
! % % 3 3 3% % ek ok ko ke 3k Xk Ak e e e o ek ok ok ok ko ok
e e ok e ek ek ook Rk Kk !
* * ! ORDER SHORT ORDER
* JAITRESS n *——-—-+ QUEUE PROCESS COOK
* =
ki ki

FPigure No. 3
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This scheme can be used om any physical system that can
be partitioned into a set of parallel processes that
communicate with one another exclusively via messages. Any
interaction between physical processes can be modeled as a
message sent between the respective processes. The physical
system that is to be simulated will be represented by a
directed graph, and there will be an arc connecting the
adjacent nodes if and only if the respective processes
communicate with each other. A nessage 1is sent by a
producer process to a coasumer process at any point inm real
time in the physical system to represent an event in the
physical systeam. This action can be modeled by a message
tuple (TIME,MESSAGE) from the producer process to the
consumer process in the simulated system at that point in
simulated time. The system is asynchroneous. The key is
the encoding of time as part of the inter-process message.
By the encoding of time ih the message, syachronization of
the system's processes can be achieved without the use of a
jlobal clock.

Given a network of processors, the simulation can now be
decomposed into its components and distributed over the
network. An ideal implementation of this system would be to
allocats onme process per processor. In this way the
greatest amount of parallelism would be achieved, for no

time sharing would be needed in this system.
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II. The Algorithm
A. Choice of Algorithm

Earlier iiscussions‘ have centered around the need and
description of a distributed computer network along with the
conceptual modeling of physical systems. HNow, an algorithm
aust be developed to drive each compoment process within the
network. This algorithm was proposed by Peacock, Wong and
Manning in reference [10] and in references {9,12] by Chandy
and Misra.

This algorithm has been explicitly designed for the
loosly-coupled event-driven network of computers and should
provide the parallelism necessary to model <coancurrent
systems efficiently. As mentioned in the introduction the
loosly coupled method of simulation will allow a producer
process as a member of a directed graph, to update its clock
to the time of the earliest event at that server. This
property of the envisioned system could provide reasonably
good performance from an inherently parallel simalation
nodel. Given that a node commands this amount of autonomy,
how does it dJetermine the sarliest event time and what
synchonization probleas arise in these graphic
configurations? These questions need to be answered for a
completa understanding of the network operation and for some
insight to the performance characteristics of the
distributed network.

As mentioned earlier the only means a process has to
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communicate to its adjacent process is via a message (TIME,
MESSAGE) . This communication can be Dbased upon aay
protocol, but to save buffer space a simple protocol,
designed by Hoare, will be used for the description of the
algorithm. A message is transmitted <£from the producer to
the consumer if and only if the producer is waiting to send
a message to the consumer and the consumer is waiting to
Cceceive a message from the producer.

Two restrictions must be placed on the system to ensure
the proper process synchronization and that the simulated
system actually represents the true physical system. These
aré:

i) Event times across the link are monotonic--ie.

non-decreasing. (an event-driven attribute).

ii) The output of a producer at any given time
depends only on the messages it has received
before that time and its own logic. (All
physical systeas exhibit this characteristic.)

These restrictions imply that at any given time a
producer may decide to send a message to a consumer. The
decision to send a message and the content of the message
are determined by the producer from the messages it has
received (its message history). The behavior of a producer
or consumer at any point in its simulated time cannot be
influenced by aessages received after it has updated its
clock beyond that point in time. This dimplies that if a

producer sends a message to a consumer at some point in its

local simulation time then all messages have been simulated
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ap to that point in time. The restriction of non-decreasing
event times is a <characteristic of naturally occuring
systens and cannot be violated. fhis is also reflected
within the simulated system and will result in erroneous
results if simulated time were allowed to decrease with
respect to physical time in the system.
B. Synchronization Probiems r
In a system in which processes communicate exclusively
with messages, there are bound to be syanchronization
problems. Figare (4) depicts such a problem:

COMMUNICATION LINK TIME COMPARISON

{01 }rt { 02 }jrt
{ 05 }st { 15 }st
! 1
| &kkkkkkkkkkkERkx |
! = * 1
+=————————=-=>% Process 2 ¥ !
L] * +10 units * !
1 ERkEEBREFXKEXKEE 1
kR k R Rk kAT RE 1 §  kkxkRExkkkkEkkd
* * + - >k *
* Process 1 = * Process 4 =
* +5 units * e e el b *
*kkkkkkdok kxkkkk 1 EREEKEXXEXKEREREE
! stk ook Rk KRR
1 * *

P oo ————Df Process 3 x
! * +#10 units *
! sk ek ak ok ok k
1

{ 06 jct {
{ 00 }st {

irt
}st

O Ul 4= 1w g 45 4 im 4

-0

LINK TIMES {rt : real time, st : simulated time }
( with respect to systeu)

Pigure No. 4
Figure 4 illustrates that a physical message
could arrive at process 4 by the upper route in

less time than the lower route, but after it in
simulated time.
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A message sent from node 1 to node 3 and then on to node
4 could be proceeded in real time by a message sent the
1-2-3 route even though it was generated 1later than the
first message due to slight variations inm link speeds. This
is due to the instantaneous time updates characteristic of
the simulation system. That 1is, in real time the two
aessages will be sent practically simultaneously so that in
all practicality the second message generated could arrive
ahead of the first logical message.

To resolve this problem a coavention must be accepted.
A process 3ust not update its local event clock until it has
received the next time update from all its producer
processes. To implement this convention the consumer and
producer processes nust maintain a link time for each arc or
link connecting the respective nodes of the graph. This
link time is to that point in simulated time which the two
processes have simulated the inter-conmecting arc.

A process can calculate its lookahead or next event by
selecting the m@minimum arrival time as given it by 1its

producers as shown in Figures (5) and (6)-.
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EVENT TIME CALCULATION

PRt b2 £ ¥jkkkgEkpkkeRk ki kkkkEkkhkkk ki Sfkkkkkk
® %* *x *x * : *x x
¥ Sourca *---->% Process i *---->% Process i+1 #¥--=-=>% Sink *
* * { * +10 units * | * +5 units x| * x
Kk 1 kg kkkkkkkkkkk 1 ki kfkkilk t ke ki
! ! !
{00 -> 5 => 10} {10 -> 20 -> 30} {15 -> 25 =-> 35}

Figure No. 5

This pipeline model illustrates the
calculation of the lookahead of the next event at
the respective node. Process i adds 10 units to
the time it has received from the source. It thezn
transmits the message to the mnext process i+1. It
then updates it's local clock to that value. The
same procedure is followed at process i+1, and
then finally by the sink process.
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MERGING PROCESS EVENT TIME CALCULATIOR

{00 => 05} {01 =-> 03 -> 06 -> 05}
! !
R EREREREE 1 1
* * ! !
*¥ source 1 ¥=====% !
® = ! H
dok ok ok kol ok 1 !
EEERERRXKR KRR LR 1 RkFRRERR RS
=% % 1 * *
¥ Process i Fe————me———=D% sink =
+==>% +1 units * * *
1 EEEREEREREERERE Rk ok KRk kR
Rk kkEREXKE 1 ; '
* * 1
* source 2 ¥————-—+
* 3% !
kkkkhkEkkE !
!
{02 -> 04}

Figure No. 6

The next event at process i would be the

minimum arrival time as given it by its producers.
But if there is no message on an input link, as depicted in
Figure 7, the consumer is undecided as what to do and no
further computing can proceed at that node. The systenm is
deadlocked until a message is sent to the process via the
lower link to resolve the stalemate. A lower bound of all
arrival times at that node is needed to insure the next

event is the true next event.
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DEADLOCK EXAMPLE

{00 -> 05 -> {05 =->
!

