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I . INTRODUCTION

In recent years, many studies of single K-shell, multiple L-shell

1-4
ionization formed in ion-atom collisions have been performed. The

observed statistical distribution of the Kot satellites has been explained in

terms of the probabilities for simultaneous K-shell and L-shell ionization. '

The probabilities for the L-shell ionization have been treated as a fitting

parameter in calculating the single K-shell, multiple L-shell x-ray spectra.

The systematics of these parameters have not agreed with the predictions of

ionization theories, particularly, as the projectile charge, Z , approaches

the target charge, Z .

In two very recent studies of single K-shell, multiple L-shell

ionization, "universal" scaling laws have been proposed by Schmiedekamp

et al . and Watson et al . In the previous work by Schmiedekamp et al .

,

a "universal" scaling of the average number of L-shell vacancies, < £> , was

obtained for argon Ka x-ray satellites formed in H, C, N, 0, F, Si, and CI

bombardment in the energy range of 1 - 5 MeV/amu. Watson et al. " used

beams of He, C, 0, and Ne incident on targets of Al, Si, and CI as a basis for

a semiempirical representation of the average L-shell ionization probability,

P , in terms of a "universal" velocity function.

The purpose of the present work was to extend these studies to

higher target and projectile Z and to examine these "universal" scaling laws

in the realm of higher target and projectile Z. The scaling law proposed by

Schmiedekamp et al . was based on spectra obtained from a gas target. In

the present work, the scaling law was examined for a solid target having a

Z near that of argon.



In this study, a thick scandium slab was used as the target.

Figures 1-6 show scandium Ka x-ray satellite spectra for incident projec-

tiles of H, C, N, 0, and CI at 1.50 MeV/amu and F at 1.75 MeV/amu. These

spectra are representative of multiple ionization spectra. From spectra such

as these, the average number of L-shell vacancies, < i> , can be calculated

using the definition

Z(I n/w )

1 - Z(I /co )
n n n

where n is defined as the number of L-shell vacancies giving rise to the

particular satellite, I is the intensity of the n satellite, and as is the

fluorescence yield of the n satellite transition.

If the vacancy production follows binomial statistics, the

average number of L-shell vacancies can be expressed in terms of the

probability of L-shell ionization at zero impact parameter, P (0) , by

<l> = 8P (0) .

Li

If effects of vacancy rearrangement, vacancy dependent K-f luorescence yields,

and vacancy production by electron transfer are small, then

8P
T (0)

Znl
ii n ,

L II
n n

which leads to the experimental definition of <.l>,

Znl
< £> = n_JL

EI
n n

It was this experimental definition, shown by Schmiedekamp et al . to be a

good approximation, that was used throughout this thesis.



Figure 1: Scandium Ka x-ray spectrum resulting from bombard-

ment by 1.50 MeV/amu H . The open circles represent

data points and the solid line represents a least

squares fit of the spectrum.
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Figure 2: Scandium Ka x-ray spectrum resulting from bombard-

ment by 1.50 MeV/amu C ions. The open circles repre-

sent data points and the solid line represents a

least squares fit of the spectrum.
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Figure 3: Scandium Ka x-ray spectrum resulting from bombard-

ment by 1.50 MeV/amu N ions. The open circles repre-

sent data points and the solid line represents a

least square fit of the spectrum.
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Figure 4: Scandium Ka x-ray spectrum resulting from bombard-

ment by 1.50 MeV/amu ions. The open circles repre-

sent data points and the solid line represents a

least squared fit of the spectrum.
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Figure 5: Scandium Ka x-ray spectrum resulting from bombard-

ment by 1.75 MeV/amu F ions. The open circles repre-

sent data points and the solid line represents a

least squares fit of the spectrum.
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Figure 6: Scandium Ka x-ray spectrum resulting from bombard-

ment by 1.50 MeV/amu CI ions. The open circles repre-

sent data points and the solid line represents a

least squares fit of the spectrum.
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As was discussed earlier, the average number of L-shell vacancies

is proportional to the probability of L-shell ionization at very small impact

parameters,

< i> « P (0)

.

1

3

P (0) may be obtained from the binary encounter approximation (BEA) and

14
the semiclassical approximation (SCA) theories and, since there is no

impact parameter development of the plane wave Born approximation theory

(PWBA) , P (0) may only be inferred from the PWBA theory. In all three

theories, a simple projectile Z-dependence is expected for P (0)
Li

?
L
(0) - Z^G(V)

where Z, is the projectile nuclear charge and G(V) is a function of the

scaled velocity, V = V. /V , where V. is the velocity of the incidentmc e mc J

projectile and V is the velocity of the electron in the target L-shell.

