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Abstract

Dimension reduction and variable selection play important roles in high dimensional data

analysis. The sparse MAVE, a model-free variable selection method, is a nice combination of

shrinkage estimation, Lasso, and an effective dimension reduction method,MAVE (minimum

average variance estimation). However, it is not robust to outliers in the dependent variable

because of the use of least-squares criterion. A robust variable selection method based on

sparse MAVE is developed, together with an efficient estimation algorithm to enhance its

practical applicability. In addition, a robust cross-validation is also proposed to select the

structural dimension. The effectiveness of the new approach is verified through simulation

studies and a real data analysis.

Key words: Sufficient dimension reduction, MAVE, Shrinkage estimation, Robust

estimation.

1. Introduction

The explosion of massive data in the last decades has generated considerable challenges

and interests in the development of statistical modeling. Practically, only part of these ob-

served variables are believed to be truly relevant to the response. Thus, variable selection

plays an important role in analyzing these high dimensional data, not only for better model

interpretation but also for higher prediction accuracy (Fan and Li, 2006). A lot of research
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efforts have been devoted to this area. Many traditional model-based variable selection cri-

teria have been advocated and strengthened in the literature, such as Cp, AIC, BIC, etc.

Recently a family of regularization approaches, including Nonnegative Garrote (Brieman,

1995), Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), Lars (Efron, Hastie, and Tib-

shirani, 2004) and Elastic Net (Zou and Hastie, 2005), was proposed to automatically select

informative variables through continuous shrinkage. However, because of the so-called ‘curse

of dimensionality’ (Bellman, 1961), it is very difficult or even infeasible to formulate and

validate a parametric model with a large number of covariates. So it is desirable to have a

set of model-free variable selection approaches.

Sufficient dimension reduction (Li, 1991; Cook, 1998) provides such a model-free alter-

native to variable selection. The basic idea of sufficient dimension reduction is to replace

the original high dimensional predictor vector with its appropriate low dimensional pro-

jection while preserving full regression information. Each direction in the low dimensional

subspace is a linear combination of original predictors. Cook (2004) and Li, Cook, and

Nachtsheim (2005) proposed several testing procedures to evaluate the contribution of each

covariate. Similar to the model-based subset selection procedures, these methods are not

stable because of their inherent discreteness (Brieman, 1996). Ni, Cook, and Tsai (2005),

Li and Nachtsheim (2006), Li (2007), Zhou and He (2008) and Bondell and Li (2009) used

regularization paradigm to incorporate shrinkage estimation into inverse regression dimen-

sion reduction methods. Along the same line, Wang and Yin (2008) combined shrinkage

estimation and a forward regression dimension reduction method, MAVE (minimum aver-

age variance estimation, Xia et al. 2002), and proposed sparse MAVE to select informative

covariates. Compared to the previous work, sparse MAVE is model-free and requires no

strong probabilistic assumptions on the predictors. However, MAVE and sparse MAVE are

not robust to outliers in the dependent variable because of the use of least-squares criterion.

Č́ıžek and Härdle (2006) gave a comprehensive study of the sensitivity of MAVE to outliers

and proposed a robust enhancement to MAVE by replacing the local least squares with local

L- or M- estimation.

In this article, we extend the robust estimation to variable selection and propose a robust
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sparse MAVE. It can exhaustively estimate directions in the regression mean function and

select informative covariates simultaneously, while being robust to the existence of possible

outliers in the dependent variable. In addition, a robust cross-validation is also proposed to

select the structural dimension. The effectiveness of the new approach is verified through

simulation studies and a real data analysis.

The rest of the article is organized as follows. In Section 2, we briefly review the methods

MAVE and sparse MAVE. The robust extension of sparse MAVE is detailed in Section 3.

Simulation studies and comparison with some existing methods are presented in Section 4.

In Section 5, we apply the proposed robust sparse MAVE to a logo design data collected

by Henderson and Cote (1998). Finally, in Section 6, we conclude the article with a short

discussion.

