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Abstract 

People who suffer from swallowing disorders are diagnosed with dyphasgia. 

The beverage for the dyphagia patients should have the apparent viscosity in the range 

of nectar-like (51 to 350 mPa·s) or honey-like (351 to 1750 mPa·s). Due to the 

swallowing problems, dysphagia patients usually consume beverages slowly. Thus, 

the apparent viscosity of beverage for such patients should be high enough to be in the 

suitable range during the entire time of consumption.  

Three ratios of α-lactalbumin (α-la)/β-lactoglobulin (β-lg) (3:8, 1:1 and 8:3) 

were used to prepare the milk systems. These ratio adjusted milk systems were either 

processed at 70, 80, and 90ºC for 30 min or at 25ºC, and cooled to 25 ± 1ºC. After the 

process was completed, the milk systems were set quiescently 120 min at 25 ±1ºC. 

Physical and chemical properties were assessed at various time. For the milk systems 

at 0 min, the apparent viscosity increased in all 90°C processed-samples, and the 

increase was in the order of 8:3 (15.96%), 1:1 (6.38%) and 3:8 (2.11%) compared 

with the 25ºC samples at each ratio. When the milk systems set for 120 min, apparent 

viscosity increased slightly by 3.7%. 

The maximum apparent viscosity was 2.18 mPa·s, which was less than 

nectar-like. Therefore, xanthan gum was added at 0.15 w/w % to enhance rheological 

properties of the milk systems. α-La/β-lg ratio adjusted milk systems either with or 

without xanthan gum were prepared, and processed at 90ºC or 25ºC, and cooled to 25 



 

 

± 1ºC. Apparent viscosity increased by 48.61 and 89.61% in 3:8 and 8:3 milk systems, 

respectively for those at 0.15% xanthan gum concentration and processed at 90ºC 

compared with at 25ºC. Apparent viscosity of 8:3 milk systems at xanthan gum 

concentration of 0.15% processed at 90°C was 58.7 ± 2.12 mPa·s which was within 

the nectar-like range. When the samples were set for 120 min, no changes were found 

in the apparent viscosity of the milk systems. If the rheological properties of the milk 

systems can be controlled by ingredients interactions, this can be used to develop 

nutritious products with different forms for dysphagia patients. 
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Chapter 1 - Literature review 

1.1 Milk proteins 

Milk is the secretion from mammals providing complete nutritional 

requirements for the infants of that species and contains numerous components such 

as proteins, minerals, vitamins, hormones, enzymes, and miscellaneous compounds 

(Fox 1989). Milk proteins are split into two major categories, casein and whey 

proteins depending on the solubility at pH 4.6 (Ellsworth 2003). Milk proteins are 

frequently used as an ingredient in foods because of their physiochemical properties 

such as foam stability, emulsion stability, and gelation (Liu and others 2013). Table 

1.1 depicts the typical components of bovine milk proteins. 

Table 1.1 Typical components of bovine milk protein
1
 

Protein g/L 
% of  
total protein 

Phosphate 
amount 

Cysteine 
residues 

Total protein 33 100   
Total casein 26 79.5   
  αs1 10 30.6 8-9 0 
  αs2 2.6 8.0  12-13 2 
  β 9.3 28.4 5 0 
  κ 3.3 10.1 1 2 
Total whey protein 6.3 19.3   
  α-Lactalbumin 1.2 3.7 0 8 
  β-Latoglobulin 3.2 9.8 0 5 
  Bovine serum 
albumin   

0.4 1.2 
0 35 

  Immunoglobulines 0.7 2.1   
  Proteose peptone 0.8 2.4   

1 Adapted from Walstra and Jennes 1984. 
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1.1.1 Casein micelles 

Casein is a spherical-shaped protein, provides 76-86% of the total nitrogen 

content in bovine milk, possesses an isoelectric point (pI) of 4.6, and has an average 

diameter of 150 nm, with an average molecular weight of about 108 Da (Fox 2003). 

Its biological function is to help protein digestion by forming a clot in the stomach 

and carrying calcium and phosphate (Haug and others 2007). As shown in Table 1.1, 

αs1- and β-casein contain no cysteine or cystine while αs2- and κ-casein contain two 

cysteine residues per mole, which can naturally form disulfide bonds (Dalgleish 1997). 

Among the many models that have been used to describe the structure of casein 

micelles, the nanocluster model proposed by Holt seems to capture the main features 

(de Kruif and others 2012). In the nanocluster model, casein micelles associate mainly 

through colloidal calcium phosphate nanoclusters. The attachment of the nanocluster 

is the essential part of the phosphorylation.  

Casein protein fractions contain high phosphate amounts (Table 1.1), which 

possess negative charges; thus, they strongly bind polyvalent cations, principally Ca2+ 

as well as Zn2+. Therefore, αs1-, αs2-, and β-caseins, which contain high amounts of 

phosphate groups are Ca-sensitive caseins while	κ-casein which possesses fewer 

phosphate groups is regarded to be Ca-nonsensitive (Fox 1989). Some weak 

interactions (hydrophobic, hydrogen bond, ion bond, Van der Waal’s force) induce 

tails of caseins that associate with each other. Proline, which is highly concentrated 

and uniformly distributed, imparts a random coil secondary structure to all casein 
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subunits, which increases the interactions via hydrophobic and ionic bonds. 

αs1-Casein could self-aggregate through hydrophobic bonds; αs2-casein contains 2 or 3 

phosphoserine clusters and 2 hydrophobic regions; β-casein offers one phosphoserine 

cluster within the hydrophilic region and one hydrophobic C-terminal tail (Walstra 

and Jenness 1984; de Kruif and others 2012). κ-Casein cannot offer nanoclusters due 

to low phosphate content, and it only has one hydrophobic N-terminal tail; thus, the 

expansion of casein micelles is prohibited when κ-casein is attached (Horne 2009; de 

Kruif and others 2012). 

1.1.2 Whey proteins 

Whey proteins are highly functional, and used more frequently in either 

animal feed or human protein sources (Cayot and Lorient 1997; Bryant and 

McClements 2000). Industrially, two kinds of whey are produced: sweet and acid. 

Sweet whey is generated from rennet-coagulated cheese production like cheddar, 

whereas acid whey is produced from acid-coagulation such as cottage cheese (Panesar 

and others 2007). Categories of whey proteins are listed in Table 1.1; α-lactalbumin 

and β-lactoglobulin, the major whey protein fractions in whey are introduced further. 

 

1.1.2.1 α-Lactalbumin 

α-Lactalbumin (α-la) is only found in mammal’s milk and binds two atoms of 

Ca which is considered to be the unique structure of α-la (Edwards and others 2009; 

Walstra and Jennes 1984). α-La is a globular protein with a molecular weight of 
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14,200 Da with a pI of ~4.2 (Bramaud and others 1997). It is widely found in all 

mammals’ milk, acting as a specifier protein for lactose synthetase in the formation of 

lactose from galactose and glucose. Functionally, it possesses good emulsifying and 

foaming functions although, the native molecule reveals low surface hydrophobicity 

(Edwards and others 2009; Fox 1989). 

 

1.1.2.2 β-Lactoglobulin 

β-Lactoglobulin (β-lg) is the major whey protein in bovine milk; but is absent 

in human and rodent milks (Fox 1989). It is a globular protein with molecular weight 

of 18,000 Da, and a pI of 5.2 (Hegg 1982). β-Lg is known to self-associate and the 

conformation of β-lg depends on the pH (Table 1.2). 

Table 1.2 Conformation of β-lactoglobulin as a function of pH
1
 

pH Conformation of β-lg 
<3.5 Monomer 
3.5-5.2 Octamer 
5.2-8.0 Dimer 
>8.0 Monomer 

1Adapted from Fox 1989 

The electrostatic interactions between Asp130 and Glu134 of one monomer with 

the corresponding lysine residues of another monomer is the reason for the dimer 

presence (Koffi 2003). Native	β-lg has five cysteines: two disulfide bonds, 

Cys66-Cys160 and Cys106-Cys119/Cys121; and one free buried thiol group shifting 

between residues 119 and 121. The secondary structure of β-lg holds 15% α-helix, 50% 

β-sheet, and 15-20% reverse turn (Edwards and others 2009). The native 
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conformation is sensitive to heat and pH, as the free sulfhydryl (also known as thiol) 

groups are exposed in thermal denaturation. The mechanism for heat denaturation is 

that the dimer dissociates, followed by the monomer unfolding to permit more rapid 

sulfhydryl reactivity, which leads to disulfide interchange and whey protein 

aggregation. 

 

1.1.3 Casein micelles and whey proteins interactions 

Environmental factors can influence the interactions of casein and whey 

proteins such as pH, temperature, heating time, enzyme, and water activity in dry 

ingredients, as well as the ratio of casein and whey protein (Corredig and Dalgleish 

1996; Gu and others 2011; Gulzar and others 2011). Denaturation of a protein occurs 

when the tertiary and secondary structures are ruptured, while the peptide bonds of the 

primary structure are maintained; side chain groups which are buried in the core of the 

protein are exposed due to the unfolding of the native proteins (Walstra and Jenness 

1984). Association between denatured β-lg and κ-casein occurs via thiol-disulphide 

bond interchange (Figure 1.1) resulting in an intermolecular disulfide bond, which 

shifts the location of the disulphide bond from R’-R” to R-R’ (Hae and Swaisgood 

1990). 

 

RSH+R’S-SR”→RS-SR’+R”SH 

Figure 1.1 The mechanism of sulfhydryl/disulfide bond exchange 
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The association between whey protein and casein is also sensitive to pH as a 

higher rate of interaction was reported in a liquid system at pH 6.5 compared with 6.7 

(Anema and Li 2003b). Most denatured whey proteins associate with casein micelles 

at pH of 6.5 during heating; however, the association between whey protein and 

casein micelles decreases when pH continues to increase after heating. Thirty percent 

of whey proteins associated with casein micelles at pH 6.7 whereas 50% of whey 

proteins associated with casein micelles at pH 6.5 when both were processed at 80ºC 

for 30 min (Anema and others 2004a). At a pH near the pI of a protein, the charge on 

the protein is balanced and hydrophobic forces predominant; this noncovalent 

bonding of hydrophobic forces leads to the binding of two molecules in the solution 

resulting in aggregation.  

Change of pH can also affect electrostatic interactions (which is defined as 

“the attraction or repulsion between (partially) charged parts of the protein molecules”) 

(Koning and Visser 1992). In normal milk pH (6.6-6.8), β-lg is present as a dimer, 

while monomers or octamers are formed when pH is below 3.5 and 5.2, respectively 

(Bonnaillie and Tomasula 2008). Change of conformation leads to exposure of 

disulfide bonds and cysteine residues, allowing for association between whey proteins 

and casein micelles.  

Temperature is another major factor impacting association of whey protein 

and casein. Corredig and Dalgleish (1996) reported that β-lg was more sensitive to 

temperature than α-la; but the interaction kinetics between α-la/κ-casein and 
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β-lg/κ-casein were similar at 75 and 90ºC. On the other hand, the rate of interaction 

between β-lg/κ-casein was faster than α-la/κ-casein when > 90ºC. The results 

suggested that the interaction mechanism between proteins might be different if 

temperatures exceed 90ºC (Corredig and Dalgleish 1996). Greater association (80%) 

between denatured whey proteins and casein micelles occurs when milk is heated 

slowly (e.g. lab water bath) versus heated rapidly (e.g. direct heating) which has been 

reported to cause 50% of the association (Anema and Li 2003a). Sulfhydryl/disulfide 

bond exchange, which is highly dependent on temperature, is responsible for whey 

protein and casein micelles association. Disulfide bonds and cysteine residues are 

exposed at elevated temperatures (Gezimati and others 1997). Moreover, the 

increasing temperature promotes the mobility of molecules (Schuck 2013). The 

hydrophobic association is positive enthalpy, and higher temperature will induce 

hydrophobic associations to occur. On the other hand, hydrogen bonds break when 

temperature rises, which induces protein denaturation as both intermolecular or 

intramolecular bonds are altered. Interaction of pH and temperature can lead to the 

shift of gelation pH of the milk systems. Heat treatment of milk results in the shift of 

gelation pH towards a higher pH due to the coating of whey proteins on the casein 

micelles causing the increase of the pI from 4.6 (pI of casein) to 5.2 (pI of β-lg), 

leading to a decrease in electrostatic repulsions at higher pH and gels within a shorter 

time (Vasbinder and others 2003).  

The ratio of α-la/β-lg in the milk system also influences the association 
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between whey protein and casein micelles. α-La associates with casein micelles 

through β-lg because no sulfhydryl groups are present in α-la (Corredig and Dalgleish 

1999). However, the number of binding sites for β-lg on casein micelles seems limited. 

A previous study conducted by Corredig and Dalgleish (1996) reported that the 

binding sites on casein micelles for β-lg were already saturated as addition of β-lg into 

reconstituted skim milk did not increase associations of β-lg and casein micelles. 

However, the addition of α-la increased the associations between whey proteins and 

casein micelles when the milk systems were processed at 80ºC for 30 min. 

Specifically, the associations between β-lg/κ-casein (~0.7 mg/mg) did not change 

when an extra 2 g/L of β-lg was added while associations between α-la/κ-casein 

increased from ~0.3 to ~0.7 mg/mg when an extra 2 g/L α-la was added adjusting the 

ratio of α-la/β-lg to 1.  

Moreover, Dalgleish and others (1997) studied the associations between whey 

proteins and casein micelles in a casein-resuspended model system that had different 

ratios of α-la/β-lg (3:8, 1:1, and 8:3). The results showed that associations were the 

greatest in the 8:3 α-la/β-lg and the least in the 3:8 α-la/β-lg system. Therefore, a 

conclusion was made that the association between α-la and casein micelles was 

through the formation of an intermediate that consisted of α-la and β-lg. Furthermore, 

the amount of α-la associated with the casein micelles was affected by the 

concentration of α-la in the milk system. However, the physical properties were not 

monitored; so the impacts to viscosity or turbidity were uncertain if the α-la/β-lg ratio 
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increased in a milk system. 

1.2 Sulfhydryl groups measurement 

Free sulfhydyrl groups buried in the core of β-lg are considered to be 

responsible for the interactions between whey proteins and casein micelles when 

whey proteins are thermally denatured in the milk system (Shimada and Cheftel 1989; 

Clare and others 2005). It is known that the free sulfhydryl group contributes to the 

oxidation of sulfhydryl groups into disulfide bonds and sulfhydryl/disulfide bonds 

exchange (Shimada and Cheftel 1988; Hoffmann and Van Mil 1997). Whey proteins 

and casein micelles do not interact with each other at 25 ± 1ºC; however, when the 

temperature exceeds 70°C, whey proteins start to denaturate, exposing the buried free 

sulfhydryl groups; therefore, allowing them to associate with casein micelles 

(Corredig and Dalgleish 1996). Whey proteins as a group have been found to 

completely denaturate when processed at 80ºC for 30 min (Anema and Li 2003a). 

Several methods for testing of the sulfhydryl group in milk systems have been 

unsed: fluorescence method (Fahey and others 1981), titration with aqueous Ag+ 

(Zweig and Block 1953), and Ellman’s reagent (5,5’-dithiobis-(2-nitrobenzoic acid or 

DTNB) (de Wit and Nieuwenhuijse 2008). Ellman’s reagent has been used more 

frequently in recent years (Stancluc and others 2012; Gulzar and others 2011). The 

principle of the interaction between DTNB and a sulfhydryl group is shown in Figure 

1.2.  
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Figure 1.2 The reaction between sulfhydryl group and DTNB reagent (adapted 

from Sedlak and Lindsay 1968).  

 

One mole of sulfhydryl group interacts with 1 mole of DTNB reagent, forming 

1 mole of 2-nitro-5-thiobenzoic acid (TNB) which has a yellow color and high molar 

extinction coefficient of 13,600M-1cm-1 at 412 nm and pH 8.0 (Ellman 1959). Heating 

causes the whey protein to unfold, exposing the buried free sulfhydryl group; thus, 

higher concentrations of sulfhydryl groups should be formed after the heating. 

 

1.2 Xanthan gum 

1.2.1 Structure of xanthan gum 

Xanthan gum is an exocellular heteropolysaccharide produced by the 

Xanthomonas campestric pv. campestris (Becker and others 1998). The molecular 

weight of the xanthan gum ranges from 2*106 to 20*106 Da (Braun and Rosen 2001). 

The primary structure (Figure 1.3) consists of a helical trisaccharide side chain 

including D-glucose, D-mannose and D-gluconate attached to acetate and pyruvate 

aligned onto a backbone of D-glucose (Bertrand and Turgeon 2007). The secondary 

structure of xanthan gum in aqueous media is an “order-disorder” transition from 
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helix to coil structure depending on temperature, ionic strength, acetyl, and pyruvate 

concentration (Khouryieh and others 2007). Most of the researchers agree with the 

double-helix model (Pelletier and others 2001). Because of its nontoxic properties, 

xanthan gum is designated by the United States Food and Drug Administration (FDA) 

as a safe food additive (Garcia-Ochoa and others 2000). 
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Figure 1.3 Typical structure of xanthan gum (Adapted from Becker and others 

1998). 

1.2.2 Rheological properties of the xanthan gum in aqueous media 

Xanthan gum is highly soluble in both cold and hot water (Khouryieh 2006). 

The rheology of the aqueous xanthan gum at low concentrations presents a 

pseudoplastic behavior, and the rheological properties are largely influenced by the 

concentration as opposed to temperature and pH (Ahmed and Ramaswamy 2005). 
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Song and others (2006) reported that storage modulus (G′) increased from 2*102 to 

103 dyne/cm2 and loss modulus (G″) increased from 60 to 200 dyne/cm2 as the 

xanthan gum concentration increased from 1 to 4% when tested at frequency of 1.0 

rad/s and strain of 1%.  

Additionally, Whitcomb (1978) tested the apparent viscosity of different 

concentrations of xanthan gum solution, finding that the apparent viscosity of xanthan 

gum solution at 5,000 ppm was almost twice that at 3,000 ppm. The backbone of 

xanthan gum remains disordered in aqueous solution at 25°C, and this disordered state 

can be highly extended because of the electrostatic repulsion between the charged 

groups on the side chains; hence, a weak structure can be formed through hydrogen 

bonds between the xanthan gum molecules (Song and others 2006).  

The viscosity of the xanthan gum solution depends on the measurement 

temperature. As temperature increased from 10 to 80ºC, apparent viscosity decreased 

from 0.07 to 0.015 Pa·s; however, decrease in apparent viscosity was fully reversible 

when temperature declined from 80 to 10ºC (Garcia-Ochoa and others 2000). The 

secondary structure of xanthan gum is that side chain reversely twists the backbone 

through hydrogen bonds to maintain the double helix structure; tertiary structure is a 

helical complex formed network structure maintained by weakly non-polar covalent 

bonds (Han and others 2012). Therefore, these structures play an important role in the 

rheologial properties of xanthan gum (Lai and others 2006). 

Pyruvate and acetyl are located on the mannose units of xanthan gum in the 
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side chain (Callet and others 1987). Previous studies conducted on the native xanthan, 

only acetyl-free xanthan, only pyruvic-free xanthan, and both acetyl- and pyruvic-free 

xanthan in aqueous media, concluded that the pyruvate groups, due to the electrostatic 

repulsion, disabled the ordered conformation of xanthan gum while the acetyl groups 

stabilized the ordered conformation of xanthan gum (Dentimi and others 1984). 

Bradshaw and others (1983) tested the influence of pyruvic acid and acetate in 

xanthan gum solutions on viscosity. Results revealed that viscosities of pyruvate-free, 

pyruvate/acetate-free and native xanthan were similar at shear rates ranging from 8.8 

to 88.3 s-1. However, Tako and Nakamura (1984) showed that dynamic viscosity and 

dynamic modulus of deacetylated xanthan gum solution had a greater increase 

compared to native xanthan gum solution when concentration increased at angular 

velocity of 3.768 rad/s at 25°C. Dynamic viscosity increased by ~16 (0.7 to 16.7) and 

7.1 (0.9 to 8) poise, and dynamic modulus increased by 198 and 56 dyne/cm2 when  

concentration increased from 0.1 to 1% w/v for deacetylated and native xanthan 

solutions, respectively. Results suggested that acetyl groups contributed to 

stabilization of the structure of xanthan gum in a water-based solution through 

intermolecular associations of the xanthan gum backbone.  

1.2.3 Protein-polysaccharide interaction 

Among the food ingredients (lipids, sugars, protein, minerals, etc.), proteins 

and polysaccharides are important to the final structure and stabilization of many food 

systems through gelling, thickening, and other functional properties (Sanchez and 
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others 1997). The conjugates of protein-polysaccharide are expected to have potential 

for use in the food and health industries due to its non-toxic nature (Kasran 2013). 

Protein-polysaccharide interactions have been detected and studied due to their unique 

functions on texture, stability, and development of new structures in food (Schmitt 

and others 1998). Various types of intermolecular forces are responsible for the 

interactions between protein and polysaccharide, including covalent bonds, 

electrostatic interactions, excluded volume, hydrogen bonds, hydrophobic bonds, 

ion-bridges, and Van de Waals forces (Dickinson 1998).  

 

1.2.3.1 Electrostatic interactions 

The interactions between polymers based on electrostatic interactions can be 

classified into three types: interactions between a) charged macromolecules, b) 

oppositely charged side groups, and c) other available side groups of macro-ions 

(Tolstoguzov 1997). Electrostatic interactions predominantly influence the 

interactions between protein and polysaccharide when a pH below the pI of proteins 

and at low ionic strengths (<20 mM) (Kasran 2013). Generally, food proteins have pIs 

of ~5, and polysaccharides have pIs of ~3 (Dickinson 1998). Both proteins and 

polysaccharides possess negative charge when the pH is above pI; however, 

protein-polysaccharide may be formed between positively charged residues (mostly 

–NH3
+) on the protein and negatively charged polysaccharide (Schmitt and others 

1998). Soluble complexes form when opposite charges carried by the two macro-ions 
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are not equal. The unequal charged complexes interact with solvent molecules, which 

makes the complexes soluble (Kasran 2013).  

 

1.2.2.2 Non electrostatic interactions 

Non electrostatic interactions involve hydrogen bonds, hydrophobic bonds, 

and covalent bonds. Covalent bonds form when the chemical reaction of amino 

groups from the proteins and carboxylic groups from the polysaccharides occur to 

generate an amide covalent bound. It is a strong linkage which endues the 

protein-polysaccharide complexes to be stable and irreversible (Dickinson 1998).  

