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I. INTRODUCTION

Beginning in the early 1900' s, new discoveries in physics forced a re-

evaluation of long-accepted concepts. The deterministic classical theory was

modified by the theories of relativity and quantum mechanics. One intriguing

development was that even the rules of logic, previously considered a priori ,

had to be changed to accommodate quantum theory. Ordinary propositions in the

macroworld satisfy a distributive law: for example, if we shake two pennies

in a box, and discover that Penny 1 shows heads and Penny 2 shows either heads

or tails, then we can be sure that either Penny 1 shows heads and Penny 2 shows

heads, or Penny 1 shows heads and Penny 2 shows tails. The equivalence of the

two ways of expressing the same compound proposition may not hold if we replace

the classical statements with statements about quantum properties of an object.

For example, the statement "the spin of the particle in the x direction is up

and in the | direction is either up or down" may be true, but the statement

"the spin of the particle in the x direction is up and in the y direction is

up, or the spin of the particle in the x direction is up and in the y direction

is down" is false or meaningless, depending on one's philosophical orientation,

but certainly not true.

The first paper on quantum logic was published by Birkhoff and von

Neumann in 1936. * This pioneering work gave the first description of

quantum propositions in terms of non-Boolean lattice theory. Since then,

especially since the 1960's, extensive physical, mathematical, philosophical,

and popular literature has appeared. An exhaustive bibliography up to 1981

has been compiled by Holdsworth and Hooker.
2

The most frequently cited

3,4
works on the subject are books by Jauch and by Piron.

The purpose of this paper is to use the quantum logic approach to try to

solve the well-known (and already solved, through the formalism of the



Hilbert space) problem of the addition of spin angular momenta.

Chapter II is a short discussion of the addition of angular momenta and

the Stern-Gerlach experiment for spin-% and spin-1 particles. An unexpected

complication arises in the Stern-Gerlach experiment for spin-1—not every pure

state of a spin-1 particle has its spin vector pointing in a definite

direction, so a standard Stern-Gerlach apparatus will not filter every pure

state. Two theorems about the spin-1 states that can be filtered by the

standard Stern-Gerlach apparatus are proven.

In Chapter III we discuss the notions of quantum logic and how to apply

them to propositions about systems with spin. The quantum logic for spin-%

is presented. One conjecture about the quantum logic for spin-1, proposed by

Hultgren and Shimony, is discussed. Their model for the quantum logic of

spin-1 propositions uses only the pure spin-1 states that can be filtered by a

standard (i.e., magnetic field only) Stern-Gerlach apparatus. Their challenge

to find an experimental procedure to filter any pure spin-1 state was

answered successfully by Swift and Wright.

In Chapter IV we discuss the notion of a tensor product of logics in

order to combine two logics (for example, those of 2 spin-% particles)

into a new logic in an appropriate way. The goal is to define the tensor

product for quantum logics without appealing to the Hilbert space structure

of the quantum propositions . Several authors have already considered the

problem of defining a tensor product for quantum logic. Their efforts are

discussed in light of the goal expressed above.

Chapter V concludes the paper with a discussion of the difficulties and

possibilities of further investigation of the logical structure of quantum

propositions.



II. ANGULAR MOMENTUM AND THE STERN-GERLACH EXPERIMENT

A. Angular momentum

Angular momentum is one of the most important concepts in classical and

quantum physics. The angular momentum vector of a particle with respect to

an origin is defined as oU r x p where r is the position vector and p is

the momentum vector of the particle.
+

The time derivative of £&
->

d^C dr •*•,"*" dp
dt dt * dt

is for a free particle or for a particle in a central potential, so in these

cases angular momentum is a constant of the motion.

In terms of the components of r and p, £, = (yp - zp , zp - xp ,

xp,, ~ yp ) • In quantum mechanics , an operator corresponds to each of these
y x

quantities . A quantum mechanical operator L is defined as R x P . L is a set

of three operators, designated L , L , L , such that, e.g., L = YP - ZP .

A. Jr 35 X Z X

The commutation relations for these operators are

[l
x , g . ihL

z

[iy L
z]

- ihL

or more compactly L., LJ = rne..,L
1
where e... is the Levi-Cevita

symbol (completely antisymmetric tensor)

.

2
H, L , and L form a complete set of commuting observables. The eigen-

2
values of L and L associated with the same eigenfunction (denoted by Y

m
,

Z J6

2
a spherical harmonic function) are 1(1 + 1)11 and mtf where I is a non-negative

integer, m is an integer, and m takes on all values from -I to £. We see

that angular momentum is quantized.

x

= rfiL



We have noted that the quantum number I is an integer. In the quantum

mechanical theory of angular momentum, based on the commutation relations

rather than on the quantum analogue to r x p, it is shown that the quantum

number j for an angular momentum J can actually be either integral or half-

integral. The restriction to position and momentum variables in orbital

angular momentum leads to the rejection of half-integral angular momenta.

The results of the Stern-Gerlach experiment provide experimental evidence

for the existence of a half-integral angular momentum. This half-integral

angular momentum is an intrinsic angular momentum or spin.



B. The Stern-Gerlach Experiment

In the Stern-Gerlach experiment, a beam of particles is collimated by

slits and directed through a non-uniform magnetic field in a vacuum. This

magnetic field may be produced by the north and south poles of a magnet as

shown in Fig. 1.

Suppose the beam is composed of silver atoms. The silver atom is

electrically neutral. However, it has a magnetic moment y and therefore has
•*•* ->

potential energy W = -y.B when placed in the magnetic field B. y and the
•* -y

angular momentum <£• are proportional: y = y oC. To see this classically,

suppose an electron with charge -e and mass m is orbiting a nucleus at a

distance r from the center of the nucleus with momentum p. Then the orbiting

electron can be considered a current loop. The magnetic moment y is defined

as the product of the current i and the area A of the loop:

2 2
|y| = iA = dq/dt (in: ) = -e/(2Trr/v) irr

where 2-rrr/v = T = time needed to make one revolution; therefore

|y| = -e/(2-rrrm/p) irr = -erp/2m = -e£/2m

where the orbital angular momentum £ = rp.

The force exerted on the atom in the magnetic field is
+••+•+•* -*- -»

F = V(y.B) = V(y B ) = y VB .

z z z z
->

(We have taken the direction of B to be the z-axis.) Therefore, the force on

the atom is proportional to y . Since this force deflects the atom from its
z

initial trajectory, the final position of the particle on the screen is

proportional to y .

If the angular momentum of a particle can take on any value, and the

beam of particles has randomly distributed angular momenta, we would expect

to see particles in a continuously distributed pattern on the screen. This

is the classical prediction. The quantum mechanical picture is that, since



Figure 1 The Stern-Gerlach Apparatus
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I (and therefore m^) is quantized and cannot take on just any value, we

should see (21 + 1) spots on the screen.

