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ABSTRACT 

 

Phytoseiulus persimilis (Acari: Phytoseiidae) is a specialist predator on tetranychid mites, 

especially on the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). The 

foraging environment of the predatory mites consists of prey colonies distributed in patches 

within and among plants. Quantitative genetic studies have shown genetic variation in, and 

phenotypic correlations among, several foraging behaviors within populations of the predatory 

mite, P. persimilis.  The correlations between patch location, patch residence, consumption and 

oviposition imply possible fitness trade-offs. We used molecular techniques to investigate 

genetic variation underlying the foraging behaviors. However, these genetic studies require a 

sufficiently large amount of DNA which was a limiting factor in our studies. Therefore, we 

developed a method for obtaining DNA from a single mite by using a chelex extraction followed 

by whole genome amplification. Whole genome amplification from a single mite provided us 

with a large quantity of high-quality DNA. We obtained more than a ten thousand-fold amplified 

DNA from a single mite using 0.01ng as template DNA. Sequence polymorphisms of P. 

persimilis were analyzed for nuclear DNA Inter Transcribed Spacers (ITS1 & ITS2) and for a 

mitochondrial12S rRNA. The sequence comparisons among individuals identified a number of 

polymorphisms in the 12S sequences.  

 The foraging gene (for) associated with rover-sitter behavioral strategies of Drosophila 

is known to have role in feeding behaviors of honeybee and other arthropods. We surmised that 

the same or a similar gene may be present in P. persimilis.  Among the foraging behavior(s) 

exhibited by this predatory mite, we were particularly interested in resource/prey-dependent 

dispersal behavior. We isolated a partial sequence that is presumed to be the orthologue of the 

foraging (for) gene. We named the putative foraging gene as Ppfor (for Phytoseiulus persimilis 

foraging gene). We used a fragment of Ppfor gene as a molecular marker between populations 

and among individuals and, further, to help understand behavioral phenotypes.  
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INTRODUCTION 
 

Phytoseiulus persimilis Athias-Henriot is a specialist predator on the twospotted spider 

mite, Tetranychus urticae Koch. This predatory mite was introduced into Netherlands from Chile 

in 1958, and subsequently was shipped to other parts of the world, including California and 

Florida from Germany. Adults are extremely small (approximately 0.5 mm), and orange to bright 

reddish orange. Eggs are oval and approximately twice as large as the pest mite eggs. Laing 

(1968) determined that P. persimilis would develop from egg to adult in an average of 7.45 days; 

this is approximately half the time required for development of the twospotted spider mites under 

similar conditions of temperature and relative humidity. P. persimilis is a fast moving predatory 

mite which searches leaf surfaces for webbing of pest mites. Once it encounters webbing it will 

intensify its search for eggs, larvae and adults of twospotted spider mites (Sabelis, 1981; Maeda 

et al, 1999; Mayland et al., 2000). In the webbing of its prey the female P. persimilis lays its 

eggs within the strands of silk, where her young will hatch and continue to feed. A well-fed 

female predator will lay about 40-50 eggs in her lifetime. Eggs are laid in close proximity to the 

food source. Therefore, the webbing produced by twospotted spider mites aids the searching 

predator in finding its prey. 

The twospotted spider mite, T. urticae, is a serious pest on over 30 economically 

important crops, including corn, cotton, cucumbers, peanuts, sorghum, beans, melons, 

strawberries and a variety of greenhouse ornamentals. Foliar damage occurs because mites 

remove chlorophyll, water and nutrients from leaf cells. Spider mites deposit eggs close to where 

they feed and most offspring do not move very far from where they hatch; thus feeding is usually 

localized. Predatory mites have been used successfully to control spider mites in greenhouses, in 
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orchards, in vineyards and on strawberries.  

Attraction of arthropod predators and parasitoids to volatile chemicals produced by plants 

attacked by herbivores has been demonstrated in the laboratory (e.g., Dicke et al., 1990 a, b). In 

field conditions, attraction to herbivore-induced plant chemicals may benefit a natural enemy 

searching for prey by increasing its search efficiency (Sabelis et al., 2001).   Previous studies on 

attraction of P. persimilis to volatiles produced by spider mite-infested bean plants suggested 

considerable phenotypic variation in predator responsiveness. Van Baalaen and Sabelis (1995) 

proposed the probability of two different predator strategies: ‘Killer’ are the predators which 

remain in a patch as long as there are prey left; and ‘Milker’ are the predators which disperse at a 

constant rate from a patch. This variation may be attributable to the physiological state of the 

predator (Sabelis & Vande Baan, 1983; Dicke et al., 1990 b; Zhang and Sanderson, 1993). 

However, genetic variation in some components of the search behavior has been suggested in 

predatory arthropods and parasitoids (Hopper et al., 1993; Hoy, 1990).  

In tritrophic systems, there is evidence for a genetic component in the response of 

parasitoid wasps to plant chemicals in terms of host acceptance (Mollema, 1991; Powell and 

Wright, 1992) and attraction to infested plants (Prevost and Lewis, 1990).  Margolies et al. 

(1997) examined intrapopulation genetic variation in predator response to herbivore-induced 

volatiles in a tritrophic system consisting of bean plants (Phaseolus lunatus L.), the twospotted 

spider mite (T. urticae) and a predatory mite (P. persimilis). The selection response they 

observed is evidence of additive genetic variation in predator response to twospotted spider mite-

induced plant volatiles; that is, genetic variation that can lead to evolution of the trait. Genetic 

diversity in natural enemy response to herbivore-induced plant volatiles may be a consequence 

of variability in the plant signal (Lewis et al., 1990; Vet and Dicke; 1992). Dicke et al. (1990a, 
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b); Lewis et al. (1990) and Vet and Dicke (1992) suggested that predator-prey dynamics could be 

affected by the genetic variation underlying olfactory responses. Subsequently, Jia et al. (2002) 

quantified genetic variation in, and phenotypic correlations among, several foraging behaviors of 

P. persimilis.   

To effectively suppress the explosive growth of prey populations, phytoseiid mites must 

show a high numerical response, unless it is feasible to rear and release them in large numbers. 

Further, the predator response to spider mite-induced plant volatiles is likely to be important in 

the ability of a predator to reduce a prey population and, hence, to enhance their success as 

biological control agents. However, reproductive success depends to a major extent on the rate of 

prey consumption which, in turn, is link to prey-finding behavior. Thus, predators that search and 

select prey so as to maximize their contribution of progeny to the next generations are favored 

compared to those that have poor searching ability. Therefore it can be assumed that the 

behavioral responses elicited by cues from their prey have evolved because they led the predator 

to profitable prey species, i.e., profitable in terms of the predator’s reproduction. By this 

reasoning, foraging traits like response to plant volatiles, prey consumption, and dispersal are 

significant in estimating the efficiency of the predator. Previous studies showed that response of 

predators to prey-induced plant volatiles are heritable.  

 for Gene, PKG and Food-Related Behavior 

  Sokolowski (1980) discovered that in nature larvae of the fruitfly, Drosophila 

melanogaster, exhibit one of two foraging strategies: ‘‘Rover’’ larvae travel long distances while 

feeding and often leave a food source in search of another. Conversely, ‘‘sitter’’ larvae travel 

shorter distances and remain on a food source once it is encountered. These behavioral 

differences reflect foraging and not general locomotion since rovers and sitters move similar 
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distances in the absence of food. Differences in rover and sitter behavior are attributable to a 

single major gene called foraging (for) that is located on the 2nd chromosome at polytene 

position 24A3–5 (de Belle et al., 1989). The rover allele (forR) is dominant to the sitter allele 

(fors) (de Belle and Sokolowski, 1987). Both rovers and sitters are found in natural populations 

such that phenotypic variation is typically 70 % rover (forR homozygotes and heterozygotes) and 

30% sitter (fors homozygotes) (Sokolowski, 1980; Sokolowski  et al., 1997). Sokolowski et al. 

(1997) provide evidence for the evolution of the rover/sitter behavioral polymorphism via 

density-dependent selection. Rovers are favored in high density environments and sitters are 

favored in low density environments.  

