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Abstract

There are many approaches to detect if an app is malware or benign, for example, using

static or dynamic analysis. Static analysis can be used to look for APIs that are indicative

of malware. Alternatively, emulating the app’s behavior using dynamic analysis can also

help in detecting malware. Each type of approach has advantages and disadvantages. To

complement existing approaches, in this report, I studied the use of Twitter data to identify

malware. The dataset that I used consists of a large set of Android apps made available

by AndroZoo. For each app, AndroZoo provides information on vt detection, which records

number of anti-virus programs in VirusTotal that label the app as malware. As an additional

source of information about apps, I crawled a large set of tweets and analyzed them to

identify patterns of malware and benign apps in Twitter. Tweets were crawled based on

keywords related to Google Play Store app links. A Google Play Store app link contains the

corresponding app’s ID, which makes it easy to link tweets to apps. Certain fields of the

tweets were analyzed by comparing patterns in malware versus benign apps, with the goal

of identifying fields that are indicative of malware behavior. The classification label from

AndroZoo was considered as ground truth.
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Chapter 1

Introduction

This report is focused on Android malware detection. A large number of malware apps

enter different markets such as Google Play Store, Amazon App Store, AnZhi (GoAPK),

AppChina and App Store, and can cause significant damage and losses. For example, the

Trojan malware is able to harvest accounts and photos stored in smart phones. Nowadays,

more and more people are using payment apps like AliPay, Apple Pay, PayPal, and there are

serious concerns about mobile security and issues caused by malware apps. There are many

approaches that can potentially identify malware apps, in particular approaches based on

static and dynamic analysis. Static analysis can be used to look for APIs and permissions that

are indicative of malware, while dynamic analysis can be used to emulate the app’s behavior

and identify malicious behavior. Each type of approach has advantages and disadvantages.

In this report, I consider an approach that can complement existing approaches. Specifically,

I study the use of Twitter data in identifying malware.

Twitter is one of the most popular social media platforms in the world. Twitter records

a large amount of data about many topics as posted by users. Among other things, Twitter

data includes information about Android malware. We hypothesize that it is possible to

use Twitter data to analyze and possibly detect malware. Even if the analysis in this

report cannot definitely tell if an app is malware or not, it can potentially complement other

methods for detecting malware and increase the confidence in malware classification.
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Towards this goal, we start with a large set of Android apps provided by AndroZoo (Allix

et al., 2016). These apps have been scanned for malicious behavior using VirusTotal (Sood,

2017), and the labeled inferred based on the scan will be used as ground truth labels. In

addition to the information available in the dataset, we also crawl a large number of tweets

related to Android apps based on Google Play Store app links, which facilitate matching

tweets to apps. We analyze different fields in the tweets crawled, with the goal of identifying

fields that are indicative of malicious behavior. In particular, we study: tweet language

to identify the most frequent language for malware tweets versus benign tweets; tweet text

to identify text patters used in malware versus benign; and tweet user metrics to identify

characteristics of users who post tweets about malware by comparison with users who post

tweets about benign apps.
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Chapter 2

Data Collection and Preprocessing

There are two main data sources used in this work: tweets about Android apps and app

information.

2.1 Tweet Data Collection

This section is about downloading tweets. All tweets were collected from Twitter using the

Twitter Streaming API.

I used two crawlers. One is from Jordan DeLoach (TweetCollector.scala), and the other

one was written by myself (TwitterStreamDownloader.py). For the Python crawler, each

downloaded file, crawled by this crawler, contains about 300 tweets. Each tweet is saved

as a single line. The structure of the tweet object can be found in Twitter developer page

(https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object).

The target data consists of tweets with Google Play links. Thus, the string

“play.google.com/store/apps/details?id=” would be a great keyword that allow to check if

tweets contain Google Play links. However, Twitter Streaming API does not accept keywords

with special characters, for example “/”, so the string “play google com store apps details id”

as the search keyword, instead of the exact URL in “twitterStream.filter(track=keywords)”

is a better choice. This means all the words in the search string, split by space, have to
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occur in the tweet to satisfy the search requirement. Space in this case can be considered as

“AND”. (Note: If using “play,google,com,store,apps,details,id” as keyword, any words split

by comma found in tweet can meet the requirement. Comma in this case is considered as

”OR”.)