For the silver atom, even this prediction proves false. It implies that

that silver atom in any state will produce an odd number of spots on the

screen. In fact, silver atoms in the ground state produce not 2(0) + 1 = 1

spot on the screen, but 2 = 2(h) + 1. Silver atoms possess an intrinsic

angular momentum or spin, j = hi with two possible m values, m = % or -\.
s s

The spin magnetic moment m interacts with the gradient of the magnetic

field.

We could arrange the Stern-Gerlach apparatus then so that the emerging

beams pass through 2 holes on the forward side of the apparatus. Then, if

we wish to work with a polarized beam, we can simply close off one hole and

retain only one beam.

Summarizing: In addition to its spatial degrees of freedom, every

particle also has an intrinsic spin. The spin quantum number of a particle,

which may be any non-negative integer or half-integer, is characteristic of

the particle in the same way that its mass is characteristic. Given its spin

s, the quantum number m with -s < m < s (with m in integral increments)
s s s

gives the possible spin states of the particle. A spin-k paricle has m =
s

h or -%, with the states usually denoted |+> and |->. A spin-1 particle

has m = 1, 0, or -1, denoted |l>, |0>, and |-1>. If the state of a

particle can be written as a linear combination of these basis states, e.g. as

a|l> + 3 j
0> + y|-1>» then that state is called a pure state, a, S, and y

are the amplitudes for the particles to be in the |l>, |0>, or |-1> states

respectively, with the overall phase of the state physically unimportant.

If the state of the particle cannot be written this way, it is said to be

a mixed state and must be denoted by a density matrix.



(The use of the word "state" demands close attention because "state"

as used in Chapter III will not mean the same thing as a state in Hilbert

space.)

The Stern-Gerlach apparatus just described constitutes a complete set

of experiments for a spin-% particle. That is, a Stern-Gerlach apparatus

with 2 holes for the emerging beams, one closed and one open, may be used to

prepare a beam in any pure normalized spin-% state (a, 8) = a|+> + &|-> .

The procedure is as follows. Suppose a beam of particles defines an

axis y and the original orientation of the Stern-Gerlach apparatus defines

->-> 9 9
the x-z plane. Since |a| + |g[ = 1, we know an angle 8/2 exists such that

cos 6/2 = |a|, sin 6/2 |$|. 6 is uniquely defined if < 6 < ir. As noted

above, only the difference of the phases of a and 3 is important in physical

predictions, not the overall phase. So define

<{> = Arg 8 - Arg a

X = Arg 3 + Arg a

Thena|+>
z

+ s|->
z

- e
ix/2

{cos 8/2 e"
i<l>/2

|+> + sin 6/2 e
1 *72 ^}.

The expression in brackets represents a particle certain to have its spin up

along the u(8,<j>) axis. That is, (cos 8/2 e
_1

*
, sin 8/2 e

1 *' 2
) is an

eigenstate of S.u = "fi/2 / cos 8 sin 6 e"
1
*

\ for u defined by the polar

id)
sin 8 e Y -cos 8

angles 8, <J>. Therefore, any beam of spin-ig particles prepared in a pure spin

state can be completely passed by a Stern-Gerlach apparatus aligned along the

correct axis u = (8,<j>) corresponding to that state. The pure states can

therefore be modelled by the points on the surface of a sphere of radius 1

in 3-dimensional space.

The corresponding conjecture for spin-1 particles, that the Stern-

Gerlach apparatus with 3 holes, 2 closed and 1 open, is a complete set of

experiments, is false. There are many pure states (a, 8, y) of a spin-1

particle that will not be passed by such a Stern-Gerlach apparatus oriented

9



in any direction. That is, (a, 3, y) is not an eigenstate of S.n for any

n. Such a state (a, 3> y) is said not to have a definite spin vector. In

order for a vector to be an eigenstate of S.n, it must be obtainable by

rotating either |l> = /l\ , |0> = /0\ , or |-1> = /o\ from the z-axis

W w l°J

to the n-axis. I.e., (a, 3> y) = R<J>(z, X) (where X= 0, 1, or -1)

where R = / cosV2e)e~
i<(>

-If Jl sine e~U sin
2
(k&) e"

1*

1//2 sin cos 6 -1//2 sin 9

^in
2
(Js8)e

i4,
1//2 sine e

i<(>

cos
2
(%6)e

i(i>

Therefore (a, 3, y) is an eigenstate for S.n only if it can be expressed as

one of the columns in the matrix R. An example that does not fulfill this

requirement is /l/y^

The set of spin-1 states that are eigenstates of S.n for some n, and

therefore can be passed by a Stern-Gerlach apparatus with one hole op^.n and

two holes closed, is a set of measure zero and in fact is not even dense in

the space of all spin-1 states. This will be proven in HE.

Although not every spin-1 state has a definite spin vector, we shall

prove in IID that any pure spin-1 state (a, 3, y) can be rotated to a state

(a', 0, y'). (Therefore it will always be possible to rotate the Stern-

Gerlach apparatus with the middle hole open, to an orientation such that

none of the beam emerges.)

10



C. Addition of spin angular momenta

A system may be made up of several particles each of which has an angular

momentum J.. If the particles interact, each individual angular momentum may

not be a constant of the motion, but if the system constitutes a free particle

or a particle in an external central potential, the total angular momentum
"* * 2

Z J. is a constant of the motion, and H, J , and J are a complete set of

commuting observables. Therefore, it is an important problem to determine

the angular momentum of a system of particles, given their individual angular

momenta

.

As an example of addition of spins in the Hilbert space formulation,

consider two spin-% particles. Their basis spin states may be written

|+> , |->,,
|

+> t»
|

->
o • The basis states of the two-particle system may be

written as the tensor product of a particle 1 state with a particle 2 state:

|+ + >, |+..->, |- +_>, |- -_>. The particle "created" by the combination

of two particles with spins S.. and S may have spin S = |S^ + S_
j

, •••>

|S - S
| with -S < M < S. In the case we are considering, S = or 1. If

S = then M = 0, and if S = 1 then M = 1, 0, or -1. The relationship

between the description using |S, M> and that using |±^, ±
2
> is

|0 0> = l//l{\+ ~
2
> - |-

1+2
> ^ (antisymmetric)

1 1> = |+
x
+
2
>

|1 0> = l/v^{|+
1
-
2
> + |-

1
+
2
>)

(symmetric)

1-1> = |-r2>

Suppose two spin-% particles are known to have spin up along the r and

r_ axes respectively. Let the bisector of these axes define the z-axis

and let r, and r_ define the x-z plane as shown in Fig. 2. Denote the angle

11



between r.. and z by 8. In this coordinate system particle 1 is in the state

\\>
= cos6/2 1+> + sine/2 1 -> . Particle 2 is in the state i|/ = -cose/2 1+>

2
+

sine/2 |->„ . The tensor product of these two states is

^1 X ^2
= Z a

i
b

i
l

e
i
>

l

£
i

>

i,j J

= cos
2
e/2|++> + (-sine/2 cose/2) | -+> +

(sine/2 cose/2) |+-> + sin
2
e/2|—

>

= /2sin6/2 cose/2 |00> - cos
2
e/2|ll> + sin

2
e/2|l -1>

The system has amplitude v/2sin6/2 cose/2 to be spin 0. Notice that the

symmetric part, the part producing a particle of spin 1, has amplitude to

have M = along z. This is an elementary proof of the earlier assertion that

there exists an orientation of a Stern-Gerlach apparatus such that no beam

emerges if only the middle hole is open.