 

1.2.2.3 Environmental influences 

Environmental factors such as pH, ionic strength, process temperature, and 

ratio of protein and polysaccharide have been studied to detect their influence on 

protein-polysaccharide interactions. pH has a significant effect on the rheological 

properties of protein-polysaccharide system. A system of xanthan (0.1%) and whey 

protein isolate (3%) were processed at 85°C for 30 min and the highest apparent 

viscosity was found at pH of 7 (1000 mPa·s), followed by pH 5 (300 mPa·s), but the 

apparent viscosity was lowest at pH 10 (160 mPa·s) (Gustaw and others, 2003). 

Another experiment detected the effect of pH (ranged from 5.5 to 6.5) on the elastic 

modulus of whey protein isolate (12.5% v/v) and low concentrations of xanthan gum 

(0.01% to 0.06% v/v). Results demonstrated a synergistic effect at pH 6.5 and 6 
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whereas, an antagonist effect was observed at pH 5.5 (Bertrand and Turgeon 2007). 

These two experiments suggested that pH plays a key role on the electrostatic 

interactions, and further influences the rheological behaviors of the liquid systems 

(Dickinson 1998; Bertrand and Turgeon 2007). Process temperature is another aspect 

that impact protein-polysaccharide interaction.  

The hydrophobic bonds are enhanced when temperature exceed 60ºC 

(Skrovanek and others 1985). The hydrogen bonds are diminished when the 

temperature exceeds 30ºC (Skrovanek and others 1985). Moreover, the whey protein 

denaturates at 70°C; thus, the exposed active groups due to the denaturation are 

attributed to form covalent bonds with polysaccharides (Schmitt and others 1998).  

The concentration of xanthan gum also contributes to the interaction of 

proteins and polysaccharides. Sanchez and others (1997) tested the apparent viscosity 

of whey protein isolate (14% w/w) and various concentrations of xanthan gum 

solution (0.05, 0.1, 0.2 and 0.5%) at pH 7. The apparent viscosity of WPI-xanthan 

gum mixture increased from 20 mPa·s to 120 mPa·s at shear stress of 10 Pa when the 

concentration increased from 0.05 to 0.5%. 
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1.3 Rheological properties 

1.3.1 Apparent viscosity 

The viscosity and the flow behavior of skim milk is largely influenced by 

increased total solids, decrease of pH, salt addition such as Na+ and K+, increased 

temperature and pressure which impact the aggregation of casein micelles, leading to 

the increase in particle size, and thus contribute to a viscosity increase (Anema and 

others 2004a and b; Karlsson and others 2005; Oldfield and others 2000). When the 

total solids is increased, the removal of water increases the interaction between casein 

micelles while decreasing the distance between them so that the viscosity can be 

increased. The flow behavior of reconsitituted whole milk was changed from a 

Newtonian to a shear-thinning behavior when the total solids exceed 30% (Trinh and 

others 2007).  

The flow behavior index (n) of a fluid may influence the mouthfeel of liquids. 

Liquids with low n values (which is also regarded as high degree of shear-thinning 

behavior) has been reported to have less slimy mouthfeel than those liquids with high 

n values (Cho and others 2012). 

The relationship between shear stress, viscosity and shear rate can be 

presented in the following equation:  

τ = -μ
��

��
  

where τ is the shear stress, - 
��

��
 (usually represented by the symbol γ�) is the 

shear rate, μ is the viscosity. The apparent viscosity of a non-Newtonian fluid 
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sample is the viscosity at a specific shear stress or shear rate (Steffe 1996). 

The apparent viscosity can be split into time-independent or time-dependent 

based on whether the apparent viscosity changes as a function of time in one 

measurement. For a time-independent material, a general relationship to describe the 

flow behavior of non-Newtonian fluids is the Herschel-Bulkley model:  

τ=K(γ)n+τ0 

Where τ=shear stress (Pa), γ=shear rate (1/s), τ0=intercept or yield stress, 

K=consistency coefficient (Pasn), and n=flow behavior index (-). 

Table 1.3 compares the different flow behaviors based on the 

Herschel-Bulkely model. 

 

Table 1.3 Newtonian, shear-thinning, shear-thickening, and Bingham plastic 

flow behaviors expressed in the Herschel-Bulkley model
1
. 

 

Fluid behavior K2 n3 τ0
4 

Herschel-Bulkley >0 0<n<∞  >0 
Newtonian >0 1 0 
Shear-thinning >0 0<n<1 0 
Shear-thickening >0 1 0 
Bingham plastic >0 1 >0 

1Adapted from Steffe 1996; 2Consistency coefficient; 3Flow behavior index; 4Yield 

stress. 

 

Other models also are used to describe the relationship between shear stress and shear 
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rate of time-independent fluid (Hassan and others 2003; Sopade and others 2007), and  

are shown in Table 1.4. 

Table 1.4 Other models for time-independent fluid 

Flow behavior Model 

Casson (τ)1/2= K(γ)1/2+(τ0)
1/2 

Generalized Herschel-Bulkley (τ)m= K(γ)n+(τ0)
m 

Heinz-Casson (τ)n= K(γ)n+τ0 

Mizrahi-Berk (τ)1/2= K(γ)n+(τ0)
1/2 

Vocadlo (τ)1/m= Kγ+(τ0)
1/m 

 

Where τ=shear stress (Pa), γ=shear rate (1/s), τ0=intercept or yield stress, 

K=consistency coefficient (Pasn), m=a form of flow behavior index (index of yield 

stress), n=flow behavior index (index of shear rate). 

The associations between whey proteins and casein micelles influence 

apparent viscosity in skim milk (Jeurnink and de Kruif 1993). Environmental factors 

such as pH, total solids, true protein content, fat content, and temperature can cause 

the apparent viscosity of a milk systems to change (Anema and Li 2003b; Anema and 

others 2004b; Bakshi and Smith 1984; Quinones and others 1997; Trinh and others 

2007; Vasbinder and de Kruif 2003). In the experiment of Anema and others (2004b), 

the pH of reconstitutued skim milk were adjusted to 6.5, 6.55, 6.6, 6.65 and 6.7, and 

were held at 90ºC for 30 min. The relative viscosity increased from 1.04 to 1.13 as pH 

decreased from 6.7 to 6.5. Langely and Temple (1985) used a model to describe the 

relationship between relative viscosity and total solids in skim milk: 

ηr=eKC 



20 

 

where ηr is the relative viscosity, C is the total solids (w/v %) and K is a constant. K 

increased as the temperature increased from 80 to 140ºC. Quinones and others (1997) 

measured the relative viscosity (taking water as the reference) of milks with different 

true protein contents (1.0 to 4.8%) in skim milk and 1% milk. The relative viscosity 

increased by 35.14 and 39.10% when true protein content increased from 2.0 to 4.8% 

in skim milk and 1% milk, respectively. In Jeurnink and de Kruif’s (1993) experiment, 

relative viscosity of skim milk were 1.099 if held at 90ºC for 600 s; however, relative 

viscosity were 0.988 when skim milk was held at 60ºC for 600 s. 

1.3.2 Dynamic oscillation testing 

Dynamic oscillation testing is applied to understand the gelation mechanism in 

food systems (Tang and others 1995). To study the microstructure of the material 

system, a small deformation based on rheological measurement (small oscillatory 

shear test) is applied (Song and others 2006). Typically, this dynamic test starts with 

amplitude of strain or stress at a constant frequency (large amplitude oscillatory shear 

test) to ensure the strain is small enough to be within the linear viscoelastic region of 

the material. Once the linear viscoelastic region is defined, further experiments such 

as a frequency-sweep test can be conducted to detect the gel properties of the systems. 

The small amplitude oscillatory shear (SAOS) test allows for testing systems without 

damage; hence, the microstructure of the material can be described (Macosko 1994). 

The relationship between storage modulus and loss modulus can be described 

by the following equation: 
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G′ = (σ0/ϒ0)cos(δ)  

G″ = (σ0/ϒ0)sin(δ)  

tan(δ) = G″/G′      

Where, G′=storage modulus, G″=loss modulus, σ0=the amplitude of the shear 

stress, ϒ0=the amplitude of the strain, δ=the phase shift. Table 1.5 shows the gel 

properties of a material as a function of δ. 

 

Table 1.5 The relationship between phase shift and gel properties in a material 

(Bryant and McClements 2000; Tang and others 1995). 

Gel properties Phase shift 
Hookean solid δ=0 
Viscoelastic 0<δ<90 
Newtonian fluid δ=90 

 

Tang and others (1995) tested the rheological properties of the heat-induced 

gelation of whey protein concentrate solutions as a function of pH. Even though pH 

varied in whey protein concentrate solutions, gels were formed when heated at 80ºC 

after 44 min. Cho and others (2012) used frequency sweeps to detect gel structures of  

thickened beverages (apple juice, orange juice and whole milk) prepared with xanthan 

or guar gum based commercial thickeners. The results suggested that G′ and G″ 

increased with frequency increases and the tan(δ) at 6.28 rad/s (1Hz) was < 1, which 

meant that a weak gel-like behavior was exhibited. The structural product types are 

different if tan(δ) differs, even though the apparent viscosities are the same for 
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various beverages (Payne 2011). 

 

1.4 Turbidity 

1.4.1 Principle of absorbance 

White light can be separated into different single colors by various 

wavelengths (r) (Table 1.6) with higher wavelengths having lower energy. When light 

shines on a substance, reflection, absorption, or transmission occurs. Different 

chemical substances have different absorbances, transmittances, and reflection 

properties. Absorption occurs when a photon of electromagnetic energy is transferred 

to an atom or molecule. The atom or molecule with certain functional groups absorbs 

the energy from the photon and shifts from group state to excited state. The 

absorption peak is found at a wavelength which depends on the difference between 

the energy levels of the electronic transitions in the chromophores (McClements 1999; 

Tinker 1975). 
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Table 1.6 The wavelength of ultraviolet, visible light, and infrared
1
. 

Color/Radiation Wavelength range (nm) 
Ultraviolet 1-385 
Violet 385-425 
Blue 425-491 
Green 491-575 
Yellow 575-585 
Orange 585-647 
Red 647-730 
Infrared 730-100,000 

1 Adapted from Tinker 1975 

Absorbance of light measures the total amount of light scattered as it passes 

through a cuvette containing liquid systems, and larger particle sizes have more light 

scattering. The three regions of the light scattering are: long-wavelength regime 

(r<<λ), intermediate-wavelength regime (r≈λ), and short-wavelength regime (r>>λ), 

and the turbidity reaches the highest when the size of the droplets is similar to that of 

the wavelength (Figure 1.4).  
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Figure 1.4 Turbidity as function of radius of particle size at different 

wavelengths (adapted from McClements 1999). 

 

However, this rapid method can only provide an average of the particle size 

instead of the distribution, and assumptions must be made that the distribution of the 

particles in the liquid system is known in advance (Dalgleish 2004). The type and 

concentration of chromophores present in the solution decide the absorption of light, 

while the size, concentration, and relative refractive index of any particulate matter 

relate to the light scattering. The Lambert-Beer law fits a wide range of wavelength 

from UV to infrared (Zijlstra and others 2000). According to the Lambert-Beer law, 

turbidity has a positive relationship to the absorbance: 

T=IS/IR=exp(-τl)   

A=log(IR/IS)=αlc   

Radius 

Turbidity λ=300 nm 

λ=700 nm 

λ=500 nm 
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τ=2.303A/l        

Where T is the transmittance, τ is the turbidity, l is the sample path length, A is the 

absorbance, IS is the intensity of the light that travels directly through the sample, IR is 

the intensity of the light which has traveled directly through the reference cell, α is the 

molar absorbtivity (L mol-1 cm-1), and c is the concentration of the compound in 

solution (mol L-1) (Pearce and Kinsella 1978; McClements 1999). 

 

1.4.2 Application of absorbance in milk systems 

Absorbance has been applied to determine concentrations of milk compounds 

such as protein and lactose (Nakai and Le 1970; Yoshida and Ye 1991; Teles and 

others 1978). Nakai and Le (1970) tested milk protein and milk fat contents 

simultaneously: using acetic acid to dissociate and dissolve both milk protein and fat. 

The milk protein was tested at a wavelength of 280 nm; urea solution containing 

imidazole was added further into the solution, and the fat content was tested at a 

wavelength of 400 nm.  

For a complex milk system, the association between denatured whey protein 

and casein micelles can be detected through absorbance indirectly. Anema and 

Klostermeyer (1997) tested the turbidity of pH adjusted and heat processed 

reconstituted skim milk at 900 nm using a UV/VIS spectrophotometer (Kontron 

Uvikon 941 spectrophotometer), finding that the absorbance of the milk systems 

decreased by ~2% if processed at 70ºC for 15 min at pH 6.7 while the absorbance 
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increased by ~7 and 12% when the samples were processed at 80 and 90ºC for 15 min 

at pH 6.7, respectively. Therefore, a conclusion was drawn that the association of 

denatured whey protein and κ-casein was responsible for the increase of absorbance.  

Particle sizes of the casein in the skim milk processed at various temperatures 

for 15 min at pH 6.55 have been measured with a Malvern Zetasizer 4 instrument and 

the associated ZET5110 particle sizing cell by Anema and Li (2003a). The average 

particle size increased by 4.85% and 10.98% when processed at 80 and 90ºC, 

respectively. Hence, the absorbance and the particle size seemed to have a positive 

relationship. Le and others (2013) tested the turbidity of acid-induced gelation of a 

xanthan gum and β-lg system by measuring absorbance of the system at 800 nm using 

a UV/VIS spectrophotometer. The absorbance of the β-lg/xanthan gum at ratio=5 

(total solid=0.3 w/w%) increased from 0.009 to 0.13 (arbitrary unit) when pH 

decreased from 6.0 to 5.2. The conclusion was drawn that the association between 

β-lg and xanthan gum occurs when pH is decreased. 

 

1.5 Dysphagia 

Patients who have difficulty in food mastication and swallowing are diagnosed 

to have dysphasia (Vivanti and others 2009). It is caused by the damage of nerve 

tissue, cavity structure, or upper digestive tract, which may be the sequela of disease 

such as stroke, brain injury, spinal cord injury, Parkinson’s, etc. Dysphagia mostly 

occurs in the early post-operative period (Lotong and others 2003; Zeng and others 
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2013). A survey conducted in a clinic waiting room revealed that ~23% of the patients 

reported to have symptoms of dysphagia, further it would be more likely to occurr 

amongst older people (> 65 years) as 53 to 57% of patients who had a stroke 

experienced dysphagia (Garcia and Chambers 2010).  

Older adults suffer from dysphagia more frequently because elderly are more 

likely to have esophageal disorders such as reflux and hiatus hernia (Davis and Spicer 

2007). The normal swallow is a four-step action: (1) oral preparatory phase, the food 

is held in the mouth by closing lips and cheeks; (2) oral transport phase, the bolus is 

pushed back into the pharynx by tongue, the nasal cavity is sealed by the soft palate, 

and the bolus is transported downwards by peristaltic waves; (3) pharyngeal phase, 

reflexes in laryngo-pharynx occur to prevent the bolus moves towards the airway; and 

lastly (4) the bolus passes through the crico-pharyn-geal sphincter and downward to 

the stomach. Dysphagia may occur during any one of the four steps of swallowing 

(Germain and others 2006). 

Dysphagia patients may suffer from aspiration, dehydration, pneumonia, 

weight loss, malnutrition, and even mortality (Vivanti and others 2009). Aspiration 

occurs when the foreign material is inhaled into the lower airway (Tutor and Gosa 

2012). It may occur during any phases of swallowing, resulting in cough, chest pain, 

lung abscess, and death. Infants, whose swallowing mechanisms are immature, have a 

significant amount of suffering from aspiration along with dysphagia. Thin liquids 

which are difficult to control in the mouth for swallowing-disordered patients may 
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increase the risk of aspiration. To avoid aspiration, texture-modified and more viscous 

liquids are prepared for dysphagia patients (Vivanti and others 2009). But at the same 

time, dysphagia is also associated with dehydration. Such symptom pervades among 

older adults in all kinds of long-term care agencies including hospitals and living 

communities (Bratlund and others 2010). A previous report showed that over half of 

hospitalized elderly adults with dehydration suffer risks of death if no additional care 

was applied (Allison and Lobo 2004). Due to the negative effects brought by 

aspiration and dehydration, diets that can be both tolerated by patients and supply 

adequate moisture contents are needed.  

Speech-language pathologists are often involved in recommending food 

modifications for dysphagia patients to ensure swallowing safety; however, people 

who take care of the patients such as a nursing staff are often the ones directly 

preparing and serving the recommended food (Garcia and others 2010). A 

recommended labeling for diets based on various “consistency” have been developed 

and established by the American Dietetic Association (ADA) for the National 

Dysphagia Diet (NDD) (American Speech-Language-Hearing Association 2003). The 

categories are aimed to guide the liquid food preparation based on thickness and has 

an instrument measurement of apparent viscosity using centipoises (mPa·s) at a shear 

rate of 50 s-1 at 25ºC (Lotong and others 2003) (Table 1.7).  
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Table 1.7 Standard consistency classes for foods targeted for dysphagia based on 

the National Dysphagia Diet (Lotong and others 2003). 

Consistency class Apparent viscosity1 (mPa·s) 
Thin 1-50 
Nectar-like 51-350 
Honey-like 351-1750 
Pudding-like >1750 

1The apparent viscosity is measured at shear rate of 50 s-1 at 25 ± 1ºC. 

 

Leder and Judson (2012) conducted the safe swallowing tests on 84 patients with 

dysphagia resulting from different diseases (e.g. cancer, cardiothoracic surgery, 

dementia, etc.) and reported that the liquid foods of nectar-like or honey-like 

consistency are safe for these patients.  

 

1.6 Beverages  

The consumption of beverages in human history dates back to 1500 BC with 

fairly limited variability (Grivetti and Wilson 2004). Nowadays, beverage categories 

have expanded and classified as: water, tea and coffee, low fat (1.5% or 1%) and skim 

milk, and soy beverages, noncalorically sweetened beverages, caloric beverages with 

some nutrients, and calorically sweetened beverages (Popkin and others 2006; 

Sharkey and others 2012). Whey, as an ingredient, has been involved in the beverage 

development for several decades (Jelen 1987). Whey is a nutritious source of vitamins, 

minerals, and high quality proteins. The sulfur containing amino acids in β-lg are of 
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great value because of the anticancer activities; and insoluble free fatty acids are 

transported by bovine serum albumin. Lactoferrin and lactoperoxidase are known as 

bioactive proteins with functions of antibacterial, antioxidant, and antiviral properties 

(Djuric and others 2004; Tunick 2008). Generally, beverages in the market are 

considered to be “thin” liquids. Typical apparent viscosity of the beverages are listed 

in Table 1.8. 

 

Table 1.8 Typical flow behavior of common beverages in the market 

Beverage 
Measured 
temperature 
(ºC) 

Apparent 
viscosity 
(mPa·s) 

Fluid behavior References 

Water 25 0.89 Newtonian Rao 2007 

Skim milk 25 1.26 Newtonian 
Bakshi and Smith 
1984  

1% milk 25 1.26 Newtonian 
Bakshi and Smith 
1984 

2% milk 25 1.26 Newtonian 
Bakshi and Smith 
1984 

Whole milk 25 1.26 Newtonian 
Bakshi and Smith 
1984 

Depectinized apple 
juice (50º Brix) 
 

25 
 

2.7 
 

Newtonian (all 
concentrations) 
 

Saravaco 1970 
 

Grape juice  
(30º Brix) 

25 
 

3.7 
 

Newtonian  
(< 50º Brix) 
 

Saravaco 1970 
 

Oragen juice  
(16º Brix) 

25 3 
Newtonian  
(< 20º Brix) 

Saravaco 1970 

Coffee - 2.12-2.38 Newtonian 
Nemtanu and 
others 2005 

Beer - ~1.6 Newtonian Bamforth 2004 

 



31 

 

1.6.1 Beverage for dysphagia 

To treat dysphagia, consistency-adjusted fluids are recommended to support 

patients, either as ready-to-serve or by adding instant thickener (Claes 2012). 

Thickened beverages have slowed flow, which allow for muscle control to match the 

accurate time of swallowing; hence ensuring the safety of swallowing (Atherton and 

others 2007).  

Thickening agents are available commercially and intended specifically as 

dysphagia foods (Matta and others 2006). Most of the instant thickening agents are 

starch- or gum-based such as guar gum or xanthan gum (Payne and others 2012). For 

liquid systems thickened by these agents, viscosity varies according to the diversity of 

the thickener that is used. Starch-based, instant thickeners have a greater ability to 

increase the apparent viscosity compared with the gum-based commercial ones 

(Garcia and others 2005; Hamlet 1996). However, viscosity increases when the 

thickened liquids set if certain kinds of thickeners are used (Garcia and others 2005; 

Hamlet 1996).  

In Garcia’s experiment (2005), commercial thickening agents (Thick & Easy®, 

Hormel HealthLab, Austin, MN; Thicken Up®, Novartis Nutrition Corporation, 

Minneaplois, MN; Thick-it®, Precision Foods Inc., St. Louis, Mo; Simply Thick® 

Phagia-Gel Technologies, St, Louis, MO; and Thick & Clear®, Nutritional Focus, 

Indianapolis, IN) were used to prepare nectar- and honey-like beverages using water, 

fruit juice, 2% milk, and coffee. It was observed that the apparent viscosity at 50 s-1 
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increased after setting for 30 min for all starch-based thickening agents (Thick & 

Easy®, Thicken Up®, and Thick-it®) while the gum-based thickening agents (Simply 

Thick® and Thick & Clear®) (xanthan gum and cellulose gum standardized with 

maltodextrin) did not significantly change during the setting time of 30 min. For 

instance, magnitude of increase ranged from 105.8 to 312.9% for a 2% milk thickened 

by different starch-based thickeners (Garcia and others 2005).  

Another experiment using carrageenan as the hydrocolloid illustrated its 

interaction with κ-casein since no κ-casein band was observed through 

polyacrylamide gel electrophoresis after a 30 min reaction between the gum and 

protein (Grindrod and Nickerson 1968). Because of the interaction of κ-casein and 

carrageenan, the apparent viscosity of milk system with carrageenan as a thickener 

would probably be too inconsistent if the milk set for 30 min. When the gum-based 

thickeners are used across different beverages (2% milk, apple juice, orange juice, 

coffee), viscosity seems to be more consistent and less variable compared with 

beverages thickend by starch-based agents (Matta and others 2006). Sensory 

evaluation of the starch-based and gum-based commercial thickeners showed that 

starch-based thickened products generated a grainy texture while gum-based 

thickened products yielded more slicker textures (Matta and others 2006).  