Twitter Streaming API is provided by Twitter, and only pulls real-time tweets. Details

of this API can be found in Twitter developer web page (https://developer.twitter.com).

The new script that I wrote, TwitterStreamDownloader.py, will be discussed in the rest

of this section. Before running the script, a few things need to be installed: Python3,

tweepy. Keys required for API are OAuthAccessToken, OAuthAccessTokenSecret, OAuth-

ConsumerKey and OAuthConsumerSecret. These keys are authenticated by Twitter.

When running this crawler, one will get output like the one shown in Figure 2.1, which

provides information on what file and what tweet in each file the crawler is working on.

Figure 2.1: The output of the crawler is printed in the format A-B/C. Each file contains C
(300) tweets, which amount to about 1.4MB. The first line says the crawler is crawling the
185th tweet (B) in the 105th file (A).

The content of the directory where the files are written looks like in Figure 2.2

Figure 2.2: In the directory with downloaded files, the number after ”part” is the date and
the time when the file was crawled.

4



2.2 Import AndroZoo’s App Data to MongoDB

The app information together with malware or benign information from VirusTotal is avail-

able from AndroZoo. The app information can be dowloaded from Androzoo’s website as a

file named “latest.csv”. I imported the dataset to MongoDB for easier management. I also

stored the app data file in some directory for future reference.

There are 11 columns in this CSV file. Details are in Fig 2.3

Figure 2.3: Example of app in the latest.csv file. Any of sha256, sha1 and md5 can be
considered as ID for the app. But uniqueness is not guaranteed for some of them. In these
IDs, sha256 is the strongest one but takes more space. The fields we need to use are sha256,
pkg name and vt detection. The vt detection field gives the number of anti-virus programs
that consider this app as malware.

MongoDB was installed by typing:

$ brew install mongodb

Pymongo was installed by typing:

$ pip install pymongo

Subsequently, one can run MongoDB by typing:

$ services start mongodb

Finally, one can import the entire file to MongoDB by typing following command in

Terminal (where “latest” is the collection name for the app data.)

$ mongoimport -d <database name> -c latest --type csv

--file <path of source file> --headerline

5



2.3 Preprocess Tweets and Import to MongoDB

This section is about preprocessing the tweet data and storing it into MongoDB.

The script I used is called “mongoDBConnection.py”. The script removes duplication of

tweets, inserts several fields to tweet objects, and finally imports the objects into MongoDB.

The reason for using NoSQL is that SQL databases do not handle json files very well.

Before running the script, there are a few things to do. First, install pymongo. Then

in order to avoid duplication of tweets, it is necessary to create an index for the tweet ID

(“id str”). Enter MongoDB shell by typing “mongo,” then type the following code (“tweets”

in the command is collection name I use for the tweet data):

> db.tweets.createIndex( { id_str:1 }, { unique:true } )

Now, we are ready to run the script. This script firstly reads useful data from the

collection “latest”. Performance would be low if the script read the entire collection, so I

only select applications in Google market. Then, group the data by package name, calculate

average of “vt detection”. This processing is described in Fig 2.4.

In Google Play market, each app has unique app ID which is the package name, however,

in collection latest, one package name may correspond to multiple “sha256”s, since different

releases of an app are also recorded in the original Androzoo’s CSV file. So, it is useful to

evaluate the final detection based on all releases for each APP. If package name is unique in

collection “latest” then classify app based on the “vt detection” as shown on the left side of

Fig 2.5. However, if the package name is not unique, getting the average of “vt detection”

is the simplest way to evaluate if APP is malware or not, and the labeling in this case is

described on the right side of Figure 2.5. For example, if an APP has 100 releases, 99 of

them have 0 in “vt detection” field, 1 of them has 1, then average is already greater than

0, which means it would be defined as a unknown instead of benign if using left side of the

figure.