  Osborne et al. (1997) discovered that for is the gene encoding one of two cyclic GMP-

dependent protein kinase (PKG) genes in D. melanogaster (dg2) that was previously described 

by Kalderon and Rubin (1989). The for is a large gene (approximately 40 kb of genomic DNA) 

and is alternatively spliced into three major transcripts (for T1, T2, & T3). A cGMP-binding 

domain and a kinase domain are common to all transcripts of for such that the 59 regions make 

the transcripts unique (Kalderon and Rubin, 1989; Osborne et al., 1997). The T1 and T3 

transcripts contain dimerization and regulatory domains which are absent in T2. Rovers typically 

have higher transcript abundance and PKG activity levels relative to sitters (Osborne et al., 

1997). Using transgenic flies, sitters can be turned into rovers by providing more PKG (Osborne 

et al., 1997).   

  Ben-Shahar et al. (2002; 2003) demonstrated the role of PKG in the behavioral 

transition of honey bee (Apis mellifera) from nurse to forager. Nurse bees, which distribute food 

within the hive, have lower PKG activity levels and lower abundance of Amfor RNA (the honey 

bee orthologue of for). This is similar to sitter fruitflies that forage close to home. In contrast, 
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forager bees, which leave the hive in search of food, have higher PKG activity levels and higher 

RNA abundance much like rover flies that forage by moving from a patch to another patch of 

food. However, the differences in RNA abundance and PKG activity leading to changes in 

division of labour are not age-dependent (Ben-Shahar et al., 2002). The causal relationship 

between PKG and behavioral task was demonstrated by feeding young bees with 8-Br-cGMP, an 

activator of PKG, which resulted in transition of nurse bees to foragers (Ben-Shahar et al., 2002).  

 The PKG molecule encoded by the gene elg-4 has also been shown to influence food-

related behaviors in the nematode worm, C. elegans. Nematode locomotion is categorized into 

two types: roaming and dwelling. Roaming is defined by long distances of uninterrupted 

locomotion and dwelling involves short distances and frequent stops. Using egl-4 knock outs, 

Fujiwara et al. (2002) showed that decreasing PKG causes an increase in roaming behavior on 

food. The roamer and dweller phenotypes are reminiscent of rover and sitter fruitflies and nurse 

and forager honey bees. However, in C. elegans mutational analysis suggests that less PKG 

causes more roaming than dwelling. Mutants in egl-4 which have reduced PKG expression show 

defects in the long-term regulation of olfactory behaviors. These mutational analyses in C. 

elegans have identified new functions for PKG (Fujiwara et al., 2002).              

 There also exists a natural polymorphism in the feeding behavior of C. elegans. Some 

individuals form aggregations while feeding (‘‘social’’) and others remain solitary (de Bono and 

Bargmann, 1998). Moreover, aggregating strains move slowly when feeding (like sitter flies), 

whereas strains that are solitary move faster (like rover flies). As with fruitflies, this behavior is 

dependent on the presence of food. These naturally occurring behavioral differences are 

attributed to variation in the gene npr-1, which encodes a G protein- coupled receptor similar to 

the neuropeptide Y (NPY) receptors found in mammals. Natural aggregating strains differ from 
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solitary strains by only a single amino acid at position 215 of NPR-1. Aggregating strains have a 

phenylalanine (NPR-1 215F) and solitary strains have a valine (NPR-1 215V). Insertion of an 

NPR-1 215V transgene into aggregating strains causes them to behave like solitary strains.  

Recent evidence suggests that solitary feeding is a result of the inhibition of aggregate feeding 

(Coates and de Bono, 2002). Expressed in neurons, the solitary NPR-1 215V isoform is thought 

to antagonize a cGMP-gated ion channel encoded by the genes tax-2 and tax-4. Like mammalian 

NPY, therefore, nematode NPR is involved in the regulation of food related behaviors via the 

suppression of various neurons (Cowley et al., 2001). Food-related behaviors in C. elegans 

involve aggregate vs. solitary feeding and roaming vs. dwelling. The former is regulated by a 

neuropeptide-Y-like receptor and the latter is influenced by PKG (Fujiwara et al., 2002). Hence 

the regulation of foraging behavior in fruitflies, honey bees and nematodes revolve around the 

PKG.   

Molecular Markers and Whole Genome Amplification                                

 Insect geneticists have always had problems in maintaining the quality and quantity of 

the original template DNA. Genetic applications require large amounts of template for testing, 

yet typically the yield of DNA from individual insects has been small. With Whole Genome 

Amplification (WGA) it should be possible to extend indefinitely the number of markers that can 

be analyzed in terms of map-based positional identification of genes (Dean et al., 2001). WGA 

amplified DNA is useful for several methods of genetic analysis such as single nucleotide 

polymorphisms, nuclear sequencing, chromosomal mapping, etc. Dean et al. (2001) reported the 

production of 20-30 g of amplified DNA by adopting WGA. Gorrochotegui and Black (2003) 

demonstrated that WGA can work with as little as 14ng of original template of Aedes aegypti.  
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They also showed that genetic polymorphisms at individual loci for both original genomic DNA 

and WGA amplified DNA. 

 The patterns of evolution of animal mitochondrial DNA (mtDNA) and the use of it as a 

molecular marker of intraspecific variation are well understood (Avise, 1994; Simon et al., 

1994). Nuclear ribosomal DNA (rDNA) has proven very useful in inferring species phylogenies 

at various evolutionary scales (Hilis and Dixon, 1991). Intra-individual heterogeneity of ITS 

sequences has been reported in two species of mosquitoes (Wesson et al., 1993), in black flies 

(Tang et al., 1996) and in beetles (Vogler and DeSalle, 1994). They suggested that this 

variability resulted from the fact that the species were subdivided into races, ecotypes or 

subspecies that had distinct histories but between which a certain amount of secondary exchange 

occurred and fulfilled the mixing of differentiated ITS sequences, delaying or preventing 

homogenization.  Navajas et al. (1998) stated that inferring historical patterns of gene flow in 

species could be easy by studying both mtDNA and rDNA variation.  

We are interested in using molecular techniques to investigate fitness consequences of 

foraging behavior(s) and how behavioral variation is maintained in different populations by 

looking at the polymorphisms.  The purpose of this current study is to explore the genetic 

mechanisms behind the foraging behavioral polymorphism in predatory mite, P. persimilis. The 

objectives of my research were:            
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OBJECTIVES 
 

1. To develop molecular markers for Phytoseiulus persimilis 

i. Whole genome amplification of DNA of  individual mite, P. persimilis 

ii. Develop polymorphic molecular markers using nuclear ITS , mitochondrial 12 S 

           sequences 

2.  To test whether the foraging gene (for) is involved in the foraging (dispersal) behavior 

of predatory mite, P. persimilis 

i. Check whether for gene sequence is present in P. persimilis 

ii. Clone the for gene in P. persimilis using degenerate primers 

iii. Explore the role of cGMP-dependant protein kinase (PKG) in foraging (dispersal) 

behavior of predatory mites 

iv. Develop a molecular marker on a part of the foraging gene for examining different 

geographical populations of P. persimilis  
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CHAPTER 1 
 
Development of a method for studying genetics of predatory mite Phytoseiulus persimilis: 

Whole genome amplification of Chelex-extracted DNA from a single mite 

 

Abstract 
 

Genetic studies requiring large quantities of high quality DNA are challenging when 

small arthropods are used because of the limited amount of DNA that can be obtained from an 

individual organism. We utilized whole genome amplification to amplify DNA from individual 

predatory mites, Phytoseiulus persimilis Athias-Henrot (Acari: Phytoseiidae), for subsequent 

experiments. Whole genome amplification in combination with chelex extraction of DNA from a 

single mite provided us with a large quantity of high quality DNA. The DNA from a single mite 

can be amplified more than ten thousand fold using as little as 0.01 ng of initial quantity. We 

confirmed the specificity of the amplified DNA by Polymerase Chain Reactions for an ITS 

nuclear sequence and a 12 S mitochondrial sequence. We found the polymorphisms in the ITS 

region in different geographical populations like Sicily, California and Netherlands and also 

potential polymorphisms were associated with 12 S nucleotide sequences in Sicilian populations.  

We can now use the DNA amplified through this technique for genotyping individual mites to 

study the genetics of foraging behavior of this predatory mite. 