This shows how we can combine two spin-% particles symmetrically to form

a spin-1 particle. On the other hand, can we take an arbitrary spin-1

particle and describe it as the combination of two spin-% particles? (The

"particles" may be purely figments of our imagination—they are simply

supplying indices.) An angular momentum j can always be written as the

totally symmetric sum of 2j kinematically independent spin-^ angular

momenta. Each of these individual spin-% angular momenta may be characterized

as a point on the sphere, so a spin-j angular momentum may be characterized

g
by 2j points on a sphere.

In the next section we show how to rotate a general (a, g, y) state of

a spin-1 particle to a (a', 0, y') state. The (a', 0, y') state can be

considered the symmetric part of the spin-^ combination.

12



Figure 2 Spin vectors of 2 spin-^ particles
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D. Rotating a pure state of a spin-1 system to /o
,,r

Every pure state /a\ of a spin-1 system can be expressed in the form

I

i(a - b)
a e

a''

13| - e
ib

I
3'

lT|e
i(8

"
b >

y*

Step 2 . We want the phase of a - y to equal the phase of g, i.e. to be real

(the reason for this becomes evident in Step 3). We need to rotate /a'V

around the z-axis to obtain /a'e

Geometrically (see Fig. 3) what we need is an angle <$> that will make the a" and

y" components of the state have the same i-component in the complex plane.

Then

|a|sin(a - b + <j>) = |y|sin(g - b - <)>)

|a|{sin(a - b)cos<)) + cos (a - b)sin<|)}

|y|{sin(g - b)cos<{> - cos(g - b)sin<J>}

{|a|sin(a - b) - |y|sin(g - b)}cos<j>

{-|a|cos(a - b) - |y|cos(g - b)}sin<() .

Finally

,

_ Ictlsin(a - b) - K|sin (g - b) = taa+

|a|cos(a - b) + |y|cos(g - b)

15



Step 3 . Now we want to rotate /a"\ around the y-axis by the angle 8' to

B"

,Y"

obtain /a' ? '\ . Is this possible? We must have

Y*
'

H(l + cos8') -l/v^sinG' \(X - cos6')\ /a" \ /a'"\

l//2sin9' cos6' -l/ZIsinS' B" I
=

j

\{X - cose') l//2sin9' %(1 + cos9') / \y" / \ Y"7

Thus, l//2sin6 f (a" - y") + cosG'B" =

l//2sine'(a" - y") = -cose'B"

Hence, tanG ' = -/I
a - y

which is a real number because

B" and a" - y" have the same phase.

16



Figure 3 Rotating /a\ to /a"
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Example 1 . What rotation will give the state / 1//3 \ in the form / a \ ?

i/v5 ) o I

/x

a - y already has the same phase as B, and a - y = 0. So we need cose = 0,

i.e. 9 = ir/2 or 3tt/2.

6 = tt/2 :

Notice however that this vector is not in the form (standard form from IIC)

N /-cos
2
9 72

sin
2
8'/2

where N is a normalization factor. So we also need to rotate now around the

z-axis by -tt/2 :

'cc'"e-
i7r/2

\

••'* ';..,.J '(?-)

and rephase again:

.-"ifT)
V y"'/ y'"

2
So /cos <j>/2\ i /-cos (Ji/2\ /-cos <J>/2 \ /-cos 6'/2

o —

>

—

>

= N

lSin <J>/2/ \ sin <J,/2/ \ sin <j./2/ \ sin
2
Q

,

/2

with N - 2//3 and 6
1 - 135°.

19



Example 2 . / 0\ could be considered a worst possible case.

u
Step 1 . 3 is already real.

Step 2 . The phase of a - y = is already the same as the phase of £•

Let 8 = tt/2 (angle of rotation around the y-axis).

20



E. Spin-1 States With Definite Spin Vector

Theorem 1 . The set of spin-1 states with definite spin vector is a set of

measure in the Hilbert space of spin-1 states.

Proof . A spin-% state may be represented by a point (8 , <j> ) on the

2
surface of a sphere of radius 1 in 3-space (i.e. a point of S ) , as shown in

section IIB. As we discussed in IIC, a spin-1 state can be represented as a

set of two such points, (8 , <j> ) and (8», .<(>„), one from each of two spin-%

state spaces (see Fig. 4a) . The set of spin-1 states is therefore modelled by

2 2
two points on a 2-dimensional surface, S x S . This is a 4-dimensional space.

Although the spin-1 state /a\ appears to be 6-dimensional , two dimensions are

eliminated by the normalization and the overall phase freedom. The general

spin-1 state will be denoted by (6.., <j> , 9 , <j> ) . The spin-1 states with

definite spin vector are those for which 8.. = 6
?

and <}>.. = <(>- (see Fig. 4b)

or 8
2

= ir - 8 and (j> = ir +
<J>

(Fig. 4c). Two parameters (8.., <j> )

suffice to define all such spin-1 states. The set of spin-1 states with

definite spin vector is therefore a 2-dimensional set. A 2-dimensional subset

of a 4-dimensional space has measure 0.

Theorem 2 . The set of spin-1 states with definite spin vector is not dense in

the space of all spin-1 states. That is, there exists an open set of spin-1

states that contains no spin-1 state with definite spin vector. (By open set

we mean open in the topology on the Hilbert space defined using the norm or

distance: d(i/i,
<J>)

=
II \\>

-
<)> II .

)

Proof . Let / a\ be a state without definite spin vector. This is a

rotation of the most general spin 1 state. We have < Jot | , |y| < 1.

21



Figure 4 Spin-1 states with definite spin vector
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(a)

(b) (c)

23



We shall show that there exists an e-neighborhood of /ct\ containing no

spin-1 state with definite spin vector. I.e.,

(a) II (a, 0, Y) " R(l, 0, 0)11 >

(b) II (a, 0, Y) - R(0, 1, 0)11 >

(c) II (a, 0, y) " R(0. 0, 1)11 >

where R is a rotation matrix and R(l, 0, 0), R(0, 1, 0), and R(0, 0, 1) are

the spin-1 states with definite spin vector.