Next, the script reads files whose names end with “.dist”, from the given directory. When

it finishes importing tweet data, it’s always good to check if duplicates exist in the collection

by typing following code in mongo shell.
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Figure 2.4: NoSQL query steps to select data from the latest collection and save it to a
dictionary.

> db.tweets.aggregate([{"$group":{"_id":"$id_str",

"count":{"$sum":1}}},{"$match":{"count":{"$gt":1}}}])

An example of tweet crawled in json format is shown in Figure 2.6. Several fields

are added into tweet objects when running the script. These fields are “appid list”, “ap-

pid clas list”, “result clas”, “mal counter”, “ben counter”, “und counter”, “unk counter”

and “une counter”. “appid list” is a list of Google Play app’s IDs in each tweet. Since

Google Play app contains app ID in its URL, it’s easy to get the ID from the URL. Also,

each tweet may have multiple links, which explains why I uses a list of IDs. Furthermore,

if a tweet contains two app links, one of which is malware and the other one is benign,

then this tweet can be classified as both benign and malware. Thus, “app clas list” contains

7



Figure 2.5: This figure describes how to classify benign, malware, undefined and unknown
based on the average of vt detection

the class of each app in “appid list”. The type of an app can be “mal” (malware), “ben”

(benign), “und” (undefined), “unk” (unknown) and “une” (does not exist in the collection

latest). “mal counter” is a count of malware APPs in “appid list”, similar to “ben counter”,

“und counter” and “unk counter”. “result clas” is the evaluated type of the current tweet

based on appropriate defined rules. In this case, I define rules like this: if tweet contains

malware’s id, this tweet is classified as “mal”. Then, if tweet doesn’t contain malware id but

contain benign id, this tweet is classified as “ben”, then undefined, unknown and the IDs

non-existent in the collection “latest”.

Before we describe the analysis performed, here is a brief summary of the crawled data.

As shown in Table 2.1, the total number of tweets with Google Play links is 1651101. Out of

this, 1030641 tweets contain benign APP links, 435 contain malicious links, 113874 tweets

contain undefined and 113320 tweets contain unknown links. As can be seen in the table,

the total number of tweets is smaller than the sum of the four classes, as some tweets may

contain multiple app links.

Table 2.1: Data crawled
Total Google Tweets Benign Malware Undefined Unknown

1651101 1030641 435 113874 113320
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Figure 2.6: Example of one raw tweet downloaded by crawler.
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Chapter 3

Tweet Language Analysis

The analysis in this chapter is based on data imported to MongoDB as described in Chap-

ter 2. The focus of this chapter is on understanding how the languages of tweets relate to

different classes of apps. Most crawled tweets contain Google Play links, and these links

correspond to specific apps. We study if there is a correlation between malware or benign

apps and the language of the tweets that refer to those apps. we assume it is not possible to

identify malware just based on language, although the language information might be useful

in increasing the confidence in a malware prediction.

3.1 Query Data from Database

In order to do the analysis, we need to use language(”lang”) frequencies of each class in

”appid list”(”mal counter”, ”ben counter”, ”und counter”, ”unk counter”). In the tweets

collection, group tweets by language and calculate summation of occurrence of corresponding

class’s counter. Some sample input and output tables are shown in Figure 3.1.

The script used for this analysis is ”mongoDBLanguageAnalysis.py”. The packages we

need to use are ”dash” and ”pymongo”. The package ”dash” is used for data visualization.

10



Figure 3.1: This figure shows how useful data is queried from database in this script.

3.2 Language Analysis Results

The results in this section are based on the script described in Section 3.1.

Figure 3.2 shows that the English based tweets contain more malicious links, as compared

to any other languages.

Figure 3.2: Count of malicious tweets for each language in descending order of the counts.
x-axis shows the language code, y-axis shows the number of tweets in the corresponding lan-
guage.

Figures 3.4, 3.5, and 3.6 show the counts of tweets in benign, undefined and unknown

apps, respectively, sorted in decreasing order by language.

