

COLOR BASED CLASSIFICATION OF CIRCULAR MARKERS FOR THE

IDENTIFICATION OF EXPERIMENTAL UNITS

by

LAKSHMI NARJALA

B.E., University Of Visveswaraya College of Engineering, Bangalore, India, 2010

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing And Information Sciences

College Of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2013

Approved by:

Major Professor

Dr. Daniel Andresen

Abstract

The purpose of this project is to analyze the growth of plants under certain lighting

conditions. In order to ensure ideal lighting for all plants under demanding conditions like lack of

optimal light due to shadowing, side wall reflections, overlapping of plants, etc., pots are rotated

manually in an irregular fashion. To keep track of the position of these plants from time to time,

a marking system is used for each tray of 16 plants. These markers are unique for each tray High

definition surveillance cameras placed above these plants capture the plant images periodically.

These images undergo image processing. Image processing should be able to identify and

recognize the plants from the identification markers that were placed within each tray and

thereby draw the statistics about the growth of the plants. Hence the computing part of this

project is all about extracting the identity of a plant through image processing.

Image processing involves object and color recognition. Fiji, an image processing tool, is

used for object recognition and the Python image module called “Image” is used for color

recognition. Object recognition accurately locates the position of these circular objects and

measures their size and shape. Color recognition identifies the pixel values of these circular

objects. Finally the code corresponding to three-element groups of these circular units is fetched

and stored. This code gives the identity of the tray and, therefore, each plant.

The timestamp that is stored with each plant image along with the code fetched through

image processing is used to track the location of a plant in the plant chamber through time.

Table of Contents

List of Figures ... v

List of Tables ... vi

Acknowledgements ... vii

Dedication .. viii

Chapter 1 - Introduction .. 1

Chapter 2 - Requirement Analysis .. 2

2.1 Related Work .. 2

2.1.1 Bar Code .. 2

2.1.2 QR Code ... 2

2.1.3 Radio-Frequency Identification ... 3

2.2. Requirements ... 3

2.2.1 Software Requirements .. 3

2.2.2 Hardware Requirements ... 3

2.3 Feasibility Study ... 4

2.3.1 Economic Feasibility ... 4

2.3.2 Behavioral Feasibility .. 4

Chapter 3 - System Architecture and Methodology ... 5

3.1 System Design .. 5

3.2 Methodology / Concepts ... 8

3.2.1 Image Processing ... 8

3.2.2 Color System .. 9

3.2.3 Object Recognition .. 10

3.2.4 Fiji .. 11

3.2.5 Macros .. 12

3.2.6 Plugins .. 12

Chapter 4 - Implementation .. 14

4.1 Code Generation ... 15

iv

4.2 Pre-Process .. 18

4.2.1 Color Segmentation ... 19

4.2.2 Despeckling .. 20

4.2.3 Gaussian Blur ... 22

4.2.4 Remove Outliers .. 24

4.2.5 Analyze Particles ... 26

4.3 Calibration .. 28

4.3.1 Make poster .. 30

4.3.2 Preprocess the poster .. 32

4.3.3 Identify all the squares ... 32

4.3.4 Get bulk colors ... 35

4.3.5 Compute correction method ... 36

4.4 Decoding ... 36

4.4.1 Assembling circle centers .. 37

4.4.2 Check for complications .. 37

4.4.3 Average the pixel values .. 38

4.4.4 Classify color ... 40

4.4.5 Get the code that belongs to these three dots ... 41

Chapter 5 - Testing.. 42

Chapter 6 - Conclusion ... 44

Chapter 6 - Future Work ... 45

Chapter 7 - References .. 46

v

List of Figures

Figure 3.1 System Architecture .. 5

Figure 3.2 Experimental setup .. 7

Figure 4.1 Block Diagram of the Work Flow ... 14

Figure 4.2 Different color codes ... 15

Figure 4.3 Five Primary colors ... 16

Figure 4.4 Plant image .. 17

Figure 4.5 Block Diagram of Pre-Processing ... 19

Figure 4.6 Color Segmentation ... 20

Figure 4.7 Before Despeckling: Image background is not clean .. 21

Figure 4.8 After Despeckling: Background is now uniformly black .. 21

Figure 4.9 Before and After Color Segmentation ... 22

Figure 4.10 After Gaussian Blur and After adjusting Threshold .. 23

Figure 4.11 Before and After Color Segmentation ... 23

Figure 4.12 After Gaussian Blur and after adjusting Threshold ... 24

Figure 4.13 After color segmentation ... 25

Figure 4.14 After despeckling... 25

Figure 4.15 After remove outliers ... 26

Figure 4.16 .csv file output of Fiji .. 27

Figure 4.17 Ellipses of the detected dots .. 28

Figure 4.18 Block Diagram for Calibration .. 30

Figure 4.19 A small section of the poster ... 31

Figure 4.20 Morton scanning for reading the boundary colors .. 33

Figure 4.21 Poster section for naming the coordinate .. 34

Figure 4.22 Block Diagram of Decoding .. 37

Figure 4.23 Color Classifier .. 41

vi

List of Tables

Table 5.1 Unit testing .. 43

vii

Acknowledgements

I take this opportunity to extend my sincere thanks to Dr. Daniel Andresen, my major

professor for his continuous guidance throughout my research project and graduate studies. He

played a significant role in the successful completion of this project, and it has been an honor to

work with him.

I would like to express my deepest gratitude to Dr. Stephen Welch, my committee

member for giving me an opportunity to work on this project. His guidance, timely advice and

suggestions have helped me improve my research skills and become a better programmer.

I would like to express my sincere gratitude to Dr. Mitchell Neilsen, my committee

member for his guidance and support in the successful completion of my academics.

My special thanks are extended to Dr. Christine Palmer from the Department of Plant

Biology, University of California, Davis who is in charge of the experiment of which this project

is a supporting part, for all the information, help and images she supplied.

My heartfelt thanks to the faculty and staff of Department of Computer and Information

Sciences for their unflinching support, and to all my friends for the wonderful memories that

made my stay in Manhattan, Kansas beautiful and cherishing.

I would also like to express my thanks and appreciation to the National Science

Foundation, which funded this work under grant #0923752 to the University of Wyoming,

Dartmouth College, the University of California at Davis, and Kansas State University.

viii

Dedication

I dedicate this project report to my parents, N.Vasudeva Bhatt and Sumangala Bhatt.

Without your blessings and support I would not have been what I am today.

Chapter 1 - Introduction

Plants demonstrate a unique behavioral strategy for survival when compared to the

survival strategies employed by animals. The primary motive of this project is to study the

genetic behavior of plants while forging of light, which is an essential requirement for it to live.

Since plants cannot move around or search for a better place to live when they have insufficient

supply of light, their advanced cyber infrastructure allows them to pursue other techniques like

germinating long before the actual period of germination, or altering the angle between the

leaves, or growing taller in the vicinity of a plant that is of same height and is an equal

competitor for light.

This study of plant’s growth involves a huge number of plants (6300), with plants

belonging to different genotypes (1050). All these plants are grown together so as to study the

growth of plant belonging to a particular genotype in presence of a plant of differing genotype.

This study has to guarantee that all plants receive an equal distribution of light. In normal

conditions this is not guaranteed because, plants that grow near growth chamber walls have an

advantage of not only getting the direct light rays from the light sources fixed above but also get

light that is reflected from the walls, while the plants that are in the center or away from growth

chamber just gets the light from above. In order to avoid this problem, plants are moved every

couple of days. As already mentioned, a particular plant behaves differently when paired with

different genes, it is important to know the plant with which a particular plant is placed every

time there is a rotation.

In order to track this, every pot is given a bar code, which is used as an identification

marker. But these are placed on the side walls of each plant and won’t be captured in the cameras

placed above. Moreover, barcodes have a couple of drawbacks when it comes to efficiency.

Chapter 2 discusses more on these drawbacks. Therefore, Colored dot codes are used as

identification markers. These codes are generated using specific colors and geometric shapes.