Introduction 

 
Use of DNA sequence information has became a powerful tool in various areas of studies 

including genetics and evolution. Polymerase chain reaction (PCR) that allows amplification of a 

specific DNA fragment was a significant addition for the use of DNA sequence in small 
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organisms where obtaining large quantity of nucleic acid is difficult.  To overcome the common 

problem of limited availability of a quantity of genomic DNA, many researchers have worked to 

develop methods to amplify the DNA. Such efforts developed a technique generally named as 

Whole Genome Amplification (Telenius et al., 1992; Zhang et al., 1992; Cheung and Nelson, 

1996).  This technique resulted in significant improvements that minimized the constraint of 

limited genomic DNA.  The Whole Genome Amplification (WGA) method, often referred to as 

multiple displacement amplification (MDA), has been introduced to amplify greater amount of 

DNA from initial nanogram quantities of template DNA (Dean et al., 2002; Lage et al., 2002). 

Amplifying DNA to a sufficiently large quantity for subsequent studies is a potential advantage 

of WGA. WGA is one of the promising methods of amplifying whole genomes and uses 

exonuclease- resistant hexamer primers and Ф29 DNA Polymerase (Dean et al., 2002). 

Gorrochotegui and Black (2003) described the optimization and amplification of mosquito DNA 

using Ф29 Polymerase. 

For WGA to be successful, the technique should be simple, reliable and produce high-

quality DNA in large quantity.  The fidelity and reproducibility of WGA was demonstrated in 

many clinical specimens like human diseases and for many epidemiological studies (Hughes et 

al., 2004; Luthra and Medeiros., 2004; Leviel et al., 2004; Yan et al., 2004). Tanabe et al. (2003) 

evaluated the product of WGA by performing PCR and the data showed that the amplified DNA 

provided sufficient amount of genomic sequence which could be used for genetic analyses as 

well as for future work. Mai et al. (2004) evaluated the WGA for detecting mutations by 

sequencing hemoglobin genes and found that this technique is reliable in overcoming the limited 

amount of genomic DNA in clinical applications. Genetic alteration studies using whole genome 

amplified DNA with comparative genomic hybridization (CGH) showed the accurate copy 
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number changes and chromosomal abnormalities (Rusakova and Nosek, 2006).  Huges et al. 

(2006) used the whole genome amplified DNA for studying chromosomal changes in prostate 

cancer. Similarly, Hawken et al. (2006) conducted the gene marker analysis on both genomic 

DNA and whole genome amplified DNA from cattle semen samples showed high percent 

accuracy in examining nearly 10,000 single nucleotide polymorphic markers. All the above 

studies demonstrate the development and assessment of WGA in terms of the amplification, 

accuracy and representativeness. 

 We have been interested in the genetics of foraging behavior in Phytoseiulus persimilis 

Athias Henriot (Acari: Phytoseiidae) a specialist predatory mite on twospotted spider mite 

Tetranychus urticae Koch (Acari: Tetranychidae). Margolies et al. (1997) measured the genetic 

variation of predators in response to herbivore-induced plant volatiles.   This was further 

confirmed in several behaviors relevant to the foraging of predatory mite by Jia et al. (2002). We 

developed a simple MDA method and tested for a number of molecular markers. We used the 

molecular markers using nuclear ITS and mitochondrial 12S genes in P. persimilis (Navajas et 

al., 1998; Kambhampati and Smith., 1995) to validate the method.  

Materials and Methods 

Mites  

Phytoseiulus persimilis used for these experiments were obtained from various 

geographical origins. Mites from Sicily and Netherlands were obtained either in alcohol or as 

dried samples and were stored at -20 °C through out the experiments. Mites from the USA were 

obtained from commercial suppliers, Koppert Biological Systems (Ann Arbor, Michigan) and 

Rincon-Vitova Insectaries, Inc. USA (Ventura, California) and were maintained on twospotted 
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spider mites under laboratory conditions of 24-25 °C, 55-60 % RH and 16:8 L: D photoperiod. 

We used mites from Koppert Biological Systems for optimizing the WGA technique and the rest 

of the mites from different sources were used for developing molecular markers. Two spotted 

spider mites, the prey, were maintained on bean leaves under greenhouse conditions. (400 W 

high-pressure sodium vapor lamps, 16:8 L: D photoperiod and 22-25 °C)   

DNA Extractions 

 
Phenol-chloroform extraction of DNA was performed (Sambrook and Russell, 2001) for 

extracting DNA from groups of mites. Mites from Koppert Biological Systems were used for 

phenol-chloroform DNA extractions. To obtain high quality genomic DNA, 100 to 120 mites 

were homogenized in 200 µl of lyses buffer (20 mM TrisHCl pH 8.0, 400 mM NaCl, 5 mM 

EDTA, 1 % SDS). The homogenate was incubated in 10 µg/ml Proteinase K (Roche) for 30 

minutes at 55 °C. One round of standard phenol-chloroform extraction followed by sodium 

acetate precipitation was performed. Genomic DNA was extracted from single mites by the 

chelex maceration method (Walsh et al., 1991); each individual mite was homogenized 

separately in a 0.2 ml micro centrifuge tube in 15 µl of 10 % (100 mg /1 ml of water) chelex-100 

(Bio-Rad) containing 1µM NaOH. The homogenates were boiled at 94 ºC for 10 minutes 

followed by 15 min incubation at 75 ºC.  The supernatant was used as template DNA to WGA of 

single mite DNA.  

Developing ITS and 12 S molecular markers 

 
Polymerase chain reaction (PCR) comprised of 10 x PCR buffer (Invitrogen), MgCl2 (3.0 

mM), each forward and reverse primers (0.2 µM), dNTPs (0.2 mM) and Taq Polymerase (0.5 U) 

in total 20 µl of reaction volume. The thermocycler was set for 94 °C for 5 minutes followed by 
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36 cycles of 94 °C for 30 seconds, 44 °C for 30 seconds, 72 °C for 1 minute and finally 10 

minute elongation at 72 °C.  Primers for 12 S (5’TACTATGTTACGACTTATCCTCT3’ as 

forward primer and 5’CCTATTAGTTACATTTAAAATT3’ as reverse primer) were selected 

and modified from previous studies by Kambhampati and Smith (1995). 

Primers for ITS1 and ITS2 (5'AGAGGAAGTAAAAGTCGTAACAAG 3' for the 3' end 

of 18 rDNA and 5'ATATGCTTAAATTCAGGGGG 3' for the 5' end of the 28S) were selected 

based on the study of Navajas et al. (1998). The PCR products were electrophoresed on a 5 % 

polyacrylamide gel, and stained with 1 % ethidium bromide to visualize the bands. Direct 

sequencing of PCR products for both directions were made after DNA purification by 

Zymoclean™ Gel DNA Recovery Kit (Zymo Research). PCR product was cloned into pGEM-T-

Easy Vector (Promega) and sequenced.  The sequence was analyzed by using software 

Sequencher (Gen Codes Co.). The sequences for ITS1 and ITS2, and 12 S for P. persimilis were 

compared with previous reports (Jeyaprakash and Hoy, 2002, Navajas et al., 1998). 

Whole genome amplification/ Multiple displacement amplification 

 One µl of template DNA (either phenol-chloroform extracted or chelex extracted DNA) 

was added to sample buffer provided from the manufacturer (Amersham). The sample buffer 

consisted of 10mM TE pH 8.0 and 100µM exonuclease-resistant thiophosphate modified random 

hexamers (5’NpNpNpNpsNpsN-3’). The reaction mixture consisted of 74mM Tris-HCl (pH 7.5), 

100mM KCl, 20mM MgCl2, 10mM (NH4)2SO4, 2mMdNTPs, 100µM exonuclease-resistant 

hexamers and 0.2 units of yeast pyrophosphates and  one µl of 8 units Ф29Polymerase 

(GenomiPhiTM Amplification Kit, Amersham Biosciences) was added to four µl of reaction 

mixture. Optimal condition for the WGA of single mite was sought by varying the quantity of 
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template DNA as 1, 0.3, 0.1 and 0.03 ng and also for the polymerase enzyme as 0.3, 0.1 and 0.03 

times concentration of the original enzyme provided by the amplification kit. The reactions 

consisting of template DNA and sample buffer were first denatured by heating to 95 °C for 3 

minutes followed by cooling down to 4 °C. The enzyme and reaction buffer were then added to 

the reaction mixture and incubated at 30 ºC for 15 hours and terminated by heating to 65 °C for 

20 min. Following the WGA, amplified DNA was diluted to 100 µl by adding 90 µl of ddH2O to 

the 10 µl of WGA reaction and one µl of this diluted DNA was used as a template for PCR.  