However, if we consider the total number of malicious English tweets, the result may

not be surprising as the number of tweets in English is larger than the number of tweets in

any other language. To gain a better understanding of language correlation to malware, we

show the malware rate for each language (see Figure 3.3). The IDs not in latest.csv are not
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considered when calculating the malware rate.

Figure 3.3: Rate of malicious tweets relative to the total of each language in descending
order.

Figure 3.3 shows that ni (Spanish-Nicaragua) has the highest malware rate (count of

malicious ni tweets / count of total ni tweets), followed by ja (Japanese), then en (English).

While the rate of malicious apps per language by itself cannot be used to classify tweets, it

may still help in classification. As can be seen, the malware rate of a language is very small,

given that a lot more tweets are about benign apps. The malware rate only tells us which

language occurs more frequently in malicious tweets. We also study if the percentage of each

language from a particular class may be useful with respect to malware analysis. Figures

3.8, 3.9, 3.10 and 3.11) show the percentage of each language in each class, but we cannot

gain many insights from these figures. The percentages for English (en) tweets in the four

classes are higher than those of all other languages. In malware class, about 70 percent of

malicious tweets’ language is English.

The conclusion of this analysis, is that language analysis cannot help much in detect-

ing malware, but it informs us about the language with more malicious tweets and higher

malware rate.

Furthermore, Figure 3.7 shows the counts of tweets for each language in descending order,

for tweets that refer to apps that are not in the file retrieved from AndroZoo. These apps

may be missing from the AndroZoo dataset for many reasons, e.g., Google Play removed

those apps based on users’ reports before AndroZoo got access to them.

12



Figure 3.4: Count of benign tweets for each language in descending order of the counts.
x-axis shows the language code, y-axis shows the number of tweets in the corresponding lan-
guage.

Figure 3.5: Count of undefined tweets for each language in descending order of the counts.
x-axis shows the language code, y-axis shows the number of tweets in the corresponding lan-
guage.

Figure 3.6: Count of unknown tweets for each language in descending order of the counts.
x-axis shows the language code, y-axis shows the number of tweets in the corresponding lan-
guage.
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Figure 3.7: Counts of tweets for each language in descending order. These tweets’ links
are not in AndroZoo’s dataset. IDs may be missing from the dataset for many reasons, e.g.,
Google Play removed those apps based on users’ reports before AndroZoo got access to them.

Figure 3.8: This figure shows each language’s percentage in malicious tweets. x-axis shows
the language. y-axis is percentage of each language. e.g., rate of English(en) = number of
English malicious tweets / number of total malicious tweets.

Figure 3.9: This figure shows each language’s percentage in benign tweets. x-axis shows the
language. y-axis is percentage of each language.
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Figure 3.10: This figure shows each language’s percentage in undefined tweets. x-axis shows
the language. y-axis is percentage of each language.

Figure 3.11: This figure shows each language’s percentage in unknown tweets. x-axis shows
the language. y-axis is percentage of each language.
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Chapter 4

Word Clouds

This chapter shows tweets’ word clouds for four classes which are malware, benign, undefined

and unknown. A word cloud figure tells which words occur more frequently in specific classes

of apps based on the size of the words.

4.1 Retrieve Tweet Text from Database and Prepro-

cess the Text

Firstly, we need to pull the field “text” from the tweet object and save it to a file. The

script I use is “tweetTextGetter.py”. Third party packages we need to use are “nltk” and

“pymongo”. Type the following code to install “nltk”. Installation of ”pymongo” was

introduced in Section 2.2.

$ pip install nltk

Additionally, stopwords need to be downloaded, but one can also use his or her own

stopwords list.

$ python3

>>>import nltk

>>>nltk.download()

16



#click corpora select stopwords and download

What this script does is to pull the text from tweets whose ’mal counter’ is not empty,

then clean and save all text to a file called ’text mal clean’, and do the same thing to generate

’text ben clean’, ’text und clean’ and ’text unk clean’.