2
This implies that < i> obeys the same Z dependence (i.e. < £> « Z G(V) ) . The

1 O 1 /

function, G(V), was tabulated for the BEA and SCA theories and can be

calculated from a polynomial approximation for the PWBA theory.

A scaling function, f(V), to be compared to the function G(V)

,

can then be obtained by simple algebra,

< l>
f(V) =

<
This type of scaling has been shown in the past to be too strongly Z

dependent

.

Since single K-shell, multiple L-shell ionization is a small

impact parameter effect for the L-shell, scaling functions for the PWBA, SCA,

and BEA theories can be obtained by applying the ideas of increased orbital

1 ft

electron binding energy as used in the PWBA theory of Brandt and Lapicki.

15



The comparisons of these scaling functions, f(V), with the functions pre-

dicted by the PWBA, BEA, and SCA theories will be discussed in Section III.

16



II. EXPERIMENTAL TECHNIQUE

The experiment was performed on the Kansas State University

model EN 27 tandem Van de Graaff accelerator. Ions of C, N, 0, F and CI

were accelerated to energies in the range of 0.50 MeV/amu to 2.75 MeV/amu.

Protons were also accelerated to energies in the range of 1.00 MeV/amu to

4.00 MeV/amu. The beam currents were monitored by a current integrator using

the thick scandium target as a beam stop. The resulting scandium x-rays were

wavelength analyzed using a four-inch curved crystal spectrometer equipped

with a LiF (2d = 4.027 A) Johansson focusing crystal.

Figure 7 shows the properties of such a focusing crystal. First,

the crystal must annealed and aligned along the proper axis. It is then

machined (polished) to a circular cylinder form of radius 2R. Finally, the

machined crystal is bent to a radius of R. The planes of the finished

crystal are thus concentric with radius 2R about center (see figure 7) so

that segments OB and OA are perpendicular to the crystal's planes and OA

is a diameter of the focal circle. If a source is placed on the focal

circle at S and a detector on the focal circle at D such that the arcs SO

and OD are equal, then, from geometry, angle SBD and angle SAD will be equal.

Since the angle of incidence and the angle of reflection must be equal, all

four $' s in figure 7 are equal and exact focusing is achieved. The crystal

used in this experiment was obtained commercially.

X-rays reflected from such a crystal will also constructively

interfer in integral multiples according to the Bragg law of reflection,

nX = 2d sin 2, where X is the wavelength of the x-rays, £ is the angle

between the crystal planes and the incident parth, and d is the spacing of

the crystal planes. All the spectra for this paper were obtained in first

17



Figure 7: Geometric view of the focusing properties of the

Johansson curved crystal.
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order; i.e. n = 1

.

Measurements of the target x-rays were made with the four-inch

curved crystal spectrometer placed at a 90 angle with respect to the beam

axis as shown in figure 8. The scandium target was then placed in front of

the spectrometer at a 45 angle with respect to the beam axis. The target

x-rays entered the spectrometer and were Bragg reflected by the LiF curved

crystal to a flow proportional counter which utilized a P10 gas mixture (10%

methane and 90% argon) and a thin O 5000 1) polypropalene window. The

spectrometer was so designed that the target (source) and the proportional

counter (detector) are always on the focal circle for all desired reflecting

angles of this experiment. Scanning through the desired angles was achieved

through use of a spectrometer stepping motor controlled by an on-line PDP-15

computer. The number of x-rays for a given amount of micro-Coulombs of

integrated current at each angular setting of the crystal and detector was

recorded until an entire scan of angles was achieved. Each spectrum so

taken was repeated at least once to improve statistics. In this manner, the

statistical errors were reduced to values of much less than 5%. Other errors,

such as reproducibility errors and errors due to ignoring the L-shell

vacancy dependence of the fluorescence yields, were found to be less than or

on the order of 10%. The error bars in figure 15 and figure 18 are selected

representatives of the magnitudes of the errors involved in this experiment.

Figure 9 is a block diagram of the electronics.