Ready-to-serve beverages or commercially packaged prethickened beverages 

are another form of beverages that are designed for dysphagia patients. Prethickened 

fruit juices (including orange and apple juice), milk, and flavored water can be found 
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in the market (Adeleye and Rachal 2007; Payne and others 2011). However, there are 

still some parameters that need to be considered about the ready-to-serve beverages in 

the market. A study conducted by Adeleye and Rachal (2007) compared the 

rheological properties of ready-to-serve beverages with instant food thickened 

prepared beverages. Preparation of beverages with instant food thickener strictly 

followed the instructions for usage amount. The results suggested that the 

ready-to-serve beverages had much greater apparent viscosities compared with the 

instant food thickener prepared beverages (303.13 ± 3.56 cPs for nectar-like apple 

juice of commercially prethickened beverage while 89.07 ± 0.46 cP for nectar-like 

apple juice of instant food thickened beverage). For some ready-to-serve beverages, 

apparent viscosities were obviously out of the range of nectar-like or honey-like as 

presented in Table 1.6 (commercial prethickened beverage of nectar-like orange juice 

was 447.98 ± 6.32 cP at 20ºC). In another experiment testing the consistency of 

prethickened beverages in the UK market, the results indicated that the consistencies 

of the starch-based prethickened beverages were not constant among different batches 

(Payne and others 2011). Due to the disadvantages of the current ready-to-serve 

beverages in the market, development of a beverage with suitable apparent viscosity 

as well as stable consistency is needed.  

Xanthan gum has been largely used in the industry to modify the rheology of 

the products. The association between whey protein and casein micelles can be 

enhanced by adding α-la. An economic and nutritious ready-to-serve beverage with 
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suitable and stable apparent viscosity may be developed based on the enhanced 

protein interactions by α-la/β-lg ratio adjustment, or with the addition of a 

polysaccharide. 
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Chapter 2 - Research objectives 

The overall objective of this research was to develop a dairy-based beverage 

with the rheological properties that are suitable for dysphagia patients by adjusting the 

ratio of α-lactalbumin (α-la) and β-lactoglobulin (β-lg) and controlling the interactions 

between milk proteins and xanthan gum. 

In the first study, the objective was to determine the effects of temperatures 

and ratios of α-la/β-lg and setting time on the apparent viscosity of milk systems. The 

objective of the second study was to determine the effects of temperature and ratio of 

α-la/β-lg and setting time on the rheological properties of the milk systems either with 

or without xanthan gum. 
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Chapter 3 - Material and methods 

3.1 Milk systems preparation 

3.1.1 α-la/β-lg ratio adjusted milk system 

Low heat nonfat-dry milk (NDM) (Dairy America, Fresno, CA, USA) and 

LACPRODAN® ALPHA-20 (Arla Foods Inc., Basking Ridge, NJ, USA; Appendix A) 

were obtained from commercial suppliers. The milk systems with total solids of 10% 

w/w at α-la/β-lg ratio of 3:8 (control), 1:1, and 8:3 were achieved by rehydrating 

specific amounts of NDM and commercial α-la into dionized, distilled water. The 

powder mixtures were rehydrated in approximately 80 mL of dionized, distilled water 

by magnetically-stirring (Isotemp Stirring Hotplate model # 11-600-495SH, Fisher 

Scientific) for 40 min at 25 ± 1°C. The dispersion was transferred into a 100 mL 

volumetric flask and made to volume. Milk suspensions achieved the desired process 

temperature (70, 80, or 90ºC) on the heat/stir plate. The milk systems were either not 

processed (25ºC) or processed at 70ºC for 30 min, 80ºC for 30 min, and 90ºC for 30 

min by heating in a water bath (Isotemp 220, Fisher Scientific) set to the designated 

temperature. The processed milk systems were immediately cooled to 25 ± 1ºC within 

5 min by placing in ice bath.  

3.1.2 Xanthan gum added α-la/β-lg ratio adjusted milk system 

Dispersions consisting of 0.5% w/w xanthan gum (Ticaxan® Xanthan 200, 
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TIC Gum, White Marsh, MD; Appendix A) were prepared by mixing 5.5078 g of 

xanthan gum powder (moisture content of 8.732 ± 0.148%) with 600 mL water, in a 

an Oster blender (Model: 6870, Jarden Consumer Solutions, Boca Raton, Florida, 

USA) on speed “blend” for 10 min at 25 ± 1°C. The solution was made to 1,000 mL 

after centrifuging (Marathon 21000R, Thermo IEC, Needham Heights, MA) at 1,000 

g for 5 min to remove the incorporated air (Ahmed and Ramaswamy 2004). The 

xanthan gum dispension set at 4 ± 1°C for 12 h. Milk systems were prepared by 

adding 0 or 33.5 mL of xanthan gum solution into NDM and commercial 

α-lactalbumin dispersions to achieve the desired xanthan gum concentration of 0 or 

0.15%. The mixture was stirred on a magnetic stir (Isotemp Stirring Hotplate model # 

11-600-495SH, Fisher Scientific) for 2 h at 25 ± 1°C. The milk systems were made up 

to volume in a 100 mL volumetric flask. Milk systems were either processed at 90°C 

for 30 min or remained at 25 ± 1°C.  

For the 90°C samples, milk systems were transferred to a 100 mL beaker, and 

were quickly heated to 85 ± 1°C on a hot plate (Isotemp Stirring Hotplate model # 

11-600-495SH, Fisher Scientific, Pittsburgh, PA, USA) within 3 min, then samples 

were processed at 90°C in a water bath (Isotemp 220, Fisher Scientific) for 30 min. 

Processed dispersions were cooled to 25 ± 1°C in ice bath covered with aluminium 

foil within 10 min. 
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3.2 Assessments 

3.2.1 Rheological properties 

3.2.1.1 Apparent viscosity of the α-la/β-lg ratio adjusted milk systems 

The apparent viscosity for α-la/β-lg ratio adjusted milk systems were obtained 

on a speed controlled viscometer (Brookfield Programmable LVDV-II Viscometer, 

Brookfield Engineering. Middleboro, MA, USA) fitted with ULA spindle and UL 

adaptor. Approximately 25 mL sample was measured at shear rates of 14.7, 24.5, 36.7, 

61.2, 73.4 and 122 s-1 at 25°C. Since the milk system is a Newtonion fluid (Karlsson 

and others 2005), the apparent viscosity at a shear rate of 50 s-1 was calculated by 

forming a linear regression model of shear stress and shear rate as:  

τ = μ *	Υ�  

where τ is the shear stress, Υ�  is the shear rate, μ is the apparent viscosity 

(Glassburn and Deem 1998); all R2 were > 0.999. 

 

3.2.1.2 Apparent viscosity of xanthan gum and α-la/β-lg ratio adjusted milk systems 

Apparent viscosity of xanthan gum milk systems was measured at a shear rate 

range from 0.1 to 100 s-1 using a shear rate control rheometer (VISCOANALYSER 

DSR, ATS RheoSystems, 231 Crosswicks Road, Bordentown, NJ) with the 

accompanying Rheoexpolorer software (RheoExplorere Version 5) at 25 ± 1°C. Ten 

points in the logarithm scale were taken every 20 s (Pollen 2002). Apparent viscosity 

at 50 s-1, consistency coefficient, and flow behavior index were recorded for further 
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statistical analyses. Apparent viscosity at 50 s-1 was calculated by power law (Steffe 

1996): 

τ=K(γ)n  

μ= τ/	Υ�    

Where τ=shear stress (Pa), γ=shear rate (1/s), K=consistency coefficient, n=flow 

behavior index, Υ�  is the shear rate, and μ is the apparent viscosity at shear rate of 50 

s-1; R2 were between 0.992-0.999. 

 

3.2.1.3 Phase shift, storage modulus (G′), and loss modulus (G″) of xanthan gum 

added α-la/β-lg ratio adjusted milk systems 

Phase shift, G′, and G″ were obtained using a frequency sweep ranging from 

0.1 to 100 Hz at a constant strain of 1% using a shear rate control rheometer 

(VISCOANALYSER DSR, ATS RheoSystems, 231 Crosswicks Road, Bordentown, 

NJ) with the accompanying Rheoexpolorer software (RheoExplorere Version5) at 25 

± 1°C. A strain sweep was conducted (strain ranged from 0.1 to 100% at a constant 

frequency of 1 Hz) to ensure the strain of 1% was within the linear elasticity range. 

Ten measurements were taken every 20 s. The phase shift, G′, and G″ at 1 Hz were 

taken for statistical analyses (Keshtkaran and others 2013). 
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3.2.2 Turbidity  

The turbidity of xanthan gum added α-la/β-lg ratio adjusted milk systems were 

measured following the method given be Le and Turgeon (2013). Milk systems were 

diluted into 1:10 with dionized, distilled water; turbidity was detected by measuring 

absorbance of approximately 3 mL diluted sample at 800 nm with 1 cm quartz cells 

(Fisher Scientific) using a UV/VIS-light spectrophotometer and each sample was 

measured twice. Approximately 3 mL dionized, distilled water was used as the blank.  

3.2.3 pH 

pH (post-process) was measured by a pH meter at 25°C (Accumet AP63 

portable pH meter, Fisher Scientific) calibrated with standard pH 4 and pH 7 buffer 

solutions (Fisher Scientific) at 25 ± 1ºC.  

3.2.4 Total solids (TS) 

Total solids were measured using the forced-draft oven method (Hooi and 

others 2004). Approximately 3 mL of sample was added into a pre-heated and 

pre-dessicated aluminum, disposable dish with the diameter of 56 mL (Fisher 

Scientific), and covered with another aluminum, disposable dish. Samples were 

placed in the oven to dry at 100 ± 2ºC for 12 h. Samples were cooled and dessicated 

in a dessicator for 15 min. Total solids were calculated as follows:  

% Total Solids = 
�	�	
��
��	������

�������	
��
��	������
 x100 
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3.2.5 Free and total sulfhydryl groups  

Free sulfhydryl groups were measured following the method by Hashizume 

and Sato (1988). Approximately 3 mL of the sample for the first study and 1 mL for 

the second study were dissolved in 5 mL of sodium phosphate buffer (pH 8.0; 

prepared by Na2HPO4 and NaH2PO4; Fisher Scientific) and 0.1 mL of 10-2 M 

5,5’-dithiobis (2-nitrobenzoic acid) (DTNB; Sigma-Aldrich, St. Louis, MO, USA). 

After holding for 5 min, 2 g of ammonium sulfate (Fisher Scientific) was added to 

coagulate the milk proteins, and held for 2 min more at 25°C. Milk samples were 

filtered through Whatman No. 1 filter paper (Fisher Scientific). The absorbance of 3 

mL of the supernatant was measured at 412 nm using a UV-Visible wavelength 

spectrophotometer (GENESYS 5, Thermo Electron Corporation, Madison, WI, USA) 

in a 1 cm disposable quartz cell (Fisher Scientific) at 25ºC. The blank consisted of the 

same amount of reagents treated equally as samples. 

Total sulfhydryl groups were measured following Shimada and Cheftel (1989). 

Approximately 0.265 mL of milk sample at ratio of 3:8 and 1:1, and approximately 

0.225 mL of milk samples at the ratio of 8:3 were diluted in 10 mL of 8 M urea 

(Sigma-Aldrich) and 0.5% sodium dodecyl sulfate (SDS; Sigma-Aldrich) dissolved in 

pH 8 sodium phosphate buffer (Fisher Scientific) to achieve protein concentrations of 

approximately 0.1%. Diluted samples were votexed for 1 min, followed by 

centrifugation (Marathon 21000R, Thermo IEC, Needham Heights, MA) at 15,000*g 

for 15 min at 25°C. The supernantant was carefully removed by filtration through 
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Whatman No.1 filter paper, and 3 mL of the filtrated sample was transferred to a 1 cm 

disposable quartz cell (Fisher Scientific). Then, 0.03 mL of DTNB reagent was added 

into each cell and the mixture was shaken 10 times thoroughly. Absorbance was 

recorded at 412 nm after 10 min using the same amount of reagent without sample as 

the blank at 25°C, and the average of the two measurements was calculated as the 

absorbance for each sample. The concentrations of free and total sulfhydryl groups 

were calculated by the following equation (Shimada and Cheftel 1989): 

C0 = 
�

Є
∗ D 

Where C0 = original concentration (mol/L), A = absorbance at 412 nm, Є = extinction 

coefficient = 13,600/M/cm, and D = dilution factor (Appendix B, Table B.13 for the 

first study; Appendix C, Table C.10 for the second study). 
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Chapter 4 - Heat-induced Interactions between Casein 

Micelles and Whey Proteins at Varying α-Lactalbumin (α-la) 

and β-Lactoglobulin (β-lg) Ratios  
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4.1 Abstract 

Heat-induced interactions between casein micelles and whey proteins are 

known to alter physical properties of milk and milk-based products by increasing 

viscosity, particle sizes, and changing opacity. The ratio of the two major whey 

protein fractions (α-lactalbumin (α-la) and β-lactoglobulin (β-lg)) also may have a 

role in altering the physical properties of the final liquid systems, which may be 

useful for functional beverages. Liquid systems consisting of reconstituted nonfat dry 

milk and a commercial source of α-la were prepared to targeted α-la/β-lg ratios of 3:8, 

1:1, and 8:3 then processed at 70, 80, and 90°C (30 min) or not. After processing, 

samples were cooled to 25°C and evaluated at 0, 30, 60, and 120 min.  

An incompete block design was used and three replications were done; 

statistical analyses were done by ANOVA and Tukey’s HSD. Apparent viscosity was 

the least for the samples processed at 70°C. An increase in apparent viscosity was 

observed in the 80°C processed samples at the ratio of 8:3 while no changes in 

apparent viscosity were found in the other two ratios compared with the 25ºC samples. 

Apparent viscosity increased by 15.96, 6.38, and 2.11% for 8:3, 1:1, and 3:8 milk 

systems at 90°C samples compared with at 25ºC, respectively. When milk systems 

had set for 120 min, apparent viscosity increased by 3.74%. All milk systems had 

similar pH (6.53) and total solids (10.74%). Sulfhydryl/disulphide bond exchange as 

well as the formation of disulphide bonds explain the association between casein 

micelles and whey proteins; decreased total sulfhydryl group decreased and free 
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sulfhydryl group increased when comparing 80 and 90ºC processed samples with the 

25ºC samples.  

Results suggested that the apparent viscosity had increased due to the 

associations between whey proteins and casein micelles. The milk system at α-la/β-lg 

ratio of 8:3 processed at 90°C had the greatest apparent viscosity of all milk systems.  
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4.2 Introduction 

As a group, whey proteins begin to thermally denature at 70°C; as the free 

sulfhydryl groups on β-lactoglobulin (β-lg) are exposed, leading to the association 

between whey proteins and casein micelles (Anema and Li 2003a; Corredig and 

Dalgleish 1996). Elevated temperatures (> 60ºC) promote molecule mobility and 

induce hydrophobic associations (Scheraga and others 1962), while at the same time, 

the strength of hydrogen bonds decrease when temperature exceeds 30ºC (Skrovanek 

and others 1985). 

The ratios of α-lactalbumin (α-la)/β-lg, α-la/κ-casein, and β-lg/κ-casein affect  

milk protein associations. Increased concentrations of α-la promote the association 

between α-la and κ-casein while increased concentration of β-lg does not increase the 

associations between β-lg and κ-casein (Corredig and Dalgleish 1996; 1999); however, 

intermediates might form between α-la/β-lg, which could later attach to the κ-casein 

(Corredig and Dalgleish 1999). α-La does not associate with κ-casein if β-lg is not 

present; but, β-lg associates with κ-casein without α-la (Corredig and Dalgleish 1999). 

Furthermore, the amount of β-lg that can associate with κ-casein seems to be 

restricted by the number of available sites on the casein micelles. When an extra 2 

mg/mL of β-lg was added to skim milk by no change in the band of the SDS-PAGE 

(final amounts of α-la and β-lg were 1.2 mg/mL and 5.2 mg/mL, respectively). The 

maximum amount of β-lg that could associate to κ-casein was ~0.72 mg/mg as 

additional β-lg did not increase the association. On the other hand, adding 2 mg/mL of 
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α-la in the skim milk, increased the association between α-la and κ-casein from 0.22 

to 0.65 mg/mg (the amount of α-la and β-lg for the milk systems were 3.2 mg/mL and 

3.2 mg/mL, respectively) (Corredig and Dalgleish 1999).  

Dalgleish and others (1997) studied the protein associations that occurred 

when different concentrations of α-la and β-lg (α-la/β-lg=0.8/0.8, 1.2/1.2, 1.2/3.2, and 

3.2/1.2 g/L) were added to resuspended casein micelles. The results showed that the 

maximum α-la/κ-casein and β-lg/κ-casein associations occurred in the milk systems 

that contained the ratio of α-la/β-lg=3.2/1.2 g/L. The associations between 

α-la/κ-casein and β-lg/κ-casein in the milk systems at ratio of 0.8/0.8 g/L and 1.2/1.2 

g/L were greater than those at ratio of 1.2/3.2 g/L (which is the normal ratio of 

α-la/β-lg in skim milk). Thus, a conclusion was made that the amount of α-la 

associated with the micelles depended on the concentration of α-la present whereas 

the association between β-lg and casein micelles were limited by the number of 

binding sites on the casein micelles. 

Denaturation and association of milk proteins can be classified by many ways: 

insoluble/soluble, covalent/noncovalent, reversible/ irreversible, and native/denatured 

according to the mechanisms of association (Cromwell and others 2006; Gulzar and 

others 2011). Denaturation and aggregation can be explained by the following 

equations:  

(PN)n	⇋	nPN         

PN	⇋ PU           
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PU + A → (P - A)    

where (PN)n is the native conformation of the whey protein fraction (such as dimer or 

octamer of β-lg), PU is the unfolded structure, and A is any other compound that 

associated with the whey protein fraction (Anema 2009).  

The reactions are reversible when non-covalent bonds are disrupted in the 

secondary and tertiary structures of the protein, whereas irreversible reactions occur 

when further associations with other compounds occur via covalent bonds. The 

associations between β-lg and casein micelles in milk are mainly through the active 

monomer (denatured β-lg monomer) with the sulfhydryl group, and the association 

reactions end by the formation of disulfide bridges (Roefs and deKruif 1994). Hence, 

protein associations occur between β-lg and β-lg, β-lg and κ-casein, as well as β-lg 

and α-la (Roefs and deKruif 1994; de Jong and Van der Linden 1998). The 

sulfhdryl/disulfide bond exchange between β-lg and κ-casein is considered to be the 

predominant reaction for association. Free sulfhydryl groups are buried in the core of 

β-lg, and thus they are barely detected in native β-lg (Shimada and Cheftel 1989).  

Once a specific temperature is achieved, the unfolding of β-lg exposes the 

free sulfhydryl groups so that they can be detected by various methods (Fahey and 

others 1981; Zweig and Block 1953; de Wit and Nieuwenhuijse 2008). Previous 

experiments tested for free sulfhydryl groups in milk after heating at 90ºC for 30 min 

using Ellman’s reagent and reported that free sulfhydryl groups increased by 

approximately 2.1*10-6 mol/g of protein (Hashizume and Sato 1988); whereas the 
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total sulfhydryl groups decreased as the heat was applied (Shimada and Cheftel 1989; 

de Wit and Nieuwenhuijse 2008). In the experiment by Taylor and Richardson (1979), 

total sulfhydryl groups decreased by 5.48% when skim milk was processed at 90ºC 

for 1 min compared with raw skim milk.  

Denaturation and association of milk proteins have been reported to increase 

the particle size in a liquid system, viscosity, and turbidity of liquid systems (Anema 

and others 2004b; Anema and Li 2003a). The relative viscosity (milk system/water) 

of reconstituted skim milk (pH 6.55) processed at 90°C for 30 min was increased by 

0.2 Nsm-2 compared with skim milk at 25ºC (Anema and Li 2003a). Previous 

researchers suggested that increased viscosity in skim milk was mainly due to the β-lg 

and κ-casein associations as aggregates of β-lg did not increase viscosity (Jeurnink 

and deKruif 1993). Heated milk samples (> 80ºC) have been reported to have 

increased particle sizes compared to the unheated milk; for example, particles 

increased by 40 nm when milk was processed at 90ºC for 30 min at pH 6.5 compared 

with 25ºC (Anema and others 2004a).  

It is known that the heat-induced associations of whey proteins and casein 

micelles can be increased with increased concentrations of α-la (Corredig and 

Dalgleish 1996); but the magnitude of apparent viscosity increases due to the 

associations between whey proteins and casein micelles enhanced by addition of α-la 

is unknown. Hence, this experiment was conducted to determine the influence of ratio 

of α-la/β-lg on the apparent viscosity of milk.  
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4.3 Materials and Methods 

4.3.1 Products 

Low-heat nonfat dry milk (NDM) (Dairy America, Fresno, CA, USA) and 

LACPRODAN® ALPHA-20 (Arla Foods Inc., Basking Ridge, NJ, USA) were 

obtained and analyzed for composition by the following standardized methods. 

Moisture and ash contents were determined using the forced air oven and gravimetric 

methods, respectively (Hooi and others 2004). Total protein was calculated from the 

nitrogen data obtained from the combustion method, using a conversion factor of 6.38 

as described by ISO8968-5/IDF20-5 (2001). True protein and protein fractions were 

determined using ISO 8968-4/IDF20-4 (2001), ISO8968-5/IDF20-5 (2001), and 

ISO/TC 34/SC 5 N (2011), respectively. True protein, casein and whey protein 

contents were calculated by the following formulas: 

True protein = (Total protein nitrogen – non protein nitrogen) * 6.38 

Casein = True protein – non casein  

Whey protein = Non casein – non protein nitrogen 

The percentage of α-la and β-lg were calculated (α-la/whey protein: 18.75% and 

β-lg/whey protein: 50%) based on Goff (2012). Results are displayed in Table 4.1.  
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Table 4.1 Composition of NDM powder and commercial α-lactalbumin (α-la)
1
 

Component Commercial α-la Low-heat nonfat dry milk 
% of Weight % of Weight % of Total protein 

Moisture 5.409 ± 0.021 2.880 ± 0.0133  
Ash  7.986 ± 0.0055  
Total protein (wet 
basis) 

 
90.44 ± 0.020 31.54 ± 0.1307 

 
100.00 

True protein 90.41 ± 0.27 31.15 ± 0.0823 98.89 
Casein  25.21 ± 0.2240 79.94 
Whey  5.941 ± 0.2754 18.84 
α-la2   3.588 
β-lg2   9.568 
1Values are means ± SE (n=2). 2Percent of total protein of α-la and β-lg were 
calculated based on the normal percentage in the skim milk from Table 1.1. 
 