The cleaning procedure is described in what follows:

Step1: Replace all URLs by single space. Showing URLs in word clouds may also be

good, but for easier coding, I remove the URLs first.

s = re.sub(r"http\S+", r" ", s)

Step2: Replace non ASCII strings with single space.

s = re.sub(r’[^\x00-\x7f]’,r’ ’,s)

Step3: Convert strings to lowercase.

s = s.lower()

Step4: Remove punctuation.

translator = s.maketrans(’’,’’,string.punctuation)

s = s.translate(translator)

Step5: Remove extra spaces and line breaks.

s = s.replace(’\n’,’ ’)

s = re.sub(’ +’,’ ’,s).strip()

Step6: Tokenize the strings by single space and use Porter Stemmer to remove stopwords.

Remove individual numbers but keep the numbers that appear in words, as it would be

interesting to see some user name such as ”Bob9090.” ’is number’ and ’is stopword’ are

functions to check if the string can be converted to a number or if it is a stopword.

17



stemmer = PorterStemmer()

s_list = [stemmer.stem(word) for word in s.split(’ ’)]

for ele in s_list:

if is_number(ele) or is_stopword(ele):

pass

else:

s = s + ele + ’ ’

Step7: Remove last space of the string.

s = s.rstrip()

I keep the message after “at sign” and “number sign” to see what results I get. If data after

“at sign” and “number sign” has been removed, then some user name and tag related data

is missing.

4.2 Generate Word Clouds

This section describes how the word cloud graph was generated. An ’R’ script uses the files

cleaned as described in the previous section, and outputs the word cloud graph. Simply run

the script in RStudio and it would show word cloud in Figure 4.1.

Cosine similarity is also calculated between the text of all malicious tweets and the text

of a test tweet, and between the text of all benign tweets and the text of a test tweet, and the

results are shown in Figures 4.2 and 4.3. More specifically, in the cosine similarity analysis, I

have two groups of data, one is for testing and the other one is a control group. Both of the

groups have some malicious tweets. For control group, I collected text of all these malicious

tweets of it, clean and save to a text file called mal text clean control. For testing group, text

of each tweet in it is cleaned and saved to single line of a text file called mal text clean test.

For each line in mal text clean test, it’s highly possible that there are many empty lines since

some tweets only contain url which would be cleaned and that’s why count of 0 is high in

Fig 4.2. For testing group, I also have a file called ben text clean test, which is testing queries

18



of benign tweets. Figure 4.2 shows the cosine similarities between mal text clean control and

mal text clean test. Figure 4.2 shows the cosine similarities between mal text clean control

and ben text clean test. The pattern of benign histogram is clear and most of testing queries’

similarities are less than 0.5 and that’s what I predicted. However, malicious text doesn’t

have a clear pattern, one possible reason for this is that there weren’t enough malicious

tweets for testing.

Figure 4.1: This figure shows result of word clouds. Four categories are shown in four
sectors. The larger in size, the greater frequency of words occur in documents.

19



Figure 4.2: This figure shows result of cosine similarities, y-axis is ranges of cosine simi-
larity. x-axis is counts of tweets in that range.

Figure 4.3: This figure shows result of cosine similarities.
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Chapter 5

User Features Analysis

User’s features are valuable fields in the tweet object, since these fields always have defined

values. This ensures we have enough data to analyze. Since we already know if a tweet is

malicious or benign based on the links inside the tweet, we can assume that users who posted

a malicious tweets are malicious users, with respect to that tweet, while users who post benign

tweets are benign users, with respect to that tweet. This categorization allows us to study if

there are any differences between features of malicious users and features of benign users. The

features I use are statusesCount, friendsCount, favouritesCount and followersCount under

user’s fields. These fields, statusesCount, friendsCount, favouritesCount and followersCount,

count the number of statuses, friends, number of favourites and number of followers of a user

account.

5.1 Establishing a Benign Boundary based on User

Features

First of all, we plot the distribution of user’s statusesCount for malicious and benign tweets

in Figures 5.1 and 5.2, respectively.