1 kkkkdkkkkkkkkikEk

1 * *

$mmwmmew==3k Process 2 *

* +5 units *

sum e 4ua $48 dms Sed gum Bem

|

! YT TI T T E TR T T

1 L
E¥EEEEE R KRR REE 1 TR R L
* * PO — % *
* Process 1 * * Process 3 *
* Fmemm—m————— >% *
o e ok ek e o ek Kk kK ko 1 EkkkkkkkkkkkRg

!
{empty}

Figure No. 7
GIVEN:
Process 1 sends messages 2 00, 05, 10 to process 2
Process 1 sends messages @ 20, 40, 60 to process 3
Process 2 takes 5 units to perform simulated task.

SEQUENCE OF EVENTS:

Process 1 send a message (00,M1) to Process 2
Process 2 send a message (05,M41) to Process 3
Process 3 now waits on Process 1 (empty link)
Process 1 send a message (05,M2) to Process 2
Process 2 waits to >utput (10,M2) to process 3
Process 1 waits to output (10,d43) to Process 2

Deadlock.
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There are three solutioas proposed for the
synchronization problems given. The first solution
will only partially remedy the problem. If there is
unbounded storage at the process node for message storage
then a process can maintain a lower bound on the event time
communicated to the process by its prdducer process, and
hope in time that am input in the empty link will eventually
arrive as shown in figure (8). This will allow the process
to update its clock to that event. Using this solution on
the surface seems to have solved the problem. The processes
must eventually communicate or the 1link would not have been
created. However, there are some process configurations
which this solution will not free from this stalemate. 1In
the configuration shown in Figure (9) each of the outer
nodes is waiting on the adjacent node to communicate. This
type of problem is exemplified by the <classic dining

philosophers situation.
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UNBOUNDED BOUFFER SOLUTION

{00 => 05 -> 10} {05 => 10 => 13}
1

1 Rk EREkRRKKRERK
! x *
+=======-=3>% Process 2 ¥

dom $aN gas Swi gay $A8 gug Wl

! * +5 units *

[ *kEERRRERRRRERK

! !
ETEE T 2 LT 2o ! dedkkok kR RR RR KR KR
* * et & *x
* Process 1 * ¥ Process 3 *
* Fe o o e e e e S B *
EREEEXERREXRRER ! EEEEERREREERERXK

!
{20 => 40 => 60}

Figure No. 8

Both process 1 and 2 camn continue sending
messages. Process 3 vill eventually receive the
message (20,M4) from process 1.
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WAITING RING EXAMPLE

2 waiting on 1

{elgtr}

okl ok ek Rk k kR kK ! kkkkkkkkkkbkkkE
* * 1 * *
¥ Prooess 1 Werrresssesearerere o >* Process 2 ¥
* * * *
d ek kk kR Rk deoteookde ok ok ok kR Rk &

N ! ! !

! 1 AERERRRREREERE R XK ! 1

' ! * * ! !

! +==-=>% Process 3 ===+ !

! * * !
{empty}--! b bi bl Lhd ittt 1-- {enpty}
! 4 !

! ! !

1 sEkrkrRRkRkRRkREE 1
! * * !
+==========-¥ Pprocess 4 ket

1 waiting on 4 * * 4 waiting om 2

kkgRRkERRERkEREERE

Figqure No. 9

In this configuration, if each of the outer
links becomes empty then deadlock will occur.

C. Controller Process Solution
The second solution is to allow the network to deadlock
and then initiate a computation whereby the various
processes can update their local clock values. This would
involve the creation of a special process whose sole purpose
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is to synchronize these actions and resolve deadlock.
The algorithm performs in the following fashior using
the following seguence of computations:

i) Parallel phase: Run simulation uantil systenm
deadlocks.

ii) Phase interface: Initiate a computation
vhereby the various processes can advance
their local clocks.

When the network deadlocks the interface phase is
initiated. In a sequential simulation of the eveat-driven
type, each process logs the time of its next output into an
avent-list, assuming it receives no further inputs. This
list is maintained by the simulation host. The event-list
is scanned for the smallest logged time and this value then
becomes the next event within the system being simulated.