4.3.2 Milk systems  

NDM and commercial α-la were mixed in dionized, distilled water to prepare 

10% (w/w) milk systems with adjusted ratios of α-la and β-lg. Table 4.2 depicts the 

weights of the ingredients to obtain the desired ratios.  

Table 4.2 Amounts of NDM and LACPRODAN® ALPHA-20 in 100 mL milk 

systems 

Ratio1 
(α-la/β-lg) 

NDM2 
(g) 

Commercial 
α-la3 (g) 

dH2O
4 

(g) 
Casein5 
(g) 

α-la5 
(g) 

β-lg5 
(g) 

3:8 11.4784 0 100 2.8939 0.1299 0.3464 
1:1 11.1032 0.3860 100 2.7993 0.3350 0.335 
8:3 10.2128 1.3019 100 2.5748 0.8218 0.3082 

1Target ratio of α-la/β-lg in the milk system; 2Nonfat dry milk; 3LACPRODAN® 
ALPHA-20; 4Dionized, distilled water; 5Values were calculated from Table 2.1. 

Powders were rehydrated in approximately 80 mL of dionized, distilled water 

and magnetically stirred (Isotemp Stirring Hotplate model # 11-600-495SH, Fisher 

Scientific, Pittsburgh, PA, USA) for 40 min at 25 ± 1°C. The mixture was transferred 
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to a 100 mL volumetric flask and made to volume. Samples were then transferred to a 

100 mL beaker and processed: 25°C (non-heated), 70°C for 30 min, 80°C for 30 min, 

and 90°C for 30 min, by holding in a water bath (Isotemp 220, Fisher Scientific) set at 

the designated temperature after each milk system had achieved the desired 

temperature (70ºC, 80ºC and 90ºC for < 3 min) on the heat/stir plate. When the 

process was completed, samples were immediately cooled to 25 ± 1°C within 5 min 

by placing in an ice bath.  

4.3.3 Assessments 

The apparent viscosity was evaluated on a speed-controlled viscometer 

(Brookfield Programmable LVDV-II Viscometer, Brookfield Engineering, 

Middleboro, MA, USA) fitted with ULA spindle and UL adaptor. Approximately 25 

mL sample were analyzed at shear rates of 14.7, 24.5, 36.7, 61.2, 73.4 and 122 s-1 at 

25°C. Since milk is a Newtonion fluid (Karlsson and others 2005), apparent viscosity 

at a shear rate of 50 s-1 was calculated by forming a linear regression model of shear 

stress and shear rate as:  

τ = μ *	Υ�  

where τ is the shear stress, Υ�  is the shear rate, μ is the viscosity (Glassburn and 

Deem 1998). All R2 in the linear regression models were > 0.999. 

pH (post-process) was measured by a pH meter at 25°C (Accumet AP63 

Portable pH meter, Fisher Scientific) that had been calibrated with pH 4 and pH 7 

standarized buffer solution (Fisher Scientific). Total solids for the milk systems were 
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measured using the forced air method (Hooi and others 2004).  

Free sulfhydryl groups were measured following the method by Hashizume 

and Sato (1988). Approximately 3 mL of milk sample was dissolved in 5 mL of 

sodium phosphate buffer (pH 8.0; prepared by Na2HPO4 and NaH2PO4; Fisher 

Scientific) and 0.1 mL of 10-2 M 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB; 

Sigma-Aldrich, St. Louis, MO, USA). After holding for 5 min, 2 g of ammonium 

sulfate (Fisher Scientific) were added to coagulate the milk proteins, and then held for 

another 2 min at 25°C. Milk samples were filtered through Whatman No. 1 filter 

paper (Fisher Scientific). The absorbance of 3 mL of the supernatant was measured at 

412 nm using a UV/VIS wavelength spectrophotometer (GENESYS 5, Thermo 

Electron Corporation, Madison, WI, USA) in a 1 cm disposable quartz cell (Fisher 

Scientific). 

Total sulfhydryl groups were measured following Shimada and Cheftel (1989). 

Approximately 0.265 mL of milk sample at ratio of 3:8 and 1:1, and approximately 

0.225 mL of milk samples at the ratio of 8:3 was diluted in 10 mL of 8 M urea 

(Sigma-Aldrich) and 0.5% sodium dodecyl sulfate (SDS; Sigma-Aldrich) dissolved in 

pH 8 sodium phosphate buffer (Fisher Scientific) to achieve a protein concentration of 

approximately 0.1%. The diluted samples were votexed for 1 min, followed by 

centrifugation (Marathon 21000R, Thermo IEC, Needham Heights, MA) at 15000*g 

for 15 min at 25°C. The supernant was carefully removed by filtration through 

Whatman No.1 filter paper and 3 mL of the filtrated sample were transferred to a 1 
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cm disposable quartz cell. Then, 0.03 mL of DTNB were added into each cell and the 

mixture was shaken 10 times thoroughly. Absorbance of the samples with DTNB was 

recorded at 412 nm after 10 min at 25°C, and the average of the two measurements 

was calculated as the absorbance for each sample (Shimada and Cheftel 1989). The 

free and total sulfhydryl groups were calculated using the following equation (Ellman 

1959): 

C0 = 
�

Є
∗ D 

Where C0 = original concentration (mol/L), A = absorbance at 412 nm, Є = 

extinction coefficient = 13,600/M/cm, and D = dilution factor (Appendix B, Table 

B.13). 

Apparent viscosity and turbidity of the milk systems were tested at 0, 30, 60 

and 120 min after the cooling of milk systems to 25ºC. Free and total sulfhydryl 

groups were assessed at 0, 30 and 120 min. Total solids and pH of the milk systems 

were assessed only at 0 min. 

 

4.4 Experimental Design and Statistical Analyses 

A connected, incomplete randomized block design was used to explore the 

effects of temperatures (25, 70, 80, and 90ºC), ratios of α-la/β-lg (3:8, 1:1, and 8:3) 

and time (0, 30, 60, and 120 min) taking “half day” as a block (Appendix B, Table 

B.1). From Table 4.3, the milk system at α-la/β-lg ratio of 3:8 at 25ºC was given 

number “0”. Samples with a specific ratio, temperature and time were given a number 
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(0-47) (Appendix B, Table B.2). Because of the limitations of the Brookfield 

viscometer, only 2 samples could be assessed during 30 min. Therefore, to compare 

the effects among all ratios, temperatures, and times, the “0” sample was prepared and 

assessed during each half day (Appendix B, Table B.2). Three replications of the 

experiment were done; however, for “0” sample was 33 replications. Apparent 

viscosity was measured at 0, 30, 60, and 120 min; pH and TS were recorded at 0 min 

only. Three-way ANOVA for apparent viscosity, two-way ANOVA for pH and total 

solids and Tukey’s HSD were used to detect the significant effects and means of ratio, 

temperature and time using SAS (SAS institute Inc., V 9.2. Cary, NC). 

Because of time constrants, free and total sulfhydryl groups in milk systems 

were done in a different design. A split-plot design with the whole plots arranged in a 

randomized complete block design of temperature, ratio of α-la/β-lg and time (0, 30 

and 120 min). Time with 3 levels was the split plot. Three replications were used. 

Split-plot ANOVA and Tukey’s HSD were used to detect the significant effects of 

ratio, temperature and time as well as the mean differences between each ratio, 

temperature and time by SAS (SAS institute Inc., V 9.2. Cary, NC).  
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4.5 Results 

4.5.1 Apparent viscosity  

The interaction of temperature and ratio as well as the main effect of time 

significantly affected the apparent viscosity of the milk systems (P ≤ 0.05) (Appendix 

B, Table B.4). The flow behaviors of all milk systems were Newtonian with R2 > 

0.999. Comparing the 3:8 milk systems at 25 ºC, the apparent viscosity decreased by 

5.79 and 2.11% at 70 and 80ºC, respectively, but increased by 2.11% at 90ºC. Similar 

observations have been observed by other researchers. In the experiment of Jeurnink 

and de Kruif (1993), relative viscosity of the skim milk was either processed at 60ºC 

for 600 s or 90ºC for 600 s were tested. The relative viscosity increased by 9.9% when 

skim milk was processed at 90ºC for 600 s, but decreased by 1% if processed at 60ºC 

for 600 s. 

When the ratio increased from 3:8 to 1:1 and 8:3, apparent viscosity increased 

by 0.53 and 4.76% (Appendix B, Table B.7). Compared with 25ºC milk systems, 

apparent viscosity decreased by 4.76% at 70ºC, but the increased by 2.65 and 7.94% 

at 80 and 90ºC (Appendix B, Table B.8). Figure 4.1 shows the effect of ratio and 

temperature on apparent viscosity (actual values were shown in Apprendix B, Table 

B.4). At 25ºC, apparent viscosities were equivalent with a mean of 1.89 mPa�s. As 

temperature increased to 70ºC, decreased apparent viscosity was observed at each 

ratio. Lower apparent viscosity was observed in 3:8 milk systems but greater apparent 

viscosity was observed in 1:1 and 8:3 milk systems at 80ºC compared with those at 
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25ºC. A 10.21% increase was observed when the ratio increased from 3:8 to 8:3. 

When samples were processed at 90ºC, the apparent viscosity of the 1:1 and 8:3 

systems increased by 3.09 and 12.37% compared with the 3:8 system, respectively. 

Apparent viscosity increased by 2.11, 6.38, and 15.96% in the milk systems processed 

at 90ºC compared with the 25ºC samples at ratio of 3:8, 1:1, and 8:3, respectively. 

 

Figure 4.1 The apparent viscosity of milk systems containing different 

α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratios and heated at different 

temperatures. Data are means ± SE (n=132 for control at ratio of 3:8 and 25ºC; 

n=12 for other ratios and temperatures). 
a,b,c

Means on the bars with different 

superscript letters differ (P ≤ 0.05).  

 

Apparent viscosity increased in all milk systems as time increased. Figure 4.2 

depicted apparent viscosity as a function of time (actual means are depicted in 

Appendix B, Table B.6). Apparent viscosity increased by 3.74% at 120 min compared 
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with at 0 min.  

 

 

Figure 4.2 The effect of time on the apparent viscosity of milk systems. Data are 

means ± SE (n=66). 
a,b,c

Means on the bar with different superscript letters differ 

(P ≤ 0.05). 

 

4.5.2 pH and Total solids 

No significant differences (p > 0.05) were observed in pH. According to the 

fixed effect table (Appendix B, Table B.12), neither interactions nor main effects 

significantly affected pH. The pH ranged from 6.51 to 6.55 with an overall average of 

6.53 (Appendix B, Table B.9).  

Total solids (TS) did not show a significant difference among all samples (p ≤ 

0.05) (Appendix B, Table B.11 and B.11). The TS ranged from 10.62 to 10.79% with 

an overall average of 10.74% (Appendix B, Table B.9).  
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4.5.3 Free sulfhydryl groups 

A three-way interaction of ratio, temperature, and time was significant for free 

sulfhydryl groups (Appendix B, Table B.15). Figure 4.3 depicts the effects of ratio 

and time at the four temperatures. Free sulfhydryl groups at 25ºC at 0 min were 

0.4632, 0.9926, and 1.4559 μM for the α-la/β-lg ratio of 3:8, 1:1 and 8:3, respectively 

(Appendix B, Table B.14). Free sulfhydryl groups in the rehydrated NDM systems 

were fairly small. In several other reports, free sulfhydryl groups in pasteurized skim 

milk could not be detected (Hutton and Patton 1952; de Wit and Nieuwenhuijse 2008). 

However, at all three times, free sulfhydryl groups significantly increased for all three 

ratios when the milk systems were processed at 70, 80 and 90ºC. The 80 and 90ºC 

samples were equivalent and had significantly greater (P ≤ 0.05) than the 70ºC 

samples. The ratio effect on free sulfhydryl groups was significant when the samples 

were processed at 80 and 90ºC (P ≤ 0.05). The α-la/β-lg ratio of 8:3 had the greatest 

free sulfhydryl groups, followed by ratio of 1:1, and ratio of 3:8 had the least. Free 

sulfhydryl groups increased by 46.59, 66.18, and 112.2 μM when comparing milk 

systems processed at 90ºC with 25ºC at the ratios of 3:8, 1:1, and 8:3, respectively.  

Time did not affect free sulfhydryl groups at 25 and 70ºC. However, decreased 

free sulfhydryl groups were observed in the milk systems at 80 and 90ºC. Free 

sulfhydryl groups decreased by 37.44 and 39.58% at 80 and 90ºC, respectively. The 

The decease in free sulfhydrl groups might because that the exposed sulfhydryl 

groups had interacted with water as sulfhydryl groups may bind water (Hutton and 
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Campbell 1981).  

 

Figure 4.3 Free sulfhydryl groups of milk systems consisting of different ratios of 

α-lactalbumin (α-la)/β-lactoglobulin (β-lg) and temperatures at (a) 25ºC, (b) 70ºC, 

(c) 80ºC and (d) 90ºC. Data are means ± SE (n=3). 
a,b,c

Means on the bars within 

each temperature with different superscript letters differ (P ≤ 0.05). 

4.5.4 Total sulfhydryl groups 

The interaction of temperature and ratio had a significant effect on the total 

sulfhydryl groups while the time did not affect the total sulfhydryl groups (P ≤ 0.05) 

(Appendix B, Table B.17). Total sulfhydryl groups in the milk systems at ratio of 3:8 

and 25ºC of this study was 175.5 μM, which was within the range of the accepted 

value of 100 to 200 μM (Taylor and Richardson 1980). Total sulfhydryl groups in the 

1:1 and 8:3 milk systems compared with the 3:8 milk systems decreased as the 

temperature increased from 25 to 90ºC; total sulfhydryl groups decreased by 50.8, 

71.3 and 134.2 μM when comparing the 90ºC samples with the 25ºC samples at 3:8, 
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1:1, and 8:3, respectively (Figure 4.4). The results suggested that the association 

between casein micelles and whey proteins increased due to the addition of α-la.  

 

Figure 4.4 Total sulfhydryl group (μM) of milk systems containing different 

α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratios and processed at different 

temperatures. Data are means ± SE (n=9). 
a,b,c

Means on bars with different 

superscript letters differ (P ≤ 0.05) 

4.6 Discussion 

4.6.1 Effect of free sulfhydryl groups and total sulfhydryl groups in the 

proteins association 

Almost all whey proteins are denaturated at ≥ 80ºC for 30 min (Anema and Li 

2003b), and the denaturated whey proteins mainly associate with κ-casein through 

sulfhydryl groups (de Wit and Nieuwenhuijse 2008). Figure 4.5 decipts the reactions 

related to sulphur groups in milk systems. When temperatures exceed 70ºC, tertiary 

and secondary structures were broken, leading to the exposure of sulfhydryl groups, 
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which is considered as reversible. The oxidation of exposed sulfhydryl bonds form 

disulfide bonds or H2S which is released from the milk systems (de Wit and 

Nieuwenhuijse 2008). Sulfhydryl/disulfide exchange is also involved in the reaction, 

resulting in the positional shift of sulfhydryl bonds (Vasbinder and de Kruif 2003). 

Therefore, whey proteins and casein micelles associate and form a structure via 

intramolecular and intermolecular disulfide bonds. 

folded -SH-  unfolded -SH- 

unfolded -SH-  H2S 

2 * unfolded -SH-    S-S  

R-SH- + R’S-SR’’      R-S-S-R’ + R’’-SH- 

Figure 4.5 Partial reactions related to sulphur components in milk systems 

(adapted from de Wit and Nieuwenhuijse 2008). 

 

 In this experiment, total sulfhydryl groups in the milk systems decreased 

when comparing 25ºC milk systems to those processed at 90ºC, confirming that 

intermolecular and intramolecular reactions occurred through the oxidation of 

sulfhydryl bonds and sulfhydryl/disulfide bond exchange (between β-lg and κ-casein, 

β-lg and α-la, or β-lg and β-lg). The disulfide bonds and H2S were formed which were 

responsible for the loss in total sulfhydryl groups. Free sulfhydryl groups (unfolded 

sulfhydryl groups) in the milk systems were constant at ≥ 80ºC. Within a ratio, the 

addition of α-la increased free sulfhydryl groups in the milk systems as expected.  
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4.6.2 The proteins association structures 

Figure 4.6 depicts the structure of a casein micelles with or without the 

addition of the commercial α-la and processed at 90ºC or 25ºC. β-Lg is attached 

directly to the surface of casein micelles with κ-casein mainly through 

sulfhydryl/disulfide bond exchange. α-La associated to the casein micelles by 

attaching to β-lg, since α-la fails to attach to κ-casein without the presense of β-lg at ≥ 

70ºC (Corredig and Dalgleish 1996; Gezimati and others 1997). Extented hairy layers 

may be formed when denatured whey proteins associate to casein micelles, expanding 

the effective particle size of the complex (Bienvenue and others 2003).  

 

 

 

Figure 4.6 The structure of casein micelles associated with α-la and β-lg (a) at 

(a) 

(d) (c) 

(b) 
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α-lactalbumin (α-la)/β-lactoglobuln (β-lg) ratio of 3:8 processed at 25ºC; (b) at 

α-la/β-lg ratio of 3:8 processed at 90ºC; (c) at α-la/β-lg of 8:3 at 25ºC; (d) at 

α-la/β-lg of 8:3 at 90ºC (adapted from de Kruif and others 2012) 

 

Casein micelles provide a large number of positions for attachment of β-lg, 

which α-la can attach indirectly to κ-casein by their attachment to β-lg. The 

association between α-la and β-lg occurs before β-lg attaches to κ-casein, forming 

intermediates (Corredig and Dalgleish 1999). Different intermediates have been 

formed at various α-la/β-lg ratios such as two moles of α-la with one mole of β-lg, one 

mole of α-la with one mole of β-lg, or one mole of α-la with two moles of β-lg 

(Livney and others 2003). A previous experiment studied the rheological properties of 

a model system without casein but with various ratios of α-la/β-lg (0%/10%, 2%/8%, 

5%/5%, 8%/2%, and 10%/0% w/v), and reported the maximum G′ occured at a ratio 

of 2%/8% (α-la/β-lg=0.25) (Gezimati and others 1997). However in my study which 

contains commercial sourse of α-la, the maximum apparent viscosity occurred in the 

milk system at ratio of 8:3 (0.8218% and 0.3081% for α-la and β-lg, respectively). 

Perhaps, the presence of casein micelles can increase the number of intermediates 

formed by α-la and β-lg, which increases the effective size of the final complexes.  
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4.6.3 Effect of ratio and temperature on apparent viscosity 

Whey protein-casein compexes are predominately responsible for the 

increased viscosity (Jeurnink and de Kruif 1993; Anema and Li 2003b). Increased 

micelle size cause the increase in volume fraction in skim milk (Jeurnink and de Kruif 

1993). Viscosity well demonstrates the protein associations in skim milk as the 

relationship between viscosity and volume fraction has been decribed by the Einstein 

equation (Anema and others 2004b). pH and total solids have been proven to affect 

the apparent viscosity of milk systems (Vasbinder and de Kruif 2003; 

Fernandez-Martin 1972). When milk is at pH < 6.4, whey protein-casein micelles 

interactions increase, resulting in a viscosity increase (Vasbinder and de Kruif 2003; 

Anema and others 2004b). It has been reported that apparent viscosity of reconstituted 

whole milk at 45ºC increased by ~0.3 mPa·s when total solids increased from 10 to 20% 

(Trinh and others 2007). A model was also formed by Langely and Temple (1985) to 

describe the relationship between relative viscosity and total solids in skim milk 

showing that the relative viscosity increases as total solids increases. The consistency 

of total solids and pH which was above 6.4 in those milk systems indicated that these 

parameters were not additional influences on the increase of apparent viscosity.  

At 25°C, whey proteins remained in their native form, and have little ability to 

associate with casein; therefore, in my study, the apparent viscosities were equivalent 

despite any alteration in the α-la/β-lg ratios. As the whey proteins started to denaturate 

~70°C, decreased apparent viscosities were observed in the skim milk systems 
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(despite the ratio), which had been explained as a possible precipitation of calcium 

phosphate onto the casein micelles which leads to the shrinkage of the particle size; 

thus, decreased the viscosity (Jeurnink and deKruif 1993). The additional α-la in the 

1:1 and 8:3 milk systems may have increased the number of intermediates, which in 

term can increase the associations among whey proteins and casein micelles.  

Significant differences in apparent viscosities were observed between each 

ratio when processed at 80 and 90ºC (Figure 4.1). At 80ºC, no significant differences 

in apparent viscosity were observed in the 3:8 and 1:1 milk systems while significant 

increases in apparent viscosity were observed in 8:3 milk system. Even though the 

whey proteins had been fully denatured (Anema and Li 2003b), association between 

whey proteins and casein micelles were limited in the milk systems at 80ºC. At 90ºC, 

association between whey proteins and casein micelles increased, leading to the 

greater increase in apparent viscosity compared with at 80ºC. The addition of α-la 

increased the association between whey proteins and casein micelles as the 

association between α-la and κ-casein was mainly influenced by the concentration of 

α-la (Corredig and Dalgleish 1999). As a consequence, particle size of the complexes 

expanded due to the increased association between α-la and κ-casein, and further 

increased apparent viscosity. 
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4.6.4 Effect of the time 

Both covalent and noncovalent bonds are responsible for associations and 

aggregations between whey proteins and casein micelles (Hae and Swaisgood 1990). 

In a previous study, formation of β-lg octomers is via disulphide bonds while larger 

aggregates are formed through noncovalent bonds (de la Fuente and others 2002). Hae 

and Swaisgood (1990) suggested that complexes formed at low temperatures (< 70ºC) 

would primarily involve noncovalent bonds. In this experiment, total sulfhydryl 

groups remained constant after 120 min (Appendix B, Table B.15), supporting that 

the increased apparent viscosity with time resulted from the noncovelent bonds 

between whey proteins and casein micelles. Also, free sulfhydryl groups decreased 

when the milk systems were processed at 90ºC. Polar groups such as carbonyl, 

hydroxyl, amino, , and sulfhydryl groups are responsible for the water-protein 

interactions; also, unfolding of proteins allows amino acids to bind more water 

(Hutton and Campbell 1981). Perhaps, the observed decreased free sulfhydryl groups 

in milk systems at 120 min were due to interactions of proteins and water as 

sulfhydryl groups bonded to polar groups in the water (Figure 4.3).  