The results of these two figures are not very obvious by themselves. However, what if I

extend the diagram and see where count of malicious or benign tweets tend to be zero. If
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Figure 5.1: User’s statusesCount distribution for malicious tweets. x-axis is the range of
statusesCount and y-axis is total tweet count whose statusesCount falls in this range and
contain malicious links.

the count of malicious tweets tends to be zero around 10000 and the count of benign tweets

tends to be zero around 20000, then tweets in range 10000 to 20000 can be defined as benign

tweets. Table 5.1 shows maximum value of each user’s feature for benign and malware apps.

As can be seen all maximum values of features from benign tweets are much greater than

those from malicious tweets, and this information can be used to increase the confidence in

malware predictions.

Table 5.1: Maximum Value of Each User Feature
User Feature Max of Malicious Max of Benign
statusesCount 274140 5866889
friendsCount 21386 1132141

favouritesCount 62856 851896
followingCount 122514 10838666

Figure 5.3 merges the information from Figures 5.1 and 5.2 (the y-axis shows the number

of statusCounts for the corresponding statusCount value on the x-axis). Let’s assume that

we get maximum statusesCount of malicious tweets at point A in figure and maximum

statusesCount of benign tweets at point B. Then, we can assume that the tweets whose
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Figure 5.2: User’s statusesCount distribution for benign tweets. x-axis is the range of
statusesCount and y-axis is total tweet count whose statusesCount falls in this range and
contain benign links.

statusCount is between A and B are benign tweets. Based on Figure 5.3, let’s say there are

n apps in the range (A,B), and the total number of apps in the dataset is N, then based on

this method, (100*n/N) percent of total apps can be defined as benign. Furthermore, let’s

assume that I get application IDs of these APPs and save these IDs to a list, then I do the

same analysis for other user features (friendsCount, favouritesCount and followersCount),

and get 3 more lists, merge all these four lists, and remove duplicates. Finally, I get an

application ID list without duplication. Then, I divide the length of the previous list by the

total number of apps in the dataset. The result is the percentage of benign apps that I can

filter out by this method. Let’s see if the method work.

After running the code, I got 1298 benign app IDs and 14462 total app IDs. Thus, the

rate of benign apps identified by this method is 8.975 percent, which is not very large, but

it can still provide useful information that can be used to enhance the results of another

malware detection approach. We will try something different in the next section.
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Figure 5.3: This figure merges Figures 5.1 and 5.2. From This figure, it’s obvious that if
we get maximum statusesCount of malicious tweets which is point A in figure and maximum
statusesCount of benign tweets which is point B, then the tweets whose statusesCount are
between A ans B values can be defined as benign. Further more, the apps linked to these
tweets can also be defined as benign.

5.2 Analysis of User Features Using a Larger Data

The first method used in this section was also used in (DeLoach and Caragea, 2017), and

is described in what follows. For each tweet, we get its user features and calculate the

percentage of tweets whose feature values are lower. Then, calculate the average value from

the above percentages, as shown in Figure 5.4. The average values for four user features

are shown in Table 5.2. In this table, percentage differences between malware and benign

are almost 10 percent in Statuses, Friends and Favourites fields. So when testing a tweet,

the values of statusesCount, friendsCount, favouritesCount and followersCount fields in this

table can be used to infer how likely it is that the tweet is a malicious tweet versus a benign

tweet. Correspondingly, we can predict if the link contained inside of the tweet is malware

or benign. Same way for benign, if testing data’s features match the percentages listed in

this table, then we can predict this tweet is benign.

Another method I used to perform analysis based on user features is as follows: for each

feature, count the number of tweets in each class (malware, benign, undefined and unknown),
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Table 5.2: User Feature Analysis Results (Method 1)
Class Statuses Friends Favorites Followers

Malicious 0.393397 0.600186 0.740938 0.538870
Benign 0.500075 0.499252 0.625510 0.505283

and save the counts in a dictionary. When testing tweets with Google Play links, search the

user features’ counts of these testing tweets in the dictionary and get result percentages of

each classes. Following is what that dictionary looks like.

main_dict = {

"statusesCount":{

count1:{"mal":malcount1,"ben":bencount1,"und":undcount1,"unk":unkcount1},

count2:{"mal":malcount2,"ben":bencount2,"und":undcount2,"unk":unkcount2},

count3:{"mal":malcount3,"ben":bencount3,"und":undcount3,"unk":unkcount3},

...