(a) I (a, 0, y) - R(l, 0, 0)ll
2

= |a - cosV20)e~
1<(>

|

2
+ |l//2sin0|

2

+ | Y - sin
2
(%9)e

i
*|

2

2
In order for this expression to equal 0, sin must equal 0. So = or it.

If = then (y - sin (Jg8)e 9
) = y > °- If 6 = ir then

(a - cos
2
(%0)e"

i<,)

)

2 = a
2

> 0. Therefore II (a, 0, y) - R(l, 0, 0)11

can never equal 0. Case (c) reduces to case (a) because (0, 0, 1) = R'(l, 0, 0)

where R' is the rotation by tt around the y-axis , so R(0, 0, 1) = RR'(1, 0, 0).

(b) II Cot, 0, y) " R(0, 1, 0)H
2

= |a + l/ZlsinOe"
1
*!

2
+ cos 9

+
|
Y - l//2sin0e

i<,>

|

2

For this expression to equal 0, we must have both a = -l//2sin0e and

Y = l/t^sinOe
1
*; then a = -y*. But then /a\ /-Y*\ with

(V'VJ
\-T*\

2
+ |y|

2
" 1 - 2|y|

2
, implying that |y| = 1//2. The vector /-Y*\

is a spin-1 state with definite spin vector—it is the second golumn of the

R matrix given in section IIB with = ir/2 and <(>
= phase of y« This is

contrary to the assumption that f a\ is a state without definite spin

Y,

24



vector. Thus if ty
= /a\ is a state without definite spin vector then

(?,

there are no states with definite spin vector within

Min(|a|, |y|, 2 - Jl\ |a| -
|
Y

|
|) of y.

25



A. Introduction

III. LATTICE THEORY

9

A partially ordered set (or poset ) is a nonempty set of elements with a

partial ordering < defined on the elements. Two elements a and b of a poset

have a least upper bound _c if a < c, b < c_, and (3 d such that a < d^, _b < &

—^ S. ^ ^) ' We denote this l.u.b. by a V b, which we read as "a join b."

The greatest lower bound of a and _b is similarly defined, and denoted by

a A _b» which is read as "a meet b."

A lattice is a poset for which a l.u.b. and g.l.b. exist for every pair

of elements in the lattice. A lattice is called complete if a l.u.b. and

g.l.b. exist for every nonempty subset of the lattice. The following laws hold

for elements a, b, c of a lattice L:

(i) associative a V (b V c) = (a V b) V c

a A (b A c) = (a A b ) A c

(ii) commutative a V b = b V a .§_ A b. = b. A a

(iii) absorption a V (a A b) a.

a A (a V b) = a

If a lattice contains an element e_ such that x < e^ for all x e L, e^ is

the greatest element and is denoted by 1_. A least element Q is similarly

defined. If Q and 1_ exist in L, L is said to be bounded . An element b_ is

called a complement of a if a V b = 1_ and a A b = 0. The atoms of a

lattice are defined to be elements a e L such that j) < a (i.e., 0^ < a_ and

0^ ^ a) and if 3 x e L such that JD < x < a, then x = a. A lattice L is

atomic if every x ^ in L is greater than or equal to an atom.

An orthocomplementation on a lattice is a function '
: L -»- L such that

V a, b e L,

(i) (a')' = a

(ii) a < b ^ b' < a'
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(iii) a/ is a complement of a_.

a.' is called the orthocomplement of a.

The DeMorgan laws hold in a bounded orthocomplemented lattice: if

{a I a e 1} is an arbitrary subset of L, and V and A are the join and meet,
—a 1 a a

respectively, of the subset,

(i) if at least one of V a or A a' exists in L, then they
a—a a—

a

both exist and (V a )' = A a '
.

or-a a—a

(ii) if at least one of A a or "a' exists in L, then they
a—a a—

a

both exist and ( A a )
' = V a' .

a—a a—

a

Two elements a, b of an orthocomplemented lattice are said to be

orthogonal (to each other) if a < b'. We denote this by al b. Two elements

a, b of an orthocomplemented lattice are said to be compatible or commutative

if (a^ y b_' ) A _b = a_ A b_. The orthocomplement a* of a is the complement of

a. that is compatible with a.

A sublattice of L is a lattice generated by a subset of elements of L,

closed under V and A but not necessarily under '

.

A Hasse diagram of a lattice is a picture in which each element is

represented by a small circle, and the circles are arranged such that each

element a^ is connected by a line upward to all elements _b such that a < b_ and

P x e L, x 4 _b such that a < x. < b_. (These elements _b are said to cover a.)

Figure 5 shows examples of Hasse diagrams. Figs. 5(a) and (b) represent the

same lattice. Fig. 5(a) is preferred because the orthocomplement of each

atom appears directly above the atom. In Fig. 5(d), a and d_ are complements

but not orthocomplements.

An orthomodular lattice is an orthocomplemented lattice satisfying the

orthomodular law: if a < b then a V (a' |\ b) = b_. It can be shown that in

an orthomodular lattice the complements of a are precisely the elements

(b A (b' A a')) V (b' A a') for arbitrary b e L.
10
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Figure 5 Hasse diagrams for lattices
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(a)

(e)
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Two elements b, c of a lattice L are said to be a modular pair if

whenever a < jC then (a V b) A c = a V (b A c) . A modular lattice is a lattice

in which every pair of elements is a modular pair. An alternative definition

of an orthomodular lattice is a lattice in which every orthogonal pair of

elements is a modular pair (hence the name orthomodular) . An orthomodular

lattice is not modular iff it contains a sublattice of the form N,. (Fig. 5(c)).

A Boolean lattice (or algebra) is an orthocomplemented lattice satisfying

the distributive law: _a V (b A _c) = (a V b) A (a V _c) for all _a, b, c, e L.

3
G (Fig. 5(d)) is a modular lattice that is not Boolean. 2 (Fig 5(a)) is a

Boolean lattice. A Boolean lattice may be alternatively defined as a lattice

in which each element has a unique complement.

The three types of lattices—Boolean, modular orthocomplemented lattices,

and orthomodular lattices—may be compared as follows:

{ Boolean lattices } O { modular orthocomplemented lattices } d
{ orthocomplemented lattices }

Boolean:

any a, b_, c_ (a_V b) A c_ = (a A_c) V (b A _c)

Modular

:

a < _c (a V b) A c = a V (b A c)

Orthomodular:

a<_c, b<_c' (aVb)Ac - a V (b A c)

The lattice L($,) of closed subspaces of a Hilbert space fC, when

partially ordered by set-theoretic inclusion, is a canonical example of a

complete orthomodular lattice. The meet of two closed subspaces is their

set-theoretic intersection and the join of two closed subspaces is the

subspace they span. h(jv) is modular iff & is finite dimensional. The

orthocomplement of a subspace A of Hilbert space is the set of all vectors

in .^t orthogonal (in '/{. ) to every vector in A.
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A state on a lattice is defined as a probability measure on the set of

elements of the lattice, m is a state on L if for a, b_ e L,

(i) < m(a) < 1

(ii) m(0) = 0, m(j.) = 1

(iii) if alb then m(a) + m(b) = m(a V b)

A set
'•'

" of states on a lattice is called full if for a, b_ z L

a<b <-4>m(a) < m(b) V m e ]';>

— — v

This set of states determines the order on L. A set of states on a lattice

is called strong if for a., b_ e L

a < b 9^(m(a) = 1 ~> m(b) = l) V m e '/'^

Any lattice with a strong set of states also has a full set of states; the

reverse implication is false. A pure state is a state m such that p states

m and m„ different from m such that m = an^ + gm
2
with a + g = 1 and

<*,g > 0. The state shown on the lattice in Fig. 6(a) is not a pure state on

L because it equals %m + %m. where m. and nu are given in Fig. 6(b).