 

 

 

 



84 

 

4.7 Conclusions 

The adjustment of α-la/β-lg ratio in the milk system and processed at > 80ºC 

changed the physical and chemical properties of the milk systems. Apparent viscosity 

at shear rate of 50 s-1 and 25ºC can be increased if the ratio of α-la/β-lg in the milk 

systems is increased and processed at > 80ºC. The increase in apparent viscosity was 

mainly attributed to the association between whey proteins and casein micelles 

through sulfhydryl/disulfide bond exchange. The milk system at ratio of 8:3 processed 

at 90ºC was the most stable during the 120 min. If those changes in the physical 

properties of the milk systems are applied, a beverage with suitable and stable 

rheological properties for dysphagia patient may be obtained.  

However, the maximum apparent viscosity was 2.18 mPa·s in the milk 

systems at α-la/β-lg ratio of 8:3 and processed at 90ºC, which is far less than the 

consistency recommended by the National Dysphagia Diet. Further adjustments are 

needed to achieve the consistency that is suitable for dysphagia patients. 
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Chapter 5 - Milk-based Beverage Prepared by Interactions 

between Dairy Proteins and Xanthan Gum 
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5.1 Abstract 

Viscosity recommendations for suitable beverages for these dysphagia patients 

ranges from 51 to 1750 mPa·s. The objective of this study was to develop a 

dairy-based beverage with rheological properties that are suitable for dysphagia 

patients. Apparent viscosity of milk systems increased from 1.94 to 2.18 mPa·s when 

α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratio increased from 3:8 to 8:3 at 90ºC in 

the previous study; however, the increased apparent viscosity was far less than the 

recommendation. For this study, physical and chemical properties of the milk systems 

at α-la/β-lg ratio of 3:8 and 8:3 with xanthan gum concentrations of 0 and 0.15% 

processed at 25 or 90°C for 30 min were assessed.  

A split polt ANOVA and Tukey’s HSD with three replication and SAS were 

used. Apparent viscosity increased by 48.61 and 89.61% in 3:8 and 8:3 milk systems, 

respectively for milk systems with a 0.15% xanthan gum concentration and processed 

at 90ºC compared with 25ºC. Apparent viscosity of the 8:3 milk systems at xanthan 

gum concentration of 0.15% processed at 90°C was within the nectar-like range. 

Furthermore, the apparent viscosity did not change after setting for 120 min. Turbidity 

increased by by 65.7, 91.5, and 96.1% for milk systems at 3:8 ratio with xanthan gum, 

8:3 ratio without xanthan gum, and 8:3 ratio with xanthan gum, respectively when 

processed at 90ºC compared with 25ºC. No significant differences were found in the 

total solids (10.82%) of the milk systems; but, a significant lower pH in the 3:8 milk 

systems (6.46) was observed compared with the 8:3 milk systems (6.49) at xanthan 



93 

 

gum concentration of 0.15% processed at 90ºC. Phase shift, G′, and G″ increased if 

suspensions were processed at 90ºC. When comparing samples processed at 90ºC 

with 25ºC, free sulfhydryl groups increased by 44.0 and 96.8 μM while total 

sulfhydryl groups decreased by 48.6 and 85.3μM in 3:8 and 8:3 milk systems, 

respectively. When the milk systems were set for 120 min, the free sulfhydryl groups 

decreased by 11.3 μM if processed at 90ºC.  

A dairy-based product with suitable rheological properties can be developed 

based on the interaction between milk protein and xanthan gum. If the rheological 

properties of a product can be controlled by interaction of ingredients, nutritious 

products with different forms could be developed.   
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5.2 Introduction 

Dysphagia patients experience problems in swallowing typically due to a 

medical or physical malady (Matta and others 2006). Approximately 20% of the adult 

primary care population and 50% of the elderly in nursing homes exhibit dysphagia as 

a symptom (Cho and others 2012). Many of these patients rely on beverages for their 

nutritional needs; hence, recommendations for beverage viscosity have been 

distributed to dieticians and clinics. Suitable beverages should range from 51 to 1750 

mPa·s at 25ºC at a shear rate of 50 s-1 (Garcia and others 2005); however, 

sub-categories have been developed to address specific swallowing needs.  

To control the viscosity of beverage systems, hydrocolloids are frequently 

used (Hemar and others 2001; Laneuville and others 2000). Pectin, xanthan, 

carrageenan, arabic, guar, and tragacanth gums are some of the most commonly used 

hydrocolloids in food emulsions and foams (Rodriguez-Patino and Pilosof 2011). 

Xanthan gum, a polysaccharide produced by Xanthomonas camplestris pv. campestris, 

is a safe, suitable food additive approved by the U.S. Food and Drug Administration 

(Becker and others 1998; Garcia-Ochoa and others 2000). Xanthan gum 

concentrations of 0.1 to 0.2% (w/w) have been used for dairy foods and beverages for 

industrial applications (Garcia-Ochoa and others 2000). Some commercial thickeners 

are available that incorporate xanthan gum (e.g. QuikThikTM, Simply Thick®) into 

their base for food applications specific for dysphagia patients (Sopade and others 

2008; Garcia and others 2005).  
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Previous research illustrated that interactions between milk proteins and 

xanthan gum were observed by altered rheological properties of the liquid system 

(Schmitt and others 1998). Rheological properties of different milk proteins and 

xanthan gum differed from each other dependent on the milk protein base, as greater 

apparent viscosities were reported if whey protein concentrate (WPC) was used 

versus nonfat dry milk (NDM) (Schmidt and Smith 1992). Sanchez and others (1997) 

reported that apparent viscosity increased in mixtures of whey protein isolate (14 

w/w %) and xanthan gum by 37.5 and 125% when the concentration of xanthan gum 

changed from 0.1 to 0.2 and 0.5%, respectively (tested at shear stress of 10 N·m-2 at 

20 ± 0.1ºC).  

Both electrostatic interactions and non-electrostatic interactions including 

hydrogen, hydrophobic and covalent bonds are responsible for protein-polysaccharide 

interactions (Dickinson 1998; Schmitt and others 1998). In my previous experiment 

(Chapter 4), the apparent viscosity increased by 5.41% when the ratio of α-la/β-lg 

changed from 3:8 to 8:3 in a milk system. The maximum apparent viscosity was 2.18 

mPa·s at ratio of 8:3 when processed at 90ºC, and the milk system at such conditions 

was the most stable when it was held for 120 min. Therefore, the milk system at ratio 

of 8:3 and processed at 90ºC was used in this study. Because thermal denaturation 

induced associations between whey proteins and casein micelles as well as 

interactions between milk proteins and xanthan gum (Corredig and Dalgleish 1996; 

Laneuville and others 2000), a beverage with a stable, controllable viscosity suitable 
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for dysphagia patients may be possible. The objective of this study was to develop a 

beverage with apparent viscosity within the nectar-like (51-350 mPa·s) or honey-like 

(351-1750 mPa·s) categories by controlling the interactions of milk proteins and 

xanthan gum through heat processing and ratio adjustment of α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg). 

 

5.3 Materials and Methods 

5.3.1 System preparation 

To prepare milk systems at with xanthan gum concentration of 0.15%, first a 

master solution of 0.5% w/w xanthan gum (Ticaxan® Xanthan 200, TIC Gum, White 

Marsh, MD, USA) were prepared using 5.5078 g of xanthan gum (moisture content of 

8.732 ± 0.1483%) to 600 mL deionized water. The master solution was blended in an 

Oster blender (Model: 6870, Jarden Consumer Solutions, Boca Raton, Florida, USA) 

on speed “blend” for 10 min at 25 ± 1°C. The suspension was made to 1,000 mL after 

centrifuging (Marathon 21000R, Thermo IEC, Needham Heights, MA) at 1,000*g for 

5 min to remove the incorporated air (Ahmed and Ramaswamy 2004). The xanthan 

gum solution remained at 4 ± 1°C for 12 hours to allow for full rehydration. Milk 

systems were prepared by adding 0 or 33.5 mL of xanthan gum solution into nonfat 

dry milk (NDM) and commercial α-lactalbumin (α-la; LACPRODAN® ALPHA-20, 

Arla Foods Inc., Basking Ridge, NJ, USA) dispersions to achieve the desired xanthan 
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gum concentration (Table 5.1). The mixture was stirred on a magnetic stir plate 

(Isotemp Stirring Hotplate model # 11-600-495SH, Fisher Scientific, Pittsburgh, PA, 

USA) for 120 min at 25 ± 1°C. The milk systems were made to volume in a 100 mL 

volumetric flask. Milk systems were either processed at 90°C for 30 min or set at 25 ± 

1°C. For the 90°C samples, milk systems were transferred to a 100 mL beaker, 

quickly heated to 85 ± 1°C on a hot plate (Isotemp Stirring Hotplate model # 

11-600-495SH, Fisher Scientific) within 3 min, then placed in a 90°C water bath 

(Isotemp 220, Fisher Scientific) for 30 min. Processed dispersions were cooled to 25 

± 1°C in an ice bath within 10 min. Non-processed samples set at 25ºC for 40 min 

before evaluation to maintain equality in time. 

 

Table 5.1 Formulations of milk systems varying in commercial α-lactalbumin 

(α-la) and xanthan gum contents  

Ratio1 
(α-la/β-lg) 

Xanthan gum 
concentration2 
(w/w%) 

NDM3 
(g) 

Commercial 
α-la4 (g) 

Xanthan gum 
solution5 
(mL) 

dH2O
6 

(mL) 

 3:8 0 11.4784 0 0 100 

 8:3 0 10.2128 1.3019 0 100 
 3:8 0.15 11.4784 0 33.5 66.5 
 8:3 0.15 10.2128 1.3019 33.5 66.5 

1Target ratio of α-latalbumin (α-la)/β-lactoglobulin (β-lg); 2Target xanthan gum 
concentration in the milk systems; 3Low-heat non-fat dry milk; 4LACPRODAN® 
ALPHA-20; 5The volume of xanthan gum master solution (0.5%) used to achieve 
target xanthan gum concentration; 6Dionized, distilled water. 
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5.3.2 Assesments 

Apparent viscosity of the milk systems was measured at shear rate range from 

0.1 to 100 s-1 using a shear rate control rheometer (VISCOANALYSER DSR, ATS 

RheoSystems, 231 Crosswicks Road, Bordentown, NJ) with Rheoexpolorer software 

(RheoExplorer version5) using a cup and bob system (concentric cylinder CC25) at 

25 ± 1°C. Ten points in the logarithm scale were taken every 20 s (Pollen 2002). The 

apparent viscosity at 50 s-1, consistency coefficient and flow behavior index were 

recorded for further statistical analyses. Apparent viscosity at 50 s-1 was calculated by 

the power law (Steffe 1996): 

τ=K(Υ� )n  

μ= τ/Υ� 	  

Where τ=shear stress (Pa), Υ� =shear rate (1/s), K=consistency coefficient, n=flow 

behavior index, and μ is the apparent viscosity at shear rate of 50 s-1. 

Turbidity was measured following the method given by Le and Turgeon 

(2013). Milk systems were diluted into 1:10 with dionized, distilled water, and 

absorbance was recorded at 800 nm with 1 cm quartz cells (Fisher Scientific) using a 

UV/VIS-light spectrophotometer (GENESYS 5, Thermo Electron Corporation, 

Madison, WI, USA). Each sample was measured twice and values averaged. 

pH of samples (post-process) was measured on a pH meter (Accumet AP63 

portable pH meter, Fisher Scientific) after calibrating with standardized pH 4 and pH 

7 buffer solutions (Fisher Scientific) at 25 ± 1ºC. 
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Total solids (TS) of dispersions were tested by the forced air oven method 

given by Hooi and others (2004).  

Phase shift, storage modulus (G′) and loss modulus (G″) for 0.15% xanthan 

gum milk systems were obtained using a frequency sweep ranging from 0.1 to 100 Hz 

at a constant strain of 1% at 25 ± 1°C. A shear rate control rheometer with a cup and 

bob system (concentric cylinder CC25) was used for the dynamic oscillation testing; 

data was recoded by Rheoexpolorer software (RheoExplorer version5). Initially, a 

strain sweep was conducted (strain ranged from 0.1 to 100% at a constant frequency 

of 1 Hz) to ensure the strain of 1% was within the linear elasticity range. Ten points 

were taken every 20 s (Keshtkaran and others 2013). 

Free sulfhydryl groups were measured following the method by Hashizume 

and Sato (1988). Approximately 1 mL of milk system was dissolved in 5 mL of 

sodium phosphate buffer (pH 8.0; prepared by disodium phosphate and monosodium 

phosphate; Fisher Scientific) and 0.1 mL of 10-2 M 5,5’-dithiobis(2-nitrobenzoic acid) 

(DTNB; Sigma-Aldrich, St. Louis, MO, USA). After holding for 5 min, 2 g of 

ammonium sulfate (Fisher Scientific) was added to coagulate the milk proteins, and 

held for 2 min more at 25°C. Milk samples were filtered through Whatman No. 1 

filter paper (Fisher Scientific). The absorbance of 3 mL of the supernatant was 

measured at 412 nm using a UV-Visible wavelength spectrophotometer (GENESYS 5, 

Thermo Electron Corporation, Madison, WI, USA) in a 1 cm disposable quartz cell 

(Fisher Scientific). 
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Total sulfhydryl groups were measured following Shimada and Cheftel (1989). 

Approximately 0.265 mL of milk sample at ratio of 3:8, and approximately 0.225 mL 

of milk samples at the ratio of 8:3 was diluted in 10 mL of 8 M urea (Sigma-Aldrich) 

and 0.5% sodium dodecyl sulfate (SDS; Sigma-Aldrich) dissolved in pH 8 sodium 

phosphate buffer (Fisher Scientific) to achieve a protein concentration of 

approximately 0.1%. The diluted samples were votexed for 1 min, followed by 

centrifugation (Marathon 21000R, Thermo IEC, Needham Heights, MA) at 15000*g 

for 15 min at 25°C. The supernatant was carefully removed by filtration through 

Whatman No.1 filter paper, and 3 mL of the filtrated sample was transferred to a 1 cm 

disposable quartz cell. Then, 0.03 mL of DTNB was added into each cell and the 

mixture was shaken 10 times thoroughly. Absorbance of the samples with DTNB was 

recorded at 412 nm after 10 min at 25°C, and the average of the two measurements 

was calculated as the absorbance for each sample (Shimada and Cheftel 1989). Free 

and total sulfhydryl groups was calculated use the following equation (Ellman 1959): 

C0 = 
�

Є
∗ D 

Where C0 = original concentration (mol/L), A = absorbance at 412 nm, Є = extinction 

coefficient = 13600/M/cm, and D = dilution factor (Appendix C, Table C.10). 

Apparent viscosity, turbidity, free and total sulfhydryl groups of all samples, 

phase shift, G′, and G″of 0.15% xanthan gum samples were evaluated at 0 min and 

120 min thereafter to determine the physical and chemical properties stability. pH and 

TS were only measured at 0 min. 
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5.4 Experimental Design and Statistical Analyses 

A split-plot design with the whole plot arranged in a randomized complete 

block design was used to explore the effects of temperature (25 or 90ºC), ratio of 

α-la/β-lg (3:8 or 8:3), xanthan gum concentration (0 and 0.15%) and time (0 and 120 

min) on pH, total solids, turbidity, apparent viscosity as well as free and total 

sulfhydryl groups. The time with 2 levels was the split plot. Three replications (3) 

were done and was used as the block. For analyses, three-way ANOVA was used for 

the total solids and pH, whereas a split plot was used for apparent viscosity, turbidity, 

free and total sulfhydryl groups. A split plot design was also used on phase shift, G′ 

and G″ to determin the effects of temperature (25 or 90ºC), ratio of α-la/β-lg (3:8 or 

8:3), and time (0 and 120 min).To determine differences between significant (P ≤ 0.05) 

means or interactions, Tukey’s HSD were applied by SAS® (V 9.2; SAS Institute Inc., 

Cary, NC) (P ≤ 0.05). 

5.5 Results  

5.5.1 Apparent viscosity 

All milk systems fitted the models well with R2 ranging from 0.991 to 0.999 

(Appendix C, Table C.1). A Newtonian flow behavior was observed in the milk 

systems at 0% xanthan gum concentration whereas a shear-thinning flow behavior 

was seen in the milk systems at 0.15% xanthan gum concentrations. Because the 

values of the apparent viscosities were not normally distributed, raw data was 
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transformed into the natural logarithm and analyzed. Main effect of ratio and two way 

interaction of temperature and xanthan gum concentration were significant (P ≤ 0.05) 

(Appendix C, Table C.2). However, time did not affect the apparent viscosity 

(Appendix C, Table C.2), which means that the apparent viscosity of milk systems 

were stable during this period of time. The apparent viscosity increased by 68.64% in 

0.15% xanthan gum milk systems whereas no changes were observed in 0% xanthan 

gum milk systems if processed at 90ºC compared with 25ºC (Table 5.2). The main 

effect of xanthan gum concentration significantly increased the apparent viscosity. 

The apparent viscosity was almost 25 fold greater in the 0.15% xanthan gum 

concentration milk systems compared with the 0% xanthan gum milk systems. 

Temperature significantly influenced the apparent viscosity. In milk systems 

processed at 90ºC, apparent viscosity was 65.76% greater than those at 25ºC. 

Moreover, apparent viscosity increased by 24.58% comparing 3:8 milk systems with 

8:3 milk systems (Appendix C, Table C.3, C.4 and C.5).  

 

Table 5.2 The apparent viscosity as functions of xanthan gum concentration and 

temperature
1
. 

Xanthan gum 
concentration (%) 

Temperature (ºC) 
25 90 

0 1.53c ± 0.054 1.68c ± 0.037 
0.15 29.97b ± 0.45 50.54a ± 2.68 

1Data are means ± SE (n=12). a,b,cMeans with different superscript letters differ (P ≤ 

0.05).  
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5.5.2 Turbidity  

Two-way interactions of ratio × temperature and temperature × 

concentration, as well as time had significant effects on turbidity (Appendix C, Table 

C.6). When temperature increased from 25 to 90ºC, turbidity increased by 43.07 and 

93.61% in 3:8 and 8:3 milk systems, respectively (Table 5.3). Turbidity increased  

by 54.74 and 79.62% in 0 and 0.15% xanthan gum concentration milk compared 90ºC 

with 25ºC (Table 5.4). The associations between whey proteins and casein micelles 

occur when the whey proteins thermally denature at > 70ºC (Corredig and Dalgleish 

1996). Particle sizes of casein micelles which are represented by turbidity 

measurement increased due to the attachment of thermal-denatured whey proteins 

(Anema and Klostermeyer 1997). When the milk systems were held for 120 min, 

turbidity slightly increased from 1.101 to 1.140. 

 

Table 5.3 The turbidity of milk systems as functions of α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio and temperature
1
 

Ratio 
(α-la/β-lg) 

Temperature (ºC) 
25 90 

3:8 0.880c ± 0.017 1.259b ± 0.062 
8:3 0.798c ± 0.020 1.545a ±0.043 

1Data are means ± SE (n=12). a,b,cMeans with different superscript letters differ (P ≤ 

0.05).  
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Table 5.4 The turbidity of milk systems as functions of temperature and xanthan 

gum concentration
1 

Xanthan2 
(%) 

Temperature (ºC) 
25 90 

0 0.844c ± 0.018 1.306b ± 0.070 
0.15 0.834c ± 0.026 1.498a ± 0.053 

1Data are means ± SE (n=12). a,b,cMeans with different superscript letters differ (P ≤ 

0.05); 2Xanthan gum concentration (%). 

5.5.3 Total solids (TS) 

No statistical differences were observed in the TS in any milk systems (P > 

0.05) (Appendix C, Table C.8). The mean total solids were 10.82 ± 0.022%, ranging 

from 10.71 ± 0.031% (ratio of 3:8 at 25ºC without xanthan gum) to 10.90 ± 0.099% 

(ratio of 8:3 at 25ºC and xanthan gum concentration of 0.15%) (Appendix C, table 

C.3). Total solids are known to impact viscosity and absorbance (Hemar and others 

2001) because polymers interact with each other due to the swept-out spheres 

(McClements 1999); thus, as the total solids increase, apparent viscosity and 

absorbance increase.  

5.5.4 pH 

Two-way interaction between temperature and ratio as well as the main effect 

of xanthan gum concentration had significant effects on the pH (P ≤ 0.05) (Appendix 

C, Table C.9). Table 5.5 depicts the significant mean differentiations for the pH of the 

milk systems.  
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Table 5.5 pH of the milk systems as a function of the temperature and 

α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratio
1
 

Ratio (α-la/β-lg) 
Temperature (ºC) 

 
25 90 

3:8 6.53a ± 0.05 6.47c ± 0.03   
8:3 6.54a ± 0.03 6.51b ± 0.05  

1Data are means ± SE (n=6). a,b,cMeans with different superscript letters differ (P ≤ 

0.05). 

 

pH decreased by 0.06 and 0.03 for ratio of 3:8 and 8:3, respectively when 

processed at 90ºC compared with 25ºC. The pH increased from 6.51 to 6.52 when the 

xanthan gum concentration changed from 0 to 0.15%. The decreased pH in the milk 

systems after heating might be due to the thermal oxidation of lactose to organic acids, 

hydrolysis of organic phosphate, or precipitation of tertiary calcium phosphate, which 

release H+ (Singh 2004). When xanthan gum was added into the milk system and 

processed at 90ºC, calcium connected with xanthan gum through a cross-linking 

interaction (Bergmann and others 2008); removal of calcium increased the release of 

H+; and thus, a significant decrease of pH in the xanthan gum added milk system was 

observed (Chandrapala and others 2010).  