20



Figure 8: A diagram of the target chamber used for this

experiment

.
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Figure 9: Block diagram of electronics used in this experi-

ment. The arrows indicate pulse direction.
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III. DISCUSSION

The relative satellite intensities, found in Table I, were used to

calculate the average number of L-shell vacancies using the definition of

<!!,> =

Enl
n n
EI
n n

I is the relative satellite intensity of the n satellite. The relative
n

intensities in Table I were obtained, for the most part, by a least squares

fit of the spectra. The relative intensities for oxygen, Z = 8, at 0.50

MeV/amu and 1.00 MeV/amu, shown in parenthesis, were hand calculated.

Table II shows the values of <l> calculated from the relative satellite

intensities given in Table I. The values of <£> are seen to increase with

increasing projectile charge, Z , at a given projectile energy. The values

of <l> for C, N, and F projectiles are seen to increase with increasing

projectile energies up to a peak at approximately 1.50 MeV/amu and then are

seen to decrease with increasing projectile energies. The values of <l> for

proton bombardment appear to be over the peak since they are seen to decrease

with increasing energy. However, the values of <$,> for CI bombardment are

seen to increase with increasing projectile energy.

The nature of these values of <l> as a function of the scaled velocity,

V = V /V , where V. and V were defined in section I, is shown plottedmc e mc e

in figure 10. The Br data was taken from Jamison et al. and the He data

g
was taken from Kauffman et al . Since a "universal" scaling was desired, an

2
attempt to eliminate the projectile Z effect was tried. This simple 1/Z

scaling, shown plotted in figure 11, was seen to be too strongly Z dependent.

25



Figure 10: <l> versus V for Sc KL satellite data. The He data

was taken from Kauffman et al. and the Br data was

taken from Jamison et al . The lines are to guide the

eye.
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Figure 11: <1>/Z versus V for Sc KL satellite data. The He

data was taken from Kauffman et al . and the Br data

was taken from Jamison et al . The lines are to

guide the eye.
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2
In anticipation of correcting the simple 1/Z scaling, Schmiedekamp

et al . applied the ideas of increased binding of Brandt and Lapicki. The

increased binding energy of the L-shell, U , in terms of the actual binding

energy of the L-shell of the target, U , is given by
Li

\ = £U
L

where the binding correction, e, is greater than unity.

Several authors ' ' have suggested using the form £ = 1 + (2Z /Z £)g

for the binding correction, where Z = Z - 4.15, £ is given by

2
4U /{ Z (13 .6) } , and g is a velocity dependent correction term being totally

independent of Z . The expression, while predicting a linear dependence on

Z. , does not extrapolate properly to the united atom limit.

Schmiedekamp et al . suggested using the expression

2
£ = 1 + (aZ + bZ )g(v), where g(v) is equation 19 of reference 16 and a and

b are fitting parameters. Utilizing this expression in the BEA form of the

projectile scaling to be discussed later in this section, Schmiedekamp

et al . obtained results which, for the lighter projectiles, were in

excellent agreement with the ionization curve for Ar predicted by the PWBA

theory. In an attempt to apply this scaling directly to the data for Sc, the

parameters, a and b, from the expression for the binding correction and the

parameter, K, from the BEA scaling were scaled from those for an Ar target to

those for a Sc target. The expected values for the parameters, along with the

results of the scaling of the Sc data, are shown in figure 12. Only the

lighter projectile data were plotted since, as was discovered by Schmiedekamp

et al . , the scaling was not expected to work well for the relatively heavier

projectiles. The ionization curve for Sc predicted by the PWBA theory yields

the same basic trend as the plotted data. However, the PWBA theoretical

30



Figure 12: Sc KL satellite data plotted using the BEA projec-

tile scaling. The parameters e and K were scaled

from the values for Ar as shown.
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ionization curve peaks at lower scaled velocities and has a lower magnitude

by a factory of approximately two.

The idea of increased binding leads to two forms of the projectile

scaling laws corresponding to the theories involved. In the PWBA and SCA

theories, a function of the form

f(V/e) =

<
can be derived (see appendix) and compared to the BEA or PWBA ionization

probability function. Figure 13 shows the results of the PWBA scaling (the

data) in comparison with the BEA and PWBA ionization probability functions

(the solid curves). The agreement for the heavier projectiles is bad while,

for the lighter projectiles, the agreement improved. The final values for

the fitting parameters a, b, and K are given in figure 13.