However, m
1

and m„ are pure states.

A quantum logic is usually defined as an orthomodular lattice with a

full (or sometimes, a strong) set of states. That this notion is non-trivial

is shown by Greechie in a paper proving the existence of orthomodular lattices

that admit no states. Furthermore, Bennett gives an example of an ortho-

12
modular lattice with infinitely many states but no full set of states.

L(^;) has a full set of states for any Hilbert space *£ . However,

other results of Greechie are that not every orthomodular lattice with a

full set of states or a strong set of states is embeddable in a Hilbert

14,15
space.
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Figure 6 States on lattices
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B. Orthomodular Lattice Theory Applied to Quantum Mechanics

In quantum mechanics we can use the notions of quantum logic to discuss

the "propositions" that refer to a physical system. Suppose for example that

the physical system is a spin-% particle. A proposition about the system is a

statement such as "the projection of the spin of the particle along the a axis

is +'fT/2." Denote this proposition by the symbol a.

Foulis and Randall, Mackey, and Piron identify the propositions with

experimental procedures or equivalence classes of experimental procedures

16, 17, 18 T ,

designed to confirm the truth of a statement such as a. It we

adopt this view, then in order that a statement such as a in fact be a

proposition, we need to design an apparatus that will completely pass a beam

of which a is true. For the spin-% system, the Stern-Gerlach apparatus with

2 holes, one open and one closed, oriented along the a-axis, gives us the

experimental procedure. We will denote this by the symbol shown in Figure 7.

(This symbol will be used to denote any proposition a about any sytem, not

just the particular spin-*s example cited. If a beam for which proposition a

is true, or in state |a>, enters the apparatus, it is certain to be passed.)

If a beam that passes an apparatus a_ is also certain to pass an

apparatus b_, we can define a partial order on the experimental procedures and

write a < b_. To extend our use of the logical language and create a lattice

of the propositions, we need to define experimental procedures for the

meets, joins, orthocomplements, 0_, and 1 elements of a lattice.

The join a V b of two experimental procedures is the smallest machine

guaranteed to pass all beams that have already been passed by the a machine

and all beams that have already been passed by the b machine. A first guess

at a V b is shown in Figure 8(a). However, a beam that has previously

passed a b_ machine, and is therefore in the state |b>, is not guaranteed
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Figure 7 Proposition a_

35



>

36



to pass the machine of Fig. 8(a). The final emerging beam is given by

|+b><+b|-a><-a|b> + |a><a|b> ^ |+b>.

A portion of the beam, | —b><—b |-a><-a|b>, is absorbed, since

2

|
<-b|-a><-a|b> ± 0.

This is the probability that any single particle in the beam fails to pass the

machine. It can be shown, by iterating the passage of a particle in state |b>

through alternating a_ and b_ machines as in Fig. 8(b) , that a beam in state |b>

passes with certainty. The probability that a beam in state |b> fails to

pass the Nth stage of the machine is

{ <-b { |-ax-a|-b><-b| } |-ax-a|b> }

which ->- as N + °°.

It is very important to note that a particle that passes the a V b

machine was not necessarily in state |a> or state |b> before entering the

machine. It may well have been in a state |c>. The nature of quantum

propositions is such that

( a V b is true 7^ — ^s true or — is true «)

The construction of a V b_ is based solely on the need for a machine to

satisfy the relations

a < a V b

b < a V b

and jl c < a V b such that a < c_ and b_ < c_.

We conjecture that this a^ V b_ machine or an equivalence class containing it

is indeed the least upper bound for the a_ and b_ machines.

The meet a/^b of two propositions should be defined as the largest

experimental procedure such that any beam passing a A b will also pass a_ and

will pass b_. If a_ and b_ are compatible propositions in the usual QM sense,

then a followed by b_, or vice versa, or iterations of a_ followed by b_, as

in Figure 9, will serve. If a and b_ are not compatible, then no beam that
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Figure 8 a.V k
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passes a is guaranteed to also pass b_. The machine of Figure 9 then attenuates

the intensity of the beam until no beam passes the machine.

To complete the discussion of experimental machines corresponding to

propositions, we must design machines for 0_, 1_, and negations of propositions.

The negation of a_, denoted by a_' , should be an apparatus that is guaranteed to

pass a beam iff the machine a_ is guaranteed not to pass the beam. The symbol

for this machine is given in Figure 10(a). For the spin-^ beam, a Stern-Gerlach

apparatus oriented along the -a direction serves the purpose.

The 0_ proposition is at the bottom of the lattice: < a V a-

The output of 0_ must pass any a_ machine we choose. No beam will do this, so

the output of 0_ must be no beam. The symbol for 0_ is given in Fig. 10(b).

For the spin-^ beam, a Stern-Gerlach apparatus with both holes closed, oriented

in any direction, is the appropriate machine.

The 1 machine must pass any beam that has previously been passed by any

other machine. The symbol for _1 is given in Fig. 10(c). For the spin-%

beam, the Stern-Gerlach apparatus with both holes open, oriented in any

direction, serves as the 1_ machine.

The lattice of propositions for a spin-% system, L
x , is given in Fig. 11.

A lattice point corresponds to each direction in 3-space (every possible

orientation of the Stern-Gerlach apparatus)

.

Prior to discussing the more complicated spin-1 system, we discuss the

important notion of a state on a spin lattice, using the spin-^ lattice as an

example. We will relate the idea of a state on a lattice to a state in

Hilbert space. Each lattice point corresponds to one pure state in the

Hilbert space of spin-% states. That is, a corresponds to the state of a

beam polarized along the a axis. Consider a probability measure (state) on

the lattice for which the values on the lattice points represent the

probability that a given spin-^ particle in a polarized beam will pass a

40



Figure 9 IL A k
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Figure 10 a' , 0_, and 1
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(a)

~>

(b)

"* t

(c)
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Figure 11 Tne lattice of propositions for a spin—5

system, L
a
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Stern-Gerlach apparatus oriented in a specified direction. Such a probability

measure can be denoted by the picture in Fig. 12(a). The formal definition

of a state on a lattice would allow such states as that shown in Fig. 12(b).