The same method for resolving the deadlock can be
initiated with the concurrent simulation. All processes
within the simulation are waiting to either input or output
a message tuple (TIME,MESSAGE). This tuple corresponds to
the next possible event at <hat respective node being
serviced by 1its server processes. These event times
correspond to an event list within the sequential
simulation. The controller process detects deadlock and
requests communication of the clock values from each of the
processas Hithfn the simulation. The controller then uses
these times +to calculate a lower bound on the next event
time to be transmitted to each of its consumer processes

involved. oOnce this lower bound has been determined the
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corresponding event time and message tuple 1is updated at

this node, and the correspoanding tuple transmitted.

This sequence of events is repeated until all processes

have been restaried. It can be shown that there is at least

one restartable node within the deadlocked network (ref.

(127 .

The algorithm that each process must execute to

'inplement this deadlock solution is given in Figure (10),

and the algorithm for the controller in (11).

PROCESS ALGROITHHM

Algorithm for each Process

initially: clock value is 0 for every line

LOOP:

End-loop

(hence Process clock value is 0 for every Process);
"pefine this Process to be resumable if it is
waiting to output along some line;"

Communicate with controller:

"this phase is entered initially and upom coampletion
of minimum-event computation"
send a signal to controller stating whether or not
this Process is resumable;

Simalate:
using the algorithm of Figure [12]

Compute Minimum of Process event times:
"this phase is entered upon detection of deadlock.
Controller sends a signal to each Process to enter

this phase.™

_avent time =: miniazum accross input links from ancestors

End=-algoritha-for-Process.

Figure No. 10

(21)



Algorithm for the Controller

Loop:

rteceive signals from all Processes as to whether or not
they are resumable;
receive sigpnals denoting deadlock;
send sigpnals to all Process's to initiate minimum-event
computation

End-loop

End-algorithm-for-controller.

Figure No. 11

D. Null Message Solution

The third solution involves the creation of NOLL
messages. At each fork of the directed graph null messages
are sent to the consumer processes. In this case null means
carrying no state change information for the next event.
The tims coapoment of the aessage is the next event time for
which the consumer process can calculate its lookahead.
This allows the consumer process receiving the null message
to update its clock to a new lookahead value, and resolve
the deadlock, +thus not allowing any sinmulated time update

to go unnoticed by a merging process.
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NULL MESSASE SOLUTION

{00 -> 0S5 -> 10} {05 => 10 =-> 15}

! !

§  kkkEkkkkkikkkkx 1

! * * 1

Sl >* Process 2 ¥ !

! * +5 units * !

] kkkERRkkkRkkEKE |

1 t H
kkkkkkkkkkrkkkk 1 1 kkkkkkkEkEEkkEkE
* * PO . —D% *
* Process 1 * * Process 3 *
* e —— - >k *
Exkikkk kkkFhRkk 1 e ¢ e e 36 e e oke ke ek ke e 3k

]
[(00) => (05) => (10) => 20 => 40 => 60}
(null) messages, only carry time information

Figure No. 12

Deadlock is avoided by process 1 sending the
time staaped "NOLL" messages over the link to
process 3.

As can be seen, deadlock is avoided "from the logic of
each of the individual processes even though each process's
logic is independent of the overall structure of the
network" [9]. If the physical system is prone to deadlock
then the modeled systema will also deadlock imn a similar
fashion. Time and null messages will continue to flow
through the network, just as the physical systen. If the
physical system deadlocks, time continues to advance but all
activity correspoanding to events within the system have

(23)



stopped. The simulated system whould also behave in this
manner.
E. The Time Link Algorithm
After the initialization of the simunlated system, each
process vwithin the <connected graph repeats the £following
sequenca of events until the simulation terminates:
1. (selection) -> a set of lines are selected

for which parallel I/0 will be initiated for
the cycle.

2). (computation ) -> for every line selected
above, determine the next (TIME, MESSAGE)
tuple to be transmitted along that line.