These codes are then printed on vinyl sheets and glued to the plant pots such that they are easily

captured by the cameras placed above. In the final step, decoding of each dot combination after

image processing should provide information of a plant’s position in a tray after every rotation of

the trays containing the plants.

2

Chapter 2 - Requirement Analysis

 2.1 Related Work

There are many kinds of experimental units that are being used in the field of image

processing. Some of the prominent experimental units are Bar Codes, QR Codes, RFIDs, etc. All

these were reviewed very carefully and few of them were experimented practically. Bar Codes

and QR Codes were the initial choices. But these could not satisfy the purpose for various

reasons. The pros and cons that were found during experimenting each of these have been given

below in detail.

 2.1.1 Bar Code

A barcode is a machine-readable representation of data that relates to the object to which

it is attached. Barcodes are represented as data by varying the widths and spacing of parallel

lines. Barcodes are read by optical scanners called barcode readers. In recent times scanners and

interpretive software have become available on devices including desktop printers and

smartphones. It is very economical and easy to generate.

The main disadvantage of using bar codes is that, bar code readers cannot read the code if

the label is wrinkled, dirty or smudged. Since this project deals with the plants in pots filled with

soil, there is always a chance for the soil particles to sit on these bar codes and mislead the way

the bar code is decoded. The angle in which the image is captured also makes a difference. There

were cases where a bar code was not read correctly because of a zoomed image or an image

captured in a particular angle.

 2.1.2 QR Code

A QR code is a two dimensional quick response codes that is gaining notability and

popularity. QR codes are easy to use and versatile. The code itself stores huge amounts of

information that is easily scanned and stored onto a mobile device. Many businesses are adopting

this code as a means of marketing and as another way to attract customers to the internet for

more information. Just like the bar codes, QR codes are economical and can be easily generated.

http://en.wikipedia.org/wiki/Machine-readable_medium
http://en.wikipedia.org/wiki/Optical_scanner
http://en.wikipedia.org/wiki/Barcode_reader
http://en.wikipedia.org/wiki/Desktop_printer
http://en.wikipedia.org/wiki/Smartphone

3

QR codes too have the same disadvantages as the Bar codes. QR codes are not perfect. If

the code is any smaller than 1.25 inches, it could end up being unscannable. This amount of

space was not available in the confines of this experiment. The problem worsens if the image

has to undergo some kind of zoom-in or zoom-out. The smaller the QR code is, the less

noticeable it will be, which may lead people to overlook it.

 2.1.3 Radio-Frequency Identification

RFIDs use radio technology and can be programmed to convey a wide assortment of

information to interact with RFID readers. RFID tags are electronic devices that are

manufactured and programmed rather than being printed on paper. They can be used to track

inventory like bar codes do, but they can be scanned without being within the line of sight of a

reader and are not limited to being scanned one at a time. RFIDs can contain much more

information than a bar code. The main reason for not using RFIDs in this project was because of

the “Ghost tags” issue. The main reason for not using RFIDs in this project was because of the

possibility of “Tag Confusion”. Every shelf in the growth chamber contains about 24 trays and

all these trays are placed very close to each other. If each tray contains at least one RFID, there is

a possibility of RFID reader reading the tags that don’t belong to it. It is also vulnerable to

damage by water2.2 Requirement Specification

 2.2. Requirements

 2.2.1 Software Requirements

The following software requirements have been considered.

Operating System: Windows 7

Language: Python, Java

Tools: Eclipse Helios IDE, Portable Python-2.7.5.1, Fiji

 2.2.2 Hardware Requirements

The following hardware requirements have been considered.

Space for Input: 5TB

Space for code: 300 KB

4

Fiji was used as an image processing tool. The features of Fiji are described in detail in

the section 3.2.4. Codes executed in Fiji exist as plugins. These plugins are either bytecode class

files or Jar files. These Jar files/byte code files were generated using “Eclipse Helios IDE”. After

image processing, Python language is used to locate the objects and read its pixel values. All the

python files were written using “Portable Python-2.7.5.1”. “Portable Python-2.7.5.1” is a python

programming language pre-configured to run directly from an USB. It comes with a variety of

packages and libraries like ‘NumPy’, ‘SciPy’, ‘PIL’ and etc.

 2.3 Feasibility Study

 2.3.1 Economic Feasibility

As far as processing is concerned, the application is economically feasible as it needs

only Python and Eclipse platforms to be installed. Both Eclipse and Portable are freely available.

For processing the images of one whole day, it takes 4 hours only. However, a server with a

storage space of 5TB is needed to store 330000 images.

 2.3.2 Behavioral Feasibility

Selecting the root folder that contains the images is the only thing to be done. Though

this project involves various steps, all the steps are sequentially executed as all the multiple

plugins used are called one after the other by a macro until the output is written.

5

Chapter 3 - System Architecture and Methodology

 3.1 System Design

Figure 3.1 System Architecture

Statistical Analysis

Plant Experiments

Python Scripts and Java

Programs

Online Data Transfer

.csv Files as Output

Input Files

Image Processing for

Object Recognition

Image Data

Storage

6

The system architecture is shown in the above diagram. The first step in the design is the

‘Plant experiments’, which involves growing the plants and moving them on a timely basis.

These plants are photographed once per hour during the 16 hours/day that lights are on and the

images are stored in the servers. These servers are at the University of California at Davis.

Automatically executing scripts transfer them to Kansas State University by way of an

intermediate relay/backup site at the University of Texas (the iPlant Collaborative). All of these

images undergo image processing. Java and Python languages are used for processing the

images. The output of image processing is recognizing the identity of a plant and tracking its

position in a shelf. This output is saved as a .csv file. The processes involved during each of

these steps will be covered in detail in Chapter 4-‘Implementation’.

A “growth chamber” is the place where the plant experiments are carried. The chamber

set up for this experiment contains six shelves of plants, 108 cameras, HOBO® data loggers

from Onset, Inc, fluorescent lights, LEDs and flats. HOBOs are the units for measuring humidity

and temperature in the environment. Flats are the containers used for holding the trays for

watering. A diagram of a plant chamber is given below:

7

 Figure 3.2 Experimental setup (See text for explanation of the arrows)

The above figure is a photograph of the growth chamber. (This picture was taken after the

portion of the experiments requiring dot recognition was passed.) This is a picture of one of the

six shelves used. The label ‘Camera’ points to the high definition cameras placed above the

Camera

FR LED Light

Data Logger

Light Tubes

Color Dot

Color Dot

6

Flats

8

plants. Cameras are fixed in two rows of nine each. All plants are imaged by at least two

cameras so, ultimately, they can be reproduced in 3D models. All these cameras are fixed. The

label ‘Light Tubes’ points to the fluorescent light tubes placed next to the cameras. These tubes

supply the light required for growth. However, the experiment requires controlled mixtures of

light more reddish than fluorescent lamps typically produce. It is differences in the reddish part

of the spectrum that enable plants to detect the nearby presence of competitors. In the above

figure, the label ‘RF LED Light’ points to the LED lights used to supply the more reddish light.

In the figure, the label ‘Data Logger’ points to a ‘HOBO’ that is used to measure the humidity

and temperature in the chamber. The two labels called ‘Color Dot’ point to the color dots that are

used for identifying the plants. ‘Label 7’ is the flat used for holding the plants in the trays. As

seen the plants have grown long enough to cover the dots completely but this is not an issue as

this photograph was taken when the code detection was no longer needed.

The main aspect of this project relies on image processing. A detailed description of

Image Processing is given below. Other important concepts discussed here are Color System and

Object recognition, which in this case is recognition of a circular shape. Detailed explanation of

circular object recognition and color system is explained below. The methodology section also

focuses on Fiji, software whose plugins and macros are extensively used in Image processing for

object recognition.