Obviously this state does not represent a physical situation. Pulmannova

restricts her discussion of the set of lattice states m under consideration

to a set of pure states such that for each atom a_ in the lattice there is one

• 19
and only one m e

'" for which m(a) = 1. Even this restriction on the states

does not guarantee physical states, since it does not specify the value of the

state on the other atoms. For example, the state given in Fig. 12(c) would

be possible for any a. Only the states m as defined above and as shown in

Fig. 12(a) can represent physically possible states of a spin-Jg system.

Each such m corresponds to one atom a of L, , and to one pure state of the
a — H

Hilbert space for the spin-% lattice.

We turn now to the case of the spin-1 particle. Another level of

complexity is introduced. A beam of spin-1 particles may be in a pure state

a\ of the Hilbert space of spin-1 states, yet not have its spin vector

oriented along any axis (e.g., / 1//3 \ mentioned previously). The Stern-

1//3

l//3
/

Gerlach apparatus with 3 holes, 1 open and 2 closed, picks out only those

pure states with definite spin vector.

Hultgren and Shimony propose calling these states with definite spin

vector "verifiable" states, with the "lattice of verifiable propositions L^"

20
shown in Fig. 13. The lattice point a(n, X) corresponds to the statement

"the projection of the spin vector along the n direction is A", where A.
=

-1, 0, or 1. The lattice point b(n, X) corresponds to the statement "the

projection of the spin vector along the n direction is not A"—a 2-dimensional

subspace of the Hilbert space, a Stern-Gerlach apparatus with two holes open,
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Figure 12 States on L
H
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irection of state)

vector
(q between apparatus angle)

(a)

and state vector

(b)

(c)
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Figure 13 The lattice of "verifiable" propositions

of a spin-1 system, L
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b(n",0)

a(n",0)

A representative sample of propositions of L and their

relations

—

n' is orthogonal to both n and n' ' , but n is not parallel,

antiparallel, or orthogonal to n' ' ; and n'*' is not

parallel, antiparallel, or orthogonal to any of the

other directions.
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one closed. The point b(n, A) is the negation of the point a(n, X).

Hultgren and Shimony's verifiable propositions are not sufficient for our

purposes, since we can build any pure spin-1 state from the symmetric combin-

ation of 2 pure spin-^ states, not only those with definite spin vector.

Hultgren and Shimony presented a challenge to devise an experimental procedure

to filer any pure spin-1 state. Swift and Wright answered this challenge by

specifying electric fields to be added to the standard Stern-Gerlach

apparatus. Since a spin-1 particle has an electric quadrupole moment as

well as a magnetic dipole moment, the particle will interact with the electric

field.
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C. Generalized Stern-Gerlach Apparatus for the Spin-1 Particle

The lattice L of Hultgren and Shimony is based on the assumption that

the only "verifiable" states of a spin-1 system are those with definite spin

vector. Using the usual Stern-Gerlach apparatus, these are the only states

guaranteed to be passed. The challenge to find an apparatus to filter any

pure spin state was answered by Swift and Wright. Their program consists of

showing how to apply an electric field to the Stern-Gerlach apparatus which,

along with the magnetic field, can be adjusted to filter any spin-1 pure

state.

Swift and Wright begin with the motivating simpler case of the spin-1
!

particle. Any 2x2 Hermitian operator A (in particular, the projection

operators for a spin-% particle) can be written in the form A - al + b^

(using the summation convention for repeated indices). I is the identity

matrix and the S.'s are the usual spin matrices. In a magnetic field

X(r)B
Q

= X(r)(B
1

, *
2

> B^ , the Hamiltonian H = H
Q
+ UqB^ describes the

particle's behavior, where H contains the kinetic energy of the particle

and u is its total magnetic moment. If the vector B is chosen parallel to

the vector d", then the operators H and A have the same eigenstates. If A is

a projection operator, i.e. the operation of determining the spin component in

a certain direction, then the application of the given magnetic field spatially

separates the particles of the beam which are in different energy eigenstates,

as described in section IIA. Swift and Wright show that, with the perturb-

ation necessary to make this magnetic field conform to Maxwell's equations,

these eigenstates are correct to first order.

We extend this idea to the spin-1 case by applying the same type of

analysis to a projection operator on a 3-dimensional Hilbert space. Any

Hermitian 3x3 matrix can be written as a combination of matrices thus:
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A = I a
(k)

. lf
k)

.

k=0 \ '"\ XV'\

a. I + bS +bS +bS +aT +aT +aT +xx y y z z xy xy yz yz xz xz

aT +aT +aT
xx xx yy yy zz zz

where a
(0)

- an , T<°> - I, a^ - b., T
a)

- S., a<
2)

- a., and T
(2)

is .

1 i' i i* ij ij ij

obtained from the product S.S. by symmetrizing and subtracting off the

trace. (This formula is generalized to any spin-s system in Swift and

Wright's paper.) The form of these matrices is listed in the Appendix.

Recall that the most general state of a spin-1 particle can be written in

some coordinate system as
ty

= (a, 0, y) • The projection operator onto this

state is \\i\p* =

ay*

yy*

or, if we set a = a + bi, y = c + di,

a + b (ac + bd) - (ad - bc)i

(ac + bd) + (ad - bc)i c
2
+ d

2

Let this be the operator A. (The necessary coefficients of the Swift-Wright

matrices to obtain this matrix are given in the Appendix.) Swift and Wright

construct a Hamiltonian with the same eigenstates as A, but whose spatial

variation causes different forces on particles in energy eigenstates with

(k)
different eigenvalues. They show that the operators T. . are proportional

Xl'"\
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to operators measuring the 2k-pole electromagnetic moments.

First define $ (r) and $ (r) as the scalar potentials of the electric

and magnetic fields, respectively. The fields are written as scalar poten-

tials in order to satisfy Laplace's equation:

vV<?) = o = vW).

Then Maxwell's equations for static fields are immediately satisfied, and

the need to add a perturbation term to the field, as Swift and Wright did in

their spin-% example, is eliminated.

If
E
(r) and (r) are expanded in a Taylor series about z = (z^, z^ zj

(the particle's position), then we have

*
fi
(r) = E ±*

±
(z)y ...y

k-0 ' 1" k V" k

* < r) = Z
k'

$
i i,

(r)y
i

•'• y
i

k=0
11"*H: 1 \

-*•*-*
where r = z + y

and

$. . . (z) = a 3

x
i

8x. 9x.

r = z

Then we can write the Hamiltonian as

H(>) = E $
(k)

, ±
(z)T

(k)
i ...i^

k=0
xv\

where

/k>
. , (l) - (Q, /k!)$

E
. . (z) if k = or 2

CM. /k!)$
M

. . (~z) if k - 1

Q is the 2k-pole electric multipole moment and M, is the 2k-pole magnetic

multipole moment.
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(k)
If we expand the * . . 's in a MacLaurin series, we get for the

Hamiltonian:

H& = I ( I i «
(k)

. . . . (0)z. ...z. ) T
(k)

. .

k=0 n=0
n! V--Vr-- Jn h Jn V" *k

I — , z. ...z. Z * . . . . (0)T

n=0
n! J l Jn k=0 ^---Vr-^n V"^

- E *
(k)

. . (0)T
(k)

. .

k=o
1i'"\ h'"\

+ z. Z $
(k)

. . .(0)T
(k)

.