2. A brief review of MAVE and sparse MAVE

The regression-type model of a response y ∈ ℛ1 on a vector x ∈ ℛp can be written as

y = g(BTx) + ", (1)

where g(⋅) is an unknown smooth link function, B = (�1, . . . ,�d) is a p×d orthogonal matrix

(BTB = Id) with d < p and E(" ∣ x) = 0 almost surely. Xia et al. (2002) defined the d-

dimensional subspaceBTx the effective dimension reduction (EDR) space, which captures all

the information of E(y∣x). The d is usually called the structural dimension of the EDR space.

Given a random sample {(xi, yi), i = 1, . . . , n}, the MAVE estimates the EDR directions by

solving the following minimization problem

min
B,aj ,bj ,j=1,...,n

(

n
∑

j=1

n
∑

i=1

[

yi −
{

aj + bT
j B

T (xi − xj)
}]2

wij

)

, (2)

where BTB = Id and the weight wij is a function of the distance between xi and xj. The

minimization of (2) can be solved iteratively with respect to {(aj,bj), j = 1, ⋅ ⋅ ⋅ , n} and B

separately. The estimation of MAVE is very efficient since only two quadratic programming
3



problems are involved and both have explicit solutions. To improve the estimation accuracy,

a lower dimensional kernel weight w̃ij as a function of B̃
T
(xi−xj) can be used after an initial

estimate B̃ was obtained (the refined MAVE).

Note that each reduced variable in BTx is a linear combination of all original predictors.

But it is not uncommon in practice that some covariates are irrelevant among a large number

of candidates. To effectively select those informative variables can improve both the model

interpretability and the prediction accuracy, Wang and Yin (2008) proposed sparse MAVE

to incorporate an L1 penalty into the above estimation. The constrained optimization is as

follows,

min
B,aj ,bj ,j=1,...,n

(

n
∑

j=1

n
∑

i=1

[

yi −
{

aj + bT
j B

T (xi − xj)
}]2

wij +
d
∑

k=1

�k∣�k∣1
)

, (3)

where ∣⋅∣1 represents the L1 norm and {�k, k = 1, ⋅ ⋅ ⋅ , d} are nonnegative regularization

parameters which control the amount of shrinkage. Through penalizing on the L1 norm

of the parameter estimates, we can achieve the goal of variable selection when the true

direction has a sparse representation. The minimization of (3) can be solved by a standard

Lasso algorithm. More details can be found in Wang and Yin (2008).

3. Robust sparse MAVE

3.1. Robust estimation

Note that in (2) and (3), the least-squares criterion is used between the response and

the regression function to evaluate how well the model fits. It corresponds to the maximum

likelihood estimation (MLE) when the error is normally distributed. However, it is not robust

to outliers in the dependent variable y and to the violation of distribution assumptions on

", such as heavy-tailed errors. To achieve the robustness in estimation, Č́ıžek and Härdle

(2006) proposed to replace the local least squares with local L- or M- estimation. The robust
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MAVE estimates the EDR directions by minimizing

min
B,aj ,bj ,j=1,...,n

n
∑

j=1

n
∑

i=1

�
(

yi −
{

aj + bT
j B

T (xi − xj)
})

wij, (4)

where �(⋅) is a robust loss function. Note that the traditional least squares criterion corre-

sponds to �(t) = t2, and the median regression uses L1 loss where �(t) = ∣t∣1. Its derivative
 (⋅) = �′(⋅) is proportional to the influence function.

The Huber function (Huber 1981) is one commonly used robust loss function, where

 c(t) = �′(t) = max{−c,min(c, t)} and the tuning constant c regulates the amount of

robustness. Huber (1981) recommends using c = 1.345� in practice, where � is the standard

deviation of ". This choice produces a relative efficiency of approximately 95% when the

error density is normal. Another possibility for  (⋅) is Tukey’s bisquare function  c(t) =

t{1 − (t/c)2}2+, which weighs the tail contribution of t by a biweight function. In the

parametric robustness literature, the use of c = 4.685�, which produces 95% efficiency,

is recommended. Figure 1 shows the comparison among these loss functions and their

corresponding influence functions. More details can be found in Huber (1981), Hampel et

al. (1986), Rousseeuw et al. (2003), and Maronna et al. (2006).