 3.2 Methodology / Concepts

 3.2.1 Image Processing

There is a huge difference on how our own visual system works and how a task in image

processing is performed. While the former seems to be easy to accomplish, there are lots of

difficulties to be faced in the later. Trying to accomplish a robust, reliable and timely solution

through image processing is almost impossible. Image processing becomes difficult when the

task involves image analysis and not merely image enhancement or image editing. Image

analysis means to extract or detect a pattern with respect to a computer’s vision. The technology

that is available today is not very helpful in this regard. Image processing technologies mostly

concentrate on image editing which is more often called digital imaging. Some of the well-

known software of this type includes Adobe Photoshop, Corel Paint, Gimp etc. All of these

companies make use of technology that is fostered to accomplish the task of editing the image.

9

On the contrary, technologies like Fiji, ImageJ, Image-Pro Plus, MATLAB, ArcGIS, etc are used

for image analysis.

In image processing, an image is described using a coordinate system. A coordinate

system is imposed to get the position of an image element. Typically, the coordinate origin of the

image lies in the top-left corner. X coordinates run from left to right and Y coordinates run from

top to bottom. Rows and columns are numbered from 0 onwards. The size of an image is

determined by the image’s width and length. There are different types of binary file formats that

can used to represent and store image. Some of the formats that can be used are: TIFF, JPEG,

GIF and PNG. All the images used in this project are TIFF files. TIFF is the Tagged Image File

Format. It supports grayscale, indexed and true color images. It has the ability to support

different images with differing properties. Using TIFF a number of variations of an image can be

stored in different sizes and representations. For example, a single TIFF file may contain both a

full-sized image and a thumbnail version of it. It is a universal exchange format that has made it

to be widely used in archiving documents, scientific applications and digital video productions.

In scientific image processing principles an image is not just a photograph with a visual

scenic beauty. Instead an image is a sample of information in an n-dimensional grid. In an image,

a pixel is not something that just represents a color. A pixel is something that is reduced to a set

of numbers. If a digital image is recorded then the values stored for a particular coordinate is not

just a color value instead it is relative to the photon count.

 3.2.2 Color System

In this project digital raster images are used. These are color photographs. All these

images are represented as ordered arrays of image elements. The three primary colors are red,

green and blue colors abbreviated as RGB. These are typically 8 bits per component. Each pixel

requires 24 bits to encode all the three components of the colors i.e. 3*8=24 bits per pixel. Each

color component has a range from 0 to 255. Towards 0 being the darkest and moving towards

255 is the lighter intensity. This project heavily depends on the color aspect of an image. Fiji

depends on color images mainly in 3 ways: RGB images, RGB/HSB images and composite

images.

For generating the dot codes, 5 colors are chosen such that they are distinctive in the

presence of the color of rest of the plant data. Detailed description about the 5 colors used is

10

given in Chapter 4. In spite of making careful choices and limiting the color range to be just 5

different colors, some problems occurred in distinguishing them. With time, some plants

experienced stress and turned purplish. This may happen due to insufficient light or water or, in

some cases, other atmospheric conditions. Due to the discoloration of the plants from green to

purple, the color classification becomes a problem since one of the 5 primary colors that is used

in this project is purple. Red and Pink were 2 other colors that were used for the dot codes.

Problems occurred with these 2 colors too. At certain lighting conditions these two colors are

hard to distinguish well from each other. Initially yellow was chosen as one of the primary color

but due to its similarity in color with some leaves and certain particles used in the potting soil,

this color was dropped. Green was obviously out of question as almost all the plant leaves have

the color green. The pots and trays have the color grey and hence they too were not considered as

one of the options. Finally, however the problem with the similarity between Red and Pink was

solved by using a unique method of calibration. But for this calibration, all the pixel had to be in

HCI (Hue, Chroma, Intensity) instead of RGB. For the conversion of the pixel values from RGB

to HCI a simple algorithm is used.

 3.2.3 Object Recognition

All the color dots used have a circular shape. The first step in the process of identifying

the codes is to first identify a circular object in the image. This is called as Object Recognition.

Object recognition in digital images has been an active area of research. There are many

advantages in using geometric description for object recognition. There are a number of reasons

why geometry has played such a central role.

 Invariance to viewpoint - Geometric object descriptions allow the projected shape of an

object to be accurately predicted under perspective projection.

 Invariance to illumination - recognizing geometric descriptions from images can be

achieved using edge detection and geometric boundary segmentation. Such descriptions

are reasonably invariant to illumination variations.

 Well-developed theory - geometry has been under active investigation by mathematicians

for thousands of years.

 Easy to make - a large number of tools are available for manufacturing these objects. In

this project, a punching machine was used to cut the colored sheets into circular shapes.

11

 3.2.4 Fiji

For the purpose of image processing, a tool called ‘ImageJ’ is used. This tool was

developed by the National Institutes of Health. A further enhancement of ImageJ is Fiji. It is an

open domain and provides a way of implementing the system design. It allows the user to view

and interactively manipulate the images. Fiji is user friendly and allows the user to write scripts

and codes in various programming languages like Python, C, Java, Jython, etc. Versions are

available for the Windows, Linux and Mac OS platforms. Add-on codes written in Java can be

used in Fiji/ImageJ by importing them as plugins. These plugins can be compiled and executed

on fly in the running system. This aspect makes Fiji an ideal platform for developing and testing

the code and algorithms efficiently. It is free software that can be easily installed. It is regularly

used by researchers particularly in medical and biological imaging. Fiji comes with its own Java

Runtime Environment so Java need not be installed separately in the computer. One of the key

features of Fiji is the implementation of Macro language that can be used to implement large

blocks of existing functions without the knowledge of the language Java.

Along with the compiler it also includes a built in editor. If needed, a Java program that

has been compiled from another tool can be imported as a jar file. All that needs to be done is to

place this plugin in a folder that is dedicated for such files. Through these plugins several tasks

are implemented such as analyzing the problem, editing the image, processing the image, etc. Fiji

can be efficiently used in areas radiological image processing, automated hematology image

systems, multiple imaging and data comparisons, etc. This tool is extensively used for teaching

and research purpose.

Some of the prominent features provided by Fiji are edit, analyze, process, print, save 8

bit color and greyscale images or 16 bit integer or 32 bit floating point images. A great many

image formats are accessible in this tool. It supports mathematical operations like logical and

arithmetical operations between different images, contrast convolution, Fourier analysis, edge

detection of images, sharpening, smoothing, geometric transformation, scaling, rotation, flips and

median filtering.

It includes additional packages like version control, issue tracker, dedicated development

channels, rapid prototyping structure. Fiji can calculate area and pixel value statistics of user

defined selections. It measures the distances and angles and creates density histograms and line

profile plots. It supports contrast manipulation and does geometric transformations. It allows

12

zooming up to 32:1 and down to 1:32. All processing and analysis are available at any

magnification factor. Any number of images can be simultaneously opened. Spatial calibration is

available even for units such as millimeters. Density and gray scale calibration is also available.

Fiji supports four main essential freedoms defined by Richard Stallman in 1986:

 It provides the freedom to run the program for any purpose.

 Free Documentation is provided which helps in understanding how the program works

and make changes to the already installed plugins

 Freedom for redistributing the copies

 There is a mail list available which allows users to submit queries and suggestions. They

are given the freedom to improve the program and release improvements to the public

 3.2.5 Macros

In order to identify the circular dots in the image a series of java plugins have to be used.

All these plugins when put together and executed sequentially, help in object recognition The

process of calling several plugins one after the other is made easy by being able to execute a

series of Fiji commands. Fiji macro language contains a set of control structures, operators and

built-in functions and can be used to call built-in commands and other macros. Macro code is

stored in text files.

A macro is a small program that automates a series of Fiji commands. There is a way to

create a macro by recording a sequence of commands using the command recorder.