J k=o V'-V h"'\

+ terms of second and higher order

in z.

Comparing this with the form of the operator A, we see that if we choose

*
(k)

. . (0) - a
(k)

. .

h'"\ xv\
then the 0-order part of the Hamiltonian equals A. The energy eigenstates of

a particle in the center of the apparatus are the eigenstates of A. If we

also choose

*
(k)

. . A0) - a
(k)

. .

H'-'V V* k

then the Hamiltonian to first order in a is

H
l

= A + z A + z
2
A
2

+ z
3
A
3

and the energy E. of a particle in eigenstate |a.> is

E. a. + z.a. + z <a.|A |a.> + z <a |A la >
x i li 2 1

' 2 ' 1 Ji'i'i

The force in the z.. direction at the center of the chamber is

F
l

(°> = "fe-
E
i "

"a
i •
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Therefore particles in energy eigenstates corresponding to different a 's
i

will experience different forces in the z direction and be physically

separated.

Swift and Wright have shown that if a "verifiable" proposition is one for

which an experimental procedure does exist (at least in principle) then we

must consider all propositions of a spin system, not just those of L^, to be

verifiable. In the case of a spin-1 system, L ought to be the lattice of

closed subspaces of a 3-dimensional Hilbert space.
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IV. TENSOR PRODUCTS

If we want to combine the lattices of two spin-^ particles to obtain

the lattice for a spin-1 particle, then we need to define some kind of product

of lattices. Several combinations of lattices have been defined in the

literature: e.g., the horizontal sum and the direct product. The horizontal

sum L L- L_ of two lattices is defined:

e L <=> a e { 1^ N { r 1
±
}} U {L

2
\ { 0^ 1

2
}}

U {0, 1}

with the relation

a C b
<'==~> a, b e L.. and a C b

or

a, b e L and a C b
I L

2

or

b = 1 or a =

2 3
The lattices 2 and 2 and their horizontal sum are given in Fig. 14. The

horizontal sum is not suitable for our purposes because L
t

° L
x / L

1
.

The direct product L = L
1

x L„ is defined as L = { (a.. ,a ) |
a_ e L. ,

a e L } with the relation C defined as:

(ar a
2
) ^ (b

1
, b

2
) <==» a

x <^ b
±

and a
2 <^ b^

The meets, joins, and orthocomplements can be shown to be

(av a
2

) V Q>v b
2
) = (a

±
\ bv &

2
V b

2
)

(av a
2
) A (b-L, b

2
) = ^ A br ^ A b

2
)

(a1> a
2
) = (a

1
, a

2
).
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A Hasse diagram for a direct product lattice can be obtained by the

1 2 3following steps, illustrated in Fig. 15a-d for the lattice 2 x 2" = 2

2
and in Fig. 15e for the lattice M0(2) x 2 :

(i) Draw L.. with a large circle in place of each point.

(ii) Inside each circle draw a copy of L„.

(iii) Connect each point a in a copy of L„ in row n of the large L

to a_ in each copy of L_ in row n - 1 below row n.

The direct product does not serve our purposes for a tensor product. It

includes elements such as (a, 0) and (0, b) that correspond physically to not

doing an experiment on one of the particles, hence to not doing a spin-1

measurement. Several authors, however, have used the direct product as a

beginning point for defining a tensor product. Aerts, Foulis and Randall,

Pulmannova, and Zecca have worked on the problem. » » » »

Pulmannova and Zecca develop a tensor product X> of lattices L.. and L~

by defining an appropriate function o : L. x L_ -*•
X-' such that

(a, 0) •*•
. and (0, b) »> ,- or by defining two functions h : L.. -> £,

and h„ : L„ * Xj such that h, (0..) = V = h (0„) . Following Zecca's paper,

the conditions for ° are:

1.
1

t x^^ e L- =2> (x
x

o x
2
< x

1
° y

2
t=? x

2
< y 2 > , x

2
, y

2
e L

2

2
^ x

2
£ L

2
=^ (x

1
o x

2
< y o x

2
ŝ > x < y1 ) , x., y- e 1^

2. 1_ c 1„ = 1 , 0, c x = x. o
o

= .
V v £ L. , x e L

1 2 £, ' 1 2 1 2 *_, 1 12 2

3. (x^ » 1
2

) A (1
1
o x

2
) = x^ x

2
V x_e L^,, x

2
E L

2

4. ^ o l.r
-

= Xj^ c 1 (1 o x
2
) = l.o x

2
V x

x
e Lj^, x

2
e L

2

5. A(L, ) ° A(L») ^ A(<JC) where A(L) denotes the set of the atoms

of the logic L.

6. e(x
1

) o e(x
2
) = e(x

1
o x ) V x., e A(L ) , x

2
£ A(L

2
> , where e(x)

denotes the central cover of x.
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2 3
Figure 14 Horizontal sum of 2 and 2
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2 • 2
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Figure 15 Two examples of direct products of

lattices
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q

1

(a)

(b) (c)

(1,1)

U,a)

(o,a)

(l,a')

(o,a')

(0,0)

(d)
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MO (2)

(e)
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only partially shown to avoid

confusion of lines

(e) (cont'd)
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x
1

& L„ and L.. e x are sublattices of ^J.

y

Zecca derives the following theorem: Let H , H , and *V be complex Hilbert

spaces with dim a, > 2, dim H > 2, and let LG^), L(H
2
), L( '

) be the

associated standard Hilbert logics. Suppose L(.ft) = LCH^) c L(H
2
>. Then

L("-l) is canonically isomorphic to LG^ x H
2
> or to LG^ x H

2
*) , where H

2
* is

the dual of H .

27
This tells us that the result we want is what we will get,

but we would prefer not to appeal to Hilbert space structure at all.

Pulmannova further defines a mapping 8 from the direct product of the

sets of states on L and L_ into a set of states on *-> :

8: [M x M
2

] •* M

28
such that B(m , m ) (a

1
° b

2
> = m

1
(a

1
)m

2
(b

2
)

.

What state should (a., o b ) represent? As in our discussion of spin

lattices, we want it to represent an experimental procedure r so we might

define it to correspond to measuring particle 1 along axis a^ and particle 2

along axis tL. If the (a
L
o bj's correspond to

I

a
1
>

f

b
2
> in the Hilbert sPace

tensor product, they have some non-zero probability of producing a spin-0

particle. If particle l's spin is certain to be-fi/2 along the a axis and

particle 2's spin along the b axis, then

nL,(a ) = 1 and m
2
(b

2
) = 1 and (n^, m^){a

1
c b^) = 1.