Diluted WGA product was stored at -20 °C for subsequent use. WGA product was quantified in 

Spectrofluorometer using Pico green® dsDNA quantification reagents (Molecular Probe) and the 

procedure used was in accordance with the manufacturer’s protocol. Varying degree of 

amplification with respect to time of amplification was also measured at 2.5, 5, 10, 15 and 24 

hours, respectively. We also checked the specificity of WGA by performing PCR with 12 S and 

ITS primers. Both genomic DNA and WGA from the same P. persimilis individuals were tested 

for these primer sets. WGA obtained from groups of mites and also from individual mite was 

made to 100 time serial dilutions and subjected to PCR with the primers mentioned above. 

Genomic DNA served as the positive control for these experiments. The PCR mixture and the 

PCR cycling’s were same as mentioned above.  

Results and Discussion 

 
For population and behavioral genetic studies of any specimen, DNA from individuals is 

a prerequisite and extraction of high-quality DNA in sufficient quantity is highly challenging in 

some cases. In the case of the predatory mite, P. persimilis, DNA extraction using phenol and 

chloroform was optimum with at least 100 mites, which was a major constraint in genotyping 
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individual mites where we have to isolate DNA separately from each individual. Extraction of 

DNA from a single mite was achieved by macerating individual mites in 10 % Chelex 100.  We 

found that the extraction was more efficient in the presence of NaOH and this may be due to 

better performance of chelex in alkaline medium. However, in working with individual mite 

DNA, we found that extraction of DNA was very difficult. The amount of DNA we could extract 

from chelex maceration was approximately 15 ng /individual. In addition to the above problem 

we always found that the extracted genomic DNA was subjected to greater amount of 

degradation for some unknown reason. In combating these problems, we tried to amplify the 

whole insect genome using Ф29 polymerase enzyme and were successful in standardizing the 

procedure for amplification of whole mite genome from single individual mite. 

The amount of amplification of DNA with respect to their corresponding original 

template DNA and enzyme concentration were compared (Fig .2). There was significant 

difference between the initial input DNA’s (f = 7.84, df = 4, P = <0.0001) (Fig .2). Amount of 

amplification with a 0.3 ng template was on par with a 1 ng template, which means the optimal 

requirement for optimal amplification was 0.3 ng.  From the data observed we could tell that the 

amount of amplification was more dependant on initial input DNA rather than enzyme 

concentration. However, for optimum amplification a minimum of 0.03 times the diluted 

concentration of enzyme was essential as we observed no sufficient amplification with any 

enzyme less than that (Konakandla et al., unpublished data). Gorrochotegui and Black (2003) 

reported the production of large quantities of DNA by using 14 ng of original template mosquito 

DNA. Dean et al. (2001) reported the production of a maximum of 20-30 µg of DNA with 0.03 

to 300 ng of initial template DNA. Here we have demonstrated that WGA could be used to 

achieve unlimited supply of DNA for P. persimilis individuals with as little as 0.1 ng of original 
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template DNA (Fig .2). No amplification was observed if we used the samples without 

denaturation hence we denatured all the samples which is in accordance with Gorrochotegui and 

Black (2003) who observed zero amplification without denaturation of template DNA.  

When the amplification is subjected to different hours of amplification, more than 50 % 

amplification was achieved within 5 hours, and in 15 hours the amount of amplification was 

greater than 95 % (Fig. 3) with less degradation of amplified DNA. If exposed for a longer time, 

more degradation of the final product was observed; hence exposure of 15 hours of amplification 

could be the optimal time which was less in our case when compared to Dean et al. (2001) and 

Gorrochotegui and Black (2003) who amplified the DNA for about 18 hours. The WGA 

amplified DNA of all mites was diluted to 100-fold and stored at -20 °C for future genetic 

procedures. 

For successive utilization, the WGA product should perform similar to that of the 

unamplified genomic DNA.  In testing this with known set of specific primers for 12S 

mitochondrial genes and ITS ribosomal genes, PCR amplification for both genomic DNA and 

WGA was found to be similar (Fig. 4 a and Fig. 4 b). However, the amplification of 12 S genes 

was possible with lower dilutions of WGA compared to ITS genes.  One of the possible reasons 

for such difference might be because of larger copy number of mitochondrial genes. Comparing 

the sequences of ITS with GenBank sequence a potential polymorphism was observed in the 12 

S rRNA sequences among the mites from Sicily (Table 1) while the ITS2 region was highly 

conserved the ITS1 had potential polymorphism among the individuals from California, Sicily 

and Netherlands (Fig 1 a).    

In conclusion, we have developed a simple method for isolating and amplifying whole 

gDNA from a single mite by using the combination of chelex and WGA method.  The WGA of 
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single mite was also able to work with the above primers hence we can conclude that 

amplification of whole mite genome from single mite can be used for further genetic studies. As 

we were interested in studying the foraging behavior of P. persimilis, we now can use the WGA 

product from each individual mite and can further study the molecular genetics associated with 

foraging behavior of predatory mite, P. persimilis.  
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Figure 1. PCR product of the region covering ITS1 and ITS2.  (a) The samples are from single 
mites of P. persimilis of 3 geographical populations (+ for positive control, C for California, S 
for Sicily, and N for Netherlands). (b) Structure of ITS1 and ITS2. Small arrows show the 
locations of the primer 
 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                           
       

27 
 
 

                                                                                                                                                                                            



Figure 2. Whole genome amplification with different concentrations of input DNA and enzyme. 
Each bar represents the amount of DNA amplified from initial template DNA with respective 
enzyme concentrations (0.3, 0.1 and 0.01x). The data shown are the means of 3 experiments.  
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Figure 3. Percent rate of amplification of DNA when subjected to 2.5, 5, 10, 15 and  
24 hours of amplification. The data shown are the means of 3 experiments. 
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Figure 4. PCR amplification of 12 S by using the template of  WGA product from both Phenol-
chloroform and Chelex extracted DNA with genomic DNA (+) and negative controls (-) while 
the bottom gel shows the  PCR products with ITS primers comparing WGA from both Phenol-
Chloroform and Chelex extracted DNA with Genomic DNA (+) and negative controls. For both 
sets of primers the WGA’s were made into four aliquots (a to d) which differed in 
concentrations. ‘a’ is the original WGA diluted 100 times and from this a serial dilution of 100 
times was made into b, c and d. Two negative controls are ‘a’ the negative control using water as 
template and ‘b’ the negative control used in the WGA process. 
 

 
   a        b      c        d             a      b       c       d                         a         b 

 
   a        b         c        d           a        b        c        d                       a         b 
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Table 1. Single nucleotide polymorphisms found in 12S sequences of P. persimilis. S represents 
for mites from Sicily. 
 

 

Individual id S2 S3 S3 S4 

*Position 16 105 108 270 

Consensus/Polymorphism G/A T/G T/C T/C 
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                                           CHAPTER 2 

The foraging gene Ppfor in the predatory mite, Phytoseiulus persimilis 

Abstract 
 

Phytoseiulus persimilis (Acari: Phytoseiidae) is a specialist predator on tetranychid mites, 

especially on the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). The 

foraging environment of the predatory mites consists of prey colonies distributed in patches 

within and among plants. Previous studies have found that several behaviors related to foraging 

are governed by genetic factor(s). Therefore, we used molecular techniques to investigate the 

genes related to variation selected behaviors.  We were particularly interested in the 

resource/prey-dependent dispersal behavior of the predator. The for gene is associated with the 

rover-sitter phenotypes in fruitflies and is known for its role in foraging behaviors in other 

arthropods like honeybees and ants.  We isolated a partial sequence that is presumed to be the 

orthologue of the foraging (for) gene, which we have named Ppfor (Phytoseiulus persimilis 

foraging gene). We studied the use of the Ppfor gene to develop molecular markers for, and to 

help understand behavioral phenotypes in different geographical populations of P. persimilis.  