Note that the monotone regression M-estimators, such as the one based on Huber’s

function, are not robust to the high leverage outliers. However, the MAVE estimation is

based on the local linear regression technique and the high leverage outliers is less likely to

appear in a local window determined by the bandwidth and kernel function.

3.2. Robust sparse MAVE

To select the informative covariates robustly, an L1 penalty can be introduced into the

expression (4),

min
B,aj ,bj ,j=1,...,n

(

n
∑

j=1

n
∑

i=1

�
(

yi −
{

aj + bT
j B

T (xi − xj)
})

wij +
d
∑

k=1

�k∣�k∣1
)

, (5)
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Figure 1: Commonly used loss functions and their corresponding influence functions

where ∣⋅∣1 represents the L1 norm, �(⋅) is a robust loss function introduced in Section 3.1,

and {�k, k = 1, ⋅ ⋅ ⋅ , d} are the nonnegative regularization parameters.

Noting that �′(t) = t�′(t)/t, the minimization of (5) can be done using the traditional

least-squares-based sparse MAVE in (3) with updated kernel weight

w∗
ij = wijW ("̂ij), (6)

where

W ("̂ij) =
�′("̂ij)

"̂ij
=
 c("̂ij)

"̂ij
,

"̂ij = yi −
{

âj + b̂
T

j B̂
T
(xi − xj)

}

,

wij =
Kℎ{B̂

T
(xi − xj)}

∑n

l=1Kℎ{B̂
T
(xl − xj)}

,

and Kℎ(�) = ℎ−1K(�/ℎ) with K(�) being a symmetric kernel function and ℎ being the

bandwidth. {B̂, (âj, b̂j), j = 1, . . . , n} are some initial estimator. With the reconstructed
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weight function w∗
ij, the bounded influence function  (⋅) helps put less weights on those

observations with large errors and thus achieve robustness. In addition, similar to Č́ıžek and

Härdle (2006), the original least-squares based algorithm in sparse MAVE can be employed

here to minimize the objective function (5) after we replace wij in (3) by w∗
ij in (6).

Based on the above discussion, we propose the following estimation algorithm to minimize

the objective function (5).

Algorithm 3.1. For a given sample {(yi, xi), i = 1, ⋅ ⋅ ⋅ , n},

∙ Step 1: Obtain an initial robust estimator {B̂, (âj, b̂j), j = 1, . . . , n} in (4), such as

using �0(t) = ∣t∣1;

∙ Step 2: Calculate w∗
ij in (6) from the current estimators;

∙ Step 3: Replace wij by w
∗
ij in (3), and update the estimator with the least squares based

sparse MAVE algorithm.

1. For given B̂, update (aj, bj) where j = 1, ⋅ ⋅ ⋅ , n, from the following quadratic

minimization problem

min
aj ,bj ,j=1,...,n

(

n
∑

i=1

[yi − {aj + b
T
j B̂

T
(xi − xj)}]2w∗

ij

)

. (7)

2. For given (âj, b̂j), j = 1, ⋅ ⋅ ⋅ , n, solve B from the following constrained quadratic

minimization problem

min
B:BT

B=Id

(

n
∑

j=1

n
∑

i=1

[yi − {âj + b̂
T

j B
T (xi − xj)}]2w∗

ij +
d
∑

k=1

�k∣�k∣1
)

. (8)

3. Iterate between the previous two steps until convergence in the estimation of B.

∙ Step 4: Iterate between Step 2 and Step 3 until convergence.

Based on our empirical experience, the proposed Algorithm 3.1 usually converges within

5 to 10 iterations. However, one might further speed up the computation based on the
7



one-step M-estimation as discussed in Fan and Jiang (1999), Welsch and Ronchetti (2002),

and Č́ıžek and Härdle (2006). Therefore, we can just simply run one iteration from Step 1

to Step 3 in Algorithm 3.1.