3). (I/0 operation) =-> carry out the parallel I/0
operation for the set of lines selected in
step (1).
1) Selection
The selection of the set of input and output 1lines is
based upon the clock value of the process, in that, this is
the clock value of that node and this value of time for any
jiven consumer or producer is defined as the maximum time
satisfying this requirement:
All subsequent messages (TIME, MESSAGE) sent or
received by a process i must have a value of time
greater then the nodal clock value.
Thus the set of possible communication links is that set
of all input lines with a clock value egual to the value of

the clock at that process unioned with those output lines

with clock values equal to or greater them the 1lookahead of
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that process. The clock value of a line is that value to
which both processes on each end of the arc have simulated
it. The value of the logical process clock is that value to
which it has been simulated. Before wupdating its 1local
clock the process must communicate omn all lines calculated
in the selection phase. These link time updates nust be
communicated to the consumer process so that their next
event can be calculated. All output lines with values of
the line clock that are equal to the value of the lookahead
(next event) are not included in the set of available
communication lines.
2). The Computation Phase Algorithm

From the history of an arc a determination of the node's
state can be assessed and the proper (TIME,MESSAGE) tuple
sent to the consumer process. The history refers to the
sequence of all tuples (TIME, MESSAGE) corresponding to
messages sent at or before the present value of simulated
time, that is, it is a complete history of the messages
transmitted along the respective arc at or before that point
in physical tinma.

There are two cases for which a tuple must be sent over
the arc, These are:

Case 1 - Where there is a message to be transmitted

across the arc in that time period, and for

this case the value of the tuple would be
(TIME, MESSAGE).

(25)



Case 2 - Where there is no message to be transmitted
to the next node, implying a state change,
but still a "NULL" must be sent, to allow the
receiveing process to update it's respective
local clock.
The value of the time output omn the arc is greater than
the previous value of the arc and lesser than or egqual to

the value of the next event at that node.

Time(arc) < Time(message) <= Time(next event)

The output operation will increase the o0ld value of the arc
to the value of the next event computed in this phase after
the transmitting of the (TIME, MESSAGE) value. If the tuple
contained a NULL message then the local clock is updated to
the value of the lookahead after transmission. Case 1
calculates all the non-null aessage values whereas Case 2

computes all null message values.

3) I/0 Operation

I/0 operation involves waiting inm parallel to input and
output 3long the lines selected in phase 1 along with the
process of updating the link clock value and the value of
the message for every selected I/0 line. If the tuple
(TIME, MESSAGE) is received or sent on any of the selected
lines, as a result of the selection process, the value of
the last message and time are immediately updated within the
logical process to the transmitted tuples value.
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Initialization

The local variables needed for each nodal process are:

T_LST_REC, M_LST_REC -> last tuple received on a certain
line at the beginning of the selection step for each inpat
line initially set to ZERO, the line has been simulated up
to time ZERDO. The message is set to NULL.

T_LST_TRNS, M_LST_TRNS -> maintained for each output line to
represent the last tuple transmitted on that line at the
beginning of the selection stzp, initially set to (0, ¥ull).

T_NXT_TRNS, M_NXT_TRNS -> denote the next tuple to be
transmitted in every output line. This value is computed.

T_L_CLK -> the clock value of the logical process. This is
initially set to 0.
Termination

For system termination, it 1is required that the
simulation continue to the value TIME_TERM (clock value at
termination ) as long as the c¢lock value of the process has
a value of less than this time the process must execute the
three steps given earlier. The process' line clock should
have a value equal to the TIME_TERM at terminatioam. But,
there is a chance for the clock to have a value of greater
the TIME_TZRM, in this case the value should be set egual to
the value of TIHE;TEBH, because no events at his node will
occur between TIME_TERM and the nevwly calculated value.

This line should not be used for further I,/0.
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Performance

The performance of the system is directly affected by
the efficency of the communication system, fhe interaction
of the individual processes and the synchronization of the
process. The communication of the process involved the
network as a whole and the protocol used may well vary with
performance in the configuration and also by the
communication process itself.

Any loop within the system will reduce the performance
of the system, for the processes within the 1loop are
requirel +to maintain the same local <clock valae. The
synchronization of the process, at least in using algoritham,
is expensive, 1in that the use of nuoll messages cause
problems in the production and volume of messages
transversing the network. Every fork in the graph doubles
the number of messages hangled by the network as a whole.