 3.2.6 Plugins

Fiji plugins are Java modules that extend the functionality of Fiji by using simple

standardized interfaces. These plugins can be created, compiled and executed in any of the Java

compilers. Fiji itself provides an option of compiling the plugins. Most of the Fiji functions are

implemented as plugins. There are primarily 2 different kinds of plugins. One is the ‘PlugIn’ that

does not require an image to be compiled and executed while the other is the ‘PlugInFilter’ that

works only with an open image while executing the plugin. For these two plugins to work, two

functions are created by default. The first function is ‘setup()’. When the plugin is started, this

function is used to verify if the capabilities of the plugin match that of the image that is being

worked on. The second function is ‘run()’. This does the actual work of the plugin. It is passed as

a single argument ‘ip’, an object of the class ‘ImageProcessor’. This contains the image to be

13

processed and all the relevant information. It does not return any value but modifies the image

and can create new images. The signatures of these functions are:

int setup(String arg, ImagePlus im)

 The setup() returns a vector of binary flags that describes the plugin’s properties.

void run(ImageProcessor ip)

 The run() method returns no result value (void) but may modify the image that is passes

and creates new images.

14

Chapter 4 - Implementation

 The project is divided into 6 parts.

 Code Generation

 Pre Processing

 Poster Generation

 Color Calibration

 Color Classification

 Validation

Figure 4.1 Block Diagram of the Work Flow

Printed copies

of Dots University of

California, Davis

Pre Process the

images

Validation

Color Calibration

Dot Code

Generation

Color

Classification

Poster Generation

Printed copy

of Poster

Dictionary for the dots

Dictionary for the

Poster Images of

Plants/Posters

Pixel values

of Posters
Pixel values of Dots

Correction Factor

Dot codes

15

 4.1 Code Generation

This is the first step in the project and this process involves generating color dots using 5

different colors. Colors are carefully selected such that they are difficult to confuse with the color

of the soil, plant or pot data. Using the five main colors viz. Red, Pink, Dark Blue, Medium Blue

and Purple, five additional “colors” are generated by adding a black dot in the center of the dot.

In essence, the ten colors are Red, Pink, Dark Blue, Medium Blue, Purple, Black-Red, Black-

Pink, Black-Dark Blue, Black-Medium Blue and Black-Purple. The dot codes attached to each

plant tray have three dots in a combination. One dot is twice the size of the other two and

defines the end at which to begin reading. This kind of set up is essential because of the risk of

the tray being rotated and the color combination being displayed in the opposite direction. For

example a color combination ‘Red, Black-Purple, Blue’ whose code is equal to ‘100’ when read

in the opposite direction becomes ‘Blue, Black-Purple, Red’ whose code is ‘200’ would give a

wrong value.

Figure 4.2 Different color codes

Early in the experimental design it was thought that perhaps the dots could also help with

color balancing the image. For this reason a rule was formulated that no dot code group should

have more than one copy of the same color. This rule remained in place after it was decided to

use the color poster (described below) for balancing. Because there were to be 660 trays, it was

calculated that permutations of ten colors three at a time were needed. Dot printing is done with

a Python script using the imported packages ‘pylab’ and ‘itertools’. Pylab is a plotting library

and ‘itertools’ is used to iterate through the ten colors, permuting them three at a time resulting

16

in 720 color combinations. Dot codes 661-720 are kept as a back-up in case of any damage to

the dots being used. The 720 color dot combinations are printed onto a vinyl sheet. Vinyl is used

because plants are frequently watered and so a waterproof medium is needed. The dots in the

vinyl sheet are then cut into its respective shapes using a punching machine. These dots are then

glued to the pot surface carefully so that they form the intended combinations. The circular shape

was chosen for the dots because of the ease of cutting them using a readily available punching

machine.

For the purpose of identifying the primary colors in the image a range of RGB values are

specified for each of the 5 primary colors. The five primary colors used are:

Figure 4.3 Five Primary colors

The hexadecimal values of these colors are: Red: '#FF0000', Dark Blue: '#0000FF',

Purple: '#640064', Pink: '#FF647D', Medium Blue: '#00B0F0'. The first of the 3 dots is bigger

and has a size of 1 inch. The middle and the last dot is 0.5 inch in diameter. The black dot that is

at the center of few dots is about 0.25 inch.

Six shelves in a walk-in growth chamber are used in this project. Each shelf has 24 trays

of plants. Each tray has 16 pots containing plants of different genotypes. Cameras are placed at a

distance of 16 inches above these plants. These cameras capture the image of the plants once in

every hour. Each image is named using the ‘current-date’, ‘current-time’, ‘shelf-number’ and

‘camera- number’. Current-time is saved as ‘YearMonthDay.HourMinuteSecond’. A typical

picture is below:

17

Figure 4.4 Plant image

The file name of the above image is ‘20130611.054023.c113.tif’. This nomenclature is

read as follows:

 “20130611” stands for the date: Year-2013, Month-06 and Day-11.

 “054023” stands for the time: Hour- 05, Minute-40, Second-23

 ”c113” stands for shelf details: Shelf#-1, Camera#-13

 “tif” stands for Tagged Image Format.

Plants get their light from LEDs and fluorescent tubes placed right above them. Canon

S95 cameras are used for this experiment. Each shelf has 18 cameras and all the 6 shelves

together have 108 cameras. The aperture, focus and speed of the cameras used are F.71, 125 and

1/25secs respectively. The entire camera configuration is set up manually but operates under

automatic control as programmed into each camera.. This camera has a CHDK framework and is

powered by an adapter connected to an UPS to avoid any discontinuity of power supply in case

of power outage in the lab/building.

18

The images are captured every hour for 16 hours per day. The experiment is replicated

six times. Each replication is for a period of four months. All these together give a total of

330,000 images.

Separate folders are created for images taken at each hour. The name of this folder is the

hour at which the cameras captured the images. Since the images are taken continuously for 16

hours, 16 folders of images are created per day.

The images captured are stored in 3 different servers to avoid loss of data. One copy of

the images is saved in the Kansas State University Agronomy department, one is stored in

University of California, Davis and one copy is stored in the cloud environment called iPlant

Collaborative.

 4.2 Pre-Process

Preprocessing is the second step. The images uploaded to the server undergo image

processing to extract the circular dots present in the image. There are many steps involved in the

process of recognizing the circular objects. In the initial steps the tool ‘Fiji’ is used and later part

is done with the help of python code.

A macro is written that acts as a driver class and calls several other plugins that are

needed to find the circular objects in Fiji. The only manual work that has to be done is to select

the folder that contains the images in several sub folders and execute the macro, the rest all is

carried on automatically. All the plugins that are called by this macro are written in Java

language and are placed in the ‘Plugins’ folder of Fiji. Since there is no option to execute a

Python code directly from Fiji, a Java program was written that will call and execute a Python

code. This Java program is then compiled and called by the macro as one of the plugins. These

plugins need to follow the usual Fiji standards, in particular to use the ‘PlugIn’ class or the

‘PlugInFilter’ class.

Eclipse was used to write the Java plugins even though Fiji itself has its own editor and

compiler. The reason for using Eclipse was because of the efficient debugger that comes with

Eclipse. Fiji plugins require an underscore to be included in their class names. Though this

nomenclature is not a compulsory issue, it allows the plugins to be easily tracked. For example,

any class that includes an underscore is always displayed in the drop down menu in Fiji. If the

19

underscore is missing then the user has to manually navigate to the path where the plugin is

saved. Fiji macros also have their own instruction set that is documented in the Fiji tutorial.

The preprocessing output files are stored in two folders. One folder contains the .csv files

that has the details about the Area, “xy” coordinates and Roundness of the circles that have been

detected while the other folder contains images showing the circumferences of the circles

detected from the circular dots in the image. This folder is purely for reference/verification

purpose. Within the folder intended to hold the .csv files, subfolders are created and they are

named just like the input folders, having the name of the hour in which the images were taken.

Inside each of these sub folders, .csv files are present. The macro file is stored as a plain text file

in the ‘macro’ folder of Fiji. After the entire Preprocessing is done and the output files are

written, the macro prints the number of files it processed. The steps involved in the Pre Processes

step are:

 Color Segmentation

 Despeckling

 Gaussian Blur

 Remove Outliers

 Ellipse Detection

 Output Writing

Figure 4.5 Block Diagram of Pre-Processing

 4.2.1 Color Segmentation

This is the first plugin that the macro calls in the process of finding the circles. The first

step in Color segmentation is to convert the color image to 8 bit gray scale image. This has to be

done because some default plugins that are used as a part of finding the circular objects require

the image to be a 8 bit gray scale image. Typically, the range of pixel values is 0-255 for 8-bit

images and it is 0-65535 for 16-bit images. The command to convert to 8 bit image is:

<im.convertToGray8()> // ‘im’ is the image

Color

Segmentation

Despeckle Gaussian

Blur

Remove Outliers Detect Ellipse Output

20

Because the dot color dots have been well chosen, this step removes virtually the entire

image background but, at time, it can leave scattered pixels that do not belong to dots.