Introduction 

 
 

 The effect of genes influencing naturally occurring behavioral traits is of great 

importance for better understanding the behavior and evolution of behavior. Molecular genetics 

of behavior(s) within and between populations provides the clues about the forces shaping the 

evolution of behavioral genes. Most complex behaviors are influenced by many genes (polygenic 

inheritance), but the actual number of genes and the magnitude of their individual effects is 
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controversial (Falconer, 1981). Complex behaviors in Drosophila, the honeybee and mice were 

influenced by many genes (Singh and Pandey, 1993; Lapidge et al., 2002; Hofstetter et al., 1995)   

However, many behavioral changes in humans, mice and Drosophila have been identified as 

effects of single genes or loci (Hall, 1994; McKlusick, 1994; Takahashi et al., 1994; Takahashi 

et al., 2000). 

Sokolowski (1980) described Rover-Sitter foraging strategies in natural populations of 

Drosophila melanogaster which differ in the length of distance traveled in search of food. 

Rovers travel long distance in search of food and leave the food source quickly to find others, 

whereas sitters travel short distances and do not leave the food source unless it is depleted. 

These phenotypic differences were attributed to a single major gene called foraging (for) (de 

Belle et al., 1989). The rover allele (forR) is dominant to the sitter allele (fors) (de Belle and 

Sokolowski, 1987). This for gene was found to be the gene previously described as dg2 and 

encodes for one of two PKG genes in D. melanogaster (Osborne et al., 1997; Kalderen and 

Rubin, 1989).       

 Ben-Shahar et al. (2002) reported an orthologue of for (Orthologs are homologs which 

are produced by speciation which look structurally similar but may or may not display similar 

activity) in the honey bee, Apis mellifera, which he called Amfor. This gene was demonstrated 

to play a role for PKG in the behavioral transition from nurse to forager. Nurse bees are younger 

bees, which distribute food within the hive, have lower PKG activity levels and lower 

abundance of Amfor RNA compared to the older forager bees. The differences in the levels of 

Amfor RNA and PKG levels lead to the behavioral transition irrespective to the age of bees. 

Ingram et al. (2005) found that the expression of for ( again for orthologue) in red harvester 

ants, Pogonomyrmex barbatus, was associated with foraging behavior of these ants; callow 
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workers (young adults ) brains had significantly higher levels of for mRNA than foragers (older 

adults) and  higher PKG activity was observed in callows than foragers. In the nematode worm, 

Caenorhabditis elegans, elg-4, which encodes for PKG, has been shown to influence food-

related behaviors (roaming and dwelling). These behaviors again differ in their distance traveled 

while feeding. Roaming is defined by long distances of uninterrupted locomotion and dwelling 

involves short distances and frequent stops. Knock out experiments of egl-4 showed that 

decreasing PKG causes an increase in roaming behavior on food (Fujiwara et al., 2002).  

Though there are differences in function, the foraging behavior in all these organisms revolve 

around the activities of PKG.  

Margolies et al. (1997) documented intra-population genetic variation in several traits 

related to the foraging efficiency of the predatory mite, Phytoseiulus persimilis Athias-Henriot 

(Acari: Phytoseiidae). These included predator response to spider mite-induced volatiles and 

other foraging traits in the tritrophic interaction. Jia et al. (2002) confirmed the above findings 

through quantitative genetic studies. P. persimilis differ in foraging efficiency in terms of 

response to plant volatiles and dispersal. The foraging strategies observed in mites were similar 

to the behavioral phenotypes of Drosophila as discussed above. We report here the isolation of a 

foraging gene in P. persimilis similar to the foraging gene in other arthropods.  We also show the 

existence of polymorphism associated with this gene.                                  

Materials and Methods   

             

Bean plants (Phaseolus lunatus L, cv. ‘Sieva’) served as host plants for spider mites in all 

experiments. Beans were grown in the greenhouse under 400 W high-pressure sodium vapor 

lamps on a 16:8 L: D photoperiod and 22-25 °C.  The population of Tetranychus urticae that we 
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used as prey were reared on greenhouse-grown bean plants in a rearing room under the same 

light and temperature conditions. Predatory mites (Phytoseiulus persimilis) for this experiment 

were originally obtained from commercial suppliers, Koppert Biological System U.S.A (Ann 

Arbor, Michigan) and Rincon-Vitova Insectaries, Inc. U.S.A (Ventura, California). The 

population was maintained on spider mite-infested bean leaves at 24-25 °C, 55-60 % RH and a 

16:8 L: D photoperiod. We established base populations from these colonies. Other geographical 

populations of predators were obtained from Netherlands and Sicily. Mites obtained from the 

U.S.A. are hereafter designated as the ‘Michigan population’ and the ‘California population’.  

To design degenerate primers for the PCR amplification of the genes homologous to the 

Drosophila for gene (dg2-T1), we fetched PKG genes in different organisms like nematodes, 

insects, and mammals. The amino acid sequences were aligned using Vector NTI software in 

order to design degenerate primers. The regions containing low degeneracy amino acids and the 

highly conserved sequences were selected for designing primers. Genomic DNA of predatory 

mites was extracted from individual mites by performing chelex extraction (Walsh et al., 1991) 

where each mite is placed in a 0.2 ml micro centrifuge tube and 5 µM chelex 100 (Bio-rad) and 5 

µl of 1 µM NaOH and homogenized with pipette tips. The homogenate was subjected to 95 °C 

for 15 minutes followed by 60 °C for 10 minutes.  Separately, high-quality genomic DNA was 

isolated from a pooled 100-200 mites. The group of mites was homogenized in lysis buffer (20 

mM TrisHCl pH 8.0, 400 mM NaCl, 5 mM EDTA, 1% SDS) and 10 µg/ml Proteinase K (Roche) 

was added to the homogenate. The mixture was then incubated for 30 minutes at 55 °C. One 

round of phenol-chloroform extraction was followed by precipitation of DNA with 0.3 M sodium 

acetate and absolute ethyl alcohol.  The pellet was washed with 70 % ethanol and suspended in 

20 µl of water. Polymerase Chain Reaction (PCR) were carried  in 20 µl reaction mixture 
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containing 10 x PCR buffer (Invitrogen), MgCl2 (3 mM), each forward and reverse primers (0.2 

µM), dNTPs (0.2 mM) and Taq Polymerase (0.5 U). The PCR cycling 94 °C for 5 minutes 

followed by 36 cycles of 94 °C for 30 seconds, 55 °C for 30 seconds, 72 °C for 1 minute and 

finally 10 minute elongation at 72 °C.  All reactions were visualized on 1 % agarose gels stained 

with ethidium bromide.        

For further extension of the for gene in P. persimilis in both the 5’ and 3’ directions, we 

performed vectorrette PCR as explained in Wang et al. (2006).  Once a fragment of the for gene 

in P. persimilis was obtained, the nucleotide sequences were aligned using the Clustal W 1.5 

program (Thompson et al., 1994) and the alignment was manually corrected and the 

phylogenetic analysis was performed using PAUP 4b2 (Swofford, 1998).  We aligned and 

compared the sequence of mite for gene with Drosophila, the honeybee, the nematode C.elegans, 

the silkworm, mice and humans and the phylogenetic tree was constructed.  

From the amplified for gene sequence specific primers (forward: 

5’GGCGTGGGCGGCTTCGGCAG3’; reverse:  3’CTTCGCGAAGAAGCTGACGT 5’) were 

designed to search for polymorphism in predatory mites, both among populations and among 

individuals. PCR products were cloned onto vector pGEM-T (Promega) vector and sequenced 

and studied for polymorphism using Sequencher (Gen Codes Co.) software.   We also did a 

genomic DNA southern blotting to check the copy number of the for gene in P. persimilis. DNA 

was digested with EcoRI, and the resulting fragments were separated on 0.8 % agarose gel. After 

transfer to nylon membranes, blots were hybridized with a [32P]dCTP-labeled probe. The probe 

was a 446 bp containing for gene of P. persimilis.  

 As the for gene has a predominant PKG domain, we were interested in investigating the 

role of PKG in particular to the foraging behaviors of P. persimilis, for which we injected 
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predatory mites with 8-Br-cGMP and 8-Br-cAMP.  Water and non-injected mites served as 

controls. Predatory mites were injected with about 10 nL of the 10µM 8-Br-cGMP, 10µM 8-Br-

cAMP, respectively, by using micropipettes. All predators used for experiments were gravid 

females that were left unfed for a period of 2 hours before the injections.  This minimized the 

variation in hunger level and age. The needles were pulled with a model P-87 Flaming/ Brown 

micropipette puller using borosilicate glass with O. D: 1.0 mm and I. D: 0.50 mm. After the 

needles had been loaded with the treatments, the contents were injected mostly into the abdomen 

of the adult predators by using PMI-200 Pressure Microinjector (Dagan). 