A summary of the algorithm is presented in Figure (13)
and a full proof of correctness of the simulation can be

found in (9]
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LINK TIME ALGORITEHX

PROCESS i = PROCESS

"Leclaration and Initialization of Variables"

T_LST_REC := 0; " for all "
M_LST_REC := 'NOLL'; "ipputs®

T_LST_TRES :=0; " for all ®
¥_LST_TRNS := *'NOULL'; "outputs®

T_L_CLK := 0;
WEILE T_L_CLK < TIME_TERM DO;
"Select set of input/output lines"

I/0_SET := (INPUTS | T_LST_BEC = T_L_CLK)
union {OUTPUTS | I_LST_TBNS = T_L_CLK <= LOOKAHEAD};

"Computation of next event, Dext message tuple”

FOR OUTPUTS IN I/0_SET DO;
IF CASE1 THEN TOPLE(LINE) := (TIMEZ, MESSAGE);
ELSE TUPLE(LINE) := (TIME, "NOLL"™ );

IF TIME > T_TERM TEEN TUPLE(LINE) := (T_TERE, "NULL®);
"Input and Output Operation®

POR OOTPUTS IN I/O0_SET DO;
WBRIIE (TUPLE (LINE)) ;

T_LST_TRNS, M_LST_TRNS := TUPLE (LINE);
END; "DO" :

FOR INPUTS IF I/O_SET DO;
READ (TUPLE(LIKNE)})
T_LST_BEC, M_LST_REC := TOPLE(LINE);
END; "DO™
nCompute local process time"

T _L_CLK := MIN(T_LST_REC, T_LST_TRNS)

ERD; "WEILE"
END; "Process"

Figure ¥No. 13
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III. The Implementation
A. Overview

The implementation of tha proposed algorithm involves
these two aspects: 1) a simulation host, and 2) a network
protocol or operating system which will support this type of
process coamunication. Most simulation 1languages do &mnot
provide the desired structuring ability needed to model
nodal processes as a connected graph, nor do they provide
the synchronization primitives needed for this environment.

It goes without saying that a coancurrent prograa
probably would not perform as well as its sequential
counterpart if only one processor were allocated to the
program as a whole. The increased speed is achieved when
the program's processes are allowed to execute concurrently
@sing more them one processor to distribute the workload. A
concurrent programming language siaply forces the programmer
to think in a concurrent fashion along with providing the
concurrent primitives and environment to eXercise this
freedoa. Concurrent Pascal is a language that was designed
and implemented Dy Per Brinch Hansen and does provide the
concepts of classes, nonitars and processes needed to
implement a system based on a concurrent environment.
Zoncurrent Pascal was created specifically to implement what
could be termed as "event-driver" systems such as operating
systems and real time control systems. It would naturally

follow that it would be be a proper choice <for this system
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design.
B. SIMMON, Simulation Host

SIMMON is a simulation monitor that has been developed
at Kansas State OUniversity and is based on concurrent
Pascal. It provides the simulation primitive and
synchronization needed to construct and implement directed
graph simulatioas. SIMMON is based on SOL, a simulation
language that describes the features that have been
implemented within this monitor. SIMMON, as it stands, is a
tightly-coupled event-drivea simulation monitor and
executes oaly within a uni-processor environment. It will
need to be modified to support both network communication
and loose=-coupling for this system design. The goal of the
envisioned system is to obtain the greatest amount of
inherent parallelism from the modeling processes. To be
able to achieve this goal the system must exhibit the
loosely-coupled event-driven system characteristic.