3.3. Choice of c

Note that the tuning parameter c in the robust loss function involves the error standard

deviation �, such as c = 1.345� in Huber function. This � is usually unknown and needs

to be estimated. In practice, we can estimate � based on some initial estimate. One robust

choice is the median absolute deviation (MAD) as

�̂ =Median(∣"̂i −Median("̂i)∣)/0.675.

The tuning constant in the value c, such as 1.345 for Huber function and 4.685 for Tukey’s

bisquare function used in our numerical studies, can also be adjusted to reflect the proportion

of possible outliers in the data. Essentially, the choice of c is a balance between resistance

to outliers and estimation efficiency. More details can be found in Wang et al. (2007) and

the references therein.

3.4. Determination of the dimension d

The estimation of the structural dimension d is another important task in sufficient

dimension reduction. In this section, we propose a robust cross-validation (CV) procedure

to determine the optimal dimension d. Different from the L1-based CV used in Č́ıžek and

Härdle (2006), we propose to use a robust CV based on Tukey’s bisquare loss function, where

the Tukey’s bisquare loss function is

�(t) =

⎧

⎨

⎩

1− [1− (t/c)2]3 if ∣t∣ ≤ c;

1 if ∣t∣ > c.

8



Once we have an estimated B̂ for a given dimension k, we can calculate the corresponding

CV value as

CVk = n−1

n
∑

i=1

�

⎛

⎝yi −
∑

j ∕=i yjKℎ{B̂
T
(xj − xi)}

∑

l ∕=iKℎ{B̂
T
(xl − xi)}

⎞

⎠ . (9)

Then the structural dimension d can be estimated by

d̂ = argmin
0≤k≤p

CVk.

One might also use some other robust loss functions such as Huber’s � function

�(t) =

⎧

⎨

⎩

t2/2, if ∣t∣ ≤ c;

c∣t∣ − c2/2, if ∣t∣ > c.

in (9). Our empirical studies show that Tukey’s bisquare loss usually slightly outperforms

the Huber’s loss function.

4. Simulation studies

In this section, we carried out simulation studies to evaluate the finite sample perfor-

mance of the proposed robust sparse MAVE (rsMAVE) and to compare it with the traditional

refined MAVE (rMAVE, Xia et al., 2002), sparse MAVE (sMAVE, Wang and Yin, 2008),

and robust MAVE (rtMAVE, Č́ıžek and Härdle, 2006). For measuring the accuracy of the

estimates, we adopted the trace correlation r defined by Ye and Weiss (2003) and Zhu and

Zeng (2006). Let S(A) and S(B) denote the column space spanned by two p×d matrices of

full column rank. Let PA = A(ATA)−1AT and PB = B(BTB)−1BT be the projection matri-

ces onto S(A) and S(B) respectively, the trace correlation is defined as r =
√

1

d
tr(PAPB).

Clearly, 0 ≤ r ≤ 1. The larger the r is, the closer S(A) is to S(B). To measure the effec-

tiveness of variable selection, we used the true positive rate (TPR), defined as the ratio of

the number of predictors correctly identified as active to the number of active predictors,

and the false positive rate (FPR), defined as the ratio of the number of predictors falsely

identified as active to the number of inactive predictors. Ideally we expect to have the TPR
9



close to 1 and the FPR close to 0 simultaneously.

We employed a very efficient Lasso algorithm recently proposed by Friedman, Hastie,

and Tibshirani (2010) to solve the L1 regularized minimization (8). Cyclical coordinate

descent methods were used to calculate the solution path for a large number of � at once.