}

"friendsCount":{...}

"favouritesCount":{...}

"followersCount":{...}

}

Now, I have the data for testing: ”statusesCount”: 233, ”friendsCount”: 0, ”favouritesCount”:

7, ”followersCount”: 24. Then, the program would find out what is in main[”statusesCount”][233],

main[”friendsCount”][0], main[”favouritesCount”][7] and main[”followersCount”][24] - this

information is shown in Table 5.3. So, the malware rate in statusesCount field is calculated

like this: 4/(4+7+0+1), and benign rate is 7/(4+7+0+1), etc. Finally, the program would

get the result in Table 5.4. Based on result, this testing tweet’s link is more likely to be

undefined in statusesCount and favouritesCount fields, malicious in friendsCount and benign

in followersCount. Before using this method, it’s better to prepare equal amount of tweets

in four classes. Otherwise, for example, if number of benign tweets is much greater than

malicious tweets, the rate of malware prediction would be lower than expected.
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Table 5.3: User Feature Analysis Count Results (Method 2)
feature malware benign undefined unknown

Statuses 6 2 87 3
Friends 24 2 5 0

Favourites 55 23 86 67
Followers 21 38 26 9

Table 5.4: User Feature Analysis Rate Results (Method 2)
feature malware benign undefined unknown

Statuses 0.061 0.020 0.888 0.031
Friends 0.774 0.065 0.161 0

Favourites 0.238 0.010 0.372 0.290
Followers 0.223 0.404 0.277 0.096

One limitation of these two methods is that they analyze each field independently. For

example, testing on one tweet may suggest a 0.70 probability that the tweet is malicious

based on the statusesCount field, and 0.90 probability that the tweet is malicious based on

friendsCount. It would be interesting to merge the two pieces of information into a final

conclusion.
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Figure 5.4: This figure shows how I get results of Table 5.2. List1 and List2 are data
read from mongoDB. List1 corresponds to user features from malicious tweets and List2
corresponds to user features from benign tweets. Step1 simply merges these two lists and
it’s used for getting sorted lists. In this experiment, four features are used which means
the merged list needs to be sorted by different features. Four sorted lists are produced and
these lists are sorted in ascending order. The reason I sorted these list increasingly is that
these indexes can be used directly to find the number of tweets with lower feature counts (ex:
statusesCount). Then, process step3. What step3 does is iterating through List1 and List2,
calculating number of tweets with lower feature counts, then append to a new list. Since we
are processing tweets from two 2 lists (benign and malware) for 4 groups of user features,
eight lists are produced. Finally, calculate the average of the numbers of these eight lists.
Those are results we get in Table 5.2.
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Chapter 6

Conclusions and Future Work

Each feature is analyzed separately. For language analysis, the malware rate of each language

may not be able to suggest malware individually. One thing we can tell from this analysis is

that if the tweet’s language’s malware rate is higher than language’s benign rate, it is more

likely that the tweet is a malicious tweet. For word clouds analysis, we have observed that

each category (malware, benign and so on) has specific pattern of words. Furthermore, the

cosine similarity can roughly tell if a tweet contains malicious links or benign links, if there

is enough quantity of malicious tweets’ text in the document. The more text is collected,

the more accurate the similarity results get.

As mentioned before, a larger dataset gives better results. More data still needs to be

crawled. Once we have enough data, some rare fields like location and coordinates can be

used to understand which areas have more malicious links and potentially draw dot-density

maps. Also, users who posted tweets with malicious links can be added to a black list. It

would also be good to get the possibility of malware tweets by analyzing language, location,

and if the user posted malicious tweets, cosine similarity of text and user features together.

Additionally for some analysis in this report, using machine learning would be good choice,

and that’s what I plan to do as part of future work.
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