The SIMMON monitor allows the user to comstruct
scenarios or coancurrent processes that represent the nodes
of the directed graph figure (2). Each node coantains the
information and code to determine its actioas or
responsibilities with respect to the systean. These
scenarios are actually sequential Pascal programs that are
synchronized via the monitor itself and contain calls to
this monitor at points of shared resource access and eveat

logging. This allows the monitor to synchronize the use of
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the shared resources along with collecting statistics on the
performance of the simunlated system. Some of the primitives

the SIMMON monitor offers are:

i) "SEIZE"™ and "RELEASE" a facility
ii) "WAIT-TIME", "WAIT-RAND"
iii) "INCREMENT_COUNT"

iv) MSIGNAL" and "WAIT" for an event

C. Nadex Operating Systea

SIMMON will be interfaced to Network Adaptable Executive
(NADEX) a network operating system which was developed and
implemented at FKamsas State Oniversity. This facility
provides the communication protocol and lays the groundwork
for the structuring of distributed communication between
host machines.

NADEX is a message based multi-user network operating
system, and is also written in C-pascal. Nadex provides the
facilities for coastructing software configurations. These
configurations carn be thought of as being made up of
componets. Each componet may consist of coambinations of
other componets or subcomponets. A4 node, which is
implemented by a process in the Core 0S is the wmost
primitive coaponet and can perform one of two functioms. It
may provide access to other system resources or can perfornm

as a Coocurrent or Sequential Pascal program. Communication
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between components is achieved by naming ports [11] of each
node that are to be connected and then "READ"ing and
W"WRITE"ing on these buffered ports. This connection is
established by a DTS-DATA TRANSMISSION STREAM. NADEX allows
the user to construct these coafigurations at interpretation
time. These configurations are dynamic in nature and can
contain cycles.

Figure (15) contains a diagram of a three machine model
of school registration. It is a fifteen  process
implementation of the distributed system going from the
physical system to the 1logical model and then to the

physical computer system orgamization.
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Going from the logical model to the computer model state
involves the breaking down of the system to combine those
processes that interact most 2ften and placing those upon a
single node of the computer. If more computers are
available a further breakdown <can be made until only one
scenario belongs to a single host computer.

Bach of the host machines execute a resident SIANMON
monitor by which +the 1local processes synchronize. The
monitor coordinates and collects the data on the 1local
processas and provides «calls to the NADEX operating system
to communicate with a SIMMON resident on another host
machine. In this way resources shared between machines and
synchronization primitives needed to coordinate processes
which communicate with distributed processes on @achines
across the network. The monitor's activities will not
interfere with the algorithm functions, nor will it
substantially degrade the network performanca2. It is needed
purely to collect statistics and provide resource sharing
along with enhancing the flexability of the system as a
tool. In this way resources shared between machines and
synchronization primitives needed to coordinate processes on
aachines across the network, can be found in one centralized
location.

' D. System Modifications
Every time a scenario updates its 1local <clock or

calculates a new event time it enters the SIMMON monitor and
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axecutes the algorithm that was explained earlier. Since
this algorithm is shared by all processes only one copy of
the code is needed and a substantial savings in code is
gained in local process or scenario size. Modificatioas to
the system's scenarios are easy to manage in this manner.
The 1local data needed for the event calculations and
iistributed synchronizations are also maintained within the
mopitor —removing all of these responsibilities from the
logic of the simulating processes.

Since the SIMMON monitor was originally amn event-driven
system the code that manipulates the scenarios will need to
be replaced by the algorithm's method of synchronization.
Processes Wwill be delayed in the momitor until the
communication sequence is completed, which allows it to
update its local clock to the next event. To achieve the
maximum amount of input/output from the systenm a
communication process will be created within the monitor as
a static process for every input and output line that
crosses a machine boundary. This will allow each logical
process a coamunication link process to, in effect, balance
the work load.

The SIMMON monitor uses the master process concept for
simulation initiation and termination. This concept needs
to be extended to the design of the distributed network.
During che initialization of the network, one master network

process must be created with slave ipitialization process on
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the corresponding SIMMON hosts. Upon initialization, these
processes communicate shared resources, communicate process
and other data needed for the global system such as
termination time. This will add one more process to the
others resident upon the respective nodes. The master
process content will depend uponl the model of the network
itself. 2And will provide calls to the momitor to inform it
of the master node, and the communication to support network
initialization.

This design will deal with only the algorithm and the
communication process alterations to SIMMON. Other changes
in event scheduling will be dealt with in the actual
implementation of the wmonitor, because not all systea
changes can be forseen in this implementation design.