We used the Matlab package “glmnet” in all the simulation studies. More details can be

found at http://www-stat.stanford.edu/˜tibs/glmnet-matlab/. A BIC criterion was

used to select the optimal �’s in the Lasso estimation,

BIC� = n log
(RSS�

n

)

+ log(n)p�,

where RSS� is the residual sum of squares from the Lasso fit, and p� denotes the number

of non-zero coefficients. More details can be found in Wang and Yin (2008). Similar to

Č́ıžek and Härdle (2006), the robust CV was used to select the bandwidth ℎ in the kernel

estimation.

4.1. Direction estimation and variable selection

The data {(x1, y1), . . . , (xn, yn)} were generated from the model

y =
�T

1 x

0.5 + (1.5 + �T
2 x)

2
+ �, (10)

where �1 = (1, 0, ⋅ ⋅ ⋅ , 0)T , �2 = (0, 1, 0, ⋅ ⋅ ⋅ , 0)T , and x = (x1, ⋅ ⋅ ⋅ , x10)T is a 10-dimensional

predictor. Therefore, the structural dimension is d = 2 . We considered both independent

and correlated cases for x: (a) x ∼ N10(010, I10) and (b) x ∼ N10(010,Σ), where (i, j)tℎ

element of Σ is 0.5∣i−j∣. Four error distributions of � were investigated:

1. N(0, 1), the standard normal errors. This density serves as a benchmark with no

outliers;

2. t3/
√
3, the scaled t-distribution with 3 degree of freedom;

3. 0.95N(0, 1) + 0.05N(0, 102), the standard normal errors contaminated by 5% normal

errors with mean 0 and standard deviation 10;
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4. 0.95N(0, 1) + 0.05U(−50, 50), the standard normal errors contaminated by 5% errors

from a uniform distribution in between -50 and 50.

We estimated the EDR directions based on rMAVE (the refined MAVE), sMAVE (the

sparse MAVE), rtMAVE (the robust MAVE), and rsMAVE (the robust sparse MAVE).

Various sample sizes, n=100, 200, and 400, were examined and 200 data replicates were

drawn in each case. We tried both Huber’s loss function and Tukey’s bisquare loss function

in simulations. Both loss functions gave very similar estimates, although Tukey’s bisquare

loss gave slightly better results than Huber’s loss in some cases. To simplify the presentation,

we only reported the results from Tukey’s loss. Table 1 and 2 give the summary of comparison

among these four different methods for independent and correlated predictors, respectively.

The mean and the standard error of the trace correlation r are reported, together with the

TPR and FPR for the effectiveness of variable selection.

Table 1: Estimation accuracy for independent predictors

The trace correlation r TPR & FPR

� n rMAVE sMAVE rtMAVE rsMAVE sMAVE rsMAVE

1 100 0.719(0.110) 0.876(0.144) 0.717(0.103) 0.850(0.160) (0.853, 0.126) (0.818, 0.142)

200 0.880(0.079) 0.970(0.078) 0.845(0.085) 0.958(0.094) (0.968, 0.062) (0.958, 0.083)

400 0.959(0.025) 0.999(0.007) 0.936(0.041) 0.998(0.005) (1.000, 0.037) (1.000, 0.052)

2 100 0.764(0.110) 0.877(0.151) 0.791(0.097) 0.907(0.129) (0.873, 0.178) (0.897, 0.159)

200 0.885(0.089) 0.962(0.089) 0.908(0.065) 0.993(0.033) (0.960, 0.092) (0.998, 0.093)

400 0.955(0.047) 0.992(0.036) 0.970(0.017) 0.999(0.003) (0.995, 0.068) (1.000, 0.083)

3 100 0.599(0.134) 0.659(0.231) 0.706(0.102) 0.862(0.143) (0.738, 0.407) (0.820, 0.153)

200 0.623(0.115) 0.685(0.208) 0.808(0.095) 0.943(0.112) (0.708, 0.374) (0.933, 0.088)

400 0.697(0.119) 0.737(0.209) 0.926(0.048) 0.998(0.007) (0.755, 0.343) (1.000, 0.061)

4 100 0.488(0.139) 0.451(0.262) 0.668(0.106) 0.837(0.154) (0.683, 0.632) (0.800, 0.161)

200 0.469(0.128) 0.389(0.278) 0.797(0.093) 0.958(0.097) (0.593, 0.540) (0.953, 0.075)

400 0.469(0.130) 0.439(0.279) 0.919(0.057) 0.997(0.021) (0.573, 0.518) (0.998, 0.066)

From the summary of all four different error distributions, we have the following findings.