In the BEA theory, a function of the form

ff<v£) =
<£>e2

can be obtained (see appendix) and compared to the BEA or PWBA ionization

probability function. Figure 14 shows the results of the BEA scaling (the

data) in comparison with the BEA and PWBA ionization probability functions

(the solid curves). As can be seen, the BEA scaling gives much better agree-

ment than the PWBA scaling and, in comparison to either the BEA or the PWBA

ionization probability function, gives excellent agreement for Z /Z < 0.4.

The agreement is also satisfactory for 0.4 < Z,/Z_ < 1.0 with scaled veloci-

ties, V > 1.0. For projectiles heavier than the scandium target, little or

no agreement occurs with either the BEA or PWBA ionization function. The

values of the fitting parameters a, b, and K are given in figure 14.

33



Figure 13: Sc KL satellite data plotted using the PWBA

projectile scaling. In the upper plot, data

is compared to the BEA ionization probability

function (solid line). In the lower plot,

data is compared to the PWBA ionization prob-

ability function (solid Line) . The values of

the fitting parameters are given in the figure.
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Figure 14: Sc KL satellite data plotted using the BEA projec-

tile scaling. In the upper plot, data is compared

to the BEA ionization probability function (solid

line). In the lower plot, data is compared to the

PWBA ionization probability function. The values

of the fitting parameters are given in the figure.
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With hopes of obtaining better agreement, the SCA ionization probability

function was compared to the BEA scaling. The BEA scaling, although not the

scaling predicted by the SCA theory, was chosen over the PWBA scaling since

the BEA scaling produced superior agreement to either ionization probability

function. Figure 15 shows the results of the BEA scaling compared to the SCA

ionization probability function. Good agreement was extended to Z./Z < 0.8
1 2 ^

while, for 0.8 < Z /Z < 1.0, good agreement still occurs with scaled

velocities of less than unity. Since lifCle or no improvement of the latter

range was achieved, the data was refitted omitting the chlorine data. The

values for the fitting parameters a, b, and K are shown in figure 15.

In Table II, the values of the binding correction, e, are given. The bind-

ing correction is seen to increase with increasing projectile charge, Z, at a

given energy and to decrease with increasing energies for all projectiles.

12
Watson et al .

" suggested using a scaling of the form

2.836
P

T _1 = f(v),

z
2

where Z^ is the target charge, Z is the projectile charge, P is the average

L-shell ionization probability, and f(V) is a "universal" velocity function of

the scaled velocity, V. Figure 16 shows the data from the present work

1 o
compared to the "universal" velocity function of Watson et al . As can be

seen from the figure, this scaling gave excellent agreement for the proton

data, but the agreement deteriorated with increasing projectile charge, Z .

33



Figure 15: Sc KL satellite data plotted using the BEA projec-

tile scaling and compared to the SCA ionization

probabilty function. In the upper plot, the shown

fitting parameters resulted from including the CI

data in the fit. In the lower plot, the shown

fitting parameters resulted from excluding the CI

from the fit.
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Figure 16: Sc KL satellite data plotted using the low projec-

tile Z scaling of Watson et al. in comparison to a

"universal" velocity function (solid line)

.
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IV. CONCLUSION

The systematica of single K-shell, multiple L-shell ionization in

ion-atom collisions over a large range of projectile Z and projectile ener-

gies have been extended from Ar gas targets to solid Sc targets. The results

were used to test two recent semi-empirical "universal" scaling laws for pre-

dicting the distribution of Ka x-ray satellites in ion-atom collisions.

12
For light projectiles, the low Z scaling of < Z> by Watson et al . gave

good agreement over a fair range of scaled velocities. For heavier projec-

tiles, Z , /Z > 0.2, large deviations from the "universal" velocity function

12were found. This was expected from the results of Watson et al .
" who

suggested this scaling only for Z /Z << 1.

The PWBA scaling gave poor agreement with both the PWBA and the BEA

ionization probability functions.

For projectiles that satisfied Z /Z
?

<^ 0.4, the BEA scaling gave

excellent agreement with both the BEA and the PWBA ionization probability

functions. For projectiles that simultaneously satisfied 0.4 < Z./Z < 1.0
% 1 2 r^

and V > 1.0, good agreement was obtained. Using the SCA ionization probabi-

lity function for comparison, excellent agreement was achieved over a larger

projectile range, Z /Z <^ 0.8, at all scaled velocities whereas the agreement

remained unchanged for projectiles that simultaneously satisfied

0.8 <^ z i/ z
2 X l»0 and v £ 1«0« In aH cases for the BEA scaling, poor agree-

ment occurred for heavy projectiles, Z /Z > 1.0.