Figure 4.6 Color Segmentation

Some of the reasons for this are the tray color falsely appearing to be blue, or the flower

colors in the plants being red and so on. Functions have been written to avoid this problem. .

Despeckling, Gaussian blue and Remove Outliers are the functions used to avoid this problem.

These are discussed in detail below.

 4.2.2 Despeckling

This is the step that removes stray individual pixels that exist anywhere in the image that

remain after color segmentation. These pixels which don’t exist as a group of pixels are usually

considered as noise. These pixels can be found scattered all around the image. The ‘despeckle’

plugin will remove almost all of these pixels. The below figure is an example of a non-

despeckled image.

21

Figure 4.7 Before Despeckling: Image background is not clean

The below image is a despeckled image.

Figure 4.8 After Despeckling: Background is now uniformly black

Despeckling acts as a median filter. It replaces each pixel with the median value in its 3 x

3 neighborhood. This takes a lot of time because, for each pixel in the selection, the nine pixels

22

in the 3×3 neighborhood must be sorted and the center pixel replaced with the median value (the

fifth). Median filters are good at removing salt and pepper noise

 4.2.3 Gaussian Blur

Gaussian Blur is used for correcting the circles whose details have been damaged by the

presence of a sand particle or a leaf. By subjecting the image to Gaussian blur the image looks

like as though it is being viewed through a translucent lens. It is basically used as a pre-

processing step in order to enhance the image quality at difference scale.

During plant experiments, after a certain period of time the leaves grow big and tend to

cover a part of a dot. This would not cause a problem so big so as to cover an entire dot because,

by the time a leaf starts growing big enough to completely cover a dot (which would take almost

4 months), the next round of replication starts and the plants are replaced by seeds. Now, because

the leaf covers a part of the dot, an entire circle would not be segmented in the color

segmentation step. An example of this is given below.

Figure 4.9 Before and After Color Segmentation

For such a partly segmented dot, an ellipse would not be detected as it does not form a

complete circle although part of it has an arc like formation. When this image undergoes

Gaussian function it gets blurred and when the blurred image’s threshold is varied a somewhat

circular shaped object is formed. This is clearly shown in the below figure:

23

Figure 4.10 After Gaussian Blur and After adjusting Threshold

Object recognition plugin that is used in the next step is capable of detecting the ellipse

from the above figure. This method can fail when more than half of the circle is covered by the

leaf. The method that is described in the section 4.4.2-Check for Complications corrects such

issues. Another example of such an instance is when soil particles are present on a circular dot.

This too would lead to loss of data and if not for Gaussian blur, would lead to an unrecognized

dot.

Figure 4.11 Before and After Color Segmentation

After Gaussian Blur the figure looks like below:

24

Figure 4.12 After Gaussian Blur and after adjusting Threshold

This filter assumes that out-of-image pixels have a value equal to the nearest edge pixel.

This gives higher weight to edge pixels than pixels inside the image and higher weight to corner

pixels than non-corner pixels at the edge. Therefore, when smoothing with very high blur radius,

the output will be dominated by the edge pixels and especially the corner pixels. In extreme

cases of a very high a blur radius, the image will be replaced by the average of the four corner

pixels. For increased speed, except for small blur radii, the lines (rows or columns of the image)

are downscaled before convolution and upscaled to their original length thereafter.

This filter’s main function is for smoothing the image. Sigma is the radius of decay to

 e
 − 0.5

 (≈61%),

i.e., the standard deviation (σ) of the Gaussian, in which radius was 2.5 × σ.

 4.2.4 Remove Outliers

This plugin is similar in nature to Despeckling. As in, it is used to remove the unwanted

pixels from the image. While despeckling is used to replace each pixel with the median value in

its 3*3 neighborhood, “remove outliers” is used to replace a pixel by the median of the pixel in a

given distance (radius) only if for the pixels that deviates the median by more than a certain

value (threshold).

All the pixels that exist alone in the image are considered to be noise. These pixels can be

removed by using the “despeckle” function. But there are other types of “noisy pixels” which

exist as a group of pixels. As a group, their number is large enough to be unrecognized by the

“despeckle” function (which searches only 3*3 area). Usually such noise will be found as single

lines. The below image shows a dot that was detected after color segmentation, along with the

dot a noisy line is also detected.

25

Figure 4.13 After color segmentation

Because the line in the image is formed by pixels that are placed close to each other the

line won’t be despeckled. In order to remove such pixels, ‘radius’ and ‘threshold’ has to be

provided as arguments. The “radius” determines the area up to which the pixels have to be

searched and removed and “threshold” determines the kind of pixels that has to be removed.

When the image is subjected to despeckling, despeckling succeeds in removing the noisy pixels

around the circle as given below:

Figure 4.14 After despeckling

However, as it is seen in the picture, the line remains even after despeckling. Therefore

“remove outlier” is called with the two arguments “radius” and “threshold”.

26

Figure 4.15 After remove outliers

This succeed in removing the because of the absence of the pixels around the line and

within the given radius.

 4.2.5 Analyze Particles

This step is the one which finds the ellipses in the image. (Although the dots are all

circular, they will appear elliptical except when photographed straight down.) After finding the

ellipse it outputs a tiff image just showing the elliptical circumferences in a file with the same

name as the input file in a new folder that is created for this purpose. This image is just for a

reference. It can be used to manually check if the circles were detected properly. The main

output is the file containing data pertaining to each circle. These values are the Area, “xy”

coordinates and the Roundness factor of a circular dot. The Area of a circle is used to check if a

dot is the beginning of a dot combination. As already mentioned, the dot groups are generated in

such a manner that the size indicates which is the first to be read. “xy” coordinate denotes the

relative position of the dots in the image. Roundness is used for a very important reason.

Sometimes due to noise, non-dot particles with color similar to the dot, false circles are detected

and 95% of these false circles are elliptical or ovular instead of a normal circular shape of a dot.

For an ellipse which is ovular in shape, the roundness factor is very low. An ellipse that is

completely circular has a roundness factor of 1 while an ellipse with an ovular shape has a

roundness factor of >0.5. However, this is not always true. Sometimes a real circular dot will be

detected as an ellipse with more ovular shape rather than a circular shape. These errors are taken

care of in the next step which is section 4.4-Decoding.

27

The next step in particle analysis checks that the size of the circles is within a specified

range. Sometimes due to many factors the soil particles are confused to be a circle and to avoid

this, a range is provided to limit the radius of the circles to be within the radius of the small dot

to the radius of the big dot. Circles that are either smaller than the small dot or bigger than the

big dot are removed.

The output of this step is a set of .csv files that contain the details of all the ellipses that

have been detected. Again the output that is written as a comma separated value with the same

file name as that of the image name.

Figure 4.16 .csv file output of Fiji

The above figure depicts one of the csv files that has been output from the Analyze

Particles step. The first field is just a list of serial numbers. Second field is the area of the circle

that has been detected. At an average, the area is 0.05-0.06 for a big circle and it is 0.01-0.02 for

a small circle. As seen in the figure values that lie within both of these ranges can be found. The

next two fields are the X and Y coordinates of the centers of each circle. The fifth and sixth

fields are the circularity and roundness respectively. Circularity is the measure of how close the

28

dot is to being a complete circle. For the formula: 4π*area/perimeter^2, a value of 1.0 indicates a

perfect circle. As the value approaches 0.0, it indicates an increasingly elongated shape. Values

may not be valid for very small particles. Roundness is the measure of the elliptical behavior of

the circle. For the formula: 4*area/(π*major_axis^2), a value of 1.0 indicates complete

roundness. As the value approaches 0.0, it indicates an ovular shape.