1. For the standard normal errors, the robust estimation procedures gave comparable

results as the least squares based methods, i.e., rtMAVE performed similar to rMAVE
11



Table 2: Estimation accuracy for correlated predictors

The trace correlation r TPR & FPR

� n rMAVE sMAVE rtMAVE rsMAVE sMAVE rsMAVE

1 100 0.668(0.099) 0.805(0.156) 0.659(0.094) 0.802(0.146) (0.797, 0.164) (0.792, 0.198)

200 0.790(0.099) 0.917(0.123) 0.762(0.090) 0.887(0.138) (0.945, 0.101) (0.902, 0.126)

400 0.916(0.061) 0.975(0.074) 0.854(0.077) 0.969(0.083) (0.998, 0.079) (0.993, 0.102)

2 100 0.709(0.105) 0.828(0.148) 0.722(0.095) 0.847(0.145) (0.863, 0.209) (0.900, 0.239)

200 0.797(0.094) 0.906(0.126) 0.836(0.081) 0.949(0.100) (0.933, 0.139) (0.985, 0.153)

400 0.902(0.083) 0.968(0.082) 0.920(0.056) 0.995(0.030) (0.990, 0.109) (1.000, 0.139)

3 100 0.559(0.150) 0.646(0.249) 0.648(0.095) 0.780(0.141) (0.705, 0.366) (0.767, 0.203)

200 0.595(0.116) 0.710(0.169) 0.742(0.091) 0.879(0.135) (0.708, 0.326) (0.907, 0.153)

400 0.651(0.107) 0.756(0.183) 0.831(0.080) 0.957(0.097) (0.797, 0.306) (0.993, 0.122)

4 100 0.476(0.144) 0.453(0.273) 0.633(0.106) 0.788(0.147) (0.693, 0.623) (0.787, 0.214)

200 0.449(0.131) 0.418(0.292) 0.730(0.086) 0.887(0.131) (0.570, 0.509) (0.927, 0.149)

400 0.460(0.129) 0.461(0.281) 0.827(0.086) 0.967(0.082) (0.630, 0.489) (0.995, 0.127)

and rsMAVE performed similar to sMAVE. In addition, we can see that the sMAVE

and rsMAVE achieved better accuracy than rMAVE and rtMAVE respectively due to

the sparsity of the model.

2. The MAVE did show some robustness when the errors were from the scaled t-distribution,

as mentioned in the original MAVE paper. But with the inclusion of larger outliers

in the response as in the error distributions 3 and 4, the least squares based methods

failed to estimate the true directions and to select the informative covariates.

3. In the error distributions 2 to 4, the robust estimation procedures performed almost

equally well as they did in the cases without outliers. By selecting the informative

covariates, the rsMAVE outperformed the rtMAVE in terms of estimation accuracy

and also eased the subsequent model building. In addition, rsMAVE also outperformed

sMAVE, especially in the error distributions 3 and 4 where some large outliers appear.

Based on the above observations, we can conclude that the proposed rsMAVE procedure

provided very consistent estimates with good direction estimation and variable selection

accuracy in all error distributions considered and had overall best performance among all
12



four methods considered.

4.2. Estimation of the structural dimension d

In this section, we evaluate the finite-sample performance of our proposed robust CV

procedure based on Tukey’s bisquare loss function for the estimation of dimension d. Data

were generated in the same manner as in model (10). Therefore, the true value of d is 2.