It has been suggested that the areas of poor agreement may be attributed

in part to partial screening of the target L-shell from the projectile

nucleus by the projectile L-shell electrons. The effective projectile charge

seen by the target would then be less than Z . If taken into account, this

43



Figure 17: <r> for projectile and target K-shells and L-shells,

The arrows indicate projectiles for which data was

available. The solid line is the value of <r> for

the target Sc.
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The results of scaling simply the parameters a and b in the expression

for the binding correction and not scaling the magnitude parameter K are

compared, in figure 18, to the SCA ionization probability function. The data

Q
was taken from the paper by Kauffman et al. The parameters a and b were

scaled for the various targets using the above suggestion from the values of

a and b given in the lower plot of figure 15.

In conclusion, it can be seen that the BEA scaling when compared to the

SCA ionization probability function yields the best agreement over the widest

range of projectiles and scaled velocities. The scaling of the binding

correction e to various targets appeared to be an adequate scaling for the few

cases tested. However, before any conclusive statement concerning this

particular form of target scaling can be made, many more cases must be tested.
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Figure 18: Oxygen induced KL satellite data plotted using the

BEA projectile and suggested target scaling. The

data is compared to the SCA ionization probability

function.
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would decrease the effect of the 1/Z~ scaling and all subsequent scalings.

The expectation values of the projectile K-shell and L-shell radii, <r>, in

units of the Bohr radius, a , are plotted as a function of Z in figure 17.

The arrows indicate projectiles for which Sc satellite data was available.

The solid line is the expectation value of the radius for the L-shell of Sc.

The values of <r> for the heavier projectiles, notably CI and Br, are seen

to be approximately equal to or less than the value of <r> for Sc.

Another process which was not considered in this thesis but may be of

significance for heavier projectiles is electron transfer from the projectile

to the target. This process would tend to decrease the observed value of the

average number of L-shell vacancies, <i>, and thus, when taken into considera-

2tion in the calculations, would raise the value of <Z> in the simple 1/Z
1

scaling and all subsequent scalings.

It must be remembered that all effects of vacancy rearrangement and

vacancy-dependent fluorescence yields were ignored.

A possible method of extending this scaling to various other targets is

suggested in this thesis. In section III, the parameters a and b were scaled

from the values for Ar ' to the values expected for Sc. The form of scaling

used for the parameter was obtained by comparing the form of the binding

correction used in this thesis to the form of the binding correction suggested

in reference 16 and comparing like powers of the projectile charge Z . The

parameter a was then assumed to be inversely proportional to Z = Z - 4.15

or a « ^ Z
2L"

T^e ^orm °^ scaling for b was obtained by assuming that the

form of e given in reference 16 was a truncated expansion in Z./Z and then

completing the comparison of like powers of Z . Thus, the form assumed for

2
the parameter b was b « 1/Z .
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Table I

Scandium
Relative Satellite Intensities

"amu
KaL° KaL

1

KaL
2 KaL

3 KaL
4 KaL 5 KaL 5

1.00 0.9277 0.0723
1.50 0.9323 0.0677

2. CO 0.9362 0.0633
2.50 0.9422 0.0578
3.00 0.9507 0.0493
3.50 0.9543 0.0457
4.00 0.9563 0.0432

0.50 0.2946 0.4580 0.2162 0.0312

0.75 0.1756 0.3990 0.2554 0.0927 0.O773
1.00 0.1143 0.3505 0.3179 0.1875 0.0297

1.25 0.1100 0.3112 0.3312 0.1947 0.0499
1.50 0.1008 0.3048 0.3535 0.1873 0.0537

1.75 0.1096 0.2942 0.3525 0.1375 0.0562
2.00 0.1128 0.3119 0.3539 0.1719 0.0145

2.25 0.1167 0.3030 0.3277 0.1373 0.0654
2.50 0.1383 0.3448 0.3147 0.1597 0.0425
2.75 0.1568 0.3472 0.3129 0.1412 0.0420

0.50 0.2339 0.4740 0.2066 0.08C6
0.75 0.1318 0.3519 0.3013 0.2015
1.00 0.0992 .2394 0.3560 0.1725 0.0729
1.25 0.0945 0.2547 0.3656 0.1938 0.0914