After the injections, the mites were found to be in trauma for ~ 2-3 hrs after which most 

recovered.  After recovery, we tested for consumption efficiency, oviposition and dispersal 

behavior. We tested the consumption rate and oviposition rate of injected predatory mites by 

performing an assay according to Jia et al. (2003).  A bean leaf disk consisting of eggs of T. 

urticae was placed in a vial and then the injected predator was released into the vials. Each 

predator was provided with 40 T. urticae eggs and the vials were placed at controlled 

environmental conditions (24-25 °C, 55-60 % RH and 16:8 L: D photoperiod) and left for 24 

hours. Consumption was tested based on the number of remaining prey eggs.  At the same time 

the number of eggs deposited by each predator was recorded. To test the dispersal behavior of 

predatory mites, we followed the bioassay developed by Maeda and Takabayashi (2001). The 

experimental set up consisted of a square of T. urticae-infested leaf connected to a bean leaf disk 

via a paraffin bridge.  The whole set up was placed on moist cotton in a plastic Petri dish. The 

Petri dishes were then placed in a wind tunnel in a climate-controlled room (25 ± 2 °C, 50 - 70 % 

RH). The leaf square was placed upwind of the leaf disc at 45° angle. Prior to the day of the test, 

we introduced 5 adult females of T. urticae on an uninfested disk and allowed them to oviposit 
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for 24 hours. The next day we gently removed the adults with a brush. The prey- infested squares 

were used for trapping the dispersing predators. The injected predators were placed on the leaf 

disks and counted for the dispersal rate every 15 minutes for 2 hours.  

Results and Discussion 

 
Based on the highly conserved amino acid sequences of PKG protein from Drosophila, 

honeybee, mosquito, silkworm, nematode, mice and human using degenerate primers 

5’CARCARCARCAYATHATG 3’ and 5’ CCRCARAANGTCCANGTYTT 3’, about 446 bp 

fragment of for gene was amplified in Phytoseiulus persimilis which was named as Ppfor 

(Phytoseilus persimilis for).  By adopting vectorrette PCR using the internal and external specific 

primers we could extend about 282 bp of Ppfor at the 5’ end and altogether the amplified Ppfor 

was approximately 728 bp. Fig 2.1(a) shows the amplified region of Ppfor with respect to the 

dg2 of Drosophila (Fig .5(b)). Alignment of the deduced amino acid sequence of Ppfor with 

those of Drosophila dg2, honeybee Amfor and other organisms reveals an overall organization of 

protein kinase domain. The deduced amino acid sequence shares more than 80 % overall 

identities with Drosophila dg2 and honeybee Amfor, respectively. Ppfor sequence was highly 

conserved with other members of for gene in diverse organisms in the multiple sequence 

alignment (Fig .6). Phylogenetic analysis performed on the software PAUP* 4b for generating 

distance tree suggests that the Ppfor is orthologous to the Drosophila for (dg2-T1) (Fig .7).  

The specific primers routinely amplified 675bp fragment of Ppfor from individuals (n = 

52). In analyzing the clones of the Ppfor we found a high degree of polymorphism in the region 

of Ppfor between individuals and among populations (Table .2). Altogether we sequenced 154 

clones, both from individuals and two different populations.  Within the fragment of Ppfor we 
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found 13 different alleles in the California population, 10 different alleles in the Michigan 

population, and 4 different alleles in various individuals belonging to Sicily, California and New 

Zealand. These polymorphic sequences can be used as genetic markers in P. persimilis. Copy 

number of Ppfor was verified by Southern blot analysis on EcoRI-digested genomic DNA with a 

fragment of Ppfor probe. The presence of a single band was detected and was about 4kb 

suggesting that Ppfor in P. persimilis is a single copy gene (Fig .7). 

The amplified fragment of Ppfor was the protein kinase domain. The sequence analysis 

of Ppfor demonstrated that it is likely an orthologous gene to dg2, which encodes a Drosophila 

cGMP dependant protein kinase (PKG) (Osborne et al., 1997). Subtle differences in PKG are 

sufficient to produce significant differences in larval foraging behavior (Sokolowski, 1998). The 

roles of PKG in cell signaling are not well understood (Wang and Robinson, 1997). One way by 

which PKG activities were increased in the cell is by activating guanyl cyclase via nitric oxide, 

thus increasing the intracellular level of cGMP. Even though PKG is not involved in all 

intracellular cGMP signals, it is thought to be a major effector of cGMP.  

Injection experiments using 8-Br-cGMP and 8-Br-cAMP showed no significant 

difference in consumption and oviposition (f = 0.44, df =3, P = 0.72; f = 0.73, df =3, P = 0.54) 

but the 8-Br-cGMP-treated mites were significantly different from 8-Br-cAMP, water and non-

injected mites (f = 7.43, df =3, P = 0.0045; Fig .8). The 8-Br-cGMP-treated mites dispersed 

quickly in comparison with other treatments, which suggests that PKG has some role in dispersal 

behavior of predatory mites. PKG function may be important for feedback control of foraging. 

Feeding is influenced by the fullness of the gut which sends the signals to the brain. PKG may 

act to increase neural excitation, play a role in long-term potentiation (Zhuo et al., 1994) or it 

may be involved in output of behavioral response. 
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Identification of the Ppfor gene and documentation of polymorphic patterns in DNA 

sequence provides a critical step towards a comprehensive functional characterization of this 

gene in future studies.  Such studies should include determining if differences in Ppfor 

expression are associated with changes in foraging behavior.  Thus, a better understanding of 

foraging behavioral polymorphism in relation to genetic variation in the presumed foraging gene 

in P. persimilis is needed.  Further more association of PKG activity or Ppfor expression levels 

with the foraging behavior can be examined to understand the molecular basis of the behavior.  
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Figure 5. (a) Structural representation of Drosophila for gene (934 aa) showing different 
functional domains. The filled box within the protein kinase domain represents the part of Ppfor 
gene amplified in predatory mite. (b) Nucleotide Sequence of Ppfor with two 126bp & 112 bp 
introns. The sequence also shows the forward and reverse primers used to study the 
polymorphism. Note that the length of Ppfor amplified is also shown.  
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Figure 6. Ppfor alignment with for gene of different organisms including other insects and 
vertebrates  
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Figure 7. Phylogenetic tree showing the evolutionary relationship of for gene in 
different organisms. Note that the Ppfor is placed in the same clade with Drosophila 
 for gene. Numbers indicates percent values in 1000 bootstrapping in distance tree  
constructed in PAUP4b2 
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Figure 8. Gel picture showing the polymorphism among different individuals of P. persimilis. 
K21 to K27 are the individual identities of mites belonging to the Michigan population 
 

 

 

 

 

 
 

 

                                                                                                                                                                                           
       

48 
 
 

                                                                                                                                                                                            



Figure 9. Southern blot showing the Ppfor at ~ 4kb 
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Figure 10. Dispersal of predatory mites under different treatments. The data shown is mean of 4 
experiments and n=5 for each experiment 
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Figure 11.Consumption and oviposition of predatory mites under different treatments  
(n = 10 for each treatment) 
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Table 2. Polymorphism in the fragment of  for gene (after forward primer to 360bp) within 
different populations like California, Detroit and polymorphism between individuals of different 
populations.  *Numbers for nucleotide position are counted immediately after the forward 
primer. G11 (Kop) is the consensus, A01, A02 are Sicily individuals, A04 is New Zealand 
individual and A05 is California individual 
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Table 3. Polymorphism in the fragment of  for gene (from 360 bp to reverse primer) within 
different populations like California, Detroit and polymorphism between individuals of different 
populations.  *Numbers for nucleotide position are counted immediately after the forward 
primer. G11 (Kop) is the consensus, A01, A02 are Sicily individuals, A04 is New Zealand 
individual and A05 is California individual  
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SUMMARY AND CONCLUSIONS 
 

Foraging for food is a crucial behavior for animals. Like all other behaviors it requires the 

interaction of many components. Nonetheless, it turns out that in some animals, at least foraging 

behavior can be altered by a single gene. Many ecologists argue that foraging attributes are 

targets of natural selection and must therefore be inherited (Pulliam, 1981). Although foraging 

behavior has been studied in detail by behavioral ecologists, little is known about the heritable 

basis of this trait and under what conditions individuals differ in behaviors that contribute to 

fitness.  