Here we report only the results from the independent predictors with sample size n=100

and 200. For each case, 200 data replicates were used. Table 3 summarizes the frequency of

estimated d out of 200 data replicates. For comparison, the results from L1-based CV were

also reported. We can see that the proposed robust CV procedure provided very consistent

estimation for different error distributions. The method performed reasonably well for the

cases with outliers, although slightly worse than those without outliers. The robust CV

based on Tukey’s bisquare function slightly outperforms the L1-based CV for distribution 3

and 4, where extreme outliers occur. This can be explained from the influence function where

the bisquare function suppresses all the extreme outliers, while the L1 puts less weights on

them.

Table 3: Frequency of estimated d out of 200 data replicates

CVTukey CVL1

� n d = 1 d = 2 d = 3 d = 4 d ≥ 5 d = 1 d = 2 d = 3 d = 4 d ≥ 5

1 100 9 155 35 1 0 7 153 40 0 0

200 2 178 20 0 0 4 180 15 1 0

2 100 12 146 40 2 0 9 141 47 3 0

200 3 172 24 1 0 5 176 19 0 0

3 100 31 100 47 15 7 46 91 43 17 3

200 5 132 52 10 1 16 120 51 10 3

4 100 43 95 32 12 18 49 90 46 10 5

200 16 134 26 8 16 21 122 32 19 6
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5. Logo design data

Wang and Yin (2008) studied a logo design data collected by Henderson and Cote (1998).

The objective is to understand how logo design characteristics may influence consumers’

reactions to logos. There are 195 observations and 22 predictors in the data, and the

response variable y is the logo effect, which ranges from -2.55 to 2.16 with variance around

1. Sparse MAVE (sMAVE; Wang and Yin, 2008) identified 1 significant direction with 9

informative variables out of the 22 as listed in Table 4.

To verify our robust variable selection procedure, we re-analyzed this data set by in-

cluding some outliers in the response variable. Two cases were considered in the analysis, a

single outlier and 5% contaminated observations. For each case, the outliers were randomly

generated by increasing the value yi to yi+c and the results from c=10 and 20 were reported.

From our numerical experience, the pattern were very consistent over different repetitions.

In Table 4, we compared the variable selection performance of sMAVE and rsMAVE. To

evaluate the estimation accuracy, the correlation between each estimated direction and the

directions from sMAVE without outliers, denoted by corr(�̂, �̂s0), was also presented.

Table 4: Comparison of variable selection. The last column reports the correlations between each estimated
directions and the directions from sMAVE without outliers.

Selected variables corr(�̂, �̂s0)

Outliers sMAVE rsMAVE sMAVE rsMAVE

No outlier (2,3,4,8,9,10,12,14,17) (2,3,6,8,9,10,12,14,17) 1 0.9896

Single outlier (c=10) (1,3,8,9,10,11,12,14,17,21) (2,3,8,9,10,12,14,17) 0.9132 0.9893

Single outlier (c=20) (1,3,8,9,10,11,12,14,21) (2,3,8,9,10,12,14,17) 0.8251 0.9892

5% outliers (c=10) all variables except (3,10,16,20) (2,3,8,9,10,12,14,17) 0.3346 0.9904

5% outliers (c=20) all variables except (16,20) (2,3,8,9,10,12,14,17) 0.0276 0.9883

From the summary, we can see that the performance of sMAVE and rsMAVE are very

similar for the original data. After adding outliers, sMAVE is clearly affected in both

direction estimation and variable selection. But rsMAVE gives very consistent results, even

with 5% extreme values.
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6. Conclusion

In this article, we proposed a robust model-free variable selection method, rsMAVE,

which combines the strength of both robust and shrinkage estimation. Our numerical studies

demonstrate that the proposed method has better performance than the traditional refined

MAVE (rMAVE), the sparse MAVE (sMAVE), and the robust MAVE (rtMAVE) when

the model is sparse and outliers exist in the response variables. In addition, a robust

cross-validation criterion based on Tukey’s bisquare loss function was proposed to select the

structural dimension d.

We believe that this robust variable selection idea can also be extended to models where

the response takes discrete values, such as in logistic regression and Poisson regression. The

investigation for such a general class is under way.
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