The below figure is the second kind of output of this step. It is just a simple .tiff file that

has only the circumference of the detected circle.

Figure 4.17 Ellipses of the detected dots

 4.3 Calibration

Calibration is carried on to normalize the color of the dots in the images. The 5 primary

colors selected initially do not retain the same RGB values in the images. Due to the influence of

different kinds of lighting effect like the influence of incandescent light, fluorescent light or

shadowing they appear to be different than their original color. For example, Red can appear to

be orange, Pink can be quite close to Red, occasionally Purple resembles Dark Blue, while Dark

Blue can be light enough to be confused with Medium Blue. This behavior is not universal

among all the cameras, it happens for few of the cameras and it does not happen every time an

image is captured. It is purely dependent on the environmental conditions that exist at a

particular time in a day. Calibration is a step used in order to estimate the real true values of

colors in the image.

29

Because this behavior varies from one camera location to another, a “normalization” or

“correction” has to be calculated for each camera. This correction gives an estimate of how far

the RGB value in the captured images differs from that of the RGB value of the original dot. The

RGB value in the captured image are then adjusted so that all the dots in the image are closer to

their original pixel values.

Considering the fact that lighting conditions change slowly if at all, calibration is carried

out once per replication. In order to carry out this process a printed poster filled with rectangular

blocks of known colors (called “bulk colors”) is photographed by all the cameras. The images of

the poster from all the cameras are processed to find out the apparent RGB value of the bulk

color of each box. These values are computer-compared to the known poster values. The

differences are processed into normalization or correction formulas for each camera. The entire

process of calibration is divided into five steps:

 Make poster

 Preprocess poster

 Identify all squares

 Get bulk color

 Compute correction method

Dr. Welch wrote code for sections 4.3.1 (Make Poster) and 4.3.3.1 (Introduction for

reading a poster), 4.3.5 (Compute correction method) and, in the next section, 4.4.4 Classify

color

30

Figure 4.18 Block Diagram for Calibration

 4.3.1 Make poster

As originally conceived, the poster had two purposes:

 To provide a coordinate system in which to locate camera positions;

 To aid in camera color calibration. Only the second step has proved necessary.

To create the poster Dr. Welch wrote Python code that produced a .png file describing a

grid of 87 by 30 one-inch squares. Each square contains five parts. In the center there is a small

color swatch containing a large gamut of RGB colors. Surrounding this is a larger square

containing the bulk color of the square. Surrounding that is a thin black line that separates the

Process Image to

identify all boxes

Make Poster

University of

Davis, California

Make color

dictionary

Get Square

Coordinates

Output

Get Bulk Colors

Calculate

Correction Formula

Printed Poster Poster details

Images of Poster

.csv files

31

bulk color from the border color. The border colors are pure Red, Green, or Blue arranged in a

manner described below. Finally, a white line divides each square from its neighbor.

Figure 4.19 A small section of the poster

Also output is a csv file containing the RGB values for each square’s bulk color (which

was chosen randomly), The values for each color are a floating point number between zero and

one. A final output is a JSON file containing a Python dictionary of information needed to

uniquely identify each square when viewed in an image. This dictionary is described below.

The poster was then printed on vinyl, transported to the University of California at Davis

where it placed on each shelf and photographed by the cameras at the start of each experimental

run. It is important to emphasize that each camera only sees an area of approximately 15 by 22

squares in size. Additionally, at the time the poster was designed and created, it was not clear if

all cameras would have the same orientation. It was considered possible that cameras might

individually have any one of four cardinal orientations (descriptively called NEWS for “North”,

“East”, “West”, or “South”). The image processing steps described next handled these problems.

Once the poster is made, a dictionary is created with two kinds of keys. For the first kind

of key box number is used as a key whose corresponding record is the bulk color of that

particular box. For the second kind of key, a unique string of 25 characters is used and its record

is the box coordinate. The details of forming the 25-character key are described in 4.3.3

32

 4.3.2 Preprocess the poster

After the poster images are forwarded to KSU, they undergo the same kind of

preprocessing as the plant images. Except that, instead of circular objects, rectangular objects are

identified by Fiji. For every identified box the “xy” pixel coordinates and area are saved in a csv

file. Similar to the plant images, an image that contains the detected boxes is also saved. The

image file can be used as a reference.

Only the boxes with size within a specified range are recognized as valid boxes. Because

a range is specified, neither the color swatch nor a group of boxes together is recognized as a

box.

Other preprocessing steps for poster images include Despeckling, Remove Outliers,

Gaussian Blur as were used for plant images. A few boxes may not be identified by the code.

Functions are written in order to rectify this issue. These will be described in the further sections.

 4.3.3 Identify all the squares

 4.3.3.1 Introduction for reading a poster

In the preprocessing step, a csv file was generated that had the details of all the boxes that

Fiji was able to detect. In this step, that csv file is read and the entries are saved into list. Fiji

does not guarantee to put its findings the Morton scanning order and some squares may not be

detected at all. These irregularities are detected and eliminated. In particular entries for

undetected squares are added based on their relative positions.

Next, a box is selected at random that has at least 24 neighbors adjacent to it in a circular

manner. By determining its row and column coordinates, the poster positions of all other squares

in the image can be determined along with the camera orientation. Dr. Welch made the

dictionary in the below described format. The color dictionary is keyed in two ways: one is a 25

character string that is unique to a box; the other is the box row and column coordinates. The

first key type returns the box coordinate and the bulk color within the box. The second type will

give the bulk color as well as the 25 character keys in all the four directions (NEWS). The 25

character string is called as a “signature” and it is unique to a box. This means to say, every box

can be identified by its signature.

The signature is formed from the border colors of a group of 25 squares centered on the

square of interest. As already mentioned, the boundary color can be Red, Green or Blue. These

33

colors were chosen because they are sufficiently different that they should be recognizable no

matter how badly colors are changed. The border colors were assigned at random with the idea

being that a 25-letter signature would have odds of millions to one against being duplicated for

any two squares in any of the NEWS (North, East, West and South) orientations. In Figure 4.20

below, to get the North signature of the square marked in white, the boundary colors are read

from the beginning of the black arrow. For all orientations, signature construction proceeds from

left to right and top to bottom. The first line has the colors Blue, Green, Green, Green and Red,

abbreviated as BGGGR. The same thing repeats for the next 4 rows, finally making the North

signature “BGGGRRRBBBGGBBGRGBBBRBRGB”. If the camera happened to be rotated 90

degrees to the left (i.e. the image was rotated 90 degrees right) this same pattern of scanning

would give the East signature. Note that only the boundary colors of the box are used to form the

signature not the bulk colors within the boxes.

Figure 4.20 Morton scanning for reading the boundary colors

34

A typical record in the Dictionary looks like this:

"RGGGBBRRRBBBRRGRGRRGRRGBB": [[71, 3], [0.95465598399999996,

0.64093096199999999, 0.44099795000000003]],

where“RGGGBBRRRBBBRRGRGRRGRRGBB” is the signature key and [71,3] tells where the

box is located in column (71) and row (3) coordinates. [0.95465598399999996,

0.64093096199999999, 0.44099795000000003] are the RGB values of the bulk color within the

box. Therefore, once the signature of a square has been found, its box coordinates can be found.

The box coordinates are the second kind of entry found in the dictionary. This record in the

dictionary looks like this:

"(71,3": ["RRBBRRGBRGGRRRGBRRRGBGGBB",

"RGGGBBRRRBBBRRGRGRRGRRGBB", "BBGRRGRRGRGRRBBBRRRBBGGGR",

"BBGGBGRRRBGRRRGGRBGRRBBRR", [0.95465598399999996, 0.64093096199999999,

0.44099795000000003]]. The four signatures are placed in the order of ‘NEWS’. Therefore,

once any signature is found, the orientation of the camera can also be found. Once that

orientation is known, the row and column coordinates of any square in the image can be found

by counting squares in the proper directions. Doing so is the next step.