This implies that the 2-particle system is certain to be in a state called

(a, o b ). What state is the 2-particle system certain to be in?—A state

with some non-zero probability of having spin 0, or spin 1 with m
g

= 1, 0, or

-1.

Another important question is to find the atoms in this lattice that

correspond to superpositions of the |a>|b>'s. In particular, how do we

generate <j>
= |

a>
[

b> + [b>
[

a>
^ & legitimate state of the 2-particle

/2

system, a state which does not equal |o|d> for any of the |o|d>'s?
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<j> should be an atoms of the lattice, below (a e b) V (b o a), but it is only

one of many atoms below (a : b) V (b = a) . If all the points (c c d) V ( f ° g)

above state <|> could be given, then we could express <j> as their meet. But the

most reasonable way to do this is to find two planes in Hilbert space that

intersect at <j>; as mentioned above, we had hoped to be able to write
<)>
without

falling back on the Hilbert space structure we already know, and use the

Hilbert space structure only as a check on our result. If a« b is to

correspond to |a > |b >, then an operation in lattice theory corresponding to "+"

in Hilbert space still needs to be defined.

Suppose we limit our discussion then to lattice points corresponding to

|a>|a>. Referring to Fig. 2, suppose m (r ) = 1, m
2
(r

2
) = 1. Let x be an

axis perpendicular to the plane of the page. Then m (x) = .5, nuCx) = .5;

if we would turn the apparati measuring particles 1 and 2, half of each beam

would emerge in each case. Then also 3(m,, m ) (x ° x) = .25. What does

this .25 represent? The probability that the spin-1 system passes what

apparatus?

Suppose then alternatively that we decide to consider only spin-1

systems. Then we try the possibility that

= Mb>+
l

b>|a>

/2

What apparatus corresponds to measuring this state, if we consider it the

combination of two subsystems? Along what axes do we measure the spins of

the subsystems? We do not know, but think that we should. We do know, in

terms of the Swift-Wright apparatus, but this is not specified in terms of

a, b—but it should be possible to do so!

A better treatment of the tensor product of lattices, in the spirit of

the experimental procedures discussed earlier, would involve a combination

of two spin-% machines that interact independently with each of the spin-%

particles. The anti-symmetric combination, yielding a probability for a
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spin-0 particle, would then be dealt with together with the symmetric

combinations, as in Hilbert space tensor products. An investigation into

the connection between this machine and the Swift-Wright non-standard

Stern-Gerlach experiment might be useful.
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V. CONCLUSIONS

Quantum logic began historically with the observation that the distrib-

utive law does not hold for propositions about quantum properties of systems.

This intriguing fact has invited comparison with the introduction of non-

29
standard geometries and their eventual incorporation into physical theory.

The possibility that quantum logic might entail a similarly fundamental change

in our concepts of physical reality is exciting indeed. The analogy is not

quite complete, however, in the sense that quantum logic provides a mathemat-

ical contruct for experimental results already known, whereas the theory of

relativity provided an application for a mathematical construct.

In classical mechanics the formalisms of Newton's laws and the

Lagrangian are equally valid. Quantum logic could stand in just such a

relationship to Hilbert space, if descriptions of coupled quantum systems,

transition probabilities, Planck's constant, and other quantum concepts could

be given in quantum logical terms

.

One writer, P. Fevrier, has been criticized for supposedly attempting to

30
formalize quantum theory based on a non-standard logic. This task would be

equivalent to writing a non-standard Principia Mathematica . Bas van Fraassen

defends Fevrier against this particular criticism by saying that this is

perhaps not , in fact, what she attempts to do:

...from our point of view a logic of quantum mechanics is

simply an attempt to give a systematic account of the sem-

antic relations among the elementary statements of that

theory. And these semantic relations are to be deduced

from the quantum theory

—

that is the sense in which this

logic is a quantum logic. It is not meant to be the basis

for a formalization of the theory, or for a new, non-

standard Principia .

From a physicist's point of view, however, the status of quantum logic would be

enhanced if the very goal for which Fevrier is criticized could be carried out.
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Coupled systems are a basic part of physics. The development of a

suitable tensor product in any formalism of quantum mechanics is therefore

imperative. Gudder remarked on the need for a reasonable lattice theoretical

32
tensor product as late as 1978. As we discussed in section IV, several

writers have taken on the challenge of defining a quantum logical tensor

product, but have not succeeded in divorcing their constructions from a

pre-existing Hilbert space. The questions raised about the physical meaning

of the lattice points and their state values, resulting from these definitions

of the tensor product, indicate that there is a need for perhaps more

structure in the quantum logical formulation of quantum mechanics, and for

more clarification of the relationship between the symbols used and objects,

experiments, and processes in the physical world. A closer collaboration

between those physicists, mathematicians, and logicians interested in the

foundations of natural science might promise a more satisfactory insight into

this fascinating idea— the non-standard nature of the logic of behavior in

the quantum world.
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APPENDIX

Swift-Wright matrices for 3x3 Hermitian matrix
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Coefficients for operator A, A written in terms of Swift-Wright matrices:

If a = a + bi, y = c + di, then

i-h2 (a
2
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2
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2
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The introduction of quantum theory in the early 1900' s, to explain

observed phenomena that could not be explained by classical physics, caused

a re-evaluation of philosophical concepts of the physical world. One inter-

esting observation, first expressed by Birkhoff and von Newmann in 1936,

was that propositions (testable statements of fact) about quantum mechanical

properties of objects do not follow the same rules that propositions about

classical objects follow. The mathematical framework of lattice theory has

provided a formalism for the subject. In the last 25 years a burst of

research activity, primarily by mathematicians, has produced a wealth of

literature.

Physicists welcome a variety of mathematical models for the same

phenomena, so if the quantum logic approach proves fruitful in solving

problems in quantum mechanics, its addition to the Hilbert space repertoire

of the physicist would enrich our understanding and vocabulary for quantum

phenomena. This paper uses the quantum logic approach to try to solve the

problem of addition of spins. A discussion of spin and addition of spins is

presented. A basic difference between spin-1/2 and spin-1 systems is

discussed— i.e. every pure spin-1/2 state has its spin vector pointing in a

definite direction, whereas not every pure spin-1 state does. Two theorems

are stated and proved concerning those spin-1 states that do have definite

spin vector. Lattice theory terms are defined and experimental procedures

for propositions are designed. Several types of products, necessary for

the addition problem, are presented and their suitability for the tensor

product of lattices is discussed. A purely lattice theoretical tensor

product appropriate for the addition of two spin-1/2 systems has not yet

been developed.