 

5.5.5 Free and total sulfhydryl groups 

Two-way interactions of temperature and ratio, as well as time and 

temperautre affected the free sulfhydryl groups (Appendix C, Table C.11). Free 

sulfhydryl groups increased when the process was applied. A greater increase in free 
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sulfhydryl groups was observed in the 8:3 milk systems compared with the 3:8 milk 

systems (Table 5.5). Free sulfhydryl groups increased by 44.0 and 96.8 μM for the 

milk systems at ratio of 3:8 and 8:3, respectively if processed at 90ºC compared with 

25ºC. When the milk systems were processed at 90ºC, increased free sulfhydryl 

groups were observed in both ratios of milk system (Table 5.6). No sulfhdyrl groups 

are present in xanthan gum according to its structure (Becker and others 1998). Thus, 

the detected free sulfhydryl groups should be from the milk powder. At 25ºC, β-lg has 

not thermally denaturated (Anema and Li 2003b). The free sulfhydryl groups 

decreased by 11.3 μM when the milk systems were processed at 90ºC and set for 120 

min, while no changes were found in 25ºC samples after 120 min (Table 5.7). 

 

Table 5.6 Free and total sulfhydryl groups of milk systems as functions of 

α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratio and temperature
1 

Ratio 
(α-la/β-lg) 

Temperature 
(ºC) 

Total sulfhydryl  
group (μM) 

Free sulfhydryl  
group (μM) 

3:8 25 181.83c ± 5.45 3.70c ± 1.27 
3:8 90 133.16d ± 5.20 47.69b ± 1.98 
8:3 25 323.86a ± 6.72 4.56c ± 1.64 
8:3 90 238.64b ± 4.17 101.41a ± 2.60 

1Data are mean ± SE (n=12). a,b,cMeans within a column with different superscript 
letters differ (P ≤ 0.05) 
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Table 5.7 Free sulfhydryl groups as functions of temperature and time
1
 

Temperature 
(ºC) 

Time (min) 
 

0 120 
25 4.49c ± 1.60 3.78c ± 1.31 
90 80.25a ± 8.14 68.85b ± 8.35 

1Data are means ± SE (n=12). a,b,cMeans within the same column with different 
superscript letters differ (P ≤ 0.05). 

 

The interaction of ratio and temperature had a significant effect on total 

sulfhydryl groups; time did not affect total sulfhydryl groups (Appendix C, Table 

C.12 and C.13). Total sulfhydryl groups decreased if systems were processed at 90ºC 

compared with 25ºC. The decrease was 48.6 and 85.3μM for ratios of 3:8 and 8:3, 

respectively (Table 5.6). Total sulfhydryl groups should decrease if whey proteins 

associate with casein micelles due to the release of H2S as well as the formation of 

disulfide bonds (de Wit and Nieuwenhuijse 2008). As described by previous 

researchers, whey proteins associate with casein micelles mainly through the 

oxidation of sulfhydryl groups and sulfhydryl/disulphide bond exchange (Anema and 

Li 2003); the concentration of xanthan gum did not affect total sulfhydryl groups. 

Therefore, associations between whey proteins and casein micelles did not change 

even though the xanthan gum was present in the milk systems.  

5.5.6 Dynamic oscillation 

Dynamic oscillation testing was conducted in the milk systems at 0.15% 

xanthan gum concentration to detect the gel properties which would further influence 

the mouthfeel. A frequency sweep was used to determine phase shif, G′ and G″. 
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Temperature had significant effects (P ≤ 0.05); however, ratio and time did not affect 

the phase shift (Appendix C, Table C.14). The phase shift increased by 17.86% when 

the temperature increased from 25 to 90ºC (Table 5.8). Bryant and McClemnets (2000) 

characterized system by the phase shift (δ). Systems with δ=90º were true liquids; 

systems with δ ranging from 0 to 90 were viscoelastic; systems with δ=0º were true 

solids. Materials with δ < 45° are defined as gels (Bryant and McClements 2000). G′ 

illustrates the strength (e.g. disulphide and hydrophobic bonds) of the structure of 

individual particles and between particles (Gezimati and others 1997). A more 

liquid-like system seems to have been formed if the systems were processed at 90ºC. 

 

Table 5.8 Phase shift as a function of temperature
1
 

Temperature (ºC) Phase shift (degree) 
25 38.7b ± 0.836 
90 45.6a ± 0.562 

1 Values are means ± SE (n=12). a,b,cMeans with different superscript letters differ (P 

≤ 0.05) 

 

Table 5.9 G′ and G″ as a function of α-lactalbumin (α-la)/β-lactoglobulin (β-lg) 

ratio and temperature
1
 

Ratio (α-la/β-lg) Temperature (ºC) G′ (Pa) G″ (Pa) 
3:8 25 0.413c ± 0.0206 0.329c ± 0.0126 
3:8 90 0.645b ± 0.0277 0.637b ± 0.0222 
8:3 25 0.472c ± 0.0191 0.380c ± 0.0222 
8:3 90 0.952a ± 0.0350 1.004a ± 0.0427 

1 Values are means ± SE (n=6). a,b,cMeans with different superscript letters differ (P ≤ 

0.05) 
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The main effects of ratio and temperature significantly influenced G′ (P ≤ 0.05) 

(Appendix C, Table C.15). Table 5.9 depicts G′ and G″ as functions of raito and 

temperature. G′ increased by 56.17% when the samples at ratio of 8:3 were compared 

to 3:8 whereas the G′ increased by 101.69% when the samples were processed at 90ºC 

compared with 25ºC. The solid-like properties were formed when the temperature and 

ratio increased. The addition of α-la had a function of creating a more solid-like 

structure in the milk protein/xanthan gum systems. The interaction of temperatures 

and ratios had significant influence on G″ (Appendix C, Table C.16). G″ increased as 

the temperature and ratio increased. 

5.6 Discussion 

5.6.1 The protein-polysaccharide complex structure 

The interactions of milk proteins and xanthan gum after thermal processing 

can result in a complex structure which in turn can alter physicochemical properties of 

the systems. At 25ºC, the interaction between milk proteins and xanthan gum is 

mainly through electrostatic interactions and hydrogen bonds (Tostoguzov 1991). 

When thermal treatment is applied to milk, casein micelles and whey proteins 

associate with each other forming larger protein complexes through 

sulfhydryl-disulfide bond exchange (Anema and others 2003). Thus, increased 

apparent viscosity, turbidity, free sulfhydryl groups as well as decreased total 

sulfhydryl groups were observed as a function of temperature in this experiment. 
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Proteins further associate with the xanthan gum, which is seen as the core of the 

protein-polysaccharide complexes (Sanchez and others 1997). The increased ratio of 

α-la/β-lg effectively increased the association between whey proteins and casein 

micelles, further attaching to the xanthan gum which forms the larger complex, and 

thus increases the apparent viscosity. The association between whey proteins and 

casein micelles are more favored than milk proteins and xanthan gum association 

(Laneuville and others 2000). This may be explained as the less energy is required for 

the association between the same biopolymers than between different biopolymers X 

5.6.2 The protein-polyssacharide interaction on apparent viscosity of the milk 

systems 

Xanthan gum at low concentrations present pseudoplastic behavior while the 

milk exhibits a Newtonian fluid behavior (Ahmed and Ramaswamy 2005; Karlsson 

and others 2005). Therefore, flow behaviors of the milk protein/xanthan gum mixtures 

were predominantly influenced by xanthan gum. An explanation for the increase in 

apparent viscosity when milk systems were processed at 90ºC was that the association 

between whey protein and casein micelles through the formation of disulfide bonds 

and hydrophobic interactions (Gustaw and others 2003). Another experiment tested 

the rheological properties of 1% xanthan gum solutions heated at 110 and 130ºC for 

30 min or not heated (at 20ºC); the results showed that the temperature did not affect 

yield stress, consistency index, and flow behavior index (Ahmed and Ramaswamy 

2005). Bergmann and others (2008) proposed that two xanthan gum molecules could 
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associate with each other through bivalent ions such as Ca2+. For the 3:8 milk systems, 

significant increased apparent viscosity was observed in 0.15% xanthan gum milk 

systems while no differences were observed in the 0% milk systems as a function of 

temperature changed. Thus, in the milk system, interactions between protein and 

protein and polysaccharide and polysaccharide were responsible for the increase in 

apparent viscosity. Some of xanthan gum might associate with proteins to form a 

larger network structure instead of becoming the original disordered structure 

(Sanchez and others 1997). The presence of Ca2+ in the milk protein might also have 

enhanced the interaction between xanthan gum molecules which may responsible for 

polysaccharide-polysaccharide interaction increased and leading to the increase in 

viscosity (Bergmann and others 2008). This may also explain the greater decrease of 

pH in 0.15% xanthan gum milk systems. If Ca2+ was removed due the interaction of 

xanthan gum molecules, H+ would be released (Chandrapala and others 2010).  

 

5.7 Conclusions 

The addition of xanthan gum significantly increased the apparent viscosity as 

well as altering the flow behavior and gel properties of the milk systems at both 

α-la/β-lg ratio of 3:8 and 8:3 whether processed at 90ºC or 25ºC. When the milk 

system at ratio of α-la/β-lg of 8:3 with xanthan gum concentration of 0.15% processed 

at 90ºC, apparent viscosity started to reach the range of nectar-like. The increased 
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particles size of the casein micelles as well as the formation of the net structure due to 

the interaction between milk proteins and xanthan gum were responsible for the 

increased apparent viscosity. A dairy-based beverage with the apparent viscosity 

within the consistency recommended by National Dysphagia Diet (NDD) and stable 

during 120 min can be obtained. If the rheological properties of the milk systems can 

be controlled by ingredients interactions, nutritious products with different forms for 

dysphagia patients can be developed. 
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Chapter 6 - Research Summary 

Patients who have difficulty in food mastication and swallowing are diagnosed 

to have dysphasia. Liquid systems in the range of nectar-like (51 to 350 mPa·s) and 

honey-like (351 to 1750 mPa·s) are known to be suitable for dysphagia patients. 

Whey proteins start to denaturate at 70ºC. The associations between whey proteins 

and casein micelles change the rheological properties of the milk system. The ratio of 

α-lactalbumin (α-la)/β-lactoglobulin (β-lg) can affect the associations between whey 

proteins and casein micelles, and thus influence the rheological properties. Apparent 

viscosity increased if whey protein adjusted milk systems were heated to 80ºC or 

higher temperatures for 30 min; in particular, apparent viscosity increased as the ratio 

increased from 3:8 to 8:3. Apparent viscosity increased in all 90°C samples, and the 

magnitude of increase was in the order of 8:3 (15.96%), 1:1 (6.38%) and 3:8 (2.11%) 

compared with the 25ºC samples at each ratio. When the milk systems were held for 

120 min, apparent viscosity increased (3.74%). All milk systems had similar pH (6.53) 

and total solids (10.74%). When the temperature increased to > 70ºC, free sulfhydryl 

groups increased whereas total sulfhydryl groups decreased for milk systems at all 

ratios. Decreased free sulfhydryl groups were observed when processed at 80ºC and 

90ºC; while no changes were seen in the total sulfhydryl groups after 120 min. The 

maximum apparent viscosity found in my first study was 2.18 mPa·s, which was not 

in the range of recommended consistencies. 
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To develop a dairy-based beverage with suitable rheological properties for 

dysphagia pateints, a concentration of 0.15% xanthan gum solution was used in the 

ratio-adjusted milk systems. Apparent viscosity increased by 48.61 and 89.61% in 3:8 

and 8:3 milk systems at 0.15% xanthan gum concentration when temperature changed 

from 25ºC to 90ºC. The apparent viscosity of 8:3 milk systems at xanthan gum 

concentration of 0.15% processed at 90°C was 58.7 ± 2.12 mPa·s which was within 

the nectar-like range. No changes in apparent viscosity were found after 120 min. pH 

decreased (post-process pH for 3:8 and 8:3 milk systems were 6.46 and 6.49 

respectively) as the temperature changed from 25ºC to 90ºC. Total solids were similar 

for all milk systems. In 0.15% xanthan gum milk systems, phas shift, G′ and G″ 

increased as temperature increased; greater increase in G′ and G″ were observed in 

8:3 milk systesm compared with 3:8 milk systems. 

A ready-to-drink dairy-based beverage with suitable rheological properties can 

be developed by controlling the ingreadients interaction in the milk system.This 

product can be further turned into the powder form for the convenience of distribution 

and serving. The appropriate drying methods are needed to be detected in the future. 

On the other hand, heat process may be applied on NDM and commercial α-la directly 

to induce the whey protein and casein micells interaction. Such powder product can 

be rehydrated in water and to detect its effect on rheological properties of the liquid 

system. 
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Appendix B Tables and Analyses for Chapter 4 

Table B.1 Experimental design of connected incomplete randomized block 

 
Half day1 

No. 
0 
12 
24 
36 

1 
13 
25 
37 

2 
14 
26 
38 

3 
15 
27 
39 

4 
16 
28 
40 

5 
17 
29 
41 

6 
18 
30 
42 

7 
19 
31 
43 

8 
20 
32 
44 

9 
21 
33 
45 

10 
22 
34 
46 

11 
23 
35 
47 

1 √ √ 
          

2 √ 
 

√ 
         

3 √ 
  

√ 
        

4 √ 
   

√ 
       

5 √ 
    

√ 
      

6 √ 
     

√ 
     

7 √ 
      

√ 
    

8 √ 
       

√ 
   

9 √ 
        

√ 
  

10 √ 
         

√ 
 

11 √ 
          

√ 
12 √ √ 

          
13 √ 

 
√ 

         
14 √ 

  
√ 

        
15 √ 

   
√ 

       
16 √ 

    
√ 

      
17 √ 

     
√ 

     
18 √ 

      
√ 

    
19 √ 

       
√ 

   
20 √ 

        
√ 

  
21 √ 

         
√ 

 
22 √ 

          
√ 

23 √ √ 
          

24 √ 
 

√ 
         

25 √ 
  

√ 
        

26 √ 
   

√ 
       

27 √ 
    

√ 
      

28 √ 
     

√ 
     

29 √ 
      

√ 
    

30 √ 
       

√ 
   

31 √ 
        

√ 
  

32 √ 
         

√ 
 

33 √ 
          

√ 
1Half day was taken as block 
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Table B.2 Number given for each combination of ratio, temperature and time  

Temp1 (ºC) Ratio2 (α-la/β-lg) Time3 (min) Number Rep4 

25 3:8 0 0 33 
25 1:1 0 1 3 
25 8:3 0 2 3 
70 3:8 0 3 3 
70 1:1 0 4 3 
70 8:3 0 5 3 
80 3:8 0 6 3 
80 1:1 0 7 3 
80 8:3 0 8 3 
90 3:8 0 9 3 
90 1:1 0 10 3 
90 8:3 0 11 3 
25 3:8 30 12 33 
25 1:1 30 13 3 
25 8:3 30 14 3 
70 3:8 30 15 3 
70 1:1 30 16 3 
70 8:3 30 17 3 
80 3:8 30 18 3 
80 1:1 30 19 3 
80 8:3 30 20 3 
90 3:8 30 21 3 
90 1:1 30 22 3 
90 8:3 30 23 3 
25 3:8 60 24 33 
25 1:1 60 25 3 
25 8:3 60 26 3 
70 3:8 60 27 3 
70 1:1 60 28 3 
70 8:3 60 29 3 
80 3:8 60 30 3 
80 1:1 60 31 3 
80 8:3 60 32 3 
90 3:8 60 33 3 
90 1:1 60 34 3 
90 8:3 60 35 3 
25 3:8 120 36 33 
25 1:1 120 37 3 
25 8:3 120 38 3 



124 

 

1Target temperature (ºC); 2Target ratio of α-la/β-lg; 3Assessment time since the 
samples were cooled to 25 ± 1ºC; 4Replications for each milk system. 

 

 

Apparent viscosity 

Table B.3 Mean apparent viscosity of the milk systems as a function of the 

temperatures, α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratios and times
1
 

 

Ratio 
(α-la/β-lg) 

Temp2  
(ºC) 

Apparent viscosity (mPa�s) 
0 min  30 min  60 min  120 min  

3:8 25 1.86 ± 0.00  1.88 ± 0.00  1.91 ± 0.00  1.93 ± 0.00  
1:1 25 1.85 ± 0.01 1.87 ± 0.01  1.89 ± 0.00  1.91 ± 0.01  
8:3 25 1.84 ± 0.00 1.87 ± 0.01  1.90 ± 0.01  1.92 ± 0.00  
3:8 70 1.75 ± 0.01  1.77 ± 0.01  1.79 ± 0.01  1.83 ± 0.01  
1:1 70 1.75 ± 0.01  1.78 ± 0.00  1.80 ± 0.00 1.82 ± 0.01  
8:3 70 1.78 ± 0.01 1.80 ± 0.01  1.82 ± 0.01 1.85 ± 0.01  
3:8 80 1.82 ± 0.02 1.86 ± 0.01  1.88 ± 0.02 1.89 ± 0.02  
1:1 80 1.88 ± 0.02 1.90 ± 0.01  1.93 ± 0.01  1.95 ± 0.01 
8:3 80 2.02 ± 0.00 2.05 ± 0.00  2.06 ± 0.00  2.08 ± 0.01 
3:8 90 1.91 ± 0.01 1.92 ± 0.01 1.94 ± 0.01  1.97 ± 0.02  
1:1 90 1.97 ± 0.01 1.99 ± 0.01  2.02 ± 0.01  2.03 ± 0.01  
8:3 90 2.15 ± 0.01 2.17 ± 0.02  2.20 ± 0.00  2.21 ± 0.01  

1Data are means ± SE (n=33 for samples at 3:8 α-la/β-lg ratio at 25ºC at 0, 30, 60 and 
120 min; n=3 for other combinations of temperatures, ratios and the times). 
2Temperature. 
 
 
 
 
 
 
 

70 3:8 120 39 3 
70 1:1 120 40 3 
70 8:3 120 41 3 
80 3:8 120 42 3 
80 1:1 120 43 3 
80 8:3 120 44 3 
90 3:8 120 45 3 
90 1:1 120 46 3 
90 8:3 120 47 3 
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Table B.4 P and F values from ANOVA of the temperature, α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio and time on apparent viscosity of the milk 

systems 

Type 3 Tests of Fixed Effects 
Effect Num DF4 Den DF5 F Value Pr > F 
ratio1 2 44.1 536.03 <.0001 
temp2 3 44 1128.17 <.0001 
ratio*temp 6 43.9 182.62 <.0001 
time3 3 162 374.07 <.0001 
temp*time 9 162 1.19 0.3063 
ratio*time 6 162 0.55 0.7691 
ratio*temp*time 18 162 0.86 0.6216 

1α-la/β-lg ratio; 2temperature; 3set time; 4numerator degree of freedom; 5denominator 
degree of freedom. 
 
Table B.5 Mean apparent viscosity of the milk systems as a function of the 

temperature and α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratio
1
 

Ratio 
(α-la/β-lg) 

Temperature (ºC) 
   

25 70 80 90 

3:8 1.90f ± 0.0027 1.79i ± 0.010 1.86g ± 0.010 1.94d ± 0.0083 
1:1 1.88f ± 0.0072 1.79hi ± 0.0083 1.92e ± 0.0093 2.00c ± 0.0084 
8:3 1.88f ± 0.0093 1.81h ± 0.0082 2.05b ± 0.0070 2.18a ± 0.0085 

1Data are means ± SE (n=132 for the samples at 3:8 α-la/β-lg ratios at 25ºC; n=12 for 
other temperatures and ratios). a,b,cMeans with different superscript letters differ (P ≤ 

0.05). 
 
 
Table B.6 Mean apparent viscosity of the milk systems as a function of the times

1
 

 

1Data are means ± SE (n=66). a,b,cMeans with different superscript letters differ (P ≤ 

0.05). 
 

Table B.7 Mean apparent viscosity of the milk systems as a function of ratios
1
 

Ratio (α-la/β-lg) Apparent viscosity (mPa�s) 
3:8 1.89c ± 0.00 
1:1 1.90b ± 0.01 
8:3 1.98a ± 0.02 

1Data are means ± SE (n=168 for 3:8; n=48 for other temperatures). a,b,cMeans with 

Time (min) Apparent viscosity (mPa�s) 
0 1.87d ± 0.0105 
30 1.90c ± 0.0104 
60 1.92b ± 0.0104 
120 1.94a ± 0.0101 
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different superscript letters differ (P ≤ 0.05). 
Table B.8 Mean apparent viscosity of the milk systems as a function of 

temperatures
1
 

Temperautre (ºC)  Apparent viscosity (mPa�s) 
25 1.89c ± 0.00 
70 1.80d ± 0.01  
80 1.94b ± 0.01  
90 2.04a ± 0.01  

1Data are means ± SE (n=156 for 25ºC; n=36 for other temperatures). a,b,cMeans with 
different superscript letters differ (P ≤ 0.05). 
 

 

pH and total solids 

Table B.9 Mean pH and total solids of the milk systems as a function of the 

temperatures and α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratios
 1

 

Ratio 
(α-la/β-lg) 

Temperature 
(ºC) 

pH Total solids (%) 

3:8 25 6.51 ± 0.03  10.73 ± 0.01  
1:1 25 6.55 ± 0.01  10.73 ± 0.03  
8:3 25 6.56 ± 0.00  10.62 ± 0.03  
3:8 70 6.54 ± 0.01  10.76 ± 0.06  
1:1 70 6.54 ± 0.01  10.72 ± 0.02 
8:3 70 6.55 ± 0.01  10.75 ± 0.06  
3:8 80 6.53 ± 0.00 10.73 ± 0.02  
1:1 80 6.53 ± 0.00  10.78 ± 0.06  
8:3 80 6.55 ± 0.01  10.75 ± 0.02  
3:8 90 6.50 ± 0.01  10.77 ± 0.03  
1:1 90 6.52 ± 0.01  10.70 ± 0.04  
8:3 90 6.53 ± 0.00  10.79 ± 0.07  

1Data are means ± SE (n=33 for samples at 3:8 α-la/β-lg ratio at 25ºC; n=3 for other 
temperatures and ratios). 
 
 
Table B.10 P and F values from ANOVA of the temperature and α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio on pH of the milk systems 

Effect Num DF3 Den DF4 F Value Pr > F 
ratio1 2 53.2 0.13 0.881 
temp2 3 53.2 0.04 0.9905 
ratio*temp 6 52.9 0.03 0.9998 

1α-la/β-lg ratio; 2temperature; 3numerator degree of freedom; 4denominator degree of 
freedom. 
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Table B.11 P and F values from ANOVA of the temperature and α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio on total solids of the milk systems  

Effect Num DF3 Den DF4 F Value Pr > F 
ratio1 2 51.5 0.69 0.5056 
temp2 3 51.4 3.05 0.0367 
ratio*temp 6 51.2 2.13 0.0656 

1α-la/β-lg ratio; 2temperature; 3numerator degree of freedom; 4denominator degree of 
freedom. 