1.50 0.0623 0.2405 0.3251 0.2128 0.1533

1.75 0.0689 0.2351 0.3157 0.2259 0.1515

2.00 0.0682 0.2445 0.3026 0.2372 0.1476

2.25 0.0790 0.2498 0.3409 0.1920 0.1383

2.50 0.0926 0.2761 0.3372 0.1309 0.1133
2.75 0.1196 0.2660 0.3383 0.1711 0.1050

0.50 (0.153) (0.451) (0.343) (0.053)

0.75 0.1037 0.2820 0.3531 0.1932 0.0631
1.00 (0.062) (0.252) (0.415) (0.235) '0.036)

1.25 0.0707 0.2240 0.3433 0.2446 0.1174
1.50 0.0582 0.2110 0.3593 0.2199 0.1216
1.75 0.0551 0.2056 0.3554 0.2062 0.1777
2.00 0.0603 0.2200 0.3440 0.2456 0.1302
2.25 0.0576 0.2207 0.3312 0.2335 0.1070
2.50 0.0705 0.2434 0.3453 0.2454 0.0953

0.50 0.1253 0.3162 0.3366 0.1615 0.0605
0.75 0.0715 0.2523 0.3373 3.2093 0.1291
1.00 0.0569 0.1955 0.3263 0.2059 0.2154
1.25 0.0769 0.1391 0.3417 0.2211 0.1498 0.0531
1.50 0.0723 0.1157 0.3692 0.2019 0.1363 0.1047
1.75 0.0622 0.1669 0.2928 0.2726 0.1460 0.0595
2.00 0.0547 0.1795 0.2784 0.2935 0.1313 0.0627
2.25 0.0567 0.1796 0.2340 0.2804 0.1366 0.0627
2.50 0.0564 0.1902 0.2359 0.2970 0.1231 0.0423

0.50 0.0578 0.2710 0.3239 0.2737 0.0636
0.75 0.0353 0.1527 0.3264 0.3245 0.1179 0.0333
1.00 0.0315 0.1212 0.2635 0.3132 0.1666 0.0691
1.25 0.0283 0.C974 0.2035 0.3631 0.1942 0.1135
1.50 0.0292 0.0816 0.1960 0.3121 0.2329 0.0875 0.0278
1.75 0.0337 0.0571 0.1850 0.3807 0.2102 0.10C8 0.0325

NumDers in ( ) are nana calculated.
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Table II

Binding-energy correction factor« for Sc

ICa Curve

PUBA Scaling BF.A Scaling BEA Scaling

(HCV)