Upon termination the master process must initiate a file
transfer of the statistics collected upon the other host
nodes. This file transfer would just be another prefix call
to the NADEX Operatiang System. This information is
collected within one £file resident on the master processes
Host <computer, providing a centralized location for

statistic collection.

Communication Process
Upon initialization a communication process will be

brought up to correspond to each input and output line on a
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node. The algorithm that would achieve this coammunication
interface would appear:
Commnication process

Cycle;
FOR ALL I IN COMMUNICATION SET

DO;
IF I IN INPUT SET THEN
READ_PARM ( I , tuple)
SIMN. MESSAGE_BUFFER.PUT
IP I IN OUTPUT SET THEXN
SIM.MESSAGE_BUFFER.GET
WRITE_PARM (I, tuple)
Forever
END
The scenarios of the envisioned systeam would contain
just the logic to simulate the activities of the physical
system being simunlated. This can be done with "WAIT-EVENTSY
and "SISNAL-EVENT" accompanied with "WAIT-TIME"™ for the time
update mechcanisa.
Notes on Performance
Overhead in the systen is contribauted to the
commanication system and the interaction of processes, and
the synchronization of the processes. 1 problem with some
jistributed systems is that there is such a large volume of
communication required, that the time regquired to rua the
jistributed program is not significantly 1less than the time
regquired to run a seguential prograan.
Empirical evidence [12] suggests that the null message
approach to deadlock avoidance is expensive because of the

large namber of messages transmitted are null messages.
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IV. Concluding Remarks
| A survey of the area of distributed simulations has been
the main thrust of this report. The computer industry is
gearing up for the possible development and advancement
within the distribated arena. L.conplete understanding of
jistributed systems is needed before the users of such
systems can utilize these advantages +to the atmost. This
report surveyed the published material on distributed
simulation with emphasis upon the link time algorithm. A
great deal of emphasis is being placed upon distributed
processing as local networks and multiprocessor systems are
becoming more and more prevalent in industry. Using the
algorithms presented within this paper, distributed systems
can be made to perform tasks that in the past have been
thought of as unmanageable, due to synchronization probless
and communication protocol. Distributed tools such as the
ones proposed within this "paper are needsd to bridge the
"computer-user® software gap. Computer models are growing
more complex as users are asking more from the computer
simulation hosts. Their demands usually focus upon greater
flexibility and £faster turnaround. The proposed design
would allow the user more freedom in thz simulation of
inherently parallel wmodels.

It is the modeler that has the biggest factor in the
modeling process. If the configured model does not uphold

the rules of concurrent structuring, <then little could be
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axpected from the increased speed and flexibility this
design. This report contains two "link time"™ algorithms for
possible implementation with existing tools at Kansas State
University. These  algorithms should be viewed as possible
alternatives to the current simulation systeas. Since
concurrent Pascal 1lends itself nicely té "event-driven®
systems and both of the existing tools (SIMMON and NADEX)
novw utilize C-Pascal as a host language, the modificatiom to
the systems should be just another step in the evolution of
tools such as SIMMON and NADEX, and the development of tools

for the users of distributed networks.
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ABSTRACT

This report describes a na2twork simulation system design
using a 1link time method of synchronization. The design
atilizes two existing tools that were developed at Kansas
State University: SIMMON, a Simulation facility and NADEX,
a network operating system. The topic is presented in this
fashion:

1) An overview is given of simulation in a

distributed environment.

2) An in-jepth description of the algorigthm used
in the system design is preseated.

3) A Jescription of a possible inmplementation of
the algorithm is given using SIMMON and NADEX as
host envoironments.

The report contains a tutorial om distributed simulation
along with descriptions of modifications to SIMMON that
allows it to perform in this distributed environment. The
joal of the work described in this report is to preseat an
alternative to sequential simulations which don't provide
the capablilty for concurreat processing multiple processor
facilities. This proposed system would allow the user to

decompose a modeled system among a network of computers so

that the workload could be distributed amony then.