Natural population of any organism maintains large amount of genetic variation and this 

variation thus leads to evolution (Sisodia and Singh, 2005). There exists genetic  variation in the 

case of foraging behavior(s) of the predatory mite, P. persimilis, as influenced by interactions 

with T. urticae and plants. Knowledge of the behavior induced in P. persimilis by plant-

producing chemicals has been applicable for pest management. The information linking P. 

persimilis, search behavior, foraging efficiency and P. persimilis - T. urticae population 

dynamics will allow us to best utilize P. persimilis for control of T. urticae. Thus, understanding 

the genetics of the foraging behavior has implications for better utilization of P. persimilis as a 

biological control agent. Using molecular technology to study arthropod genetic diversity and 

how it relates to behavior is important as no molecular approach has been undertaken until our 

work with P. persimilis.  However, DNA is the first limiting factor in performing genetic studies 

of these predators because of the size of the mite and problems with isolation of intact DNA 

without degradation. To combat this problem we employed Whole genome amplification 

technique and were successful in acquiring unlimited supply of DNA from a little input template. 
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The template we used was much lower than what Dean et al. (2002) and Gorrochotegui and 

Black (2003) used for their studies with human and mosquito samples, respectively. Despite this, 

we were able to amplify huge amounts of final product. The entire amplified DNA was stored at 

-20° C and could be used for any genetic studies in future (Dean et al., 2002). 

We were also successful in cloning the presumed orthologue of the for gene in P. 

persimilis which we named Ppfor.  By using a robust PCR, we developed a number of potential 

molecular markers within various populations from Michigan, California, Sicily and New 

Zealand.  The development of polymorphic markers provides a valuable tool for studying mite 

ecology and genetics, such as identification of strain-specific markers for tracking allele 

frequency changes and quantitative trait loci (QTL) analysis for biologically important or 

evolutionarily interesting traits.   

The polymorphic markers that we developed for Ppfor supports that the mites differ in 

their genetic makeup for the foraging gene, Ppfor.  To ensure that genetic variation results in 

behavioral differences in foraging/dispersion further research needs to be done via expression 

analysis of Ppfor in selected individuals for various foraging traits. Also to identify the 

individual genes involved in the behavioral response, cDNA micro arrays could be used to 

identify the candidate genes and then could assess the predatory lines in these genes for 

behavioral confirmation. Thus the contribution of gene(s) for the complex polygenic behavior of 

foraging / dispersion might be determined. 

Subtle changes in the behavior of natural enemies can lead to significant differences in 

population dynamics, both in theory and in reality (Hassell & May, 1985; Pels et al., 2002; 

Murdoch et al., 1996). The knowledge of the behavioral basis of population ecology helps us to 
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predict the responses of predator-prey systems to novel conditions or to deliberate manipulations. 

Thus, documentation of genetic variation in foraging behavior is also important for selection and 

application of natural enemies in biological control. To summarize, this research is expected to: 

1) help understand the link of variation of foraging behavior in predatory mites to gene(s) 

involved in elicitation of that behavior, 2) better understand the role of dispersal and response of 

predator to herbivore-induced volatiles in P. persimilis predator-prey dynamics, and 3) assess the 

possibility of genetic improvement of P. persimilis as a biological control agent. 
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APPENDIX A: SAS output for WGA of predatory mite P. persimilis 
                                                    
                                      WGA of Predatory mite 
                                 Obs    enzyme    gDNA     WGA 
 
                                  1     0.30     1.00    2832.50 
                                  2     0.30     1.00    1293.00 
                                  3     0.30     1.00    2182.30 
                                  4     0.30     1.00    1071.20 
                                  5     0.30     0.30    2893.10 
                                  6     0.30     0.30    1605.00 
                                  7     0.30     0.30    1940.00 
                                  8     0.30     0.30    1078.30 
                                  9     0.30     0.10    1544.60 
                                 10     0.30     0.10     791.00 
                                 11     0.30     0.10    1656.00 
                                 12     0.30     0.10     717.40 
                                 13     0.30     0.03    2362.80 
                                 14     0.30     0.03      30.00 
                                 15     0.30     0.03     560.80 
                                 16     0.30     0.03     864.00 
                                 17     0.30     0.01    1847.70 
                                 18     0.30     0.01     699.00 
                                 19     0.30     0.01     903.50 
                                 20     0.30     0.01     100.80 
                                 21     0.10     1.00    2857.20 
                                 22     0.10     1.00    1665.50 
                                 23     0.10     1.00    1854.00 
                                 24     0.10     1.00     862.69 
                                 25     0.10     0.30    2966.40 
                                 26     0.10     0.30    1496.70 
                                 27     0.10     0.30    1725.00 
                                 28     0.10     0.30     761.80 
                                 29     0.10     0.10    1903.90 
                                 30     0.10     0.10     669.20 
                                 31     0.10     0.10    1755.00 
                                 32     0.10     0.10       0.70 
                                 33     0.10     0.03    2172.00 
                                 34     0.10     0.03      30.40 
                                 35     0.10     0.03      80.00 
                                 36     0.10     0.03       9.00 
                                 37     0.10     0.01     923.30 
                                 38     0.10     0.01     549.10 
                                 39     0.10     0.01       2.00 
                                 40     0.10     0.01     228.90 
                                 41     0.03     1.00    1884.00 
                                 42     0.03     1.00    2443.50 
                                 43     0.03     1.00    1308.00 
                                 44     0.03     1.00     741.40 
                                 45     0.03     0.30    3443.10 
                                 46     0.03     0.30     950.50 
                                 47     0.03     0.30    1368.00 
                                 48     0.03     0.30     903.30 
                                 49     0.03     0.10     759.00 
                                 50     0.03     0.10     210.50 
                                 51     0.03     0.10    1278.00 
                                 52     0.03     0.10     141.7 
                                 53     0.03     0.03    1705.3 
                                 54     0.03     0.03       2.3 
                                 55     0.03     0.03      69.0 
                                 56     0.03     0.03      10.9 
                                 57     0.03     0.01       0.1 
                                 58     0.03     0.01     467.5 
                                 59     0.03     0.01       0.0 
                                 60     0.03     0.01       0.5 
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                                    WGA of Predatory mite      
                                       The GLM Procedure 
 
                                    Class Level Information 
 
                          Class         Levels    Values 
 
                          enzyme             3    0.03 0.1 0.3 
 
                          gDNA               5    0.01 0.03 0.1 0.3 1 
 
 
                            Number of Observations Read          60 
                            Number of Observations Used          60 
 
                                     WGA of Predatory mite      
                                       The GLM Procedure 
 
Dependent Variable: WGA 
 
                                              Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
      Model                        6     19705440.38      3284240.06       5.87    <.0001 
 
      Error                       53     29642239.80       559287.54 
 
      Corrected Total             59     49347680.18 
 
 
                       R-Square     Coeff Var      Root MSE      WGA Mean 
 
                       0.399318      66.80024      747.8553      1119.540 
 
 
      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
      enzyme                       2      2157046.80      1078523.40       1.93    0.1554 
      gDNA                         4     17548393.58      4387098.40       7.84    <.0001 
 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
      enzyme                       2      2157046.80      1078523.40       1.93    0.1554 
      gDNA                         4     17548393.58      4387098.40       7.84    <.0001 
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                                       The GLM Procedure 
 
                                     t Tests (LSD) for WGA 
 
  NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise 
        error 
                                             rate. 
 
 
                             Alpha                            0.05 
                             Error Degrees of Freedom           53 
                             Error Mean Square            559287.5 
                             Critical Value of t           2.00575 
                             Least Significant Difference   474.34 
 
 
                   Means with the same letter are not significantly different. 
 
 
                           t Grouping     Mean      N    enzyme 
 
                                A        1348.7     20    0.3 
                                A 
                                A        1125.6     20    0.1 
                                A 
                                A         884.3     20    0.03 
 
 
     
                                       The GLM Procedure 
 
                                     t Tests (LSD) for WGA 
 
  NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise 
        error 
                                             rate. 
 