 
 
Table B.12 Mean total solids of the milk systems as a function of the 

temperatures
1
 

Temperature (ºC) TS (%) 
25 10.72a ± 0.01 
70 10.74a ± 0.02 
80 10.75a ± 0.01 
90 10.76a ± 0.03 

1Data are means ± SE (n=39 for the milk systems at 25ºC; n=9 for the milk systems 
processed at 70, 80, and 90ºC). aMeans with different superscript letters differ (P ≤ 

0.05). 
 
 

Free sulfhydryl groups 

Table B.13 Dilution factors (D) for free and total sulfhydryl groups measurement 

Ratio (α-la/β-lg) D (Free sulfhydrylgroup) D (Total sulfhydrylgroup) 
3:8 2700000 39123208 
1:1 2700000 39123208 
8:3 2700000 45898889 
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Table B.14 Free sulfhydryl groups (μM) of milk systems consisting of 

α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratio and heated at different 

temperature at 0, 30, and 120 min
1
 

Ratio 
(α-la/β-lg) 

Temperature 
(ºC) 

Time (min) 
0  30  120  

3:8 25 0.46 ± 0.17 0.13 ± 0.07 0.40 ± 0.23 
3:8 70 12.24 ± 1.24 14.10 ± 2.33 10.13 ± 2.60 
3:8 80 44.27 ± 1.00 37.92 ± 4.19 22.50 ± 0.81 
3:8 90 47.05 ± 0.41 35.34 ± 0.40 26.21 ± 2.43 
1:1 25 0.99 ± 0.11 0.99 ± 0.11 1.4559 ± 0.48 
1:1 70 16.41 ± 1.33 10.99 ± 2.84 10.92 ± 3.47 
1:1 80 67.57 ± 1.33 49.50 ± 0.87 40.04 ± 2.52 
1:1 90 67.17 ± 1.63 55.39 ± 2.84 36.26 ± 2.04 
8:3 25 1.46 ± 0.07 0.5294 ± 0.43 0.86 ± 0.52 
8:3 70 14.29 ± 3.00 19.52 ± 3.84 14.10 ± 2.97 
8:3 80 114.42 ± 1.50 96.29 ± 3.34 79.01 ± 2.02 
8:3 90 113.69 ± 1.34 102.31 ± 0.59 75.24 ± 2.01 

1Data are means ± SE (n=3).  
 
 
 
Table B.15 P and F values from ANOVA of the temperature, α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio, and time on free sulfhydryl groups in the milk 

systems. 

Type III Tests of Fixed Effects 
Effect Num DF5 Den DF6 F Value Pr > F 
rep1 2 22 1.02 0.3785 
ratio2 2 22 616.25 <.0001 
temp3 3 22 1751.25 <.0001 
ratio*temp 6 22 178.41 <.0001 
time4 2 48 249.68 <.0001 
ratio*time 4 48 6.88 0.0002 
time*temp 6 48 70.27 <.0001 
ratio*time*temp 12 48 3.88 0.0004 

1Replication; 2α-la/β-lg ratio; 3temperature; 4set time (min); 5numerator degree of 
freedom; 6denominator degree of freedom. 
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Total sulfhydryl groups 

Table B.16 Total sulfhydryl groups (μM) as a function of the time
1
 

Ratio 
(α-la/β-lg) 

Temp2 
(ºC) 

Time (min) 
  

0 30 120 
3:8 25 175.5 ± 8.4 178.4 ± 9.0 173.1 ± 7.3 
3:8 70 147.2 ± 7.2 152.5 ± 9.4 152.0 ± 0.5 
3:8 80 156.3 ± 6.7 161.1 ± 3.0 158.7 ± 0.5 
3:8 90 122.3 ± 1.4 128.5 ± 4.3 123.7 ± 4.6 
1:1 25 248.8 ± 9.8 255.1 ± 8.5 251.7 ± 7.9 
1:1 70 215.8 ± 9.8 219.1 ± 5.7 227.7 ± 10.7 
1:1 80 193.7 ± 11.8 199.0 ± 3.4 187.5 ± 3.5 
1:1 90 175.0 ± 5.5 186.5 ± 6.3 180.3 ± 6.0 
8:3 25 362.2 ± 2.5 365.1 ± 5.4 364.5 ± 5.1 
8:3 70 250.3 ± 7.6 256.5 ± 17.7 272.2 ± 5.9 
8:3 80 253.7 ± 10.7 268.3 ± 8.0 267.7 ± 5.0 
8:3 90 229.5 ± 6.1 240.2 ± 13.7 219.4 ± 11.7 

1Data are means ± SE (n=3). 2Temperature. 
 

Table B.17 P and F values from ANOVA of the temperatures, α-la/β-lg ratios 

and times on total sulfhydryl groups in the milk systems 

Type III Tests of Fixed Effects 
Effect Num DF5 Den DF6 F Value Pr > F 
rep1 2 22 1.44 0.259 
ratio2 2 22 795.63 <.0001 
temp3 3 22 190.14 <.0001 
ratio*temp 6 22 25.41 <.0001 
time4 2 48 2.22 0.1193 
ratio*time 4 48 0.13 0.969 
time*temp 6 48 0.87 0.5218 
ratio*time*temp 12 48 0.39 0.9588 

1Replication; 2α-la/β-lg ratio; 3temperature; 4set time (min); 5numerator degree of 
freedom; 6denominator degree of freedom. 
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Appendix C Tables and Analyses for Chapter 5 

Apparent viscosity 

Table C.1 The apparent viscosity, consistency coefficient (K), and flow behavior 

index (n) of milk systems at different α-lactalbumin (α-la)/β-lactoglobulin (β-lg), 

temperature, xanthan gum concentration and time
1
 

Ratio2 Xanthan3 Temp4 Time5 App6 K (Pasn) n (-) R2 

3:8 0 25 0 1.40 ± 0.00 0.0014 ± 0.00 1.00 ± 0.00 0.997-0.998 

3:8 0 90 0 1.50 ± 0.00  0.0016 ± 0.0001 1.00 ± 0.00 0.998 

3:8 0.15 25 0 28.6 ± 0.164  0.1866 ± 0.0036 0.52 ± 0.0058 0.993-0.995 

3:8 0.15 90 0 42.45 ± 1.45 0.3562 ± 0.0249 0.45 ± 0.0030 0.992-0.997 

8:3 0 25 0 1.50 ± 0.58 0.0015 ± 0.0001 1.00 ± 0.00 0.992-0.996 

8:3 0 90 0 1.77 ± 0.033 0.0018 ± 0.00 1.00 ± 0.00 0.998-0.999 

8:3 0.15 25 0 30.79 ± 1.05 0.2260 ± 0.0110 0.49 ± 0.0040 0.994-0.996 

8:3 0.15 90 0 58.37 ± 2.93 0.5602 ± 0.0220 0.42 ± 0.0056 0.995-0.997 

3:8 0 25 120 1.73 ± 0.17 0.0017 ± 0.0002 1.00 ± 0.00 0.996-0.998 

3:8 0 90 120 1.63 ± 0.33 0.0016 ± 0.00 1.00 ± 0.00 0.996-0.999 

3:8 0.15 25 120 29.39 ± 0.47 0.1831 ± 0.0050 0.53 ± 0.0039 0.995-0.996 

3:8 0.15 90 120 42.37 ± 1.23 0.3367 ± 0.0300 0.46 ± 0.0076 0.991-0.995 

8:3 0 25 120 1.50 ± 0.058 0.0015 ± 0.0001 1.00 ± 0.00 0.995-0.998 

8:3 0 90 120 1.80 ± 0.00 0.6012 ± 0.5994 1.00 ± 0.00 0.997-0.999 

8:3 0.15 25 120 31.06 ± 1.04 0.2183 ± 0.0144 0.50 ± 0.0076 0.994-0.995 

8:3 0.15 90 120 58.99 ± 3.73 0.5604 ± 0.0390 0.42 ± 0.0040 0.993-0.994 
1Data are means ± SE (n=3). a,b,cMeans with different superscript letters differ (P ≤ 

0.05); 2α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratio; 3xanthan gum concentration 
(w/w%); 4temperature (ºC); 5set time (min); 6Apparent viscosity (mPa�s) was 
measured at shear rate of 50 s-1 at 25 ± 1ºC. 
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Table C.2 P and F values from ANOVA of temperature, α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio, xanthan gum concentration and time on the 

apparent viscosity in the milk system. 

Type III Tests of Fixed Effects 
Effect Num DF6 Den DF7 F Value Pr > F 
rep1 2 14 1.21 0.3267 
ratio2 1 14 5.2 0.0388 
temp3 1 14 32.51 <.0001 
ratio*temp 1 14 4.18 0.0602 
conc4 1 14 3695.72 <.0001 
ratio*conc 1 14 1.96 0.1833 
conc*temp 1 14 16.08 0.0013 
ratio*conc*temp 1 14 0.19 0.6707 
time5 1 16 0.95 0.3441 
ratio*time 1 16 0.58 0.4565 
temp*time 1 16 0.13 0.7196 
ratio*temp*time 1 16 0.23 0.6363 
conc*time 1 16 0.54 0.4727 
ratio*conc*time 1 16 0.56 0.4669 
conc*temp*time 1 16 0.05 0.8204 
ratio*conc*temp*time 1 16 0.1 0.7589 

1Replication; 2α-la/β-lg ratio; 2temperature; 3xanthan gum concentration; 4set time; 
5numerator degree of freedom; 6denominator degree of freedom. 
 
 
Table C.3 Mean apparent visocisty of the milk systems as a function of xanthan 

gum concentration
1
 

Xanthan gum (%) Apparent viscosity (mPa�s) 
0 1.60b ± 0.06  
0.15 40.26a ± 6.82  

1Data are means ± SE (n=12). a,bMeans with different superscript letters differ (P ≤ 

0.05). 
 
 
Table C.4 Mean apparent viscosity of the milk systems as a function of 

temperature
1
 

Temperature (ºC) Apparent viscosity (mPa�s) 
25 15.75b ± 8.22  
90 26.11a ± 14.49  

1Data are means ± SE (n=12). a,bMeans with different superscript letters differ (P ≤ 

0.05). 
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Table C.5 Mean apparent viscosity of the milk systems as a function of α-la/β-lg 

ratio
1
 

Ratio (α-la/β-lg) Apparent viscosity (mPa�s) 
3:8 18.64b ± 10.23  
8:3 23.22a ± 13.69  

1Data are means ± SE (n=12). a,bMeans with different superscript letters differ (P ≤ 

0.05). 
 

Turbidity 

Table C.6 P and F values from ANOVA of temperature, α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio and time on the turbidity in the milk system 

Type III Tests of Fixed Effects 
Effect Num DF6 Den DF7 F Value Pr > F 
rep1 2 14 0.53 0.5974 
ratio2 1 14 5.88 0.0294 
temp3 1 14 179.14 <.0001 
conc4 1 14 4.67 0.0486 
ratio*temp 1 14 19.26 0.0006 
ratio*conc 1 14 4.2 0.0597 
temp*conc 1 14 5.8 0.0304 
ratio*temp*conc 1 14 4.31 0.0569 
time5 1 16 4.72 0.0452 
ratio*time 1 16 1.76 0.2031 
time*temp 1 16 0.35 0.5606 
ratio*time*temp 1 16 0.09 0.7623 
time*conc 1 16 0.88 0.3626 
ratio*time*conc 1 16 0.05 0.8226 
time*temp*conc 1 16 0.01 0.9171 
ratio*time*temp*conc 1 16 0.94 0.3464 

1Replication; 2α-la/β-lg ratio; 3temperature; 4xanthan gum concentration; 5set time; 
6numerator degree of freedom; 7denominator degree of freedom. 
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pH and Total solids 

Table C.7 Mean pH and total solids (TS) of the milk systems as a function of the 

temperatures, xanthan gum concentration and α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio
1
 

Ratio 
(α-la/β-lg) 

Xanthan2 
(%) 

Temp3 
(ºC) 

pH Total solids 

3:8 0 25 6.54 ± 0.0058  10.71 ± 0.031  
3:8 0 90 6.48 ± 0.010  10.85 ± 0.040  
3:8 0.15 25 6.53 ± 0.0033  10.80 ± 0.091  
3:8 0.15 90 6.46 ± 0.0033  10.78 ± 0.042  
8:3 0 25 6.54 ± 0.0088  10.81 ± 0.070  
8:3 0 90 6.52 ± 0.0058  10.91 ± 0.063  
8:3 0.15 25 6.54 ± 0.0088  10.81 ± 0.031  
8:3 0.15 90 6.49 ± 0.0033  10.90 ± 0.099  

1Data are means ± SE (n=3); 2xanthan gum concentration (w/w%); 3temperature (ºC) 
 

 

Table C.8 P and F values from ANOVA of the temperature, xanthan gum 

concentration and α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratio on total solids 

of milk systems 

Type III Tests of Fixed Effects 
Effect Num DF5 Den DF6 F Value Pr > F 
rep1 2 14 0.31 0.7402 
ratio2 1 14 2.1 0.1695 
temp3 1 14 2.65 0.1259 
conc4 1 14 0.03 0.8744 
ratio*temp 1 14 0.12 0.7391 
ratio*conc 1 14 0.02 0.9022 
temp*conc 1 14 0.77 0.3957 
ratio*temp*conc 1 14 0.59 0.4547 

1Replication; 2α-la/β-lg ratio; 3temperature; 4xanthan gum concentration; 5numerator 
degree of freedom; 6denominator degree of freedom. 
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Table C.9 P and F values from ANOVA of the temperature, xanthan gum 

concentration and α-lactalbumin (α-la)/β-lactoglobulin (β-lg) ratio on pH of milk 

systems 

Type III Tests of Fixed Effects 
Effect Num DF5 Den DF6 F Value Pr > F 
rep1 2 14 0.26 0.7784 
ratio2 1 14 20.66 0.0005 
temp3 1 14 98.65 <.0001 
conc4 1 14 8.19 0.0126 
ratio*temp 1 14 6.38 0.0243 
ratio*conc 1 14 0.03 0.8687 
temp*conc 1 14 2.3 0.152 
ratio*temp*conc 1 14 1.39 0.2583 

1Replication; 2α-la/β-lg ratio; 3temperature; 4xanthan gum concentration; 5numerator 
degree of freedom; 6denominator degree of freedom. 
 
 

Total and free sulfhydryl groups 

Table C.10 Dilution factors (D) for free and total thiol groups test 

Ratio (α-la/β-lg) D (Free thiol group) D (Total thiol group) 
3:8 6100000 39123208 
1:1 6100000 39123208 
8:3 6100000 45898889 
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Table C.11 P and F values from ANOVA of temperature, α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio, xanthan gum concentration and time on free 

sulfhydryl groups in the milk system 

Type III Tests of Fixed Effects 
Effect Num DF6 Den DF7 F Value Pr > F 
rep1 2 14 0.7 0.5133 
ratio2 1 14 290.91 <.0001 
temp3 1 14 1937.55 <.0001 
conc4 1 14 2.03 0.1759 
ratio*temp 1 14 272.85 <.0001 
ratio*conc 1 14 0.05 0.8188 
temp*conc 1 14 11 0.0051 
ratio*temp*conc 1 14 0.29 0.5994 
time5 1 16 47.65 <.0001 
ratio*time 1 16 1.53 0.2343 
time*temp 1 16 37.13 <.0001 
ratio*time*temp 1 16 0.01 0.9336 
time*conc 1 16 1.86 0.191 
ratio*time*conc 1 16 7.2 0.0163 
time*temp*conc 1 16 3.69 0.0729 
ratio*time*temp*conc 1 16 1.23 0.2845 

1Replication; 2α-la/β-lg ratio; 3temperature; 4xanthan gum concentration; 5set time; 
6numerator degree of freedom; 7denominator degree of freedom. 
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Table C.12 P and F values from ANOVA of temperature and α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio, xanthan gum concentration and time on the 

total sulfhydryl groups in the milk system 

Type III Tests of Fixed Effects 
Effect Num DF6 Den DF7 F Value Pr > F 
rep1 2 14 1 0.3936 
ratio2 1 14 306.1 <.0001 
temp3 1 14 89.57 <.0001 
conc4 1 14 0.01 0.9189 
ratio*temp 1 14 6.67 0.0217 
ratio*conc 1 14 0.02 0.8942 
temp*conc 1 14 0.2 0.6612 
ratio*temp*conc 1 14 0.32 0.5799 
time5 1 16 1.61 0.2231 
ratio*time 1 16 1.45 0.2464 
time*temp 1 16 3.1 0.0973 
ratio*time*temp 1 16 1.56 0.2301 
time*conc 1 16 1.65 0.2177 
ratio*time*conc 1 16 6.54 0.0211 
time*temp*conc 1 16 2.47 0.1354 
ratio*time*temp*conc 1 16 0.05 0.8234 

1Replication; 2α-la/β-lg ratio; 3temperature; 4xanthan gum concentration; 5set time; 
6numerator degree of freedom; 7denominator degree of freedom. 

 
Table C.13 Total sulfhydryl groups as functions of α-la/β-lg ratio, xanthan gum 

concentration and time
1
 

Ratio 
(α-la/β-lg) 

Xanthan2 Time (min) 
(%) 0 120 

3:8 0 164.70b ± 12.30 150.07b ± 10.44 
3:8 0.15 150.53b ± 12.94 164.68b ± 15.94 
8:3 0 284.33a ± 24.65 279.85a ± 16.08 
8:3 0.15 287.42a ± 22.00 273.38a ± 18.84 

1Data are means ± SE (n=6); 2xanthan gum concentration (w/w%). 
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Dynamic oscillation testing 

Table C.14 P and F values from ANOVA of temperature, α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio and time on the phase shift in 0.15% xanthan 

gum concentration milk system 

Type III Tests of Fixed Effects 
Effect Num DF5 Den DF6 F Value Pr > F 
rep1 2 6 0.45 0.6552 
ratio2 1 6 0.87 0.386 
temp3 1 6 50.54 0.0004 
ratio*time 1 8 2.57 0.1475 
time4 1 8 0.39 0.5488 
time*temp 1 8 2.74 0.1365 
ratio*time*temp 1 8 0.15 0.7096 

1Replication; 2α-la/β-lg ratio; 3temperature; 4set time; 5numerator degree of freedom; 
6denominator degree of freedom. 
 

Table C.15 P and F values from ANOVA of temperature, α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio and time on the storage modulus (G′) in 0.15% 

xanthan gum concentration milk systems 

Type III Tests of Fixed Effects 
Effect Num DF5 Den DF6 F Value Pr > F 
rep1 2 6 0.26 0.7819 
ratio2 1 6 26.15 0.0022 
temp3 1 6 98.29 <.0001 
ratio*temp 1 6 11.95 0.0135 
time4 1 8 0.22 0.6504 
ratio*time 1 8 0.11 0.7529 
time*temp 1 8 0.01 0.9162 
ratio*time*temp 1 8 5.59 0.0457 

1Replication; 2α-la/β-lg ratio; 3temperature; 4set time; 5numerator degree of freedom; 
6denominator degree of freedom. 
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Table C.16 P and F values from ANOVA of temperature, α-lactalbumin 

(α-la)/β-lactoglobulin (β-lg) ratio and time on the loss modulus (G″) index in 0.15% 

xanthan gum concentration milk systems 

Type III Tests of Fixed Effects 
Effect Num DF5 Den DF6 F Value Pr > F 
rep1 2 6 0.64 0.5591 
ratio2 1 6 29.9 0.0016 
temp3 1 6 148.81 <.0001 
ratio*temp 1 6 17.3 0.0059 
time4 1 8 0.86 0.3815 
ratio*time 1 8 2.76 0.1355 
time*temp 1 8 2.24 0.1728 
ratio*time*temp 1 8 1.45 0.2624 

1Replication; 2α-la/β-lg ratio; 3temperature; 4set time; 5numerator degree of freedom; 
6denominator degree of freedom. 
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Appendix D Raw Data 

Chapter 4 

Table D.1 Raw data of pH, total solids, apparent viscosity and turbidity at 0 min, 

30 min, 60 min and 120 min 

 

Hd1 
Ratio 

(α-la/β-lg) 
Temp2 
(ºC) 

Viscosity (mPa·s) 
pH 

TS 
(%) 0 30 60 120 

1 3/8 25 1.86 1.89 1.9 1.93 6.53 10.63 
1 1/1 25 1.85 1.88 1.89 1.9 6.54 10.72 
2 3/8 25 1.84 1.87 1.89 1.94 6.55 10.76 
2 1/1 25 1.84 1.88 1.89 1.92 6.57 10.76 
3 3/8 25 1.86 1.89 1.92 1.92 6.55 10.78 
3 8/3 25 1.84 1.89 1.91 1.92 6.56 10.68 
4 3/8 25 1.85 1.87 1.92 1.92 6.54 10.74 
4 8/3 25 1.84 1.86 1.91 1.92 6.56 10.55 
5 3/8 25 1.84 1.86 1.89 1.92 6.54 10.73 
5 3/8 70 1.76 1.77 1.77 1.82 6.53 10.76 
6 3/8 25 1.84 1.89 1.92 1.95 6.56 10.75 
6 3/8 70 1.76 1.79 1.81 1.84 6.55 10.82 
7 3/8 25 1.84 1.87 1.9 1.94 6.54 10.78 
7 1/1 70 1.75 1.78 1.8 1.83 6.53 10.74 
8 3/8 25 1.86 1.89 1.92 1.93 6.55 10.76 
8 1/1 70 1.74 1.78 1.8 1.83 6.54 10.75 
9 3/8 25 1.85 1.88 1.91 1.93 6.53 10.70 
9 8/3 70 1.78 1.81 1.82 1.84 6.54 10.76 
10 3/8 25 1.87 1.91 1.93 1.94 6.56 10.76 
10 8/3 70 1.79 1.81 1.83 1.86 6.54 10.72 
11 3/8 25 1.86 1.89 1.9 1.95 6.53 10.77 
11 3/8 80 1.85 1.88 1.91 1.91 6.53 10.76 
12 3/8 25 1.85 1.89 1.9 1.92 6.55 10.70 
12 3/8 80 1.8 1.85 1.87 1.9 6.53 10.69 
13 3/8 25 1.87 1.88 1.92 1.95 6.56 10.73 
13 1/1 80 1.9 1.92 1.94 1.96 6.54 10.80 
14 3/8 25 1.87 1.89 1.92 1.94 6.53 10.71 
14 1/1 80 1.89 1.91 1.94 1.95 6.53 10.75 
15 3/8 25 1.85 1.88 1.91 1.94 6.53 10.75 
15 8/3 80 2.02 2.05 2.06 2.08 6.54 10.76 
16 3/8 25 1.85 1.88 1.91 1.94 6.53 10.77 
16 8/3 80 2.02 2.05 2.06 2.09 6.56 10.75 
17 3/8 25 1.87 1.89 1.91 1.93 6.53 10.63 
17 3/8 90 1.92 1.94 1.93 1.99 6.49 10.72 
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1Half days; 2 temperatures. 
 