Figure 4.21 Poster section for naming the coordinate

35

In order to find the boxes in the images, Fiji tool is used. The plugin used here is to find

objects that have a square shape. Only the square object whose size falls within a range is

retained. Rest is deleted. The “xy” coordinates and ‘Area’ of all the detected boxes is written to a

csv file. This csv file is again processed to filter all the very large and very small boxes. Due to

noise in the image many of the boxes are not recognized and some extra false boxes are detected.

 4.3.3.2 Method to read a poster

A white line divides each square from its neighbor (Figure 4.21). These white lines are

used as a demarcation for finding the border colors of each box. That means any color that comes

just before a white color is considered as a border color. So, the code reads all the colors in a

single dimension until it finds a white color. It reads the color that is just before the white color

as the boundary color of a box. But two kinds of issues are faced here, one is that these white

lines don’t retain their original brightness (1.0,1.0,1.0 in RGB) in the captured images. It is due

to the lighting effects and color bleeding. Color bleeding is caused due to the reflection of the

neighboring color. The other issue is that the bulk colors of a few boxes are whitish in color. In

the first case, the code goes on reading the pixels in the x direction to find a white color, and

thereby goes past a box. This causes errors in reading the right signature of a box. In the second

case, because the code encounters a white pixel even before it reaches a boundary, it reads a

wrong pixel as the boundary color.

In order to avoid this, a counter is used to keep count of number of pixels read from one

box to another. If it surpasses a range (approximate length of a box) then the reading stops there

and a new box is fetched from the list and again the process of finding the signature continues

until it comes up with a sequence of 25 characters.

Once the coordinate of one box in the image is fetched, the coordinates of all the other

boxes is found by a simple counting process, iterating through all the squares that have been

found by Fiji.

 4.3.4 Get bulk colors

Now we have the center coordinates of all the boxes in the captured image, we have the

box numbers of all the boxes and we have the original bulk colors of all the boxes. The next step

to find is the RGB colors of the captured image. There can be noise in the color values of single

36

pixels. Therefore, the average RGB value of about 30 pixels in each box is computed. This

averaged color is then recorded next to the real bulk color of the corresponding box. So the

output now is the ‘box number, real RGB value, image RGB value’.

 4.3.5 Compute correction method

The final step is to develop transformations that, when applied to the dot colors in the

images will make them more like those originally intended, therefore making them more readily

classifiable. Dr. Welch wrote code to do this in the form of an object class called ColorProc

which I made use of as described later. Methods in this class convert both the original and

photographed bulk colors into a Hue-Chroma-Intensity color system in which the mathematical

relationships between colors are more clearly described than they are in RGB. Then a set of

curves are fit that describe the relationships between original and photographed colors for each

of the three HCI components. These fits are quite good for the Hue and Intensity elements but

less so for Chroma. This may be because Chroma is closely related to the concept of

“Saturation” and is a more subjective element in human vision. A ColorProc method writes a

database of these curves containing the results for all cameras. This database is subsequently

used by other ColorProc methods to estimate original colors from RGB values extracted from

photographs.

 4.4 Decoding

This section describes how the codes which are in the form of 3-dot are finally decoded.

The steps needed in this are:

 Assembling circle centers

 Check for complications

 Correct complications if any

 Average the pixel values

 Classify color

 Get the code that belongs to these three dots

 Write it to the output file

37

Figure 4.22 Block Diagram of Decoding

 4.4.1 Assembling circle centers

After the preprocessing step a set of entries with “xy” coordinates, ‘area’ and ‘roundness’

is output to a csv file. A real dot has an area in the range of 0.05-0.06. This file is read and all the

entries whose area is not within the given range are deleted. Also, the entries whose roundness

factor is below 0.5 are deleted. These values are deleted because they usually belong to false

circles. Once the obvious false circles are deleted, all the circles in the list are sorted such that all

of circles fall into their respective rows. This has to be done as “Fiji” detects the circles in an

irregular manner without following the Morton scanning rule.

 4.4.2 Check for complications

The sorted circles are now checked for other complications. In the experiment it has been

guaranteed that each camera is focused such that it either captures an entire dot code

(combination of three circles) or it does not capture any code. Therefore in every picture the total

Assemble circle

centers

Average the

pixel values

Classify color

Get Dot Code Read .json file

Correct

complications

Check for

complications

No

Yes

38

number of circles is always in multiples of three. The distance between the circles in a code

(distance between first-circle, middle-circle and last-circle) is also maintained constant for all the

pots. The complications that can occur in this step are of two types:

 Loss of a true circle.

 Big circle being detected as a small circle.

The first case, that is loss of a true circle is caused when a leaf would have covered a part

of a dot making the circle look too elliptical (such circles are deleted as their “roundness factor”

would be below the normal range). This complication is revealed when the number of circles

present in a row is not a multiple of three as mentioned above. The second case, is due to over

filtering in the “remove outlier” step. This complication is recognized because of the fact that

there should be at least one big circle for every three-dot code.

Using the fact that the distance between the circles in a code (distance between first-

circle, middle-circle and last-circle) is always maintained constant for all the pots, the position of

the missing dot is calculated using the position of the detected dots. A new circle (“xy”

coordinate) is created and is plugged in the missing position. This solves the first issue.

If all the three dots in the sequence found within a length range is detected as small then

the second issue arises. In order to fix this issue, one of these three small dots has to be made big.

But because the three-dot combination could be read either from left or right, there is uncertainty

as to which dot to be made bigger, either the first of the three-dot or the last of the three-dot. For

solving this issue, the position of the other big dots in the image is fetched. If the big dot for the

other three-dot combinations comes to the extreme left of the three-dot combination then the

direction of the three-dot combination is noted as left-right, else the direction is noted as right-

left. If the direction is noted as left-right then the first of the three-dot combination is made big

else the last of the three-dot combination is made big.

 4.4.3 Average the pixel values

Once all the complications are resolved, the dots are grouped into threes and pixel color

values of these dots are averaged. Because there are two sizes of circles and dots may have a

black portion in the center, the number of pixels that have to be averaged for different dots

varies. Every circle has an outer portion and an inner portion. The inner portion is the portion

39

that covers the black part if one is present and outer portion is everything in the circle other than

that.

For a given center coordinate “xy” and a radius, all the coordinates that fall into a

rectangular shape is generated. These coordinates are then checked for the formula of equation of

circle. Suppose ‘HK’ is the coordinate that falls within the rectangular shape then only those

(HK) values that satisfies the below equation are retained, rest of the values are deleted.

 (X-H)^2 + (Y-K)^2 <= r^2

In the “color segmentation” step, segmented images were separately saved in a folder.

Because this image is color segmented, it contains only those pixels that bear the color of the five

colors used for the dots. Using this image for reading the pixels avoids the chances of including

pixels that are not a part of a dot code. A leaf or a soil particle on a dot is an instance where these

kinds of issues are faced. This image is used for averaging the pixel values of the coordinates

calculated from the above equation. If the pixel value is a black color (due to noise present on the

dot surface) it is ignored. Then the average pixel color is calculated for all the non-black pixels.

Finally the color of the averaged pixel value is classified as described in section 4.4.4.

The next task is to find the pixels that are a part of the inner dot. The original,

unsegmented image is used for this purpose. For the same center coordinate but with a smaller

radius, all the coordinates that might form the inner dot is calculated and their pixel values are

averaged. Sometimes, because of improper use of the punching machine, the black dot that

should be in the center of the dot can appear to have drifted toward the circumference of the

circle. In order to find the central black dot within a color dot, multiple inner circles are

sampled. Hence at least five samples of inner circles are required to confirm the presence of a

dot. The code is written such that, even the occurrence of one black in one sample out of the five

samples, would confirm the presence of a black dot in the whole color dot. Therefore, up to five,

differently positioned inner circles are sampled and averaged. If any of these averages fall below

a specified threshold of intensity, the presence of a black dot is confirmed. The letter ‘B’ is then

concatenated with the color of the outer circle. Otherwise, the color of the outer circle is taken to

be the color of the dot.