 
                             Alpha                            0.05 
                             Error Degrees of Freedom           53 
                             Error Mean Square            559287.5 
                             Critical Value of t           2.00575 
                             Least Significant Difference   612.38 
 
 
                   Means with the same letter are not significantly different. 
 
 
                            t Grouping     Mean      N    gDNA 
 
 
                                 A        1760.9     12    0.3 
                                 A 
                                 A        1749.6     12    1 
 
                                 B         952.3     12    0.1 
                                 B 
                                 B         658.0     12    0.03 
                                 B 
                                 B         476.9     12    0.01 
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APPENDIX B: SAS output for consumption and oviposition behavior 

 
 
                                   Obs    trt    cons    ovi 
 
                                     1     1      21      2 
                                     2     1      32      4 
                                     3     1      16      3 
                                     4     1      31      5 
                                     5     1      11      2 
                                     6     1       7      2 
                                     7     1      32      6 
                                     8     1      26      3 
                                     9     1      20      2 
                                    10     1      29      3 
                                    11     2      11      2 
                                    12     2      31      3 
                                    13     2      27      3 
                                    14     2      19      5 
                                    15     2       6      4 
                                    16     2      33      5 
                                    17     2      29      3 
                                    18     2      18      3 
                                    19     2      16      4 
                                    20     3      19      3 
                                    21     3      27      5 
                                    22     3      32      4 
                                    23     3      19      2 
                                    24     3      28      5 
                                    25     3      17      2 
                                    26     3      13      2 
                                    27     3       9      2 
                                    28     4      33      6 
                                    29     4      18      3 
                                    30     4      29      5 
                                    31     4      32      5 
                                    32     4      12      2 
                                    33     4      37      4 
                                    34     4      17      3 
 
                                 
                               
                                        
                                    Class Level Information 
 
                                Class         Levels    Values 
 
                                trt                4    1 2 3 4 
 
 
                            Number of Observations Read          34 
                            Number of Observations Used          34 
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Consumption oviposiiton Behavior   

 
                                       The GLM Procedure 
 
Dependent Variable: cons 
 
                                              Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
      Model                        3      107.514472       35.838157       0.44    0.7240 
 
      Error                       30     2427.103175       80.903439 
 
      Corrected Total             33     2534.617647 
 
 
                       R-Square     Coeff Var      Root MSE     cons Mean 
 
                       0.042418      40.39862      8.994634      22.26471 
 
 
      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
      trt                          3     107.5144725      35.8381575       0.44    0.7240 
 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
      trt                          3     107.5144725      35.8381575       0.44    0.7240 
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                                Consumption oviposiiton Behavior 
 
                                                                                                   
                                       The GLM Procedure 
 
Dependent Variable: ovi 
 
                                              Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
      Model                        3      3.68513072      1.22837691       0.73    0.5440 
 
      Error                       30     50.69722222      1.68990741 
 
      Corrected Total             33     54.38235294 
 
 
                       R-Square     Coeff Var      Root MSE      ovi Mean 
 
                       0.067763      37.77674      1.299964      3.441176 
 
 
      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
      trt                          3      3.68513072      1.22837691       0.73    0.5440 
 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
      trt                          3      3.68513072      1.22837691       0.73    0.5440 
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APPENDIX C: SAS output for dispersal behavior  

 
              
                                Obs    TRT    DISH    TIME    D 
 
 
                                  1     1       1       1     0 
                                  2     1       1       2     3 
                                  3     1       1       3     0 
                                  4     1       1       4     2 
                                  5     1       1       5     0 
                                  6     1       1       6     0 
                                  7     1       1       7     0 
                                  8     1       1       8     0 
                                  9     2       1       1     0 
                                 10     2       1       2     1 
                                 11     2       1       3     0 
                                 12     2       1       4     1 
                                 13     2       1       5     0 
                                 14     2       1       6     0 
                                 15     2       1       7     1 
                                 16     2       1       8     1 
                                 17     3       1       1     0 
                                 18     3       1       2     0 
                                 19     3       1       3     0 
                                 20     3       1       4     1 
                                 21     3       1       5     1 
                                 22     3       1       6     0 
                                 23     3       1       7     1 
                                 24     3       1       8     0 
                                 25     4       1       1     0 
                                 26     4       1       2     0 
                                 27     4       1       3     0 
                                 28     4       1       4     2 
                                 29     4       1       5     0 
                                 30     4       1       6     1 
                                 31     4       1       7     0 
                                 32     4       1       8     2 
                                 33     1       2       1     0 
                                 34     1       2       2     2 
                                 35     1       2       3     1 
                                 36     1       2       4     0 
                                 37     1       2       5     1 
                                 38     1       2       6     0 
                                 39     1       2       7     0 
                                 40     1       2       8     0 
                                 41     2       2       1     0 
                                 42     2       2       2     0 
                                 43     2       2       3     0 
                                 44     2       2       4     0 
                                 45     2       2       5     2 
                                 46     2       2       6     0 
                                 47     2       2       7     1 
                                 48     2       2       8     0 
                                 49     3       2       1     0 
                                 50     3       2       2     1 
                                 51     3       2       3     0 
                                 52     3       2       4     1 
                                 53     3       2       5     1 
                                 54     3       2       6     1 
                                 55     3       2       7     0 
                                 56     3       2       8     0 
                                 57     4       2       1     0 
                                 58     4       2       2     1 
                                 59     4       2       3     0 
                                 60     4       2       4     1 
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                                 61     4       2       5     0 
                                 62     4       2       6     1 
                                 63     4       2       7     2 
                                 64     4       2       8     0 
                                 65     1       3       1     0 
                                 66     1       3       2     3 
                                 67     1       3       3     0 
                                 68     1       3       4     2 
                                 69     1       3       5     0 
                                 70     1       3       6     0 
                                 71     1       3       7     0 
                                 72     1       3       8     0 
                                 73     2       3       1     0 
                                 74     2       3       2     1 
                                 75     2       3       3     0 
                                 76     2       3       4     0 
                                 77     2       3       5     0 
                                 78     2       3       6     0 
                                 79     2       3       7     1 
                                 80     2       3       8     0 
                                 81     3       3       1     0 
                                 82     3       3       2     0 
                                 83     3       3       3     0 
                                 84     3       3       4     1 
                                 85     3       3       5     0 
                                 86     3       3       6     0 
                                 87     3       3       7     0 
                                 88     3       3       8     1 
                                 89     4       3       1     0 
                                 90     4       3       2     0 
                                 91     4       3       3     0 
                                 92     4       3       4     2 
                                 93     4       3       5     0 
                                 94     4       3       6     0 
                                 95     4       3       7     1 
                                 96     4       3       8     1 
                                 97     1       4       1     0 
                                 98     1       4       2     2 
                                 99     1       4       3     1 
                                100     1       4       4     1 
                                101     1       4       5     0 
                                102     1       4       6     1 
                                103     1       4       7     0 
                                104     1       4       8     0 
                                105     2       4       1     0 
                                106     2       4       2     0 
                                107     2       4       3     0 
                                108     2       4       4     2 
                                109     2       4       5     0 
                                110     2       4       6     0 
                                111     2       4       7     0 
                                112     2       4       8     1 
                                113     3       4       1     0 
                                114     3       4       2     0 
                                115     3       4       3     0 
                                116     3       4       4     1 
                                117     3       4       5     0 
                                118     3       4       6     0 
                                119     3       4       7     1 
                                120     3       4       8     1 
                                121     4       4       1     0 
                                122     4       4       2     1 
                                123     4       4       3     0 
                                124     4       4       4     0 
                                125     4       4       5     2 
                                126     4       4       6     1 
                                127     4       4       7     0 
                                128     4       4       8     0 
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                                 REPEATED MEASURES EXPERIMENT 
                                   ASSUMING COMPOUND SYMMETRY  
       
 
                                       The GLM Procedure 
                    Tests of Hypotheses for Mixed Model Analysis of Variance 
 
Dependent Variable: D 
 
         Source              DF     Type III SS     Mean Square    F Value    Pr > F 
 
    *    TRT                  3        1.335937        0.445312       7.43    0.0045 
 
         Error: MS(DISH(TRT))        12        0.718750        0.059896 
    * This test assumes one or more other fixed effects are zero. 
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APPENDIX D: for gene alignment for designing degenerate primers. The alignment shows 
four forward primers and four reverse primers 
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