asm

PUBA SEA PUBA !.
l:a With Without United Ate*

< l>
Curve Curve Curve Curve CI Ci Estimate

1.00 0.072 1.08 1.06 1.01 1.05 1.09 1.09 1.13

1.50 0.0*8 1.07 1.03 1.01 1.01 1.07 1.09 1 .13

2.00 0.061 1.06 1.03 l .03 1.01 1.07 1.08 1.13

2.50 0.058 i .01! 1.02 1.03 1.03 1.06 1.07 1. 13

3 . DO 0.019 1.03 1.02 1.03 1.03 1 .05 1.03 1.13

3.50 0.016 1.05 1.03 1.03 1.0) 1.05 I.Ob 1.13

(.00 0.041 1.04 i.c: 1.02 1.03 1.05 1.06 1 . 13

0.50 0.891 i.ts 1.47 1.54 1.59 1.90 1.95 1.95

0.75 1 .497 1.33 1.40 1.61 1.51 1.77 1.81 1 .95

1 .00 1.66S l.*l 1.36 1.12 1.45 1.68 1.72 1.95

1.29 1.76] 1.45 1.1) 1.38 1.11 1.62 1.65 1.95

; . 30 1.788 1.41 1.30 1.35 1.38 1.53 1.61 1 . 95

i . '5 1.787 1.39 1 .28 1.33 1.35 1 .53 1-.57 1.95

2.00 1.723 '..36 1.27 1.31 1.33 1.50 1.53 1.95

2.23 1.782 1.34 1.35 I.JO 1.31 1.18 1.51 1.95

2.50 1.625 1.33 1.21 1.38 1.30 1.66 1.18 1.95

2.75 1.56* 1.31 1.23 1.27 1.29 1.14 1.46 1 .95

0.50 1.129 1.76 1.60 1.70 1.71 2.01 2.1) 2.14

0.75 1.573 1.64 1.51 1.60
i '" 1.93 1.96 2.14

1.00 1.8)1 l.SJ 1.65 1.53 1.56 1.83 1.86 2.1-

1.25 1.9)3 1.52 1.41 1.48 1.51 1.75 1.78 2. 11

1.50 2.164 1.48 1.38 1.45 1.47 1.69 1.72 2.11

1.75 2.162 1.43 1.66 1.12 1. 11 1.65 1.67 2.1*

2.00 2.151 1.42 1.31 1.39 1.41 1.61 1.63 2.1*

2.21 2.061 1.40 1.32 1.37 1.39 1.38 1.60 2.1*

2.50 1.946 1.38 1.30 1.36 1.37 '..35 1.57 2.1*

2.75 1.876 I.J? 1.29 1.36 1.36 1.5) 1.55 2.1*

0.50 1.296 1.86 1.76 1.86 1.90 2.30 2.32 2.))

0.75 1.940 1.73 I. S3 1.73 1.76 2.11 2.12 2. 33

1.00 1.931 1.65 1.56 1.65 1.68 1.98 1.99 2.33

1.25 2.114 1.5» 1.51 1.59 1.62 ; .99 I.N 2.33

1.50 2.166 1.55 1.47 1.55 1 .53 1.83 :.9i 2.33

1.75 2.246 1.51 1.14 1.5! 1.5} 1.77 1.70 2.33

2.00 2.165 1.48 1.11 1.41 1.30 1.73 1.7* 2.33

2.25 2.162 1.46 1.39 1 .in i.i3 1.69 1.70 2. 53

2.50 2.052 1.66 1.37 1 .-1 1.15 1.44 1.67 2.33

0.50
0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

1.716

2.072

2.327

2.435

2.528

2.452
2.455

2.449

2.377

1.97

1.82

1.72

1.66

1.6!

1.57

1.54

1.51

1.49

1.81
1.76

1.67

1.61

1.56

1.53
1.50

1.67

1.65

2.03
1.88
1.38

1.71

1.66

1.61

1.58

1.55
1.52

2.07

1.91

1.81

1.74

1.68

1.64

1 . 60

1.57
1.54

2.52

2.)0

2.15
2.05

1.97

1.90
1.85

1.81

1.77

2.51
2.28
2.1*

2.04
1.96

1.89
1.8*

1.80
1.76

2.55

3.55

2.55

2.55

2.55

2.55
2.55

2.55
2.55

0.50 2.029 2.79 3.57 3.91 3.91 1.76 — -.38

1.98
-.88

..38

4.88
4.88

0.75

1.00

2.427

2.704

2.53

2.35

3.18

2.91

3.50

3.22

3.50
3.2 2

1. 19

).8) —
1.25 2.938 :.:) 2.76 3.02 3.02 3.57 "
1.50 3. 0)8 2.14 2.63 2.87 2.86 3.)8 "
1.25 3.109 2.06 2.52 2.71 2.71 3.22
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PWBA Scaling

The form of the PWBA projectile scaling can be obtained by substituting

i

the increased binding energy U = eU for the binding energy of the L-shell

used in the calculations of reference 16.

Thus, the minimum momentum transfer for ionization of the L-shell

including increased binding, fiq' , is given by
UJ-i

2(u'/V )

Hq
0T

=
' V (1)

UL
i + (i - vv 2

2Assuming the particle energy, E = %mV , to be large compared to the binding

energy U , nq. may be approximated by

t I

Substituting for U , Rq may be obtained in terms of the minimum momentum

transfer without increased binding,

*q;L =^= £ (Hq
0L

). (3)

i

At this point, a dimensionless quantity £ is defined
L ,

where a = 4a /Z , a is the Bohr radius, and Z = Z„ - 4.15.
zl o z.\a o 2L 2

Eliminating a and q from equation (4) yields

'

RV
1

Z
2L

eL
= -4-^ (5)

2U
T
a

L o

or, in terms of the dimensionless quantity with no increased binding
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' 1
KV

1
Z
2L

r ,

L o

E_ is a form of the scaled velocity V = v. /v where v. and v are defined
L mc e mc e

in section I.

i

Another dimensionless quantity 9 is introduced,
L

4U
L

9
L V- (7)

13 ' 6Z
2L

This quantity also may be expressed in terms of the quantity without increased

binding as
lal

, 4eU,

—V" = e6
T

(8)
L

13.6 Z
ni

L

!