 
 
 
 
 
 
 
 

18 3/8 25 1.86 1.9 1.9 1.95 6.54 10.69 
18 3/8 90 1.91 1.92 1.95 1.98 6.50 10.72 
19 3/8 25 1.86 1.9 1.92 1.94 5.54 10.64 
19 1/1 90 1.98 2.0 2.02 2.04 6.50 10.72 
20 3/8 25 1.86 1.88 1.9 1.94 6.54 10.55 
20 1/1 90 1.97 1.99 2.03 2.05 6.52 10.76 
21 3/8 25 1.85 1.89 1.91 1.94 6.53 10.66 
21 8/3 90 2.14 2.15 2.2 2.23 6.53 10.75 
22 3/8 25 1.87 1.91 1.92 1.94 6.53 10.74 
22 8/3 90 2.17 2.20 2.20 2.2 6.53 10.79 
23 3/8 25 1.86 1.89 1.90 1.92 6.55 10.70 
23 1/1 25 1.86 1.86 1.90 1.91 6.54 10.71 
24 3/8 25 1.85 1.86 1.89 1.92 6.54 10.89 
24 8/3 25 1.85 1.85 1.88 1.91 6.56 10.64 
25 3/8 25 1.85 1.89 1.92 1.94 6.54 10.70 
25 3/8 70 1.72 1.76 1.79 1.83 6.54 10.71 
26 3/8 25 1.86 1.87 1.90 1.92 6.53 10.67 
26 1/1 70 1.76 1.78 1.80 1.81 6.55 10.66 
27 3/8 25 1.85 1.89 1.92 1.93 6.54 10.84 
27 8/3 70 1.76 1.79 1.81 1.84 6.56 10.76 
28 3/8 25 1.86 1.89 1.92 1.93 6.54 10.68 
28 3/8 80 1.81 1.84 1.86 1.86 6.54 10.74 
29 3/8 25 1.85 1.89 1.92 1.94 6.53 10.70 
29 1/1 80 1.85 1.88 1.91 1.94 6.53 10.79 
30 3/8 25 1.85 1.89 1.91 1.93 6.54 10.73 
30 8/3 80 2.01 2.05 2.05 2.07 6.55 10.75 
31 3/8 25 1.86 1.87 1.9 1.92 6.53 10.75 
31 3/8 90 1.89 1.91 1.94 1.94 6.52 10.88 
32 3/8 25 1.86 1.88 1.91 1.93 6.54 10.84 
32 1/1 90 1.96 1.97 2.00 2.01 6.53 10.62 
33 3/8 25 1.85 1.87 1.92 1.92 6.55 10.80 
33 8/3 90 2.14 2.17 2.20 2.21 6.53 10.84 



141 

 

Table D.2 Total and free sulfhydryl groups at 0 min, 30 min, and 60 min 

Rep1 
Ratio 

(α-la/β-lg) 

Temp2 

(ºC) 

Total sulfhydryl groups (μM) Free sulfhydryl groups (μM) 

0 30 120 0 30 120 

1 3:8 25 188.4  191.3  162.5  0.1985  0.1985  0.0000  

2 3:8 25 178.4  161.1  169.7  0.3971  0.0000  0.7941  

3 3:8 25 159.7  182.7  187.0  0.7941  0.1985  0.3971  

1 3:8 70 133.8  171.2  152.5  11.32  9.728  5.360  

2 3:8 70 149.6  142.4  151.0  14.69  14.89  10.72  

3 3:8 70 158.2  143.8  152.5  10.72  17.67  14.29  

1 3:8 80 143.8  159.7  158.2  42.29  35.54  21.04  

2 3:8 80 158.2  166.8  159.7  45.46  46.06  23.82  

3 3:8 80 166.8  156.8  158.2  45.07  32.16  22.63  

1 3:8 90 123.7  136.6  116.5  46.85  35.74  30.97  

2 3:8 90 119.4  122.3  132.3  46.46  35.74  24.62  

3 3:8 90 123.7  126.6  122.3  47.85  34.54  23.03  

1 1:1 25 263.2  267.5  267.5  1.191  0.9926  0.7941  

2 1:1 25 253.2  238.8  244.5  0.9926  1.191  1.191  

3 1:1 25 230.1  258.9  243.1  0.7941  0.7941  2.382  

1 1:1 70 211.4  230.1  248.8  18.86  14.29  10.92  

2 1:1 70 234.5  211.4  220.1  16.08  13.30  12.51  

3 1:1 70 201.4  215.8  214.3  14.29  5.360  9.331  

1 1:1 80 179.8  192.7  182.7  67.90  51.22  37.32  

2 1:1 80 217.2  199.9  185.5  69.68  48.84  37.72  

3 1:1 80 184.1  204.2  194.2  65.12  48.44  45.07  

1 1:1 90 164.0  174.0  185.5  68.49  60.95  40.30  

2 1:1 90 179.8  194.2  168.3  69.09  53.60  33.75  

3 1:1 90 181.2  191.3  187.0  63.93  51.62  34.74  

1 8:3 25 362.8  374.6  374.6  1.390  1.390  0.0000  

2 8:3 25 366.2  364.5  359.4  1.390  0.1985  1.787  

3 8:3 25 357.7  356.1  359.4  1.588  0.0000  0.7941  

1 8:3 70 246.4  273.4  273.4  8.537  26.01  18.66  

2 8:3 70 239.6  275.1  281.8  15.68  12.71  8.537  

3 8:3 70 264.9  221.1  261.6  18.66  19.85  15.09  

1 8:3 80 275.1  253.1  275.1  117.3  100.7  82.99  

2 8:3 80 243.0  271.7  270.0  113.6  98.47  76.43  

3 8:3 80 243.0  280.1  258.2  112.4  89.74  77.63  

1 8:3 90 241.3  266.6  199.1  114.2  102.0  78.82  

2 8:3 90 226.1  232.9  219.4  115.7  101.4  71.87  

3 8:3 90 221.1  221.1  239.6  111.2  103.4  75.04  
1Replication; 2temperature 
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Chapter 5 

Table D.3 pH and TS measured at different ratios, xanthan gum concentrations 

and temperatures. 

 

Rep1 
Ratio 
(α-la/β-lg) 

Xanthan2 
(%) 

Temp3 
(ºC) 

pH TS 

1 3:8 0 25 6.55 10.66  
2 3:8 0 25 6.54 10.77  
3 3:8 0 25 6.53 10.71  
1 8:3 0 25 6.54 10.92  
2 8:3 0 25 6.53 10.82  
3 8:3 0 25 6.56 10.68  
1 3:8 0.15 25 6.53 10.63  
2 3:8 0.15 25 6.53 10.85  
3 3:8 0.15 25 6.52 10.93  
1 8:3 0.15 25 6.54 10.76  
2 8:3 0.15 25 6.56 10.81  
3 8:3 0.15 25 6.53 10.87  
1 3:8 0 90 6.47 10.80  
2 3:8 0 90 6.47 10.82  
3 3:8 0 90 6.5 10.93  
1 8:3 0 90 6.52 10.97  
2 8:3 0 90 6.51 10.96  
3 8:3 0 90 6.53 10.78  
1 3:8 0.15 90 6.47 10.87  
2 3:8 0.15 90 6.46 10.75  
3 3:8 0.15 90 6.46 10.74  
1 8:3 0.15 90 6.5 11.07  
2 8:3 0.15 90 6.49 10.90  
3 8:3 0.15 90 6.49 10.73  

1Replications; 2xanthan gum concentration (w/w%); 3temperatures (ºC) 
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Table D.4 Total and free sulfhydryl groups, turbidity, apparent viscosity, 

consistency coefficient, and flow behavior index measured at different ratios, 

xanthan gum concentration, temperatures and times 

Rep1 

Ratio 

(α-la/β-lg) 

  

Xanthan2 

(%) 

Temp3 

(ºC) 

Time4 

(min) 

  

Total  

-SH-5 

(μM) 

Free  

-SH-5  

(μM) 

Apparent  

Viscosity6 

(mPa·s) 

K7 

(Pasn) 

  

n8 

(-) 

  

R2 

Turbidity 

(Arbitrary 

unit) 

1 3:8 0 25 0 178.4  0.4485  1.40  0.0014  1.0000  0.997  0.856  

2 3:8 0 25 0 198.5  0.00  1.40  0.0014  1.0000  0.997  0.830  

3 3:8 0 25 0 189.9  0.00  1.40  0.0014  1.0000  0.998  0.862  

1 8:3 0 25 0 364.5  1.346  1.40  0.0014  1.0000  0.996  0.770  

2 8:3 0 25 0 339.2  0.8971  1.50  0.0015  1.0000  0.995  0.808  

3 8:3 0 25 0 305.4  0.00  1.60  0.0016  1.0000  0.992  0.837  

1 3:8 0.15 25 0 191.3  6.728 28.53 0.1819  0.5265  0.995  0.857  

2 3:8 0.15 25 0 185.5  9.419  28.96 0.1842  0.5271  0.994  0.851  

3 3:8 0.15 25 0 153.9  11.21  28.42 0.1937  0.5094  0.993  0.825  

1 8:3 0.15 25 0 362.8  16.15  32.59 0.2465  0.4828  0.994  0.691  

2 8:3 0.15 25 0 330.7  0.00  30.81 0.2227  0.4944  0.996  0.790  

3 8:3 0.15 25 0 302.1  7.625  28.97 0.2088  0.4950  0.994  0.798  

1 3:8 0 90 0 117.9  54.72  1.50  0.0015  1.0000  0.998  1.071  

2 3:8 0 90 0 156.8  55.62  1.50  0.0015  1.0000  0.998  1.043  

3 3:8 0 90 0 146.7  53.38  1.50  0.0019  1.0000  0.998  1.076  

1 8:3 0 90 0 226.1  101.37  1.80  0.0018  1.0000  0.998  1.613  

2 8:3 0 90 0 226.1  112.13  1.70  0.0017  1.0000  0.999  1.508  

3 8:3 0 90 0 244.7  122.00  1.80  0.0018  1.0000  0.998  1.497  

1 3:8 0.15 90 0 119.4  56.51  41.00  0.3168  0.4450  0.997  1.339  

2 3:8 0.15 90 0 125.1  49.34  45.35 0.4022  0.4421  0.992  1.232  

3 3:8 0.15 90 0 128.0  53.82  41.00  0.3496  0.4522  0.994  1.621  

1 8:3 0.15 90 0 243.0  102.71  64.22 0.5995  0.4290  0.995  1.444  

2 8:3 0.15 90 0 263.2  100.92  55.33 0.5236  0.4255  0.997  1.773  

3 8:3 0.15 90 0 222.7  100.47  55.56 0.5574  0.4106  0.995  1.441  

1 3:8 0 25 120 145.3  0.00  1.90  0.0019  1.0000  0.998  1.007  

2 3:8 0 25 120 169.7  0.4485  1.40  0.0014  1.0000  0.996  0.902  

3 3:8 0 25 120 187.0  0.00  1.90  0.0019  1.0000  0.998  0.860  

1 8:3 0 25 120 324.0  0.90  1.60  0.0016  1.0000  0.998  0.806  

2 8:3 0 25 120 317.2  0.00  1.40  0.0014  1.0000  0.998  0.787  

3 8:3 0 25 120 300.4  0.00  1.50  0.0015  1.0000  0.995  0.807  

1 3:8 0.15 25 120 211.4  4.934  28.47 0.1736  0.5379  0.995  0.870  

2 3:8 0.15 25 120 197.1  1.794  29.97 0.1849  0.5349  0.995  0.993  

3 3:8 0.15 25 120 174.0  9.419  29.73 0.1908  0.5249  0.996  0.852  

1 8:3 0.15 25 120 335.8  9.419  32.77 0.2390  0.4921  0.995  0.752  

2 8:3 0.15 25 120 303.7  12.56  31.23 0.2254  0.4948  0.995  0.978  
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1Replications; 2xanthan gum concentration (w/w%); 3temperatures (ºC); 4the time of 
the milk systems set after cooled to 25 ± 1ºC (min); 5total and free sulfhydryl groups; 
6the apparent viscosity at shear rate of 50s-1; 7consistency coefficient; 8flow behavior 
index. 
 
  

3 8:3 0.15 25 120 300.4  5.831  29.18 0.1906  0.5160  0.994  0.750  

1 3:8 0 90 120 116.5  41.26  1.60  0.0016  1.0000  0.998  1.080  

2 3:8 0 90 120 130.9  44.85  1.70  0.0017  1.0000  0.999  1.081  

3 3:8 0 90 120 151.0  41.71  1.60  0.0016  1.0000  0.996  1.105  

1 8:3 0 90 120 261.6  85.67  1.80  0.0018  1.0000  0.999  1.596  

2 8:3 0 90 120 246.4  95.54  1.80  1.8000  1.0000  0.999  1.513  

3 8:3 0 90 120 229.5  104.5  1.80  0.0018  1.0000  0.997  1.490  

1 3:8 0.15 90 120 102.1  38.13  41.14 0.2812  0.4761  0.994  1.447  

2 3:8 0.15 90 120 156.8  40.82  44.83 0.3841  0.4509  0.991  1.468  

3 3:8 0.15 90 120 146.7  42.16  41.14 0.3449  0.4565  0.995  1.543  

1 8:3 0.15 90 120 221.1  95.54  66.42 0.6378  0.4218  0.994  1.436  

2 8:3 0.15 90 120 246.4  99.13  55.83 0.5137  0.4327  0.994  1.878  

3 8:3 0.15 90 120 232.9  96.88  54.71 0.5296  0.4197  0.993  1.357  
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Table D.5 Dynamic oscillation testing for the 0.15% xanthan gum concentration 

milk systems at different ratios, temperatures and time 

Rep1 Ratio(α-la/β-lg) Temp2(ºC) Time3(min) Phase(degree) G′(Pa) G″(Pa) 
1 3:8 25 0 38.2  0.4155  0.3267  
2 3:8 25 0 40.1  0.4253  0.3587  
3 3:8 25 0 39.3  0.3570  0.2927  
1 8:3 25 0 40.4  0.5585  0.4753  
2 8:3 25 0 38.9  0.4831  0.3895  
3 8:3 25 0 41.8  0.4332  0.3874  
1 3:8 90 0 45.2  0.5954  0.6002  
2 3:8 90 0 42.4  0.7708  0.7046  
3 3:8 90 0 42.0  0.6465  0.5827  
1 8:3 90 0 48.0  1.0310  1.1460  
2 8:3 90 0 47.4  0.8536  0.9281  
3 8:3 90 0 45.5  0.9206  0.9366  
1 3:8 25 120 41.9  0.3592  0.3221  
2 3:8 25 120 31.6  0.4927  0.3037  
3 3:8 25 120 41.0  0.4273  0.3720  
1 8:3 25 120 35.9  0.4543  0.3294  
2 8:3 25 120 38.0  0.4721  0.3686  
3 8:3 25 120 37.0  0.4334  0.3270  
1 3:8 90 120 45.1  0.5941  0.5967  
2 3:8 90 120 46.8  0.6596  0.7019  
3 3:8 90 120 46.5  0.6013  0.6333  
1 8:3 90 120 47.0  1.0570  1.1320  
2 8:3 90 120 47.1  0.8648  0.9321  
3 8:3 90 120 44.0  0.9856  0.9519  

1Replications; 2temperatures (ºC); 3set time (min) 
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Appendix E SAS® Program 

Chapter 4 

pH and total solids 

data one; 

input hd trtno pH TS ratio $ temp $; 

datalines; 

run; 

%macro mix(response, rtitle); 

proc mixed data=one; 

class ratio temp hd; 

model &response=ratio temp ratio*temp/ddfm=satterth; 

random hd; 

lsmeans ratio temp ratio*temp; 

lsmeans ratio/pdiff=control('3/8') adjust=dunnett; 

lsmeans ratio/pdiff adjust=tukey; 

lsmeans temp/pdiff=control('25') adjust=dunnett; 

lsmeans temp/pdiff adjust=tukey; 

%mend mix; 

%mix(pH,'pH'); 

%mix(TS,'TS'); 

run; 

quit; 

 

Apparent viscosity 

data all; 

input hd trtno app ratio$ temp$ time @@; 

cards; 

proc mixed data=all; 

class ratio temp time hd; 

model app=ratio temp ratio*temp time time*temp ratio*time 

ratio*time*temp/ddfm=satterth; 

random hd hd*ratio*temp; 

lsmeans time/pdiff=control('0') adjust=dunnett; 

lsmeans time/pdiff adjust=tukey; 

lsmeans ratio*temp/pdiff adjust=tukey; 

title 'apparent viscosity'; 

run; 

 

Free and total sulfhydryl groups 

data freeSH; 

input ratio$ temp rep free time @@; 
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cards; 

proc glimmix data=freeSH; 

class rep ratio time temp; 

model free=rep ratio|time|temp; 

random rep*ratio*temp; 

title'freeSH'; 

run; 

 

data free25; 

input ratio $ temp rep free time @@; 

cards; 

proc glimmix data=free25; 

class rep ratio time; 

model free=ratio|time; 

random rep rep*ratio; 

lsmeans ratio time time*ratio/adjust=tukey lines; 

title'free25'; 

run; 

data free70; 

input ratio $ temp rep free time @@; 

cards; 

proc glimmix data=free70; 

class rep ratio time; 

model free=ratio|time; 

random rep rep*ratio; 

lsmeans ratio time time*ratio/adjust=tukey lines; 

title'free70'; 

run; 

 

data free80; 

input ratio $ temp rep free time @@; 

cards; 

proc glimmix data=free80; 

class rep ratio time; 

model free=ratio|time; 

random rep rep*ratio; 

lsmeans ratio time time*ratio/adjust=tukey lines; 

title'free80'; 

run; 

 

data free90; 

input ratio $ temp rep free time @@; 
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cards; 

proc glimmix data=free90; 

class rep ratio time; 

model free=ratio|time; 

random rep rep*ratio; 

lsmeans ratio time time*ratio/adjust=tukey lines; 

title'free90'; 

run; 

 

data free0; 

input ratio $ temp rep free time@@; 

cards; 

proc glimmix data=free0; 

 class ratio temp rep; 

 Model free = rep ratio temp ratio*temp; 

 lsmeans ratio*temp/pdiff adjust=tukey lines; 

 title '0 min'; 

run;  

 

data free30; 

input ratio $ temp rep free time@@; 

cards; 

proc glimmix data=free30; 

 class ratio temp rep; 

 Model free = rep ratio temp ratio*temp; 

 lsmeans ratio*temp/pdiff adjust=tukey lines; 

 title '30 min'; 

run;  

 

data free120; 

input ratio $ temp rep free time@@; 

cards; 

proc glimmix data=free120; 

 class ratio temp rep; 

 Model free = rep ratio temp ratio*temp; 

 lsmeans ratio*temp/pdiff adjust=tukey lines; 

 title '120 min'; 

run; 

 

data totalSH; 

input ratio$ temp rep total time @@; 

cards; 
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proc glimmix data=totalSH; 

class rep ratio time temp; 

model total=rep ratio|temp|time; 

random rep*ratio*temp; 

lsmeans time/pdiff adjust=tukey; 

title'totalSH'; 

run; 

 

Chapter 5 

Apparent viscosity 

data study_2; 

input rep ratio$ conc temp time app @@; 

cards; 

proc glimmix data=study_2; 

class rep ratio conc temp time; 

model app=ratio|temp|conc|time; 

random rep rep*ratio*temp*conc; 

run; 

 

proc glimmix data=study_2; 

class rep ratio conc temp time; 

model app=ratio|temp|conc|time/link=log; 

random rep rep*ratio*temp*conc; 

run; 

 

data study_2; 

input rep ratio$ temp conc time app@@; 

logapp=log(app); 

cards; 

proc glimmix data=study_2; 

class rep ratio conc temp time; 

model logapp=ratio|temp|conc; 

random rep rep*ratio*temp*conc; 

lsmeans ratio*temp*conc/pdiff adjust=tukey lines; 

run; 

 

Turbidity 

data Turbidity; 

input rep ratio$ conc temp time T @@; 

cards; 

proc glimmix data=Turbidity; 

class rep ratio time temp conc; 
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model T=rep ratio|temp|conc|time; 

random rep*ratio*temp*conc; 

lsmeans ratio*temp temp*conc/pdiff adjust=tukey lines; 

title'Turbidity'; 

run; 

 
 
pH and total solids 

data study_2; 

input rep ratio$ conc temp pH TS; 

cards; 

run; 

%macro study2 (y); 

title &y; 

proc glimmix data=study_2; 

class ratio temp conc rep; 

model &y=ratio temp conc ratio*temp ratio*conc temp*conc temp*ratio*conc 

rep; 

lsmeans ratio conc temp ratio*conc ratio*temp conc*temp 

conc*temp*ratio/pdiff adjust=tukey lines; 

run; 

%mend; 

%study2(pH) 

%study2(TS) 

run; 

 
Phase shift, G′, and G″ 

data study_2; 

input rep ratio$ conc temp time phase G1 G2 @@; 

cards; 

%macro study2 (y); 

title &y; 

proc glimmix data=study_2; 

class rep ratio time temp; 

model &y=rep ratio|temp|time; 

random rep*ratio*temp; 

lsmeans temp/pdiff adjust=tukey; 

lsmeans ratio*temp/pdiff adjust=tukey lines; 

run; 

%mend; 

%study2(phase) 

%study2(G1) 
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%study2(G2) 

run; 

 
Free and total sulfhydryl groups 

data SH; 

input rep ratio$ conc temp time total free @@; 

cards; 

proc glimmix data=SH; 

class rep ratio time temp conc; 

model free= rep ratio|temp|conc|time; 

random rep*ratio*temp*conc; 

lsmeans ratio*temp time*temp/pdiff adjust=tukey lines; 

title'freeSH'; 

run; 

proc glimmix data=SH; 

class rep ratio time temp conc; 

model total= rep ratio|temp|conc|time; 

random rep*ratio*temp*conc; 

lsmeans ratio*temp ratio*conc*time/pdiff adjust=tukey lines; 

title'totalSH'; 

run; 

 

 