40

 4.4.4 Classify color

This step is to utilize this information to adjust the dot colors to be more like those

originally intended; thus, to make individual dots readily classifiable; and then to classify them.

Dr. Welch developed code to carry out these steps and I integrated his results as described below.

These functions are carried out by three object classes: ColorProc and LineMan, provide

respectively, color conversion and classification services to their client, DotClassifier, which

makes dot color decisions. ColorProc contains methods which, in an off-line mode, analyze the

outputs of the poster processing software to determine how RGB values, in general, have been

changed by printing, chamber illumination, and photography. ColorProc also has a method,

“CameraToTrue” which attempts to invert these changes to the extent that that is possible.

DotClassifier creates a ColorProc object to access this service for each camera. Internally,

ColorProc uses a Hue-Chroma-Intensity (HCI) system which is better than RGB for color

description.

Unfortunately, Chroma changes are harder to reverse than Hue and Intensity because they

have to do with more subjective aspects of human vision (i.e. color saturation). Therefore, rather

than being exactly converted to their original colors, dots of a single color tend to make linear

clusters in RGB space after conversion. The LineMan supervised learning class was created to

cluster such data (see figure below) and enable classification of linear clusters.

LineMan operates in a manner analogous to K-Means but rather than try to place a point

in the middle of each cluster, it tries to position one or more line segments. As with ColorProc,

this learning takes place off-line to the dot analysis program with the results being stored. The

learning is done via the basinhopping.py optimizer included with scipy 0.12.0. After

DotClassifier asks ColorProc to correct the colors, it asks LineMan to determine which line

segment in RGB space the corrected point falls nearest. This becomes the declared color. The

signature for classifying the dot color is:

Object = ClassifyDotColor(self,dR,dG,dB,Cname,Convert=True):

Here dR, dG and dB are the R, G and B colors in floating point. Cname is the camera name, this

argument is extracted from the image name. The output the ClassifyDotColor method is <True,

ColorName>. Here True denotes success and color name is one of the 5 colors used. ColorName

is the color of the outer circle.

41

Figure 4.23 Color Classifier

 4.4.5 Get the code that belongs to these three dots

As already mentioned, a json file is maintained that has the dictionary for the dot codes. It

is created when the dots were generated. In the dictionary, the color combination for three dots is

the key and the code for each of these combinations is the value. After the colors for each of the

three-dot combinations is obtained in section 4.4.4, the json file is searched for this color

combination.

Finally the code for all the three-dot combinations in a particular image is output to a file

along with the “xy” coordinates (location) of these dots. And the same is repeated for all the

other images present in the folder.

42

Chapter 5 - Testing

In Unit Testing, each module is tested as a separate module without the interference of

other modules. This ensures that all the modules are error free and perform correctly. The entire

unit testing was conducted manually.

Sl No Section No Test Case Expected Result Result

1 4.1 Generating the

experimental units

Generate a set of

unique 720 three-

colored combination

Pass

2 4.2.1 Segmenting all dot

colors from the non-

dot colors

An output image for

each input in which all

of the dot colors are

color segmented

Pass

3 4.2.2 Remove noise from

the image

All the pixels in the

image that do not

belong to the dot

colors are removed

Pass

4 4.2.3 Fix incomplete dots Detect all the partly

damaged dots that

were not detected

due to loss of

information

Pass

5 4.2.5 Fetch the circles Get the area and

coordinates of the

circle

Pass

6 4.3.1 Make the poster A poster with 30 rows

and 87 columns is

created

Pass

7 4.3.2 Fetch the squares All the squares in the Pass

43

posters are detected

and their coordinates

are calculated

8 4.3.3 Identify the squares

coordinates

Get the row and

column numbers of all

the squares

Pass

9 4.3.4 Get the square color Fetch the averaged

color of every square

Pass

10 4.3.5 Compute the color

correction method

Get the relationship

between the real

color and the

photographed color

Pass

11 4.4.2 Fix the complications All the missing circles

are detected

Pass

12 4.4.3 Get the circle color Fetch the averaged

color of every circle

Pass

13 4.4.4 Get the real color Fetch the color of the

circle which should be

one of the five

selected colors

Pass

14 4.4.5 Identify the code Fetch the code for the

three-dot

combination

Pass

Table 5.1 Unit testing

44

Chapter 6 - Conclusion

This project aims at creating an experimental unit that is essentially color based and

geometrical. This experimental unit guarantees some of the basic aspects like low cost,

robustness, flexibility, durability, compatibility and fast.

Firstly, object recognition and color calibration guarantees that all the codes are correctly

detected after image processing. The validation and verification done at the end of each stage is a

proof for this.

Secondly, the only expenditure for using color dots as experimental unit is a vinyl sheet.

These codes are printed on vinyl sheet and cut into circular shapes. This is very cheap when

compared to the expenditure that goes into using scanners for detecting RFID’s and Bar codes.

RFID’s which one of the best identification objects, requires batteries which are costly compared

to the low cost vinyl sheet.

Thirdly, it is flexible in its area of use. The use of these color codes is not limited to just

experiments on plant data. They can be used as an experimental unit in various areas of scientific

research by using colors of choice.

Fourthly, it is durable. It does not have to be maintained with care like an RFID that has

the risk of getting spoilt in the presence of unfavorable experimental conditions especially in this

project where the plants are watered daily. Also, since it is not battery powered it does not

deplete soon and can be used for a long time.

Finally, this method is comparatively fast. The total time spent in detecting the code for

the three-dot combinations in each image is less than half a minute. Although the time spent in

getting the bulk colors of the squares in the poster is 15 minutes per image, it happens only once

per replication.

45

Chapter 6 - Future Work

As previously mentioned, every pot is given a bar code, which is used as an identification

marker. But these are placed on the side walls of each pot and won’t be captured in the cameras

placed above. However, after every rotation of the trays that takes place once in three days, the

barcodes of the pots are manually recorded into a database. Because these records are manually

entered, there is a possibility of human error. As a future enhancement, this project focuses on

getting a guaranteed optimum result. This is ensured by taking the information obtained from the

color codes and the information that is manually recorded in the database and validating these

against each other.

46

Chapter 7 - References

[1] http://fiji.sc/wiki/index.php/Documentation

[2] Burger, W., Burge, M.J. 2008. Digital Image Processing: An Algorithmic Introduction Using

Java. Springer Science+Business Media, LLC, New York, NY, USA.

http://fiji.sc/wiki/index.php/Documentation

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Chapter 1 - Introduction
	Chapter 2 - Requirement Analysis
	2.1 Related Work
	2.1.1 Bar Code
	2.1.2 QR Code
	2.1.3 Radio-Frequency Identification

	2.2. Requirements
	2.2.1 Software Requirements
	2.2.2 Hardware Requirements

	2.3 Feasibility Study
	2.3.1 Economic Feasibility
	2.3.2 Behavioral Feasibility

	Chapter 3 - System Architecture and Methodology
	3.1 System Design
	3.2 Methodology / Concepts
	3.2.1 Image Processing
	3.2.2 Color System
	3.2.3 Object Recognition
	3.2.4 Fiji
	3.2.5 Macros
	3.2.6 Plugins

	Chapter 4 - Implementation
	4.1 Code Generation
	4.2 Pre-Process
	4.2.1 Color Segmentation
	4.2.2 Despeckling
	4.2.3 Gaussian Blur
	4.2.4 Remove Outliers
	4.2.5 Analyze Particles

	4.3 Calibration
	4.3.1 Make poster
	4.3.2 Preprocess the poster
	4.3.3 Identify all the squares
	4.3.3.1 Introduction for reading a poster
	4.3.3.2 Method to read a poster

	4.3.4 Get bulk colors
	4.3.5 Compute correction method

	4.4 Decoding
	4.4.1 Assembling circle centers
	4.4.2 Check for complications
	4.4.3 Average the pixel values
	4.4.4 Classify color
	4.4.5 Get the code that belongs to these three dots

	Chapter 5 - Testing
	Chapter 6 - Conclusion
	Chapter 6 - Future Work
	Chapter 7 - References