The ionization cross section may then be expressed in terms of g and

G
L

by

k
l
Z

l
a
T

= -f-^F U ) (9)
L

T

L L

I

where k is a proportionality constant and F (£ ) is a tabulated velocity
1 Li Li

* , 15
function.

Now <l> « P (0) a a , so an expression for <l> may be written,
Li Li

<i> = -M- f a ) do
0.

L L

Li

where <£> is the average number of L-shell vacancies, k is a proportionality

constant and F
T (ST ) may be approximated by a polynomial.

Substitution of equation (6) and (8) into equation (10) yields

<2>£0.

Vl
5-^ = F

L
(?
L
/ £ )- (»)
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Replacing £ T
with the scaled velocity V and absorbing 3 into the constant

yields, for a given target, the form of the PWBA projectile scaling used in

this thesis,

<£>£

«f

= G(V/e) (12)

where G(V/e) is a new polynomial approximation to account for replacing E
Li

with V.

In the SCA theory including increased binding energy, the ionization

probability for the L-shell I can be found from the tabulated generalized

14
ionization probability function, as

1

h =
2

Z
2L

Q
L

r f (3^) (13)

where

!
4U,

T
= ~. (14)

13.6 Z
2L

Again, may be written in terms of the quantity without increased binding,

T
= k

, = £0
T

. (15)
L

13.6 Z
0J

L

t

The agrument of the generalized ionization probability function, X , is
Li

given by

K - mf < 16 >

where E , is the magnitude of the projectile energy in MeV. X is a form of

the inverse of the scaled velocity V. Substitution of equation (15) into

equation (16) yields
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(17)

Z £0
Y - 2L L - PYX
L

' 27E^~ " EX
L'

«•

Thus, the ionization probability may be written as

Vi
I
T

= -^ f(£X.) (18)

Li

where k is a proportionality constant. Now <i> « P (0) = I so an

expression for <l> may be written,

<£> = -4^ f(eX
T ) (19)

Li

where k is a proportionality constant. But eX is proportional to s/V so

equation (19) becomes

^Y- = G(V/e) (20)

KZ
1

where K is a proportionality constant and G(V/e) is the appropriate form of

f(£X
L
).

It might be noted that this form of the projectile scaling is the same

as the form obtained from the PWBA theory.

BEA Scaling

To obtain the form of the BEA projectile scaling, the increased binding

energy U was substituted for the binding energy U in the expression for the

ionization cross section,

k
l
Z

l
o_ = -V-y G(V ). (21)

(u
L

)

2

' 13
G(V ) is a tabulated velocity function " and k is a proportionality constant.
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The scaled velocity V is given by

V = /eET7muT = v//e (22)
£ Li

where E is the projectile energy, M is the projectile mass, m is the mass of

i

an electron, and U = eU is the increased binding energy.
J-j L

Substituting equation (22) into equation (21) yields

o
T

= -At G(V/^e) (23)
Li Z

e

2
where U has been absorbed by the proportionality constant k .

.Li L-

Now <l> « P (0) a o , so an expression for <£> may be written,

2
KZ

<Ji> = —| G(V/e) (24)

e

or rearranging

2

^~- = G(V/e) (25)

KZ
1

which is the form of the BEA projectile scaling used in this thesis.

59



A TEST OF MULTIPLE IONIZATION SCALING IN Sc

by

Joal J. Newcomb

B.S., Southwestern Oklahoma State University, 1976

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Physics

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1979



ABSTRACT

A recent study of the projectile Z and velocity dependence of

single K-shell, multiple L-shell vacancy production in free atomic targets

of Ar revealed a universal scaling of <£>(= { £1 / I I where I is the
• \j

^~ \J .\j Aj ** \J At A/

J
measured intensity of the KaL ' satellite peak) based on an increased

binding effect. In this thesis, scandium Ka x-ray satellites produced by

ion-atom collisions were examined in high resolution using a 4" curved

crystal spectrometer. Ions of H, C, N, 0, F and CI with energies in the

range of 0.5 to 4.0 MeV/amu were used to investigate the scaling in solid

scandium targets. The binary encounter approximation (BEA) scaling using

either plane wave Born approximation (PWBA) or BEA ionization functions

fit the data very well. An extension of the analysis was made in this

thesis by comparing the date with the semiclassical approximation (SCA)

ionization function. Other researchers have also proposed a scaling law

for target K x-ray spectra applicable for light ions. Agreement between the

data and the scaling prediction is good only for H projectiles. A method

of scaling to different targets is also suggested in the present work.


